WorldWideScience

Sample records for ambient pressure estimation

  1. Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2010-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an approach for investigating the ambient pressure sensitivity of a contrast agent using diagnostic...

  2. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    Science.gov (United States)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  3. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...

  4. Densification of silica glass at ambient pressure

    International Nuclear Information System (INIS)

    Zheng Lianqing; An Qi; Fu Rongshan; Ni Sidao; Luo, S.-N.

    2006-01-01

    We show that densification of silica glass at ambient pressure as observed in irradiation experiments can be attributed to defect generation and subsequent structure relaxation. In our molecular dynamics simulations, defects are created by randomly removing atoms, by displacing atoms from their nominal positions in an otherwise intact glass, and by assigning certain atom excess kinetic energy (simulated ion implantation). The former forms vacancies; displacing atoms and ion implantation produce both vacancies and 'interstitials'. Appreciable densification is induced by these defects after equilibration of the defective glasses. The structural and vibrational properties of the densified glasses are characterized, displaying resembling features regardless of the means of densification. These results indicate that relaxation of high free-energy defects into metastable amorphous structures enriched in atomic coordination serves as a common mechanism for densification of silica glass at ambient pressure

  5. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  6. Ambient pressure photoemission spectroscopy of metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baikie, Iain D., E-mail: iain@kptechnology.ltd.uk; Grain, Angela C.; Sutherland, James; Law, Jamie

    2014-12-30

    Highlights: • Ambient pressure photoemission spectroscopy of metals. • Rastered photon energy scan overcomes inelastic scattering. • Relationship between photoemission threshold and contact potential difference. - Abstract: We describe a novel photoemission technique utilizing a traditional Kelvin probe as a detector of electrons/atmospheric ions ejected from metallic surfaces (Au, Ag, Cu, Fe, Ni, Ti, Zn, Al) illuminated by a deep ultra-violet (DUV) source under ambient pressure. To surmount the limitation of electron scattering in air the incident photon energy is rastered rather than applying a variable retarding electric field as is used with UPS. This arrangement can be applied in several operational modes: using the DUV source to determine the photoemission threshold (Φ) with 30–50 meV resolution and also the Kelvin probe, under dark conditions, to measure contact potential difference (CPD) between the Kelvin probe tip and the metallic sample with an accuracy of 1–3 meV. We have studied the relationship between the photoelectric threshold and CPD of metal surfaces cleaned in ambient conditions. Inclusion of a second spectroscopic visible source was used to confirm a semiconducting oxide, possibly Cu{sub 2}O, via surface photovoltage measurements with the KP. This dual detection system can be easily extended to controlled gas conditions, relative humidity control and sample heating/cooling.

  7. Bacterial decontamination using ambient pressure nonthermal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemical and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.

  8. Ambient pressure sensitivity of microbubbles investigated through a parameter study

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2009-01-01

    Measurements on microbubbles clearly indicate a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behavior of two microbubbles corresponding to two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20...... found, although the reduction is not completely linear as a function of the ambient pressure....

  9. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    The theory on microbubbles clearly indicates a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behaviour of two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20 cycles driving pulse, a reduction...... is not completely linear as a function of the ambient pressure....

  10. Dependence of the subharmonic signal from contrast agent microbubbles on ambient pressure: A theoretical analysis.

    Science.gov (United States)

    Jiménez-Fernández, J

    2018-01-01

    This paper investigates the dependence of the subharmonic response in a signal scattered by contrast agent microbubbles on ambient pressure to provide quantitative estimations of local blood pressure. The problem is formulated by assuming a gas bubble encapsulated by a shell of finite thickness with dynamic behavior modeled by a nonlinear viscoelastic constitutive equation. For ambient overpressure compatible with the clinical range, the acoustic pressure intervals where the subharmonic signal may be detected (above the threshold for the onset and below the limit value for the first chaotic transition) are determined. The analysis shows that as the overpressure is increased, all harmonic components are displaced to higher frequencies. This displacement is significant for the subharmonic of order 1/2 and explains the increase or decrease in the subharmonic amplitude with ambient pressure described in previous works. Thus, some questions related to the monotonic dependence of the subharmonic amplitude on ambient pressure are clarified. For different acoustic pressures, quantitative conditions for determining the intervals where the subharmonic amplitude is a monotonic or non-monotonic function of the ambient pressure are provided. Finally, the influence of the ambient pressure on the subharmonic resonance frequency is analyzed.

  11. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  12. Alterations in MAST suit pressure with changes in ambient temperature.

    Science.gov (United States)

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  13. Superheated emulsions in neutron spectrometry by varying ambient pressure

    International Nuclear Information System (INIS)

    Das, Mala; Sawamura, Teruko

    2005-01-01

    The principle of present work lies on the dependence of the threshold neutron energy on the dimensionless quantity ''degree of metastability (ss)'' of superheated liquids. The response of the superheated emulsions consists of the drops of superheated liquid (C 2 Cl 2 F 4 , b.p. 3.77 deg. C) has been measured at different 'ss' by varying ambient pressure at different temperatures, in the presence of neutrons generated in Pb by a (γ,n) reaction from 45 MeV electron LINAC of Hokkaido University. To unfold the neutron energy spectrum, a relationship has been developed between the 'ss' of superheated liquids and the threshold neutron energy. The spectrum at the detector position has been calculated by the MCNP code and a comparison has been made with the experimental spectrum. The utilisation of 'ss' is more flexible as this relation can be applied to both positive and negative ambient pressures as well as at different ambient temperatures

  14. Superconducting Open-Framework Allotrope of Silicon at Ambient Pressure

    Science.gov (United States)

    Sung, Ha-Jun; Han, W. H.; Lee, In-Ho; Chang, K. J.

    2018-04-01

    Diamond Si is a semiconductor with an indirect band gap that is the basis of modern semiconductor technology. Although many metastable forms of Si were observed using diamond anvil cells for compression and chemical precursors for synthesis, no metallic phase at ambient conditions has been reported thus far. Here we report the prediction of pure metallic Si allotropes with open channels at ambient pressure, unlike a cubic diamond structure in covalent bonding networks. The metallic phase termed P 6 /m -Si6 can be obtained by removing Na after pressure release from a novel Na-Si clathrate called P 6 /m -NaSi6 , which is predicted through first-principles study at high pressure. We identify that both P 6 /m -NaSi6 and P 6 /m -Si6 are stable and superconducting with the critical temperatures of about 13 and 12 K at ambient pressure, respectively. The prediction of new Na-Si and Si clathrate structures presents the possibility of exploring new exotic allotropes useful for Si-based devices.

  15. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  16. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.

    2004-01-01

    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...

  17. The effect of ambient pressure on the evaporation rate of materials

    Science.gov (United States)

    Naumann, R. J.; Russell, W. M.

    1972-01-01

    A simple expression is obtained using a diffusion model for the effect of ambient pressure on the outgassing or evaporation rate of materials. The correctness of the expression is demonstrated by comparing the estimates from this expression with actual weight loss measurements. It is shown that the rate of mass loss is governed by the ratio of mean free path to the characteristic dimension of the surface in question.

  18. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    cosine tapered pulse with a center frequency of 4 MHz and an acoustic pressure of 485 kPa was used for excitation. 64 elements were used in receive and the RF data was filtered and beamformed before further processing. To compensate for variations in bubble response and to make the estimates more robust...... flexible offering completely arbitrary excitation and data acquisition, fast and accurate ambient pressure control, and precise timing. More importantly, it resembles a realistic clinical setup using a single array transducer for transmit and receive. The standard signal processing steps usually seen...

  19. Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite

    Energy Technology Data Exchange (ETDEWEB)

    Debekaussen, R. [Corus Consulting and Technical Services, Delft (Netherlands); Droppert, D. [Solumet Inc., Montreal, PQ (Canada); Demopoulos, G. P. [McGill Univ., Dept. of Metallurgical Enginering, Montreal, PQ (Canada)

    2001-06-01

    Development of a novel process for the ambient pressure conversion of arsenic trioxide, a common, but extremely toxic by-product of the non-ferrous smelting industry, is described. The process consists of three main stages; (1) dissolution of arsenic trioxide, (2) oxidation of trivalent arsenic with the addition of hydrogen peroxide at 95 degree C, to pentavalent arsenic, and (3) step-wise precipitation of crystalline scorodite from highly concentrated arsenic containing solutions, by operating below a characteristics induction pH in the presence of seed material. The technical feasibility of the process has been confirmed by bench-scale testing of industrial flue dust material or acid plant effluents. 30 refs., 2 tabs., 5 figs.

  20. Numerical study of ambient pressure for laser-induced bubble near a rigid boundary

    Science.gov (United States)

    Li, BeiBei; Zhang, HongChao; Han, Bing; Lu, Jian

    2012-07-01

    The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.

  1. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  2. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  3. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    International Nuclear Information System (INIS)

    Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland

    2016-01-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  4. BOES: Building Occupancy Estimation System using sparse ambient vibration monitoring

    Science.gov (United States)

    Pan, Shijia; Bonde, Amelie; Jing, Jie; Zhang, Lin; Zhang, Pei; Noh, Hae Young

    2014-04-01

    In this paper, we present a room-level building occupancy estimation system (BOES) utilizing low-resolution vibration sensors that are sparsely distributed. Many ubiquitous computing and building maintenance systems require fine-grained occupancy knowledge to enable occupant centric services and optimize space and energy utilization. The sensing infrastructure support for current occupancy estimation systems often requires multiple intrusive sensors per room, resulting in systems that are both costly to deploy and difficult to maintain. To address these shortcomings, we developed BOES. BOES utilizes sparse vibration sensors to track occupancy levels and activities. Our system has three major components. 1) It extracts features that distinguish occupant activities from noise prone ambient vibrations and detects human footsteps. 2) Using a sequence of footsteps, the system localizes and tracks individuals by observing changes in the sequences. It uses this tracking information to identify when an occupant leaves or enters a room. 3) The entering and leaving room information are combined with detected individual location information to update the room-level occupancy state of the building. Through validation experiments in two different buildings, our system was able to achieve 99.55% accuracy for event detection, less than three feet average error for localization, and 85% accuracy in occupancy counting.

  5. Estimation of pore pressure from seismic velocities

    International Nuclear Information System (INIS)

    Perez, Zayra; Ojeda, German Y; Mateus, Darwin

    2009-01-01

    On pore pressure calculations it is common to obtain a profile in a well bore, which is then extrapolated toward offset wells. This practice might generate mistakes on pore pressure measurements, since geological conditions may change from a well bore to another, even into the same basin. Therefore, it is important to use other tools which allow engineers not only to detect and estimate in an indirect way overpressure zones, but also to keep a lateral tracking of possible changes that may affect those values in the different formations. Taking into account this situation, we applied a methodology that estimates formation pressure from 3D seismic velocities by using the Eaton method. First, we estimated formation pore pressure; then, we identified possible overpressure zones. Finally, those results obtained from seismic information were analyzed involving well logs and pore pressure tests, in order to compare real data with prediction based on seismic information from the Colombian foothill.

  6. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  7. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    Directory of Open Access Journals (Sweden)

    Qing Chen

    Full Text Available Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05 respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  8. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-06-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al.~(2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the

  9. Quantitative estimates of the volatility of ambient organic aerosol

    Science.gov (United States)

    Cappa, C. D.; Jimenez, J. L.

    2010-06-01

    Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al.~(2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (ΔHvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50-80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol) and lowest for the high (ΔHvap = 150 kJ/mol) assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20

  10. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  11. Damping Estimation Using Free Decays and Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro

    2007-01-01

    The accurate identification of modal damping ratios of Civil Engineering structures is a subject of major importance, as the amplitude of structural vibrations in resonance is inversely proportional to these coefficients. Their experimental identification can be performed either from ambient vibr...

  12. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  13. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    Science.gov (United States)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  14. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil

    Science.gov (United States)

    Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice

    2004-01-01

    We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...

  15. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    Science.gov (United States)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  16. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  17. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  18. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  19. Impact of coal combustion from thermal power plant: estimates on ambient SO2 levels

    International Nuclear Information System (INIS)

    Joshi, P.V.

    1991-01-01

    Using a Gaussian dispersion model, ambient Ground Levels Concentrations (GLC) of SO 2 due to Nashik Thermal Power Plant have been computed. Annual GLC in 16 cardinal sectors and concentration levels in 6 atmospheric stability classes have been estimated as a function of down wind distance. The values are compared with national ambient air quality standard and risk involved due to the release of SO 2 from power plant has been assessed. (author). 8 refs., 2 appendixes

  20. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    Science.gov (United States)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  1. Estimation of vapour pressure and partial pressure of subliming ...

    Indian Academy of Sciences (India)

    Administrator

    conditions of (total) pressure by using thermogravimetry under those conditions. Further, from the partial pressure P, it is possible to determine the number of moles of material in the vapour phase using the ideal gas equation, PV = nRT, where P is the partial pressure, V the volume, n number of moles (of the vapour), R the ...

  2. Effect of ambient pressure variation on closed loop gas system for India based Neutrino Observatory (INO)

    Science.gov (United States)

    Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.

    2014-10-01

    Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.

  3. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  4. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing

  5. Robust cylinder pressure estimation in heavy-duty diesel engines

    NARCIS (Netherlands)

    Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.

    2017-01-01

    The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the

  6. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  7. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    International Nuclear Information System (INIS)

    Rupprechter, Guenther; Weilach, Christian

    2008-01-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH 3 OH, CH 4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions

  8. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2015-01-01

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  9. Long-Term Effects of Ambient PM2.5 on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults.

    Science.gov (United States)

    Lin, Hualiang; Guo, Yanfei; Zheng, Yang; Di, Qian; Liu, Tao; Xiao, Jianpeng; Li, Xing; Zeng, Weilin; Cummings-Vaughn, Lenise A; Howard, Steven W; Vaughn, Michael G; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2017-05-01

    Long-term exposure to ambient fine particulate pollution (PM 2.5 ) has been associated with cardiovascular diseases. Hypertension, a major risk factor for cardiovascular diseases, has also been hypothesized to be linked to PM 2.5 However, epidemiological evidence has been mixed. We examined long-term association between ambient PM 2.5 and hypertension and blood pressure. We interviewed 12 665 participants aged 50 years and older and measured their blood pressures. Annual average PM 2.5 concentrations were estimated for each community using satellite data. We applied 2-level logistic regression models to examine the associations and estimated hypertension burden attributable to ambient PM 2.5 For each 10 μg/m 3 increase in ambient PM 2.5 , the adjusted odds ratio of hypertension was 1.14 (95% confidence interval, 1.07-1.22). Stratified analyses found that overweight and obesity could enhance the association, and consumption of fruit was associated with lower risk. We further estimated that 11.75% (95% confidence interval, 5.82%-18.53%) of the hypertension cases (corresponding to 914, 95% confidence interval, 453-1442 cases) could be attributable to ambient PM 2.5 in the study population. Findings suggest that long-term exposure to ambient PM 2.5 might be an important risk factor of hypertension and is responsible for significant hypertension burden in adults in China. A higher consumption of fruit may mitigate, whereas overweight and obesity could enhance this effect. © 2017 American Heart Association, Inc.

  10. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Tibuleac, Ileana [Univ. of Nevada, Reno, NV (United States)

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise, including dipping features and fault locations.

  11. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults

    Science.gov (United States)

    Keefe, Douglas H.; Hunter, Lisa L.; Feeney, M. Patrick; Fitzpatrick, Denis F.

    2015-01-01

    Procedures are described to measure acoustic reflectance and admittance in human adult and infant ears at frequencies from 0.2 to 8 kHz. Transfer functions were measured at ambient pressure in the ear canal, and as down- or up-swept tympanograms. Acoustically estimated ear-canal area was used to calculate ear reflectance, which was parameterized by absorbance and group delay over all frequencies (and pressures), with substantial data reduction for tympanograms. Admittance measured at the probe tip in adults was transformed into an equivalent admittance at the eardrum using a transmission-line model for an ear canal with specified area and ear-canal length. Ear-canal length was estimated from group delay around the frequency above 2 kHz of minimum absorbance. Illustrative measurements in ears with normal function are described for an adult, and two infants at 1 month of age with normal hearing and a conductive hearing loss. The sensitivity of this equivalent eardrum admittance was calculated for varying estimates of area and length. Infant-ear patterns of absorbance peaks aligned in frequency with dips in group delay were explained by a model of resonant canal-wall mobility. Procedures will be applied in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function. PMID:26723319

  12. Relation of whole blood carboxyhemoglobin concentration to ambient carbon monoxide exposure estimated using regression.

    Science.gov (United States)

    Rudra, Carole B; Williams, Michelle A; Sheppard, Lianne; Koenig, Jane Q; Schiff, Melissa A; Frederick, Ihunnaya O; Dills, Russell

    2010-04-15

    Exposure to carbon monoxide (CO) and other ambient air pollutants is associated with adverse pregnancy outcomes. While there are several methods of estimating CO exposure, few have been evaluated against exposure biomarkers. The authors examined the relation between estimated CO exposure and blood carboxyhemoglobin concentration in 708 pregnant western Washington State women (1996-2004). Carboxyhemoglobin was measured in whole blood drawn around 13 weeks' gestation. CO exposure during the month of blood draw was estimated using a regression model containing predictor terms for year, month, street and population densities, and distance to the nearest major road. Year and month were the strongest predictors. Carboxyhemoglobin level was correlated with estimated CO exposure (rho = 0.22, 95% confidence interval (CI): 0.15, 0.29). After adjustment for covariates, each 10% increase in estimated exposure was associated with a 1.12% increase in median carboxyhemoglobin level (95% CI: 0.54, 1.69). This association remained after exclusion of 286 women who reported smoking or being exposed to secondhand smoke (rho = 0.24). In this subgroup, the median carboxyhemoglobin concentration increased 1.29% (95% CI: 0.67, 1.91) for each 10% increase in CO exposure. Monthly estimated CO exposure was moderately correlated with an exposure biomarker. These results support the validity of this regression model for estimating ambient CO exposures in this population and geographic setting.

  13. Pulsed laser ablation of silicon with low laser fluence in a low-pressure of ammonia ambient

    International Nuclear Information System (INIS)

    Choo, Cheow-Keong; Tohara, Makoto; Enomoto, Kazuhiro; Tanaka, Katsumi

    2004-01-01

    Silicon was ablated by 532 nm wavelength of Nd:YAG laser in ammonia gas ambient. The influence of laser fluence and gas ambient pressures between 1.33x10 1 to 1.33x10 -5 Pa on the deposited compound was studied by in situ X-ray photoelectron spectroscopy and transmission Fourier transform infrared spectroscopy techniques. The results indicate that the deposited compound is composed of nonstoichiometric silicon nitride (SiN x , x=0-0.84). It has been shown that the composition of nitrogen to silicon is sensitive to the laser fluence; it increases with decreasing laser fluence. However, the ammonia gas ambient in these low pressures range had no influence on the composition of the deposited compound. The reaction of the ablated silicon with low-pressure ambient ammonia is proposed to be occurred on the substrate

  14. Use of prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Priyada, P.; Sarkar, P.K., E-mail: pradip.sarkar@manipal.edu

    2015-06-11

    The possibility of using measured prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent is explored theoretically. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of a high density polyethylene cylinder to emit prompt gammas from interaction of neutrons with the nuclei of hydrogen and carbon present in polyethylene. The neutron energy dependent responses of hydrogen and carbon nuclei are combined appropriately to match the energy dependent neutron fluence to ambient dose equivalent conversion coefficients. The proposed method is tested initially with simulated spectra and then validated using experimental measurements with an Am–Be neutron source. Experimental measurements and theoretical simulations have established the feasibility of estimating neutron ambient dose equivalent using measured neutron induced prompt gammas emitted from polyethylene with an overestimation of neutron dose at very low energies. - Highlights: • A new method for estimating H{sup ⁎}(10) using prompt gamma emissions from HDPE. • Linear combination of 2.2 MeV and 4.4 MeV gamma intensities approximates DCC (ICRP). • Feasibility of the method was established theoretically and experimentally. • The response of the present technique is very similar to that of the rem meters.

  15. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  16. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  17. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor

    International Nuclear Information System (INIS)

    Gurav, Jyoti L.; Rao, A. Venkateswara; Bangi, Uzma K.H.

    2009-01-01

    In the conventional ambient pressure drying of silica aerogels, tedious repetitive gel washing and solvent exchange steps (∼6 days) are involved. Therefore, in the present studies, we intended to reduce the processing time of TEOS based ambient pressure dried silica aerogels. Solvents such as methanol, hexane and Hexamethyldisilazane (HMDZ) as surface chemical modification agents have been used. To get good quality aerogels in terms of low density, high porosity, high contact angle and low volume shrinkage in less processing time, we varied MeOH/TEOS, HMDZ/TEOS molar ratios, oxalic acid (A) and NH 4 OH (B) concentrations and stirring time from 1 to 27.7, 0.34 to 2.1, 0 to 0.1 M, 0 to 2 M and 15 to 90 min respectively. The transparent and low-density aerogels were obtained for TEOS:MeOH:acidic H 2 O:basic H 2 O:HMDZ molar ratio of 1:16.5:0.81:0.50:0.681 respectively. The thermal stability and hydrophobicity have been confirmed with Thermogravimetric and Differential Thermal (TG-DT) analyses and Fourier Transform Infrared Spectroscopy. Microstructural study was carried out by Scanning Electron Microscopy (SEM)

  18. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Alexander, E-mail: a.surrey@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Schultz, Ludwig [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Rellinghaus, Bernd, E-mail: b.rellinghaus@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-04-15

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH{sub 2}, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  19. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    International Nuclear Information System (INIS)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-01

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH_2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  20. A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jun; Park, Su Han [Graduate School of Hanyang University, 17 Haengdang-dong, Seoungdong-gu, Seoul 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2010-03-15

    The aim of this work is to investigate the spray behaviors of biodiesel and dimethyl ether (DME) fuels using image processing and atomization performance analysis of the two fuel sprays injected through a common-rail injection system under various ambient pressure conditions in a high pressure chamber. In order to observe the biodiesel and DME fuel spray behaviors under various ambient pressures, the spray images were analyzed at various times after the start of energization using a visualization system consisting of a high speed camera and two metal halide light sources. In addition, a high pressure chamber that can withstand a pressure of 4 MPa was used for adjusting the ambient pressure. From the spray images, spray characteristics such as the spray tip penetration, cone angle, area, and contour plot at various light intensity levels were analyzed using image conversion processing. Also, the local Sauter mean diameters (SMD) were measured at various axial/radial distances from the nozzle tip by a droplet measuring system to compare the atomization performances of the biodiesel and DME sprays. The results showed that the ambient pressure had a significant effect on the spray characteristics of the fuels at the various experimental conditions. The spray tip penetration and spray area decreased as the ambient pressure increased. The contour plot of the biodiesel and DME sprays showed a high light intensity level in the center regions of the sprays. In addition, it was revealed that the atomization performance of the biodiesel spray was inferior to that of the DME spray at the same injection and ambient conditions. (author)

  1. Decay ratio estimation in pressurized water reactor

    International Nuclear Information System (INIS)

    Por, G.; Runkel, J.

    1990-11-01

    The well known decay ratio (DR) from stability analysis of boiling water reactors (BWR) is estimated from the impulse response function which was evaluated using a simplified univariate autoregression method. This simplified DR called modified DR (mDR) was applied on neutron noise measurements carried out during five fuel cycles of a 1300 MWe PWR. Results show that this fast evaluation method can be used for monitoring of the growing oscillation of the neutron flux during the fuel cycles which is a major concern of utilities in PWRs, thus it can be used for estimating safety margins. (author) 17 refs.; 10 figs

  2. Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air.

    Science.gov (United States)

    Badjagbo, Koffi; Picard, Pierre; Moore, Serge; Sauvé, Sébastien

    2009-05-01

    Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1-2 microg/m(3) are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.

  3. Impact of calibration on estimates of central blood pressures.

    Science.gov (United States)

    Soender, T K; Van Bortel, L M; Møller, J E; Lambrechtsen, J; Hangaard, J; Egstrup, K

    2012-12-01

    Using the Sphygmocor device it is recommended that the radial pressure wave is calibrated for brachial systolic blood pressure (SBP) and diastolic blood pressure (DBP). However it has been suggested that brachial-to-radial pressure amplification causes underestimation of central blood pressures (BPs) using this calibration. In the present study we examined if different calibrations had an impact on estimates of central BPs and on the clinical interpretation of our results. On the basis of ambulatory BP measurements, patients were categorized into patients with controlled, uncontrolled or resistant hypertension. We first calibrated the radial pressure wave as recommended and afterwards recalibrated the same pressure wave using brachial DBP and calculated mean arterial pressure. Recalibration of the pressure wave generated significantly higher estimates of central SBP (P=0.0003 and Plost in patients with resistant hypertension (P=0.15). We conclude that calibration with DBP and mean arterial pressure produces higher estimates of central BPs than recommended calibration. The present study also shows that this difference between the two calibration methods can produce more than a systematic error and has an impact on interpretation of clinical results.

  4. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    Science.gov (United States)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  5. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T; Truscott, T. T.

    2016-01-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  6. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  7. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  8. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomiştilor Str. Nr. 409, 077125 Măgurele, Ilfov (Romania); Giurgiu, Liviu C. [University of Bucharest, Faculty of Physics, Atomistilor Str. Nr. 405, 077125 Măgurele (Romania); Stan, Cristina [Department of Physics, Politehnica University, 313 Splaiul Independenţei, RO-060042 Bucharest (Romania); Filinov, Vladimir; Lapitsky, Dmitry, E-mail: dmitrucho@yandex.ru; Deputatova, Lidiya; Syrovatka, Roman [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Str. 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  9. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    International Nuclear Information System (INIS)

    Mihalcea, Bogdan M.; Vişan, Gina T.; Ganciu, Mihai; Giurgiu, Liviu C.; Stan, Cristina; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  10. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  11. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Estimating the burden of disease attributable to high blood pressure ...

    African Journals Online (AJOL)

    Objectives. To estimate the burden of disease attributable to high blood pressure (BP) in adults aged 30 years and older in South Africa in 2000. Design. World Health Organization comparative risk assessment (CRA) methodology was followed. Mean systolic BP (SBP) estimates by age and sex were obtained from the 1998 ...

  13. Using Estimated On-Site Ambient Temperature Has Uncertain Benefit When Estimating Postmortem Interval

    Directory of Open Access Journals (Sweden)

    Laurent Dourel

    2010-01-01

    Full Text Available The forensic entomologist uses weather station data as part of the calculation when estimating the postmortem interval (PMI. To reduce the potential inaccuracies of this method caused by the distance between the crime scene and the meteorological station, temperature correlation data from the site of the corpse may be used. This experiment simulated the impact of retrospective weather data correction using linear regression between seven stations and sites in three climatic exposure groups during three different seasons as part of the accumulated degree days calculation for three necrophagous species (Diptera: Calliphoridae. No consistent benefit in the use of correlation or the original data from the meteorological stations was observed. In nine cases out of 12, the data from the weather station network limited the risk of a deviation from reality. The forensic entomologist should be cautious when using this correlation model.

  14. An accurate estimation and optimization of bottom hole back pressure in managed pressure drilling

    Directory of Open Access Journals (Sweden)

    Boniface Aleruchi ORIJI

    2017-06-01

    Full Text Available Managed Pressure Drilling (MPD utilizes a method of applying back pressure to compensate for wellbore pressure losses during drilling. Using a single rheological (Annular Frictional Pressure Losses, AFPL model to estimate the backpressure in MPD operations for all sections of the well may not yield the best result. Each section of the hole was therefore treated independently in this study as data from a case study well were used. As the backpressure is a function of hydrostatic pressure, pore pressure and AFPL, three AFPL models (Bingham plastic, Power law and Herschel Bulkley models were utilized in estimating the backpressure. The estimated backpressure values were compared to the actual field backpressure values in order to obtain the optimum backpressure at the various well depths. The backpressure values estimated by utilizing the power law AFPL model gave the best result for the 12 1/4" hole section (average error % of 1.855% while the back pressures estimated by utilizing the Herschel Bulkley AFPL model gave the best result for the 8 1/2" hole section (average error % of 12.3%. The study showed that for hole sections of turbulent annular flow, the power law AFPL model fits best for estimating the required backpressure while for hole sections of laminar annular flow, the Herschel Bulkley AFPL model fits best for estimating the required backpressure.

  15. Compensation for the Effects of Ambient Conditions on the Calibration of Multi-Capillary Pressure Drop Standards

    Directory of Open Access Journals (Sweden)

    Colard S

    2014-12-01

    Full Text Available Cigarette draw resistance and filter pressure drop (PD are both major physical parameters for the tobacco industry. Therefore these parameters must be measured reliably. For these measurements, specific equipment calibrated with PD transfer standards is used. Each transfer standard must have a known and stable PD value, such standards usually being composed of several capillary tubes associated in parallel. However, PD values are modified by ambient conditions during calibration of such standards, i.e. by temperature and relative humidity (RH of air, and atmospheric pressure. In order to reduce the influence of these ambient factors, a simplified model was developed for compensating the effects of ambient conditions on the calibration of multi-capillary PD standards.

  16. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Science.gov (United States)

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  17. Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure

    Directory of Open Access Journals (Sweden)

    Chun-Ying Chen

    2017-02-01

    Full Text Available Photo-hydrogenation of carbon dioxide (CO2 is a green and promising technology and has received much attention recently. This technique could convert solar energy under ambient temperature and pressure into desirable and sustainable solar fuels, such as methanol (CH3OH, methane (CH4, and formic acid (HCOOH. It is worthwhile to mention that this direction can not only potentially depress atmospheric CO2, but also weaken dependence on fossil fuel. Herein, 1 wt % Pt/CuAlGaO4 photocatalyst was successfully synthesized and fully characterized by ultraviolet-visible light (UV-vis spectroscopy, X-ray diffraction (XRD, Field emission scanning electron microscopy using energy dispersive spectroscopy analysis (FE-SEM/EDS, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET, respectively. Three kinds of experimental photo-hydrogenation of CO2 in the gas phase, liquid phase, and gas-liquid phase, correspondingly, were conducted under different H2 partial pressures. The remarkable result has been observed in the gas-liquid phase. Additionally, increasing the partial pressure of H2 would enhance the yield of product. However, when an extra amount of H2 is supplied, it might compete with CO2 for occupying the active sites, resulting in a negative effect on CO2 photo-hydrogenation. For liquid and gas-liquid phases, CH3OH is the major product. Maximum total hydrocarbons 8.302 µmol·g−1 is achieved in the gas-liquid phase.

  18. Technology qualification of an ambient pressure subsea cryogenic pipeline for offshore LNG loading and receiving terminals

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Afzal; Viteri, Martha; D' Angelo, Luis [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Prescott, Neal; Zhang, Jeff [Fluor Corporation, Irving, TX (Brazil)

    2009-07-01

    A project that deploys new technologies need to be confident that the technology can be implemented successfully and will perform reliably as designed. New technology is critical to industry, especially where such technology is a project enable without the existence of a backup solution, but also for projects where such technologies bring potential benefits such as technical, economic, schedule, and environmental improvements. DNV developed and has been implementing for many years a systematic, risk based technology qualification process as described in DNV RP-A203, qualification procedures for new technology. One of the major objectives of a formal technology qualification process is to ensure that risks are properly addressed. The DNV process includes several levels of technology qualification and review, starting with a statement of feasibility and concluding with a Certificate of Fitness for Service. Fluor Corporation (Fluor) has developed a new subsea cryogenic pipe-in-pipe configuration for offshore LNG loading and receiving terminals. The configuration uses a highly efficient thermal nano-porous insulation in the annular space between the inner and outer pipes. This material is kept in an ambient pressure environment, which is produced through sealing by metal bulkheads. The bulkheads transfer the contraction induced axial compression load on the inner cryogenic carrier pipe to the external jacket pipe. The resulting pipeline bundle is a structural element, which addresses the thermal contraction and expansion loads without the use of expansion bellows or ultra-low thermal contraction alloys. Fluor has followed the DNV technology qualification process to achieve the defined milestones therein which culminated in DNV issuing a certificate of fitness for service. Particular focus was put on the new aspects of the design. The certificate of fitness for service for the Fluor subsea LNG pipe technology provides project management with the confidence that this

  19. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; hide

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  20. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    Science.gov (United States)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  1. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  2. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang

    2018-03-20

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  3. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang; Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2018-01-01

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  4. Cuffless differential blood pressure estimation using smart phones.

    Science.gov (United States)

    Chandrasekaran, Vikram; Dantu, Ram; Jonnada, Srikanth; Thiyagaraja, Shanti; Subbu, Kalyan Pathapati

    2013-04-01

    Smart phones today have become increasingly popular with the general public for their diverse functionalities such as navigation, social networking, and multimedia facilities. These phones are equipped with high-end processors, high-resolution cameras, and built-in sensors such as accelerometer, orientation-sensor, and light-sensor. According to comScore survey, 26.2% of U.S. adults use smart phones in their daily lives. Motivated by this statistic and the diverse capability of smart phones, we focus on utilizing them for biomedical applications. We present a new application of the smart phone with its built-in camera and microphone replacing the traditional stethoscope and cuff-based measurement technique, to quantify vital signs such as heart rate and blood pressure. We propose two differential blood pressure estimating techniques using the heartbeat and pulse data. The first method uses two smart phones whereas the second method replaces one of the phones with a customized external microphone. We estimate the systolic and diastolic pressure in the two techniques by computing the pulse pressure and the stroke volume from the data recorded. By comparing the estimated blood pressure values with those measured using a commercial blood pressure meter, we obtained encouraging results of 95-100% accuracy.

  5. A hybrid Rankine cycle (HyRC) with ambient pressure combustion (APC)

    International Nuclear Information System (INIS)

    Wu, Lijun; Thimsen, David; Clements, Bruce; Zheng, Ligang; Pomalis, Richard

    2014-01-01

    The main losses in thermal power generation include heat in exhaust flue gas, heat rejected through steam condensation of low-pressure turbine, and exergy destruction in heat exchange process etc. To the extent that the heat losses are significantly greater in temperature than either air or water coolant resources, these losses also represent exergy losses which might be exploited to improve plant capacity and efficiency. This paper presents a hybrid Rankine cycle (HyRC) with an ambient pressure combustion (APC) boiler to address the recovery potential of these losses within the steam Rankine cycle (SRC). The APC–HyRC concept employs an organic Rankine cycle (ORC) to supplement SRC and to reduce cycle energy losses to the atmosphere since organic fluids are capable of lowering cycle condensation temperature when a very low temperature heat sink is available. The case studies based on a 399 MW SRC unit show that the APC–HyRC configurations have better thermodynamic performance than its base case SRC at a cycle condensation temperature of 30 °C and below. The best APC–HyRC configuration generates up to 14% more power than the baseline steam cycle which is a 5.45% increase in overall gross efficiency with a cycle condensation temperature at 4 °C. - Highlights: • A hybrid Rankine cycle with water and organic fluid is presented. • Heat losses in exhaust flue gas and exhaust steam are reduced. • Exergy losses in regeneration process are reduced. • Efficiency improvements are made to the conventional steam Rankine cycle. • Issues in design/construction of greenfield and repowering project are discussed

  6. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.; Karlsson, Patrik G.; Aksoy, Funda; Lundqvist, Måns; Wannberg, Björn; Mun, Bongjin S.; Hussain, Zahid; Liu, Zhi

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  7. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    Science.gov (United States)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  8. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    Science.gov (United States)

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  9. 5 years of ambient pressure photoelectron spectroscopy (APPES) at the Swiss Light Source (SLS)

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Giorgia [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland); Giorgi, Javier B. [Department of Chemistry and Biomolecular Sciences, and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Green, Richard G. [Measurement Science and Standards, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland)

    2017-04-15

    Highlights: • A review of the ongoing research using the APPES endstation of the Swiss Light Source is presented. • Research interests include the liquid-vapor, liquid-nanoparticle and vapor-solid interfaces. • An outlook to the next five years of research at the Swiss Light Source is presented. - Abstract: In March of 2012 an endstation dedicated to ambient pressure photoelectron spectroscopy (APPES) was installed at the Swiss Light Source (SLS) synchrotron radiation facility on the campus of the Paul Scherrer Institute (PSI). The endstation is mobile and operated at the vacuum ultraviolet (VUV), Surfaces/Interfaces: Microscopy (SIM) and Phoenix beamlines, which together afford a nearly continuous photon energy range from 5−8000 eV. This broad energy range is by far the widest available to a single currently operational APPES endstation. During its first five years of operation this endstation has been used to address challenging fundamental problems in the areas of soft-matter colloidal nanoscience, environmental science and energy storage—research that encompasses the liquid-nanoparticle, liquid-vapor (or vacuum) and solid-vapor interfaces. Here we present select highlights of these results and offer an outlook to the next five years of APPES research at the SLS.

  10. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    Science.gov (United States)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  11. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present

    Science.gov (United States)

    Arble, Chris; Jia, Meng; Newberg, John T.

    2018-05-01

    Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.

  12. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  13. A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue

    Directory of Open Access Journals (Sweden)

    Pinghua Zhu

    2016-01-01

    Full Text Available Coal gangue, one of the main hazardous emissions of purifying coal from coalmine industry, is rich in silica and alumina. However, the recycling of the waste is normally restricted by less efficient techniques and low attractive output; the utilization of such waste is still staying lower than 15%. In this work, the silica aerogel materials were synthesized by using a precursor extracted from recycled silicon-rich coal gangue, followed by a single-step surface silylation and ambient pressure drying. A low density (~0.19 g/cm3 nanostructured aerogel with a 3D open porous microstructure and high surface area (~690 m2/g was synthesized, which presents a superior thermal insulation performance (~26.5 mW·m−1·K−1 of a plane packed of 4-5 mm granules which was confirmed by transient hot-wire method. This study offers a new facile route to the synthesis of insulating aerogel material by recycling solid waste coal gangue and presents a potential cost reduction of industrial production of silica aerogels.

  14. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  15. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  16. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working

    Directory of Open Access Journals (Sweden)

    Pablo Pancardo

    2015-07-01

    Full Text Available Ambient Assisted Working (AAW is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers’ comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.

  17. Temporal-Spatial Ambient Concentrator Estimator (T-SpACE): Hierarchical Bayesian Model Software Used to Estimate Ambient Concentrations of NAAQS Air Pollutants in Support of Health Studies

    Science.gov (United States)

    To fulfill its mission to protect human health and the environment, EPA has established National Ambient Air Quality Standards (NAAQS) on six selected air pollutants known as criteria pollutants: ozone (O3); carbon monoxide (CO); lead (Pb); nitrogen dioxide (NO2); sulfur dioxide ...

  18. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  19. An experimental verification of the compensation of length change of line scales caused by ambient air pressure

    International Nuclear Information System (INIS)

    Takahashi, Akira; Miwa, Nobuharu

    2010-01-01

    Line scales are used as a working standard of length for the calibration of optical measuring instruments such as profile projectors, measuring microscopes and video measuring systems. The authors have developed a one-dimensional calibration system for line scales to obtain a lower uncertainty of measurement. The scale calibration system, named Standard Scale Calibrator SSC-05, employs a vacuum interferometer system for length measurement, a 633 nm iodine-stabilized He–Ne laser to calibrate the oscillating frequency of the interferometer laser light source and an Abbe's error compensation structure. To reduce the uncertainty of measurement, the uncertainty factors of the line scale and ambient conditions should not be neglected. Using the length calibration system, the expansion and contraction of a line scale due to changes in ambient air pressure were observed and the measured scale length was corrected into the length under standard atmospheric pressure, 1013.25 hPa. Utilizing a natural rapid change in the air pressure caused by a tropical storm (typhoon), we carried out an experiment on the length measurement of a 1000 mm long line scale made of glass ceramic with a low coefficient of thermal expansion. Using a compensation formula for the length change caused by changes in ambient air pressure, the length change of the 1000 mm long line scale was compensated with a standard deviation of less than 1 nm

  20. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    Science.gov (United States)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  1. Variations in pulmonary artery occlusion pressure to estimate changes in pleural pressure.

    Science.gov (United States)

    Bellemare, Patrick; Goldberg, Peter; Magder, Sheldon A

    2007-11-01

    A readily available assessment of changes in pleural pressure would be useful for ventilator and fluid management in critically ill patients. We examined whether changes in pulmonary artery occlusion pressure (Ppao) adequately reflect respiratory changes in pleural pressure as assessed by changes in intraesophageal balloon pressure (Peso). We studied patients who had a pulmonary catheter and esophageal balloon surrounding a nasogastric tube as part of their care (n=24). We compared changes in Ppao (dPpao) to changes in Peso (dPeso) by Bland-Altman and regression analysis. Adequacy of balloon placement was assessed by performing Mueller maneuvers and adjusting the position to achieve a ratio of dPeso to change in tracheal pressure (dPtr) of 0.85 or higher. This was achieved in only 14 of the 24 subjects. We also compared dCVP to dPeso. The dPpao during spontaneous breaths and positive pressure breaths gave a good estimate of Peso but generally underestimated dPeso (bias=2.2 +8.2 and -3.9 cmH2O for the whole group). The dCVP was not as good a predictor (bias=2.9 +10.3 and -4.6). In patients who have a pulmonary artery catheter in place dPpao gives a lower estimate of changes in pleural pressure and may be more reliable than dPeso. The dCVP is a less reliable predictor than changes in pleural pressure.

  2. Synthesis of Fe3O4 nanostructures by backward plume deposition and influence of ambient gas pressure on their morphology

    International Nuclear Information System (INIS)

    Lin, J J; Mahmood, S; Zhang, T; Hassan, S M; White, T; Ramanujan, R V; Lee, P; Rawat, R S

    2007-01-01

    Iron oxide nanostructures with significantly fewer droplets were successfully synthesized by pulsed laser deposition using a special target-substrate geometry, which is coined backward plume deposition. The morphology of deposited nanostructures for backward plume deposition is found to be strongly controlled by the ambient gas pressure and changes from a thin film to an assemble of nanoclusters to nanoclusters with loosely bound floccule-like network with the increase in ambient gas pressure. The post-annealing considerably changes the structural properties of deposited materials, which were determined to be magnetite FCC-Fe 3 O 4 . It also causes the relaxation of long range stress in the film and hence leads to an increase in the saturation magnetization. The coercivity is found to decrease upon annealing due to the growth of randomly oriented Fe 3 O 4 nanocrystallite as well as the relaxation of internal stress

  3. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Science.gov (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  4. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures

    International Nuclear Information System (INIS)

    Xing, Yinjiao; He, Wei; Pecht, Michael; Tsui, Kwok Leung

    2014-01-01

    Highlights: • An offline OCV–SOC–temperature table was established to infer battery SOC. • A temperature-based model was developed to estimate SOC at different temperatures. • The algorithm for SOC estimation was verified by dynamic current load. • The robustness of the approach was validated by different initial SOC values. - Abstract: Ambient temperature is a significant factor that influences the accuracy of battery SOC estimation, which is critical for remaining driving range prediction of electric vehicles (EVs) and optimal charge/discharge control of batteries. A widely used method to estimate SOC is based on an online inference of open-circuit voltage (OCV). However, the fact that the OCV–SOC is dependent on ambient temperature can result in errors in battery SOC estimation. To address this problem, this paper presents an SOC estimation approach based on a temperature-based model incorporated with an OCV–SOC–temperature table. The unscented Kalman filtering (UKF) was applied to tune the model parameters at each sampling step to cope with various uncertainties arising from the operation environment, cell-to-cell variation, and modeling inaccuracy. Two dynamic tests, the dynamic stress test (DST) and the federal urban driving schedule (FUDS), were used to test batteries at different temperatures. Then, DST was used to identify the model parameters while FUDS was used to validate the performance of the SOC estimation. The estimation was made covering the major working range from 25% to 85% SOC. The results indicated that our method can provide accurate SOC estimation with smaller root mean squared errors than the method that does not take into account ambient temperature. Thus, our approach is effective and accurate when battery operates at different ambient temperatures. Since the developed method takes into account the temperature factor as well as the complexity of the model, it could be effectively applied in battery management systems for

  5. Automatic estimation of pressure-dependent rate coefficients.

    Science.gov (United States)

    Allen, Joshua W; Goldsmith, C Franklin; Green, William H

    2012-01-21

    A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation.

  6. Foot Plantar Pressure Estimation Using Artificial Neural Networks

    OpenAIRE

    Xidias , Elias; Koutkalaki , Zoi; Papagiannis , Panagiotis; Papanikos , Paraskevas; Azariadis , Philip

    2015-01-01

    Part 1: Smart Products; International audience; In this paper, we present a novel approach to estimate the maximum pressure over the foot plantar surface exerted by a two-layer shoe sole for three distinct phases of the gait cycle. The proposed method is based on Artificial Neural Networks and can be utilized for the determination of the comfort that is related to the sole construction. Input parameters to the proposed neural network are the material properties and the thicknesses of the sole...

  7. Subharmonic Imaging and Pressure Estimation for Monitoring Neoadjuvant Chemotherapy

    Science.gov (United States)

    2015-11-01

    the acoustic output power for SHAPE has been developed on the scanner. Briefly, the optimization algorithm steps the ultrasound scanner from 0 to... ultrasound contrast agents to improve the monitoring of breast cancer treatment response to neoadjuvant therapies in women diagnosed with LABC by imaging...estimation (SHAPE). Software for analyzing RF data from a Logiq 9 ultrasound scanner (GE Healthcare, Milwauke, WI) to produce 3D SHAPE pressure

  8. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  9. A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5.

    Science.gov (United States)

    Strand, Matthew; Hopke, Philip K; Zhao, Weixiang; Vedal, Sverre; Gelfand, Erwin; Rabinovitch, Nathan

    2007-09-01

    Various methods have been developed recently to estimate personal exposures to ambient particulate matter less than 2.5 microm in diameter (PM2.5) using fixed outdoor monitors as well as personal exposure monitors. One class of estimators involves extrapolating values using ambient-source components of PM2.5, such as sulfate and iron. A key step in extrapolating these values is to correct for differences in infiltration characteristics of the component used in extrapolation (such as sulfate within PM2.5) and PM2.5. When this is not done, resulting health effect estimates will be biased. Another class of approaches involves factor analysis methods such as positive matrix factorization (PMF). Using either an extrapolation or a factor analysis method in conjunction with regression calibration allows one to estimate the direct effects of ambient PM2.5 on health, eliminating bias caused by using fixed outdoor monitors and estimated personal ambient PM2.5 concentrations. Several forms of the extrapolation method are defined, including some new ones. Health effect estimates that result from the use of these methods are compared with those from an expanded PMF analysis using data collected from a health study of asthmatic children conducted in Denver, Colorado. Examining differences in health effect estimates among the various methods using a measure of lung function (forced expiratory volume in 1 s) as the health indicator demonstrated the importance of the correction factor(s) in the extrapolation methods and that PMF yielded results comparable with the extrapolation methods that incorporated correction factors.

  10. Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast x-radiography

    International Nuclear Information System (INIS)

    Cheong, S. K.; Liu, J.; Shu, D.; Wang, J.; Powell, C. F.; Experimental Facilities Division

    2004-01-01

    A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (ml 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar Nd2 and 1 bar SFd6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved, x-radiographic data revealed that the spray penetration in this near-nozzle region was not significantly affected by the limited change of the ambient pressure. In addition, well-defined features of the spray, such as the leading and trailing edges, and fluctuations of fuel mass density in the spray body, allowed us to calculate the leading, trailing, and internal speeds of the sprays

  11. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    Science.gov (United States)

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-01-01

    The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (lights on (>400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former dark time and darkness during the former light time, the CR-LL and CR-DD groups were each compared with the CR-LD group. Light delayed the evening decrease of BT, most likely via a suppression of the melatonin rise. Besides, it had a prominent arousal effect on SBP both in the former light and dark phases, a moderate effect on DBP and no effect on HR. Darkness induced decline in BT. BP

  12. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Directory of Open Access Journals (Sweden)

    Jagdish Narayan

    2016-02-01

    Full Text Available We report a direct conversion of hexagonal boron nitride (h-BN into pure cubic boron nitride (c-BN by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN. The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  13. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  14. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure.

    Science.gov (United States)

    Varsos, Georgios V; Kolias, Angelos G; Smielewski, Peter; Brady, Ken M; Varsos, Vassilis G; Hutchinson, Peter J; Pickard, John D; Czosnyka, Marek

    2015-09-01

    Cerebral blood flow is associated with cerebral perfusion pressure (CPP), which is clinically monitored through arterial blood pressure (ABP) and invasive measurements of intracranial pressure (ICP). Based on critical closing pressure (CrCP), the authors introduce a novel method for a noninvasive estimator of CPP (eCPP). Data from 280 head-injured patients with ABP, ICP, and transcranial Doppler ultrasonography measurements were retrospectively examined. CrCP was calculated with a noninvasive version of the cerebrovascular impedance method. The eCPP was refined with a predictive regression model of CrCP-based estimation of ICP from known ICP using data from 232 patients, and validated with data from the remaining 48 patients. Cohort analysis showed eCPP to be correlated with measured CPP (R = 0.851, p area under the curve of 0.913 (95% CI 0.883-0.944). When each recording session of a patient was assessed individually, eCPP could predict CPP with a 95% CI of the SD for estimating CPP between multiple recording sessions of 1.89-5.01 mm Hg. Overall, CrCP-based eCPP was strongly correlated with invasive CPP, with sensitivity and specificity for detection of low CPP that show promise for clinical use.

  15. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  16. Estimation of blood pressure from non-invasive data.

    Science.gov (United States)

    Shukla, Satya Narayan

    2017-07-01

    Blood pressure (BP) is one of the most important physiological parameter that can provide crucial information for health care. The widely used cuff based technology is not very convenient or comfortable as it occludes the blood flow in the arteries during the time of measurement. In past, Phonocardiogram (PCG), Electrocardiogram (ECG) and Photoplethysmogram (PPG) signals have been used to predict the BP values. In this paper, we propose to estimate the blood pressure from PPG using Multi Task Gaussian Processes (MTGPs) and compare with Artificial Neural networks (ANNs). Both MTGPs and ANNs are evaluated on the clinical data obtained from MIMIC Database. The performance of the proposed method is found to be comparable or better than the existing methods of computing BP from non-invasive data.

  17. Different approaches to estimation of reactor pressure vessel material embrittlement

    Directory of Open Access Journals (Sweden)

    V. M. Revka

    2013-03-01

    Full Text Available The surveillance test data for the nuclear power plant which is under operation in Ukraine have been used to estimate WWER-1000 reactor pressure vessel (RPV material embrittlement. The beltline materials (base and weld metal were characterized using Charpy impact and fracture toughness test methods. The fracture toughness test data were analyzed according to the standard ASTM 1921-05. The pre-cracked Charpy specimens were tested to estimate a shift of reference temperature T0 due to neutron irradiation. The maximum shift of reference temperature T0 is 84 °C. A radiation embrittlement rate AF for the RPV material was estimated using fracture toughness test data. In addition the AF factor based on the Charpy curve shift (ΔTF has been evaluated. A comparison of the AF values estimated according to different approaches has shown there is a good agreement between the radiation shift of Charpy impact and fracture toughness curves for weld metal with high nickel content (1,88 % wt. Therefore Charpy impact test data can be successfully applied to estimate the fracture toughness curve shift and therefore embrittlement rate. Furthermore it was revealed that radiation embrittlement rate for weld metal is higher than predicted by a design relationship. The enhanced embrittlement is most probably related to simultaneously high nickel and high manganese content in weld metal.

  18. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  19. Non-invasive estimation of blood pressure using ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2009-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an experimental setup for investigating the ambient pressure sensitivity of a contrast agent using...

  20. Grain size increase in pentacene thin films prepared in low-pressure gas ambient

    International Nuclear Information System (INIS)

    Yokoyama, Takamichi; Park, Chang Bum; Nagashio, Kosuke; Kita, Koji; Toriumi, Akira

    2009-01-01

    We studied a mechanism of grain size increase (that is, island density decrease) in pentacene film prepared in hydrogen (H 2 ) ambient. The island densities of pentacene films prepared in helium and deuterium were lower than those of vacuum-deposited films. This indicates that the decrease in the island density was not due to the chemical interaction between H 2 and pentacene or the substrate surface. Furthermore, the temperature dependence of the island density indicates that there is no difference in the surface diffusion energy in a vacuum and in H 2 . We also improved mobility significantly in the pentacene thin film transistor fabricated on film grown in H 2 ambient on a chemically treated substrate.

  1. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  2. Automatic estimation of pressure-dependent rate coefficients

    KAUST Repository

    Allen, Joshua W.; Goldsmith, C. Franklin; Green, William H.

    2012-01-01

    A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation. This journal is © the Owner Societies.

  3. Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure

    International Nuclear Information System (INIS)

    Canfield, P.C.; Bud'ko, S.L.; Ni, N.; Kreyssig, A.; Goldman, A.I.; McQueeney, R.J.; Torikachvili, M.S.; Argyriou, D.N.; Luke, G.; Yu, W.

    2009-01-01

    At ambient pressure CaFe 2 As 2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low-temperature orthorhombic/antiferromagnetic phase upon cooling through T ∼ 170 K. With the application of pressure this phase transition is rapidly suppressed and by ∼0.35 GPa it is replaced by a first order phase transition to a low-temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ∼1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low-temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe 2 As 2 transforms when it is encased by a frozen media and enters into a low-temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.

  4. Synthetic lead bromapatite: X-ray structure at ambient pressure and compressibility up to about 20 GPa

    Science.gov (United States)

    Liu, Xi; Fleet, Michael E.; Shieh, Sean R.; He, Qiang

    2011-05-01

    Lead bromapatite [Pb10(PO4)6Br2] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO4 tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure-volume data of lead bromapatite ( P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus ( K T ) of 49.8(16) GPa and first pressure derivative ( KT^' } ) of 10.1(10). If KT^' } is fixed at 4, the derived K T is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli (~5%) of the calcium apatites fluorapatite [Ca10(PO4)6F2], chlorapatite [Ca10(PO4)6Cl2] and hydroxylapatite [Ca10(PO4)6(OH)2]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.

  5. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    KAUST Repository

    Sarawade, Pradip; Shao, Godlistennamwel; Quang, Dangviet; Kim, Heetaik

    2013-01-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as asilica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400°C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silicaaerogels. © 2013 Elsevier B.V. All rights reserved.

  6. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    KAUST Repository

    Sarawade, Pradip

    2013-12-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as asilica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400°C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silicaaerogels. © 2013 Elsevier B.V. All rights reserved.

  7. Oscillometric Blood Pressure Estimation: Past, Present, and Future.

    Science.gov (United States)

    Forouzanfar, Mohamad; Dajani, Hilmi R; Groza, Voicu Z; Bolic, Miodrag; Rajan, Sreeraman; Batkin, Izmail

    2015-01-01

    The use of automated blood pressure (BP) monitoring is growing as it does not require much expertise and can be performed by patients several times a day at home. Oscillometry is one of the most common measurement methods used in automated BP monitors. A review of the literature shows that a large variety of oscillometric algorithms have been developed for accurate estimation of BP but these algorithms are scattered in many different publications or patents. Moreover, considering that oscillometric devices dominate the home BP monitoring market, little effort has been made to survey the underlying algorithms that are used to estimate BP. In this review, a comprehensive survey of the existing oscillometric BP estimation algorithms is presented. The survey covers a broad spectrum of algorithms including the conventional maximum amplitude and derivative oscillometry as well as the recently proposed learning algorithms, model-based algorithms, and algorithms that are based on analysis of pulse morphology and pulse transit time. The aim is to classify the diverse underlying algorithms, describe each algorithm briefly, and discuss their advantages and disadvantages. This paper will also review the artifact removal techniques in oscillometry and the current standards for the automated BP monitors.

  8. Estimating Subglottal Pressure from Neck-Surface Acceleration during Normal Voice Production

    Science.gov (United States)

    Fryd, Amanda S.; Van Stan, Jarrad H.; Hillman, Robert E.; Mehta, Daryush D.

    2016-01-01

    Purpose: The purpose of this study was to evaluate the potential for estimating subglottal air pressure using a neck-surface accelerometer and to compare the accuracy of predicting subglottal air pressure relative to predicting acoustic sound pressure level (SPL). Method: Indirect estimates of subglottal pressure (P[subscript sg]') were obtained…

  9. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for the accumulating errors in Ah counting caused by the low precision of current sensors and lack of accurate initial SOC, the OCV method is used for calibration and as a complement. Given the variation of available capacities at different temperatures, rated/non-rated OCV–SOCs are established to estimate the initial SOCs in accordance with the Ah counting SOCs. Two dynamic tests, namely, constant- and alternated-temperature tests, are employed to verify the combined method at different temperatures. The results indicate that our method can provide effective and accurate SOC estimation at different ambient temperatures.

  10. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    Science.gov (United States)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  11. An affordable cuff-less blood pressure estimation solution.

    Science.gov (United States)

    Jain, Monika; Kumar, Niranjan; Deb, Sujay

    2016-08-01

    This paper presents a cuff-less hypertension pre-screening device that non-invasively monitors the Blood Pressure (BP) and Heart Rate (HR) continuously. The proposed device simultaneously records two clinically significant and highly correlated biomedical signals, viz., Electrocardiogram (ECG) and Photoplethysmogram (PPG). The device provides a common data acquisition platform that can interface with PC/laptop, Smart phone/tablet and Raspberry-pi etc. The hardware stores and processes the recorded ECG and PPG in order to extract the real-time BP and HR using kernel regression approach. The BP and HR estimation error is measured in terms of normalized mean square error, Error Standard Deviation (ESD) and Mean Absolute Error (MAE), with respect to a clinically proven digital BP monitor (OMRON HBP1300). The computed error falls under the maximum standard allowable error mentioned by Association for the Advancement of Medical Instrumentation; MAE cost home and clinic bases solution for continuous health monitoring.

  12. Ductile fracture estimation of reactor pressure vessel under thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Sakai, Shinsuke; Okamura, Hiroyuki

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture of a reactor pressure vessel under thermal shock conditions. First, it is shown that the bending moment applied to the cracked section can be evaluated by considering the plastic deformation of the cracked section and the thermal deformation of the shell. As the contribution of the local thermal stress to the J-value is negligible, the J-value under thermal shock can be easily evaluated by using fully plastic solutions for the cracked part. Next, the phenomena of ductile fracture under thermal shock are expressed on the load-versus-displacement diagram which enables us to grasp the transient phenomena visually. In addition, several parametrical surveys are performed on the above diagram concerning the variation of (1) thermal shock conditions, (2) initial crack length, and (3) J-resistance curve (i.e. embrittlement by neutron irradiation). (author)

  13. Application of Ambient Analysis Techniques for the Estimation of Electromechanical Oscillations from Measured PMU Data in Four Different Power Systems

    DEFF Research Database (Denmark)

    Vanfretti, Luigi; Dosiek, Luke; Pierre, John W.

    2011-01-01

    The application of advanced signal processing techniques to power system measurement data for the estimation of dynamic properties has been a research subject for over two decades. Several techniques have been applied to transient (or ringdown) data, ambient data, and to probing data. Some...... of these methodologies have been included in off-line analysis software, and are now being incorporated into software tools used in control rooms for monitoring the near real-time behavior of power system dynamics. In this paper we illustrate the practical application of some ambient analysis methods...... and planners as they provide information of the applicability of these techniques via readily available signal processing tools, and in addition, it is shown how to critically analyze the results obtained with these methods....

  14. Crystal-field excitations in PrAl sub 3 and NdAl sub 3 at ambient and elevated pressure

    CERN Document Server

    Straessle, T; Rusz, J; Janssen, S; Juranyi, F; Sadykov, R; Furrer, A

    2003-01-01

    The crystal fields (CFs) of the binary rare-earth compounds PrAl sub 3 and NdAl sub 3 have been examined at ambient pressure by means of inelastic neutron scattering. The CF of the latter compound has also been measured under hydrostatic pressure (p = 0.84 GPa). The observed substantial changes of the CF under pressure are discussed within the framework of first-principles density functional theory calculations.

  15. Validity and reliability of central blood pressure estimated by upper arm oscillometric cuff pressure.

    Science.gov (United States)

    Climie, Rachel E D; Schultz, Martin G; Nikolic, Sonja B; Ahuja, Kiran D K; Fell, James W; Sharman, James E

    2012-04-01

    Noninvasive central blood pressure (BP) independently predicts mortality, but current methods are operator-dependent, requiring skill to obtain quality recordings. The aims of this study were first, to determine the validity of an automatic, upper arm oscillometric cuff method for estimating central BP (O(CBP)) by comparison with the noninvasive reference standard of radial tonometry (T(CBP)). Second, we determined the intratest and intertest reliability of O(CBP). To assess validity, central BP was estimated by O(CBP) (Pulsecor R6.5B monitor) and compared with T(CBP) (SphygmoCor) in 47 participants free from cardiovascular disease (aged 57 ± 9 years) in supine, seated, and standing positions. Brachial mean arterial pressure (MAP) and diastolic BP (DBP) from the O(CBP) device were used to calibrate in both devices. Duplicate measures were recorded in each position on the same day to assess intratest reliability, and participants returned within 10 ± 7 days for repeat measurements to assess intertest reliability. There was a strong intraclass correlation (ICC = 0.987, P difference (1.2 ± 2.2 mm Hg) for central systolic BP (SBP) determined by O(CBP) compared with T(CBP). Ninety-six percent of all comparisons (n = 495 acceptable recordings) were within 5 mm Hg. With respect to reliability, there were strong correlations but higher limits of agreement for the intratest (ICC = 0.975, P difference 0.6 ± 4.5 mm Hg) and intertest (ICC = 0.895, P difference 4.3 ± 8.0 mm Hg) comparisons. Estimation of central SBP using cuff oscillometry is comparable to radial tonometry and has good reproducibility. As a noninvasive, relatively operator-independent method, O(CBP) may be as useful as T(CBP) for estimating central BP in clinical practice.

  16. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    Science.gov (United States)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  17. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  18. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

    International Nuclear Information System (INIS)

    Grodzinski, B.; Jiao, J.; Leonardos, E.D.

    1998-01-01

    The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 micromole C m-2 s-1, respectively, and 20 to 30 and 15 to 22 micromole C m-2 s-1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated

  19. Real-time monitoring of BTEX in air via ambient-pressure MPI

    Science.gov (United States)

    Swenson, Orven F.; Carriere, Josef P.; Isensee, Harlan; Gillispie, Gregory D.; Cooper, William F.; Dvorak, Michael A.

    1998-05-01

    We have developed and begun to field test a very sensitive method for real-time measurements of single-ring aromatic hydrocarbons in ambient air. In this study, we focus on the efficient 1 + 1 resonance enhanced multiphoton ionization (REMPI) of the BTEX species in the narrow region between 266 and 267 nm. We particularly emphasize 266.7 nm, a wavelength at which both benzene and toluene exhibit a sharp absorbance feature and benzene and its alkylated derivatives all absorb. An optical parametric oscillator system generating 266.7 nm, a REMPI cell, and digital oscilloscope detector are mounted on a breadboard attached to a small cart. In the first field test, the cart was wheeled through the various rooms of a chemistry research complex. Leakage of fuel through the gas caps of cars and light trucks in a parking lot was the subject of the second field test. The same apparatus was also used for a study in which the performance of the REMPI detector and a conventional photoionization detector were compared as a BTEX mixture was eluted by gas chromatography. Among the potential applications of the methodology are on-site analysis of combustion and manufacturing processes, soil gas and water headspace monitoring, space cabin and building air quality, and fuel leak detection.

  20. Methane Storage in Biosilica-Supported Semiclathrates at Ambient Temperature and Pressure

    Science.gov (United States)

    Li, Liang; Wang, Suying; Wang, Weixing

    2018-01-01

    Two key issues regarding the use of clathrates and semiclathrates for practical gas storage and transport is the pressure-temperature stability of the material and very low formation kinetics. For many practical applications, the avoidance of cooling, gas overpressure, and mechanical mixing would be very desirable. Here, we show that biosilica supports from rice husks greatly enhance gases uptake kinetics in tetra-iso-amyl ammonium bromide semiclathrates without introducing complex mixing technologies. These systems show excellent thermal stability and good recyclability.

  1. Estimation of lung volume and pressure from electrocardiogram

    KAUST Repository

    Elsayed, Gamal Eldin Fathy Amin

    2011-05-01

    The Electrocardiography (ECG) is a tool measuring the electrical excitation of the heart that is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs and, on the other hand, due to neural regulatory processes. In this paper, several means for the estimation of the respiratory process from the ECG signal are presented. The results show a strong correlation of the voltage difference between the R and S peak of the ECG and the lung\\'s volume and pressure. Correlation was also found for some features of the vector ECG, which is a two dimensional graph of two different ECG signals. The potential benefit of the multiparametric evaluation of the ECG signal is a reduction of the number of sensors connected to patients, which will increase the patients\\' comfort and reduce the costs associated with healthcare. In particular, it is relevant for sleep monitoring, where a reduction of the number of different sensors would facilitate a more natural sleeping environment and hence a higher sensitivity of the diagnosis. © 2011 IEEE.

  2. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  3. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Guinel, Maxime J-F

    2014-01-01

    ) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4 center dot 2H(2)O) at temperatures below 5 degrees C...... and then dissolved using oxalic acid. This HT process yielded tungstite (WO3 center dot H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 degrees C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production...

  4. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  5. A new time-series methodology for estimating relationships between elderly frailty, remaining life expectancy, and ambient air quality.

    Science.gov (United States)

    Murray, Christian J; Lipfert, Frederick W

    2012-01-01

    Many publications estimate short-term air pollution-mortality risks, but few estimate the associated changes in life-expectancies. We present a new methodology for analyzing time series of health effects, in which prior frailty is assumed to precede short-term elderly nontraumatic mortality. The model is based on a subpopulation of frail individuals whose entries and exits (deaths) are functions of daily and lagged environmental conditions: ambient temperature/season, airborne particles, and ozone. This frail susceptible population is unknown; its fluctuations cannot be observed but are estimated using maximum-likelihood methods with the Kalman filter. We used an existing 14-y set of daily data to illustrate the model and then tested the assumption of prior frailty with a new generalized model that estimates the portion of the daily death count allocated to nonfrail individuals. In this demonstration dataset, new entries into the high-risk pool are associated with lower ambient temperatures and higher concentrations of particulate matter and ozone. Accounting for these effects on antecedent frailty reduces this at-risk population, yielding frail life expectancies of 5-7 days. Associations between environmental factors and entries to the at-risk pool are about twice as strong as for mortality. Nonfrail elderly deaths are seen to make only small contributions. This new model predicts a small short-lived frail population-at-risk that is stable over a wide range of environmental conditions. The predicted effects of pollution on new entries and deaths are robust and consistent with conventional morbidity/mortality times-series studies. We recommend model verification using other suitable datasets.

  6. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  7. Ambient Pressure Laser Desorption—Chemical Ionization Mass Spectrometry for Fast and Reliable Detection of Explosives, Drugs, and Their Precursors

    Directory of Open Access Journals (Sweden)

    René Reiss

    2018-06-01

    Full Text Available Fast and reliable information is crucial for first responders to draw correct conclusions at crime scenes. An ambient pressure laser desorption (APLD mass spectrometer is introduced for this scenario, which enables detecting substances on surfaces without sample pretreatment. It is especially useful for substances with low vapor pressure and thermolabile ones. The APLD allows for the separation of desorption and ionization into two steps and, therefore, both can be optimized separately. Within this work, an improved version of the developed system is shown that achieves limits of detection (LOD down to 500 pg while remaining fast and flexible. Furthermore, realistic scenarios are applied to prove the usability of this system in real-world issues. For this purpose, post-blast residues of a bomb from the Second World War were analyzed, and the presence of PETN was proven without sample pretreatment. In addition, the analyzable substance range could be expanded by various drugs and drug precursors. Thus, the presented instrumentation can be utilized for an increased number of forensically important compound classes without changing the setup. Drug precursors revealed a LOD ranging from 6 to 100 ng. Drugs such as cocaine hydrochloride, heroin, (3,4-methylendioxy-methamphetamine hydrochloride (MDMA hydrochloride, and others exhibit a LOD between 10 to 200 ng.

  8. Pressure-Induced Bandgap Optimization in Lead-Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Kong, Lingping [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Gong, Jue [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA; Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Mao, Ho-kwang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Hu, Qingyang [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Liu, Zhenxian [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439 USA; Zhang, Dongzhou [Hawai' i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Manoa, Honolulu HI 96822 USA; Xu, Tao [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA

    2016-12-05

    Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, for the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH2)2PbI3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.

  9. Pressure-Induced Bandgap Optimization in Lead-Based Perovskites with Prolonged Carrier Lifetime and Ambient Retainability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Kong, Lingping [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Gong, Jue [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA; Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Mao, Ho-kwang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 China; Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Hu, Qingyang [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Liu, Zhenxian [Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015 USA; Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439 USA; Zhang, Dongzhou [Hawai' i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Manoa, Honolulu HI 96822 USA; Xu, Tao [Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb IL 60115 USA

    2016-12-05

    Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, for the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH2)2PbI3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.

  10. On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tiansi Wang

    2015-08-01

    Full Text Available A state-of-health (SOH estimation method for electric vehicles (EVs is presented with three main advantages: (1 it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal temperature will be taken as a health indicator, and the capacity loss is estimated based on a mechanistic model that is developed to describe the correlation between resistance increase and capacity loss; (2 it has wide applicability to various ambient temperatures—to eliminate the effects of temperature on the resistance, another mechanistic model about the resistance against temperature is presented, which can normalize the resistance at various temperatures to its standard value at the nominal temperature; and (3 it needs low computational efforts for on-board application—based on a linear equation of cell’s dynamic behaviors, the recursive least-squares (RLS algorithm is used for the resistance estimation. Based on the designed performance and validation experiments, respectively, the coefficients of the models are determined and the accuracy of the proposed method is verified. The results at different aging states and temperatures show good accuracy and reliability.

  11. Spray Characteristics of Pressure-swirl Nozzle at Different Ambient Pressures of Combustion Chamber%燃烧室背压对压力涡流喷嘴喷雾特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘涛涛; 张武高; 陈晓玲; 顾根香; 郭晓宁; 黄震

    2011-01-01

    采用高速摄影技术、激光测粒仪和PIV测试技术系统试验研究了燃烧室背压对斯特林发动机压力涡流喷嘴喷雾形成过程、贯穿距离增长规律、喷雾锥角、液滴粒径和喷雾流场的影响.结果表明,燃烧室背压的增加使喷雾形状更加致密,贯穿距离的增加变缓,液滴平均速度增加,索特平均直径增加.当燃烧室背压大于1.0~1.5 MPa之间的一个临界值时,其对喷雾锥角没有影响,小于此临界值,燃烧室背压的增加会使喷雾锥角急剧降低.%The spray characteristics of pressure-swirl nozzle used in Stirling engine was studied by way of the experiment under high ambient pressures (up to 2. 8 Mpa). The high-speed video imaging technique, FAM ( Fraunhofer and Mie) laser drop size analyzer, and PIV (particle image velocimetry) test equipment were used for experimental measurements. Experimental results showed that the spray structure at higher ambient pressure was more compact. The vortex cloud was found at the leading edge at high ambient pressure. Spray cone angle was independent of ambient pressure after a value between 1.0 ~ 1. 5 Mpa. The Sauter mean diameter ( SMD) and the drop velocity became larger at high ambient pressure conditions. Finally, a vortex was found in the center of the spray and this region moved to the downstream of the spray as the ambient pressure increased.

  12. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  13. Investigation of hydrophobic substrates for solution residue analysis utilizing an ambient desorption liquid sampling-atmospheric pressure glow discharge microplasma.

    Science.gov (United States)

    Paing, Htoo W; Marcus, R Kenneth

    2018-03-12

    A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.

  14. Relationship and variation of qPCR and culturable enterococci estimates in ambient surface waters are predictable

    Science.gov (United States)

    Whitman, Richard L.; Ge, Zhongfu; Nevers, Meredith B.; Boehm, Alexandria B.; Chern, Eunice C.; Haugland, Richard A.; Lukasik, Ashley M.; Molina, Marirosa; Przybyla-Kelly, Kasia; Shively, Dawn A.; White, Emily M.; Zepp, Richard G.; Byappanahalli, Muruleedhara N.

    2010-01-01

    The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based methods, the U.S. Environmental Protection Agency is currently considering its use as a basis for revised ambient water quality criteria. In anticipation of this possibility, we sought to examine the relationship between qPCR-based and culture-based estimates of enterococci in surface waters. Using data from several research groups, we compared enterococci estimates by the two methods in water samples collected from 37 sites across the United States. A consistent linear pattern in the relationship between cell equivalents (CCE), based on the qPCR method, and colony-forming units (CFU), based on the traditional culturable method, was significant (P 10CFU > 2.0/100 mL) while uncertainty increases at lower CFU values. It was further noted that the relative error in replicated qPCR estimates was generally higher than that in replicated culture counts even at relatively high target levels, suggesting a greater need for replicated analyses in the qPCR method to reduce relative error. Further studies evaluating the relationship between culture and qPCR should take into account analytical uncertainty as well as potential differences in results of these methods that may arise from sample variability, different sources of pollution, and environmental factors.

  15. Estimation of the Blood Pressure Response With Exercise Stress Testing.

    Science.gov (United States)

    Fitzgerald, Benjamin T; Ballard, Emma L; Scalia, Gregory M

    2018-04-20

    The blood pressure response to exercise has been described as a significant increase in systolic BP (sBP) with a smaller change in diastolic BP (dBP). This has been documented in small numbers, in healthy young men or in ethnic populations. This study examines these changes in low to intermediate risk of myocardial ischaemia in men and women over a wide age range. Consecutive patients having stress echocardiography were analysed. Ischaemic tests were excluded. Manual BP was estimated before and during standard Bruce protocol treadmill testing. Patient age, sex, body mass index (BMI), and resting and peak exercise BP were recorded. 3200 patients (mean age 58±12years) were included with 1123 (35%) females, and 2077 males, age range 18 to 93 years. Systolic BP increased from 125±17mmHg to 176±23mmHg. The change in sBP (ΔsBP) was 51mmHg (95% CI 51,52). The ΔdBP was 1mmHg (95% CI 1, 1), from 77 to 78mmHg, p<0.001). The upper limit of normal peak exercise sBP (determined by the 90th percentile) was 210mmHg in males and 200mmHg in females. The upper limit of normal ΔsBP was 80mmHg in males and 70mmHg in females. The lower limit of normal ΔsBP was 30mmHg in males and 20mmHg in females. In this large cohort, sBP increased significantly with exercise. Males had on average higher values than females. Similar changes were seen with the ΔsBP. The upper limit of normal for peak exercise sBP and ΔsBP are reported by age and gender. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.

  16. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    Science.gov (United States)

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.

  17. Estimates of ambient groundwater velocity in the alluvium south of Yucca Mountain from single-well tracer tests

    International Nuclear Information System (INIS)

    Reimus, P.W.; Umari, M.J.; Roback, R.; Earle, John; Darnell, Jon; Farnham, Irene

    2002-01-01

    The saturated alluvium located south of Yucca Mountain, Nevada is expected to serve as the final barrier to radionuclide transport from the proposed high-level nuclear waste repository at Yucca Mountain. The alluvium will act as a barrier if radionuclides breach the engineered barriers in the repository, move through the unsaturated zone beneath the repository to the water table, and then migrate through saturated volcanic tuffs to the alluvium. Three single-well injection-withdrawal tracer tests were conducted between December 2000 and April 2001 in the saturated alluviuni at NC-EWDP-19D1, a Nye County-Early Warning Drilling Program well located about 18 km south of Yucca Mountain. The tests had the objectives of (1) distinguishing between a single- and a dual-porosity conceptual radionuclide transport model for the alluvium, and (2) obtaining estimates of ambient groundwater velocity in the alluvium.

  18. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Liu, Zhi; Bluhm, Hendrik; Shao-Horn, Yang

    2013-01-01

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  19. Microplasma-based flowing atmospheric-pressure afterglow (FAPA) source for ambient desorption-ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeiri, Offer M.; Storey, Andrew P.; Ray, Steven J., E-mail: sjray2@buffalo.edu; Hieftje, Gary M.

    2017-02-01

    A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances. - Highlights: • The first microplasma version of the FAPA source. • Current-voltage behavior reflects the behavior of a normal glow discharge. • Detection limits below 1 pmol for the classes of organic compounds studied over a wide mass range. • Mass spectra show limited fragmentation.

  20. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD.

    Science.gov (United States)

    Ge, Wanyin; Kawahara, Kenji; Tsuji, Masaharu; Ago, Hiroki

    2013-07-07

    We report ambient pressure chemical vapor deposition (CVD) growth of single-crystalline NbS2 nanosheets with controlled orientation. On Si and SiO2 substrates, NbS2 nanosheets grow almost perpendicular to the substrate surface. However, when we apply transferred CVD graphene on SiO2 as a substrate, NbS2 sheets grow laterally lying on the graphene. The NbS2 sheets show the triangular and hexagonal shapes with a thickness of about 20-200 nm and several micrometres in the lateral dimension. Analyses based on X-ray diffraction and Raman spectroscopy indicate that the NbS2 nanosheets are single crystalline 3R-type with a rhombohedral structure of R3m space group. Our findings on the formation of highly aligned NbS2 nanosheets on graphene give new insight into the formation mechanism of NbS2 and would contribute to the templated growth of various layered materials.

  1. A potential route to synthesize imporous MgB{sub 2} bulks by pretreatment of B powder at ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X F; Zhou, J D; Zhao, Y [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C H [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)], E-mail: yzhao@home.swjtu.edu.cn

    2009-04-15

    Imporous MgB{sub 2} bulks with a density of 1.82 g cm{sup -3} have been synthesized by pretreatment of B powder in an in situ solid-state reaction at ambient pressure. The results show that the MgB{sub 2} with B powder pretreatment has a significant improvement in J{sub c}, B{sub irr}, microstructure and intergranular coupling, but with no decrease of T{sub c}. At 20 K and 4 T, the J{sub c} is enhanced by 4 times by the pretreatment of the B powder. For the B pretreated MgB{sub 2}, the B{sub irr} at 20 K reaches 5 T and J{sub c} at 10 K and 6 T reaches 2200 A cm{sup -2}, compared to 4.2 T and 670 A cm{sup -2} for the B-not-pretreated MgB{sub 2}. It is argued that the small amounts of highly dispersed carbon in B powder may enhance the mobility of B particles during the reaction of B and Mg, which avoids the formation of voids in the positions of Mg particles.

  2. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  3. Power/Energy Estimator for Designing WSN Nodes with Ambient Energy Harvesting Feature

    Directory of Open Access Journals (Sweden)

    Jutel Dominique

    2011-01-01

    Full Text Available Abstract Wireless Sensor Networks (WSNs consist of spatially distributed autonomous sensors to cooperatively monitor physical conditions. Thus, the node battery autonomy is critical. To outperform it, most WSNs rely on the harvesting capability. As nodes can recharge whenever energy is available, the problem is to determine at design time the node autonomy. For our project, we solve it by creating a power/energy estimator that simulates business scenarios to predict node autonomy; the estimation concerns both power and energy features. Based on node architecture configuration, its Dynamic Power Management (DPM policy, and environmental conditions, we present a simulator that helps identify power consumption hot spots and make critical choices during the system design. It also helps to scale the energy storage system as well as the energy harvesters correctly. The hardware part is modelled using the FLPA methodology to develop different node component models with a variable accuracy. For the logical part, we developped a specific DPM by integrating meteorology and weather forecast behaviours. The novelty comes from the ability to simulate the WSN harvesting capability and to estimate at runtime the remaining duration of each service.

  4. Low level estimation of 1,4-dioxane in ambient air

    International Nuclear Information System (INIS)

    Pandit, G.G.; Sahu, S.K.; Puranik, V.D.

    2007-05-01

    The chemical, 1,4-dioxane does have much relevance with respect to Indian Nuclear Power Programme for counting of Tritium, which is mainly generated during the operation of nuclear research reactors and power reactors which use heavy water. Tritium analysis is routinely carried out at BARC. The scintillation solutions which are used for tritium counting, consist of mainly 1,4 dioxane and naphthalene along with minor concentration of PPO/POPOP. Each sample analysis generates about 10 ml of tritium contaminated spent scintillation liquid waste. Total generation rate of the waste in a typical PHWR reactor is about 2-3 m 3 /year. Controlled incineration of scintillation liquids has been opted at BARC for the treatment of radioactive organic waste. Now that 1,4-dioxane has shown threat to human health and environment, it is important and necessary to know its levels (concentrations) in different environmental compartments to evaluate the risks associated with it. Standard methods are available for the measurement of 1,4-dioxane in air. Higher concentration can be estimated by direct analysis but estimation at lower levels (parts per billion-ppb) requires pre concentration prior to its analysis. Here an improved method that offers increased sensitivity has been used for determining lower levels of 1,4-dioxane. This report presents (1) the development of the methodology for the estimation of 1,4-dioxane at ppb levels using cryogenic pre-concentration and subsequent analysis by Gas Chromatograph with Electron Capture detector (GC-ECD) (2) techniques to check the incineration efficiency and release of 1,4-dioxane to the environment. The data generated by this study could be further used in the evaluation of risk. (author)

  5. Time and space variability of spectral estimates of atmospheric pressure

    Science.gov (United States)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  6. Estimation of pressure drop in gasket plate heat exchangers

    Directory of Open Access Journals (Sweden)

    Neagu Anisoara Arleziana

    2016-06-01

    Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.

  7. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  8. A new device to noninvasively estimate the intraocular pressure produced during ocular compression

    Directory of Open Access Journals (Sweden)

    Korenfeld MS

    2016-01-01

    Full Text Available Michael S Korenfeld,1,2 David K Dueker3 1Comprehensive Eye Care, Ltd., 2Department of Ophthalmology and Visual Sciences, Washington University, Washington, MO, USA; 3Hamad Medical Corporation, Doha, Qatar Purpose: To describe a noninvasive instrument that estimates intraocular pressure during episodes of external globe compression and to demonstrate the accuracy and reliability of this device by comparing it to the intraocular pressures simultaneously and manometrically measured in cannulated eyes. Methods: A thin fluid-filled bladder was constructed from flexible and inelastic plastic sheeting and was connected to a pressure transducer with high pressure tubing. The output of the pressure transducer was sent to an amplifier and recorded. This device was validated by measuring induced pressure in the fluid-filled bladder while digital pressure was applied to one surface, and the other surface was placed directly against a human cadaver eye or in vivo pig eye. The human cadaver and in vivo pig eyes were each cannulated to provide a manometric intraocular pressure control. Results: The measurements obtained with the newly described device were within ~5% of simultaneously measured manometric intraocular pressures in both a human cadaver and in vivo pig eye model for a pressure range of ~15–100 mmHg. Conclusion: This novel noninvasive device is useful for estimating the intraocular pressure transients induced during any form of external globe compression; this is a clinical setting where no other devices can be used to estimate intraocular pressure. Keywords: glaucoma, intraocular pressure, tonometer, ocular compression

  9. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    Science.gov (United States)

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  10. Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations

    Directory of Open Access Journals (Sweden)

    R. M. Harrison

    2012-09-01

    Full Text Available Airborne concentrations of the wood smoke tracers, levoglucosan and fine potassium have been measured at urban and rural sites in the United Kingdom alongside measurements with a multi-wavelength aethalometer. The UK sites, and especially those in cities, show low ratios of levoglucosan to potassium in comparison to the majority of published data. It is concluded that there may be two distinct source types, one from wood stoves and fireplaces with a high organic carbon content, best represented by levoglucosan, the other from larger, modern appliances with a very high burn-out efficiency, best represented by potassium. Based upon levoglucosan concentrations and a conversion factor of 11.2 from levoglucosan to wood smoke mass, average concentrations of wood smoke including winter and summer sampling periods are 0.23 μg m−3 in Birmingham and 0.33 μg m−3 in London, well below concentrations typical of other northern European urban areas. There may be a further contribution from sources of potassium-rich emissions amounting to an estimated 0.08 μg m−3 in Birmingham and 0.30 μg m−3 in London. Concentrations were highly correlated between two London sites separated by 4 km suggesting that a regional source is responsible. Data from the aethalometer are either supportive of these conclusions or suggest higher concentrations, depending upon the way in which the data are analysed.

  11. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    Science.gov (United States)

    Biswas, S.; Singh, G. P.; Ram, S.; Fecht, H.-J.

    2013-08-01

    Stable anisotropic nanorods of surface modified CrO2 (˜18 nm diameter) with a correlated diamagnetic layer (2-3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr4+ ions by Ag atoms on the CrO2 surface (topotactic surface layer) via an etching reaction of a CrO2-polymer complex with Ag+ ions in hot water followed by heating the dried sample at 300-400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO2 such that it no longer converts to Cr2O3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d5/2 and 3d3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (-) 7.6% at 77 K, than reported values in compacted CrO2 powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO2 nanorods.

  12. Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Favaro, Marco; Yang, Jinhui; Nappini, Silvia; Magnano, Elena

    2017-01-01

    Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3 O 4 /Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that the catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3 O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3 O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.

  13. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    International Nuclear Information System (INIS)

    Biswas, S.; Singh, G.P.; Ram, S.; Fecht, H.-J.

    2013-01-01

    Stable anisotropic nanorods of surface modified CrO 2 (∼18 nm diameter) with a correlated diamagnetic layer (2–3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr 4+ ions by Ag atoms on the CrO 2 surface (topotactic surface layer) via an etching reaction of a CrO 2 -polymer complex with Ag + ions in hot water followed by heating the dried sample at 300–400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO 2 such that it no longer converts to Cr 2 O 3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO 2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d 5/2 and 3d 3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (−) 7.6% at 77 K, than reported values in compacted CrO 2 powders or composites. Such a large MR-value in the Coulomb blockade regime ( 2 nanorods. - Highlights: • Synthesis and structural studies of a novel GMR material of Ag coated CrO 2 . • Tailoring useful GMR property in CrO 2 nanorods of controlled shape and anisotropy. • Enhanced GMR is explained in correlation to the surface structure of CrO 2 nanorods

  14. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying

    International Nuclear Information System (INIS)

    Bangi, Uzma K H; Rao, A Venkateswara; Rao, A Parvathy

    2008-01-01

    An in-depth investigation into the synthesis of hydrophobic silica aerogels prepared by the surface derivatization of wet gels followed by subsequent drying at ambient pressure is reported. The following sol-gel parameters were examined for their effect on the physical properties of the derived aerogels: number of gel washings with water, percentage of hexane or methanol in silylating mixture, molar ratio of tartaric acid: Na 2 SiO 3 , gel aging period, weight% of silica, trimethylchlorosilane (TMCS) percentage, and silylation period. These parameters were varied from 1 to 4, 0 to 100%, 0.27 to 1.2, 0 to 4 h, 1.5 to 8 wt.%, 20 to 40% and 6 to 24 h, respectively. The properties of hydrophobic silica aerogels synthesized by this new route were investigated in terms of bulk density, percentage volume shrinkage, percentage porosity, thermal conductivity and contact angle with water, and by Fourier transform infrared spectroscopy (FTIR). The as-prepared hydrophobic silica aerogels exhibited high temperature stability (up to approximately 435 0 C) as measured by thermogravimetric/differential thermal analysis (TGA-DTA). The optimal sol-gel parameters were found to be a molar ratio of Na 2 SiO 3 :H 2 O : tartaric acid : TMCS of 1 : 146.67 : 0.86 : 9.46, an aging period of 3 h, four washings with water in 24 h and the use of a 50% hexane- or methanol-based silylating mixture. Aerogels prepared with these optimal parameters were found to exhibit 50% optical transparency in the visible range, 84 kg m -3 density, 0.090 W mK -1 thermal conductivity, 95% porosity and a contact angle of 146 0 with water

  15. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    of materials is predictable using Raoult’s law. This report details the measurement of the effect of water vapor partial pressure on the volatility...empirical correlation taking into account nonideal behavior was developed to enable estimation of TEPO volatility at any combination of ambient...of the second component is expected to be one-half as much as in the absence of water vapor. Similarly, the measured volatility of the second

  16. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.

    Science.gov (United States)

    Wojnarowska, Z; Swiety-Pospiech, A; Grzybowska, K; Hawelek, L; Paluch, M; Ngai, K L

    2012-04-28

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M(")(f) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across T(g). The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below T(g). At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  17. Direct dissolution of g-level U metal and U-6 % Zr alloy bits by TBP-nitric acid adduct and in situ extraction at ambient pressures

    International Nuclear Information System (INIS)

    Shekhar Kumar; Bijendra Kumar; Gelatar, J.K.; Pranay Kumar Sinha; Alok Kumar Mishra; Kamachi Mudali, U.

    2016-01-01

    A study on direct dissolution of g-level metallic U and U-6 % Zr alloy bits by TBP-nitric acid adduct followed by in situ extraction at ambient pressures under batch and dynamic conditions was performed. The product organic solution was adjusted to 30 % TBP in dodecane and from it, U(VI) could be stripped quantitatively with 0.01 N nitric acid. Experimental results of the study are presented in this paper. (author)

  18. Estimating the remanent life of boiler pressure parts: Pt. 3

    International Nuclear Information System (INIS)

    Askins, M.C.

    1988-04-01

    A cast of 1Cr1/2Mo steel has been creep tested in argon at stresses in the range 34-80 MPa and temperatures between 590-630 0 C in various heat treatment states, including normalized and tempered, and overaged. To assess their use in remanent life evaluations, various techniques have been used including hardness, bulk extraction of carbides and X-ray examination of the phases present, determination of matrix solute content, X-ray determination of the matrix lattice parameter and carbide extraction replication of the structure and measurement of various interparticle spacing parameters. The dependence of the spacing on time and temperature has been established and used to calibrate a model of tertiary creep for the material, based on the coarsening of the interparticle separation. The model is shown to match and predict the material's behaviour well. In application to plant the interparticle spacing can be determined from a small sample removed from the component. The model can be used to give estimates of the time to rupture, or more usefully, estimate the time to any given strain. Of all the techniques used, interparticle spacing determinations give the best estimates of remanent life. (author)

  19. Does the Hertz solution estimate pressures correctly in diamond indentor experiments?

    Science.gov (United States)

    Bruno, M. S.; Dunn, K. J.

    1986-05-01

    The Hertz solution has been widely used to estimate pressures in a spherical indentor against flat matrix type high pressure experiments. It is usually assumed that the pressure generated when compressing a sample between the indentor and substrate is the same as that generated when compressing an indentor against a flat surface with no sample present. A non-linear finite element analysis of this problem has shown that the situation is far more complex. The actual peak pressure in the sample is highly dependent on plastic deformation and the change in material properties due to hydrostatic pressure. An analysis with two material models is presented and compared with the Hertz solution.

  20. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples

    International Nuclear Information System (INIS)

    Salle, Beatrice; Cremers, David A.; Maurice, Sylvestre; Wiens, Roger C.

    2005-01-01

    Recently, there has been an increasing interest in the laser-induced breakdown spectroscopy (LIBS) technique for stand-off detection of geological samples for use on landers and rovers to Mars, and for other space applications. For space missions, LIBS analysis capabilities must be investigated and instrumental development is required to take into account constraints such as size, weight, power and the effect of environmental atmosphere (pressure and ambient gas) on flight instrument performance. In this paper, we study the in-situ LIBS method at reduced pressure (7 Torr CO 2 to simulate the Martian atmosphere) and near vacuum (50 mTorr in air to begin to simulate the Moon or asteroids' pressure) as well as at atmospheric pressure in air (for Earth conditions and comparison). Here in-situ corresponds to distances on the order of 150 mm in contrast to stand-off analysis at distance of many meters. We show the influence of the ambient pressure on the calibration curves prepared from certified soil and clay pellets. In order to detect simultaneously all the elements commonly observed in terrestrial soils, we used an Echelle spectrograph. The results are discussed in terms of calibration curves, measurement precision, plasma light collection system efficiency and matrix effects

  1. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Zhong Shiyuan; Esperanza, Annie; Brown, Timothy J.; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  2. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  3. Iron Deficiency in COPD Associates with Increased Pulmonary Artery Pressure Estimated by Echocardiography

    DEFF Research Database (Denmark)

    Plesner, Louis L; Schoos, Mikkel M; Dalsgaard, Morten

    2017-01-01

    OBJECTIVES: Iron deficiency (ID) might augment chronic pulmonary hypertension in chronic obstructive pulmonary disease (COPD). This observational study investigates the association between ID and systolic pulmonary artery pressure estimated by echocardiography in non-anaemic COPD outpatients...

  4. SU-E-T-365: Estimation of Neutron Ambient Dose Equivalents for Radioprotection Exposed Workers in Radiotherapy Facilities Based On Characterization Patient Risk Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L; Terron, J; Sanchez-Doblado, F [Departamento de Fisiologia Medica y Biofisica, Universidad de Sevilla (Spain); Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Sevilla (Spain); Domingo, C; Romero-Exposito, M [Departament de Fisica, Universitat Autonoma de Barcelona, Bellaterra (Spain); Garcia-Fuste, M [Health and Safety Department, ALBA Synchrotron Light Source, Cerdanyola del Valles (Spain); Sanchez-Nieto, B [Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Bedogni, R [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN) (Italy)

    2015-06-15

    Purpose: Previous measurements with Bonner spheres{sup 1} showed that normalized neutron spectra are equal for the majority of the existing linacs{sup 2}. This information, in addition to thermal neutron fluences obtained in the characterization procedure{sup 3}3, would allow to estimate neutron doses accidentally received by exposed workers, without the need of an extra experimental measurement. Methods: Monte Carlo (MC) simulations demonstrated that the thermal neutron fluence distribution inside the bunker is quite uniform, as a consequence of multiple scatter in the walls{sup 4}. Although inverse square law is approximately valid for the fast component, a more precise calculation could be obtained with a generic fast fluence distribution map around the linac, from MC simulations{sup 4}. Thus, measurements of thermal neutron fluences performed during the characterization procedure{sup 3}, together with a generic unitary spectra{sup 2}, would allow to estimate the total neutron fluences and H*(10) at any point{sup 5}. As an example, we compared estimations with Bonner sphere measurements{sup 1}, for two points in five facilities: 3 Siemens (15–23 MV), Elekta (15 MV) and Varian (15 MV). Results: Thermal neutron fluences obtained from characterization, are within (0.2–1.6×10{sup 6}) cm−{sup 2}•Gy{sup −1} for the five studied facilities. This implies ambient equivalent doses ranging from (0.27–2.01) mSv/Gy 50 cm far from the isocenter and (0.03–0.26) mSv/Gy at detector location with an average deviation of ±12.1% respect to Bonner measurements. Conclusion: The good results obtained demonstrate that neutron fluence and H*(10) can be estimated based on: (a) characterization procedure established for patient risk estimation in each facility, (b) generic unitary neutron spectrum and (c) generic MC map distribution of the fast component. [1] Radiat. Meas (2010) 45: 1391 – 1397; [2] Phys. Med. Biol (2012) 5 7:6167–6191; [3] Med. Phys (2015) 42

  5. On the estimation of threshold pressures in infiltration of liquid metals into particle preforms

    International Nuclear Information System (INIS)

    Molina, J.M.; Prieto, R.; Duarte, M.; Narciso, J.; Louis, E.

    2008-01-01

    Threshold pressures for infiltration of different metals into preforms of ceramic particles of various nature and morphology were experimentally determined and the results compared with those estimated by using the specific particle surface areas derived from laser diffraction and gas adsorption. Whilst laser diffraction provides an under estimation of the areas involved in the infiltration experiments, and thus of threshold pressures, gas adsorption offers reasonable values for particles that are regular and free of nanostructured surfaces

  6. Estimation scheme for unstable ductile fracture of pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Jun; Okamura, Hiroyuki; Sakai, Shinsuke

    1990-01-01

    This paper presents a new scheme for the estimation of unstable ductile fracture using the J-integral. The proposed method uses a load-versus-displacement diagram which is generated using fully plastic solutions. By this method, the phenomena of the ductile fracture can be grasped visually. Thus, the parametrical survey can be executed far more easily than before. Then, using the proposed method, unstable ductile fracture is analyzed for single-edge cracked plates under both uniform tension and pure bending. In addition, several parametrical surveys are performed concerning (1) J-controlled crack growth, (2) compliance of the structure, (3) ductility of the material (i.e., J-resistance curve), and (4) scale of the structure (i.e., screening criterion). As a result, it is shown that the proposed method is especially effective for the paramtrical study of unstable ductile fracture. (author)

  7. Surface stabilized GMR nanorods of silver coated CrO{sub 2} synthesized via a polymer complex at ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, S., E-mail: drsomnathbiswas@gmail.com [The LNM Institute of Information Technology, Jaipur-302031 (India); Singh, G.P. [Centre for Nanotechnology, Central University of Jharkhand, Ranchi-835205 (India); Ram, S. [Materials Science Centre, Indian Institute of Technology, Kharagpur-721302 (India); Fecht, H.-J. [Insitut für Micro-und Nanomaterialien, Universität Ulm, Albert Einstein Allee-47, Ulm, D-89081, and Forschungszentrum Karlsruhe, Institute of Nanotechnology, Karlsruhe, D-76021 (Germany)

    2013-08-15

    Stable anisotropic nanorods of surface modified CrO{sub 2} (∼18 nm diameter) with a correlated diamagnetic layer (2–3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr{sup 4+} ions by Ag atoms on the CrO{sub 2} surface (topotactic surface layer) via an etching reaction of a CrO{sub 2}-polymer complex with Ag{sup +} ions in hot water followed by heating the dried sample at 300–400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO{sub 2} such that it no longer converts to Cr{sub 2}O{sub 3} in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO{sub 2} structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d{sub 5/2} and 3d{sub 3/2} X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (−) 7.6% at 77 K, than reported values in compacted CrO{sub 2} powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO{sub 2} nanorods. - Highlights: • Synthesis and structural studies of a novel GMR material of Ag coated CrO{sub 2}. • Tailoring useful GMR property in CrO{sub 2} nanorods of controlled shape and anisotropy. • Enhanced GMR is explained in correlation to the surface structure of CrO{sub 2} nanorods.

  8. In-cylinder pressure resonance analysis for trapped mass estimation in automotive engines

    OpenAIRE

    Bares Moreno, Pau

    2017-01-01

    This thesis presents a new application for in-cylinder pressure sensors in internal combustion engines. The new method takes profit of the high-frequency content of the in-cylinder pressure signal to determine the speed of sound evolution during the expansion stroke and combines this estimation with the low-frequency content of the pressure signal and a volume estimation to obtain a measurement of the trapped mass. The new method is based on the studies of the resonance phenomenon in pent...

  9. Stroke Volume estimation using aortic pressure measurements and aortic cross sectional area: Proof of concept.

    Science.gov (United States)

    Kamoi, S; Pretty, C G; Chiew, Y S; Pironet, A; Davidson, S; Desaive, T; Shaw, G M; Chase, J G

    2015-08-01

    Accurate Stroke Volume (SV) monitoring is essential for patient with cardiovascular dysfunction patients. However, direct SV measurements are not clinically feasible due to the highly invasive nature of measurement devices. Current devices for indirect monitoring of SV are shown to be inaccurate during sudden hemodynamic changes. This paper presents a novel SV estimation using readily available aortic pressure measurements and aortic cross sectional area, using data from a porcine experiment where medical interventions such as fluid replacement, dobutamine infusions, and recruitment maneuvers induced SV changes in a pig with circulatory shock. Measurement of left ventricular volume, proximal aortic pressure, and descending aortic pressure waveforms were made simultaneously during the experiment. From measured data, proximal aortic pressure was separated into reservoir and excess pressures. Beat-to-beat aortic characteristic impedance values were calculated using both aortic pressure measurements and an estimate of the aortic cross sectional area. SV was estimated using the calculated aortic characteristic impedance and excess component of the proximal aorta. The median difference between directly measured SV and estimated SV was -1.4ml with 95% limit of agreement +/- 6.6ml. This method demonstrates that SV can be accurately captured beat-to-beat during sudden changes in hemodynamic state. This novel SV estimation could enable improved cardiac and circulatory treatment in the critical care environment by titrating treatment to the effect on SV.

  10. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Fukui Science Education Academy, Takagi Chuou 2 choume, Fukui 910-0804 (Japan); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia)

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  11. Methodology to estimate the relative pressure field from noisy experimental velocity data

    International Nuclear Information System (INIS)

    Bolin, C D; Raguin, L G

    2008-01-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  12. On the estimation of wall pressure coherence using time-resolved tomographic PIV

    Science.gov (United States)

    Pröbsting, Stefan; Scarano, Fulvio; Bernardini, Matteo; Pirozzoli, Sergio

    2013-07-01

    Three-dimensional time-resolved velocity field measurements are obtained using a high-speed tomographic Particle Image Velocimetry (PIV) system on a fully developed flat plate turbulent boundary layer for the estimation of wall pressure fluctuations. The work focuses on the applicability of tomographic PIV to compute the coherence of pressure fluctuations, with attention to the estimation of the stream and spanwise coherence length. The latter is required for estimations of aeroacoustic noise radiation by boundary layers and trailing edge flows, but is also of interest for vibro-structural problems. The pressure field is obtained by solving the Poisson equation for incompressible flows, where the source terms are provided by time-resolved velocity field measurements. Measured 3D velocity data is compared to results obtained from planar PIV, and a Direct Numerical Simulation (DNS) at similar Reynolds number. An improved method for the estimation of the material based on a least squares estimator of the velocity derivative along a particle trajectory is proposed and applied. Computed surface pressure fluctuations are further verified by means of simultaneous measurements by a pinhole microphone and compared to the DNS results and a semi-empirical model available from literature. The correlation coefficient for the reconstructed pressure time series with respect to pinhole microphone measurements attains approximately 0.5 for the band-pass filtered signal over the range of frequencies resolved by the velocity field measurements. Scaled power spectra of the pressure at a single point compare favorably to the DNS results and those available from literature. Finally, the coherence of surface pressure fluctuations and the resulting span- and streamwise coherence lengths are estimated and compared to semi-empirical models and DNS results.

  13. Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model.

    Science.gov (United States)

    Lee, Soojeong; Rajan, Sreeraman; Jeon, Gwanggil; Chang, Joon-Hyuk; Dajani, Hilmi R; Groza, Voicu Z

    2017-06-01

    Blood pressure (BP) is one of the most important vital indicators and plays a key role in determining the cardiovascular activity of patients. This paper proposes a hybrid approach consisting of nonparametric bootstrap (NPB) and machine learning techniques to obtain the characteristic ratios (CR) used in the blood pressure estimation algorithm to improve the accuracy of systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimates and obtain confidence intervals (CI). The NPB technique is used to circumvent the requirement for large sample set for obtaining the CI. A mixture of Gaussian densities is assumed for the CRs and Gaussian mixture model (GMM) is chosen to estimate the SBP and DBP ratios. The K-means clustering technique is used to obtain the mixture order of the Gaussian densities. The proposed approach achieves grade "A" under British Society of Hypertension testing protocol and is superior to the conventional approach based on maximum amplitude algorithm (MAA) that uses fixed CR ratios. The proposed approach also yields a lower mean error (ME) and the standard deviation of the error (SDE) in the estimates when compared to the conventional MAA method. In addition, CIs obtained through the proposed hybrid approach are also narrower with a lower SDE. The proposed approach combining the NPB technique with the GMM provides a methodology to derive individualized characteristic ratio. The results exhibit that the proposed approach enhances the accuracy of SBP and DBP estimation and provides narrower confidence intervals for the estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An in situ near-ambient pressure X-ray Photoelectron Spectroscopy study of Mn polarised anodically in a cell with solid oxide electrolyte

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Amati, Matteo; Bocchetta, Patrizia; Dal Zilio, Simone; Knop-Gericke, Axel; Vesselli, Erik; Kiskinova, Maya

    2015-01-01

    This paper reports an in situ study of the anodic behavior of a model solid oxide electrolysis cell (SOEC) by means of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) combined with near edge X-ray absorption fine structure (NEXAFS) measurements. The focus is on the anodic surface chemistry of MnO x , a model anodic material already considered in cognate SOFC-related studies, during electrochemical operation in CO 2 , CO 2 /H 2 O and H 2 O ambients. The XPS and NEXAFS results we obtained, complemented by electrochemical measurements and SEM characterisation, reveal the chemical evolution of Mn under electrochemical control. MnO is the stable chemical form at open-circuit potential (OCP), while Mn 3 O 4 forms under anodic polarisation in all the investigated gas ambients. Carbon deposits are present on the Mn electrode at OCP, but they are readily oxidised under anodic conditions. Prolonged operation of the MnO x anode leads to pitting of the Mn films, damaging of the triple-phase boundary region and also to formation of discontinuities in the Mn patch. This is accompanied by chemical transformations of the electrolyte and formation of ZrC without impact on the surface chemistry of the Mn-based anode

  15. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  16. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  17. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    Science.gov (United States)

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  18. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  19. Investigations of the solid solution in the system SrI2-BaI2 at ambient pressures and at 2.0 GPa

    International Nuclear Information System (INIS)

    Beck, H.P.; Holley, C.; Limmer, A.

    1984-01-01

    The P,T,x-diagram of the system SrI 2 -BaI 2 has been investigated at ambient pressures and at 2.0 GPa. The amount of solid solution in the four structure types occuring in this system (SrI 2 - or PbCl 2 -ZrAs 2 -type with SrI 2 and PbCl 2 - or anti-Fe 2 P-type with BaI 2 ) differs considerably. Structural geometries belonging to the same PbCl 2 structure family show marked differences in their toleration to cation substitution. Solid solution is especially pronounced in the BaI 2 -rich phases which incorporate up to 60 mol-% Sr 2+ in the high pressure phase of BaI 2 . (author)

  20. Investigations of the solid solution in the system SrI/sub 2/-BaI/sub 2/ at ambient pressures and at 2. 0 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Beck, H.P.; Holley, C.; Limmer, A. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Anorganische Chemie)

    1984-09-01

    The P,T,x-diagram of the system SrI/sub 2/-BaI/sub 2/ has been investigated at ambient pressures and at 2.0 GPa. The amount of solid solution in the four structure types occuring in this system (SrI/sub 2/- or PbCl/sub 2/-ZrAs/sub 2/-type with SrI/sub 2/ and PbCl/sub 2/- or anti-Fe/sub 2/P-type with BaI/sub 2/) differs considerably. Structural geometries belonging to the same PbCl/sub 2/ structure family show marked differences in their toleration to cation substitution. Solid solution is especially pronounced in the BaI/sub 2/-rich phases which incorporate up to 60 mol-% Sr/sup 2 +/ in the high pressure phase of BaI/sub 2/.

  1. Synthesis under ambient pressure and tri-axial magnetic orientation in REBa2Cu4O8 (RE = Y, Sm, Eu, Gd, Dy, Ho, Er)

    International Nuclear Information System (INIS)

    Yamaki, M.; Horii, S.; Haruta, M.; Maeda, T.; Shimoyama, J.

    2011-01-01

    REBa 2 Cu 4 O 8 (RE124) was synthesized by a flux method in ambient pressure for RE = Y, Sm, Eu, Gd, Dy, Ho and Er. Tri-axial orientation of RE124 was achieved in a modulated rotating magnetic field of 10 T. Orientation axes in RE124 depended on the type of RE. Magnetization axes were determined from magnetic anisotropies of Cu and RE ions. We report the rare-earth (RE)-dependent magnetization axes of REBa 2 Cu 4 O 8 , which was synthesized by a flux method under ambient pressure, using powder samples tri-axially oriented in a modulated rotating magnetic field of 10 T. By optimizing the growth temperature and cooling rate, RE124 crystals were successfully grown for RE = Y, Sm, Eu, Gd, Dy, Ho, and Er. From the X-ray diffraction measurement, the magnetically oriented directions were largely dependent on the type of RE ions of RE124. However, the tri-axial magnetic anisotropies of RE124 could be qualitatively understood in terms of the magnitude relation between the single-ion magnetic anisotropy of RE 3+ ions and the magnetic anisotropy generated by the CuO 2 plane and Cu-O chain. For the practical use of this magneto-scientific process, the control of magnetization axes and tri-axial magnetic anisotropies through crystallochemical control is indispensable.

  2. Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Salak, A.N., E-mail: salak@ua.pt [Department of Materials and Ceramic Engineering and CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pushkarev, A.V.; Radyush, Yu.V.; Olekhnovich, N.M. [Scientific-Practical Materials Research Centre of NAS of Belarus, P. Brovka Street, 19, 220072 Minsk (Belarus); Shilin, A.D.; Rubanik, V.V. [Institute of Technical Acoustics of NAS of Belarus, Lyudnikov Avenue, 13, 210023 Vitebsk (Belarus)

    2017-03-15

    Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of the BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate in Bi

  3. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    International Nuclear Information System (INIS)

    Domanska, Urszula; Morawski, Piotr; Piekarska, Maria

    2008-01-01

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2)} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {1-octanol (1) + CCA (2)} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  4. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)], E-mail: ula@ch.pw.edu.pl; Morawski, Piotr; Piekarska, Maria [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2008-04-15

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {l_brace}1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2){r_brace} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {l_brace}1-octanol (1) + CCA (2){r_brace} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  5. Estimation of sound pressure levels of voiced speech from skin vibration of the neck

    NARCIS (Netherlands)

    Svec, JG; Titze, IR; Popolo, PS

    How accurately can sound pressure levels (SPLs) of speech be estimated from skin vibration of the neck? Measurements using a small accelerometer were carried out in 27 subjects (10 males and 17 females) who read Rainbow and Marvin Williams passages in soft, comfortable, and loud voice, while skin

  6. Systolic blood pressure estimation using PPG and ECG during physical exercise

    NARCIS (Netherlands)

    Sun, S.; Bezemer, R.; Long, X.; Muehlsteff, J.; Aarts, R.M.

    2016-01-01

    In this work, a model to estimate systolic blood pressure (SBP) using photoplethysmography (PPG) and electrocardiography (ECG) is proposed. Data from 19 subjects doing a 40 min exercise was analyzed. Reference SBP was measured at the finger based on the volume-clamp principle. PPG signals were

  7. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  8. Variations in dark respiration and mitochondrial numbers within needles of Pinus radiata grown in ambient or elevated CO2 partial pressure

    International Nuclear Information System (INIS)

    Griffin, K. L.; Anderson, O. R.; Tissue, D. T.; Turnbull, M. H.; Whitehead, D.

    2004-01-01

    An experiment involving comparison of within-leaf variations in cell size, mitochondrial numbers and dark respiration in the most recently expanded tip, the mid-section and the base of needles of Pinus radiata grown for four years at ambient and elevated carbon dioxide partial pressure, is described. Results showed variation in mitochondrial numbers and respiration along the length of the needle, with the highest number of mitochondria per unit cytoplasm and the highest rate of respiration per unit leaf area at the base of the needle. Elevated carbon dioxide pressure caused the number of mitochondria per unit cytoplasm to double regardless of location (tip, basal or mid sections). Under these conditions, greatest mitochondrial density was observed at the tip. The mean size of mitochondria was not affected by either growth at elevated carbon dioxide pressure or by position on the needle. Respiration per unit leaf area at elevated carbon dioxide pressure was highest at the tip of needles, decreasing towards the middle and basal sections. The observed data supports the hypothesis that the highest number of mitochondria per unit area of cytoplasm occurs at the base of the needle, but does not support the hypothesis that the lowest rate of respiration also occurs at the base. It is suggested that the relationship that determines the association between structure and function in these needles is more complex than previously thought. 33 refs., 4 tabs., 1 fig

  9. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  10. Electronic transport properties of MFe2As2 (M = Ca, Eu, Sr) at ambient and high pressures up to 20 GPa

    Science.gov (United States)

    Morozova, Natalia V.; Karkin, Alexander E.; Ovsyannikov, Sergey V.; Umerova, Yuliya A.; Shchennikov, Vladimir V.; Mittal, R.; Thamizhavel, A.

    2015-12-01

    We experimentally investigated the electronic transport properties of four iron pnictide crystals, namely, EuFe2As2, SrFe2As2, and CaFe2As2 parent compounds, and superconducting CaFe1.94Co0.06As2 at ambient and high pressures up to 20 GPa. At ambient pressure we examined the electrical resistivity, Hall and magnetoresistance effects of the samples in a temperature range from 1.5 to 380 K in high magnetic fields up to 13.6 T. In this work we carried out the first simultaneous investigations of the in-plane and out-of-plane Hall coefficients, and found new peculiarities of the low-temperature magnetic and structural transitions that occur in these materials. In addition, the Hall coefficient data suggested that the parent compounds are semimetals with a multi-band conductivity that includes hole-type and electron-type bands. We measured the pressure dependence of the thermoelectric power (the Seebeck effect) of these samples up to 20 GPa, i.e. across the known phase transition from the tetragonal to the collapsed tetragonal lattice. The high-pressure behavior of the thermopower of EuFe2As2 and CaFe2As2 showing the p-n sign inversions was consistent with the semimetal model described above. By means of thermopower, we found in single-crystalline CaFe2As2 direct evidence of the band structure crossover related to the formation of As-As bonds along the c-axis on the tetragonal → collapsed tetragonal phase transition near 2 GPa. We showed that this feature is distinctly observable only in high-quality samples, and already for re-pressurization cycles this crossover was strongly smeared because of the moderate deterioration of the sample. We also demonstrated by means of thermopower that the band structure crossover that should accompany the tetragonal → collapsed tetragonal phase transition in EuFe2As2 near 8 GPa is hardly visible even in high-quality single crystals. This behavior may be related to a gradual valence change of the Eu ions under pressure that leads to

  11. Detection and estimation of sensor drifts using Kalman filters with a demonstration on a pressurizer

    International Nuclear Information System (INIS)

    Cho, Sungwhan; Jiang, Jin

    2012-01-01

    Highlights: ► How the expectation of the innovations changes in the drift case is formulated. ► Using the divergence in the expectation for detection of the drift is demonstrated. ► An augmented system model is proposed for estimation of the drift. ► Demonstration of the proposed algorithm is presented using a pressurizer model. - Abstract: An algorithm for detection and estimation of sensor drifts is proposed in this paper. The algorithm is based on estimation of the process states from which the measurements are made and the rate of drifts using a state augmented Kalman filter. The detection and the estimation of a drift are carried out by evaluating the mean of the innovation sequence of the Kalman filter. The relationship between the mean and the drift is analyzed in detail to provide insights on the connection between the innovation sequence and the drift. The developed algorithm has been successfully applied to a pressurizer for detection and estimation of pressure sensor drifts. The results convincingly demonstrate the capability of the algorithm.

  12. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

    Science.gov (United States)

    Cohen, Aaron J; Brauer, Michael; Burnett, Richard; Anderson, H Ross; Frostad, Joseph; Estep, Kara; Balakrishnan, Kalpana; Brunekreef, Bert; Dandona, Lalit; Dandona, Rakhi; Feigin, Valery; Freedman, Greg; Hubbell, Bryan; Jobling, Amelia; Kan, Haidong; Knibbs, Luke; Liu, Yang; Martin, Randall; Morawska, Lidia; Pope, C Arden; Shin, Hwashin; Straif, Kurt; Shaddick, Gavin; Thomas, Matthew; van Dingenen, Rita; van Donkelaar, Aaron; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H

    2017-05-13

    Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM 2·5 ) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure-response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure-response functions spanning the global range of exposure. Ambient PM 2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM 2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM 2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000-422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will

  13. Pulmonary artery occlusion pressure estimation by transesophageal echocardiography: is simpler better?

    Science.gov (United States)

    Voga, Gorazd

    2008-01-01

    The measurement of pulmonary artery occlusion pressure (PAOP) is important for estimation of left ventricular filling pressure and for distinction between cardiac and non-cardiac etiology of pulmonary edema. Clinical assessment of PAOP, which relies on physical signs of pulmonary congestion, is uncertain. Reliable PAOP measurement can be performed by pulmonary artery catheter, but it is possible also by the use of echocardiography. Several Doppler variables show acceptable correlation with PAOP and can be used for its estimation in cardiac and critically ill patients. Noninvasive PAOP estimation should probably become an integral part of transthoracic and transesophageal echocardiographic evaluation in critically ill patients. However, the limitations of both methods should be taken into consideration, and in specific patients invasive PAOP measurement is still unavoidable, if the exact value of PAOP is needed.

  14. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.

    Science.gov (United States)

    Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang

    2014-09-01

    Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  16. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation

    Science.gov (United States)

    Jannot, Y.; Degiovanni, A.; Camus, M.

    2018-04-01

    Standard pore size determination methods like mercury porosimetry, nitrogen sorption, microscopy, or X-ray tomography are not suited to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization has been developed in a previous study. This method has been used with air pressure varying from 10-1 to 105 Pa for materials having a thermal conductivity less than 0.05 W m-1 K-1 at atmospheric pressure. It enables the estimation of pore size distribution between 100 nm and 1 mm. In this paper, we present a new experimental device enabling thermal conductivity measurement under gas pressure up to 106 Pa, enabling the estimation of the volume fraction of pores having a 10 nm diameter. It is also demonstrated that the main thermal conductivity models (parallel, series, Maxwell, Bruggeman, self-consistent) lead to the same estimation of the pore size distribution as the extended parallel model (EPM) presented in this paper and then used to process the experimental data. Three materials with thermal conductivities at atmospheric pressure ranging from 0.014 W m-1 K-1 to 0.04 W m-1 K-1 are studied. The thermal conductivity measurement results obtained with the three materials are presented, and the corresponding pore size distributions between 10 nm and 1 mm are presented and discussed.

  17. Estimation of costs for fabrication of pressurized-water reactor fuel

    International Nuclear Information System (INIS)

    Judkins, R.R.; Olsen, A.R.

    1979-01-01

    To provide a reference case on which to base cost estimates of the several fuel cycles to be considered, the facility, equipment, and operating requirements for the fabrication of fuel for current-design pressurized-water reactors were examined. From an analysis of these requirements, the capital and operating costs of a plant with a capacity of two metric tons of heavy metal per day (MTHM/day) were estimated. In a cash flow analysis, the lifetime of the plant was assumed to be 20 y, and the income from the sale of nuclear fuel assemblies over this period was equated to the total capital and operating expenses of the plant, including a specified 15% return on investment. In this way a levelized unit price for the fuel was obtained. The effects of inflation were not considered since the purpose of these estimates and the determination of unit price was to permit comparison of different types of fuels. The capital costs of the fuel fabrication plant were estimated at $32 million for the facility--land, site preparation, building--and $34 million for equipment. Annual operating costs including labor, management, materials, and utilities were estimated to be $36.5 million. From these estimates, the unit price for fabricating the fuel for the reference pressurized-water reactor was determined to be $138/kg of heavy metal or $63,600 per fuel assembly

  18. An Embedded Device for Real-Time Noninvasive Intracranial Pressure Estimation.

    Science.gov (United States)

    Matthews, Jonathan M; Fanelli, Andrea; Heldt, Thomas

    2018-01-01

    The monitoring of intracranial pressure (ICP) is indicated for diagnosing and guiding therapy in many neurological conditions. Current monitoring methods, however, are highly invasive, limiting their use to the most critically ill patients only. Our goal is to develop and test an embedded device that performs all necessary mathematical operations in real-time for noninvasive ICP (nICP) estimation based on a previously developed model-based approach that uses cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) waveforms. The nICP estimation algorithm along with the required preprocessing steps were implemented on an NXP LPC4337 microcontroller unit (MCU). A prototype device using the MCU was also developed, complete with display, recording functionality, and peripheral interfaces for ABP and CBFV monitoring hardware. The device produces an estimate of mean ICP once per minute and performs the necessary computations in 410 ms, on average. Real-time nICP estimates differed from the original batch-mode MATLAB implementation of theestimation algorithm by 0.63 mmHg (root-mean-square error). We have demonstrated that real-time nICP estimation is possible on a microprocessor platform, which offers the advantages of low cost, small size, and product modularity over a general-purpose computer. These attributes take a step toward the goal of real-time nICP estimation at the patient's bedside in a variety of clinical settings.

  19. Estimates of the eigenvalues of operator arising in swelling pressure model

    International Nuclear Information System (INIS)

    Kanguzhin, Baltabek; Zhapsarbayeva, Lyailya

    2016-01-01

    Swelling pressures from materials confined by structures can cause structural deformations and instability. Due to the complexity of interactions between expansive solid and solid-liquid equilibrium, the forces exerting on retaining structures from swelling are highly nonlinear. This work is our initial attempt to study a simplistic spectral problem based on the Euler-elastic beam theory and some simplistic swelling pressure model. In this work estimates of the eigenvalues of some initial/boundary value problem for nonlinear Euler-elastic beam equation are obtained.

  20. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  1. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors

    International Nuclear Information System (INIS)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-01-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations

  2. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.

    Science.gov (United States)

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-02-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.

  3. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, CZ-602 00 Brno (Czech Republic); Mester, Zoltan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Sturgeon, Ralph E., E-mail: Ralph.Sturgeon@nrc-cnrc.gc.ca [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-08-15

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  4. Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Kong, Lingping [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Guo, Peijun [Center; Stoumpos, Constantinos C. [Department; Hu, Qingyang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Liu, Zhenxian [Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Cai, Zhonghou [Advanced; Gosztola, David J. [Center; Mao, Ho-kwang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States; Kanatzidis, Mercouri G. [Department; Schaller, Richard D. [Center; Department

    2017-10-09

    The discovery of elevated environmental stability in two-dimensional (2D) Ruddlesden–Popper hybrid perovskites represents a significant advance in low-cost, high-efficiency light absorbers. In comparison to 3D counterparts, 2D perovskites of organo-lead-halides exhibit wider, quantum-confined optical bandgaps that reduce the wavelength range of light absorption. Here, we characterize the structural and optical properties of 2D hybrid perovskites as a function of hydrostatic pressure. We observe bandgap narrowing with pressure of 633 meV that is partially retained following pressure release due to an atomic reconfiguration mechanism. We identify two distinct regimes of compression dominated by the softer organic and less compressible inorganic sublattices. Our findings, which also include PL enhancement, correlate well with density functional theory calculations and establish structure–property relationships at the atomic scale. These concepts can be expanded into other hybrid perovskites and suggest that pressure/strain processing could offer a new route to improved materials-by-design in applications.

  5. Specific features of an interaction between laser radiation and matter at high pressures of an ambient medium

    Energy Technology Data Exchange (ETDEWEB)

    Rykalin, N N; Uglov, A A; Nizametdinov, M M [AN SSSR, Moscow. Inst. Metallurgii

    1975-08-01

    Study of the development of a plasma cloud in the vicinity of the target in nitrogen has been performed. The mechanism of discharge propagation is discussed. Variations of physical characteristics of targets exposed to radiation are considered. Experimental data concerning interaction of a neodymium laser radiation with materials (metals, dielectrics) under high pressure are given. It is demonstrated that the environmental pressure increase over the range 30-100 atm with the flux density 10/sup 6/-10/sup 7/ w/cm/sup 2/ results in a nearly complete screening of the target by the plasma cloud. The primary mechanism of zone formation of the laser radiation absorption in a cold gas under high pressures near the target is thermal emission (when the evaporation is insignificant) and the breakdown in the vapours of the evaporated substance. The major mechanism of sustaining the plasma cloud at flux densities of 1-10 Mw/cm/sup 2/ is slow burning. It is noted that the periodic variation of brightness of plasma after the radiation effect on dielectrics has terminated can be associated with the energy production in a chemical reaction, the development of which is determined by the time of reaching the temperature that depends on the particle size. The target characteristics in the interaction zone are considered, which depend on the radiation flux density and the gas pressure in the chamber.

  6. Influence of deuterium content on tensile behavior of Zr-2.5Nb pressure tube material in the temperature range of ambient to 300 degC

    International Nuclear Information System (INIS)

    Bind, A.K.; Singh, R.N.; Chakravartty, J.K.; Dhandharia, Priyesh; Ghosh, Agnish; More, Nitin S.; Chhatre, A.G.; Vijayakumar, S.

    2011-08-01

    Tensile properties of autoclaved zirconium-2.5 wt. % niobium pressure tube material were evaluated by uniaxial tension tests at temperatures between 25 and 300 degC and under strain-rates of 1.075 x 10 -4 /s. Six number of Zr-2.5Nb alloy pressure tube spools of length 130 mm were obtained from pressure tube number 19-2557-2. Five spools were polished with abrasive paper to remove the oxide layer. These spools were gaseously charged with controlled amount of deuterium. The target deuterium concentrations were 25, 50, 75, 100 and 200 wppm of hydrogen equivalent. Ten samples were machined by EDM wire cutting from every spool. The tensile specimen axis was oriented along longitudinal direction of the tube. Metallographic examination of the deuterium charged samples suggested that the deuterides were predominantly circumferential deuterides. Analysis of tensile results showed that both yield and ultimate tensile strengths of this alloy decreased monotonically with increasing test temperatures. The tensile ductility decreased marginally with increase in test temperature from ambient to 300 degC. It was also observed that both strength and ductility appear to be unaffected by deuterium content at all temperatures, thereby suggesting that at least up to 200 wppm (Heq.) of deuterium tensile properties are not influenced by deuterium. (author)

  7. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    International Nuclear Information System (INIS)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-01-01

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  8. Noninvasive estimation of pulmonary arterial pressure by analysis of pulmonary blood-flow distribution

    International Nuclear Information System (INIS)

    Konstam, M.A.; Strauss, H.W.; Alpert, N.M.; Miller, S.W.; Murphy, R.X.; Greene, R.E.; McKusick, K.A.

    1979-01-01

    To determine whether a correlation exists between pulmonary arterial (PA) pressure (P/sub a/) and the distribution of pulmonary blood flow, this distribution was measured in four upright dogs in the control state and during intravenous infusions of epinephrine or prostaglandin F/sub 2α/. During suspension of respiration, 15 mCi of Xe-133 were injected intravenously, and perfusion and equilibration lung images were recorded with a scintillation camera. The procedure was performed several times on each dog, with and without pharmacological elevation of PA pressure by 5 to 50 cm H 2 O. For each scintigram, the relative blood flow per unit ventilated lung volume (F) was plotted against centimeters above the hilum (h). Pulmonary arterial pressure was derived from each curve, assuming the relation F = B(P/sub a/ - hD) 2 , where B = constant and D = specific gravity of blood. Calculated PA pressure correlated strongly (r = 0.83) with measured PA pressure, suggesting a possible means of noninvasive estimation of PA pressure

  9. Estimates of fluid pressure and tectonic stress in hydrothermal/volcanic areas:a methodological approach

    Directory of Open Access Journals (Sweden)

    G. Vilardo

    2005-06-01

    Full Text Available An analytical approach to estimate the relative contribution of the fluid pressure and tectonic stress in hydrothermal/ volcanic areas is proposed assuming a Coulomb criterion of failure. The analytical procedure requires the coefficient of internal friction, cohesion, rock density, and thickness of overburden to be known from geological data. In addition, the orientation of the principal stress axes and the stress ratio must be determined from the inversion of fault-slip or seismic data (focal mechanisms. At first, the stress magnitude is calculated assuming that faulting occurs in 'dry' conditions (fluid pressure=0. In a second step, the fluid pressure is introduced performing a grid search over the orientation of 1 fault planes that slip by shear failure or 2 cracks that open under different values of fluid pressure and calculating the consistency with the observed fault planes (i.e. strike and dip of faults, cracks, nodal planes from focal mechanisms. The analytical method is applied using fault-slip data from the Solfatara volcano (Campi Flegrei, Italy and seismic data (focal mechanisms from the Vesuvius volcano (Italy. In these areas, the fluid pressure required to activate faults (shear fractures and cracks (open fractures is calculated. At Solfatara, the ratio between the fluid pressure and the vertical stress ?is very low for faults ( ?=0.16 and relatively high for cracks ( ?=0.5. At Vesuvius, ?=0.6. Limits and uncertainties of the method are also discussed.

  10. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  11. METEO-P/H: Measuring ambient pressure and relative humidity on the ExoMars 2020 landing site

    Science.gov (United States)

    Nikkanen, T. T.; Genzer, M.; Hieta, M.; Harri, A.-M.; Haukka, H.; Polkko, J.; Kynkäänniemi, T.

    2017-09-01

    Finnish Meteorological Institute (FMI) has designed and is in the process of building and testing a pressure and humidity measurement device for the ExoMars 2020 lander. The ExoMars 2020 mission consists of the Russian Roscosmos Surface Platform (SP) and the European Space Agency (ESA) Rover. The Surface Platform will perform the Entry, Descent and Landing for the lander combo and start stationary science operations after landing, while the Rover will drive off the SP to explore the landing site surroundings and soil. The FMI measurement device is installed on the Surface Platform to give continuous measurements from a stationary location. The METEO-P pressure device and METEO-H humidity device are part of the METEO meteorological science package, which also includes a thermometer and an anemometer from IKI, Russia, as well as the RDM Radiation and dust sensors, and the AMR magnetic field sensors from INTA, Spain.

  12. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    International Nuclear Information System (INIS)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a open-quotes best estimateclose quotes of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards

  13. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  14. Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer

    Science.gov (United States)

    Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong

    2018-06-01

    For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.

  15. Estimating Right Atrial Pressure Using Ultrasounds: An Old Issue Revisited With New Methods.

    Science.gov (United States)

    De Vecchis, Renato; Baldi, Cesare; Giandomenico, Giuseppe; Di Maio, Marco; Giasi, Anna; Cioppa, Carmela

    2016-08-01

    Knowledge of the right atrial pressure (RAP) values is critical to ascertain the existence of a state of hemodynamic congestion, irrespective of the possible presence of signs and symptoms of clinical congestion and cardiac overload that can be lacking in some conditions of concealed or clinically misleading cardiac decompensation. In addition, a more reliable estimate of RAP would make it possible to determine more accurately also the systolic pulmonary arterial pressure with the only echocardiographic methods. The authors briefly illustrate some of the criteria that have been implemented to obtain a non-invasive RAP estimate, some of which have been approved by current guidelines and others are still awaiting official endorsement from the Scientific Societies of Cardiology. There is a representation of the sometimes opposing views of researchers who have studied the problem, and the prospects for development of new diagnostic criteria are outlined, in particular those derived from the matched use of two- and three-dimensional echocardiographic parameters.

  16. Experimental Feasibility Study of Estimation of the Normalized Central Blood Pressure Waveform from Radial Photoplethysmogram

    Directory of Open Access Journals (Sweden)

    Edmond Zahedi

    2015-01-01

    Full Text Available The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN from the radial photoplethysmogram (PPG is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5% from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days.

  17. Online Estimation of Model Parameters and State of Charge of LiFePO4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2015-04-01

    Full Text Available This study describes an online estimation of the model parameters and state of charge (SOC of lithium iron phosphate batteries in electric vehicles. A widely used SOC estimator is based on the dynamic battery model with predeterminate parameters. However, model parameter variances that follow with their varied operation temperatures can result in errors in estimating battery SOC. To address this problem, a battery online parameter estimator is presented based on an equivalent circuit model using an adaptive joint extended Kalman filter algorithm. Simulations based on actual data are established to verify accuracy and stability in the regression of model parameters. Experiments are also performed to prove that the proposed estimator exhibits good reliability and adaptability under different loading profiles with various temperatures. In addition, open-circuit voltage (OCV is used to estimate SOC in the proposed algorithm. However, the OCV based on the proposed online identification includes a part of concentration polarization and hysteresis, which is defined as parametric identification-based OCV (OCVPI. Considering the temperature factor, a novel OCV–SOC relationship map is established by using OCVPI under various temperatures. Finally, a validating experiment is conducted based on the consecutive loading profiles. Results indicate that our method is effective and adaptable when a battery operates at different ambient temperatures.

  18. The association of estimated salt intake with blood pressure in a Viet Nam national survey.

    Directory of Open Access Journals (Sweden)

    Paul N Jensen

    Full Text Available To evaluate the association of salt consumption with blood pressure in Viet Nam, a developing country with a high level of salt consumption.Analysis of a nationally representative sample of Vietnamese adults 25-65 years of age who were surveyed using the World Health Organization STEPwise approach to Surveillance protocol. Participants who reported acute illness, pregnancy, or current use of antihypertensive medications were excluded. Daily salt consumption was estimated from fasting mid-morning spot urine samples. Associations of salt consumption with systolic blood pressure and prevalent hypertension were assessed using adjusted linear and generalized linear models. Interaction terms were tested to assess differences by age, smoking, alcohol consumption, and rural/urban status.The analysis included 2,333 participants (mean age: 37 years, 46% male, 33% urban. The average estimated salt consumption was 10g/day. No associations of salt consumption with blood pressure or prevalent hypertension were observed at a national scale in men or women. The associations did not differ in subgroups defined by age, smoking, or alcohol consumption; however, associations differed between urban and rural participants (p-value for interaction of urban/rural status with salt consumption, p = 0.02, suggesting that higher salt consumption may be associated with higher systolic blood pressure in urban residents but lower systolic blood pressure in rural residents.Although there was no evidence of an association at a national level, associations of salt consumption with blood pressure differed between urban and rural residents in Viet Nam. The reasons for this differential association are not clear, and given the large rate of rural to urban migration experienced in Viet Nam, this topic warrants further investigation.

  19. The association of estimated salt intake with blood pressure in a Viet Nam national survey.

    Science.gov (United States)

    Jensen, Paul N; Bao, Tran Quoc; Huong, Tran Thi Thanh; Heckbert, Susan R; Fitzpatrick, Annette L; LoGerfo, James P; Ngoc, Truong Le Van; Mokdad, Ali H

    2018-01-01

    To evaluate the association of salt consumption with blood pressure in Viet Nam, a developing country with a high level of salt consumption. Analysis of a nationally representative sample of Vietnamese adults 25-65 years of age who were surveyed using the World Health Organization STEPwise approach to Surveillance protocol. Participants who reported acute illness, pregnancy, or current use of antihypertensive medications were excluded. Daily salt consumption was estimated from fasting mid-morning spot urine samples. Associations of salt consumption with systolic blood pressure and prevalent hypertension were assessed using adjusted linear and generalized linear models. Interaction terms were tested to assess differences by age, smoking, alcohol consumption, and rural/urban status. The analysis included 2,333 participants (mean age: 37 years, 46% male, 33% urban). The average estimated salt consumption was 10g/day. No associations of salt consumption with blood pressure or prevalent hypertension were observed at a national scale in men or women. The associations did not differ in subgroups defined by age, smoking, or alcohol consumption; however, associations differed between urban and rural participants (p-value for interaction of urban/rural status with salt consumption, p = 0.02), suggesting that higher salt consumption may be associated with higher systolic blood pressure in urban residents but lower systolic blood pressure in rural residents. Although there was no evidence of an association at a national level, associations of salt consumption with blood pressure differed between urban and rural residents in Viet Nam. The reasons for this differential association are not clear, and given the large rate of rural to urban migration experienced in Viet Nam, this topic warrants further investigation.

  20. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Directory of Open Access Journals (Sweden)

    R. Valorso

    2011-07-01

    Full Text Available The sensitivity of the formation of secondary organic aerosol (SOA to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A. Vapour pressures (Pvap were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation, differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  1. Shock pressure estimation in basement rocks of the Chicxulub impact crater using cathodoluminescence spectroscopy of quartz

    Science.gov (United States)

    Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017

  2. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  3. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

    Directory of Open Access Journals (Sweden)

    Mohd Taufiq Muslim

    Full Text Available In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM algorithm, Bayesian Regularization (BR algorithm and Particle Swarm Optimization (PSO algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS. The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

  4. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

    Science.gov (United States)

    Muslim, Mohd Taufiq; Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

  5. Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals

    Directory of Open Access Journals (Sweden)

    Rong-Chao Peng

    2015-09-01

    Full Text Available Cardiovascular disease, like hypertension, is one of the top killers of human life and early detection of cardiovascular disease is of great importance. However, traditional medical devices are often bulky and expensive, and unsuitable for home healthcare. In this paper, we proposed an easy and inexpensive technique to estimate continuous blood pressure from the heart sound signals acquired by the microphone of a smartphone. A cold-pressor experiment was performed in 32 healthy subjects, with a smartphone to acquire heart sound signals and with a commercial device to measure continuous blood pressure. The Fourier spectrum of the second heart sound and the blood pressure were regressed using a support vector machine, and the accuracy of the regression was evaluated using 10-fold cross-validation. Statistical analysis showed that the mean correlation coefficients between the predicted values from the regression model and the measured values from the commercial device were 0.707, 0.712, and 0.748 for systolic, diastolic, and mean blood pressure, respectively, and that the mean errors were less than 5 mmHg, with standard deviations less than 8 mmHg. These results suggest that this technique is of potential use for cuffless and continuous blood pressure monitoring and it has promising application in home healthcare services.

  6. Estimation of foot pressure from human footprint depths using 3D scanner

    Science.gov (United States)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  7. Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation.

    Science.gov (United States)

    Lee, Soojeong; Chang, Joon-Hyuk

    2017-11-01

    This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These

  8. Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey

    OpenAIRE

    Lee, Si Hyung; Kwak, Seung Woo; Kang, Eun Min; Kim, Gyu Ah; Lee, Sang Yeop; Bae, Hyoung Won; Seong, Gong Je; Kim, Chan Yun

    2016-01-01

    Background To investigate the association between estimated trans-lamina cribrosa pressure difference (TLCPD) and prevalence of normal tension glaucoma (NTG) with low-teen and high-teen intraocular pressure (IOP) using a population-based study design. Methods A total of 12,743 adults (? 40 years of age) who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) from 2009 to 2012 were included. Using a previously developed formula, cerebrospinal fluid pressure (C...

  9. A practical model for pressure probe system response estimation (with review of existing models)

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  10. Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor

    International Nuclear Information System (INIS)

    Banerjee, I.; Karmakar, Soumen; Kulkarni, Naveen V.; Nawale, Ashok B.; Mathe, V. L.; Das, A. K.; Bhoraskar, S. V.

    2010-01-01

    The synthesis of nanoparticles of titanium dioxide (TiO 2 ) with varying percentages of anatase and rutile phases is reported. This was achieved by controlling the operating pressure in a transferred-arc, direct current thermal plasma reactor in which titanium vapors are evaporated, and then exposed to ambient oxygen. The average particle size remained around 15 nm in each case. The crystalline structure of the as-synthesized nanoparticles of TiO 2 was studied with X-ray diffraction analysis; whereas the particle morphology was investigated with the help of transmission electron microscopy. The precursor species responsible for the growth of these nanoparticles was studied with the help of optical emission spectroscopy. As inferred from the X-ray diffraction analysis, the relative abundance of anatase TiO 2 was found to be dominant when synthesized at 760 Torr, and the same showed a decreasing trend with decreasing chamber pressure. The study also reveals that anatase TiO 2 is a more effective photocatalytic agent in degrading methylene blue by comparison to its rutile phase.

  11. Multi-morphological growth of nano-structured In{sub 2}Se{sub 3} by ambient pressure triethylene glycol based solution syntheses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tongfei; Wang, Jian; Lai, Junyun; Zheng, Xuerong; Liu, Weiyan; Ji, Junna [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Liu, Hui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-10-15

    In{sub 2}Se{sub 3} nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized by a new, facile, ambient pressure triethylene glycol based solution chemical route using indium(III) chloride and selenium powder as precursors. The growing morphology, crystallization, chemical stoichiometry and light absorption property of the In{sub 2}Se{sub 3} products synthesized were characterized by TEM, HRTEM, FESEM, XRD, EDX and UV–vis–NIR measurements. Multi-morphological growth of the nano-structured In{sub 2}Se{sub 3} in triethylene glycol based solution syntheses with changed assisting agents and reaction styles was demonstrated. - Highlights: • Multimorphological growth of In{sub 2}Se{sub 3} was demonstrated based on solution chemistry. • A new, facile, low cost and fast air pressure TEG based solution process was used. • Nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized. • Morphology, crystallization, stoichiometry and light absorption was characterized. • Solution growth of β-In{sub 2}Se{sub 3} nanosheets was firstly reported by this submission.

  12. A Novel Neural Network Model for Blood Pressure Estimation Using Photoplethesmography without Electrocardiogram

    Directory of Open Access Journals (Sweden)

    Ludi Wang

    2018-01-01

    Full Text Available The prevention, evaluation, and treatment of hypertension have attracted increasing attention in recent years. As photoplethysmography (PPG technology has been widely applied to wearable sensors, the noninvasive estimation of blood pressure (BP using the PPG method has received considerable interest. In this paper, a method for estimating systolic and diastolic BP based only on a PPG signal is developed. The multitaper method (MTM is used for feature extraction, and an artificial neural network (ANN is used for estimation. Compared with previous approaches, the proposed method obtains better accuracy; the mean absolute error is 4.02 ± 2.79 mmHg for systolic BP and 2.27 ± 1.82 mmHg for diastolic BP.

  13. Stochastic estimation approach for the evaluation of thermal-hydraulic parameters in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, M.G.

    1986-01-01

    A method based on the extended Kalman filter is developed for the estimation of the core coolant mass flow rate in pressurized water reactors. The need for flow calibration can be avoided by a direct estimation of this parameter. A reduced-order neutronic and thermal-hydraulic model is developed for the Loss-of-Fluid Test (LOFT) reactor. The neutron detector and core-exit coolant temperature signals from the LOFT reactor are used as measurements in the parameter estimation algorithm. The estimation sensitivity to model uncertainties was evaluated using the ambiguity function analysis. This also provides a lower bound on the measurement sample size necessary to achieve a certain estimation accuracy. A sequential technique was developed to minimize the computational effort needed to discretize the continuous time equations, and thus achieve faster convergence to the true parameter value. The performance of the stochastic approximation method was first evaluated using simulated random data, and then applied to the estimation of coolant flow rate using the operational data from the LOFT reactor at 100 and 65% flow rate conditions

  14. Effects of ambient conditions on the risk of pressure injuries in bedridden patients-multi-physics modelling of microclimate.

    Science.gov (United States)

    Zeevi, Tal; Levy, Ayelet; Brauner, Neima; Gefen, Amit

    2018-06-01

    Scientific evidence regarding microclimate and its effects on the risk of pressure ulcers (PU) remains sparse. It is known that elevated skin temperatures and moisture may affect metabolic demand as well as the mechanical behaviour of the tissue. In this study, we incorporated these microclimate factors into a novel, 3-dimensional multi-physics coupled model of the human buttocks, which simultaneously determines the biothermal and biomechanical behaviours of the buttocks in supine lying on different support surfaces. We compared 3 simulated thermally controlled mattresses with 2 reference foam mattresses. A tissue damage score was numerically calculated in a relevant volume of the model, and the cooling effect of each 1°C decrease of tissue temperature was deduced. Damage scores of tissues were substantially lower for the non-foam mattresses compared with the foams. The percentage tissue volume at risk within the volume of interest was found to grow exponentially as the average tissue temperature increased. The resultant average sacral skin temperature was concluded to be a good predictor for an increased risk of PU/injuries. Each 1°C increase contributes approximately 14 times as much to the risk with respect to an increase of 1 mmHg of pressure. These findings highlight the advantages of using thermally controlled support surfaces as well as the need to further assess the potential damage that may be caused by uncontrolled microclimate conditions on inadequate support surfaces in at-risk patients. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Failure Pressure Estimates of Steam Generator Tubes Containing Wear-type Defects

    International Nuclear Information System (INIS)

    Yoon-Suk Chang; Jong-Min Kim; Nam-Su Huh; Young-Jin Kim; Seong Sik Hwang; Joung-Soo Kim

    2006-01-01

    It is commonly requested that steam generator tubes with defects exceeding 40% of wall thickness in depth should be plugged to sustain all postulated loads with appropriate margin. The critical defect dimensions have been determined based on the concept of plastic instability. This criterion, however, is known to be too conservative for some locations and types of defects. In this context, the accurate failure estimation for steam generator tubes with a defect draws increasing attention. Although several guidelines have been developed and are used for assessing the integrity of defected tubes, most of these guidelines are related to stress corrosion cracking or wall-thinning phenomena. As some of steam generator tubes are also failed due to fretting and so on, alternative failure estimation schemes for relevant defects are required. In this paper, three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of steam generator tubes with different defect configurations; elliptical wastage type, wear scar type and rectangular wastage type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of the steam generator tube. After investigating the effect of key parameters such as wastage depth, wastage length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wastage region. Comparison of failure pressures predicted according to the proposed estimation scheme with some corresponding burst test data shows good agreement, which provides a confidence in the use of the proposed equations to assess the integrity of steam generator tubes with wear-type defects. (authors)

  16. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure

    International Nuclear Information System (INIS)

    Wang, Jingjing; Redmond, Stephen J; Narayanan, Michael R; Wang, Ning; Lovell, Nigel H; Voleno, Matteo; Cerutti, Sergio

    2012-01-01

    Energy expenditure (EE) is an important parameter in the assessment of physical activity. Most reliable techniques for EE estimation are too impractical for deployment in unsupervised free-living environments; those which do prove practical for unsupervised use often poorly estimate EE when the subject is working to change their altitude by walking up or down stairs or inclines. This study evaluates the augmentation of a standard triaxial accelerometry waist-worn wearable sensor with a barometric pressure sensor (as a surrogate measure for altitude) to improve EE estimates, particularly when the subject is ascending or descending stairs. Using a number of features extracted from the accelerometry and barometric pressure signals, a state space model is trained for EE estimation. An activity classification algorithm is also presented, and this activity classification output is also investigated as a model input parameter when estimating EE. This EE estimation model is compared against a similar model which solely utilizes accelerometry-derived features. A protocol (comprising lying, sitting, standing, walking, walking up stairs, walking down stairs and transitioning between activities) was performed by 13 healthy volunteers (8 males and 5 females; age: 23.8 ± 3.7 years; weight: 70.5 ± 14.9 kg), whose instantaneous oxygen uptake was measured by means of an indirect calorimetry system (K4b 2 , COSMED, Italy). Activity classification improves from 81.65% to 90.91% when including barometric pressure information; when analyzing walking activities alone the accuracy increases from 70.23% to 98.54%. Using features derived from both accelerometry and barometry signals, combined with features relating to the activity classification in a state space model, resulted in a .VO 2 estimation bias of −0.00 095 and precision (1.96SD) of 3.54 ml min −1 kg −1 . Using only accelerometry features gives a relatively worse performance, with a bias of −0.09 and precision (1.96SD

  17. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    Science.gov (United States)

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  18. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    Science.gov (United States)

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM 10 (50.0 μg/m 3 ) and O 3 (53.0 μg/m 3 ) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM 10 and 2.77 (95% CI, 1.94-3.95) for O 3 . Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM 10 and O 3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO 2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas

    International Nuclear Information System (INIS)

    Ma, Q.L.; Motto-Ros, V.; Lei, W.Q.; Boueri, M.; Bai, X.S.; Zheng, L.J.; Zeng, H.P.; Yu, J.

    2010-01-01

    Laser ablation in background gas implies supplementary complexities with respect to what happens in the vacuum. It is however essential to understand in detail the involved mechanisms for a number of applications requiring the ablation to be performed in an ambient gas at relative high pressure, such as pulsed-laser deposition, or laser-induced breakdown spectroscopy. In this paper, the expansion of a vapor plume ablated from an aluminum target into an argon gas at atmospheric pressure is experimentally investigated using time- and space-resolved emission spectroscopy. The obtained results provide a detailed description of the interplay between the vapor and the gas. The electron density, the temperature and the number densities (and therefore the partial pressures) of aluminum vapor and argon gas have been measured in and surrounding the vapor plume. Our observations show a confinement of the vapor plume by the gas, which is expected as predicted by the usual hydrodynamics models. The result is a plasma core with quite uniform distributions in electron density, temperature and number densities. Such plasma core presents an ideal emission source for spectroscopic applications. It is however evidenced by our observations that a large amount of argon is mixed into the aluminum plume in the plasma core, which invalidates in the experimental conditions that we used, the hydrodynamic 'piston' model where the background gas is pushed out by the shock wave surrounding the vapor plume. Instead, other mechanisms such as laser-supported detonation wave should play important roles in the early stage of the expansion of the plasma for the determination of its morphology at longer delays.

  20. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bluhm, Hendrik, E-mail: hbluhm@lbl.gov [Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Selective oxidation of CH{sub 3}OH to CH{sub 2}O over a Cu foil has been studied by in situ gas phase XPS. • C1s and O1s spectra were used for identification of reagents and reaction products in a gas phase. • Catalytic data (conversions and reaction products yields) calculated from XPS spectra are in a good agreement with QMS results. • The possible reasons of the observed variations in reaction mechanism have been discussed. - Abstract: Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  1. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  2. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  3. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  4. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics

    Science.gov (United States)

    Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.

    2017-08-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.

  5. The influence of boron on the crystal structure and properties of mullite. Investigations at ambient, high-pressure, and high-temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luehrs, Hanna

    2013-11-21

    Mullite is one of the most important synthetic compounds for advanced structural and functional ceramic materials. The crystal structure of mullite with the composition Al{sub 2}[Al{sub 2+2x}Si{sub 2-2x}]O{sub 10-x} can incorporate a large variety of foreign cations, including (amongst others) significant amounts of boron. However, no chemical or crystal structure analyses of boron-mullites (B-mullites) were available prior to this work, thus representing the key aspects of this thesis. Furthermore, the influence of boron on selected properties of mullite under ambient, high-temperature, and high-pressure conditions are addressed. Starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}), the initial hypothesis for this study was a 1:1 isomorphous replacement of silicon by boron according to the coupled substitution mechanism: 2 Si{sup 4+} + O{sup 2-} → 2 B{sup 3+} + □. Based on a series of compounds synthesized from sol-gel derived precursors at ambient pressure and 1200 C, the formation conditions and physical properties of B-mullites were investigated. The formation temperature for B-mullites decreases with increasing boron-content, as revealed by thermal analyses. An anisotropic development of lattice parameters is observed: Whereas lattice parameters a and b only exhibit minor changes, a linear relationship between lattice parameter c and the amount of boron in the crystal structure was established, on the basis of prompt gamma activation analyses (PGAA) and Rietveld refinements. According to this relationship about 15% of the silicon in mullite can be replaced by boron yielding single-phase B-mullite. B-mullites with significantly higher (∝ factor 3) boron-contents in the mullite structure were also observed but the respective samples contain alumina impurities. Fundamental new details regarding the response of B-mullite to high-temperature and highpressure are presented in this thesis. On the one hand, long-term thermal stability at

  6. A novel numerical model for estimating the collapse pressure of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Victor P.P.; Antoun Netto, Theodoro [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia], e-mail: victor@lts.coppe.ufrj.br

    2009-07-01

    As the worldwide oil and gas industry operational environments move to ultra-deep waters, failure mechanisms in flexible pipes such as instability of the armor layers under compression and hydrostatic collapse are more likely to occur. Therefore, it is important to develop reliable numerical tools to reproduce the failure mechanisms that may occur in flexible pipes. This work presents a representative finite element model of flexible pipe capable to reproduce its pre and post-collapse behavior under hydrostatic pressure. The model, developed in the scope of this work, uses beam elements and includes nonlinear kinematics and material behavior influences. The dependability of the numerical results is assessed in light of experimental tests on flexible pipes with 4 inches and 8 inches nominal diameter available in the literature (Souza, 2002). The applied methodology provided coherent values regarding the estimation of the collapse pressures and results have shown that the proposed model is capable to reproduce experimental results. (author)

  7. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided

  8. IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES

    Directory of Open Access Journals (Sweden)

    Wojnar Sławomir

    2014-06-01

    Full Text Available The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR. The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.

  9. Review of external ocular compression: clinical applications of the ocular pressure estimator

    Directory of Open Access Journals (Sweden)

    Korenfeld MS

    2016-02-01

    Full Text Available Michael S Korenfeld,1,2 David K Dueker3 1Comprehensive Eye Care, Ltd. Washington, MO, USA; 2Washington University Department of Ophthalmology and Visual Sciences, St Louis, MO, USA; 3Ophthalmology, Hamad Medical Corporation, Doha, Qatar Purpose: The authors have previously validated an Ocular Pressure Estimator (OPE that can estimate the intraocular pressure (IOP during external ocular compression (EOC. The authors now apply the OPE in clinical states where EOC is clinically important. The original work is described for two periods of risk: during sleep and during the digital ocular massage (DOM maneuver used by surgeons after trabeculectomy to keep the operation functional. Other periods of risk for external ocular compression are then reviewed.Methods: The first protocol estimated the IOP in the dependent eye during simulated sleep. Subjects had their IOPs initially measured in an upright-seated position, immediately upon assuming a right eye dependent side sleeping position (with nothing contacting the eye, and then 5 minutes later while still in this position. While maintaining this position, the fluid filled bladder of the OPE was then placed between the subject’s closed eye and a pillow during simulated sleep. The IOP was continuously estimated in this position for 5 minutes. The subjects then had the IOP measured in both eyes in an upright-seated position. The second protocol determined if a larger vertical cup-to-disc ratio was more common on the side that patients reported they preferred to sleep on. The hypothesis was that chronic asymmetric, compression induced, elevations of IOP during sleep would be associated with otherwise unexplained asymmetry of the vertical cup-to-disc ratio. The third protocol assessed the IOP during DOM. The OPE was used to characterize the IOP produced during the DOM maneuver of five glaucoma surgeons. After this, 90 mmHg was chosen as a target pressure for DOM. The surgeons were then verbally coached

  10. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review

    Science.gov (United States)

    Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete

    2017-01-01

    Background and objectives Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. Methods The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. Results A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on

  11. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker

    2005-01-01

    The most important cyclization reaction in hydrocarbon flames is probably recombination of propargyl radicals. This reaction may, depending on reaction conditions, form benzene, phenyl or fulvene, as well as a range of linear products. A number of rate measurements have been reported for C3H3 + C3H......3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard...

  12. Estimated daily salt intake in relation to blood pressure and blood lipids

    DEFF Research Database (Denmark)

    Thuesen, Betina H; Toft, Ulla; Buhelt, Lone P

    2015-01-01

    BACKGROUND: Excessive salt intake causes increased blood pressure which is considered the leading risk for premature death. One major challenge when evaluating associations between daily salt intake and markers of non-communicable diseases is that a high daily salt intake correlates with obesity...... 3294 men and women aged 18-69 years from a general population based study in Copenhagen, Denmark. Estimated 24-hour sodium excretion was calculated by measurements of creatinine and sodium concentration in spot urine in combination with information of sex, age, height and weight. The relations...

  13. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation (least squares and filtering) methods

    International Nuclear Information System (INIS)

    Gillet, M.

    1986-07-01

    This thesis presents a study for the surveillance of the Primary circuit water inventory of a pressurized water reactor. A reference model is developed for the development of an automatic system ensuring detection and real-time diagnostic. The methods to our application are statistical tests and adapted a pattern recognition method. The estimation of the detected anomalies is treated by the least square fit method, and by filtering. A new projected optimization method with superlinear convergence is developed in this framework, and a segmented linearization of the model is introduced, in view of a multiple filtering. 46 refs [fr

  14. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In nuclear power plants, ferritic low alloy steel nozzle was connected with austenitic stainless steel piping system through alloy 82/182 butt weld. Accurate estimation of residual stress for weldment is important in the sense that alloy 82/182 is susceptible to stress corrosion cracking. There are many results which predict residual stress distribution for alloy 82/182 weld between nozzle and pipe. However, nozzle and piping system usually connected through safe end which has short length. In this paper, residual stress distribution for pressurizer nozzle of Kori nuclear power plant was predicted using FE analysis, which considered safe end. As a result, existing residual stress profile was redistributed and residual stress of inner surface was decreased specially. It means that safe end should be considered to reduce conservatism when estimating the piping system.

  15. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Science.gov (United States)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  16. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO_2 ambient gas

    International Nuclear Information System (INIS)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Pardede, Marincan; Suyanto, Hery; Ramli, Muliadi; Marpaung, Alion Mangasi; Hedwig, Rinda; Lie, Zener Sukra; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Tjia, May On; Kagawa, Kiichiro

    2016-01-01

    An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO_2 ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.

  17. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO{sub 2} ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, 10 Rawamangun, Jakarta 13220 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Lie, Zener Sukra [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Kurniawan, Davy Putra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id; Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuo 2 chome, Fukui 910-0804 (Japan)

    2016-04-28

    An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO{sub 2} ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.

  18. Quality of the blood pressure phenotype in the GEnotipo, Fenotipo y Ambiente de la hipertensión arterial en UruguaY (GEFA-HT-UY) study.

    Science.gov (United States)

    Luzardo, Leonella; Sottolano, Mariana; Lujambio, Inés; Robaina, Sebastián; Thijs, Lutgarde; da Rosa, Alicia; Krul, Nadia; Carusso, Florencia; Ríos, Ana C; Olascoaga, Alicia; Noboa, Oscar; Staessen, Jan A; Boggia, José

    2014-12-01

    In the ongoing GEnotipo, Fenotipo y Ambiente de la HiperTensión Arterial en UruguaY (GEFA-HT-UY) study, we applied standardized epidemiological methods to determine complex phenotypes including blood pressure (BP). In this report, we present the quality control of the conventionally measured BP. Three trained observers measured BP five times consecutively in the seated position at each of two home visits and one clinic visit according to the guidelines of the European Society of Hypertension. On 1 December 2013, 4379 single BP readings in 170 participants were available for analysis. Fewer BP readings than the five planned per contact occurred only at one home visit. Among observers, the frequency of identical consecutive readings for systolic or diastolic BP varied from 0 to 4.2%. The occurrence of odd readings ranged from 0.1 to 0.6%. Only 21.6% of the systolic and diastolic BP readings ended on zero (expected 20%). At home visits, there was a progressive decline in BP from the first to the fifth reading. The average of the five BP readings also decreased from the first to the second home visit (-5.63/-2.34 mmHg). Our study highlighted the necessity to implement a stringent quality control of the conventionally measured BP. The procedures set up in the GEFA-HT-UY study are resulting in a well-defined BP phenotype, which is consistent with that in other population studies.

  19. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2015-06-01

    Full Text Available Hard carbon thin films were synthesized on Si (100 and quartz substrates by the Pulsed Laser Deposition (PLD technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  20. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.

    2014-01-01

    Graphical abstract: The standard molar volume of tetrahydrofuran (THF) in water, V THF ∘ (■), is a close-to-linear function of temperature and becomes increasingly appreciable with rising of the latter. Herewith the molar volume of pure THF, V THF (□), is retained to be larger, as compared to V THF ∘ , over all the temperature range studied. - Highlights: • Densities of aqueous THF at nine temperatures from (278.15 to 318.15) K were measured. • Temperature-dependent standard molar volumes of THF in water were calculated. • The analysis of excess standard molar volumes in the (water + THF) system was made. • The use of Redlich–Kister equation to obtain standard molar volumes is discussed. - Abstract: This report presents a comparative analysis of temperature-dependent data on density of both dilute aqueous solutions of tetrahydrofuran (THF) and dilute solutions of water in THF, as well as standard molar volumes of water or THF as a solute. For this purpose, new results on studying the volume-related properties of THF in a water-rich region at temperatures from (278.15 to 318.15) K, with a step of 5 K, and at the ambient pressure have been derived densimetrically. In discussion, some comments on previously published investigations, being related to temperature-dependent changes in the solution density and standard molar volumes of components of the system (water + THF), have been made

  1. Dimethyl methylphosphonate adsorption and decomposition on MoO2 as studied by ambient pressure x-ray photoelectron spectroscopy and DFT calculations

    Science.gov (United States)

    Head, Ashley R.; Tsyshevsky, Roman; Trotochaud, Lena; Yu, Yi; Karslıoǧlu, Osman; Eichhorn, Bryan; Kuklja, Maija M.; Bluhm, Hendrik

    2018-04-01

    Organophosphonates range in their toxicity and are used as pesticides, herbicides, and chemical warfare agents (CWAs). Few laboratories are equipped to handle the most toxic molecules, thus simulants such as dimethyl methylphosphonate (DMMP), are used as a first step in studying adsorption and reactivity on materials. Benchmarked by combined experimental and theoretical studies of simulants, calculations offer an opportunity to understand how molecular interactions with a surface changes upon using a CWA. However, most calculations of DMMP and CWAs on surfaces are limited to adsorption studies on clusters of atoms, which may differ markedly from the behavior on bulk solid-state materials with extended surfaces. We have benchmarked our solid-state periodic calculations of DMMP adsorption and reactivity on MoO2 with ambient pressure x-ray photoelectron spectroscopy studies (APXPS). DMMP is found to interact strongly with a MoO2 film, a model system for the MoO x component in the ASZM-TEDA© gas filtration material. Density functional theory modeling of several adsorption and decomposition mechanisms assist the assignment of APXPS peaks. Our results show that some of the adsorbed DMMP decomposes, with all the products remaining on the surface. The rigorous calculations benchmarked with experiments pave a path to reliable and predictive theoretical studies of CWA interactions with surfaces.

  2. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  3. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    International Nuclear Information System (INIS)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-01-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment

  4. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    Energy Technology Data Exchange (ETDEWEB)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  5. Estimating thermodynamic properties by molecular dynamics simulations: The properties of fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Fraser, D.G.; Refson, K.

    1992-01-01

    The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information

  6. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  7. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  8. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.

    Science.gov (United States)

    Dyverfeldt, Petter; Hope, Michael D; Tseng, Elaine E; Saloner, David

    2013-01-01

    The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. Copyright © 2013 American

  9. Estimating costs of pressure area management based on a survey of ulcer care in one Irish hospital.

    Science.gov (United States)

    Gethin, G; Jordan-O'Brien, J; Moore, Z

    2005-04-01

    Pressure ulceration remains a significant cause of morbidity for patients and has a real economic impact on the health sector. Studies to date have estimated the cost of management but have not always given a breakdown of how these figures were calculated. There are no published studies that have estimated the cost of management of pressure ulcers in Ireland. A two-part study was therefore undertaken. Part one determined the prevalence of pressure ulcers in a 626-bed Irish acute hospital. Part two set out to derive a best estimate of the cost of managing pressure ulcers in Ireland. The European Pressure UlcerAdvisory Panel (EPUAP) minimum data set tool was used to complete the prevalence survey. Tissue viability nurses trained in the data-collection tool collected the data. A cost was obtained for all items of care for the management of one patient with three grade IV pressure ulcers over a five-month period. Of the patients, 2.5% had pressure ulcers. It cost Euros 119,000 to successfully treat one patient. We estimate that it costs Euros 250,000,000 per annum to manage pressure ulcers across all care settings in Ireland.

  10. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  11. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements

    International Nuclear Information System (INIS)

    Panerai, R B; Smith, S M; Rathbone, W E; Samani, N J; Sammons, E L; Bentley, S; Potter, J F

    2008-01-01

    Temporal variability of parameters which describe dynamic cerebral autoregulation (CA), usually quantified by the short-term relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous adjustments in physiological regulatory mechanisms or could be the result of artefacts in methods of measurement, such as the use of non-invasive measurements of BP in the finger. In 27 subjects (61 ± 11 years old) undergoing coronary artery angioplasty, BP was continuously recorded at rest with the Finapres device and in the ascending aorta (Millar catheter, BP AO ), together with bilateral transcranial Doppler ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO 2 . Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 (absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI (ARI(t)) were obtained with an autoregressive moving-average (ARMA) model applied to a 60 s sliding data window. No significant differences were observed in the accuracy and precision of ARI(t) between estimates derived from the Finapres and BP AO . Highly significant correlations were obtained between ARI(t) estimates from the right and left middle cerebral artery (MCA) (Finapres r = 0.60 ± 0.20; BP AO r = 0.56 ± 0.22) and also between the ARI(t) estimates from the Finapres and BP AO (right MCA r = 0.70 ± 0.22; left MCA r = 0.74 ± 0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence of noise in the CBFV signal, with both the bias and dispersion of estimates increasing for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to zero as reported previously. Simulated sudden changes in ARI(t) can be detected by the Finapres, but the bias and variability of estimates also increase for lower values of ARI. In summary, the Finapres does not distort time-varying estimates of dynamic CA obtained with a sliding window combined with an ARMA model

  12. Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis

    NARCIS (Netherlands)

    Trani, M.; Arts, R.; Leeuwenburgh, O.; Brouwer, J.

    2011-01-01

    A reliable estimate of reservoir pressure and fluid saturation changes from time-lapse seismic data is difficult to obtain. Existing methods generally suffer from leakage between the estimated parameters. We propose a new method using different combinations of time-lapse seismic attributes based on

  13. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  14. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  15. Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E

    Science.gov (United States)

    Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.

    2007-12-01

    Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  16. Best-estimate methodology for analysis of anticipated transients without scram in pressurized water reactors

    International Nuclear Information System (INIS)

    Rebollo, L.

    1993-01-01

    Union Fenosa, a utility company in Spain, has performed research on pressurized water reactor (PWR) safety with respect to the development of a best-estimate methodology for the analysis of anticipated transients without scram (ATWS), i.e., those anticipated transients for which failure of the reactor protection system is postulated. A scientific and technical approach is adopted with respect to the ATWS phenomenon as it affects a PWR, specifically the Zorita nuclear power plant, a single-loop Westinghouse-designed PWR in Spain. In this respect, an ATWS sequence analysis methodology based on published codes that is generically applicable to any PWR is proposed, which covers all the anticipated phenomena and defines the applicable acceptance criteria. The areas contemplated are cell neutron analysis, core thermal hydraulics, and plant dynamics, which are developed, qualified, and plant dynamics, which are developed, qualified, and validated by comparison with reference calculations and measurements obtained from integral or separate-effects tests

  17. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation methods (least error squares and filtering)

    International Nuclear Information System (INIS)

    Gillet, M.

    1986-07-01

    This thesis presents a study for the surveillance of the ''primary coolant circuit inventory monitoring'' of a pressurized water reactor. A reference model is developed in view of an automatic system ensuring detection and diagnostic in real time. The methods used for the present application are statistical tests and a method related to pattern recognition. The estimation of failures detected, difficult owing to the non-linearity of the problem, is treated by the least error squares method of the predictor or corrector type, and by filtering. It is in this frame that a new optimized method with superlinear convergence is developed, and that a segmented linearization of the model is introduced, in view of a multiple filtering [fr

  18. Neutron flux uncertainty and covariances for spectrum adjustment and estimation of WWER-1000 pressure vessel fluences

    International Nuclear Information System (INIS)

    Boehmer, Bertram

    2000-01-01

    Results of estimation of the covariance matrix of the neutron spectrum in the WWER-1000 reactor cavity and pressure vessel positions are presented. Two-dimensional calculations with the discrete ordinates transport code DORT in r-theta and r-z-geometry used to determine the neutron group spectrum covariances including gross-correlations between interesting positions. The new Russian ABBN-93 data set and CONSYST code used to supply all transport calculations with group neutron data. All possible sources of uncertainties namely caused by the neutron gross sections, fission sources, geometrical dimensions and material densities considered, whereas the uncertainty of the calculation method was considered negligible in view of the available precision of Monte Carlo simulation used for more precise evaluation of the neutron fluence. (Authors)

  19. Computational Fluid Dynamic Pressure Drop Estimation of Flow between Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung Min; Yang, Soo Hyung; Park, Jong Hark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Many pool type reactors have forced downward flows inside the core during normal operation; there is a chance of flow inversion when transients occur. During this phase, the flow undergo transition between turbulent and laminar regions where drastic changes take place in terms of momentum and heat transfer, and the decrease in safety margin is usually observed. Additionally, for high Prandtl number fluids such as water, an effect of the velocity profile inside the channel on the temperature distribution is more pronounced over the low Prandtl number ones. This makes the checking of its pressure drop estimation accuracy less important, assuming the code verification is complete. With an advent of powerful computer hardware, engineering applications of computational fluid dynamics (CFD) methods have become quite common these days. Especially for a fully-turbulent and single phase convective heat transfer, the predictability of the commercial codes has matured enough so that many well-known companies adopt those to accelerate a product development cycle and to realize an increased profitability. In contrast to the above, the transition models for the CFD code are still under development, and the most of the models show limited generality and prediction accuracy. Unlike the system codes, the CFD codes estimate the pressure drop from the velocity profile which is obtained by solving momentum conservation equations, and the resulting friction factor can be a representative parameter for a constant cross section channel flow. In addition, the flow inside a rectangular channel with a high span to gap ratio can be approximated by flow inside parallel plates. The computational fluid dynamics simulation on the flow between parallel plates showed reasonable prediction capability for the laminar and the turbulent regime.

  20. EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions

    Directory of Open Access Journals (Sweden)

    S. Compernolle

    2011-09-01

    Full Text Available We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects, a method to predict (subcooled liquid pure compound vapour pressure p0 of organic molecules that requires only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log10p0(T is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: aldehydes, ketones, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA.

  1. Estimation of bone perfusion as a function of intramedullary pressure in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.M.; Adler, G.G.; Venci, R.; Lanphier, E.H.; De Luca, P.M.

    1985-01-01

    It has been reported previously that following decompression (i.e. diving ascents) the intramedullary pressure (IMP) in bone can rise dramatically and possibly by the mechanism which can induce dysbaric osteonecrosis or the ''silent bends''. If the blood supply for the bone transverses the marrow compartment, than an increase in IMP could cause a temporary decrease in perfusion or hemostasis and hence ischemia leading to bone necrosis. To test this hypothesis, the authors measured the perfusion of bone in sheep as a function of IMP. The bone perfusion was estimated by measuring the perfusion-limited clearance of Ar-41 (Eγ=1293 keV, T/sub 1/2/=1.83 h) from the bone mineral matrix of sheep's tibia. The argon gas was formed in vivo by the fast neutron activation of Ca-44 to Ar-41 following the Ca-44(n,α) reaction. Clearance of Ar-41 was measured by time gated gamma-ray spectroscopy. These results indicate that an elevation of intramedullary pressure can decrease perfusion in bone and may cause bone necrosis

  2. Estimation of relative permeability and capillary pressure from mass imbibition experiments

    Science.gov (United States)

    Alyafei, Nayef; Blunt, Martin J.

    2018-05-01

    We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.

  3. Development and applicability estimation of the tire contact pressure measurement system; Tire secchiatsukei no kaihatsu to oyosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Y.; Amago, T.; Takahashi, T.; Sakuma, S.; Mori, N. [Toyota Central R and D Laboratories, Inc., Aichi (Japan); Nagae, A. [Toyota Motor Corp., Aichi (Japan); Yasuoka, M. [Toyo Tire and Rubber Co. Ltd., Osaka (Japan)

    1995-04-20

    A pressure sensor more reliable than the conventional types and a tire pressure measurement system using a plurality of sensors of the said reliable type have been developed. The sensor is an inverted T in shape, the upper surface of the vertical beam thereof receives the pressure, and the two ends of the horizontal beam are fixed. The load per unit area imposed on the pressure receiving surface is separated into three components, the X and Y components in the tangential direction are sensed by the vertical beam while the Z component in the vertical direction is sensed by a distortion gauge attached to the horizontal beam. For the measurement of the contact pressure distribution for the entire contact surface, a measuring device was developed, comprising a multiple point contact pressure gauge with 30 sensors of the reliable type discussed here embedded therein, a tire rolling tester, and a data processing unit. A tire wear estimation test was conducted using this pressure sensor and a contact probe type slip sensor, and it was found that a tire of a greater friction energy ratio is easier to experience abnormal abrasion and that the new pressure sensor is useful in estimating abnormal abrasion. Further, it was indicated that the present measuring device is applicable to the analysis of the mechanism wherein shaft force results from contact pressure on the soil. 3 refs., 11 figs., 3 tabs.

  4. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    Directory of Open Access Journals (Sweden)

    P. Yan

    2018-03-01

    Full Text Available We report on a successful application of the horizontal-to-vertical spectral ratio (H / V method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0 related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure

  5. How deep, how hot: comparing pressure and temperature estimates from amphibole and rhyolite-MELTS thermobarometry

    Science.gov (United States)

    Pamukcu, A. S.; Gualda, G. A.

    2013-12-01

    unreliable for constraining temperature, if not also pressure. Thermobarometry with matrix glass compositions shows: - Rhyolite-MELTS thermobarometry: 190-260 MPa, 780-800 (×40 °C). Many glass compositions used for these simulations did not yield estimates, only low Na, high K analyses were successful. Thus, rhyolite-MELTS also served to pare down analyses affected by alteration or analytical problems. - Glass SiO2 contents (~76.9 wt.% SiO2): 200-250 MPa. - Projection on haplogranitic ternary: 250 (×50) MPa. We find poor agreement between the many calibrations of amphibole and amphibole-plagioclase thermobarometers. These thermobarometers may be useful for broadly identifying where magmas reside in the Earth's crust (lower, middle, upper), but they are likely not accurate enough to resolve pressure differences within the upper crust, where we expect many eruptible magmas to be stored. Results from glass barometry are more consistent and suggest that the Anderson & Smith (1995) calibration is the most accurate for amphibole. Temperatures from the rhyolite-MELTS thermometer are slight overestimates relative to Zr-in-sphene and Ti-in-zircon temperatures of 750 °C. Overall, rhyolite-MELTS thermobarometry shows great promise for determining crystallization conditions of glass-bearing rocks stored in the upper crust.

  6. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  7. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  8. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  9. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution : an analysis of data from the Global Burden of Diseases Study 2015

    NARCIS (Netherlands)

    Cohen, Aaron J; Brauer, Michael; Burnett, Richard; Anderson, H Ross; Frostad, Joseph; Estep, Kara; Balakrishnan, Kalpana; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Dandona, Lalit; Dandona, Rakhi; Feigin, Valery; Freedman, Greg; Hubbell, Bryan; Jobling, Amelia; Kan, Haidong; Knibbs, Luke; Liu, Yang|info:eu-repo/dai/nl/411298119; Martin, Randall; Morawska, Lidia; Pope, C Arden; Shin, Hwashin; Straif, Kurt; Shaddick, Gavin; Thomas, Matthew; van Dingenen, Rita; van Donkelaar, Aaron; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H

    BACKGROUND: Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country

  10. Periodismo ambiental

    Directory of Open Access Journals (Sweden)

    Lucía Lemos

    2015-01-01

    Full Text Available Los periodistas toman el tema del medio ambiente cada vez más en serio. El uso de temas relacionados con el medio ambiente, debe estar ligado al análisis socio-económico y a las posibilidades de comunicación y educación de diferentes regiones del mundo. A continuación se presenta un resumen de la situación ambiental, las acciones de prensa y comunicación que se llevan a cabo en América Central (Panamá, El Salvador, Costa Rica y en Sudamérica Brasil,Colombia, Chile, México, y Perú. Se concluye en la necesidad de formar hábitos ecológicos. Los comunicadores deben presentar soluciones a los problemas, fomentar campañas comunes, compartir información y velar por el ambiente ambiente para que las generaciones futuras no tengan que perecer.

  11. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand.

    Science.gov (United States)

    Pengchai, Petch; Chantara, Somporn; Sopajaree, Khajornsak; Wangkarn, Sunanta; Tengcharoenkul, Urai; Rayanakorn, Mongkon

    2009-07-01

    Daily PM10 concentrations were measured at four sampling stations located in Chiang Mai and Lamphun provinces, Thailand. The sampling scheme was conducted during June 2005 to June 2006; every 3 days for 24 h in each sampling period. The result revealed that all stations shared the same pattern, in which the PM10 (particulate matters with diameter of less than 10 microm) concentration increased at the beginning of dry season (December) and reached its peak in March before decreasing by the end of April. The maximum PM10 concentration for each sampling station was in the range of 140-182 microg/m(3) which was 1.1-1.5 times higher than the Thai ambient air quality standard of 120 microg/m(3). This distinctly high concentration of PM10 in the dry season (Dec. 05-Mar. 06) was recognized as a unique seasonal pattern for the northern part of Thailand. PM10 concentration had a medium level of negative correlation (r = -0.696 to -0.635) with the visibility data. Comparing the maximum PM10 concentration detected at each sampling station to the permitted PM10 level of the national air quality standard, the warning visibility values for the PM10 pollution-watch system were determined as 10 km for Chiang Mai Province and 5 km for Lamphun Province. From the analysis of PM10 constituents, no component exceeded the national air quality standard. The total concentrations of PM10-bond polycyclic aromatic hydrocarbons (PAHs) are calculated in terms of total toxicity equivalent concentrations (TTECs) using the toxicity equivalent factors (TEFs) method. TTECs in Chiang Mai and Lamphun ambient air was found at a level comparable to those observed in Nagasaki, Bangkok and Rome and at a lower level than those reported at Copenhagen. The annual number of lung cancer cases for Chiang Mai and Lamphun Provinces was estimated at two cases/year which was lower than the number of cases in Bangkok (27 cases/year). The principal component analysis/absolute principal component scores (PCA

  12. Estimation of critical gas saturation during pressure depletion in virgin and waterflooded reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.R.; Sorbie, K.S. [Heriot-Watt Univ., Dept. of Petroleum Engineering, Edinburgh (United Kingdom)

    1999-08-01

    An important issue in petroleum engineering is the prediction of gas production during reservoir depletion - either following conventional waterflooding operations or in the early stages of hydrocarbon production. The estimation of critical gas saturation for use in corresponding simulation studies is clearly a primary concern. To this end, a 3D, three-phase numerical pore-scale simulator has been developed that can be used to estimate critical gas saturations over a range of different lengthscales and for a wide range of fluid and rock properties. The model incorporates a great deal of the known physics observed in associated laboratory micromodel experiments, including embryonic nucleation, supersaturation effects, multiphase diffusion, bubble growth/migration/fragmentation, oil shrinkage, and three-phase spreading coefficients. These precise pore-scale mechanisms governing gas evolution have been found to be far more subtle than earlier models would suggest because of the large variation of gas/oil interfacial tension (IFT) with pressure. This has a profound effect upon the migration of gas structures during depletion. In models pertaining to reservoir rock, the process of gas migration is consequently much slower than predictions from more simplistic models would imply. This is the first time that bubble fragmentation and IFT variations have been included in a model of gas evolution at the pore-scale and the implications for production forecasting are expected to be significant. In addition, novel scaling groups have been derived for a number of different facies under both virgin and waterflooded conditions. One future application of these groups would be to scale S{sub gc} values obtained from high rate depressurization experiments to the low rate conditions more characteristic of field operations. (Author)

  13. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  14. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  15. Non-invasive estimation of intracranial pressure. MR-based evaluation in children with hydrocephalus

    International Nuclear Information System (INIS)

    Muehlmann, M.; Steffinger, D.; Ertl-Wagner, B.; Koerte, I.K.; Peraud, A.; Lehner, M.; Heinen, F.; Alperin, N.

    2012-01-01

    The intracranial pressure (ICP) is a crucially important parameter for diagnostic and therapeutic decision-making in patients with hydrocephalus. So far there is no standard method to non-invasively assess the ICP. Various approaches to obtain the ICP semi-invasively or non-invasively are discussed and the clinical application of a magnetic resonance imaging (MRI)-based method to estimate ICP (MR-ICP) is demonstrated in a group of pediatric patients with hydrocephalus. Arterial inflow, venous drainage and craniospinal cerebrospinal fluid (CSF) flow were quantified using phase-contrast imaging to derive the MR-ICP. A total of 15 patients with hydrocephalus (n=9 treated with shunt placement or ventriculostomy) underwent MRI on a 3 T scanner applying retrospectively-gated cine phase contrast sequences. Of the patients six had clinical symptoms indicating increased ICP (age 2.5-14.61 years, mean 7.4 years) and nine patients had no clinical signs of elevated ICP (age 2.1-15.9 years; mean 9.8 years; all treated with shunt or ventriculostomy). Median MR-ICP in symptomatic patients was 24.5 mmHg (25th percentile 20.4 mmHg; 75th percentile 44.6 mmHg). Median MR-ICP in patients without acute signs of increased ICP was 9.8 mmHg (25th percentile 8.6 mmHg; 75th percentile 11.4 mmHg). Group differences were significant (p [de

  16. Estimation of Satellite-Based SO42- and NH4+ Composition of Ambient Fine Particulate Matter Over China Using Chemical Transport Model

    Science.gov (United States)

    Si, Y.; Li, S.; Chen, L.; Yu, C.; Zhu, W.

    2018-04-01

    Epidemiologic and health impact studies have examined the chemical composition of ambient PM2.5 in China but have been constrained by the paucity of long-term ground measurements. Using the GEOS-Chem chemical transport model and satellite-derived PM2.5 data, sulfate and ammonium levels were estimated over China from 2004 to 2014. A comparison of the satellite-estimated dataset with model simulations based on ground measurements obtained from the literature indicated our results are more accurate. Using satellite-derived PM2.5 data with a spatial resolution of 0.1° × 0.1°, we further presented finer satellite-estimated sulfate and ammonium concentrations in anthropogenic polluted regions, including the NCP (the North China Plain), the SCB (the Sichuan Basin) and the PRD (the Pearl River Delta). Linear regression results obtained on a national scale yielded an r value of 0.62, NMB of -35.9 %, NME of 48.2 %, ARB_50 % of 53.68 % for sulfate and an r value of 0.63, slope of 0.67, and intercept of 5.14 for ammonium. In typical regions, the satellite-derived dataset was significantly robust. Based on the satellite-derived dataset, the spatial-temporal variation of 11-year annual average satellite-derived SO42- and NH4+ concentrations and time series of monthly average concentrations were also investigated. On a national scale, both exhibited a downward trend each year between 2004 and 2014 (SO42-: -0.61 %; NH4+: -0.21 %), large values were mainly concentrated in the NCP and SCB. For regions captured at a finer resolution, the inter-annual variation trends presented a positive trend over the periods 2004-2007 and 2008-2011, followed by a negative trend over the period 2012-2014, and sulfate concentrations varied appreciably. Moreover, the seasonal distributions of the 11-year satellite-derived dataset over China were presented. The distribution of both sulfate and ammonium concentrations exhibited seasonal characteristics, with the seasonal concentrations ranking as

  17. Estimating pressurized water reactor decommissioning costs: A user's manual for the PWR Cost Estimating Computer Program (CECP) software

    International Nuclear Information System (INIS)

    Bierschbach, M.C.; Mencinsky, G.J.

    1993-10-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the US Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user's manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personnel computer, provides estimates for the cost of decommissioning PWR plant stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning

  18. Ambient Utopia

    NARCIS (Netherlands)

    Heylen, Dirk K.J.; Bosse, Tibor

    2012-01-01

    his chapter presents an analysis of the ambitions that lie behind the concept of Ambient Intelligence as it is presented by the advocates and researchers working in the field. In particular it looks at the ideas regarding the forms of natural and intuitive forms of interaction that are envisaged –

  19. Life management of Zr 2.5% Nb pressure tube through estimation of fracture properties by cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Rama Rao, A.

    2015-01-01

    In Pressurised Heavy Water Reactors (PHWRs) fuel bundles are located inside horizontal pressure tubes. Pressure tubes made up of Zr 2.5 wt% Nb undergo degradation during in-service environmental conditions. Measurement of mechanical properties of degraded pressure tubes is important for assessing its fitness for further service in the reactor. The only way to accomplish this important objective is to develop a system based on insitu measurement technique. Considering the importance of such measurement, an In-situ Property Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed indigenously. The remotely operable system is capable of carrying out indentation trial on the inside surface of the pressure tube and to estimate important mechanical properties like yield strength, ultimate tensile strength, hardness etc. It is known that fracture toughness is one of the important life limiting parameters of the pressure tube. Hence, five spool pieces of Zr 2.5 wt% Nb pressure tube of different mechanical properties have been used for estimation of fracture toughness by ball indentation method. Curved Compact Tension (CCT) specimens were also prepared from the five spool pieces for measurement of fracture toughness from conventional tests. The conventional fracture toughness values were used as reference data. A methodology has been developed to estimate the fracture properties of Zr 2.5 wt% Nb pressure tube material from the analysis of the ball indentation test data. This paper highlights the comparison between tensile properties measured from conventional tests and IProMS trials and relates the fracture toughness parameters measured from conventional tests with the IProMS estimated fracture properties like Indentation Energy to Fracture. (author)

  20. Continuous stroke volume estimation from aortic pressure using zero dimensional cardiovascular model: proof of concept study from porcine experiments.

    Science.gov (United States)

    Kamoi, Shun; Pretty, Christopher; Docherty, Paul; Squire, Dougie; Revie, James; Chiew, Yeong Shiong; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-01-01

    Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of information about patient hemodynamic status and response to therapy. However, direct measurements are highly invasive in clinical practice, and current procedures for estimating SV require specialized devices and significant approximation. This study investigates the accuracy of a three element Windkessel model combined with an aortic pressure waveform to estimate SV. Aortic pressure is separated into two components capturing; 1) resistance and compliance, 2) characteristic impedance. This separation provides model-element relationships enabling SV to be estimated while requiring only one of the three element values to be known or estimated. Beat-to-beat SV estimation was performed using population-representative optimal values for each model element. This method was validated using measured SV data from porcine experiments (N = 3 female Pietrain pigs, 29-37 kg) in which both ventricular volume and aortic pressure waveforms were measured simultaneously. The median difference between measured SV from left ventricle (LV) output and estimated SV was 0.6 ml with a 90% range (5th-95th percentile) -12.4 ml-14.3 ml. During periods when changes in SV were induced, cross correlations in between estimated and measured SV were above R = 0.65 for all cases. The method presented demonstrates that the magnitude and trends of SV can be accurately estimated from pressure waveforms alone, without the need for identification of complex physiological metrics where strength of correlations may vary significantly from patient to patient.

  1. Estimation on the Flow Phenomena and the Pressure Loss for the Inlet Part of a Research Reactor Vessel

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Oh, Jae Min; Seo, Jae Kwang; Yoon, Ju Hyeon; Lee, Doo Jeong

    2009-01-01

    For a research reactor, a conceptual primary cooling system (PCS) was designed for an adequate cooling to the reactor core. The developed primary cooling circuit consisted of decay tanks, pumps, heat exchangers, vacuum breakers, some isolation and check valves, connection piping, and instruments. The main function of the primary cooling pumps (PCPs) of the PCS was to circulate the reactor coolant through the fuel core and the heat exchangers during a normal operation. The head according to the design flow rate which was determined by the thermal hydraulic design analysis for the core should be estimated to design the PCPs in the fluid system. The pressure loss in the PCS can be calculated by the dimensional analysis of the pipe flow and the head loss coefficient of the components. However, it is insufficient to estimate the pressure loss for 3-dimensional flow phenomena such as the flow path in the reactor with the theoretical dimensional analysis based on experimental data. The purpose of this research is to evaluate the pressure loss of the part of a research reactor vessel. For evaluating the pressure loss, the commercially available CFD computer model, FLUENT, was employed. First, for validating the application of FLUENT to the pressure loss, a simple case was calculated and compared with the Idelchik empirical correlation. Secondly, several cases for the inlet part of a research reactor vessel were estimated by a FLUENT 3- dimensional calculation

  2. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  3. Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles

    Directory of Open Access Journals (Sweden)

    Guillermo A. Narsilio

    2010-03-01

    Full Text Available Given a montmorillonitic clay soil at high porosity and saturated by monovalent counterions, we investigate the particle level responses of the clay to different external loadings. As analytical solutions are not possible for complex arrangements of particles, we employ computational micromechanical models (based on the solution of the Poisson-Nernst-Planck equations using the finite element method, to estimate counterion and electrical potential distributions for particles at various angles and distances from one another. We then calculate the disjoining pressures using the Van't Hoff relation and Maxwell stress tensor. As the distance between the clay particles decreases and double-layers overlap, the concentration of counterions in the micropores among clay particles increases. This increase lowers the chemical potential of the pore fluid and creates a chemical potential gradient in the solvent that generates the socalled 'disjoining' or 'osmotic' pressure. Because of this disjoining pressure, particles do not need to contact one another in order to carry an 'effective stress'. This work may lead towards theoretical predictions of the macroscopic load deformation response of montmorillonitic soils based on micromechanical modelling of particles.Dada uma argila montmorilonítica de alta porosidade e saturada por counteríons monovalentes, investigamos as respostas da argila ao nível de partículas para diferentes cargas externas. Como soluções analíticas não são possíveis para arranjos complexos de partículas, empregamos modelos computacionais micro-mecânicos (baseados na solução das equações de Poisson-Nernst-Planck, utilizando o método de elementos finitos, para estimar counteríons e distribuições de potencial elétrico para partículas em diversos ângulos e distâncias uma da outra. Nós então calculamos as pressões de separação usando a relação de Van't Hoff e a tensão de cisalhamento de Maxwell. À medida que a

  4. 3D.07: CORRELATION BETWEEN THE ARTERIAL PRESSURE VARIABILITY ESTIMATED AT CLINICS, MAPA AND AMPA.

    Science.gov (United States)

    Abellan-Huerta, J; García-Escribano, I A; Soto, R M; Leal, M; Torres, A; Guerrero, B; Melgar, A C; Soto, M; Soria, F; Abellan-Aleman, J

    2015-06-01

    To measure the variability (VB) of the arterial pressure (AP) with the use of serial measurements at the clinics (VBCLIN), with 24 h ambulatory monitoring (MAPA) (VBMAPA) and home automonitoring -AMPA- (VBAMPA) and to estimate a relationship among each method. This is an observational, descriptive and transversal study assessed with 91 hypertensive patients in treatment and stable with AP MAPA was assessed to all the patients included in the study in order to obtain the VBMAPA and an AMPA in two non-consecutive weeks to obtain the VBAMPA (total of 54 measurements). 91 patients with 66 ± 7.7 years old and 58.2% males were recruited. AP values were 134 ± 14/82 ± 10 mmHg for systolic and diastolic APCLIN, respectively. AP values were 122 ± 17 / 68 ± 12 mmHg for systolic and diastolic APMAPA, respectively. AP values were 125 ± 13/75 ± 7 mmHg for systolic and diastolic APAMPA, respectively. The systolic VB for the three above methods was significantly correlated being maximal between VBCLIN and VBAMPA (r = 0.45; 0 MAPA methods is weak. This observation suggests that these are not interchangeable methodologies. Future studies focused on the relationship between VB -with different methods- and vascular target organ damage would be of great help in order to define the best analytical method.

  5. Reliability of blood pressure parameters for dry weight estimation in hemodialysis patients.

    Science.gov (United States)

    Susantitaphong, Paweena; Laowaloet, Suthanit; Tiranathanagul, Khajohn; Chulakadabba, Adhisabandh; Katavetin, Pisut; Praditpornsilpa, Kearkiat; Tungsanga, Kriang; Eiam-Ong, Somchai

    2013-02-01

    Chronic volume overload resulting from interdialytic weight gain and inadequate fluid removal plays a significant role in poorly controlled high blood pressure. Although bioimpedance has been introduced as an accurate method for assessing hydration status, the instrument is not available in general hemodialysis (HEMO) centers. This study was conducted to explore the correlation between hydration status measured by bioimpedance and blood pressure parameters in chronic HEMO patients. Multifrequency bioimpedance analysis was used to determine pre- and post-dialysis hydration status in 32 stable HEMO patients. Extracellular water/total body water (ECW/TBW) determined by sum of segments from bioimpedance analysis was used as an index of hydration status. The mean age was 57.9 ± 16.4 years. The mean dry weight and body mass index were 57.7 ± 14.5 kg and 22.3 ± 4.7 kg/m(2), respectively. Pre-dialysis ECW/TBW was significantly correlated with only pulse pressure (r = 0.5, P = 0.003) whereas post-dialysis ECW/TBW had significant correlations with pulse pressure, systolic blood pressure, and diastolic blood pressure (r = 0.6, P = 0.001, r = 0.4, P = 0.04, r = -0.4, and P = 0.02, respectively). After dialysis, the mean values of ECW/TBW, systolic blood pressure, mean arterial pressure, and pulse pressure were significantly decreased. ECW/TBW was used to classify the patients into normohydration (≤ 0.4) and overhydration (>0.4) groups. Systolic blood pressure, mean arterial pressure, and pulse pressure significantly reduced after dialysis in the normohydration group but did not significantly change in the overhydration group. Pre-dialysis pulse pressure, post-dialysis pulse pressure, and post-dialysis systolic blood pressure in the overhydration group were significantly higher than normohydration group. Due to the simplicity and cost, blood pressure parameters, especially pulse pressure, might be a simple reference for clinicians to determine hydration status in HEMO

  6. Estimation of Power Production Potential from Natural Gas Pressure Reduction Stations in Pakistan Using ASPEN HYSYS

    Directory of Open Access Journals (Sweden)

    Imran Nazir Unar

    2015-07-01

    Full Text Available Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure range of 600-1000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited and SSGCL (Sui Southern Gas Company Limited. The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station. As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in throttle valves where isenthalpic expansion takes place without producing any energy. Pressure potential of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS®7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3.

  7. Estimation of Time Dependent Properties from Surface Pressure in Open Cavities

    Science.gov (United States)

    2008-02-01

    static pressure of the cavity. The stagnation and static pressures are measured separately with Druck Model DPI 145 pressure transducers (with a quoted...interacting with the ZNMF actuator jets, the 2D shape of the vortical structures transform to a 3D shape with spanwise vortical structures. These...Therefore, the pressure gradient in the d direction is dd ° 3d Substituting Equation (5.3) into Equation (5.5) results in ^l = PJk(e^-Re^)/c^ (5.6

  8. Efeito de estresse ambiental sobre a pressão arterial de trabalhadores Effect of environmental stress on blood pressure during the working journey

    Directory of Open Access Journals (Sweden)

    Renato Rocha

    2002-10-01

    Full Text Available OBJETIVO: Analisar o comportamento de pressão arterial (PA e a freqüência cardíaca (Fc de indivíduos ao longo da jornada de trabalho em dois ambientes com estresses ambientais distintos. MÉTODOS: Foram avaliados 46 funcionários, trabalhadores de uma indústria processadora de madeira, de Botucatu, SP, sendo 27 funcionários da linha de produção (esforço físico moderado-intenso, altas temperaturas e elevados níveis de ruído (G1, e 19 da administração (sem esforço físico, salas aclimatadas, baixos níveis de ruído (G2. Todos foram submetidos a avaliação antropométrica da composição corporal (obesidade e adiposidade e bioquímica do sangue (lipidemia e, adicionalmente, o registro da PA e da Fc em três momentos do turno de serviço: início, meio e fim. RESULTADOS: Houve semelhança na variação da PA entre G1 e G2, mas com maiores elevações de PA e Fc em G1. Os resultados mostraram grande variabilidade na resposta da PA, levando à subdivisão dos grupos G1 e G2 em respondedores (GR, aumento maior de 10% na PA média e não respondedores (GN. Os subgrupos GR e GN apresentaram semelhanças nos padrões antropométrico e bioquímico diferindo apenas na resposta pressórica e no caso do GR1 na história familiar de hipertensão. Comparando os subgrupos GR1 e GR2, foi constatado que os primeiros apresentaram maiores variações de PA e Fc que os segundos. CONCLUSÕES: A variação individual da resposta pressórica e da Fc conforme o tipo de estresse ambiental indica ser este um fator adicional a ser considerado na avaliação da pressão arterial e, talvez, na gênese da hipertensão arterial de operários.OBJECTIVE: To evaluate blood pressure (BP and heart rate (HR behavior in individuals during the working journey in two environments with different work stressors. METHODS: The study comprised 46 male individuals working in a wood processing factory in Botucatu, Brazil. Twenty seven (27.4±5.4 yrs, mean±SD worked in the

  9. Estimation of power production potential from natural gas pressure reduction stations in pakistan using aspen hysys

    International Nuclear Information System (INIS)

    Unar, I.N.; Aftab, A.

    2015-01-01

    Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure-range of 600-1 000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited) and SSGCL (Sui Southern Gas Company Limited). The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station). As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS) may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS at the rate 7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW) can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3. (author)

  10. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Pröbsting, S.; Dwight, R.P.; Van Oudheusden, B.W.; Scarano, F.

    2016-01-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the

  11. Non-invasive aortic systolic pressure and pulse wave velocity estimation in a primary care setting: An in silico study.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca; Mesin, Luca

    2017-04-01

    Everyday clinical cardiovascular evaluation is still largely based on brachial systolic and diastolic pressures. However, several clinical studies have demonstrated the higher diagnostic capacities of the aortic pressure, as well as the need to assess the aortic mechanical properties (e.g., by measuring the aortic pulse wave velocity). In order to fill this gap, we propose to exploit a set of easy-to-obtain physical characteristics to estimate the aortic pressure and pulse wave velocity. To this aim, a large population of virtual subjects is created by a validated mathematical model of the cardiovascular system. Quadratic regressive models are then fitted and statistically selected in order to obtain reliable estimations of the aortic pressure and pulse wave velocity starting from the knowledge of the subject age, height, weight, brachial pressure, photoplethysmographic measures and either electrocardiogram or phonocardiogram. The results are very encouraging and foster clinical studies aiming to apply a similar technique to a real population. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Mechanism to synthesize a ‘moving optical mark’ at solid-ambient interface for the estimation of thermal diffusivity of solid

    Directory of Open Access Journals (Sweden)

    Settu Balachandar

    2016-01-01

    Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.

  13. Linear pressure profile estimation along a penstock associated with transients due to severe defects

    Science.gov (United States)

    Kueny, J. L.; Combes, G.; Lourenço, M.; Clary, V.; Ballester, J. L.

    2014-03-01

    The purpose of this article is to show how the pressure load profile along a penstock of an hydroplant and the corresponding flow rate is obtained from the pressure signal using a code called ACHYL CF. In particular the paper will present how it is possible to reconstruct the history of the incident after a strong transient state, in the case of two plants with Pelton turbines and one DSPCF device on a branch of the circuit. For plant1 the DSPCF device observes an overrun of the maximal allowed pressure after the filling of the injector branch and for plant_2, a strong transient leads to the rupture of the penstock.

  14. Linear pressure profile estimation along a penstock associated with transients due to severe defects

    International Nuclear Information System (INIS)

    Kueny, J L; Clary, V; Combes, G; Lourenço, M; Ballester, J L

    2014-01-01

    The purpose of this article is to show how the pressure load profile along a penstock of an hydroplant and the corresponding flow rate is obtained from the pressure signal using a code called ACHYL CF. In particular the paper will present how it is possible to reconstruct the history of the incident after a strong transient state, in the case of two plants with Pelton turbines and one DSPCF device on a branch of the circuit. For plant 1 the DSPCF device observes an overrun of the maximal allowed pressure after the filling of the injector branch and for plant 2 , a strong transient leads to the rupture of the penstock

  15. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  16. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    Science.gov (United States)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  17. PAF: A software tool to estimate free-geometry extended bodies of anomalous pressure from surface deformation data

    Science.gov (United States)

    Camacho, A. G.; Fernández, J.; Cannavò, F.

    2018-02-01

    We present a software package to carry out inversions of surface deformation data (any combination of InSAR, GPS, and terrestrial data, e.g., EDM, levelling) as produced by 3D free-geometry extended bodies with anomalous pressure changes. The anomalous structures are described as an aggregation of elementary cells (whose effects are estimated as coming from point sources) in an elastic half space. The linear inverse problem (considering some simple regularization conditions) is solved by means of an exploratory approach. This software represents the open implementation of a previously published methodology (Camacho et al., 2011). It can be freely used with large data sets (e.g. InSAR data sets) or with data coming from small control networks (e.g. GPS monitoring data), mainly in volcanic areas, to estimate the expected pressure bodies representing magmatic intrusions. Here, the software is applied to some real test cases.

  18. A novel multi-wavelength procedure for blood pressure estimation using opto-physiological sensor at peripheral arteries and capillaries

    Science.gov (United States)

    Scardulla, Francesco; Hu, Sijung; D'Acquisto, Leonardo; Pasta, Salvatore; Barrett, Laura; Blanos, Panagiotis; Yan, Liangwen

    2018-02-01

    In this study, the Carelight multi-wavelength opto-electronic patch sensor (OEPS) was adopted to assess the effectiveness of a new approach for estimating the systolic blood pressure (SBP) through the changes in the morphology of the OEPS signal. Specifically, the SBP was estimated by changing the pressure exerted on an inflatable cuff placed around the left upper arm. Pressure acquisitions were performed both with gold standard (i.e. electronic sphygmomanometer), and Carelight sensor (experimental procedure), on subjects from a multiethnic cohort (aged 28 +/- 7). The OEPS sensor was applied together with a manual inflatable cuff, going slightly above the level of the SBP with increases of +10mmHg and subsequently deflated by 10mmHg until reaching full deflation. The OEPS signals were captured using four wavelength illumination sources (i.e., green 525 nm, orange 595 nm, red 650 nm and IR 870 nm) on three different measuring sites, namely forefinger, radial artery and wrist. The implemented algorithm provides information on the instant when the SBP was reached and the signal is lost since the vessel is completely blocked. Similarly, it detected the signal resumption when the external pressure dropped below the SBP. The findings demonstrated a good correlation between the variation of the pressure and the corresponding OEPS signal with the most accurate result achieved in the fingertip among all wavelengths, with a temporal identification error of 8.07 %. Further studies will improve the clinical relevance on a cohort of patients diagnosed with hyper- or hypotension, in order to develop a wearable blood-pressure device.

  19. Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey.

    Directory of Open Access Journals (Sweden)

    Si Hyung Lee

    Full Text Available To investigate the association between estimated trans-lamina cribrosa pressure difference (TLCPD and prevalence of normal tension glaucoma (NTG with low-teen and high-teen intraocular pressure (IOP using a population-based study design.A total of 12,743 adults (≥ 40 years of age who participated in the Korean National Health and Nutrition Examination Survey (KNHANES from 2009 to 2012 were included. Using a previously developed formula, cerebrospinal fluid pressure (CSFP in mmHg was estimated as 0.55 × body mass index (kg/m2 + 0.16 × diastolic blood pressure (mmHg-0.18 × age (years-1.91. TLCPD was calculated as IOP-CSFP. The NTG subjects were divided into two groups according to IOP level: low-teen NTG (IOP ≤ 15 mmHg and high-teen NTG (15 mmHg < IOP ≤ 21 mmHg groups. The association between TLCPD and the prevalence of NTG was assessed in the low- and high-teen IOP groups.In the normal population (n = 12,069, the weighted mean estimated CSFP was 11.69 ± 0.04 mmHg and the weighted mean TLCPD 2.31 ± 0.06 mmHg. Significantly higher TLCPD (p < 0.001; 6.48 ± 0.27 mmHg was found in the high-teen NTG compared with the normal group. On the other hand, there was no significant difference in TLCPD between normal and low-teen NTG subjects (p = 0.395; 2.31 ± 0.06 vs. 2.11 ± 0.24 mmHg. Multivariate logistic regression analysis revealed that TLCPD was significantly associated with the prevalence of NTG in the high-teen IOP group (p = 0.006; OR: 1.09; 95% CI: 1.02, 1.15, but not the low-teen IOP group (p = 0.636. Instead, the presence of hypertension was significantly associated with the prevalence of NTG in the low-teen IOP group (p < 0.001; OR: 1.65; 95% CI: 1.26, 2.16.TLCPD was significantly associated with the prevalence of NTG in high-teen IOP subjects, but not low-teen IOP subjects, in whom hypertension may be more closely associated. This study suggests that the underlying mechanisms may differ between low-teen and high-teen NTG patients.

  20. Development of accurate dimethyl sulphide primary standard gas mixtures at low nanomole per mole levels in high-pressure aluminium cylinders for ambient measurements

    Science.gov (United States)

    Eon Kim, Mi; Kang, Ji Hwan; Doo Kim, Yong; Lee, Dong Soo; Lee, Sangil

    2018-04-01

    Dimethyl sulphide (DMS) plays an important role in atmospheric chemistry and climate change. Ambient DMS is monitored in a global network and reported at sub-nanomole per mole (nmol/mol) levels. Developing traceable, accurate DMS standards at ambient levels is essential for tracking the long-term trends and understanding the role of DMS in the atmosphere. Gravimetrically prepared gas standards in cylinders are widely used for calibrating instruments. Therefore, a stable primary standard gas mixture (PSM) is required for traceable ambient DMS measurement at remote sites. In this study, to evaluate adsorption loss on the internal surface of the gas cylinder, 6 nmol mol-1 DMS gas mixtures were prepared in three types of aluminium cylinders: a cylinder without a special coating on its internal surface (AL), an Aculife IV  +  III-treated cylinder (AC), and an Experis-treated cylinder (EX). There was little adsorption loss on the EX cylinder, whereas there was substantial adsorption loss on the other two cylinders. The EX cylinder was used to prepare 0.5, 2, 5, and 7 nmol mol-1 DMS PSMs with relative expanded uncertainties of less than 0.4%. The DMS PSMs were analytically verified and consistent within a relative expanded uncertainty of less than 1.2%. The long-term stability of the 7 nmol mol-1 DMS PSM was assessed by tracking the ratio of the DMS to the internal standard, benzene. The results showed that the DMS was stable for about seven months and it was projected to be stable for more than 60 months within a relative expanded uncertainty of 3%.

  1. Acoustic emission and estimation of flaw significance in reactor pressure boundaries

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.

    1982-01-01

    The work discussed is intended to establish the feasibility of using acoustic emission (AE) to detect and evaluate growing flaws in nuclear reactor pressure boundaries. Basic AE identification and interpretation methods have grown out of Phase 1. Phases 2 and 3 to test and demonstrate developed methodology on a vessel test and on a reactor are in progress

  2. Thermal diffusivity estimation of the olive oil during its high-pressure treatment

    Czech Academy of Sciences Publication Activity Database

    Kubásek, M.; Houška, M.; Landfeld, A.; Strohalm, J.; Kamarád, Jiří; Žitný, R.

    2006-01-01

    Roč. 74, - (2006), s. 286-291 ISSN 0260-8774 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z10100521 Keywords : olive oil * food processing * high pressure * thermal diffusivity Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  3. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    Science.gov (United States)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  4. Estimation of barometric pressure response in borehole strainmeter with typhoon events in Taiwan

    Science.gov (United States)

    Chiu, Chun-Ying; Hu, Jyr-Ching; Liu, Chi-Ching

    2017-04-01

    Taiwan is located in an active collisional boundary of Philippine Sea plate and Eurasian plate in a convergence rate of 82 mm/yr, which results in high frequent seismicity and destructive big earthquakes. In order to monitor the strain change from pre-slip events, 13 Gladwin Tensor Strainmeters (GTSM) were installed in a depth of 200 m in western Foothills of Taiwan since 2003. The previous studies demonstrated that the broad environmental signs of barometry, rainfall, tide and groundwater should be calibrated to detect the tectonic signal. The previous study from borehole strainmeter of PBO in western US suggested that the strainmeter gauge time series were divided into records of approximately 60 days, overlapping when possible by 30 days. In order to determine the barometric pressure response of each gauge, the gauge outputs and atmospheric pressure data were band-pass-filtered to exclude frequencies outside the 4-6 day band. The results showed that sixty day records had a good correlation between the atmospheric pressure and the strainmeter gauge time series. Due to the climatic characteristics of annual rainfall could reach to 2500 mm in Taiwan, the long duration of gauge time series will be distributed by rainfall signal. Thus we suggest to divide the gauge time series records of approximately 30 days, overlapping when possible by 5 days. A good correlation of between the atmospheric pressure and the strainmeter gauge time series were identified by using a band-pass-filtered to exclude frequencies outside the 3-7 day band. In addition, we can use the linear regression from gauge time series and barometric drop due to the before the typhoon events with no interference of rainfall events. The average atmospheric pressure response coefficients of the strainmeters are about -0.14 -0.38 µstrain/KPa.

  5. A Secure Automated Elevator Management System and Pressure Sensor based Floor Estimation for Indoor Mobile Robot Transportation

    Directory of Open Access Journals (Sweden)

    Ali Abduljalil Abdulla

    2017-08-01

    Full Text Available In this paper, a secure elevator handling system is presented to enable a flexible movement of wheeled mobile robots among laboratories distributed in different floors. The automated handling system consists mainly of an ADAM module which has the ability to call the elevator to the robot’s current floor and to request the destination floor. The LPS25HP pressure sensor attached to an STM32F411 microcontroller is utilized as a height measurement system to estimate the robot’s current floor inside the elevator. The ultrasonic sensor is used to recognize the elevator’s door status. Many challenges have to be solved to realize a stable height measurement system based on pressure sensor readings. The difference of the pressure sensor readings before and after soldering is realized by comparing the reading after soldering with an accurate barometric reading. In addition, the sensor output signal shows oscillation and wide variation of the same floor pressure sensor readings at different times. The oscillation in the output signal has been handled using a first order FIR smoothing filter. The first order filter was selected to balance between the stability and the elapsed time to receive the updated values. An auto-calibration stage is established to maintain the wide variation in the atmospheric pressure readings by calibrating the sensor readings with the robot’s current floor before entering the elevator. An error handling management system is utilized to guarantee a stable automated elevator management system performance. Many experiments to assess and verify the performance of the automated elevator management system and robot’s current floor estimation are reported. The experimental results show that the proposed methods and sub-systems developed for the mobile robot are effective and efficient in providing a transportation service in multiple-floor life sciences laboratories.

  6. Estimating the number of latent cracks in pressure tube joints at Bruce unit 2

    International Nuclear Information System (INIS)

    Schwarz, C.J.

    1983-10-01

    A model was built to estimate the number of hydride cracks which might have arisen in the rolled joints of Bruce unit 2 prior to the stress relieving operation. The model estimated that about 100 such cracks might exist. Since this estimate is based on experiments that were thermally cycled and since cycling did not occur in Bruce, prior to stress relieving the actual number is expected to be substantially lower. A sensitivity analysis of the model showed that it is sensitive to the assumptions of stress levels, probability of initiation and distribution of initiation time. A better estimate could be made if more data were available on these parameters under realistic conditions. Therefore, the recommendation is made to collect more information about these factors under realistic conditions

  7. Development of loose part signal location estimating technique in high pressured structure

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Ill Keun; Choi, Jae Won; Kim, Yong Up; Kim, Taek Hwan; Song, Young Joong [Hannam University, Taejon (Korea, Republic of)

    1997-07-01

    The main purpose of this project is to develop the metallic loose parts monitoring and diagnosis technology. This will contribute to the development of the domestic technology, and, at the some time, to the development of related domestic industries. This study has been performed as 3-year-project,= to provide to basic requirements in developing the integrated and intelligent loose part monitoring and diagnosis system for Reactor Pressure Vessel (RPV). The results from this project is expected to be applied to the development of the integrated and intelligent loose part monitoring and diagnosis system which can be used to analyze the main cause of the malfunctioning of the system under the worst circumstance - high temperature, high pressure and high speed of the flow of reactor coolant, with the efficient software package that could classify the characteristics of the metallic loose parts occurred inside the RPV of the nuclear steam supply system. (Author) 39 refs., 7 tabs., 74 figs.

  8. Using altimetry and seafloor pressure data to estimate vertical deformation offshore: Vanuatu case study

    Science.gov (United States)

    Ballu, V.; Bonnefond, P.; Calmant, S.; Bouin, M.-N.; Pelletier, B.; Laurain, O.; Crawford, W. C.; Baillard, C.; de Viron, O.

    2013-04-01

    Measuring ground deformation underwater is essential for understanding Earth processes at many scales. One important example is subduction zones, which can generate devastating earthquakes and tsunamis, and where the most important deformation signal related to plate locking is usually offshore. We present an improved method for making offshore vertical deformation measurements, that involve combining tide gauge and altimetry data. We present data from two offshore sites located on either side of the plate interface at the New Hebrides subduction zone, where the Australian plate subducts beneath the North Fiji basin. These two sites have been equipped with pressure gauges since 1999, to extend an on-land GPS network across the plate interface. The pressure series measured at both sites show that Wusi Bank, located on the over-riding plate, subsides by 11 ± 4 mm/yr with respect to Sabine Bank, which is located on the down-going plate. By combining water depths derived from the on-bottom pressure data with sea surface heights derived from altimetry data, we determine variations of seafloor heights in a global reference frame. Using altimetry data from TOPEX/Poseidon, Jason-1, Jason-2 and Envisat missions, we find that the vertical motion at Sabine Bank is close to zero and that Wusi Bank subsides by at least 3 mm/yr and probably at most 11 mm/yr.This paper represents the first combination of altimetry and pressure data to derive absolute vertical motions offshore. The deformation results are obtained in a global reference frame, allowing them to be integrated with on-land GNSS data.

  9. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Safety Div.

    2016-12-15

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  10. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    International Nuclear Information System (INIS)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar

    2016-01-01

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  11. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  12. Modelamiento del Ambiente Térmico y Aéreo de un Galpón de Presión Negativa Tipo Túnel para Pollitos / Modeling of the Thermal Environments in Shed Negative Pressure Tunnel Type of Chicks

    Directory of Open Access Journals (Sweden)

    Robinson Osorio Hernández

    2013-12-01

    Full Text Available La optimización de los procesos productivos tiene granimportancia en el mundo actual debido al continuo desarrollo y avance. Con la finalidad de evaluar el desempeño productivo en el sector avícola, se hace necesaria la adecuación del ambiente interno de las instalaciones avícolas con técnicas que atiendan las exigencias de confort térmico con mayor eficiencia energética. En este trabajo, se evaluó el ambiente térmico interno de un galpón de presión negativa tipo túnel durante la primera fase de crecimiento de pollos de engorde. La evaluación de comportamiento térmico en este período fue realizada utilizando la dinámica de fluidos computacionales (CFD. El modelo computacional demostró ser una herramienta eficaz para el entendimiento y mejora de diseños bioclimáticos de ambientes internos de galpones avícolas. / The optimization of production processes hasgreat importance in the world due to the development andadvancement. In order to evaluate the productive performance in poultry production, it becomes necessary the indoor environmental adequacy of the poultry buildings by technologies that attend the requirements of thermal comfort with major energy efficiency. This study evaluated the thermal environment of a domestic shed of negative pressure tunnel type, during the first growth phase of broilers. The evaluation of the thermal behavior model during this period was made using the computational fluid dynamics (CFD. The computational model proved to be an effective tool forunderstanding and improving of bioclimatic designs of indoorenvironments to create this kind of sheds.

  13. Estimation of Nonconservative Aerodynamic Pressure Leading to Flutter of Spinning Disks

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Raman, A; Mote Jr., C.D.

    2001-01-01

    theories described herein. It is shown analytically and experimentally that the few parameters of this model may be extracted from frequency response functions of the spinning disk. Parameters for a steel disk in air (with a near vacuum experiment as reference) are estimated at increasing rotation speeds...

  14. Estimation of possibility of brittle fracture in high pressure boiler drums

    International Nuclear Information System (INIS)

    Grin', E.A.

    2005-01-01

    Paper presents the results of analysis of the problem to ensure brittle strength of high pressure boiler drums made with application of the present-day methods of linear and nonlinear fracture mechanics. The charts of the temperature boundaries of brittle fracture and of the critical factors of stress intensity plotted depending on the actual properties of the material and on dimensions of flaws are presented for standard size drums made of 22K and 16GNM steels. In the paper there are some examples of the practical application of the given charts [ru

  15. Effect of injection pressure and ambient pressure on spray characteristics of pine oil-diesel blends%喷射压力及环境背压对松油-柴油混合燃料喷雾特性的影响

    Institute of Scientific and Technical Information of China (English)

    黄豪中; 史程; 张鹏; 王庆新; 刘庆生; 班智博

    2016-01-01

    为探究柴油/松油混合燃料的喷雾特性,基于高压可视化容弹试验台,通过高速摄影技术对掺松油的柴油混合燃料的喷雾过程进行试验研究,分析了喷射压力、背压和燃料物性的改变对喷雾宏观参数的影响。结果表明:混合燃料的喷雾贯穿距离先呈现一定程度的线性增长,然后增长幅度逐渐变小,喷雾锥角呈先减小再保持在一个相对稳定的数值趋势,但全程锥角变化不大;喷射压力从90 MPa升高至150 MPa,混合燃料的喷雾锥角和贯穿距离的平均增幅分别为9.2%和15%;背压从3 MPa增加到5 MPa,混合燃料的平均喷雾锥角增幅约2.6°,而贯穿距离降低11 mm左右,说明背压的改变对喷雾特性影响显著;将广安公式适当地修正可与混合燃料的贯穿距离相互吻合;向柴油中掺混一定比例的松油后,燃料的黏度降低,会引起喷雾锥角、贯穿距离和油束面积均小幅增大,增强燃料的油气混合。试验研究有助于改善柴油的雾化质量,可为柴油机代用燃料的筛选提供参考。%The fuel spray performance and atomization quality played a fundamental role in promoting the level of combustion efficiency and exhaust emissions in internal combustion engines. In order to achieve better atomizing mode of diesel, we conducted experiments to study the spray characteristics of diesel blending pine oil. A diesel/pine oil spray trial platform was constructed to carry out a visual constant volume chamber and the high-pressure common rail test bench. The high-speed photograph technique was applied to systematically investigate the spray process of blended fuel. The study was conducted under the pine oil blending ratios of with 0, 20%, 40% and 50%, respectively. Then, the influences of injection pressure, ambient pressure and fuel property on macroscopic spray parameters (including spray cone angle, spray penetration distance and fuel flow area

  16. Bubble formation occurs in insulin pumps in response to changes in ambient temperature and atmospheric pressure but not as a result of vibration.

    Science.gov (United States)

    Lopez, Prudence E; King, Bruce R; Goss, Peter W; Chockalingam, Ganesh

    2014-01-01

    Bubble formation in insulin pump giving sets is a common problem. We studied change in temperature, change in atmospheric pressure, and vibration as potential mechanisms of bubble formation. 5 Animas 2020 pumps with 2 mL cartridges and Inset II infusion systems, 5 Medtronic Paradigm pumps with 1.8 mL cartridge and Quickset and 3 Roche Accu-chek pumps with 3.15 mL cartridges were used. Temperature study: insulin pumps were exposed to a temperature change from 4°C to 37°C. Pressure study: insulin pumps were taken to an altitude of 300 m. Vibration study: insulin pumps were vigorously shaken. All were observed for bubble formation. Bubble formation was observed with changes in temperature and atmospheric pressure. Bubble formation did not occur with vibration. Changes in insulin temperature and atmospheric pressure are common and may result in bubble formation. Vibration may distribute bubbles but does not cause bubble formation.

  17. An estimation of core damage frequency of a pressurized water reactor during mid-loop operation

    International Nuclear Information System (INIS)

    Chao, C.C.; Chen, C.T.; Lee, M.

    2004-01-01

    The core damage frequency during mid-loop operation of a Westinghouse designed 3-loop Pressurizer Water Reactor (PWR) due to loss of Residual Heat Removal (RHR) events was assessed. The assessment considers two types of outages (refueling and drained maintenance), and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events was identified and human error probabilities were quantified using HCR and THERP model. The result showed that the core damage frequency due to loss of RHR events during mid-loop operation is 3.1x10 -5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering mid-loop operation. The establishment of reflux cooling, i.e. decay heat removal through steam generator secondary side also plays important role in mitigating the loss of RHR events. (author)

  18. Estimating the future burden of cardiovascular disease and the value of lipid and blood pressure control therapies in China.

    Science.gov (United States)

    Stevens, Warren; Peneva, Desi; Li, Jim Z; Liu, Larry Z; Liu, Gordon; Gao, Runlin; Lakdawalla, Darius N

    2016-05-10

    Lifestyle and dietary changes reflect an ongoing epidemiological transition in China, with cardiovascular disease (CVD) playing an ever-increasing role in China's disease burden. This study assessed the burden of CVD and the potential value of lipid and blood pressure control strategies in China. We estimated the likely burden of CVD between 2016 and 2030 and how expanded use of lipid lowering and blood pressure control medication would impact that burden in the next 15 years. Accounting for the costs of drug use, we assessed the net social value of a policy that expands the utilization of lipid and blood pressure lowering therapies in China. Rises in prevalence of CVD risk and population aging would likely increase the incidence of acute myocardial infarctions (AMIs) by 75 million and strokes by 118 million, while the number of CVD deaths would rise by 39 million in total between 2016 and 2030. Universal treatment of hypertension and dyslipidemia patients with lipid and blood pressure lowering therapies could avert between 10 and 20 million AMIs, between 8 and 30 million strokes, and between 3 and 10 million CVD deaths during the 2016-2030 period, producing a positive social value net of health care costs as high as $932 billion. In light of its aging population and epidemiological transition, China faces near-certain increases in CVD morbidity and mortality. Preventative measures such as effective lipid and blood pressure management may reduce CVD burden substantially and provide large social value. While the Chinese government is implementing more systematic approaches to health care delivery, prevention of CVD should be high on the agenda.

  19. Measuring hospital-acquired pressure injuries: A surveillance programme for monitoring performance improvement and estimating annual prevalence.

    Science.gov (United States)

    Jull, Andrew; McCall, Elaine; Chappell, Matt; Tobin, Sam

    2016-06-01

    To describe a surveillance approach for monitoring the effect of improvement initiatives on hospital-acquired pressure injuries and findings arising from that surveillance. Random sampling of patients on the same day of each successive month from a campus of child and adult hospitals using a standard audit tool to identify presence of hospital-acquired pressure injury. Where multiple pressure injuries were present, the most severe grade injury contributed to prevalence. Statistical process control charts were used to monitor monthly performance and Maximum Likelihood Estimation to determine timing of step change. 8274 patients were assessed over 3 years from an eligible population of 32,259 hospitalised patients. 517 patients had hospital-acquired pressure injuries giving an overall prevalence of 6.2% (95% CI 5.7-6.8%). Annual prevalence was 8.4% (95% CI 7.4-9.5%) in the first year, falling to 5.6% (95% CI 4.7-6.4%) in the second year and 4.8% (95% CI 4.0-5.6%) in the third year. A step change was signalled with mean prevalence up to July 2013 being 7.9% (95% CI 7.1-8.8%) and mean prevalence thereafter 4.8% (95% CI 4.2-5.4%). Hospital-acquired pressure injuries were found in all age ranges, but were more frequent in children up to 14 years (17.4%) and those aged 75 years or older (38.7%). Monthly random sampling of patients within clinical units can be used to monitor performance improvement. This approach represents a rational alternative to cross-sectional prevalence surveys especially if the focus is on performance improvement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Saveleva, Viktoriia A; Savinova, Elena R; Daletou, Maria K

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt 3 Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide. (paper)

  1. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  2. Estimation of lower-bound KJc on pressure vessel steels from invalid data

    International Nuclear Information System (INIS)

    McCable, D.E.; Merkle, J.G.

    1996-01-01

    Statistical methods are currently being introduced into the transition temperature characterization of ferritic steels. Objective is to replace imprecise correlations between empirical impact test methods and universal K Ic or K Ia lower-bound curves with direct use of material-specific fracture mechanics data. This paper introduces a computational procedure that couples order statistics, weakest-link statistical theory, and a constraint model to arrive at estimates of lower-bound K Jc values. All of the above concepts have been used before to meet various objectives. In the present case, scheme is to make a best estimate of lower-bound fracture toughness when resource K Jc data are too few to use conventional statistical analyses. Utility of the procedure is of greatest value in the middle-to-high toughness part of the transition range where specimen constraint loss and elevated lower-bound toughness interfere with conventional statistical analysis methods

  3. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Breen, Mike

    2016-01-01

    such as logbook data. Here, we take a different approach starting from the gear itself (design and dimensions) to estimate the physical interactions with the seabed at the level of the individual fishing operation. We defined 14 distinct towed gear groups in European waters (eight otter trawl groups, three beam...... trawl groups, two demersal seine groups, and one dredge group), for which we established gear “footprints”. The footprint of a gear is defined as the relative contribution from individual larger gear components, such as trawl doors, sweeps, and groundgear, to the total area and severity of the gear...... to enable the prediction of gear footprint area and sediment penetration from vessel size. Application of these relationships with average vessel sizes and towing speeds provided hourly swept-area estimates by métier. Scottish seining has the largest overall gear footprint of ∼1.6 km2 h−1 of which 0.08 km2...

  4. J estimation scheme for cracks near the cladding of a reactor pressure vessel

    International Nuclear Information System (INIS)

    Fayolle, P.; Churier-Bossennec, H.; Faidy, C.

    1992-01-01

    The evaluation of flaws near the cladding is an important issue in term of risk of fast fracture of main vessel. This study analyses different K estimation schemes. These different K values are compared with respect to the toughness of the material K IC for different crack situations; the results confirm the validity of the proposal in the French RCC M Code for the plastic zone correction

  5. Evaluation of evaporation-measuring equipments for estimating evapotranspiration within a greenhouse Avaliação de equipamentos de medida da evaporação para estimativa da evapotranspiração dentro de um ambiente protegido

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2004-12-01

    Full Text Available With the objective of evaluating the performance of simple evaporation measuring equipments in estimating the evapotranspiration in greenhouse, an experiment was conducted in Piracicaba, SP, during a tomato-growing season. Daily water evaporation rate from Piche atmometer, modified atmometer and a reduced evaporation pan installed inside the greenhouse and a Class A pan installed outside were compared to the evapotranspiration rates calculated with Penman-Monteith equation. Results showed that atmometers had the best performance in estimating the crop evapotranspiration in greenhouse and could be used advantageously in relation to the evaporation pans.Conduziu-se um experimento em Piracicaba, SP, durante um cultivo de tomateiro, com o propósito de se avaliar a performance de equipamentos simples baseados na evaporação na estimativa da evapotranspiração em ambiente protegido. As taxas diárias de evaporação de um atmômetro de Piche, um atmômetro modificado e de um tanque de evaporação reduzido instalados dentro do ambiente protegido, e de um tanque Classe A instalado no ambiente externo, foram comparadas à evapotranspiração calculada com a equação de Penman-Monteith. Os resultados mostraram que os atmômetros tiveram o melhor desempenho na estimativa da evapotranspiração da cultura e podem ser utilizados com vantagens em relação aos tanques de evaporação.

  6. Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model.

    Science.gov (United States)

    Gao, Mingwu; Cheng, Hao-Min; Sung, Shih-Hsien; Chen, Chen-Huan; Olivier, Nicholas Bari; Mukkamala, Ramakrishna

    2017-07-01

    pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is conventionally estimated from proximal and distal BP waveforms. The objective was to establish a technique to estimate multiple PTT values at different BP levels in the cardiac cycle. a technique was developed for estimating PTT as a function of BP (to indicate the PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical transformation from one waveform to the other is defined in terms of the parameters of a nonlinear arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-based transformation. Finally, PTT as a function of BP is specified by the parameters. The technique was assessed in animals and patients in several ways including the ability of its estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP. the calibration curve derived by the technique during a baseline period yielded bias and precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic interventions that varied mean BP widely. the new technique may permit, for the first time, estimation of PTT values throughout the cardiac cycle from proximal and distal waveforms. the technique could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP monitoring.

  7. Systolic blood pressure of dogs at hospital and domestic environment Pressão arterial sistólica de cães nos ambientes hospitalar e doméstico

    Directory of Open Access Journals (Sweden)

    Frederico Aécio Carvalho Soares

    2012-07-01

    Full Text Available The measurement of blood pressure (BP is an important assessment of the cardiovascular system, being influenced by physical and pathological conditions. Certain situations of stress and anxiety during BP measurement can lead to elevated values in small animals, known in medicine as "white coat effect". The aim of this research was to compare systolic blood pressure (SBP measurement using Doppler ultrasonography in 45 adult healthy dogs in two environments, at a veterinary hospital and at home. Comparison of heart rate, serum concentrations of cortisol and glucose intended to help the evaluation of the stress level of the animals. The mean of SBP at the veterinary hospital was 154.7mmHg and it was significantly (PA medida da pressão arterial constitui uma importante avaliação do sistema cardiovascular, sendo influenciada por condições físicas e patológicas. Situações de estresse e ansiedade no momento da aferição podem causar valores de pressão sanguínea elevados, o que é conhecido na medicina humana como "efeito jaleco branco". O objetivo deste trabalho foi comparar os valores da pressão arterial sistólica (PAS pelo método Doppler em 45 cães em dois ambientes, o doméstico e o hospitalar. Além disso, foram comparadas as frequências cardíacas e concentrações séricas de glicose e cortisol nos dois ambientes, com o objetivo de auxiliar a avaliação o nível de estresse dos animais. A média de PAS observada no hospital foi de 154,7mmHg e foi significativamente superior que a observada em casa (136,3mmHg. Também foi observado que os valores de FC (média=122,7bpm e concentrações séricas de cortisol (mediana=4,5µg dL-1 e glicose (média=95,9mg dL-1 foram superiores (P<0,01 no ambiente hospitalar, quando comparados com os valores obtidos no lar dos animais (109,6bpm; 1,5µg dL-1 e 85,5mg dL-1, respectivamente. Assim, condições ambientais podem influenciar a PAS em cães, devido a fatores relacionados ao estresse.

  8. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  9. The plant-specific impact of different pressurization rates in the probabilistic estimation of containment failure modes

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Yang, Joon Eon; Ha, Jae Joo

    2003-01-01

    The explicit consideration of different pressurization rates in estimating the probabilities of containment failure modes has a profound effect on the confidence of containment performance evaluation that is so critical for risk assessment of nuclear power plants. Except for the sophisticated NUREG-1150 study, many of the recent containment performance analyses (through level 2 PSAs or IPE back-end analyses) did not take into account an explicit distinction between slow and fast pressurization in their analyses. A careful investigation of both approaches shows that many of the approaches adopted in the recent containment performance analyses exactly correspond to the NUREG-1150 approach for the prediction of containment failure mode probabilities in the presence of fast pressurization. As a result, it was expected that the existing containment performance analysis results would be subjected to greater or less conservatism in light of the ultimate failure mode of the containment. The main purpose of this paper is to assess potential conservatism of a plant-specific containment performance analysis result in light of containment failure mode probabilities

  10. Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia

    Science.gov (United States)

    Hainzl, S.; Fischer, T.; Dahm, T.

    2012-10-01

    Two recent major swarms in Western Bohemia occurred in the years 2000 and 2008 within almost the same portion of a fault close to Novy Kostel. Previous analysis of the year 2000 earthquake swarm revealed that fluid intrusion seemed to initiate the activity whereas stress redistribution by the individual swarm earthquakes played a major role in the further swarm evolution. Here we analyse the new swarm, which occurred in the year 2008, with regard to its correlation to the previous swarm as well its spatiotemporal migration patterns. We find that (i) the main part of the year 2008 activity ruptured fault patches adjacent to the main activity of the swarm 2000, but that also (ii) a significant overlap exists where earthquakes occurred in patches in which stress had been already released by precursory events; (iii) the activity shows a clear migration which can be described by a 1-D (in up-dip direction) diffusion process; (iv) the migration pattern can be equally well explained by a hydrofracture growth, which additionally explains the faster migration in up-dip compared to the down-dip direction as well as the maximum up-dip extension of the activity. We use these observations to estimate the underlying fluid pressure change in two different ways: First, we calculate the stress changes induced by precursory events at the location of each swarm earthquake assuming that observed stress deficits had to be compensated by pore pressure increases; and secondly, we estimate the fluid overpressure by fitting a hydrofracture model to the asymmetric seismicity patterns. Both independent methods indicate that the fluid pressure increase was initially up to 30 MPa.

  11. Numerical estimates of the maximum sustainable pore pressure in anticline formations using the tensor based concept of pore pressure-stress coupling

    Directory of Open Access Journals (Sweden)

    Andreas Eckert

    2015-02-01

    Full Text Available The advanced tensor based concept of pore pressure-stress coupling is used to provide pre-injection analytical estimates of the maximum sustainable pore pressure change, ΔPc, for fluid injection scenarios into generic anticline geometries. The heterogeneous stress distribution for different prevailing stress regimes in combination with the Young's modulus (E contrast between the injection layer and the cap rock and the interbedding friction coefficient, μ, may result in large spatial and directional differences of ΔPc. A single value characterizing the cap rock as for horizontal layered injection scenarios is not obtained. It is observed that a higher Young's modulus in the cap rock and/or a weak mechanical coupling between layers amplifies the maximum and minimum ΔPc values in the valley and limb, respectively. These differences in ΔPc imposed by E and μ are further amplified by different stress regimes. The more compressional the stress regime is, the larger the differences between the maximum and minimum ΔPc values become. The results of this study show that, in general compressional stress regimes yield the largest magnitudes of ΔPc and extensional stress regimes provide the lowest values of ΔPc for anticline formations. Yet this conclusion has to be considered with care when folded anticline layers are characterized by flexural slip and the friction coefficient between layers is low, i.e. μ = 0.1. For such cases of weak mechanical coupling, ΔPc magnitudes may range from 0 MPa to 27 MPa, indicating imminent risk of fault reactivation in the cap rock.

  12. Estimation of residual stresses in reactor pressure vessel steel specimens clad by stainless steel strip electrodes

    International Nuclear Information System (INIS)

    Schimmoeller, H.A.; Ruge, J.L.

    1978-01-01

    The equations to determine a two-dimensional state of residual stress in flat laminated plates are well known from an earlier work by one of the authors. The derivation of these equations leads to a linear, inhomogeneous system of Volterra's integral equations of the second kind. To ascertain the unknown residual stresses from these equations it is necessary to cut down the thickness of the test plate layer by layer. This results in two-dimensional deformation reactions in the rest of the test plate, which can be measured, e.g. by a strain gauge rosette applied to the opposite side of the plate. The above-mentioned stress analysis has been transferred to 86mm thick reactor pressure vessel steel specimens (Type 22NiMoCr 37, DIN-No. 1.6751, similar to ASTM A508, Class 2) double-run clad by austenitic stainless steel strip electrodes (first layer 24/13 Cr-Ni steel, second layer 21/10 Cr-Ni steel). The overall dimensions of the clad specimens investigated amounted to 200 x 200 x (86+4.5+4.5)mm. At the surface of the austenitic cladding there is a two-dimensional tensile normal stress state of about 200N/mm 2 parallel, and about 300N/mm 2 transverse, to the welding direction. The maximum tensile stress was 8mm below the interface (fusion line, material transition) in the parent material. The stress distributions of the specimens investigated, determined on the basis of the above-mentioned combined experimental mathematical procedure, are presented graphically for the as-welded (as-delivered) and annealed (600 0 C/12hr) conditions. (author)

  13. Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer.

    Science.gov (United States)

    Huang, Guangming; Gao, Liang; Duncan, Jason; Harper, Jason D; Sanders, Nathaniel L; Ouyang, Zheng; Cooks, R Graham

    2010-01-01

    The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem.2006, 78, 5994-6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds' permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  14. Application of the extended Kalman filtering for the estimation of core coolant flow rate in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, B.R.

    1986-01-01

    In-core neutron detector and core-exit temperature signals in a pressurized water reactor (PWR) satisfy the condition of observability of the core dynamic system, and can be used to estimate nonmeasurable state variables and model parameters. The extension of the Kalman filtering technique is very useful for direct parameter estimation. This approach is applied to the determination of core coolant mass flow rate in PWRs and is evaluated using in-core measurements at the Loss-of-Fluid Test (LOFT) reactor. The influence of model uncertainties on the estimation accuracy was studied using the ambiguity function analysis. A sequential discretization method was developed to achieve faster convergence to the true value, avoiding model discretization at each sample point. The performance of the extended Kalman filter and the computational innovations were evaluated using a reduced order core dynamic model of the LOFT reactor and random data simulation. The technique was then applied to the determination of LOFT core coolant flow rate from operational data at 100% and 65% flow conditions

  15. 背压对喷油嘴断油过程中气体倒流现象的影响%Influence of Ambient Pressure on Gas Ingestion in Diesel Nozzle after End of Injection

    Institute of Scientific and Technical Information of China (English)

    文华; 王晨亮; MEDHAT Elkelawy; 姜光军

    2017-01-01

    For researching phenomena of the cavitation and the air ingestion in the nozzle under different ambient pressures,a visualization experiment with a transparent injector nozzle was carried out,which used the stroboscope,long-distance microscope,CCD camera,high-pressure spray chamber etc.The VOF method and the overset grid technology were used to simulate transient state flow in the spray orifice and the sac.The simulation results showed that the strong cavitation phenomenon would happen in the orifice and the sac of nozzle after the end of injection.The void volume of the cavitation bubble collapsing was filled with ingested air.And the cavitation volume was roughly equal to the ingested air volume based on the calculated data which can prove the conclusion.This showed that the cavitation collapse was the main cause of air ingestion.The cavitation collapse in the sac was a necessary condition for the ingestion air further flowing into the sac.And the smaller the cavitation area in the sac was,the less hot combustion gas was ingested into the sac.The cavitation number was proposed which represented the degree of cavitation in the nozzle after the end of injection.Further studies found that an increase in ambient pressure can cause the cavitation number to increase which led to the cavitation volume and the ingested air volume tend to decrease.And the cavitation number explained the influence of ambient pressure on.air ingestion,and this was consistent with the experiment and simulation results.%基于流体体积(VOF)模型和动态重叠网格技术对针阀关闭过程的喷油嘴内流场进行了瞬态模拟,分析发现在断油过程中,喷油嘴压力室和喷孔入口两个位置都会发生空化现象,与试验现象一致.计算得到的最大空化体积与倒流气体体积基本相等,说明空化溃灭是造成外部气体倒流的主要原因.压力室内的空化溃灭是引起倒流气体进一步流入压力室的必要条件.进一步从

  16. The impact of rock and fluid uncertainties in the estimation of saturation and pressure from a 4D petro elastic inversion

    International Nuclear Information System (INIS)

    Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J

    2015-01-01

    The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data. (paper)

  17. Emissions estimates based on ambient N2O concentrations measured at a 200m high tower in the Netherlands 1995-1997

    International Nuclear Information System (INIS)

    Hensen, A.; Dieguez Villar, A; Vermeulen, A.T.

    2000-01-01

    In the period 1995 to 1997 the N2O concentration in ambient air at 200 m height was measured at the 200 m tower in Cabauw in the center of the Netherlands. These measurements were carried out simultaneously with CO2 and CH4 measurements. In this paper the time series for the different trace gas species are compared for the year 1995. This comparison shows the different nature of N2O as compared to the two more abundant trace gases, methane (CH4) and carbon dioxide (CO2). The diffuse character of the main N2O source in our region, the agricultural soils, in combination with the relatively poor resolution of the measurements as compared to the resolution of the CO2 and CH4 data, makes a detailed evaluation of the emissions impossible. Alternatively a simple calculation is proposed to evaluate the N2O emission for a region up to about 200 km upwind of the measurement location. This calculation uses the sudden increase in concentration that is observed after the break-up of a nocturnal inversion layer. The results of 26 nights show an emission level of 31 ±13 kton N/year. This level is lower compared to the emission level of 47.4 kton N/year that is reported for 1996 for the Netherlands using bottom up inventories. 4 refs

  18. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.

    Science.gov (United States)

    Feng, Jingjie; Huang, Zhongyi; Zhou, Congcong; Ye, Xuesong

    2018-06-01

    It is widely recognized that pulse transit time (PTT) can track blood pressure (BP) over short periods of time, and hemodynamic covariates such as heart rate, stiffness index may also contribute to BP monitoring. In this paper, we derived a proportional relationship between BP and PPT -2 and proposed an improved method adopting hemodynamic covariates in addition to PTT for continuous BP estimation. We divided 28 subjects from the Multi-parameter Intelligent Monitoring for Intensive Care database into two groups (with/without cardiovascular diseases) and utilized a machine learning strategy based on regularized linear regression (RLR) to construct BP models with different covariates for corresponding groups. RLR was performed for individuals as the initial calibration, while recursive least square algorithm was employed for the re-calibration. The results showed that errors of BP estimation by our method stayed within the Association of Advancement of Medical Instrumentation limits (- 0.98 ± 6.00 mmHg @ SBP, 0.02 ± 4.98 mmHg @ DBP) when the calibration interval extended to 1200-beat cardiac cycles. In comparison with other two representative studies, Chen's method kept accurate (0.32 ± 6.74 mmHg @ SBP, 0.94 ± 5.37 mmHg @ DBP) using a 400-beat calibration interval, while Poon's failed (- 1.97 ± 10.59 mmHg @ SBP, 0.70 ± 4.10 mmHg @ DBP) when using a 200-beat calibration interval. With additional hemodynamic covariates utilized, our method improved the accuracy of PTT-based BP estimation, decreased the calibration frequency and had the potential for better continuous BP estimation.

  19. Estimation of a noise level using coarse-grained entropy of experimental time series of internal pressure in a combustion engine

    International Nuclear Information System (INIS)

    Litak, Grzegorz; Taccani, Rodolfo; Radu, Robert; Urbanowicz, Krzysztof; HoIyst, Janusz A.; Wendeker, MirosIaw; Giadrossi, Alessandro

    2005-01-01

    We report our results on non-periodic experimental time series of pressure in a single cylinder spark ignition engine. The experiments were performed for different levels of loading. We estimate the noise level in internal pressure calculating the coarse-grained entropy from variations of maximal pressures in successive cycles. The results show that the dynamics of the combustion is a non-linear multidimensional process mediated by noise. Our results show that so defined level of noise in internal pressure is not monotonous function of loading

  20. Development and validation of a CFD based methodology to estimate the pressure loss of flow through perforated plates

    International Nuclear Information System (INIS)

    Barros Filho, Jose A.; Navarro, Moyses A.; Santos, Andre A.C. dos; Jordao, E.

    2011-01-01

    In spite of the recent great development of Computational Fluid Dynamics (CFD), there are still some issues about how to assess its accurateness. This work presents the validation of a CFD methodology devised to estimate the pressure drop of water flow through perforated plates similar to the ones used in some reactor core components. This was accomplished by comparing the results of CFD simulations against experimental data of 5 perforated plates with different geometric characteristics. The proposed methodology correlates the experimental data within a range of ± 7.5%. The validation procedure recommended by the ASME Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer-V and V 20 is also evaluated. The conclusion is that it is not adequate to this specific use. (author)

  1. Computational estimation of logarithm of octanol/air partition coefficients and subcooled vapour pressures for each of 75 chloronaphtalene congeners

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, T.; Falandysz, J.; Rostkowski, P.; Piliszek, S.; Wilczyniska, A. [Univ. of Gdansk (Poland)

    2004-09-15

    Polychlorinated naphthalenes (PCNs, CNs) are known persistent organic pollutants, contaminating natural ecosystems in effect of technical human activity. Toxic effects induced by individual congers of PCNs are reported elsewhere. Great risk of these chemical compounds is additionally connected with theirs excellent ability to be transported via atmosphere from a source to the remote regions on the Glob. Chloronaphthalene congeners had been found in Arctic regions at significant level in spite of the fact, that they had never been synthesized there, and also thermal processes like municipal waste incineration or domestic heating (other possible sources of PCNs in the environment) were not so intensive there. In 1996 F. Wania and D. Mackay have formulated some empirical rules, which have been very useful in estimation and modeling of environmental transport processes of persistent organic pollutants like PCNs. Two very important physico-chemical parameters in the theory of global distillation and cold condensation are: logarithm of n-octanol/air partition coefficient (log K{sub OA}) and logarithm of subcooled vapour pressure (log P{sub L}). Values of log K{sub OA} and log P{sub L} in standard procedures are determined by means of chromatographic methods. In order to reduce costs and number of experiments, we have proposed simple computational method of estimation log K{sub OA} and log P{sub L}.

  2. Estimates of cost-effectiveness of prehospital continuous positive airway pressure in the management of acute pulmonary edema.

    Science.gov (United States)

    Hubble, Michael W; Richards, Michael E; Wilfong, Denise A

    2008-01-01

    To estimate the cost-effectiveness of continuous positive airway pressure (CPAP) in managing prehospital acute pulmonary edema in an urban EMS system. Using estimates from published reports on prehospital and emergency department CPAP, a cost-effectiveness model of implementing CPAP in a typical urban EMS system was derived from the societal perspective as well as the perspective of the implementing EMS system. To assess the robustness of the model, a series of univariate and multivariate sensitivity analyses was performed on the input variables. The cost of consumables, equipment, and training yielded a total cost of $89 per CPAP application. The theoretical system would be expected to use CPAP 4 times per 1000 EMS patients and is expected to save 0.75 additional lives per 1000 EMS patients at a cost of $490 per life saved. CPAP is also expected to result in approximately one less intubation per 6 CPAP applications and reduce hospitalization costs by $4075 per year for each CPAP application. Through sensitivity analyses the model was verified to be robust across a wide range of input variable assumptions. Previous studies have demonstrated the clinical effectiveness of CPAP in the management of acute pulmonary edema. Through a theoretical analysis which modeled the costs and clinical benefits of implementing CPAP in an urban EMS system, prehospital CPAP appears to be a cost-effective treatment.

  3. Relationship between brain atrophy estimated by a longitudinal computed tomography study and blood pressure control in patients with essential hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Shigeru; Sawai, Fuyuki; Yamamoto, Yuta [Nara Medical Univ., Kashihara (Japan)] [and others

    1999-01-01

    To evaluate the relationship between blood pressure control and the progression of brain atrophy in the elderly, patients with essential hypertension and brain atrophy were longitudinally evaluated using computerized tomography (CT). The study evaluated 48 patients with essential hypertension aged 46-78 years, and 30 sex- and age-matched normotensive control subjects. The extent of brain atrophy as determined by caudate head index (CHI), the inverse cella media index (iCMI), and Evans` ratio (ER) was estimated twice at an interval of 5-9 years (mean, 6.9 years). The mean annual increases in CHI ({Delta}CHI), iCMI ({Delta}iCMI), and ER ({Delta}ER) were evaluated. Mean blood volume in the common carotid artery (BF) and the decrease in BF per year ({Delta}BF) were also determined. The {Delta}CHI, {Delta}iCMI, and {Delta}ER increased with age in the hypertensive subjects as well as the control group across all age groups evaluated. The {Delta}CHI, {Delta}iCMI, and {Delta}ER were significantly greater in the patients with essential hypertension in their 50s as compared with the controls. In patients with essential hypertension aged 65 years or older, the {Delta}CHI, {Delta}iCMI, and {Delta}ER were significantly lower in the group in whom the blood pressure was controlled within the range of borderline hypertension than the groups in which it was controlled in the range of normal or mild hypertension. In the younger patients under the age of 65 with essential hypertension, blood pressure control did not affect the {Delta}CHI, {Delta}iCMI, and {Delta}ER. The {Delta}CHI, {Delta}iCMI, and {Delta}ER were significantly correlated with {Delta}BF in both groups. These findings indicate that control of systolic blood pressure within the range of borderline hypertension may delay the progression of brain atrophy in elderly patients with essential hypertension. (author)

  4. Relationship between brain atrophy estimated by a longitudinal computed tomography study and blood pressure control in patients with essential hypertension

    International Nuclear Information System (INIS)

    Yamano, Shigeru; Sawai, Fuyuki; Yamamoto, Yuta

    1999-01-01

    To evaluate the relationship between blood pressure control and the progression of brain atrophy in the elderly, patients with essential hypertension and brain atrophy were longitudinally evaluated using computerized tomography (CT). The study evaluated 48 patients with essential hypertension aged 46-78 years, and 30 sex- and age-matched normotensive control subjects. The extent of brain atrophy as determined by caudate head index (CHI), the inverse cella media index (iCMI), and Evans' ratio (ER) was estimated twice at an interval of 5-9 years (mean, 6.9 years). The mean annual increases in CHI (ΔCHI), iCMI (ΔiCMI), and ER (ΔER) were evaluated. Mean blood volume in the common carotid artery (BF) and the decrease in BF per year (ΔBF) were also determined. The ΔCHI, ΔiCMI, and ΔER increased with age in the hypertensive subjects as well as the control group across all age groups evaluated. The ΔCHI, ΔiCMI, and ΔER were significantly greater in the patients with essential hypertension in their 50s as compared with the controls. In patients with essential hypertension aged 65 years or older, the ΔCHI, ΔiCMI, and ΔER were significantly lower in the group in whom the blood pressure was controlled within the range of borderline hypertension than the groups in which it was controlled in the range of normal or mild hypertension. In the younger patients under the age of 65 with essential hypertension, blood pressure control did not affect the ΔCHI, ΔiCMI, and ΔER. The ΔCHI, ΔiCMI, and ΔER were significantly correlated with ΔBF in both groups. These findings indicate that control of systolic blood pressure within the range of borderline hypertension may delay the progression of brain atrophy in elderly patients with essential hypertension. (author)

  5. Cycle studies: material balance estimation in the domain of pressurized water and boiling water reactors. Experimental qualification

    International Nuclear Information System (INIS)

    Chabert, Christine

    1994-01-01

    This study is concerned with the physics of the fuel cycle the aim being to develop and make recommendations concerning schemes for calculating the neutronics of light water reactor fuel cycles. A preliminary study carried out using the old fuel cycle calculation scheme APOLLO1- KAFKA and the library SERMA79 has shown that for the compositions of totally dissolved assemblies from Pressurized Water Reactors (type 17*17) and also for the first time, for Boiling Water Reactor assemblies (type 8*8), the differences between calculation and measurement are large and must be reduced. The integration of the APOLLO2 neutronics code into the fuel cycle calculation scheme improves the results because it can model the situation more precisely. A comparison between APOLLO1 and APOLLO2 using the same options, demonstrated the consistency of the two methods for PWR and BWR geometries. Following this comparison, we developed an optimised scheme for PWR applications using the library CEA86 and the code APOLLO2. Depending on whether the information required is the detailed distribution of the composition of the irradiated fuel or the average composition (estimation of the total material balance of the fuel assembly), the physics options recommended are different. We show that the use of APOLLO2 and the library CEA86 improves the results and especially the estimation of the Pu 239 content. Concerning the Boiling Water Reactor, we have highlighted the need to treat several axial sections of the fuel assembly (variation of the void-fraction, heterogeneity of composition). A scheme using Sn transport theory, permits one to obtain a better coherence between the consumption of U 235 , the production of plutonium and burnup, and a better estimation of the material balance. (author) [fr

  6. α-MnO2 nanowires transformed from precursor δ-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism

    International Nuclear Information System (INIS)

    Zhang Qin; Xiao Zhidong; Feng Xionghan; Tan Wenfeng; Qiu Guohong; Liu Fan

    2011-01-01

    α-MnO 2 nanowires were obtained by reflux treatment of precursor δ-MnO 2 in acidic medium under ambient pressure. The great effects of pH on the transformation of δ-MnO 2 to α-MnO 2 and the concentration of coexistent cations (K + , Mn 2+ ) was investigated in systematically designed experiments by using powder X-ray diffraction and atomic absorption spectrometry analysis. The specific surface area of the products could be simply controlled by adjusting the initial pH value of the suspension. The micro-morphologies during the transition process from the precursors to final products were characterized by SEM and TEM. A dissolution-recrystallization mechanism was proposed to describe the growth process of the one-dimensional nanowire. MnO x units or MnO 6 octahedra was formed firstly from the dissolution of outmost surfaces of δ-MnO 2 , followed by a rearrangement/crystallization to form one-dimensional α-MnO 2 nanowire. In addition, the time-dependent process of dissolution would take place gradually from the external to internal of the precursor.

  7. Ambient temperature and volume of perihematomal edema in acute intracerebral haemorrhage: the INTERACT1 study.

    Science.gov (United States)

    Zheng, Danni; Arima, Hisatomi; Heeley, Emma; Karpin, Anne; Yang, Jie; Chalmers, John; Anderson, Craig S

    2015-01-01

    As no human data exist, we aimed to determine the relation between ambient temperature and volume of perihematomal 'cerebral' edema in acute spontaneous intracerebral haemorrhage (ICH) among Chinese participants of the pilot phase, Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT1). INTERACT1 was a multicenter, open, blind outcome assessed, randomized controlled trial of intensive (systolic target ambient temperature (mean, minimum, maximum, and range) on the day of each participant's ICH obtained from China Meteorological Data Sharing Service System were linked to other data including edema volumes. Multivariable regression analyses were performed to evaluate association between ambient temperature and edema volumes. A generalized linear regression model with a generalized estimating equations approach (GEE) was used to assess any association of ambient temperature and change in edema volume over 72 h. A total of 250 of all 384 Chinese participants had complete data that showed positive associations between ambient temperature (mean and minimum temperatures) and edema volumes at each time point over 72 h after hospital admission (all P ambient temperature and perihematomal edema volume in acute spontaneous ICH. © 2014 World Stroke Organization.

  8. Manufactured Porous Ambient Surface Simulants

    Science.gov (United States)

    Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul

    2016-01-01

    The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).

  9. Estimation of pulmonary artery pressure in patients with primary pulmonary hypertension by quantitative analysis of magnetic resonance images.

    Science.gov (United States)

    Murray, T I; Boxt, L M; Katz, J; Reagan, K; Barst, R J

    1994-01-01

    The use of magnetic resonance (MR) images for estimating mean pulmonary artery pressure (PAP) was tested by comparing main pulmonary artery (MPA) and middescending thoracic aorta (AO) caliber in 12 patients with primary pulmonary hypertension (PPH) with measurements made in eight other patients who were observed for diseases other than heart disease (controls). The ratio MPA/AO and the ratios of vessel caliber normalized to body surface area (MPAI and AOI, respectively) were computed. The PAP was obtained in all PPH patients and compared with caliber measurements. The PPH MPA (3.6 +/- 0.8 cm) was significantly larger than the control MPA (2.9 +/- 0.3 cm, p = 0.02); the PPH MPAI (2.8 +/- 0.7 cm/M2) was significantly greater than the control MPA (1.7 +/- 0.2 cm/M2, p < 0.0001). Control AO (2.2 +/- 0.3 cm) was significantly greater than PPH AO (1.6 +/- 0.4 cm, p < 0.0001); there was no significant difference between control AOI (1.3 +/- 0.2 cm/M2) and PPH AOI (1.2 +/- 0.2 cm/M2, p = 0.25). The PPH MPA/AO (2.3 +/- 0.6) was significantly greater than the control MPA/AO (1.3 +/- 0.1, p < 0.0001); overlap between MPA in the two groups was eliminated by indexing values to AO caliber (MPA/AO). Among PPH patients there was strong correlation between PAP and MPA/AO (PAP = 24 x MPA/AO + 3.7, r = 0.7, p < 0.01). Increased MPA/AO denotes the presence of pulmonary hypertension and may be used to estimate PAP.

  10. Determination and environmental estimation of NORMs in marine sediment environment of offshore platforms; Determinacao e avaliacao ambiental de NORMs em sedimento marinho entorno de plataformas offshore

    Energy Technology Data Exchange (ETDEWEB)

    Vegueria, Sergio F. Jerez, E-mail: sfjerez@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Departamento de Quimica Analitica; Godoy, Jose M., E-mail: rccampos@puc-rio.br, E-mail: jmgodoy@puc-rio.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The natural radioactive materials (NORM known as) are found in the earth's crust, and during the process of production of oil and gas are concentrated in the produced water and the fouling (scale) pipes used for extraction. The production of oil and gas from produced water comes, comprising: forming water (water naturally present in the well ); injection water , usually sea water previously injected into the well to maintaining the pressure while the oil is removed; and water condensed in some cases of gas production. A high radioactivity of {sup 226}Ra (natural grade of {sup 238}U) and {sup 228}Ra (from the natural series of {sup 232}Th) is detected in produced water due to the high solubility of radio in formation water as uranium and thorium, which are insoluble in this medium, remain the rock matrix. The study was conducted in the area of offshore oil production in the state of Rio de January and included the determination of uranium, {sup 226}Ra, {sup 210}Pb and {sup 228}Ra in marine sediment near the points of discharge of produced water from oil platforms. After the pre-treatment and digestion of samples, the determination of the natural uranium was performed on a mass spectrometer with inductively coupled plasma (ICP -MS). The activities of {sup 226}Ra and {sup 228}Ra were determined by high resolution gamma spectrometry through {sup 214}Bi and {sup 228}Ac , respectively. And in the case of {sup 210}Pb, a correction was made for self-absorption employing an external source of this radionuclide. The results showed that there is no impact in sediments in the vicinity of the studied platforms.

  11. PIG's Speed Estimated with Pressure Transducers and Hall Effect Sensor: An Industrial Application of Sensors to Validate a Testing Laboratory.

    Science.gov (United States)

    Lima, Gustavo F; Freitas, Victor C G; Araújo, Renan P; Maitelli, André L; Salazar, Andrés O

    2017-09-15

    The pipeline inspection using a device called Pipeline Inspection Gauge (PIG) is safe and reliable when the PIG is at low speeds during inspection. We built a Testing Laboratory, containing a testing loop and supervisory system to study speed control techniques for PIGs. The objective of this work is to present and validate the Testing Laboratory, which will allow development of a speed controller for PIGs and solve an existing problem in the oil industry. The experimental methodology used throughout the project is also presented. We installed pressure transducers on pipeline outer walls to detect the PIG's movement and, with data from supervisory, calculated an average speed of 0.43 m/s. At the same time, the electronic board inside the PIG received data from odometer and calculated an average speed of 0.45 m/s. We found an error of 4.44%, which is experimentally acceptable. The results showed that it is possible to successfully build a Testing Laboratory to detect the PIG's passage and estimate its speed. The validation of the Testing Laboratory using data from the odometer and its auxiliary electronic was very successful. Lastly, we hope to develop more research in the oil industry area using this Testing Laboratory.

  12. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  13. Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results.

    Science.gov (United States)

    Brown, Steven G; Eberly, Shelly; Paatero, Pentti; Norris, Gary A

    2015-06-15

    The new version of EPA's positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP). These methods capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. To demonstrate the utility of the EE methods, results are presented for three data sets: (1) speciated PM2.5 data from a chemical speciation network (CSN) site in Sacramento, California (2003-2009); (2) trace metal, ammonia, and other species in water quality samples taken at an inline storage system (ISS) in Milwaukee, Wisconsin (2006); and (3) an organic aerosol data set from high-resolution aerosol mass spectrometer (HR-AMS) measurements in Las Vegas, Nevada (January 2008). We present an interpretation of EE diagnostics for these data sets, results from sensitivity tests of EE diagnostics using additional and fewer factors, and recommendations for reporting PMF results. BS-DISP and BS are found useful in understanding the uncertainty of factor profiles; they also suggest if the data are over-fitted by specifying too many factors. DISP diagnostics were consistently robust, indicating its use for understanding rotational uncertainty and as a first step in assessing a solution's viability. The uncertainty of each factor's identifying species is shown to be a useful gauge for evaluating multiple solutions, e.g., with a different number of factors. Published by Elsevier B.V.

  14. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    levels that shows good agreement with 85% of the temporal data. Bed stresses associated with currents can produce propagating ambient noise by mobilizing sediments. The strength of the tidal currents in northern Admiralty Inlet produces bed stresses in excess of 20 Pa. Significant increases in noise levels at frequencies from 4-30 kHz, with more modest increases noted from 1-4 kHz, are attributed to mobilized sediments. Sediment-generated noise during strong currents masks background noise from other sources, including vessel traffic. Inversions of the acoustic spectra for equivalent grain sizes are consistent with qualitative observations of the seabed composition. Bed stress calculations using log layer, Reynolds stress, and inertial dissipation techniques generally agree well and are used to estimate the shear stresses at which noise levels increase for different grain sizes. Ambient noise levels in one-third octave bands with center frequencies from 1 kHz to 25 kHz are dominated by sediment-generated noise and can be accurately predicted using the near-bed current velocity above a critical threshold. When turbulence is advected over a pressure sensitive transducer, the turbulent pressure fluctuations can be measured as noise, though these pressure fluctuations are not propagating sound and should not be interpreted as ambient noise. Based on measurements in both Admiralty Inlet, Puget Sound and the Chacao Channel, Chile, two models are developed for flow-noise. The first model combined measurements of mean current velocities and turbulence and agrees well with data from both sites. The second model uses scaling arguments to model the flow-noise based solely on the mean current velocity. This model agrees well with the data from the Chacao Channel but performs poorly in Admiralty Inlet, a difference attributed to differences turbulence production mechanisms. At both sites, the spectral slope of flow noise follows a f-3.2 dependence, suggesting partial cancellation of

  15. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  16. Estimation of fracture toughness of Zr 2.5% Nb pressure tube of Pressurised Heavy Water Reactor using cyclic ball indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.; Rama Rao, A.

    2016-08-15

    Highlights: • Measurement of fracture toughness of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situ Property Measurement System (IProMS) has been designed in house. • Conventional and IProMS tests conducted on pressure tube spool pieces having different mechanical properties. • Correlation has been established between the conventional and IProMS estimated fracture properties. - Abstract: In Pressurised Heavy Water Reactors (PHWRs) fuel bundles are located inside horizontal pressure tubes made up of Zr 2.5 wt% Nb alloy. Pressure tubes undergo degradation during its service life due to high pressure, high temperature and radiation environment. Measurement of mechanical properties of degraded pressure tubes is important for assessing their fitness for further operation. Presently as per safety guidelines imposed by the regulatory body, a few pre-decided pressure tubes are removed from the reactor core at regular intervals during the planned reactor shut down to carry out post irradiation examination (PIE) in a laboratory which consumes lots of man-rem and imposes economic penalties. Hence a system is indeed felt necessary which can carry out experimental trials for measurement of mechanical properties of pressure tubes under in situ conditions. The only way to accomplish this important objective is to develop a system based on an in situ measurement technique. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing an indentation test either on the outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ conditions. Considering the importance of such measurements, an In situ Property

  17. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... UV photoelectron spectroscopy (NAP-UPS) investigations. MANOJ KUMAR ... gations led to various models of Ag-O2 interaction to explain its role in the .... charge lamp (for He I and He II excitations) are available as photon ...

  18. Magnitude of Neck-Surface Vibration as an Estimate of Subglottal Pressure during Modulations of Vocal Effort and Intensity in Healthy Speakers

    Science.gov (United States)

    McKenna, Victoria S.; Llico, Andres F.; Mehta, Daryush D.; Perkell, Joseph S.; Stepp, Cara E.

    2017-01-01

    Purpose: This study examined the relationship between the magnitude of neck-surface vibration (NSV[subscript Mag]; transduced with an accelerometer) and intraoral estimates of subglottal pressure (P'[subscript sg]) during variations in vocal effort at 3 intensity levels. Method: Twelve vocally healthy adults produced strings of /p?/ syllables in 3…

  19. Method for estimating critical properties of heavy compounds suitable for cubic equations of state and its application to the prediction of vapor pressures

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Ioannis, Smirlis; Iakovos, Yakoumis

    1997-01-01

    S. The proposed scheme employs a recent group-contribution method (Constantinou et al. Fluid Phase Equilib. 1995, 103 (1), 11) for estimating the acentric factor. The two critical properties are estimated via a generalized correlation for the ratio T-c/P-c (with the van der Waals surface area) and the cubic Eo...... pressures for several nonpolar and slightly polar heavy compounds with very satisfactory results, essentially independent of the experimental point used. Furthermore, the method yields critical properties for heavy alkanes (N-c > 20) and other compounds which are in very good agreement with recent available......Cubic equations of state (EoS) are often used for correlating and predicting phase equilibria. Before extending any EoS to mixtures, reliable vapor-pressure prediction is essential. This requires experimental, if possible, critical temperatures T-c, pressures P-c, and acentric factor omega...

  20. Measure and estimation of the evapotranspiration of tomato plants cultivated with organic fertilization in protected ambient / Medida e estimativa da evapotranspiração do tomateiro cultivado sob adubação orgânica em ambiente protegido

    Directory of Open Access Journals (Sweden)

    Viviane Aires de Paula

    2010-09-01

    Full Text Available The present work had the aim of determining the water consumption for tomato crop cultivated in protected ambient under organic fertilization and of evaluating the estimates of evapotranspiration and of crop coefficients (Kc in greenhouse, with the use of the methods Class A Pan, Solar Radiation, Penman and Penman-Monteith. The experiment was carried out from September/2004 to January/2005, at the Campus of Universidade Federal de Pelotas, Brazil. The organic fertilization of the soil consisted of two doses of vermicompost from bovine manure, and ‘Floradade’ tomato plants were transplanted in 4/11/2004, with 0.50 x 0.70 m spacing. In the central part of the greenhouse, a datalogger was installed in order to receive the signals originated from the agrometeorologicals sensors installed in the greenhouse. In order to determine the water consumption of the plants, the method of water balance of the soil was used associated to evapotranspirometers, constructed in the central of the polyethylene greenhouse. The water consumption of the tomato plants in the 88 days of cultivation was of 477 mm. The estimation of the evapotranspiration for the methods Class A Pan, Solar Radiation and Penman, presented high precision and had agreement with the measured values of the crop evapotranspiration. The reference evapotranspiration presented values close to the crop evapotranspiration during the crop growth with the use of the methods Class A Pan, Solar Radiation and Penman, with Kc values of 0.95; 1.02; and 1.01, respectively, while for the Penman-Monteith method the Kc was 1.41.O presente trabalho teve por objetivos determinar o consumo hídrico do tomateiro com adubação orgânica e avaliar as estimativas da evapotranspiração e do coeficiente de cultura (Kc em ambiente protegido, com o uso dos métodos do Tanque Classe A, Radiação Solar, Penman e Penman-Monteith. O experimento foi conduzido de setembro de 2004 a janeiro de 2005, no Campus da

  1. Estimate of LOCA-FI plenum pressure uncertainty for a five-ring RELAP5 production reactor model

    International Nuclear Information System (INIS)

    Griggs, D.P.

    1993-03-01

    The RELAP5/MOD2.5 code (RELAP5) is used to perform best-estimate analyses of certain postulated Design Basis Accidents (DBAs) in SRS production reactors. Currently, the most limiting DBA in terms of reactor power level is an instantaneous double-ended guillotine break (DEGB) loss of coolant accident (LOCA). A six-loop RELAP5 K Reactor model is used to analyze the reactor system behavior dozing the Flow Instability (FI) phase of the LOCA, which comprises only the first 5 seconds following the DEGB. The RELAP5 K Reactor model includes tank and plenum nodalizations having five radial rings and six azimuthal sectors. The reactor system analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in the FLOWTRAN code, which models a single fuel assembly in detail. RELAP5 also performs the system analysis for the latter phase of the LOCA, denoted the Emergency Cooling System (ECS) phase. Results from the RELAP analysis are used to provide boundary conditions to the FLOWTRAN-TF code, which is an advanced two-phase version of FLOWTRAN. The RELAP5 K Reactor model has been tested for LOCA-FI and Loss-of-Pumping Accident analyses and the results compared with equivalent analyses performed with the TRAC-PF1/MOD1 code (TRAC). An equivalent RELAP5 six-loop, five-ring, six-sector L Reactor model has been benchmarked against qualified single-phase system data from the 1989 L-Area In-Reactor Test Program. The RELAP5 K and L Reactor models have also been subjected to an independent Quality Assurance verification

  2. Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting Estimativa da área foliar do pepino em ambiente protegido por medidas lineares sob salinidade e enxertia

    Directory of Open Access Journals (Sweden)

    Flávio Favaro Blanco

    2005-08-01

    Full Text Available The measurement of leaf area by linear parameters is a useful tool when plants cannot be destroyed for direct measurement. The objectives of this study were to establish equations to estimate the leaf area of greenhouse-cucumber and to evaluate the effects of salinity and grafting on this estimative. Non-grafted cucumber seedlings, cv. 'Hokushin', were transplanted in a greenhouse and were irrigated with water of different salinities (1.0, 3.2 and 5.0 dS m-1. In the second growing period, the same cultivar was grafted on Cucurbita spp. and the plants were irrigated with water of 1.4, 3.0 and 5.3 dS m-1. Leaves of different sizes were collected from both experiments and leaf area was determined by an integrating area meter. Leaf length (L and width (W were also recorded. An equation for estimating the leaf area from L and W was developed for a given salinity level or grafting condition and estimated well the area of leaves collected in the other treatments. The leaf area (LA of cucumber 'Hokushin' could be estimated using the equation LA = 0.88LW - 4.27, for any grafting and salinity conditions.A determinação da área foliar por medidas lineares é uma ferramenta útil quando as plantas não podem ser destruídas para que a medição direta seja realizada. Os objetivos desse trabalho foram definir equações para a estimativa da área foliar do pepino em ambiente protegido e avaliar os efeitos da salinidade e da a enxertia nessa estimativa. Mudas de pepino, cv. 'Hokushin', não enxertadas, foram transplantadas em um ambiente protegido e irrigadas com água de diferentes salinidades (1,0, 3,2 e 5,0 dS m-1. No segundo período de cultivo, a mesma cultivar foi enxertada sobre Cucurbita spp., sendo as plantas irrigadas com água de 1,4, 3,0 e 5,3 dS m-1. Foram coletadas folhas de diferentes tamanhos dos dois cultivos e dos três tratamentos e a área foliar foi determinada por um medidor de área foliar. O comprimento (C e a largura (L da folha

  3. The future is 'ambient'

    Science.gov (United States)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  4. Radio-nuclide angiocardiography combined with Swan-Ganz catheter for the estimation of volume-pressure curves of the pulmonary ''venous'' system in man

    International Nuclear Information System (INIS)

    Gotoh, K.; Hirakawa, S.; Suzuki, T.; Fujiwara, H.; Ohsumi, Y.; Yagi, Y.

    1983-01-01

    Short segments of volume-pressure (V-P) curves of the pulmonary ''venous'' (P''V'') system, consisting of the pulmonary veins and left atrium, were estimated in 31 patients. Pulmonary blood volume (PBV) was estimated by our new method, using RN-angiocardiography. Increments in PBV and mean pulmonary artery wedge (PAW) pressure, that occur during passive-elevation of both legs, were clues to the estimation of the compliance (ΔV/ΔP) of this system. Sublingual administration of nitroglycerin (NTG) caused the short segments of V-P curves to shift to the left almost horizontally but slightly downwards, associated with a considerable increase in ΔV/ΔP. It is suggested that NTG causes, among other things, relaxation of the walls of P''V'' system

  5. A control-oriented approach to estimate the injected fuel mass on the basis of the measured in-cylinder pressure in multiple injection diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2015-01-01

    Highlights: • Control-oriented method to estimate injected quantities from in-cylinder pressure. • Able to calculate the injected quantities for multiple injection strategies. • Based on the inversion of a heat-release predictive model. • Low computational time demanding. - Abstract: A new control-oriented methodology has been developed to estimate the injected fuel quantities, in real-time, in multiple injection DI diesel engines on the basis of the measured in-cylinder pressure. The method is based on the inversion of a predictive combustion model that was previously developed by the authors, and that is capable of estimating the heat release rate and the in-cylinder pressure on the basis of the injection rate. The model equations have been rewritten in order to derive the injected mass as an output quantity, starting from use of the measured in-cylinder pressure as input. It has been verified that the proposed method is capable of estimating the injected mass of pilot pulses with an uncertainty of the order of ±0.15 mg/cyc, and the total injected mass with an uncertainty of the order of ±0.9 mg/cyc. The main sources of uncertainty are related to the estimation of the in-cylinder heat transfer and of the isentropic coefficient γ = c_p/c_v. The estimation of the actual injected quantities in the combustion chamber can represent a powerful means to diagnose the behavior of the injectors during engine operation, and offers the possibility of monitoring effects, such as injector ageing and injector coking, as well as of allowing an accurate control of the pilot injected quantities to be obtained; the latter are in fact usually characterized by a large dispersion, with negative consequences on the combustion quality and emission formation. The approach is characterized by a very low computational time, and is therefore suitable for control-oriented applications.

  6. Pressure dependence of conductivity

    International Nuclear Information System (INIS)

    Bracewell, B.L.; Hochheimer, H.D.

    1993-01-01

    The overall objectives of this work were to attempt the following: (1) Measure the pressure dependence of the electrical conductivity of several quasi-one-dimensional, charge-density-wave solids, including measurements along various crystal directions. (2) Measure photocurrents in selected MX solids at ambient and elevated pressures. (3) Measure the resonance Raman spectra for selected MX solids as a function of pressure

  7. Uncertainty associated with the gravimetric measurement of particulate matter concentration in ambient air.

    Science.gov (United States)

    Lacey, Ronald E; Faulkner, William Brock

    2015-07-01

    This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min(-1) (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min(-1) (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min(-1) (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1x10(-6) g m(-3) to 18.0x10(-6) g m(-3), which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically. This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate

  8. The association between pressure pain sensitivity, and answers to questionnaires estimating psychological stress level in the workplace. A feasibility study

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille; Gyntelberg, Finn

    2012-01-01

    To examine the association between pressure pain sensitivity (PPS) at the sternum as a measure of persistent stress assessed by questionnaires in a working population.......To examine the association between pressure pain sensitivity (PPS) at the sternum as a measure of persistent stress assessed by questionnaires in a working population....

  9. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    Science.gov (United States)

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, pforces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  10. Licenciamento ambiental e sustentabilidade

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Valinhas

    2011-12-01

    Full Text Available A sustentabilidade está apoiada principalmente nas dimensões econômica, ambiental e social. No entanto, sem a dimensão política ela não se constrói. Um dos principais instrumentos de comando e controle da política nacional de meio ambiente, o licenciamento ambiental é um processo contínuo de gestão ambiental pública e privada. Analisou-se o processo de licenciamento ambiental como acoplamento estrutural entre os sistemas social, econômico e ambiental. Apesar da constatação de críticas aos mecanismos de comando e controle dos últimos anos, foi verificado que o Estado do Rio de Janeiro tem buscado integrar a política ambiental do Estado à gestão ambiental privada e que esta integração busca atender às demandas dos sistemas sociais e econômicos para as questões ambientais. Em linhas gerais, este caminho segue as estratégias e ações propostas na Agenda 21 brasileira.

  11. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  12. Persuasion in Ambient Intelligence

    NARCIS (Netherlands)

    Kaptein, M.C.; Markopoulos, P.; Ruyter, de B.E.R.; Aarts, E.H.L.

    2010-01-01

    Although the field of persuasive technologies has lately attracted a lot of attention, only recently the notion of ambient persuasive technologies was introduced. Ambient persuasive technologies can be integrated into every aspect of life, and as such have greater persuasive power than the

  13. Gamma dose rate estimation and operation management suggestions for decommissioning the reactor pressure vessel of HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Fang; Hong Li; Jianzhu Cao; Wenqian Li; Feng Xie; Jiejuan Tong [Institute of Nuclear and New Energy Technology, Tsinghua, University, Beijing (China)

    2013-07-01

    China is now designing and constructing a high temperature gas cooled reactor-pebble bed module (HTR-PM). In order to investigate the future decommissioning approach and evaluate possible radiation dose, gamma dose rate near the reactor pressure vessel was calculated for different cooling durations using QAD-CGA program. The source term of this calculation was provided by KORIGEN program. Based on the calculated results, the spatial distribution and temporal changes of gamma dose rate near reactor pressure vessel was systematically analyzed. A suggestion on planning decommissioning operation of reactor pressure vessel of HTRPM was given based on calculated dose rate and the Chinese Standard GB18871-2002. (authors)

  14. A Method of Estimating Pressure and Intensity Distributions of Multielement Phased Array High Intensity Focused Ultrasonic Field at Full Power Using a Needle Hydrophone

    International Nuclear Information System (INIS)

    Yu Ying; Shen Guofeng; Bai Jingfeng; Chen Yazhu

    2011-01-01

    The pressure and intensity distribution of high intensity focused ultrasound (HIFU) fields at full power are critical for predicting heating patterns and ensuring safety of the therapy. With the limitations of maximum pressure at the hydrophone and damage from cavitation or thermal effects, it is hard to measure pressure and intensity directly when HIFU is at full power. HIFU-phased arrays are usually composed of large numbers of small elements and the sound power radiated from some of them at full power is measureable using a hydrophone, we grouped them based on the limitation of maximum permissible pressure at the hydrophone and the characteristics of the element arrangement in the array. Then sound field measurement of the group was carried out at full power level. Using the acoustic coherence principle, the pressure and intensity distribution of the array at full power level can be calculated from corresponding values from the groups. With this method, computer simulations and sound field measurement of a 65-element concentric distributed phased array was carried out. The simulation results demonstrate theoretically the feasibility of this method. Measurements on the 65-element phased array also verify the effectiveness of this method for estimating the pressure and intensity distribution of phased array at full power level using a needle hydrophone.

  15. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    Science.gov (United States)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  16. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate

    Science.gov (United States)

    Tian, Ye; Ritzwoller, Michael H.

    2017-09-01

    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  17. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  18. Estimating Exchange Market Pressure and the Degree of Exchange Market Intervention for Finland during the Floating Exchange Rate Regime

    OpenAIRE

    Pösö, Mika; Spolander, Mikko

    1997-01-01

    In this paper, we use a fairly simple monetary macro model to calculate the quarterly measures of exchange market pressure and the degree of the Bank of Finland's intervention during the time the markka was floated. Exchange market pressure measures the size of the exchange rate change that would have occurred if the central bank had unexpectedly refrained from intervening in the foreign exchange market. Intervention activity of the central bank is measured as the proportion of exchange marke...

  19. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  20. Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration

    Science.gov (United States)

    Murphy, P. J.; LaGrange, M. S.

    1998-11-01

    Previous work on gold chloride and hydroxide speciation in fluids has shown differences in opinion as to the relative importance of gold (I) and gold (III) species, as well as for the Raman peak assignments for the various species. In addition, previous experimental work has not been consistent with theoretical predictions either of the number or of the frequencies of the peaks in the Raman spectrum. In order to re-evaluate the effect of pH on Raman spectra and speciation, solutions containing gold (III) chloride were analysed by Raman spectroscopy at ambient temperature and pressure, over a range of pH from 1 to 11. Total gold concentrations were from 0.001 to 0.02 M, with total chloride concentrations of 0.004-0.5 M. The spectra obtained are consistent with the hydrolysis sequence of square-planar Au(III) complex ions [AuCl x(OH) 4-x] -, where x = 0-4. The Au-Cl stretching peaks obtained were 348/325 Rcm -1 for [AuCl 4] -, 348/335/325 Rcm -1 for [AuCl 3(OH)] -, 337/355 Rcm -1 for [AuCl 2(OH) 2] -, and 355 Rcm -1 for [AuCl(OH) 3] -. [Au(OH) 4] - probably occurred, alongside [AuCl(OH) 3] - at pH values above 11. A dark purplish-grey precipitate (Au(I)OH) formed at high pH values. No evidence for Au(I) species was found. The spectra are more consistent with theory than previous data and show the predicted number of peaks for Au-Cl and Au-OH stretches for each species. However, the peak frequencies do not fit precisely with the predictions of Tossell (1996), particularly for Au-OH stretches. Hydrolysis of the simple chloride species occurs at lower pH values than found previously, and both gold and chloride concentration were found to affect the pH ranges of stability for the various chloro-hydroxy species. Decreasing gold concentration resulted in hydrolysis occurring at lower pH values. This is especially important in the absence of excess chloride (ΣCl = 4ΣAu). Substantial hydrolysis occurred below pH = 4 for 0.02 M Au /0.08 M Cl -, and below pH = 2 for 0.001 M

  1. Estimation on the Pressure Loss of the Conceptual Primary Cooling System and Design of the Primary Cooling Pump for a Research Reactor

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Oh, Jae Min; Park, Jong Hark; Chae, Hee Taek; Seo, Jae Kwang; Park, Cheon Tae; Yoon, Ju Hyeon; Lee, Doo Jeong

    2009-01-01

    A new conceptual primary cooling system (PCS) for a research reactor has been designed for an adequate cooling to the reactor core which has various powers ranging from 30MW through 80MW. The developed primary cooling system consisted of decay tanks, pumps, heat exchangers, vacuum breakers, some isolation and check valves, connection piping, and instruments. Because the system flow rate should be determined by the thermal hydraulic design analysis for the core, the heads to design the primary cooling pumps (PCPs) in a PCS will be estimated by the variable system flow rates. The heads of the part of a research reactor vessel was evaluated by the previous study. The various pressure losses of the PCS can be calculated by the dimensional analysis of the pipe flow and the head loss coefficient of the components. The purpose of this research is to estimate the various pressure losses and to design the PCPs

  2. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors.

    Science.gov (United States)

    Pflugradt, Maik; Geissdoerfer, Kai; Goernig, Matthias; Orglmeister, Reinhold

    2017-01-14

    Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations' vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway.

  3. An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase

    Science.gov (United States)

    Li, Tianyi; Schlüter, Steffen; Dragila, Maria Ines; Wildenschild, Dorthe

    2018-04-01

    We present an improved method for estimating interfacial curvatures from x-ray computed microtomography (CMT) data that significantly advances the potential for this tool to unravel the mechanisms and phenomena associated with multi-phase fluid motion in porous media. CMT data, used to analyze the spatial distribution and capillary pressure-saturation (Pc-S) relationships of liquid phases, requires accurate estimates of interfacial curvature. Our improved method for curvature estimation combines selective interface modification and distance weighting approaches. It was verified against synthetic (analytical computer-generated) and real image data sets, demonstrating a vast improvement over previous methods. Using this new tool on a previously published data set (multiphase flow) yielded important new insights regarding the pressure state of the disconnected nonwetting phase during drainage and imbibition. The trapped and disconnected non-wetting phase delimits its own hysteretic Pc-S curve that inhabits the space within the main hysteretic Pc-S loop of the connected wetting phase. Data suggests that the pressure of the disconnected, non-wetting phase is strongly modified by the pore geometry rather than solely by the bulk liquid phase that surrounds it.

  4. A Comparison of Effects of Ambient Pressure on the Atomization Performance of Soybean Oil Methyl Ester and Dimethyl Ether Sprays Comparaison des effets de la pression ambiante sur l’atomisation en “spray” de methylester d’huile de soja et de dimethyléther

    Directory of Open Access Journals (Sweden)

    Kim H.J.

    2010-11-01

    Full Text Available The purpose of this study is the experimental investigation of Soybean oil Methyl Ester (SME and DiMethyl Ether (DME spray characteristics injected through the common-rail injection system under various ambient pressures. A high pressure chamber that can be pressurized up to 4 MPa was utilized for a change of ambient pressure. In order to compare the spray development and atomization characteristics, the images of SME and DME were obtained by using a high speed camera with two metal halide lamps under various ambient pressures in the spray chamber. From these spray images, the spray characteristics such as the spray penetration from the nozzle tip, maximum radial distance, and spray diameter were measured and analyzed. In addition, the Sauter Mean Diameter (SMD of two fuels under ambient pressure was analyzed using the droplet measuring system. It was revealed that the axial distance of spray from the nozzle tip of the SME spray is longer than that of DME spray under same injection condition. The axial penetration, maximum radial distance, and spray diameter decreased when the ambient pressure in the chamber increased. As the ambient pressure increased, the SMD decreased and the DME spray showed a superior atomization performance compared to the SME spray. Le but de cette étude est l’investigation expérimentale de l’effet de diverses pressions ambiantes sur les caractéristiques des sprays (issus d’un système "common rail" de methylester d’huile de soja (SME et de dimethyléther (DME. La pression ambiante dépend de la chambre et sa valeur la plus haute peut monter jusqu’à 4 MPa. Pour comparer le développement de spray et la caractéristique d’atomisation, des images de spray de SME et DME à différentes pression ambiantes sont obtenues avec une caméra à haute vitesse à deux lampes de métal halide. Les caractéristiques du spray, comme la pénétration, la distance radiale maximale et le diamètre de spray, sont mesur

  5. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  6. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  7. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Verhaegh, W.F.J.; Aarts, E.H.L.; Korst, J.H.M.

    2004-01-01

    In this chapter, we discuss the new paradigm for user-centered computing known as ambient intelligence and its relation with methods and techniques from the field of computational intelligence, including problem solving, machine learning, and expert systems.

  8. Muscle activation and estimated relative joint force during running with weight support on a lower-body positive pressure treadmill

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Hovgaard-Hansen, Line; Cappelen, Katrine Louise

    2016-01-01

    Running on a lower-body positive pressure (LBPP) treadmill allows effects of weight support on leg muscle activation to be assessed systematically, and has the potential to facilitate rehabilitation and prevent overloading. The aim was to study the effect of running with weight support on leg mus...

  9. Selection of a Suitable Wall Pressure Spectrum Model for Estimating Flow-Induced Noise in Sonar Applications

    Directory of Open Access Journals (Sweden)

    V. Bhujanga Rao

    1995-01-01

    Full Text Available Flow-induced structural noise of a sonar dome in which the sonar transducer is housed, constitutes a major source of self-noise above a certain speed of the vessel. Excitation of the sonar dome structure by random pressure fluctuations in turbulent boundary layer flow leads to acoustic radiation into the interior of the dome. This acoustic radiation is termed flow-induced structural noise. Such noise contributes significantly to sonar self-noise of submerged vessels cruising at high speed and plays an important role in surface ships, torpedos, and towed sonars as well. Various turbulent boundary layer wall pressure models published were analyzed and the most suitable analytical model for the sonar dome application selected while taking into account high frequency, fluid loading, low wave number contribution, and pressure gradient effects. These investigations included type of coupling that exists between turbulent boundary layer pressure fluctuations and dome wall structure of a typical sonar dome. Comparison of theoretical data with measured data onboard a ship are also reported.

  10. Thermo-hydraulic instability of natural circulation BWRs at low pressure star-up. Experimental estimation of instability region with test facility considering scaling law

    International Nuclear Information System (INIS)

    Inada, F.; Furuya, M.; Yasuo, A.; Tabata, H.; Yoshioka, Y.; Kim, H.T.

    1995-01-01

    In natural circulation BWRs developed for advanced light water reactors with simplified passive safety systems, thermo-hydraulic stability should be confirmed especially at low pressure start-up. In this paper, nondimensional parameters to estimate the hydrodynamic stability to reactors at low pressure start-up were obtained by transformation of the basic equations of drift-flux model in the two-phase region into nondimensional form. A test facility based on these parameters was then constructed. The height of the test facility is 70% of SBWR and many nondimensional test facility parameters are almost the same as those of the reactor. Reactor stability was estimated experimentally. Stability maps below 0.5MPa were obtained on the heat flux - channel inlet subcooling place. It was found that there were two stability boundaries, between which the flow became unstable. Flow was stable in the high and low channel inlet subcooling regions. Typical conditions of SBWR at low pressure start-up were noted in the high channel inlet subcooling stable region. The heat flux at typical SBWR start-up was about one fifth that of the stability boundary. Though some nondimensional parameters of the test facility did not exactly agree with those of SBWR, it was suggested that the flow in SBWR was stable below 0.5MPa because of the large margin. (author)

  11. Assessment of congenital heart disease by a thallium-201 SPECT study in children; Accuracy of estimated right to left ventricular pressure ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Iwao; Nakajima, Kenichi; Taki, Junichi; Taniguchi, Mitsuru; Bunko, Hisashi; Tonami, Norihisa; Hisada, Kinichi; Ohno, Takashi (Kanazawa Univ. (Japan). School of Medicine)

    1993-01-01

    The characteristics of correlation between the right-to-left ventricular systolic pressure ratios (RVp/LVp) and the thallium-201 right-to-left ventricular ([sup 201]Tl R/L) count ratios was investigated in children with various congenital heart diseases. High-resolution three-headed SPECT system equipped with either parallel-hole or fan-beam collimators was used. In a total of 102 patients, the correlation between RVp/LVp and [sup 201]Tl R/L average count ratios was good in both planar (r=0.89, p=0.0001) and SPECT studies (r=0.80, p=0.0001). Quantitative analysis of myocardial uptake by SPECT demonstrated the characteristic pattern of each disease as well as the differences in the right ventricular overload types. When the linear regression analysis was performed in each heart disease, ventricular septal defect showed most excellent correlation. Complex heart anomalies also showed positive correlation (r=0.51, p=0.05) with RVp/LVp, and it can be used to estimate right ventricular pressure. After surgical treatment of tetralogy of Fallot and pulmonary stenosis, the decrease of [sup 201]Tl R/L count ratio was in accordance with improvement of right ventricular overload. We conclude that [sup 201]Tl SPECT study can be a good indicator for estimation of right ventricular pressure. (author).

  12. Minimum miscibility pressure estimation for a CO{sub 2}/n-decane system in porous media by X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu; Jiang, Lanlan; Tang, Lingyue; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Yang, Mingjun [Dalian University of Technology, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian (China)

    2015-07-15

    Accurate determination of gas-fluid miscibility conditions is important to optimize the displacement efficiency during CO{sub 2}-enhanced oil recovery. This paper presents a new technique to investigate the phase behavior and to estimate the minimum miscibility pressure (MMP) of a CO{sub 2}/n-decane system using an X-ray computerized tomography (CT) scanner. CT scans of the CO{sub 2}/n-decane system are taken at various pressures during the experiments. The image intensity values taken from the CT images have a linear relationship with the densities of the measured objects; therefore, we can estimate the miscible point of CO{sub 2} and n-decane because the difference between the intensity values for each phase decays to zero as the pressure increases toward the MMP. This paper provides experimental evidence for the validity of the new CT method by comparing the results with previous studies and presents an application of the method to investigate the MMP of the CO{sub 2}/n-decane system in porous media. Additionally, the influence of porous media on the equilibrium state when the CO{sub 2}/n-decane system is close to miscibility is discussed. (orig.)

  13. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    AlOmari, A H; Savkin, A V; Karantonis, D M; Lim, E; Lovell, N H

    2009-01-01

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R 2 = 0.982) and a mean absolute error (e) of 0.323 L min −1 , while for head, R 2 = 0.933 and e = 7.682 mmHg were obtained. R 2 = 0.849 and e = 0.584 L min −1 were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N = 6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands

  14. Data based ambient lighting control

    NARCIS (Netherlands)

    2012-01-01

    In controlling an ambient lighting element, a category of data being rendered by a host is identified, ambient lighting data associated with the identified category is retrieved, and the retrieved ambient lighting data is rendered in correspondence with the rendered data. The retrieved ambient

  15. Ambient Response Analysis of the Great Belt Bridge

    DEFF Research Database (Denmark)

    Brincker, Rune; Frandsen, Jeanette B.; Andersen, Palle

    2000-01-01

    In this paper an ambient response analysis of the Great Belt Bridge is presented. The Great Belt Bridge is one of the largest suspension bridges in the world, and the analysis was carried out in order to investigate the possibilities of estimating reliable damping values from the ambient response...

  16. An estimate of the outgassing of space payloads, their internal pressures, contaminations and gaseous influences on the environment

    Science.gov (United States)

    Scialdone, J. J.

    1985-01-01

    Experimentally measured outgassing as a function of time is presented for 14 space systems including several spacecraft instruments, spacecraft, the shuttle bay, and a spent solid fuel motor. The weights, volumes, and some of the scientific functions of the instruments involved are indicated. The methods used to obtain the data are briefly described. General indications on how to use the data to obtain the internal pressure versus time for a payload, its self-contamination, the gaseous flow in its vicinity, the column densities in its field of view, and other environmental parameters which are dependent on the outgassing of a payload are provided.

  17. Estimation of left ventricular end diastolic pressure by tissue doppler imaging in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Ali, M.; Abid, A.R.; Rehman, T.A.; Masood, A.; Sohail, S.

    2010-01-01

    Objective: To evaluate sensitivity and specificity of E / Ea > 10 for prediction of LVEDP > 15 mmHg in patients with coronary artery disease undergoing left heart catheterization. Materials and Methods: Sixty patients of acute transmural myocardial infarction at Jinnah Hospital Lahore were enrolled in study from December 2008 to December 2009. Patients with sinus rhythm were included in the study. Patients with valvular heart disease, complete right/left bundle branch block, Pacemaker dependence, Atrial fibrillation and Post mitral valve replacement were excluded. All patients were examined by performing trans thoracic Doppler echocardiography. The trans-mitral LV filling signal was traced manually and the following variables were obtained: peak early (E) and late (A) trans-mitral velocities, and E/A ratio. Tissue - Doppler derived indices were recorded at the lateral mitral annulus. These indices included systolic velocities (S'), early diastolic (Ea) velocities and late diastolic (Aa) velocities. Finally, the dimensionless index of E/Ea was calculated. All were averaged from at least three beats. Cardiac catheterization was performed via trans-femoral / trasradial route using six French (6F) sheaths. Left ventricular diastolic pressure was directly measured by fluid filled pigtail catheter attached to a pressure transducer. Results: Mean age of the study population was 56.8 +- 12.7 years. There were 47 (78.3%) males and 13 (21.7%) females. Diabetes mellitus was present in 12(20%), hypertension in 32 (53.3%), smoking in 35 (58.3%), dyslipidemia in 24 (40%). Anterior wall myocardial infarction occurred in 44 (73.3%) and inferior wall MI in 16 (26.7%). Grade I diastolic dysfunction was present in 22 (36.7%), Grade II in 31 (51.7%) and Grade III in 7 (11.7%) patients. E/E 15 in 9 (15%). Overall 21 patients were true positive, 6 were false positive, 25 were true negative and 8 were false negative. By applying 2 X 2 table sensitivity was 77.7%, specificity was 80

  18. Estimation of left ventricular end diastolic pressure by tissue doppler imaging in patients with acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M; Abid, A R; Rehman, T A; Masood, A; Sohail, S [Allama Iqbal Medical College/Jinnah Hospital, Lahore(Pakistan)

    2010-10-15

    Objective: To evaluate sensitivity and specificity of E / Ea > 10 for prediction of LVEDP > 15 mmHg in patients with coronary artery disease undergoing left heart catheterization. Materials and Methods: Sixty patients of acute transmural myocardial infarction at Jinnah Hospital Lahore were enrolled in study from December 2008 to December 2009. Patients with sinus rhythm were included in the study. Patients with valvular heart disease, complete right/left bundle branch block, Pacemaker dependence, Atrial fibrillation and Post mitral valve replacement were excluded. All patients were examined by performing trans thoracic Doppler echocardiography. The trans-mitral LV filling signal was traced manually and the following variables were obtained: peak early (E) and late (A) trans-mitral velocities, and E/A ratio. Tissue - Doppler derived indices were recorded at the lateral mitral annulus. These indices included systolic velocities (S'), early diastolic (Ea) velocities and late diastolic (Aa) velocities. Finally, the dimensionless index of E/Ea was calculated. All were averaged from at least three beats. Cardiac catheterization was performed via trans-femoral / trasradial route using six French (6F) sheaths. Left ventricular diastolic pressure was directly measured by fluid filled pigtail catheter attached to a pressure transducer. Results: Mean age of the study population was 56.8 +- 12.7 years. There were 47 (78.3%) males and 13 (21.7%) females. Diabetes mellitus was present in 12(20%), hypertension in 32 (53.3%), smoking in 35 (58.3%), dyslipidemia in 24 (40%). Anterior wall myocardial infarction occurred in 44 (73.3%) and inferior wall MI in 16 (26.7%). Grade I diastolic dysfunction was present in 22 (36.7%), Grade II in 31 (51.7%) and Grade III in 7 (11.7%) patients. E/E < 10 was observed in 31 (51.7%), 11 - 15 in 20 (33.3%) and > 15 in 9 (15%). Overall 21 patients were true positive, 6 were false positive, 25 were true negative and 8 were false negative. By

  19. Four to seven random casual urine specimens are sufficient to estimate 24-h urinary sodium/potassium ratio in individuals with high blood pressure.

    Science.gov (United States)

    Iwahori, T; Ueshima, H; Torii, S; Saito, Y; Fujiyoshi, A; Ohkubo, T; Miura, K

    2016-05-01

    This study was done to clarify the optimal number and type of casual urine specimens required to estimate urinary sodium/potassium (Na/K) ratio in individuals with high blood pressure. A total of 74 individuals with high blood pressure, 43 treated and 31 untreated, were recruited from the Japanese general population. Urinary sodium, potassium and Na/K ratio were measured in both casual urine samples and 7-day 24-h urine samples and then analyzed by correlation and Bland-Altman analyses. Mean Na/K ratio from random casual urine samples on four or more days strongly correlated with the Na/K ratio of 7-day 24-h urine (r=0.80-0.87), which was similar to the correlation between 1 and 2-day 24-h urine and 7-day 24-h urine (r=0.75-0.89). The agreement quality for Na/K ratio of seven random casual urine for estimating the Na/K ratio of 7-day 24-h urine was good (bias: -0.26, limits of agreements: -1.53-1.01), and it was similar to that of 2-day 24-h urine for estimating 7-day 24-h values (bias: 0.07, limits of agreement: -1.03 to 1.18). Stratified analyses comparing individuals using antihypertensive medication and individuals not using antihypertensive medication showed similar results. Correlations of the means of casual urine sodium or potassium concentrations with 7-day 24-h sodium or potassium excretions were relatively weaker than those for Na/K ratio. The mean Na/K ratio of 4-7 random casual urine specimens on different days provides a good substitute for 1-2-day 24-h urinary Na/K ratio for individuals with high blood pressure.

  20. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  1. Non-invasive Estimation of Pressure Changes using 2-D Vector Velocity Ultrasound: An Experimental Study with In-Vivo Examples

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Møller, Niclas Dechau

    2018-01-01

    and at the aortic valve of two healthy volunteers. Ultrasound measurements were performed using the experimental scanner SARUS, in combination with an 8MHz linear array transducer for experimental scans and a carotid scan, whereas a 3.5MHz phased array probe was employed for a scan of an aortic valve. Measured 2-D......A non-invasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamics (CFD) data, and with catheter measurements on phantoms. Hereafter, the method was tested in-vivo at the carotid bifurcation...

  2. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  3. Risk Stratification by 24-Hour Ambulatory Blood Pressure and Estimated Glomerular Filtration Rate in 5322 Subjects From 11 Populations

    DEFF Research Database (Denmark)

    Boggia, José; Thijs, Lutgarde; Li, Yan

    2013-01-01

    subjects (median age, 51.8 years; 43.1% women) randomly recruited from 11 populations, who had baseline measurements of 24-hour ambulatory blood pressure (ABP(24)) and eGFR. We computed hazard ratios using multivariable-adjusted Cox regression. Median follow-up was 9.3 years. In fully adjusted models......, which included both ABP(24) and eGFR, ABP(24) predicted (P≤0.008) both total (513 deaths) and cardiovascular (206) mortality; eGFR only predicted cardiovascular mortality (P=0.012). Furthermore, ABP(24) predicted (P≤0.0056) fatal combined with nonfatal events as a result of all cardiovascular causes...... (555 events), cardiac disease (335 events), or stroke (218 events), whereas eGFR only predicted the composite cardiovascular end point and stroke (P≤0.035). The interaction terms between ABP(24) and eGFR were all nonsignificant (P≥0.082). For cardiovascular mortality, the composite cardiovascular end...

  4. Influence of Estimated Training Status on Anti and Pro-Oxidant Activity, Nitrite Concentration, and Blood Pressure in Middle-Aged and Older Women.

    Science.gov (United States)

    Jacomini, André M; Dias, Danielle da Silva; Brito, Janaina de Oliveira; da Silva, Roberta F; Monteiro, Henrique L; Llesuy, Susana; De Angelis, Kátia; Amaral, Sandra L; Zago, Anderson S

    2017-01-01

    The purpose of this study was to compare the association between anti and pro-oxidant activity, nitrite concentration, and blood pressure (BP) in middle-aged and older women with different levels of estimated training status (TS). The sample consisted of 155 females (50-84 years) who were submitted to a physical examination to evaluate estimated TS through the "Functional Fitness Battery Test," BP measurements, and plasma blood samples to evaluate pro-oxidant and antioxidant activity and nitrite concentrations. Participants were separated by age into a middle-aged group (<65 years) and an older (≥65 years) group and then subdivided in each group according to TS. Blood biochemistry was similar between groups. On the other hand, protein oxidation was lower in participants with higher TS, independent of age. Older females with higher TS presented higher nitrite concentrations, lower lipoperoxidation, and lower values of BP compared with those with lower TS. Lower GPx activity was observed in participants with higher TS compared with middle-aged with lower TS. Thus, our results suggest that good levels of TS may be associated with lower oxidative stress and higher nitrite concentration and may contribute to maintain normal or reduced blood pressure values.

  5. Influence of Estimated Training Status on Anti and Pro-Oxidant Activity, Nitrite Concentration, and Blood Pressure in Middle-Aged and Older Women

    Science.gov (United States)

    Jacomini, André M.; Dias, Danielle da Silva; Brito, Janaina de Oliveira; da Silva, Roberta F.; Monteiro, Henrique L.; Llesuy, Susana; De Angelis, Kátia; Amaral, Sandra L.; Zago, Anderson S.

    2017-01-01

    The purpose of this study was to compare the association between anti and pro-oxidant activity, nitrite concentration, and blood pressure (BP) in middle-aged and older women with different levels of estimated training status (TS). The sample consisted of 155 females (50–84 years) who were submitted to a physical examination to evaluate estimated TS through the “Functional Fitness Battery Test,” BP measurements, and plasma blood samples to evaluate pro-oxidant and antioxidant activity and nitrite concentrations. Participants were separated by age into a middle-aged group (<65 years) and an older (≥65 years) group and then subdivided in each group according to TS. Blood biochemistry was similar between groups. On the other hand, protein oxidation was lower in participants with higher TS, independent of age. Older females with higher TS presented higher nitrite concentrations, lower lipoperoxidation, and lower values of BP compared with those with lower TS. Lower GPx activity was observed in participants with higher TS compared with middle-aged with lower TS. Thus, our results suggest that good levels of TS may be associated with lower oxidative stress and higher nitrite concentration and may contribute to maintain normal or reduced blood pressure values. PMID:28326041

  6. Ambient air pollution and low birth weight

    DEFF Research Database (Denmark)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy

    2017-01-01

    (TLBW, restriction (IUGR), and suggest that some subgroups of pregnant women who are smoking, of low or high body-mass index (BMI), low socioeconomic status (SES) or asthma are more vulnerable towards...... on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite...... direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women...

  7. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  8. On the use of expert judgments to estimate the pressure increment in the Sequoyah containment at vessel breach

    International Nuclear Information System (INIS)

    Chhibber, S.; Apostolakis, G.E.; Okrent, D.

    1994-01-01

    The use of expert judgments in probabilistic risk assessments has become common. Simple aggregation methods have often been used with the result that expert biases and interexpert dependence are often neglected. Sophisticated theoretical models for the use of expert opinions have been proposed that offer ways of incorporating expert biases and dependence, but they have not found wide acceptance because of the difficulty and rigor of these methods. Practical guidance on the use of the versatile Bayesian expert judgment aggregation model is provided. In particular, the case study of pressure increment due to vessel breach in the Sequoyah nuclear power plant is chosen to illustrate how phenomenological uncertainty can be addressed by using the Bayesian aggregation model. The results indicate that the Bayesian aggregation model is a suitable candidate model for aggregating expert judgments, especially if there is phenomenological uncertainty. Phenomenological uncertainty can be represented through the dependence parameter of the Bayesian model. This is because the sharing of assumptions by the experts tends to introduce dependence between the experts. The extent of commonality in the experts' beliefs can be characterized by assessing their interdependence. The results indicate that uncertainty is possibly underestimated by ignoring dependence

  9. Improved estimation of geocenter motion and changes in the Earth's dynamic oblateness from GRACE data and an ocean bottom pressure model

    Science.gov (United States)

    Sun, Y.; Ditmar, P.; Riva, R.

    2015-12-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission, since the launch in 2002, has enabled the monitoring of mass transport in the Earth's system on a monthly basis. In spite of continuous improvements in data processing techniques, an estimation of very low-degree spherical harmonic coefficients remains problematic. GRACE is insensitive to variations in the degree-1 coefficients (ΔC11, ΔS11 and ΔC10), which reflect the motion of the geocenter. The variations of C20 coefficients, which characterize changes in the Earth's dynamic oblateness (Δ J2) are corrupted by ocean tide aliases and usually replaced with estimates from other techniques.In this study, the methodology proposed by Swenson et al. (2008) to estimate geocenter motion is updated and extended to co-estimate changes in the Earth's dynamic oblateness. The algorithm uses monthly GRACE gravity solutions (in the form of spherical harmonic coefficients), an ocean bottom pressure model (over the oceans), and a glacial isostatic adjustment (GIA) model (globally). GRACE solutions over coastal areas may suffer from signal leakage due to their limited spectral content and to filtering. We effectively avoid the influence of this effect by introducing a carefully chosen buffer zone. We also take into account self-attraction and loading effects when dealing with water redistribution in the oceans. The estimated annual amplitude of ΔC10 , i.e. the Z component of the geocenter motion, is significantly amplified compared to the original estimations of Swenson et al. (2008) and it is in line with estimates from other techniques, such as the global GPS inversion. The resulting ΔC20 time-series agree remarkably well with a solution based on satellite laser ranging data, which is currently believed to be one of the most accurate sources of information on changes in the Earth's dynamic oblateness. Trends in both geocenter position and the Earth's oblateness are estimated as well. The results show a

  10. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model

    Directory of Open Access Journals (Sweden)

    Xinyao Hu

    2018-02-01

    Full Text Available Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs. The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64 (left foot and 2.72 mm (±0.83 (right foot along the medial–lateral direction, and 9.17 mm (±1.98 (left foot and 11.19 mm (±2.98 (right foot along the anterior–posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly.

  11. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model.

    Science.gov (United States)

    Hu, Xinyao; Zhao, Jun; Peng, Dongsheng; Sun, Zhenglong; Qu, Xingda

    2018-02-01

    Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP) has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs). The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64) (left foot) and 2.72 mm (±0.83) (right foot) along the medial-lateral direction, and 9.17 mm (±1.98) (left foot) and 11.19 mm (±2.98) (right foot) along the anterior-posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly.

  12. Indicadores de salud ambiental

    Directory of Open Access Journals (Sweden)

    Manuel Posada de la Paz

    2004-12-01

    Full Text Available Esta ponencia presenta una visión general del proyecto de Indicadores de Salud Ambiental, coordinado por la OMS a nivel internacional y liderado por el Centro de Investigación sobre el Síndrome del Aceite Tóxico y Enfermedades Raras (CISATER en España. En ella se describen los objetivos del proyecto, las gestiones realizadas y los resultados obtenidos durante la fase de viabilidad de este proyecto. El proyecto consiste en el establecimiento de un sistema de información sobre salud ambiental que permita desarrollar una vigilancia de los factores ambientales determinantes de los estados de salud, realizar comparaciones internacionales, elaborar políticas de acción, así como facilitar la comunicación con la ciudadanía. La OMS desarrolló una metodología para el desarrollo de estos indicadores dentro del marco conceptual de información ambiental DPSEEA (Fuerzas impulsoras, Presión, Estado, Exposición, Efecto, Acción y seleccionó un total de 55 indicadores (que incluyen 168 variables sobre 10 áreas de la salud ambiental. Durante la fase de viabilidad se predijo que podrían obtenerse el 89% de los indicadores. Sin embargo la recolección de los datos supuso muchas dificultades debido a la incompatibilidad de algunas variables en los sistemas de información españoles con las variables definidas por la OMS. A nivel de gestión del proyecto, la mayor dificultad radica en la disparidad de responsabilidades en materia de medio ambiente y salud entre las instituciones españolas. Además de la aportación técnica a la salud ambiental en España, un valor añadido de este proyecto ha sido el establecimiento de líneas de colaboración estrechas con los responsables de los diferentes Ministerios implicados.

  13. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  14. Medio ambiente urbano

    OpenAIRE

    Rodríguez-Chaves Mimbrero, Blanca

    2007-01-01

    El estudio  y análisis  de las interacciones  entre  ambiente  y desarrollo y  su inserción  en los procesos  de  planificación del crecimiento  social y económico  de  los  países  de América Latina, reviste especial interés para proponer alternativas de acción que  conduzcan  al  logro  de  una mejor  calidad de  vida.  El impacto  que las conferencias sobre  el  Medio Ambiente Humano Estocolmo (1972),  Cocoyoc  (1974) o de documentos como "Nuestro Futuro Común" o "Nuestra Propia Agenda" ha...

  15. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  16. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  17. MEIO AMBIENTE E DESENVOLVIMENTO

    Directory of Open Access Journals (Sweden)

    Suely Salgueiro Chacon

    2009-12-01

    Full Text Available O objetivo deste artigo é resgatar elementos para subsidiar uma reflexão crítica sobre o modelo de desenvolvimento econômico prevalente na sociedade e as relações com o meio ambiente, sob a ameaça que ronda o destino da espécie humana, conforme afirmação de Lovelock (2006, p. 20 sobre o conceito de desenvolvimento sustentável: “uma ideia adorável se a tivéssemos aplicado 200 anos atrás, quando havia um bilhão de pessoas no mundo. Agora é tarde demais. Não há mais espaço para nenhum tipo de desenvolvimento. A humanidade tem que regredir”. Este artigo apresenta a evolução do conceito de desenvolvimento econômico sob a ótica da sustentabilidade, e interliga temas como: o ambientalismo, aglutinador de distintos pensamentos sobre as relações entre a sociedade e a natureza; o movimento ambiental, a fundamentar a disseminação do conceito de desenvolvimento sustentável, e a gestão ambiental, abordada como prática orientada pelo conceito de desenvolvimento sustentável.

  18. Behavior and source characteristic of PCBS in urban ambient air of Yokohama, Japan

    International Nuclear Information System (INIS)

    Kim, Kyoung-Soo; Masunaga, Shigeki

    2005-01-01

    To understand the behavior and sources of polychlorinated biphenyls (PCBs) in ambient air, gaseous and particulate phase concentrations were measured at Yokohama City, Japan, during March 2002 and February 2003. The concentration of total PCB and TEQ ranged from 62 to 250 pg/m 3 and from 2 to 14 fgTEQ/m 3 , respectively. The gas-particle partition coefficient (K p ) was obtained as a function of temperature. The relationship between the partition coefficient and the sub-cooled liquid vapor pressure (P L ) was also established (coefficients of determination for log K p versus log P L plot were >0.76, except for three samples). As a result, the partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. Principal component analysis (PCA) was applied to the source identification of PCBs in ambient air. The concentrations of 122 congeners between tetra-CBs and deca-CB were used as input variables, and three PCs with eigenvalue more than 10 were obtained. The principal component 1 (PC 1) accounted for 43.4% of the total variance, and was interpreted as volatilization from PCB products and/or sites polluted by PCBs. The concentrations of PCB congeners were strongly related with PC 1 which showed high correlation with temperature. PC 2 accounted for 22.3%, and was interpreted as PCBs from incineration sources, while PC 3 accounted for 10.8%, but could not be interpreted. - The relationship between the gas-particle partition coefficient (K p ) and sub-cooled liquid vapor pressure was estimated using gaseous and particle phase concentration in ambient air, and was estimated source apportionment of PCBs

  19. Estimating average shock pressures recorded by impactite samples based on universal stage investigations of planar deformation features in quartz - Sources of error and recommendations

    Science.gov (United States)

    Holm-Alwmark, S.; Ferrière, L.; Alwmark, C.; Poelchau, M. H.

    2018-01-01

    Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.

  20. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application.

    Directory of Open Access Journals (Sweden)

    Hojin Ha

    Full Text Available Although the measurement of turbulence kinetic energy (TKE by using magnetic resonance imaging (MRI has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required.The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored.MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared.MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 400. The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986. However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography.These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique.

  1. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients

  2. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  3. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  4. Some measurements of ambient air pollution

    International Nuclear Information System (INIS)

    Memon, H.R.; Memon, A.A.; Behan, M.Y.

    1999-01-01

    Ambient air pollution arising from different sources in Karachi and its surroundings has been studied. The urban centres like Karachi are mostly confronted with eye-irritation, reduce visibility, heart-diseases, nervous disorder, smog and other unpleasant experiences. In this paper quantitative estimations of some air-pollutants such as sulphur dioxide, carbon monoxide, oxides of nitrogen, chlorine and particular matters are presented with their hazardous effects. The remedial measures for the control of major air emissions are also discussed. (author)

  5. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  6. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  7. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Di Francesco, James [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, V9E 2E7 (Canada); Friesen, Rachel K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4 (Canada); Pineda, Jaime E.; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Punanova, Anna [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching (Germany); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Matzner, Christopher D.; Singh, Ayushi [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Myers, Philip C.; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Chen, Michael Chun-Yuan; Keown, Jared [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2 (Canada); Seo, Young Min [Jet Propulsion Laboratory, NASA, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Shirley, Yancy [Steward Observatory, 933 North Cherry Ave., Tucson, AZ 85721 (United States); Ginsburg, Adam [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Hall, Christine [Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, K7L 3N6 (Canada); and others

    2017-09-10

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  8. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    International Nuclear Information System (INIS)

    Kirk, Helen; Di Francesco, James; Friesen, Rachel K.; Pineda, Jaime E.; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Punanova, Anna; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Singh, Ayushi; Myers, Philip C.; Chen, How-Huan; Chen, Michael Chun-Yuan; Keown, Jared; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine

    2017-01-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  9. Dioxinas y medio ambiente

    Directory of Open Access Journals (Sweden)

    María Teresa Frejo Moya

    2011-12-01

    Full Text Available Con el término genérico dioxinas se designa al grupo de las dibenzo-p-dioxinas policloradas (PCDD y de los dibenzofuranos policlorados (PCDF, representantes típicos de los compuestos orgánicos persistentes (COPs. Se obtienen como productos secundarios no deseados de diversos procesos industriales en los que se emplea cloro en alguna de sus etapas. Las dioxinas han centrado en la última década una parte importante de la investigación médica en salud ambiental debido a su notable toxicidad, ya que son las sustancias químicas peligrosas más potentes creadas por el hombre, afectando al sistema nervioso e inmunitario, estando implicadas en la aparición de distintos tipos de cáncer y provocando la aparición de alteraciones hormonales, clasificándose actualmente como disruptores endocrinos. Por otra parte, su persistencia en el medio ambiente, resistencia a la degradación, bioacumulación y capacidad de transporte atmosférico entre las diversas fases medioambientales hace que sean considerados actualmente como compuestos peligrosos para el ser humano.

  10. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study.

    Science.gov (United States)

    Zanobetti, Antonella; Luttmann-Gibson, Heike; Horton, Edward S; Cohen, Allison; Coull, Brent A; Hoffmann, Barbara; Schwartz, Joel D; Mittleman, Murray A; Li, Yongsheng; Stone, Peter H; de Souza, Celine; Lamparello, Brooke; Koutrakis, Petros; Gold, Diane R

    2014-03-01

    Extreme weather and air pollution are associated with increased cardiovascular risk in people with diabetes. In a population with diabetes, we conducted a novel assessment of vascular brachial artery responses both to ambient pollution and to weather (temperature and water vapor pressure, a measure of humidity). Sixty-four 49- to 85-year-old Boston residents with type 2 diabetes completed up to five study visits (279 repeated measures). Brachial artery diameter (BAD) was measured by ultrasound before and after brachial artery occlusion [i.e., flow-mediated dilation (FMD)] and before and after nitroglycerin-mediated dilation (NMD). Ambient concentrations of fine particulate mass (PM2.5), black carbon (BC), organic carbon (OC), elemental carbon, particle number, and sulfate were measured at our monitoring site; ambient concentrations of carbon monoxide, nitrogen dioxide, and ozone were obtained from state monitors. Particle exposure in the home and during each trip to the clinic (home/trip exposure) was measured continuously and as a 5-day integrated sample. We used linear models with fixed effects for participants, adjusting for date, season, temperature, and water vapor pressure on the day of each visit, to estimate associations between our outcomes and interquartile range increases in exposure. Baseline BAD was negatively associated with particle pollution, including home/trip-integrated BC (-0.02 mm; 95% CI: -0.04, -0.003, for a 0.28 μg/m3 increase in BC), OC (-0.08 mm; 95% CI: -0.14, -0.03, for a 1.61 μg/m3 increase) as well as PM2.5, 5-day average ambient PM2.5, and BC. BAD was positively associated with ambient temperature and water vapor pressure. However, exposures were not consistently associated with FMD or NMD. Brachial artery diameter, a predictor of cardiovascular risk, decreased in association with particle pollution and increased in association with ambient temperature in our study population of adults with type 2 diabetes. Zanobetti A, Luttmann

  11. Types for BioAmbients

    Directory of Open Access Journals (Sweden)

    Sara Capecchi

    2010-02-01

    Full Text Available The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues. Thus, the signal o