WorldWideScience

Sample records for ambient pressure estimation

  1. Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2010-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an approach for investigating the ambient pressure sensitivity of a contrast agent using diagnostic...... second measurement series at 485 kPa showed a sensitivity of 0.41 dB/kPa with a correlation coefficient of 0.89. Based on the measurements at 500 kPa, this acoustic driving pressure was concluded to be too high causing the bubbles to be destroyed. The pressure sensitivity for these two measurement series...... ultrasound. The experimental setup resembles a realistic clinical setup utilizing a single array transducer for transmit and receive. The ambient pressure sensitivity of SonoVue (Bracco, Milano, Italy) was measured twice using two different acoustic driving pressures, which were selected based on a...

  2. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    Science.gov (United States)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  3. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...... simulations and initial experimental measurements. By simulations, a parameter study has investigated what mechanisms of the driving pulse are important to optimize the ambient pressure sensitivity when utilizing the subharmonic component. Investigating two different types of microbubbles clearly showed that...... conditions, this setup showed that the subharmonic component by itself cannot be used as an ambient sensitivity measure. Instead, a new technique looking at the ratio of the subharmonic energy to the energy of the fundamental component was used. Doing so, an ambient pressure dependent behavior of the...

  4. Crumpling under an ambient pressure

    OpenAIRE

    Lin, Y C; Wang, Y. L.; Liu, Y; Hong, T.M.

    2008-01-01

    A pressure chamber is designed to study the crumpling process under an ambient force. The compression force and its resulting radius for the ball obey a power law with an exponent that is independent of the thickness and initial size of the sheet. However, the exponent is found to be material-dependent and less than the universal value, 0.25, claimed by the previous simulations. The power law behavior disappears at high pressure when the compressibility drops discontinuously, which is suggest...

  5. Effects of Ambient Pressure on Bubble Characteristics

    Institute of Scientific and Technical Information of China (English)

    卢新培; 刘明海; 江中和; 潘垣

    2002-01-01

    The effects of the ambient pressure Pambient on the bubble characteristics of pulsed discharge in water are investigated. The simulation results show that, when Pambient increases from 1 atm to 100 atm, the bubble radius R decreases from 4cma to 7mm, and its pulsation period decreases frown 8ms to 0.2ms. The results also show that the peak pressure of the first shock wave is independent of Pambient, but the peak pressure of the second shock wave caused by the bubble re-expansion decreases when Pambient increases. On the other hand, the larger the ambient pressure, the larger the peak pressure of the plasma in the bubble, while the plasma temperature is independent of Pambient.

  6. Ambient Pressure LIF Instrument for Nitrogen Dioxide

    Science.gov (United States)

    Parra, J.; George, L. A.

    2009-12-01

    Concerns about the health effects of nitrogen dioxide (NO2) and its role in forming deleterious atmospheric species have made it desirable to have low-cost, sensitive ambient measurements of NO2. A continuous-wave laser-diode Laser Induced Fluorescence (LIF) system for NO2 that operates at ambient pressure has been developed, thereby eliminating the need for an expensive pumping system. The use of high quality optical filters has facilitated low-concentration detection of NO2 using atmospheric pressure LIF by providing substantial discrimination against scattered laser photons without the use of time-gated electronics, which add complexity and cost to the LIF instrumentation. This improvement allows operation at atmospheric pressure with a low-cost diaphragm sampling pump. The current prototype system has achieved sensitivity several orders of magnitude beyond previous efforts at ambient pressure (LOD of 2 ppb, 60 s averaging time). Ambient measurements of NO2 were made in Portland, OR using both the standard NO2 chemiluminescence method (CL-NO2) and the LIF instrument and showed good agreement (r2 = 0.92). Our instrument is currently being developed as a “back-end” detector for a more field portable NOy system. In addition, we are currently utilizing this instrument to study surface chemistry involving NO2 at atmospherically relevant concentrations and pressures.

  7. Ambient pressure sensitivity of microbubbles investigated through a parameter study

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2009-01-01

    Measurements on microbubbles clearly indicate a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations. The...... behavior of two microbubbles corresponding to two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20...... found, although the reduction is not completely linear as a function of the ambient pressure....

  8. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    The theory on microbubbles clearly indicates a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations. The...... of 9.6 dB. Further simulations of Levovist show that also the shape and the acoustic pressure of the driving pulse are very important factors. The best pressure sensitivity of Levovist was found to be 0.88 dB/kPa. For Sonazoid, a sensitivity of 0.71 dB/kPa has been found, although the reduction is...... not completely linear as a function of the ambient pressure....

  9. Estimation of vapour pressure and partial pressure of subliming compounds by low-pressure thermogravimetry

    Indian Academy of Sciences (India)

    G V Kunte; Ujwala Ail; P K Ajikumar; A K Tyagi; S A Shivashankar; A M Umarji

    2011-12-01

    A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure–temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl bis-2,4-pentanedionate, a precursor used for chemical vapour deposition of vanadium oxides. Using a modification of the Langmuir equation, the partial pressure of these materials at different total pressures is also determined as a function of temperature. Such data can be useful for the deposition of multi-metal oxide thin films or doped thin films by chemical vapour deposition (CVD).

  10. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  11. Measurement of Radiation Pressure in an Ambient Environment

    Science.gov (United States)

    Ma, Dakang; Garrett, Joseph; Munday, Jeremy

    2015-03-01

    Light has momentum and thus exerts ``radiation pressure'' when it is reflected or absorbed due to the conservation of momentum. Micromechanical transducers and oscillators are suitable for measurement and utilization of radiation pressure due to their high sensitivities. However, other light-induced mechanical deformations such as photothermal effects often obscure accurate measurements of radiation pressure in these systems. In this work, we investigate the radiation pressure and photothermal force on an uncoated silicon nitride microcantilever under illumination by a 660 nm laser in an ambient environment. To magnify the mechanical effects, the cantilever is driven optically from dc across its resonance frequency, and the amplitude and phase of its oscillation are acquired by an optical beam deflection method and a lockin amplifier. We show that radiation pressure and photothermal effects can be distinguished through the cantilever's frequency response. Furthermore, in a radiation pressure dominant regime, our measurement of the radiation force agrees quantitatively with the theoretical calculation.

  12. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  13. Effect of gas pressure on ionization of ambient gas

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.

  14. Stable Calcium Nitrides at Ambient and High Pressures.

    Science.gov (United States)

    Zhu, Shuangshuang; Peng, Feng; Liu, Hanyu; Majumdar, Arnab; Gao, Tao; Yao, Yansun

    2016-08-01

    The knowledge of stoichiometries of alkaline-earth metal nitrides, where nitrogen can exist in polynitrogen forms, is of significant interest for understanding nitrogen bonding and its applications in energy storage. For calcium nitrides, there were three known crystalline forms, CaN2, Ca2N, and Ca3N2, at ambient conditions. In the present study, we demonstrated that there are more stable forms of calcium nitrides than what is already known to exist at ambient and high pressures. Using a global structure searching method, we theoretically explored the phase diagram of CaNx and discovered a series of new compounds in this family. In particular, we found a new CaN phase that is thermodynamically stable at ambient conditions, which may be synthesized using CaN2 and Ca2N. Four other stoichiometries, namely, Ca2N3, CaN3, CaN4, and CaN5, were shown to be stable under high pressure. The predicted CaNx compounds contain a rich variety of polynitrogen forms ranging from small molecules (N2, N4, N5, and N6) to extended chains (N∞). Because of the large energy difference between the single and triple nitrogen bonds, dissociation of the CaNx crystals with polynitrogens is expected to be highly exothermic, making them as potential high-energy-density materials. PMID:27428707

  15. Parameter estimation for estimation of bottom hole pressure during drilling.

    OpenAIRE

    Vea, Hans Kristian

    2009-01-01

    In this thesis we examine four bottom hole pressure estimators based on adaptive estimation of the friction pressure for the drill string and the annulus. Knowledge about the bottom hole pressure is crucial to achieve security and commercial objectives. Bottom hole pressure measurements transmitted by mud pulse telemetry have limited bandwidth and it is common to use additional models to estimate the bottom hole pressure when measurements are unavailable. The motivation for an adaptive approa...

  16. Effects of ambient pressure on the subharmonic response from encapsulated microbubbles

    CERN Document Server

    Mobadersany, Nima; Sarkar, Kausik

    2015-01-01

    Subharmonic response from contrast microbubbles as a function of ambient overpressure is numerically investigated for subharmonic aided noninvasive estimation of local organ level blood pressure. Three different interfacial rheological models for the encapsulation is used with material parameters appropriate for a common lipid coated contrast agent Sonazoid. The subharmonic response is seen to either decrease, increase or vary nonmonotonically with increasing ambient pressure. Compared to a free microbubbles important differences arise due to the encapsulation. Specifically due to the enhanced damping due to encapsulation, the range of excitation over which subharmonic is seen is broader than that in free microbubbles. This results in different trends of subharmonic response at the same excitation frequency for different excitation pressures. The observed behaviors are explained by investigating subharmonic generation threshold and resonance frequency.

  17. Effect of ambient air pressure on debris redeposition during laser ablation of glass

    International Nuclear Information System (INIS)

    The effect of ambient air pressure on the redeposition of debris, ablated from the zinc borosilicate glass target using 6 ns, 266 nm laser pulses, has been studied for incident fluences of 3-18 J/cm2. Measurements were carried out in air at pressures ranging from 10-750 Torr. Scanning electron microscopy and optical microscope observations of the target surface were made to analyze the morphology of the redeposited debris. It was found that for higher values of the laser fluence and ambient pressure, the target surface is extremely rough, with large pieces of molten glass and debris fragments deposited near and around the ablation site. The profile of the redeposited debris also shows signs of a strong shock-wave-cleaning effect and possibly a Rayleigh-Taylor instability at higher pressures. Contrary to this, under low-pressure environment the surface of the redeposited debris is cleaner and smoother, with minimal damage around the ablated crater. The measured radius of the debris field was found to be proportional to the inverse cube root of the ambient pressure, consistent with the stagnation distance of the expansion plume when energy balance with the displaced air is considered. In addition to this, the mass of the redeposited debris was estimated from the measured optical thickness of the film and compared to the ablated mass. In the range below 100 Torr, both the mass of the redeposited debris and the percentage of the ablated mass which was redeposited were found to increase with the increasing fluence and the ambient air pressure

  18. Experimental analysis of the drop film boiling at ambient pressure

    International Nuclear Information System (INIS)

    Highlights: • Changes in weight of drop on a surface kept above the Leidenfrost point are the base of the heat transfer calculation. • The local heat transfer coefficients were calculated using energy balance and data from infrared and digital cameras. • Total measurement uncertainty of the heat transfer coefficient has been also assessed. • Selected statistical parameters for proposed methodology assessment have been estimated. - Abstract: The paper deals with the evaporation of large liquid drops having a mass of ∼1 g under stable film boiling conditions at ambient pressure. Water drop evaporation was expressed by the heat balance, which provides basis for determining instantaneous values of the heat transfer coefficient. The measurement stand, comprising three independent measurement paths, namely mass registration, temperature measurement and thermal visualisation, was described in detail. The system maintaining a constant temperature of the heating surface was located on the scales, the recordings of which were taken at constant frequency of 2 Hz. The measurement results come in the form of mass change versus time. On this basis, together with the measured area of the perpendicular drop projection onto the heating surface, it was possible to compute instantaneous values of the heat transfer coefficient. Those values decrease with a change in the area and the drop mass. At the beginning of measurements, at the constant temperature of the heating surface 337.5 °C, the heat transfer coefficient equalled 0.32 kW/m2 K, and it was over twice higher for a drop with the mass of ∼0.2 g. The thermal (infrared) mapping of the drop upper surface was performed using a thermovision camera (THV). The mapping indicates a complex interaction of heat and mass transfer processes, which result in intensive convection movements in the near-surface zone. That is manifested in the form of a highly diversified thermal field of the drop upper surface. The difference

  19. CO oxidation on Pt(111) at near ambient pressures

    Energy Technology Data Exchange (ETDEWEB)

    Krick Calderón, S.; Grabau, M.; Kress, B.; Papp, C. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Óvári, L. [MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, 6720 Szeged (Hungary); Steinrück, H.-P. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Egerlandstr. 3, 91058 Erlangen (Germany)

    2016-01-28

    The oxidation of CO on Pt(111) was investigated simultaneously by near ambient pressure X-ray photoelectron spectroscopy and online gas analysis. Different CO:O{sub 2} reaction mixtures at total pressures of up to 1 mbar were used in continuous flow mode to obtain an understanding of the surface chemistry. By temperature-programmed and by isothermal measurements, the onset temperature of the reaction was determined for the different reactant mixtures. Highest turnover frequencies were found for the stoichiometric mixture. At elevated temperatures, the reaction becomes diffusion-limited in both temperature-programmed and isothermal measurements. In the highly active regime, no adsorbates were detected on the surface; it is therefore concluded that the catalyst surface is in a metallic state, within the detection limits of the experiment, under the applied conditions. Minor bulk impurities such as silicon were observed to influence the reaction up to total inhibition by formation of non-platinum oxides.

  20. Preparation and Characterization of Silica Aerogels Derived from Ambient Pressure

    Institute of Scientific and Technical Information of China (English)

    Jun SHEN; Zhihua ZHANG; Guangming WU; Bin ZHOU; Xingyuan NI; Jue WANG

    2006-01-01

    Silica aerogels were prepared by sol-gel technique from industrial silicon derivatives (polyethoxydisiloxanes, E40), followed by silylation and drying under ambient pressure. The specific surface area, pore size distribution and thermal conductivity of the silica aerogels were investigated and the results showed that the diameter of the silica particles is about 6 nm and the average pore size of the silica aerogels is 14.7 nm. The specific temperature and pressure of 1.01×105 Pa. The Si-CH3 groups were also detected on the internal surface of the silica aerogels, which show hydrophobic. Silica aerogels derived by this technique is low cost and have wide applications.

  1. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.

    2004-01-01

    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...... excited by human activities, wind, gust, etc. In this paper, the comparison between two differeiit vibration testing techniques is presented. The first approach takes advantage of the Frequency Domain Decomposition, FDD, of the response cross power spectral densities to estimate both the natural...... parameters of two simple structures (a beam and a plate), excited by an acoustical random signal....

  2. Estimation of Hourly Mean Ambient Temperatures with Artificial Neural Networks

    OpenAIRE

    Dombaycı, Ömer; Çivril, Önder

    2006-01-01

    In this study, the artificial neural networks have been used for the estimation of hourly ambient temperature in Denizli, Turkey. The model was trained and tested with four years (2002-2005) of hourly mean temperature values. The hourly temperature values for the years 2002-2004 were used in training phase, the values for the year 2005 were used to test the model. The architecture of the ANN model was the multi-layer feedforward architecture and has three layers. Inputs of the network were mo...

  3. Robust seismic velocity change estimation using ambient noise recordings

    CERN Document Server

    Daskalakis, E; Garnier, J; Melis, N S; Papanicolaou, G; Tsogka, C

    2016-01-01

    We consider the problem of seismic velocity change estimation using ambient noise recordings. Motivated by [23] we study how the velocity change estimation is affected by seasonal fluctuations in the noise sources. More precisely, we consider a numerical model and introduce spatio-temporal seasonal fluctuations in the noise sources. We show that indeed, as pointed out in [23], the stretching method is affected by these fluctuations and produces misleading apparent velocity variations which reduce dramatically the signal to noise ratio of the method. We also show that these apparent velocity variations can be eliminated by an adequate normalization of the cross-correlation functions. Theoretically we expect our approach to work as long as the seasonal fluctuations in the noise sources are uniform, an assumption which holds for closely located seismic stations. We illustrate with numerical simulations and real measurements that the proposed normalization significantly improves the accuracy of the velocity chang...

  4. The relation between composition in laser absorption region and ambient pressure

    Institute of Scientific and Technical Information of China (English)

    Yang Bo; Zhu Jin-Rong; Yang Yan-Nan; Shen Zhong-Hua; Lu Jian; Ni Xiao-Wu

    2008-01-01

    In this paper,the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling.When the ambient pressure varies from 9325 to 33325Pa,the compositions are vapour and plasma;while from 35325 to 101325Pa,they are ambient air and plasma.By analysing the relation between the degree of compression and the ambient pressure,the compositions can be determined and the variation of plasma can be explained.

  5. Robust seismic velocity change estimation using ambient noise recordings

    Science.gov (United States)

    Daskalakis, E.; Evangelidis, C. P.; Garnier, J.; Melis, N. S.; Papanicolaou, G.; Tsogka, C.

    2016-06-01

    We consider the problem of seismic velocity change estimation using ambient noise recordings. Motivated by Zhan et al., we study how the velocity change estimation is affected by seasonal fluctuations in the noise sources. More precisely, we consider a numerical model and introduce spatio-temporal seasonal fluctuations in the noise sources. We show that indeed, as pointed out by Zhan et al., the stretching method is affected by these fluctuations and produces misleading apparent velocity variations which reduce dramatically the signal to noise ratio of the method. We also show that these apparent velocity variations can be eliminated by an adequate normalization of the cross-correlation functions. Theoretically we expect our approach to work as long as the seasonal fluctuations in the noise sources are uniform, an assumption which holds for closely located seismic stations. We illustrate with numerical simulations in homogeneous and scattering media that the proposed normalization significantly improves the accuracy of the velocity change estimation. Similar behaviour is also observed with real data recorded in the Aegean volcanic arc. We study in particular the volcano of Santorini during the seismic unrest of 2011-2012 and observe a decrease in the velocity of seismic waves which is correlated with GPS measured elevation.

  6. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-06-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al.~(2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the

  8. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-01-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al. (2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our

  9. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  10. Estimating correlations of neighbouring frequencies in ambient seismic noise

    Science.gov (United States)

    Liu, Xin; Ben-Zion, Yehuda

    2016-08-01

    Extracting accurate empirical Green's functions from the ambient seismic noise field requires the noise to be fully diffuse and that different frequency components are not correlated. Calculating a matrix of correlation coefficients of power spectral samples can be used to estimate deviations from a fully diffuse random noise field in the analysed frequency range. A fully diffuse field has correlations only in a narrow region around the diagonal of the matrix, with frequency resolution inversely proportional to length of the used time window. Analysis of low-frequency data (0.005-0.6 Hz) recorded by three broad-band stations of the southern California seismic network reveals three common types of correlations, manifested in the correlation coefficient matrix as square, diagonal halo and correlated stripes. Synthetic calculations show that these types of signatures in the correlation coefficient matrix can result from certain combinations of cross-frequency correlated random components and diffuse field. The analysis of observed data indicates that the secondary microseismic peak around 0.15 Hz is correlated with its neighbouring frequencies, while the primary peak around 0.06 Hz is more diffuse. This suggests that the primary and secondary peaks may be associated with somewhat different physical origins. In addition, significant correlation of frequencies below that of the primary microseismic peak suggests that the very low frequencies noise is less scattered during propagation. The power spectra recorded by a station close to the edge of the Los Angeles basin is higher compared to data recorded by stations outside the basin perhaps because of enhanced basin reverberations and/or closer proximity to the ocean. This and other regional variations should be tested further using data from many more stations.

  11. GIS Approaches for the Estimation of Residential-Level Ambient PM Concentrations

    OpenAIRE

    Liao, Duanping; Peuquet, Donna J.; Duan, Yinkang; Whitsel, Eric A.; Dou, Jianwei; Smith, Richard L.; Lin, Hung-Mo; Chen, Jiu-Chiuan; Heiss, Gerardo

    2006-01-01

    Spatial estimations are increasingly used to estimate geocoded ambient particulate matter (PM) concentrations in epidemiologic studies because measures of daily PM concentrations are unavailable in most U.S. locations. This study was conducted to a) assess the feasibility of large-scale kriging estimations of daily residential-level ambient PM concentrations, b) perform and compare cross-validations of different kriging models, c) contrast three popular kriging approaches, and d ) calculate S...

  12. Ambient vibrations efficiency for building dynamic characteristics estimate and seismic evaluation.

    OpenAIRE

    Dunand, François

    2005-01-01

    Ambient vibrations are mechanical low amplitude vibrations generated by human and natural activities. By forcing into vibration engineering structures, these vibrations can be used to estimate the structural dynamic characteristics.The goal of this study is to compare building dynamic characteristics derived from ambient vibrations to those derived from more energetic solicitations (e.g. earthquake). This study validates the efficiency of this method and shows that ambient vibrations results ...

  13. Damping Estimation Using Free Decays and Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro

    The accurate identification of modal damping ratios of Civil Engineering structures is a subject of major importance, as the amplitude of structural vibrations in resonance is inversely proportional to these coefficients. Their experimental identification can be performed either from ambient...... in Civil Engineering structures have shown some discrepancies [1, 2]. Thus, it is important to evaluate the accuracy of the available testing alternatives....

  14. Determination of the thermodynamic scaling exponent for relaxation in liquids from static ambient-pressure quantities.

    Science.gov (United States)

    Casalini, R; Roland, C M

    2014-08-22

    An equation is derived that expresses the thermodynamic scaling exponent, γ, which superposes relaxation times τ and other measures of molecular mobility determined over a range of temperatures and densities, in terms of static physical quantities. The latter are available in the literature or can be measured at ambient pressure. We show for 13 materials, both molecular liquids and polymers, that the calculated γ are equivalent to the scaling exponents obtained directly by superpositioning. The assumptions of the analysis are that the glass transition T(g) is isochronal (i.e., τ(α) is constant at T(g), which is true by definition) and that the pressure derivative of the glass temperature is given by the first Ehrenfest relation. The latter, derived assuming continuity of the entropy at the glass transition, has been corroborated for many glass-forming materials at ambient pressure. However, we find that the Ehrenfest relation breaks down at elevated pressure; this limitation is of no consequence herein, since the appeal of the new equation is its applicability to ambient-pressure data. The ability to determine, from ambient-pressure measurements, the scaling exponent describing the high-pressure dynamics extends the applicability of this approach to a broader range of materials. Since γ is linked to the intermolecular potential, the new equation thus provides ready access to information about the forces between molecules. PMID:25192107

  15. Ribonucleotide and Ribonucleoside Determination by Ambient Pressure Ion Mobility Spectrometry (IMS)

    OpenAIRE

    Kanu, Abu B.; Hampikian, Greg; Brandt, Simon D; Hill, Herbert H.

    2009-01-01

    Reduced mobilities, resolving powers and detection limits for 12 ribonucleotides and 4 ribonucleosides were measured by ambient pressure electrospray ionization ion mobility spectrometry (ESI-IMS). With the instrument used in this study it was possible to separate some of these compounds within the mixtures. In addition, the detection limits reported for the ribonucleotides and ribonucleosides ranged from 15 to 300 picomoles whereas resolving power ranged from 41 to 56 suggesting that ambient...

  16. Electronic structure of Y-123 for ambient and high pressures

    Directory of Open Access Journals (Sweden)

    H. K. H.

    2001-12-01

    Full Text Available   The electronic properties of YBa2Cu3O7-δ have been investigated by the energy-pseudopotential method within the local density approximation (LDA with and without including generalized gradient corrections (GGC. The band structure, density of states and charge density of YBa2Cu3O7- have been calculated. The results are compared with other approaches such as LAPW, LCAO and LMTO for this system. The overall shape of the band structure, density of states and charge density are in agreement with other works. However, in details, like other approaches, there are some differences. Considering our accuracy, the differences in results for LDA and GGC approaches are small. Also, the electronic and structural properties for this system have been investigated by applying pressure within LDA. We have calculated band structure, density of states, charge density, and length of bonds for high pressures, and the changes in hole concentration in this system with respect to pressure. Our results show the increase of hole in both CuO2 planes and Cu-O chains under high pressures. Although this result is in agreement with the pressure-induced charge transfer (PICT model, it is in contrast with the definition of this model which believes that hole increases in the CuO2 planes come from the Cu-O chains. Bulk modules and equilibrium volume have been also calculated to be equal 184 Gpa and 174.89A03, respectively. The results of these calculations have been compared with the experimental and theoretical reports on this system.

  17. ambiental

    Directory of Open Access Journals (Sweden)

    Roque Leal Salcedo

    2008-01-01

    Full Text Available El derecho internacional ambiental es un conocimiento de carácter transversal, que entre otras consideraciones refleja las preocupaciones de la sociedad por la implementación de un modelo de desarrollo sustentable para el respeto a las reglas del medio natural que garantizan la integridad y renovación de los sistemas naturales. El presente artículo enfoca esta visión a través del análisis de material documental revisado, entre ellos tratados internacionales que permiten distinguir el desarrollo del derecho internacional ambiental y el papel de Organización de las Naciones Unidas (ONU, en el propósito común del derecho individual y colectivo de disfrutar de una vida, un ambiente seguro, sano y ecológicamente equilibrado. En función a estas disertaciones las consideraciones finales exponen parte de la visión que ha estructurado la ONU y que representan un aporte considerable en el fomento de la conciencia mundial sobre la necesidad de establecer vínculos entre las naciones para el continuo desarrollo de esta rama del derecho.

  18. Instantaneous formation of Synroc-B phases at ambient pressure

    International Nuclear Information System (INIS)

    The titanate based nuclear waste immobilization medium, Synroc-B, has been synthesized at atmospheric pressure from freeze dried nitrate precursors. Complete formation of the phase assemblage (CaTiO3, CaZrTi2O7, and BaAl2Ti5O14) occurred upon calcination of the nitrate precursor after only 10 minutes at 1,100 C. This improvement in the preparation conditions may lead to practical application of the material in the safe disposal of high level nuclear waste and the immobilization of other strategic nuclear materials

  19. Instantaneous formation of Synroc-B phases at ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    McHale, J.M.; Coppa, N.V. [Los Alamos National Lab., NM (United States)

    1996-08-01

    The titanate based nuclear waste immobilization medium, Synroc-B, has been synthesized at atmospheric pressure from freeze dried nitrate precursors. Complete formation of the phase assemblage (CaTiO{sub 3}, CaZrTi{sub 2}O{sub 7}, and BaAl{sub 2}Ti{sub 5}O{sub 14}) occurred upon calcination of the nitrate precursor after only 10 minutes at 1,100 C. This improvement in the preparation conditions may lead to practical application of the material in the safe disposal of high level nuclear waste and the immobilization of other strategic nuclear materials.

  20. Coesite Formation at Ambient Pressure and Low Temperatures

    OpenAIRE

    S. A. Palomares-Sánchez; Facundo Ruiz; Ortega-Zarzosa, G.; G. Martínez-Castañón; A. Vázquez-Durán; J. R. Martínez

    2008-01-01

    Partial crystallization of silica xerogel in the form of coesite has been obtained at low-pressure conditions and temperatures of ∼565∘C, in samples containing chlorophyll aggregates dispersed in amorphous silica. Silica xerogel samples were prepared by the sol-gel method using an ethanol:H2O:TEOS molar ratio of 4:11.6:1 and loaded with extracts from frozen spinach leaves. The silica xerogel microstructure of the powders was studied as a function of annealing temperature. It was found that pa...

  1. Effect of ambient oxygen pressure on structural, optical and electrical properties of SnO2 thin films

    Institute of Scientific and Technical Information of China (English)

    ZHAO Songqing; ZHOU Yueliang; WANG Shufang; ZHAO Kun; HAN Peng

    2006-01-01

    Polycrystalline SnO2 thin films were deposited on sapphire substrates at 450℃ under different ambient oxygen pressures by pulsed laser deposition technique. The effect of ambient oxygen pressure on the structural, optical and electrical properties of SnO2 thin films was studied. X-ray diffraction and Hall measurements show that increasing the ambient oxygen pressure can improve crystallization of the films and decrease resistivity of the films. A violet emission peak centered at 409 nm was observed from photoluminescence measurements for SnO2 films under deposition ambient oxygen pressure above 5 Pa, which is related to the improvement of crystalline of the films.

  2. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    International Nuclear Information System (INIS)

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case. (paper)

  3. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    Science.gov (United States)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  4. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    International Nuclear Information System (INIS)

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research

  5. Explanation of penetration depth variation during laser welding under variable ambient pressure

    OpenAIRE

    PANG, Shengyong; Hirano, Koji; Fabbro, Rémy; Jiang, Tao

    2015-01-01

    It has been observed that the penetration depth during laser welding (LW) under vacuum or reduced ambient pressure could be significantly greater than that during welding under atmospheric pressure. Previous explanations of this phenomenon usually limit to specific wavelength laser welding and have difficulties in explaining why the variation will disappear, as the welding speed increases. Here, we propose that this variation is caused by the temperature difference of keyhole wall under varia...

  6. Vortex phase and Jc from magnetisation measurement of MgB2 prepared at ambient pressure

    International Nuclear Information System (INIS)

    Magnetisation data of polycrystalline MgB2 samples prepared at ambient pressure are presented. Data were analyzed with respect to the critical current density and irreversible magnetic field. Vortex phase was ascertained to be vortex glass separated by vortex liquid. Thermo-magnetic instabilities were observed at low temperatures. Jc-B relation revealed weak pinning scenario of the flux lines. (author)

  7. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure

    Science.gov (United States)

    Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.

    1987-01-01

    A stable and reproducible superconductivity transition between 80 and 93 K has been achieved and maintained in a Y-Ba-Cu-O compound system at ambient pressure in a simple liquid-nitrogen Dewar. An upper critical field Hc2(0) estimate of between 80 and 180 T is obtained, and the paramagnetic limiting field at 0 K for a sample with a T(c) of about 90 K is 165 T. It is suggested that the lattice parameters, the valence ratio, and the sample treatments all play a role in achieving superconductivity above 77 K.

  8. High-pressure stability and ambient metastability of marcasite-type rhodium pernitride

    Science.gov (United States)

    Niwa, K.; Terabe, T.; Suzuki, K.; Shirako, Y.; Hasegawa, M.

    2016-02-01

    High-pressure stability, ambient metastability, and high-pressure crystal chemistry of chemical bonds of marcasite-type RhN2 have been investigated using a laser-heated diamond-anvil cell up to a pressure of 70.6 GPa. High-pressure in-situ X-ray diffraction and Raman scattering measurements revealed that the marcasite-type RhN2 structure is stable up to 70.6 GPa and exhibited an order of axial compressibility of βc > βb > βa. This indicates that single bonded nitrogen dimer (N-N) plays an important role in the incompressibility of a- and b-axes than in that of the c-axis and stabilizes the marcasite-type structure at high-pressure. Field emission scanning electron microscopic analysis in combination with the energy dispersive X-ray spectroscopic measurements and the result of our previous study indicates that the marcasite-type RhN2 can be quenched to ambient pressure when the grain size is less than 100 nm. Our study together with other previous studies indicates that the ambient metastability of 4d platinum group pernitrides (RuN2, RhN2, and PdN2) decreases from ruthenium to palladium.

  9. Air Entrainment in Dynamic Wetting: Knudsen Effects and the Influence of Ambient Air Pressure

    CERN Document Server

    Sprittles, James E

    2015-01-01

    Recent experiments on coating flows and liquid drop impact both demonstrate that wetting failures caused by air entrainment can be suppressed by reducing the ambient gas pressure. Here, it is shown that non-equilibrium effects in the gas can account for this behaviour, with ambient pressure reductions increasing the gas' mean free path and hence the Knudsen number $Kn$. These effects first manifest themselves through Maxwell slip at the gas' boundaries so that for sufficiently small $Kn$ they can be incorporated into a continuum model for dynamic wetting flows. The resulting mathematical model contains flow structures on the nano-, micro- and milli-metre scales and is implemented into a computational platform developed specifically for such multiscale phenomena. The coating flow geometry is used to show that for a fixed gas-liquid-solid system (a) the increased Maxwell slip at reduced pressures can substantially delay air entrainment, i.e. increase the `maximum speed of wetting', (b) unbounded maximum speeds ...

  10. Development of a simple model for predicting the spark-induced bubble behavior under different ambient pressures

    Science.gov (United States)

    Zhang, L. C.; Zhu, X. L.; Huang, Y. F.; Liu, Z.; Yan, K.

    2016-07-01

    In this paper, a simple model was developed to predict the dynamics of a spark-induced bubble under different ambient pressures. This work helps in developing a deep-towed plasma sparker, as the model can predict the dynamics of bubbles subjected to very high ambient pressures (about 20 MPa) which normally are difficult to obtain experimentally. Experimental results indicate that the maximum bubble radius for a fixed discharge energy decreases as a power-law function of the ambient pressure up to 1.0 MPa; the bubble period also decreases quickly with increasing ambient pressure. For a constant value of the ratio of bubble energy to discharge energy, the modeling results for both maximum radius and bubble period are in good agreement with the experimental results. Both sets of results indicate that the bubble period is proportional to the maximum radius under different ambient pressures.

  11. Effect of ambient pressure and radiation reabsorption of atmosphere on the flame spreading over thermally thin combustibles in microgravity

    Institute of Scientific and Technical Information of China (English)

    DU; Wenfeng; (杜文峰); HU; Wenrui; (胡文瑞)

    2003-01-01

    For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere of O2-N2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere of O2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.

  12. Spatial coherences of the sound pressure and the particle velocity in underwater ambient noise

    Institute of Scientific and Technical Information of China (English)

    YAN Jin; LUO Xianzhi; HOU Chaohuan

    2007-01-01

    The spatial coherences were investigated between the sound pressure and the three orthogonal components of the particle velocity in underwater ambient noise. Based on the ray theory, integral expression was derived for the spatial coherence matrix of the sound pressure and the particle velocity in a stratified ocean with dipole noise sources homogenously distributed on the surface. The integrand includes a multiplying factor of the vertical directivity of the noise intensity, and the layered ocean environment affects the spatial coherences via this directivity factor. For a shallow water environment and a semi-infinite homogenous medium, the coherence calculation results were given. It was showed that the sound speed profile and the sea bottom could not be neglected in determining the spatial coherences of the ambient noise vector field.

  13. Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure

    OpenAIRE

    Lei QIN; Li, Wen-Chao; Zhu, Jia-Qing; Liang, Jing-Nan; Li, Bing-Zhi; Yuan, Ying-Jin

    2015-01-01

    Background Pretreatment of lignocellulosic biomass is essential to increase the cellulase accessibility for bioconversion of lignocelluloses by breaking down the biomass recalcitrance. In this work, a novel pretreatment method using ethylenediamine (EDA) was presented as a simple process to achieve high enzymatic digestibility of corn stover (CS) by heating the biomass–EDA mixture with high solid-to-liquid ratio at ambient pressure. The effect of EDA pretreatment on lignocellulose was further...

  14. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    OpenAIRE

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; LIU, ZHI; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+x Ti5O12/LiPON/Li x V2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, ...

  15. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    flexible offering completely arbitrary excitation and data acquisition, fast and accurate ambient pressure control, and precise timing. More importantly, it resembles a realistic clinical setup using a single array transducer for transmit and receive. The standard signal processing steps usually seen for...... 32 cycles cosine tapered pulse with a center frequency of 4 MHz and an acoustic pressure of 485 kPa was used for excitation. 64 elements were used in receive and the RF data was filtered and beamformed before further processing. To compensate for variations in bubble response and to make the...

  16. Relation of Whole Blood Carboxyhemoglobin Concentration to Ambient Carbon Monoxide Exposure Estimated Using Regression

    OpenAIRE

    Rudra, Carole B.; Williams, Michelle A.; Sheppard, Lianne; Koenig, Jane Q.; Schiff, Melissa A.; Frederick, Ihunnaya O; Dills, Russell

    2010-01-01

    Exposure to carbon monoxide (CO) and other ambient air pollutants is associated with adverse pregnancy outcomes. While there are several methods of estimating CO exposure, few have been evaluated against exposure biomarkers. The authors examined the relation between estimated CO exposure and blood carboxyhemoglobin concentration in 708 pregnant western Washington State women (1996–2004). Carboxyhemoglobin was measured in whole blood drawn around 13 weeks’ gestation. CO exposure during the mon...

  17. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing engin

  18. Dynamic High Pressure: a novel approach toward near ambient pressure photoemission spectroscopy and spectromicroscopy

    International Nuclear Information System (INIS)

    A Dynamic High Pressure (DHP) system has been developed, tested and implemented in the scanning photoelectron microscope (SPEM) operated at ESCAmicroscopy beamline at Elettra synchrotron. The system consists of a compact gas injection set up that allows experiments with local pressure near the sample several orders of magnitude higher that the allowable pressure for X-ray photoelectron spectroscopy setups. The DHP setup controls the amount of gas injected toward the sample by fine tuning the time and spatial profiles using a pulsed valve and a nozzle, respectively. The DHP functionality and effectiveness has been demonstrated by in operando oxidation experiments of Ru and Si. The obtained results confirmed that using the DHP the gas exposure onto the sample is equivalent to a static pressure between 10−3 and 10−2 mbar, about 3 orders of magnitude higher than the maximum gas pressure for the XPS machines under operation.

  19. Can subglottal pressure be estimated from intra-oral pressure in speech and singing ?

    OpenAIRE

    Henrich, Nathalie; Lagier, Aude; Amy De La Bretèque, Benoit; Giovanni, Antoine

    2012-01-01

    International audience The direct measurement of subglottal pressure is challenging, because it requires a very invasive approach. It consists in placing a pressure transducer below the glottis by tracheal puncture between the cricoïd cartilage and the trachea first ring. Other methods have been proposed, which estimate the subglottal pressure using less invasive approaches. The most common one is to estimate subglottal pressure from intra-oral pressure measured during the closed phase of ...

  20. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  1. Ambient-Pressure X-ray Photoelectron Spectroscopy through Electron Transparent Graphene Membranes

    CERN Document Server

    Kraus, Jurgen; Gunther, Sebastian; Gregoratti, Luca; Amati, Matteo; Kiskinova, Maya; Yulaev, Alexander; Vlassiouk, Ivan; Kolmakov, Andrei

    2014-01-01

    Photoelectron spectroscopy (PES) and microscopy are highly demanded for exploring morphologically complex solid-gas and solid-liquid interfaces under realistic conditions, but the very small electron mean free path inside the dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using sophisticated and expensive electron energy analyzers coupled with differentially pumped electron lenses. An alternative economical approach proposed in this report uses ultrathin graphene membranes to isolate the ambient sample environment from the PES detection system. We demonstrate that the graphene membrane separating windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow PES of liquid and gaseous water. The reported proof-of-principle experiments also open a principal possibility to probe vacuum-incompatible toxic or reactive samples enclosed inside the hermetic environmental cells.

  2. Effect of actual vapor pressure on estimating evapotranspiration at Serbia

    OpenAIRE

    Trajković Slaviša; Živković Svetlana

    2009-01-01

    Actual vapor pressure (VP) is an important parameter that is used in many evapotranspiration equations. However, vapor pressure is difficult to measure accurately. In the humid climate, the actual vapor pressure can be derived from minimum air temperature. The objectives of this study were: first, to estimate errors that can arise if VP data are not available and have to be estimated; second, to compare the Priestley-Taylor ET0 values computed under various levels of VP data availability; and...

  3. Pressure Estimation in the Systemic Arteries Using a Transfer Function

    OpenAIRE

    Thore, Carl-Johan

    2007-01-01

    The aim of this thesis is to develop and study a method for estimation of the pulse pressure in centrally located arteries. Obtaining the central pulse pressure is desirable for several reasons. For example, the central pulse pressure can be used to assess aortic stiffness, which in turn is an important predictor of cardiovascular mortality. In this thesis a method of estimation based on a one--dimensional wave propagation theory applied to a physiological model of the human systemic arterial...

  4. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering

    Science.gov (United States)

    Foglia, Fabrizia; Hazael, Rachael; Simeoni, Giovanna G.; Appavou, Marie-Sousai; Moulin, Martine; Haertlein, Michael; Trevor Forsyth, V.; Seydel, Tilo; Daniel, Isabelle; Meersman, Filip; McMillan, Paul F.

    2016-01-01

    Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth’s deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å-1 corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.

  5. Ambient-pressure bulk superconductivity deep in the magnetic state of CeRhIn5

    OpenAIRE

    Paglione, Johnpierre; Ho, P. -C.; Maple, M.B.; Tanatar, M. A.; Taillefer, Louis; Lee, Y.; Petrovic, C.

    2007-01-01

    Specific heat, magnetic susceptibility and electrical transport measurements were performed at ambient pressure on high-quality single crystal specimens of CeRhIn5 down to ultra-low temperatures. We report signatures of an anomaly observed in all measured quantities consistent with a bulk phase transition to a superconducting state at T_c=110 mK. Occurring far below the onset of antiferromagnetism at T_N=3.8 K, this transition appears to involve a significant portion of the available low-temp...

  6. Use of prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent

    International Nuclear Information System (INIS)

    The possibility of using measured prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent is explored theoretically. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of a high density polyethylene cylinder to emit prompt gammas from interaction of neutrons with the nuclei of hydrogen and carbon present in polyethylene. The neutron energy dependent responses of hydrogen and carbon nuclei are combined appropriately to match the energy dependent neutron fluence to ambient dose equivalent conversion coefficients. The proposed method is tested initially with simulated spectra and then validated using experimental measurements with an Am–Be neutron source. Experimental measurements and theoretical simulations have established the feasibility of estimating neutron ambient dose equivalent using measured neutron induced prompt gammas emitted from polyethylene with an overestimation of neutron dose at very low energies. - Highlights: • A new method for estimating H⁎(10) using prompt gamma emissions from HDPE. • Linear combination of 2.2 MeV and 4.4 MeV gamma intensities approximates DCC (ICRP). • Feasibility of the method was established theoretically and experimentally. • The response of the present technique is very similar to that of the rem meters

  7. Use of prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Priyada, P.; Sarkar, P.K., E-mail: pradip.sarkar@manipal.edu

    2015-06-11

    The possibility of using measured prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent is explored theoretically. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of a high density polyethylene cylinder to emit prompt gammas from interaction of neutrons with the nuclei of hydrogen and carbon present in polyethylene. The neutron energy dependent responses of hydrogen and carbon nuclei are combined appropriately to match the energy dependent neutron fluence to ambient dose equivalent conversion coefficients. The proposed method is tested initially with simulated spectra and then validated using experimental measurements with an Am–Be neutron source. Experimental measurements and theoretical simulations have established the feasibility of estimating neutron ambient dose equivalent using measured neutron induced prompt gammas emitted from polyethylene with an overestimation of neutron dose at very low energies. - Highlights: • A new method for estimating H{sup ⁎}(10) using prompt gamma emissions from HDPE. • Linear combination of 2.2 MeV and 4.4 MeV gamma intensities approximates DCC (ICRP). • Feasibility of the method was established theoretically and experimentally. • The response of the present technique is very similar to that of the rem meters.

  8. Effect of ambient nitrogen pressure on the formation and spatio-temporal behaviour of C2 and CN

    Indian Academy of Sciences (India)

    Archana Kushwaha; R K Thareja

    2010-12-01

    We report the effect of ambient gas on the formation as well as propagation behaviour of ablated species C2 and CN within the carbon plasma created by focussing a high-power Nd:YAG ( = 1064 nm) laser onto the rotating graphite target in the nitrogen ambient. The formation of C2 takes place earlier as well as nearer the target compared to that of CN which forms later and far from the target, in 1.2 mbar pressure of N2 gas. Peak arrival time vs. nitrogen gas pressure plot shows a shock wave-like dependence ∝ in the pressure range 1.2–120 mbar (collisional regime) which indicates plume confinement with increases in ambient pressure. At higher pressure, thermalization takes place.

  9. Estimating the effects of ambient conditions on the performance of UVGI air cleaners

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Josephine; Bahnfleth, William; Freihaut, James [Indoor Environment Center, Department of Architectural Engineering, The Pennsylvania State University, University Park, PA (United States)

    2009-07-15

    Ultraviolet germicidal irradiation (UVGI) uses UVC radiation produced by low pressure mercury vapor lamps to control biological air contaminants. Ambient air velocity and temperature have a strong effect on lamp output by influencing the lamp surface cold spot temperature. In-duct UVGI systems are particularly susceptible to ambient effects due to the range of velocity and temperature conditions they may experience. An analytical model of the effect of ambient conditions on lamp surface temperature was developed for three common lamp types in cross flow from a convective-radiative energy balance assuming constant surface temperature. For one lamp type, a single tube standard output lamp, UVC output and cold spot temperature data were obtained under typical in-duct operating conditions. Over an ambient temperature range of 10-32.2 C and an air velocity range of 0-3.25 m/s, measured cold spot temperature varied from 12.7 to 41.9 C and measured lamp output varied by 68% of maximum. Surface temperatures predicted by the heat transfer model were 6-17 C higher than corresponding measured cold spot temperatures, but were found to correlate well with cold spot temperature via a two-variable linear regression. When corrected using this relationship, the simple model predicted the cold spot temperature within 1 C and lamp UVC output within {+-}5%. To illustrate its practical use, the calibrated lamp model was employed in a simulation of the control of a contaminant in a single-zone ventilation system by an in-duct UVGI device. In this example, failure to account for the impact of ambient condition effects resulted in under-prediction of average space concentration by approximately 20% relative to a constant output system operating at maximum UVC output. (author)

  10. Phase formation of superconducting MgB2 at ambient pressure

    Indian Academy of Sciences (India)

    A Talapatra; S K Bandyopadhyay; Pintu Sen; A Sarkar; P Barat

    2004-10-01

    MgB2 superconductor has been synthesized using a simple technique at ambient pressure. The synthesis was carried out in helium atmosphere over a wide range of temperatures. Magnesium was employed in excess to the stoichiometry to prevent the decomposition of MgB2. Samples of MgB2 thus prepared have been almost free from MgO as compared to other methods. Resistivities of the samples are quite low with residual resistivity ratio (RRR) of around 3. c ( = 0) is 38.2–38.5 K with c of 0.6–1.0 K. Comparative studies of various methods of low pressure synthesis have been presented.

  11. Phase formation of superconducting MgB2 at ambient pressure

    International Nuclear Information System (INIS)

    MgB2 superconductor has been synthesized using a simple technique at ambient pressure. The synthesis was carried out in helium atmosphere over a wide range of temperatures. Magnesium was employed in excess to the stoichiometry to prevent the decomposition of MgB2. Samples of MgB2 thus prepared have been almost free from MgO as compared to other methods. Resistivities of the samples are quite low with residual resistivity ratio (RRR) of around 3. Tc(R = 0) is 38.2-38.5 K with ΔTc of 0.6-1.0 K. Comparative studies of various methods of low pressure synthesis have been presented. (author)

  12. Influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma

    CERN Document Server

    Duluard, C Y; Hubert, J; Reniers, F

    2016-01-01

    The influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma has been investigated experimentally. Spatially resolved mass spectrometry and laser induced fluorescence on OH radicals were used to estimate the intrusion of air in between the plasma torch and the substrate as a function of the torch-to-substrate separation distance. No air is detected, within the limits of measurement uncertainties, for separation distances smaller than 5 mm. For larger distances, the effect of ambient air can no longer be neglected, and radial gradients in the concentrations of species appear. The Ar 4p population, determined through absolute optical emission spectroscopy, is seen to decrease with separation distance, whereas a rise in emission from the N2(C--B) system is measured. The observed decay in Ar 4p and N2(C) populations for separation distances greater than 9mm is partly assigned to the increasing collisional quenching rate by N2 and O2 molecules from the entrained air....

  13. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor

    International Nuclear Information System (INIS)

    In the conventional ambient pressure drying of silica aerogels, tedious repetitive gel washing and solvent exchange steps (∼6 days) are involved. Therefore, in the present studies, we intended to reduce the processing time of TEOS based ambient pressure dried silica aerogels. Solvents such as methanol, hexane and Hexamethyldisilazane (HMDZ) as surface chemical modification agents have been used. To get good quality aerogels in terms of low density, high porosity, high contact angle and low volume shrinkage in less processing time, we varied MeOH/TEOS, HMDZ/TEOS molar ratios, oxalic acid (A) and NH4OH (B) concentrations and stirring time from 1 to 27.7, 0.34 to 2.1, 0 to 0.1 M, 0 to 2 M and 15 to 90 min respectively. The transparent and low-density aerogels were obtained for TEOS:MeOH:acidic H2O:basic H2O:HMDZ molar ratio of 1:16.5:0.81:0.50:0.681 respectively. The thermal stability and hydrophobicity have been confirmed with Thermogravimetric and Differential Thermal (TG-DT) analyses and Fourier Transform Infrared Spectroscopy. Microstructural study was carried out by Scanning Electron Microscopy (SEM)

  14. Bronchomotor response to cold air or helium-oxygen at normal and high ambient pressures.

    Science.gov (United States)

    Jammes, Y; Burnet, H; Cosson, P; Lucciano, M

    1988-05-01

    Effects of inhalation of cold air or helium-oxygen mixture on lung resistance (RL) were studied in anesthetized and tracheotomized rabbits under normal ambient pressure and in human volunteers under normo- and hyperbaric conditions. In artificially ventilated rabbits, an increase in RL occurred when the tracheal temperature fell to 10 degrees C. This effect was more than double with helium breathing compared to air, despite a lower respiratory heat loss by convection (Hc) with helium. In 3 normal humans, inhalation of cold air (mouth temperature = 8 degrees C) at sea level had no effect on RL value. However, with a helium-nitrogen-oxygen mixture, a weak but significant increase in RL due to cold gas breathing was measured in 1 subject at 2 ATA and in 2 individuals at 3.5 ATA. The density of inhaled gas mixture (air or He-N2-O2) was near the same in the three circumstances (1, 2, and 3.5 ATA) but Hc value increased with helium. At 8 ATA a 30-55% increase in RL occurred in the 3 divers during inhalation of cold gas (Hc was multiplied by 6 compared to air at sea level) and at 25 ATA the cold-induced bronchospasm ranged between 38 and 95% (Hc multiplied by 27). Thus, in rabbits and humans helium breathing enhanced the cold-induced increase in RL at normal or elevated ambient pressure, and this effect was interpreted as resulting from different mechanisms in the two circumstances. PMID:3388628

  15. Non-invasive estimation of blood pressure using ultrasound contrast agents

    Science.gov (United States)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2010-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an experimental setup for investigating the ambient pressure sensitivity of a contrast agent using diagnostic ultrasound. The setup resembles a realistic clinical setup utilizing a single array transducer for transmit and receive. The ambient pressure sensitivity of SonoVue (Bracco, Milano, Italy) was measured twice using two different acoustic driving pressures, which were selected based on a preliminary experiment. To compensate for variations in bubble response and to make the estimates more robust, the relation between the energy of the subharmonic and the fundamental component was chosen as a measure over the subharmonic peak amplitude. The preliminary study revealed the growth stage of the subharmonic component to occur at acoustic driving pressures between 300 and 500 kPa. Based on this, the pressure sensitivity was investigated using a driving pressure of 485 and 500 kPa. At 485 kPa, a linear pressure sensitivity of 0.42 dB/kPa was found having a linear correlation coefficient of 0.94. The second measurement series at 485 kPa showed a sensitivity of 0.41 dB/kPa with a correlation coefficient of 0.89. Based on the measurements at 500 kPa, this acoustic driving pressure was concluded to be too high causing the bubbles to be destroyed. The pressure sensitivity for these two measurement series were 0.42 and 0.25 dB/kPa with linear correlation coefficients of 0.98 and 0.93, respectively.

  16. Ambient pressure effects on the sputter particle distribution of insulating materials

    International Nuclear Information System (INIS)

    The effect of ion bombardment on several grades of alumina was investigated. Changes in the electrical resistance of the substrate as a function of incoming ion energy were of particular interest. Attention was also paid to the sputter particle distribution as a function of ambient pressure. This distribution was found to be dependent on the ion to substrate mass ratio. In general, the distribution follows a curve of growth; approximating a cosine distribution at the lower pressures and mass ratio, becoming isotropic at higher pressures. Pressures in the range of 10-2 to 10-4 Pascals have been used along with mass ratios in the range of 0.40 to 1.3. Samples of up to 80 cm2 were subjected to a 10 cm diameter ion beam at energies of up to 6.25 keV. Average ion current densities of 1ma/cm2 were used. Substrate temperatures while subjected to the ion beam were also monitored

  17. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.

    Science.gov (United States)

    Lowe, A; Harrison, W; El-Aklouk, E; Ruygrok, P; Al-Jumaily, A M

    2009-09-18

    Elevated central arterial (aortic) blood pressure is related to increased risk of cardiovascular disease. Methods of non-invasively estimating this pressure would therefore be helpful in clinical practice. To achieve this goal, a physics-based model is derived to correlate the arterial pressure under a suprasystolic upper-arm cuff to the aortic pressure. The model assumptions are particularly applicable to the measurement method and result in a time-domain relation with two parameters, namely, the wave propagation transit time and the reflection coefficient at the cuff. Central pressures estimated by the model were derived from completely automatic, non-invasive measurement of brachial blood pressure and suprasystolic waveform and were compared to simultaneous invasive catheter measurements in 16 subjects. Systolic blood pressure agreement, mean (standard deviation) of difference was -1 (7)mmHg. Diastolic blood pressure agreement was 4 (4)mmHg. Correlation between estimated and actual central waveforms was greater than 90%. Individualization of model parameters did not significantly improve systolic and diastolic pressure agreement, but increased waveform correlation. Further research is necessary to confirm that more accurate brachial pressure measurement improves central pressure estimation. PMID:19665136

  18. The effect of ambient pressure on ejecta sheets from free-surface ablation

    Science.gov (United States)

    Marston, J. O.; Mansoor, M. M.; Thoroddsen, S. T.; Truscott, T. T.

    2016-05-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at 5 × 106 fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness.

  19. Tyre pressure monitoring using a dynamical model-based estimator

    Science.gov (United States)

    Reina, Giulio; Gentile, Angelo; Messina, Arcangelo

    2015-04-01

    In the last few years, various control systems have been investigated in the automotive field with the aim of increasing the level of safety and stability, avoid roll-over, and customise handling characteristics. One critical issue connected with their integration is the lack of state and parameter information. As an example, vehicle handling depends to a large extent on tyre inflation pressure. When inflation pressure drops, handling and comfort performance generally deteriorate. In addition, it results in an increase in fuel consumption and in a decrease in lifetime. Therefore, it is important to keep tyres within the normal inflation pressure range. This paper introduces a model-based approach to estimate online tyre inflation pressure. First, basic vertical dynamic modelling of the vehicle is discussed. Then, a parameter estimation framework for dynamic analysis is presented. Several important vehicle parameters including tyre inflation pressure can be estimated using the estimated states. This method aims to work during normal driving using information from standard sensors only. On the one hand, the driver is informed about the inflation pressure and he is warned for sudden changes. On the other hand, accurate estimation of the vehicle states is available as possible input to onboard control systems.

  20. Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway.

    Science.gov (United States)

    Jeremias, Felix; Henninger, Stefan K; Janiak, Christoph

    2016-05-17

    Micro- to mesoporous iron(iii) trimesate MIL-100(Fe) is a MOF of high interest for numerous applications. With regard to large-scale synthesis, e.g., by continuous flow or the in situ deposition of coatings, a replacement for the conventional, hydrothermal low-yield fluoride-containing synthesis is desirable. In this contribution, we present a method to synthesize crystalline fluoride-free MIL-100(Fe) from iron(iii) nitrate and trimesic acid in zeotropic DMSO/water solution at normal ambient pressure involving a DMSO-nitrate redox pathway. Yields of 72%, surface areas of SBET = 1791 m(2) g(-1) and pore volumes of Vpore = 0.82 cm(3) g(-1) were achieved. PMID:27143562

  1. Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying

    International Nuclear Information System (INIS)

    Hydrophobic crack-free alumina aerogel monoliths were fabricated by -Si(CH3)3 (trimethylsilyl substituent) modification of alcogels followed by an ambient pressure drying procedure. One-step solvent exchange and surface modification were simultaneously progressed by immersing alumina alcogels in trimethylmethoxysilane (TMMOS)/hexane solution. It is found that the hydrophobic property of alumina aerogels is affected by the contents of TMMOS from the measurements of contact angle and Fourier transform infrared spectrometry. Thermogravimetry/differential scanning calorimetry analyses reveal that the modified aerogels maintain their hydrophobic behavior up to a temperature of 260 deg. C. The structure and morphology of the obtained hydrophobic alumina aerogels were characterized by the measurements of N2 physical adsorption and scanning electron microscopy, which showed that they were highly porous materials with narrow slit-like pore geometry and a high degree of pore size uniformity.

  2. Multipole Electrodynamic Ion Trap Geometries for Microparticle Confinement under Standard Ambient Temperature and Pressure Conditions

    CERN Document Server

    Mihalcea, Bogdan M; Stan, Cristina; Visan, Gina T; Ganciu, Mihai; Filinov, Vladimir E; Lapitsky, Dmitry S; Deputatova, Lidiya V; Syrovatka, Roman A

    2015-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in multipole linear Paul trap geometries, operating under Standard Ambient Temperature and Pressure (SATP) conditions. An 8-electrode and a 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of the microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap was mapped using the electrolytic tank method. Particle dynamics was simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  3. Ambient pressure synthesis of YBa2Cu4O8 using citrate pyrolysis method

    International Nuclear Information System (INIS)

    Synthetic method of YBa2Cu4O8 (124) under a condition of ambient pressure of O2 gas using citrate pyrolysis technique is examined in order to improve the reproducibility. A new reaction tube device is designed to ensure complete calcination reaction, and the process from the precursor to 124 phase is traced successively by X-ray diffraction analyses. From the experiments, enough contact of flowing O2 gas with the precursor, and slow heating rate (1 deg. C/min) to the optimal reaction temperature 780 deg. C are suggested to be essential. Long reaction process (for 70 h or more) is necessary for higher purity. A transient mixture state of Y2Cu2O5, BaCO3 and CuO phases is found to grow up in early stage of the calcination process. This mixture state leads to the formation of final 124 phase with good reproducibility

  4. Optimized Synthesis of Carbon Aerogels via Ambient Pressure Drying Process as Electrode for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    YUAN Lei; CHANG Lijuan; FU Zhibing; YANG Xi; JIAO Xingli; TANG Yongjian; LIU Xichuan; WANG Chaoyang

    2015-01-01

    Carbon aerogels were synthesized via ambient pressure drying process using resorcinol-formaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 mA/cm2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950℃and 4 h, respectively.

  5. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. PMID:26346020

  6. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Brewer, Tim M; Gillen, Greg

    2013-10-01

    Desorption electro-flow focusing ionization (DEFFI), a desorption-based ambient ion source, was developed, characterized, and evaluated as a possible source for field deployable ambient pressure mass spectrometry (APMS). DEFFI, based on an electro-flow focusing system, provides a unique configuration for the generation of highly charged energetic droplets for sample analysis and ionization. A concentrically flowing carrier gas focuses the liquid emanating from a capillary through a small orifice, generating a steady fluid jet. An electric field is applied across this jet formation region, producing high velocity charged droplets that impinge on an analyte laden surface. This configuration separates the jet charging region from the external environment, eliminating detrimental effects from droplet space charge or target surface charging. The sample desorption and ionization processes operate similar to desorption electrospray ionization (DESI). DEFFI demonstrated strong signal intensities and improved signal-to-noise ratios in both positive and negative mode mass spectrometry for narcotics, i.e., cocaine, and explosives, i.e., cyclotrimethylenetrinitramine (RDX), respectively. A characterization of DEFFI ionization mechanisms identified operation regimes of both electrospray and corona discharge based analyte ionization, as well as limitations in overall signal. In addition, the DEFFI response was directly compared to DESI-MS under similar operating conditions. This comparison established a wider and more stable optimal operating range, while requiring an order of magnitude lower applied gas pressure and applied potential for DEFFI than DESI. These reductions are due to the physical mode of jet formation and geometric configuration differences between DEFFI and DESI, pointing to a potential benefit of DEFFI-MS for field implementation. PMID:23923127

  7. Estimating large-scale fracture permeability of unsaturatedrockusing barometric pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Zhang, Keni; Liu, Hui-Hai

    2005-05-17

    We present a three-dimensional modeling study of gas flow inthe unsaturated fractured rock of Yucca Mountain. Our objective is toestimate large-scale fracture permeability, using the changes insubsurface pneumatic pressure in response to barometric pressure changesat the land surface. We incorporate the field-measured pneumatic datainto a multiphase flow model for describing the coupled processes ofliquid and gas flow under ambient geothermal conditions. Comparison offield-measured pneumatic data with model-predicted gas pressures is foundto be a powerful technique for estimating the fracture permeability ofthe unsaturated fractured rock, which is otherwise extremely difficult todetermine on the large scales of interest. In addition, this studydemonstrates that the multi-dimensional-flow effect on estimatedpermeability values is significant and should be included whendetermining fracture permeability in heterogeneous fracturedmedia.

  8. Using Estimated On-Site Ambient Temperature Has Uncertain Benefit When Estimating Postmortem Interval

    Directory of Open Access Journals (Sweden)

    Laurent Dourel

    2010-01-01

    Full Text Available The forensic entomologist uses weather station data as part of the calculation when estimating the postmortem interval (PMI. To reduce the potential inaccuracies of this method caused by the distance between the crime scene and the meteorological station, temperature correlation data from the site of the corpse may be used. This experiment simulated the impact of retrospective weather data correction using linear regression between seven stations and sites in three climatic exposure groups during three different seasons as part of the accumulated degree days calculation for three necrophagous species (Diptera: Calliphoridae. No consistent benefit in the use of correlation or the original data from the meteorological stations was observed. In nine cases out of 12, the data from the weather station network limited the risk of a deviation from reality. The forensic entomologist should be cautious when using this correlation model.

  9. Vapor Pressure of Hexamethylene Triperoxide Diamine (HMTD) Estimated Using Secondary Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Aernecke, Matthew J; Mendum, Ted; Geurtsen, Geoff; Ostrinskaya, Alla; Kunz, Roderick R

    2015-11-25

    A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C. By calibrating this method using vapor sources of cocaine and heroin, which have known pressure-temperature (P-T) curves, the temperature dependence of HMTD vapor was determined, and a Clausius-Clapeyron plot of ln[P (Pa)] vs 1/[T (K)] yielded a straight line with the expression ln[P (Pa)] = {(-11091 ± 356) × 1/[T (K)]} + 25 ± 1 (error limits are the standard error of the regression analysis). From this equation, the sublimation enthalpy of HMTD was estimated to be 92 ± 3 kJ/mol, which compares well with the theoretical estimate of 95 kJ/mol, and the vapor pressure at 20 °C was estimated to be ∼60 parts per trillion by volume, which is within a factor of 2 of previous theoretical estimates. Thus, this method provides not only the first direct experimental determination of HMTD vapor pressure but also a rapid, near-real-time capability to quantitatively measure low-vapor-pressure compounds, which will be useful for aiding in the development of training aids for bomb-sniffing canines. PMID:26505487

  10. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    Science.gov (United States)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  11. Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Zaug, J M; Armstrong, M R; Crowhurst, J C; Grant, C D; Fried, L E

    2009-03-05

    The timescale and/or products of photo-induced decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were investigated at ambient pressure and compared with products formed at elevated pressure (i.e. 8 GPa). Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after photoexcitation with a 5 ns pulse of 532 nm light. At ambient pressure, transient spectra of TATB indicate that the molecule has significantly decomposed within 60 ns; transient spectra also indicate that formation of CO{sub 2}, an observed decomposition product, is complete within 30-40 s. Proof of principle time resolved experiments at elevated pressures were performed and are discussed briefly. Comparison of steady-state FTIR spectra obtained at ambient and elevated pressure (ca. 8 GPa) indicate that the decomposition products vary with pressure. We find evidence for water as a decomposition product only at elevated pressure.

  12. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level.

  13. Cuffless differential blood pressure estimation using smart phones.

    Science.gov (United States)

    Chandrasekaran, Vikram; Dantu, Ram; Jonnada, Srikanth; Thiyagaraja, Shanti; Subbu, Kalyan Pathapati

    2013-04-01

    Smart phones today have become increasingly popular with the general public for their diverse functionalities such as navigation, social networking, and multimedia facilities. These phones are equipped with high-end processors, high-resolution cameras, and built-in sensors such as accelerometer, orientation-sensor, and light-sensor. According to comScore survey, 26.2% of U.S. adults use smart phones in their daily lives. Motivated by this statistic and the diverse capability of smart phones, we focus on utilizing them for biomedical applications. We present a new application of the smart phone with its built-in camera and microphone replacing the traditional stethoscope and cuff-based measurement technique, to quantify vital signs such as heart rate and blood pressure. We propose two differential blood pressure estimating techniques using the heartbeat and pulse data. The first method uses two smart phones whereas the second method replaces one of the phones with a customized external microphone. We estimate the systolic and diastolic pressure in the two techniques by computing the pulse pressure and the stroke volume from the data recorded. By comparing the estimated blood pressure values with those measured using a commercial blood pressure meter, we obtained encouraging results of 95-100% accuracy. PMID:22868529

  14. Estimating blood pressure using Windkessel model on Photoplethysmogram.

    Science.gov (United States)

    Choudhury, Anirban Dutta; Banerjee, Rohan; Sinha, Aniruddha; Kundu, Shaswati

    2014-01-01

    Simple and non-invasive methods to estimate vital signs are very important for preventive healthcare. In this paper, we present a methodology to estimate Blood Pressure (BP) using Photoplethysmography (PPG). Instead of directly relating systolic and diastolic BP values with PPG features, our proposed methodology initially maps PPG features with some person specific intermediate latent parameters and later derives BP values from them. The 2-Element Windkessel model has been considered in the current context to estimate total peripheral resistance and arterial compliance of a person using PPG features, followed by linear regression for simulating arterial blood pressure. Experimental results, performed on a standard hospital dataset yielded absolute errors of 0.78±13.1 mmHg and 0.59 ± 10.23 mmHg for systolic and diastolic BP values respectively. Results also indicate that the methodology is more robust than the standard methodologies that directly estimate BP values from PPG signal. PMID:25571008

  15. Estimation of discretization errors in contact pressure measurements.

    Science.gov (United States)

    Fregly, Benjamin J; Sawyer, W Gregory

    2003-04-01

    Contact pressure measurements in total knee replacements are often made using a discrete sensor such as the Tekscan K-Scan sensor. However, no method currently exists for predicting the magnitude of sensor discretization errors in contact force, peak pressure, average pressure, and contact area, making it difficult to evaluate the accuracy of such measurements. This study identifies a non-dimensional area variable, defined as the ratio of the number of perimeter elements to the total number of elements with pressure, which can be used to predict these errors. The variable was evaluated by simulating discrete pressure sensors subjected to Hertzian and uniform pressure distributions with two different calibration procedures. The simulations systematically varied the size of the sensor elements, the contact ellipse aspect ratio, and the ellipse's location on the sensor grid. In addition, contact pressure measurements made with a K-Scan sensor on four different total knee designs were used to evaluate the magnitude of discretization errors under practical conditions. The simulations predicted a strong power law relationship (r(2)>0.89) between worst-case discretization errors and the proposed non-dimensional area variable. In the total knee experiments, predicted discretization errors were on the order of 1-4% for contact force and peak pressure and 3-9% for average pressure and contact area. These errors are comparable to those arising from inserting a sensor into the joint space or truncating pressures with pressure sensitive film. The reported power law regression coefficients provide a simple way to estimate the accuracy of experimental measurements made with discrete pressure sensors when the contact patch is approximately elliptical. PMID:12600352

  16. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-08

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and near ambient-pressure of oxygen using X-ray photoelectron spectroscopy (APXPS). Oxygen reduction and evolution reactions take place on the surface of the mixed electronic and Li+ ionic conductor, LixV2O5, which eliminate parasitic reactions between oxygen reduction/evolution reaction intermediates and aprotic electrolytes used in Li-O2 batteries reported to date. Under UHV, reversible lithium intercalation and de-intercalation from LixV2O5 was noted, where the changes in the vanadium valence state revealed from XPS in this study were comparable to that reported previously from Li/LixV2O5 thin film batteries. In presence of oxygen near ambient pressure, the LixV2O5 surface was covered gradually by the reaction product of oxygen reduction, namely lithium peroxide (Li2O2) (approximately 1-2 unit cells) upon discharge. Interestingly, the LixV2O5 surface became re-exposed upon charging, and the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of Li-O2 cells (~1000 mV) with aprotic electrolytes, which can be attributed to subnanometer-thick Li2O2 with surfaces free of contaminants such as carbonate species. Our study provides first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  17. Technology qualification of an ambient pressure subsea cryogenic pipeline for offshore LNG loading and receiving terminals

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Afzal; Viteri, Martha; D' Angelo, Luis [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Prescott, Neal; Zhang, Jeff [Fluor Corporation, Irving, TX (Brazil)

    2009-07-01

    A project that deploys new technologies need to be confident that the technology can be implemented successfully and will perform reliably as designed. New technology is critical to industry, especially where such technology is a project enable without the existence of a backup solution, but also for projects where such technologies bring potential benefits such as technical, economic, schedule, and environmental improvements. DNV developed and has been implementing for many years a systematic, risk based technology qualification process as described in DNV RP-A203, qualification procedures for new technology. One of the major objectives of a formal technology qualification process is to ensure that risks are properly addressed. The DNV process includes several levels of technology qualification and review, starting with a statement of feasibility and concluding with a Certificate of Fitness for Service. Fluor Corporation (Fluor) has developed a new subsea cryogenic pipe-in-pipe configuration for offshore LNG loading and receiving terminals. The configuration uses a highly efficient thermal nano-porous insulation in the annular space between the inner and outer pipes. This material is kept in an ambient pressure environment, which is produced through sealing by metal bulkheads. The bulkheads transfer the contraction induced axial compression load on the inner cryogenic carrier pipe to the external jacket pipe. The resulting pipeline bundle is a structural element, which addresses the thermal contraction and expansion loads without the use of expansion bellows or ultra-low thermal contraction alloys. Fluor has followed the DNV technology qualification process to achieve the defined milestones therein which culminated in DNV issuing a certificate of fitness for service. Particular focus was put on the new aspects of the design. The certificate of fitness for service for the Fluor subsea LNG pipe technology provides project management with the confidence that this

  18. Estimation of Subjective Difficulty and Psychological Stress by Ambient Sensing of Desk Panel Vibrations

    Science.gov (United States)

    Hamaguchi, Nana; Yamamoto, Keiko; Iwai, Daisuke; Sato, Kosuke

    We investigate ambient sensing techniques that recognize writer's psychological states by measuring vibrations of handwriting on a desk panel using a piezoelectric contact sensor attached to its underside. In particular, we describe a technique for estimating the subjective difficulty of a question for a student as the ratio of the time duration of thinking to the total amount of time spent on the question. Through experiments, we confirm that our technique correctly recognizes whether or not a person writes something down on paper by measured vibration data at the accuracy of over 80 %, and that the order of computed subjective difficulties of three questions is coincident with that reported by the subject in 60 % of experiments. We also propose a technique to estimate a writer's psychological stress by using the standard deviation of the spectrum of the measured vibration. Results of a proof-of-concept experiment show that the proposed technique correctly estimates whether or not the subject feels stress at least 90 % of the time.

  19. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working.

    Science.gov (United States)

    Pancardo, Pablo; Acosta, Francisco D; Hernández-Nolasco, José Adán; Wister, Miguel A; López-de-Ipiña, Diego

    2015-01-01

    Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers' comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS. PMID:26184218

  20. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working

    Directory of Open Access Journals (Sweden)

    Pablo Pancardo

    2015-07-01

    Full Text Available Ambient Assisted Working (AAW is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers’ comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.

  1. A hybrid Rankine cycle (HyRC) with ambient pressure combustion (APC)

    International Nuclear Information System (INIS)

    The main losses in thermal power generation include heat in exhaust flue gas, heat rejected through steam condensation of low-pressure turbine, and exergy destruction in heat exchange process etc. To the extent that the heat losses are significantly greater in temperature than either air or water coolant resources, these losses also represent exergy losses which might be exploited to improve plant capacity and efficiency. This paper presents a hybrid Rankine cycle (HyRC) with an ambient pressure combustion (APC) boiler to address the recovery potential of these losses within the steam Rankine cycle (SRC). The APC–HyRC concept employs an organic Rankine cycle (ORC) to supplement SRC and to reduce cycle energy losses to the atmosphere since organic fluids are capable of lowering cycle condensation temperature when a very low temperature heat sink is available. The case studies based on a 399 MW SRC unit show that the APC–HyRC configurations have better thermodynamic performance than its base case SRC at a cycle condensation temperature of 30 °C and below. The best APC–HyRC configuration generates up to 14% more power than the baseline steam cycle which is a 5.45% increase in overall gross efficiency with a cycle condensation temperature at 4 °C. - Highlights: • A hybrid Rankine cycle with water and organic fluid is presented. • Heat losses in exhaust flue gas and exhaust steam are reduced. • Exergy losses in regeneration process are reduced. • Efficiency improvements are made to the conventional steam Rankine cycle. • Issues in design/construction of greenfield and repowering project are discussed

  2. Reaction of Small Insects to an Ambient Pressure Dielectric Barrier Discharge

    Science.gov (United States)

    Bures, Brian; Gray, Travis; Bourham, Mohamed; Roe, R. Michael; Long, Shengyou; Donohue, Kevin

    2003-10-01

    Ambient Pressure Dielectric Barrier Discharges (DBD's) are commonly studied for rapid sterilization of surfaces. In an effort to expand the application of DBD's to larger biological species, small insect species are directly exposed to a large gap(5 cm) DBD composed primarily of helium gas. In order to control the temperature, the electrodes are actively cooled and the current density remains low (insect (40 ^oC). A microwave interferometer is used to measure the line average, time average, electron density. The electron density is between 10^8 and 10^10 cm-3 for the operating conditions of interest. Under these operating conditions, optical emission spectroscopy shows only a significant emission of helium lines with some emission of molecular nitrogen lines. Under these operational conditions green peach aphids and western flower thrips show a reduction in population by at least 50% with a 60 s exposure time. The goal of this research is to replace currently existing chemical and thermal insect control techniques with the more rapid plasma techniques for quarantine applications.

  3. Preparation of TiO2 Aerogels by Ambient Pressure Drying

    Directory of Open Access Journals (Sweden)

    HU Jiu-Gang,CHEN Qi-Yuan,LI Jie,LU Bin,LI Peng-Ju

    2009-07-01

    Full Text Available TiO2 aerogels were prepared by sol-gel method at ambient pressure using tetrabutyl titanate as raw material, formamide as drying control chemical additive, tetralthyl orthosilcate(TEOS/ethanol as pore fluids extractant. The structural properties of aerogel samples were characterized by means of XRD, BET, TEM, SEM, EDS and FT-IR, etc. Experimental results show that asª²prepared TiO2 aerogel is in amorphous state with the apparent density of 0.375g/cm3, the specific surface area of 523m2/g and the average pore size of about 9.9nm. After calcinated at 850¡䟩n air for 4h, the sampletransforms from amorphous state to anataseª²type crystal, while its¡¯ pore volume shrinks and average pore size increases to 16.3nm, the specific surface area reduces to 208m2/g. TiO2 aerogel prepared by the above method presents excellent thermal stability and high specific surface area.

  4. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    International Nuclear Information System (INIS)

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5 deg. angular resolution at 24 deg. acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar.

  5. A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue

    Directory of Open Access Journals (Sweden)

    Pinghua Zhu

    2016-01-01

    Full Text Available Coal gangue, one of the main hazardous emissions of purifying coal from coalmine industry, is rich in silica and alumina. However, the recycling of the waste is normally restricted by less efficient techniques and low attractive output; the utilization of such waste is still staying lower than 15%. In this work, the silica aerogel materials were synthesized by using a precursor extracted from recycled silicon-rich coal gangue, followed by a single-step surface silylation and ambient pressure drying. A low density (~0.19 g/cm3 nanostructured aerogel with a 3D open porous microstructure and high surface area (~690 m2/g was synthesized, which presents a superior thermal insulation performance (~26.5 mW·m−1·K−1 of a plane packed of 4-5 mm granules which was confirmed by transient hot-wire method. This study offers a new facile route to the synthesis of insulating aerogel material by recycling solid waste coal gangue and presents a potential cost reduction of industrial production of silica aerogels.

  6. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure

    Science.gov (United States)

    Jang, Jisu; Son, Myungwoo; Chung, Sunki; Kim, Kihyeun; Cho, Chunhum; Lee, Byoung Hun; Ham, Moon-Ho

    2015-12-01

    There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm2 V-1 s-1, respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

  7. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  8. Direct transformation of amorphous silicon carbide into graphene under low temperature and ambient pressure.

    Science.gov (United States)

    Peng, Tao; Lv, Haifeng; He, Daping; Pan, Mu; Mu, Shichun

    2013-01-01

    A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si(1-x)C(x)) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800°C) and the ambient pressure in chlorine (Cl(2)) atmosphere. Therefore, our finding, the direct transformation of a-Si(1-x)C(x) into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs. PMID:23359349

  9. Effect of actual vapor pressure on estimating evapotranspiration at Serbia

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2009-01-01

    Full Text Available Actual vapor pressure (VP is an important parameter that is used in many evapotranspiration equations. However, vapor pressure is difficult to measure accurately. In the humid climate, the actual vapor pressure can be derived from minimum air temperature. The objectives of this study were: first, to estimate errors that can arise if VP data are not available and have to be estimated; second, to compare the Priestley-Taylor ET0 values computed under various levels of VP data availability; and third, to evaluate the reliability of Priestley-Taylor equation as compared to the FAO-56 Penman-Monteith method. The following main conclusions can be drawn: Estimated VP values generally were in closest agreement with measured VP values. The measurements of air humidity at humid locations are not indispensable for estimating reference evapotranspiration. The Priestley-Taylor method (with measured or estimated VP provides the very good agreement with the evapotranspiration obtained by the FAO-56 Penman-Monteith method except windless locations.

  10. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  11. Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface Between Molten Droplet and Substrate Surface

    Science.gov (United States)

    Fukumoto, M.; Yang, K.; Tanaka, K.; Usami, T.; Yasui, T.; Yamada, M.

    2011-01-01

    Millimeter-sized molten Cu droplets were deposited on AISI304 substrate surface by free falling experiment. The roles of substrate temperature and ambient pressure on heat transfer at interface between molten droplet and substrate surface were systematically investigated. The splat characteristics were evaluated in detail. Temperature history of molten droplet was measured at splat-substrate interface. Cooling rate of the flattening droplet was calculated as well. Furthermore, the spreading behavior of molten droplet on substrate surface was captured by high speed camera. The heat transfer from splat to substrate was enhanced both by substrate heating and by ambient pressure reduction, which can be attributed to the good contact at splat bottom surface. The splats in free falling experiment showed similar changing tendency as thermal-sprayed particles. Consequently, substrate temperature and ambient pressure have an equivalent effect to contact condition at interface between droplet and substrate surface. Substrate heating and pressure reduction may enhance the wetting during splat flattening, and then affect the flattening and solidification behavior of the molten droplet.

  12. Techniques for estimating blood pressure variation using video images.

    Science.gov (United States)

    Sugita, Norihiro; Obara, Kazuma; Yoshizawa, Makoto; Abe, Makoto; Tanaka, Akira; Homma, Noriyasu

    2015-08-01

    It is important to know about a sudden blood pressure change that occurs in everyday life and may pose a danger to human health. However, monitoring the blood pressure variation in daily life is difficult because a bulky and expensive sensor is needed to measure the blood pressure continuously. In this study, a new non-contact method is proposed to estimate the blood pressure variation using video images. In this method, the pulse propagation time difference or instantaneous phase difference is calculated between two pulse waves obtained from different parts of a subject's body captured by a video camera. The forehead, left cheek, and right hand are selected as regions to obtain pulse waves. Both the pulse propagation time difference and instantaneous phase difference were calculated from the video images of 20 healthy subjects performing the Valsalva maneuver. These indices are considered to have a negative correlation with the blood pressure variation because they approximate the pulse transit time obtained from a photoplethysmograph. However, the experimental results showed that the correlation coefficients between the blood pressure and the proposed indices were approximately 0.6 for the pulse wave obtained from the right hand. This result is considered to be due to the difference in the transmission depth into the skin between the green and infrared light used as light sources for the video image and conventional photoplethysmogram, respectively. In addition, the difference in the innervation of the face and hand may be related to the results. PMID:26737225

  13. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    International Nuclear Information System (INIS)

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume. (low temperature plasma)

  14. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures

    International Nuclear Information System (INIS)

    Highlights: • An offline OCV–SOC–temperature table was established to infer battery SOC. • A temperature-based model was developed to estimate SOC at different temperatures. • The algorithm for SOC estimation was verified by dynamic current load. • The robustness of the approach was validated by different initial SOC values. - Abstract: Ambient temperature is a significant factor that influences the accuracy of battery SOC estimation, which is critical for remaining driving range prediction of electric vehicles (EVs) and optimal charge/discharge control of batteries. A widely used method to estimate SOC is based on an online inference of open-circuit voltage (OCV). However, the fact that the OCV–SOC is dependent on ambient temperature can result in errors in battery SOC estimation. To address this problem, this paper presents an SOC estimation approach based on a temperature-based model incorporated with an OCV–SOC–temperature table. The unscented Kalman filtering (UKF) was applied to tune the model parameters at each sampling step to cope with various uncertainties arising from the operation environment, cell-to-cell variation, and modeling inaccuracy. Two dynamic tests, the dynamic stress test (DST) and the federal urban driving schedule (FUDS), were used to test batteries at different temperatures. Then, DST was used to identify the model parameters while FUDS was used to validate the performance of the SOC estimation. The estimation was made covering the major working range from 25% to 85% SOC. The results indicated that our method can provide accurate SOC estimation with smaller root mean squared errors than the method that does not take into account ambient temperature. Thus, our approach is effective and accurate when battery operates at different ambient temperatures. Since the developed method takes into account the temperature factor as well as the complexity of the model, it could be effectively applied in battery management systems for

  15. Phonation aeroacoustic source strength estimation from sound pressure measurements

    Science.gov (United States)

    Krane, Michael; Campo, Elizabeth; McPhail, Michael

    2013-11-01

    An experimental characterization of monopole and dipole source spectra in a model of the human upper airway is presented. The airway model is a life-scale, vertical, straight duct of square cross section, into which two model vocal folds are placed. Five microphones are positioned in the duct, two below and two above the vocal folds, with a fifth microphone placed at the ``mouth.'' Time-mean subglottal pressure and volume flow rate are measured using a micromanometer and ball-element meter, respectively. In addition, pressure on either side of the model vocal folds are measured using Kulite XCS-093 pressure transducers, and the motion of the model vocal folds is captured using high-speed video. Cross-correlations between the microphone pairs are used to estimate the right- and left-running acoustic wave amplitude spectra above and below the model vocal folds. From these spectra and theoretical matching conditions at the inlet and outlet of the vocal fold constriction, source spectra are constructed. These are compared to independent estimates of source spectra obtained from the difference of the Kulite transducer pressures and the motion of the model vocal folds. Acknowledge support from NIH R01 DC005642 (MK, MM) and ARL E&F program (EC).

  16. Study of electro-chemical properties of metal-oxide interfaces using a newly constructed ambient pressure X-ray photoelectron spectroscopy endstation

    International Nuclear Information System (INIS)

    In this report, we briefly describe the general design principles and construction of a newly developed ambient pressure X-ray photoelectron spectroscopy system. This system provides an imaging mode with 2 heterojunction and Rh-TiO2 metal-support system are presented. This new system can probe structured surfaces near ambient pressure as a function of temperature, pressure, electrical potential, local position, and time. It is a valuable in situ tool to detect material transformations at the micrometer scale.

  17. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: Dependence on chemical microstructure

    Science.gov (United States)

    Kaminska, E.; Kaminski, K.; Paluch, M.; Ngai, K. L.

    2006-04-01

    Dielectric loss spectra of two glass-forming isomers, eugenol and isoeugenol, measured at ambient and elevated pressures in the normal liquid, supercooled, and glassy states are presented. The isomeric chemical compounds studied differ only by the location of the double bond in the alkyl chain. Above the glass transition temperature Tg, the dielectric loss spectra of both isomers exhibit an excess wing on the high frequency flank of the loss peak of the α relaxation and an additional faster γ process at the megahertz frequency range. By decreasing temperature below Tg at ambient pressure or by elevating pressure above Pg, the glass transition pressure, at constant temperature, the excess wing of isoeugenol shifts to lower frequencies and is transformed into a secondary β-loss peak, while in eugenol it becomes a shoulder. These spectral features enable the β-relaxation time τβ to be determined in the glassy state. These changes indicate that the excess wings in isoeugenol and eugenol are similar and both are secondary β relaxations that are not resolved in the liquid state. While in both isoeugenol and eugenol the loss peak of the β relaxation in the glassy state and the corresponding excess wing in the liquid state shifts to lower frequencies on elevating pressure, the locations of their γ relaxation show little change with increasing pressure. The different pressure sensitivities of the excess wing and γ relaxation are further demonstrated by the nearly perfect superposition of the α-loss peak together with excess wing from the data taken at ambient pressure and at elevated pressure (and higher temperature so as to have the same α-peak frequency), but not the γ-loss peak in both isoeugenol and eugenol. On physical aging isoeugenol, the β-loss peak shifts to lower frequencies, but not the γ relaxation. Basing on these experimental facts, the faster γ relaxation is a local intramolecular process involving a side group and the slower β relaxation

  18. Non-invasive estimation of blood pressure using ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2009-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an experimental setup for investigating the ambient pressure sensitivity of a contrast agent using...... diagnostic ultrasound. The setup resembles a realistic clinical setup utilizing a single array transducer for transmit and receive. The ambient pressure sensitivity of SonoVue (Bracco, Milano, Italy) was measured twice using two different acoustic driving pressures, which were selected based on a preliminary...... component to occur at acoustic driving pressures between 300 and 500 kPa. Based on this, the pressure sensitivity was investigated using a driving pressure of 485 and 500 kPa. At 485 kPa, a linear pressure sensitivity of 0.42 dB/kPa was found having a linear correlation coefficient of 0.94. The second...

  19. Thermal expansion of kyanite at ambient pressure: An X-ray powder diffraction study up to 1000 ℃

    Institute of Scientific and Technical Information of China (English)

    Xi Liu; Qiang He; Hejing Wang; Michael E. Fleet; Xiaomin Hu

    2010-01-01

    The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: aa = 5.8(3) × 10-5, ab = 5.8 (1) × 10-5, ac% = 5.2(1) × 10-5, and av = 7.4(1) × 10-3 ℃-1, in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles a, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.

  20. Ambient-condition growth of high-pressure phase centrosymmetric crystalline KDP microstructures for optical second harmonic generation.

    Science.gov (United States)

    Ren, Yan; Zhao, Xian; Hagley, Edward W; Deng, Lu

    2016-08-01

    Noncentrosymmetric potassium dihydrogen phosphate (KH2PO4 or KDP) in the tetragonal crystal phase is arguably the most extensively studied nonlinear optical crystal in history. It has prolific applications ranging from simple laser pointers to laser inertial confinement fusion systems. Recently, type IV high-pressure KDP crystal sheets with a monoclinic crystal phase having centrosymmetric properties have been observed. However, it was found that this new crystal phase is highly unstable under ambient conditions. We report ambient-condition growth of one-dimensional, self-assembled, single-crystalline KDP hexagonal hollow/solid-core microstructures that have a molecular structure and symmetry identical to the type IV KDP monoclinic crystal that was previously found to exist only at extremely high pressures (>1.6 GPa). Furthermore, we report highly efficient bulk optical second harmonic generation (SHG) from these ambient condition-grown single-crystalline microstructures, even though they have a highly centrosymmetric crystal phase. However, fundamental physics dictates that a bulk optical medium with a significant second-order nonlinear susceptibility supporting SHG must have noncentrosymmetric properties. Laue diffraction analysis reveals a weak symmetry-breaking twin-crystal lattice that, in conjunction with tight confinement of the light field by the tubular structure, is attributed to the significant SHG even with sample volumes <0.001 mm(3). A robust polarization-preserving effect is also observed, raising the possibility of advanced optical technological applications. PMID:27574703

  1. In-flight measured and predicted ambient dose equivalent and latitude differences on effective dose estimates

    International Nuclear Information System (INIS)

    The results from 2 years (2001-2002) of experimental measurements of in-board radiation doses received at Iberia commercial flights are presented. The routes studied cover the most significant destinations and provide a good estimate of the route doses as required by the new Spanish regulations on air crew radiation protection. Details on the experimental procedures and calibration methods are given. The experimental measurements from the different instruments (Tissue Equivalent Proportional Counter and the combination of a high pressure ion chamber and a high-energy neutron compensated rem-counter) and their comparison with the predictions from some route-dose codes (CARI-6, EPCARD 3.2) are discussed. In contrast with the already published data, which are mainly focused on North latitudes over parallel 50, many of the data presented in this work have been obtained for routes from Spain to Central and South America. (authors)

  2. Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J

    2005-07-29

    are included to allow variation of the operating pressure in the range of 1 to 2 bar. Hydrogen generated at the cathode of the cell can be collected for the purpose of flow measurement and composition analysis. The test facility proved to be easy to operate, versatile, and reliable. Two slightly different SDE's were designed, procured and tested. The first electrolyzer was based on a commercially available PEM water electrolyzer manufactured by Proton Energy Systems, Inc. (PES). The PES electrolyzer was built with Hastelloy B and Teflon wetted parts, a PEM electrolyte, and porous titanium electrodes. The second electrolyzer was assembled for SRNL by the University of South Carolina (USC). It was constructed with platinized carbon cloth electrodes, a Nafion 115 PEM electrolyte, carbon paper flow fields, and solid graphite back plates. Proof-of-concept testing was performed on each electrolyzer at near-ambient pressure and room temperature under various feed conditions. SDE operation was evidenced by hydrogen production at the cathode and sulfuric acid production at the anode (witnessed by the absence of oxygen generation) and with cell voltages substantially less than the theoretical reversible voltage for simple water electrolysis (1.23 V). Cell performance at low currents equaled or exceeded that achieved in the two-compartment cells built by Westinghouse Electric Corporation during the original development of the HyS Process. Performance at higher currents was less efficient due to mass transfer and hydraulic issues associated with the use of cells not optimized for liquid feed. Test results were analyzed to determine performance trends, improvement needs, and long-term SDE potential. The PES cell failed after several days of operation due to internal corrosion of the titanium electrodes in the presence of sulfuric acid. Although it was anticipated that the titanium would react in the presence of acid, the rapid deterioration of the electrodes was unexpected

  3. Cause-specific premature death from ambient PM2.5 exposure in India: Estimate adjusted for baseline mortality.

    Science.gov (United States)

    Chowdhury, Sourangsu; Dey, Sagnik

    2016-05-01

    In India, more than a billion population is at risk of exposure to ambient fine particulate matter (PM2.5) concentration exceeding World Health Organization air quality guideline, posing a serious threat to health. Cause-specific premature death from ambient PM2.5 exposure is poorly known for India. Here we develop a non-linear power law (NLP) function to estimate the relative risk associated with ambient PM2.5 exposure using satellite-based PM2.5 concentration (2001-2010) that is bias-corrected against coincident direct measurements. We show that estimate of annual premature death in India is lower by 14.7% (19.2%) using NLP (integrated exposure risk function, IER) for assumption of uniform baseline mortality across India (as considered in the global burden of disease study) relative to the estimate obtained by adjusting for state-specific baseline mortality using GDP as a proxy. 486,100 (811,000) annual premature death in India is estimated using NLP (IER) risk functions after baseline mortality adjustment. 54.5% of premature death estimated using NLP risk function is attributed to chronic obstructive pulmonary disease (COPD), 24.0% to ischemic heart disease (IHD), 18.5% to stroke and the remaining 3.0% to lung cancer (LC). 44,900 (5900-173,300) less premature death is expected annually, if India achieves its present annual air quality target of 40μgm(-3). Our results identify the worst affected districts in terms of ambient PM2.5 exposure and resulting annual premature death and call for initiation of long-term measures through a systematic framework of pollution and health data archive. PMID:27063285

  4. Simple recipe for formation or recovery at ambient pressure of the 8K superconducting state of β-(BEDT-TTF)2I3

    International Nuclear Information System (INIS)

    A simple recipe for the formation and recovery at ambient pressure of the 8K superconducting state of β-(BEDT-TTF)2I3 is described. This technique will facilitate detailed studies of the 8K state. (author)

  5. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    International Nuclear Information System (INIS)

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth

  6. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh [Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States)

    2016-02-01

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  7. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  8. Automatic estimation of pressure-dependent rate coefficients

    KAUST Repository

    Allen, Joshua W.

    2012-01-01

    A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation. This journal is © the Owner Societies.

  9. Estimating domestic wood burning emissions in Nordic countries using ambient air observations, receptor and dispersion modelling

    Science.gov (United States)

    Denby, B.; Karl, M.; Laupsa, H.; Johansson, C.; Pohjola, M.; Karppinen, A.; Kukkonen, J.; Ketzel, M.; Wåhlin, P.

    2009-04-01

    One of the major emission sources of primary PM2.5 in Nordic countries during winter is wood burning from domestic heating. In Norway alone it is estimated that 80% of PM2.5 is emitted through this source. Though direct measurements of wood burning emissions are possible under controlled conditions, emission inventories for domestic heating are difficult to calculate. Emissions vary from stove to stove as well as wood type, wood condition and burning habits. The consumption rate of wood burning is also strongly dependent on meteorological as well as societal conditions. As a result the uncertainty in wood burning emission inventories used in dispersion modelling is considered to be quite high. As an alternative method for estimating the emissions resulting from wood burning for domestic heating this paper combines ambient air measurements, chemical analysis of filter samples, receptor models, dispersion models, and simple inverse modelling methods to infer emission strengths. The methodology is applied in three Nordic cities, notably Oslo (Norway), Helsinki (Finland) and Lycksele (Sweden). In these cities daily filter samples over several months have been collected. The filter samples have been chemically analysed for a range of elemental and specific markers including OC/EC and Levoglucosan. The chemical analysis has been used as input for a range of receptor models, including UNMIX, PMF, PMF-2 and COPREM. From these calculations the source contributions at the measurement sites, with particular emphasis on wood burning, have been estimated. Though the receptor models have a common basis their application method varies, and as a result the number of identifiable sources and their contributions may differ. For the application here the contribution of wood burning was not found to vary significantly, irrespective of the model or user. It was also found that Levoglucosan as a wood burning tracer was essential for the identification of the wood burning sources. Source

  10. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  11. Application of Ambient Analysis Techniques for the Estimation of Electromechanical Oscillations from Measured PMU Data in Four Different Power Systems

    DEFF Research Database (Denmark)

    Vanfretti, Luigi; Dosiek, Luke; Pierre, John W.;

    2011-01-01

    methodologies have been included in off-line analysis software, and are now being incorporated into software tools used in control rooms for monitoring the near real-time behavior of power system dynamics. In this paper we illustrate the practical application of some ambient analysis methods for......The application of advanced signal processing techniques to power system measurement data for the estimation of dynamic properties has been a research subject for over two decades. Several techniques have been applied to transient (or ringdown) data, ambient data, and to probing data. Some of these...... electromechanicalmode estimation in different power systems. We apply these techniques to phasor measurement unit (PMU) data from stored archives of several hours originating from the US Eastern Interconnection (EI), the Western Electricity Coordinating Council (WECC), the Nordic Power System, and time...

  12. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  13. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range. PMID:19682922

  14. Estimation of ex-vessel steam explosion pressure loads

    International Nuclear Information System (INIS)

    An ex-vessel steam explosion may occur when, during a severe reactor accident, the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles that may endanger surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. In this article, different scenarios of ex-vessel steam explosions in a typical pressurized water reactor cavity are analyzed with the code MC3D, which is being developed for the simulation of fuel-coolant interactions. A parametric study was performed varying the location of the melt release (central, right and left side melt pour), the cavity water subcooling, the primary system overpressure at vessel failure and the triggering time for explosion calculations. The main purpose of the study was to establish the influence of the varied parameters on the fuel-coolant interaction behaviour, to determine the most challenging cases and to estimate the expected pressure loadings on the cavity walls. For the most explosive central, right side and left side melt pour scenarios a detailed analysis of the explosion simulation results was performed. The study shows that for some ex-vessel steam explosion scenarios higher pressure loads are predicted than obtained in the OECD programme SERENA phase 1.

  15. Estimation of Tumor Interstitial Fluid Pressure (TIFP) Noninvasively.

    Science.gov (United States)

    Liu, Long Jian; Brown, Stephen L; Ewing, James R; Ala, Brigitte D; Schneider, Kenneth M; Schlesinger, Mordechay

    2016-01-01

    Tumor interstitial fluid pressure (TIFP), is a physiological parameter with demonstrated predictive value for a tumor's aggressiveness, drug delivery, as well as response to treatments such as radiotherapy and chemotherapy. Despite its utility, measurement of TIFP has been limited by the need for invasive procedures. In this work, the theoretical basis for approaching the absolute value of TIFP and the experimental method for noninvasively measuring TIFP are presented. Given specific boundary and continuity conditions, we convert theoretical variables into measurable variables by applying MRI technology. The work shows that TIFP in the central region of the tumor can be estimated by an analysis of the variation of tissue fluid motion in the tumor rim and surrounding tissue. It is determined from three noninvasive measurable parameters: i) an estimate of the velocity of the tumor interstitial fluid at the tumor surface, which is maximal, ii) a measurement of the distance from the tumor surface to where the tumor exudates are absorbed (or normalized), and iii) an estimate of the hydraulic conductivity of the interstitium through which the tumor exudate travels. We experimentally show that the fluid flow within the tumor rim is not uniform, even for a round shaped tumor, and demonstrate the procedures for the noninvasive measurement of TIFP. PMID:27467886

  16. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for the accumulating errors in Ah counting caused by the low precision of current sensors and lack of accurate initial SOC, the OCV method is used for calibration and as a complement. Given the variation of available capacities at different temperatures, rated/non-rated OCV–SOCs are established to estimate the initial SOCs in accordance with the Ah counting SOCs. Two dynamic tests, namely, constant- and alternated-temperature tests, are employed to verify the combined method at different temperatures. The results indicate that our method can provide effective and accurate SOC estimation at different ambient temperatures.

  17. Quantitative analysis of aluminum samples in He ambient gas at different pressures in a thick LIBS plasma

    Science.gov (United States)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2015-09-01

    In this paper, the influences of He ambient gas on aluminum emissions are investigated by experimental analysis of LIBS spectrum. Plasma is produced by focusing of a Nd:YAG laser pulse at a wavelength of 1064 nm on Al standard samples. In this work, the effects of helium atmosphere at different pressures on the amount of spectral self-absorption are studied. The results are discussed by utilizing two approaches: the curve of growth and calibration curve. It is seen that by increasing the gas pressure, the self-absorption enhances. Also, a new method of applying one standard sample instead of other traditional techniques is introduced for concentration prediction. The presented method would be helpful for the situation in which supplying standard samples is not very easy. Then, the accuracy of this new method can be checked by comparison of concentration prediction of the standard samples with their real concentrations.

  18. Synthetic Lead Bromapatite: X-ray Structure at Ambient Pressure and Compressibility up to about 20 GPa

    Energy Technology Data Exchange (ETDEWEB)

    X Liu; M Fleet; S Shieh; Q He

    2011-12-31

    Lead bromapatite [Pb{sub 10}(PO{sub 4}){sub 6}Br{sub 2}] has been synthesized via solid-state reaction at pressures up to 1.0 GPa, and its structure determined by single-crystal X-ray diffraction at ambient temperature and pressure. The large bromide anion is accommodated in the c-axis channel by lateral displacements of structural elements, particularly of Pb2 cations and PO{sub 4} tetrahedra. The compressibility of bromapatite was also investigated up to about 20.7 GPa at ambient temperature, using a diamond-anvil cell and synchrotron X-ray radiation. The compressibility of lead bromapatite is significantly different from that of lead fluorapatite. The pressure-volume data of lead bromapatite (P < 10 GPa) fitted to the third-order Birch-Murnaghan equation yield an isothermal bulk modulus (K{sub T}) of 49.8(16) GPa and first pressure derivative (K{sub T}) of 10.1(10). If K{sub T} is fixed at 4, the derived K{sub T} is 60.8(11) GPa. The relative difference of the bulk moduli of these two lead apatites is thus about 12%, which is about two times the relative difference of the bulk moduli ({approx}5%) of the calcium apatites fluorapatite [Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}], chlorapatite [Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}] and hydroxylapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}]. Another interesting feature apparently related to the replacement of F by Br in lead apatite is the switch in the principle axes of the strain ellipsoid: the c-axis is less compressible than the a-axis in lead bromapatite but more compressible in lead fluorapatite.

  19. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    KAUST Repository

    Sarawade, Pradip

    2013-12-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as asilica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400°C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silicaaerogels. © 2013 Elsevier B.V. All rights reserved.

  20. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    International Nuclear Information System (INIS)

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport

  1. Corrosion fatigue studies on A533-B, C-Mn and Ducol W30 pressure vessel steels at ambient temperature and pressure in aqueous environments

    International Nuclear Information System (INIS)

    Corrosion fatigue crack growth tests have been performed on three pressure vessel steels, A533-B, Ducol W30 and a C-Mn steel, in simulated water reactor environments at ambient temperature and pressure. A533-B and Ducol W30 had a bainitic, and the C-Mn a ferritic-pearlitic, microstructure- above a cyclic stress intensity level of 25 MN.msup(3/2), crack growth rates are in general greater for the ferritic-pearlitic material. Tests have covered a range of stress ratios and frequencies, there being a strong effect of frequency on growth rates, but a small effect of stress ratio. Examination of several specimen orientations has shown there to be no significant effect of growth rates. Mechanisms of corrosion fatigue have been discussed in the light of features observed on specimen fracture surfaces. The ferritic-pearlitic steel has shown a transition in fracture mode from transgranular quasi-cleavage to intergranular cracking on lowering the cyclic stress intensity, the transition occurring when the plastic zone size at the crack tip became less than four times the grain size. The cleavage mode indicates that this material is susceptible to hydrogen embrittlement in these aqueous environments at ambient temperature. The bainitic steels have not in general shown these fracture modes and appear less susceptible to hydrogen embrittlement. The enhancement of growth rates, above those obtained in air, is controlled by a dissolution mechanism. (author)

  2. Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution.

    Science.gov (United States)

    Friberg, Mariel D; Zhai, Xinxin; Holmes, Heather A; Chang, Howard H; Strickland, Matthew J; Sarnat, Stefanie Ebelt; Tolbert, Paige E; Russell, Armistead G; Mulholland, James A

    2016-04-01

    Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology. PMID:26923334

  3. Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures

    International Nuclear Information System (INIS)

    Intensity, temperature and electron density distributions of laser-induced plasmas (LIPs) have been measured by emission spectroscopy with two-dimensional spatial resolution and temporal resolution. The plasmas have been generated with an iron sample at different pressures of air, in the range 10-1000 mbar. An experimental system based in an imaging spectrometer equipped with an intensified CCD detector has been used to obtain the spectra with two-dimensional spatial resolution. The evolution of the intensity distributions is described by the blast wave model only at initial times. The temperature distributions are shown to correspond to a slight difference between the intensity distributions of two Fe I emission lines that have a high difference of their upper energy levels (3.38 eV). The electron density distributions have similar features to those of the temperature distributions. The features of the intensity and temperature distributions show a significant change with the ambient gas pressure: they have separated maxima in the plasmas generated at pressures below 100 mbar, whereas at higher pressures, the maxima of the two distributions coincide

  4. Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures

    Science.gov (United States)

    Aguilera, J. A.; Aragón, C.

    2002-09-01

    Intensity, temperature and electron density distributions of laser-induced plasmas (LIPs) have been measured by emission spectroscopy with two-dimensional spatial resolution and temporal resolution. The plasmas have been generated with an iron sample at different pressures of air, in the range 10-1000 mbar. An experimental system based in an imaging spectrometer equipped with an intensified CCD detector has been used to obtain the spectra with two-dimensional spatial resolution. The evolution of the intensity distributions is described by the blast wave model only at initial times. The temperature distributions are shown to correspond to a slight difference between the intensity distributions of two Fe I emission lines that have a high difference of their upper energy levels (3.38 eV). The electron density distributions have similar features to those of the temperature distributions. The features of the intensity and temperature distributions show a significant change with the ambient gas pressure: they have separated maxima in the plasmas generated at pressures below 100 mbar, whereas at higher pressures, the maxima of the two distributions coincide.

  5. Effect of Fe on the Elastic Constants of Magnesiowustite [(Mg,Fe)O] at Ambient Conditions and High Pressure

    Science.gov (United States)

    Sinogeikin, S. V.; Reichmann, H. J.; Bass, J. D.; Mackwell, S. J.; Jacobsen, S. D.

    2001-12-01

    Magnesiowustite is a major mineral in the lower mantle of the Earth. While the effect of temperature and pressure on the elasticity of MgO is well constrained, the effect of Fe on the elastic constants and their pressure derivatives is still uncertain, especially for compositions close to the Mg end-member. Here we present the Brillouin spectroscopy measurements of the single-crystal elastic constants of magnesiowustite at ambient conditions ( ~5.8 mol.% Fe) and to high pressures up to about 10 GPa ( ~1.3 mol.% Fe). The single-crystal samples were prepared by Mg:Fe interdiffusion between periclase single crystals and magnesiowustite powders with carefully controlled oxygen fugacity. The Brillouin scattering measurements were performed in platelet symmetric geometry, which significantly increases the accuracy, and is calibrated with respect to standard periclase sample. High-pressure measurements were performed in a large optical opening Merrill-Basset type diamond anvil cell with Methanol-Ethanol-Water mixture as a pressure-transmitting medium. The new results confirm earlier single-crystal ultrasonic measurements (gigahertz interferometry) which indicated that the behavior of the elastic moduli of magnesiowustite are highly nonlinear in Mg-rich end. A pronounced decrease in acoustic velocities with increasing Fe content is especially obvious in samples with Fe contents of <10 mol. %. The pressure derivatives of the elastic moduli of the sample with XFe = 1.3 mol % are equal to those of periclase within the experimental uncertainties, although the Fe content of the sample may be too small to allow compositional trends to be clearly identified.

  6. Apparatus for determination of vapor pressures at ambient temperatures employing a Knudsen effusion cell and quartz crystal microbalance

    International Nuclear Information System (INIS)

    We describe an apparatus for the measurement of vapor pressures of solids or liquids at ambient temperatures (260 K −2–10−6 Torr (1–10−4 Pa), but capable of being extended to lower pressures by at least an order of magnitude. It employs a Knudsen cell to produce an effusive molecular beam, only a small fraction of which is deposited on a cooled (225 K) quartz crystal microbalance (QCM). Vapor pressure values are derived from the mass gain rate determined by the QCM, Knudsen cell temperature, and fixed geometric factors. The accuracy and precision of the measurements are improved by locating the apparatus within an ultrahigh vacuum chamber (base pressure −9 Torr) with high pumping speed (2000 l s−1). A beam flag is used to interrupt the beam and allow for the subtraction of signal caused by the deposition of background molecules. The temperatures of both the microbalance and Knudsen cell are controlled to ±0.2 K using thermoelectric heaters/coolers. Measurements of the vapor pressure of benzoic acid, used as a primary reference material, agreed with literature reports over the entire temperature range to within the expected experimental uncertainty. In addition, the vapor pressure curves as a function of temperature (∼270–340 K) were determined for four isomers of dinitrotoluene (DNT). These curves can be readily expressed using the Clausius–Clapeyron relationship: log 10 P(Torr) = a - b/T(K), where a and b coefficients are listed below. Also listed is the heat of sublimation derived from these data. (Uncertainties are quoted as 2σ.)

  7. Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning

    International Nuclear Information System (INIS)

    Effects of atmospheric filament-free diffuse plasma in ambient air and oxygen by Diffuse Coplanar Surface Barrier Discharge (DCSBD) on surface of indium tin oxide (ITO) were studied. The DCSBD plasma treatment resulted in significant reduction of water contact angles (even for 1 s long treatment). The decrease can be explained by the chemical changes on surface. These were studied by XPS which shows considerable decrease in the carbon surface concentration. The detailed analysis of C1s peak indicates the increase of the highest binding energy component of the C1s peak that corresponds to polar bonds with oxygen, which may be also related to decrease of water contact angle. AFM measurement showed no significant effect of plasma on ITO surface morphology.

  8. Preparation and electrochemical properties of vanadium pentoxide aerogel film derived at the ambient pressure

    International Nuclear Information System (INIS)

    V2O5 aerogel materials has received much significant attention recently as it can be used as highly promising cathodic materials for Li-ion batteries. A novel kind of V2O5 aerogel materials, ambient dried V2O5 aerogel films were reported in this paper. The films were deposited by the dip-coating method and dipped into acetone and cyclohexane by turn to exchange the solvent in the films. Atomic force microscopy (AFM), X-ray diffraction topography (XRD), ellipsometry, and electrochemical measurements were employed to characterize the aerogel films. The porosity of the aerogel films is 56%, 16% higher than that of the xerogel films when dried at 120 deg. C. The aerogel films have the higher capacity, as well as better reversibility than those of the xerogel films. The improvement of the capacity can be ascribed to the increase of porosity as well as the pore diameters after the solvent exchange

  9. Metastable orthorhombic phases at ambient pressure in mechanically milled pure Ti and Ti–Mg

    International Nuclear Information System (INIS)

    Nanocrystalline Ti and Ti–20 at.% Mg produced by mechanical milling were characterized using nanobeam diffraction. Metastable ω (hexagonal) and γ (orthorhombic) phases were observed in the pure Ti, while γ, a new orthorhombic ε phase and a face-centred cubic (fcc) phase were identified in the Ti–Mg. γ, found so far only at high pressures, was produced by a combination of high impact pressure and shear stress during milling. The forced dissolution of Mg caused the formation of the ε and fcc phases

  10. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    Science.gov (United States)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  11. Estimation of lung volume and pressure from electrocardiogram

    KAUST Repository

    El Din Fathy Amin, Gamal

    2011-05-01

    The Electrocardiography (ECG) is a tool measuring the electrical excitation of the heart that is extensively used for diagnosis and monitoring of heart diseases. The ECG signal reflects not only the heart activity but also many other physiological processes. The respiratory activity is a prominent process that affects the ECG signal due to the close proximity of the heart and the lungs and, on the other hand, due to neural regulatory processes. In this paper, several means for the estimation of the respiratory process from the ECG signal are presented. The results show a strong correlation of the voltage difference between the R and S peak of the ECG and the lung\\'s volume and pressure. Correlation was also found for some features of the vector ECG, which is a two dimensional graph of two different ECG signals. The potential benefit of the multiparametric evaluation of the ECG signal is a reduction of the number of sensors connected to patients, which will increase the patients\\' comfort and reduce the costs associated with healthcare. In particular, it is relevant for sleep monitoring, where a reduction of the number of different sensors would facilitate a more natural sleeping environment and hence a higher sensitivity of the diagnosis. © 2011 IEEE.

  12. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

    International Nuclear Information System (INIS)

    The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 micromole C m-2 s-1, respectively, and 20 to 30 and 15 to 22 micromole C m-2 s-1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated

  13. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified. PMID:23556828

  14. Conceptual Demonstration of Ambient Desorption-Optical Emission Spectroscopy Using a Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Source.

    Science.gov (United States)

    Marcus, R Kenneth; Paing, Htoo W; Zhang, Lynn X

    2016-06-01

    The concept of ambient desorption-optical emission spectroscopy (AD-OES) is demonstrated using a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as the desorption/excitation source. The LS-APGD has previously been employed for elemental analysis of solution samples and particulates introduced via laser ablation in both the optical emission and mass spectrometries (OES, MS) modes. In addition, the device has been shown to be effective for the analysis of elemental and molecular species operating in an ambient desorption/ionization mass spectrometry (ADI-MS) mode. Proof-of-concept is presented here in the use of the LS-APGD to volatilize three very diverse sample forms (metallic thin films, dry solution residues, and bulk materials), with the liberated material excited within the microplasma and detected via OES, i.e., AD-OES. While the demonstration is principally qualitative at this point, it is believed that the basic approach may find application across a broad spectrum of analytical challenges requiring elemental analysis, including metals, soils, and volume-limited solutions, analogous to what has been seen in the development of the field of ADI-MS for molecular species determinations. PMID:27175512

  15. Stabilization of HfB12 in Y1-xHfxB12 under Ambient Pressure.

    Science.gov (United States)

    Akopov, Georgiy; Yeung, Michael T; Turner, Christopher L; Li, Rebecca L; Kaner, Richard B

    2016-05-16

    Alloys of metal dodecaborides-YB12 with HfB12-were prepared via arc-melting in order to stabilize the metastable HfB12 high-pressure phase under ambient pressure. Previously, HfB12 had been synthesized only under high-pressure (6.5 GPa). Powder X-ray diffraction (PXRD) and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the purity and phase composition of the prepared samples. The solubility limit for HfB12 in Y1-xHfxB12 (cubic UB12 structure type) was determined to be ∼35 at. % Hf by PXRD and EDS analysis. The value of the cubic unit cell parameter (a) changed from 7.505 Å (pure YB12) to 7.454 Å across the solid solution range. Vickers hardness increased from 40.9 ± 1.6 GPa for pure YB12 to 45.0 ± 1.9 GPa under an applied load of 0.49 N for the Y1-xHfxB12 solid solution composition with ∼28 at. % Hf, suggesting both solid solution hardening and extrinsic hardening due to the formation of secondary phases of hafnium. PMID:27115173

  16. Fermi-surface topology of κ-(BEDT-TTF)2Cu[N(CN)2]Br at ambient pressure

    International Nuclear Information System (INIS)

    Ambient pressure Fermi-surface measurements are reported for κ-(BEDT-TTF)2Cu[N(CN)2]Br. The single Shubnikov de Haas frequency that is detected (3798±5 T) corresponds to 100% of the Brillouin zone and can be attributed to the β orbit that results from magnetic breakdown. From the temperature dependence of the oscillations, it appears that κ-(BEDT-TTF)2Cu[N(CN)2]Br possesses a conventional Fermi-liquid ground state, although with a short mean free path, possibly due to the presence of Cu(II) ions. The effective mass as determined from the β-orbit oscillations is m*=5.4±0.1me. copyright 1997 The American Physical Society

  17. Growth of YBa2(Cu, Co)4O8 single crystals under ambient pressure and their superconducting properties

    International Nuclear Information System (INIS)

    We report the growth of superconducting YBa2(Cu, Co)4O8 single crystals using KOH flux under ambient pressure and their superconducting properties. The average size of the YBa2(Cu, Co)4O8 single crystals is 0.3 x 0.3 x 0.2 mm3. The superconducting transition temperature (Tc) of the parent material is found to be 81 K, indicating a stoichiometric oxide superconductor. The Tc and the c-axis length of YBa2(Cu, Co)4O8 single crystals decrease systematically with increasing the Co-doping content. A comparison of the magnetic irreversibility with the flux-creep theory from the viewpoint of homogeneity/inhomogeneity is made. (author)

  18. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Zhou, Jianxin; Shao, Xinyu; Wang, Chunming

    2015-11-01

    The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid-liquid-vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.

  19. Ambient mass spectrometry with a handheld mass spectrometer at high pressure.

    Science.gov (United States)

    Keil, Adam; Talaty, Nari; Janfelt, Christian; Noll, Robert J; Gao, Liang; Ouyang, Zheng; Cooks, R Graham

    2007-10-15

    The first coupling of atmospheric pressure ionization methods, electrospray ionization (ESI) and desorption electrospray ionization (DESI), to a miniature hand-held mass spectrometer is reported. The instrument employs a rectilinear ion trap (RIT) mass analyzer and is battery-operated, hand-portable, and rugged (total system: 10 kg, 0.014 m(3), 75 W power consumption). The mass spectrometer was fitted with an atmospheric inlet, consisting of a 10 cm x 127 microm inner diameter stainless steel capillary tube which was used to introduce gas into the vacuum chamber at 13 mL/min. The operating pressure was 15 mTorr. Ions, generated by the atmospheric pressure ion source, were directed by the inlet along the axis of the ion trap, entering through an aperture in the dc-biased end plate, which was also operated as an ion gate. ESI and DESI sources were used to generate ions; ESI-MS analysis of an aqueous mixture of drugs yielded detection limits in the low parts-per-billion range. Signal response was linear over more than 3 orders of magnitude. Tandem mass spectrometry experiments were used to identify components of this mixture. ESI was also applied to the analysis of peptides and in this case multiply charged species were observed for compounds of molecular weight up to 1200 Da. Cocaine samples deposited or already present on different surfaces, including currency, were rapidly analyzed in situ by DESI. A geometry-independent version of the DESI ion source was also coupled to the miniature mass spectrometer. These results demonstrate that atmospheric pressure ionization can be implemented on simple portable mass spectrometry systems. PMID:17867653

  20. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability

    International Nuclear Information System (INIS)

    Current noninvasive blood pressure (BP) measurement methods, such as the oscillometric method, estimate the systolic and diastolic blood pressure (SBP and DBP) at two random instants in time and do not take into account the natural variability in BP. The standard for automated BP devices sets a maximum allowable system error of ±5 mmHg, even though natural BP variability often exceeds these limits. This paper proposes a new approach using simultaneous recordings of the oscillometric and continuous arterial pulse waveforms to augment the conventional noninvasive measurement by providing (1) the mean SBP and DBP over the measurement interval and the associated confidence intervals of the mean, (2) the standard deviation of SBP and DBP over the measurement interval, which indicates the degree of fluctuation in BP and (3) an indicator as to whether or not the oscillometric reading is an outlier. Recordings with healthy subjects demonstrate the potential utility of this approach to characterize BP, to detect outlier measurements, and that it does not suffer from bias relative to the conventional oscillometric method. (paper)

  1. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  2. On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tiansi Wang

    2015-08-01

    Full Text Available A state-of-health (SOH estimation method for electric vehicles (EVs is presented with three main advantages: (1 it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal temperature will be taken as a health indicator, and the capacity loss is estimated based on a mechanistic model that is developed to describe the correlation between resistance increase and capacity loss; (2 it has wide applicability to various ambient temperatures—to eliminate the effects of temperature on the resistance, another mechanistic model about the resistance against temperature is presented, which can normalize the resistance at various temperatures to its standard value at the nominal temperature; and (3 it needs low computational efforts for on-board application—based on a linear equation of cell’s dynamic behaviors, the recursive least-squares (RLS algorithm is used for the resistance estimation. Based on the designed performance and validation experiments, respectively, the coefficients of the models are determined and the accuracy of the proposed method is verified. The results at different aging states and temperatures show good accuracy and reliability.

  3. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  4. Ultrahigh-pressure consolidation and deformation of tantalum carbide at ambient and high temperatures

    International Nuclear Information System (INIS)

    The deformation mechanism of the ultrahigh-temperature ceramic, tantalum carbide (TaC), consolidated at room temperature at a very high hydrostatic pressure of 7.7 GPa is investigated using high-resolution transmission electron microscopy. The deformation behavior of TaC at room temperature is also compared with that consolidated at high temperature (1830 °C) at a similar pressure. TaC could be consolidated to a bulk structure (90% theoretical density) at room temperature. The deformation mechanisms operating at room temperature and 1830 °C are found to be significantly different. The room-temperature deformation is dominated by the short-range movement of dislocations in multiple orientations, along with nanotwinning, grain rotation, crystallite misorientation with low-angle grain boundary formation and lattice structure destruction at interfaces. In contrast, at high temperature, the strain is accommodated mostly by a single slip system, forming a parallel array of dislocations. The consolidation at room temperature occurs by heavy deformation with the support from short range diffusion, whereas the consolidation at high temperature is mostly diffusion dominated, indicating a classic sintering mechanism. The improved degree of consolidation with fewer defects results in significantly improved elastic modulus and hardness in the case of high-temperature consolidate

  5. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    International Nuclear Information System (INIS)

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup

  6. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  7. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup. PMID:25173282

  8. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  9. Boron: a frustrated element. Physical properties at ambient conditions and under pressure from ab-initio calculations

    Science.gov (United States)

    Ogitsu, Tadashi; Gygi, Francois; Galli, Giulia

    2004-03-01

    Boron is the only low-Z element in the periodic table whose atomic ground state structure has not yet been fully determined. For example, it is yet unclear whether perfectly pure elemental Boron is stable in an ordered crystalline form and the number of atoms in the unit cell (varying from 315 to about 325) is still the subject of debate. Using ab-initio calculations and supercells with 1260-1280 atoms, we have studied the physical properties of Boron at ambient conditions and under pressure (P). Results about the ionic and electronic structure will be presented, in particular the role of interstitial atoms and the presence of localized states right above the Fermi level will be discussed in detail. The computed equation of state under pressure is in agreement with recent experimental data. At about 120 GPa we observe amorphization, consistent with the results of Ref. [1] at l00 GPa. Amorphization occurs by random deformation of icosahedral units which remain intact; it is accompanied by a delocalization of states near the Fermi level yielding a poorly conducting system. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48. [1] Sanz et al. Phys. Rev. Lett. 89, 245501 (2002)

  10. Multi-morphological growth of nano-structured In2Se3 by ambient pressure triethylene glycol based solution syntheses

    International Nuclear Information System (INIS)

    In2Se3 nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized by a new, facile, ambient pressure triethylene glycol based solution chemical route using indium(III) chloride and selenium powder as precursors. The growing morphology, crystallization, chemical stoichiometry and light absorption property of the In2Se3 products synthesized were characterized by TEM, HRTEM, FESEM, XRD, EDX and UV–vis–NIR measurements. Multi-morphological growth of the nano-structured In2Se3 in triethylene glycol based solution syntheses with changed assisting agents and reaction styles was demonstrated. - Highlights: • Multimorphological growth of In2Se3 was demonstrated based on solution chemistry. • A new, facile, low cost and fast air pressure TEG based solution process was used. • Nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized. • Morphology, crystallization, stoichiometry and light absorption was characterized. • Solution growth of β-In2Se3 nanosheets was firstly reported by this submission

  11. The effect of ambient pressure on well chamber response: Monte Carlo calculated results for the HDR 1000 Plus

    International Nuclear Information System (INIS)

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy β sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy β sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction factor

  12. Spray Characteristics of Pressure-swirl Nozzle at Different Ambient Pressures of Combustion Chamber%燃烧室背压对压力涡流喷嘴喷雾特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘涛涛; 张武高; 陈晓玲; 顾根香; 郭晓宁; 黄震

    2011-01-01

    采用高速摄影技术、激光测粒仪和PIV测试技术系统试验研究了燃烧室背压对斯特林发动机压力涡流喷嘴喷雾形成过程、贯穿距离增长规律、喷雾锥角、液滴粒径和喷雾流场的影响.结果表明,燃烧室背压的增加使喷雾形状更加致密,贯穿距离的增加变缓,液滴平均速度增加,索特平均直径增加.当燃烧室背压大于1.0~1.5 MPa之间的一个临界值时,其对喷雾锥角没有影响,小于此临界值,燃烧室背压的增加会使喷雾锥角急剧降低.%The spray characteristics of pressure-swirl nozzle used in Stirling engine was studied by way of the experiment under high ambient pressures (up to 2. 8 Mpa). The high-speed video imaging technique, FAM ( Fraunhofer and Mie) laser drop size analyzer, and PIV (particle image velocimetry) test equipment were used for experimental measurements. Experimental results showed that the spray structure at higher ambient pressure was more compact. The vortex cloud was found at the leading edge at high ambient pressure. Spray cone angle was independent of ambient pressure after a value between 1.0 ~ 1. 5 Mpa. The Sauter mean diameter ( SMD) and the drop velocity became larger at high ambient pressure conditions. Finally, a vortex was found in the center of the spray and this region moved to the downstream of the spray as the ambient pressure increased.

  13. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN2+) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown. (paper)

  14. Electromechanical Wave Green's Function Estimation from Ambient Electrical Grid Frequency Noise

    CERN Document Server

    Backhaus, Scott

    2011-01-01

    Many electrical grid transients can be described by the propagation of electromechanical (EM) waves that couple oscillations of power flows over transmission lines and the inertia of synchronous generators. These EM waves can take several forms: large-scale standing waves forming inter-area modes, localized oscillations of single or multi-machine modes, or traveling waves that spread quasi-circularly from major grid disturbances. The propagation speed and damping of these EM waves are potentially a powerful tool for assessing grid stability, e.g. small signal or rotor angle stability, however, EM wave properties have been mostly extracted from post-event analysis of major grid disturbances. Using a small set of data from the FNET sensor network, we show how the spatially resolved Green's function for EM wave propagation can be extracted from ambient frequency noise without the need for a major disturbance. If applied to an entire interconnection, an EM-wave Green's function map will enable a model-independent...

  15. The oxidation of some late transition metals: from UHV to ambient oxygen partial pressures

    International Nuclear Information System (INIS)

    Full text: The oxidation process is of fundamental importance in modern solid state physics research, and is often associated with corrosion. However, under the right conditions, oxidation can lead to oxide layers which can be applied e.g. as protective layers against corrosion, as insulating layers in microelectronic devices and as catalytic surfaces. On late transition metals, one reason for investigating oxygen induced structures has been due to the important role oxygen is believed to play in catalytic reactions, such as the CO conversion into CO2 by a catalytic oxidation process on the metal surface. Lately however, it has been proposed in the literature that on Ru, Pt and Pd surfaces, it is not the chemisorbed atomic oxygen adsorbed on the surface, but rather the oxides formed on the surfaces under such conditions, that are the most efficient phase in oxidizing CO. In this contribution, we present results using a multi-method approach from the oxygen interaction with Rh and Pd surfaces on the atomic scale at oxygen pressures in the 1010 to 103 mbar range and temperatures up to 1000 K. We will show that so-called surface oxides form prior to the onset of thicker oxides, and that the presence of a surface oxide kinetically hinders the formation of the respective bulk oxide

  16. Quality of the blood pressure phenotype in the GEnotipo, Fenotipo y Ambiente de la hipertensión arterial en UruguaY (GEFA-HT-UY) study

    OpenAIRE

    Luzardo, Leonella; Sottolano, Mariana; Lujambio, Inés; Robaina, Sebastián; Thijs, Lutgarde; da Rosa, Alicia; Krul, Nadia; Carusso, Florencia; Ríos, Ana C; Olascoaga, Alicia; Noboa, Oscar; Staessen, Jan A.; Boggia, José

    2014-01-01

    In the ongoing GEnotipo, Fenotipo y Ambiente de la HiperTensión Arterial en UruguaY (GEFA-HT-UY) study, we applied standardized epidemiological methods to determine complex phenotypes including blood pressure (BP). In this report, we present the quality control of the conventionally measured BP.

  17. Estimates of ambient groundwater velocity in the alluvium south of Yucca Mountain from single-well tracer tests

    International Nuclear Information System (INIS)

    The saturated alluvium located south of Yucca Mountain, Nevada is expected to serve as the final barrier to radionuclide transport from the proposed high-level nuclear waste repository at Yucca Mountain. The alluvium will act as a barrier if radionuclides breach the engineered barriers in the repository, move through the unsaturated zone beneath the repository to the water table, and then migrate through saturated volcanic tuffs to the alluvium. Three single-well injection-withdrawal tracer tests were conducted between December 2000 and April 2001 in the saturated alluviuni at NC-EWDP-19D1, a Nye County-Early Warning Drilling Program well located about 18 km south of Yucca Mountain. The tests had the objectives of (1) distinguishing between a single- and a dual-porosity conceptual radionuclide transport model for the alluvium, and (2) obtaining estimates of ambient groundwater velocity in the alluvium.

  18. Effect of mixed Catalysts system on TEOS-based silica aerogels dried at ambient pressure

    International Nuclear Information System (INIS)

    In the present paper, the experimental results on the effect of mixed Catalysts system on the physical properties of the TEOS-based silica aerogels, are reported and discussed. The aerogels were produced by the single-step as well as two-step sol-gel process followed by atmospheric pressure drying. In the single-step process, only the NH4F was used as a catalyst, whereas in the two-step process, NH4F as well as a mixed catalysts, i.e., NH4F and NH4OH, were used after 12 h of acid (oxalic acid) addition. Effect of various exchanging solvents, viz., xylene, toluene, heptane or hexane and silylating agents, viz., MTMS, TMES, TMCS, HMDSO or HMDZ on the physical properties of the as prepared aerogels were studied. The volume of the NH4OH, the molar ratios of MeOH/TEOS and HMDZ/TEOS were varied from 0.2 to 1 ml, and 5.5 to 27.5, 0.34 to 0.9, respectively, by keeping the volume of NH4F and the concentrations of NH4F and NH4OH constant at 0.5 ml, 0.1 and 1 M, respectively. Remarkable results were obtained by using mixed catalyst system, hexane as exchanging solvent and surface chemical modification with 5% HMDZ in hexane. The aerogels were characterized by bulk density, optical transmission, thermal stability and contact angle measurements. The surface chemical modification was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. The microstructural studies of the aerogels were done by Transmission Electron Microscopy (TEM), which revealed highly ramified self-similar polymeric structure in large length scale. The thermal stability of the aerogels were tested using TG-DT analyses. It was found that low bulk density (0.065 g/cm3), superhydrophobic (153 deg.), high thermal stability (380 deg. C) and high optical transmission (95%) of the as produced aerogels obtained at the molar ratio of TEOS:MeOH:oxalic acid:NH4F:NH4OH:HMDZ for 1:16.5:0.81:0.62:0.63:0.41, respectively

  19. Identity Efficiency for High-Performance Ambient Pressure Ion Mobility Spectrometry.

    Science.gov (United States)

    Kanu, A Bakarr; Leal, Anne

    2016-03-15

    A new approach to reduce the false-positive responses commonly encountered in the field when drugs and explosives are detected is reported for an electrospray ionization high-performance ion mobility spectrometry (ESI-HPIMS). In this article, we report on the combination of reduced mobility and the width-at-half-height of a peak to give a new parameter called conditional reduced mobility (CRM). It was found that the CRM was capable of differentiating between real drugs peaks from that of a false-positive peak and may help to reduce false-positive rates. This effect was demonstrated using 11 drugs (amphetamine, cannabidiol, cocaine, codeine, heroine, methamphetamine, morphine, phentermine, l-phenylepherine, proglitazone, and rosiglitazone) and seven interferences chosen from off-the-shelf products. This report determined and compared CRM, resolving power (Rm), and diffusion-limited conditional theoretical reduced mobility (DLCTRM) for ESI-HPIMS. The most important parameters for determining CRM are reduced mobility and width-at-half-height of a peak. There is a specific optimum voltage, gate pulse width, resolving power, and now CRM for each ion. DLCTRM indicate the optimum reduced mobility that is not normally possible under field conditions. CRM predicts the condition at which a target compound can be differentiated from a false-positive response. This was possible because different ions exhibits different drifting patterns and hence a different peak broadening phenomenon inside an ion mobility tube. Reduced mobility for target compounds reported were reproducible to within 2% for ESI-HPIMS. The estimated resolving power for the ESI-HPIMS used in this study was 61 ± 0.22. Conditional reduced mobility introduced in this paper show differences between target compounds and false-positive peaks as high as 74%, as was the case for cannabidiol and interference #1 at 70 μs gate pulse width. PMID:26919030

  20. Estimation of pressure drop in gasket plate heat exchangers

    Directory of Open Access Journals (Sweden)

    Neagu Anisoara Arleziana

    2016-06-01

    Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.

  1. A new device to noninvasively estimate the intraocular pressure produced during ocular compression

    Directory of Open Access Journals (Sweden)

    Korenfeld MS

    2016-01-01

    Full Text Available Michael S Korenfeld,1,2 David K Dueker3 1Comprehensive Eye Care, Ltd., 2Department of Ophthalmology and Visual Sciences, Washington University, Washington, MO, USA; 3Hamad Medical Corporation, Doha, Qatar Purpose: To describe a noninvasive instrument that estimates intraocular pressure during episodes of external globe compression and to demonstrate the accuracy and reliability of this device by comparing it to the intraocular pressures simultaneously and manometrically measured in cannulated eyes. Methods: A thin fluid-filled bladder was constructed from flexible and inelastic plastic sheeting and was connected to a pressure transducer with high pressure tubing. The output of the pressure transducer was sent to an amplifier and recorded. This device was validated by measuring induced pressure in the fluid-filled bladder while digital pressure was applied to one surface, and the other surface was placed directly against a human cadaver eye or in vivo pig eye. The human cadaver and in vivo pig eyes were each cannulated to provide a manometric intraocular pressure control. Results: The measurements obtained with the newly described device were within ~5% of simultaneously measured manometric intraocular pressures in both a human cadaver and in vivo pig eye model for a pressure range of ~15–100 mmHg. Conclusion: This novel noninvasive device is useful for estimating the intraocular pressure transients induced during any form of external globe compression; this is a clinical setting where no other devices can be used to estimate intraocular pressure. Keywords: glaucoma, intraocular pressure, tonometer, ocular compression

  2. Low level estimation of 1,4-dioxane in ambient air

    International Nuclear Information System (INIS)

    The chemical, 1,4-dioxane does have much relevance with respect to Indian Nuclear Power Programme for counting of Tritium, which is mainly generated during the operation of nuclear research reactors and power reactors which use heavy water. Tritium analysis is routinely carried out at BARC. The scintillation solutions which are used for tritium counting, consist of mainly 1,4 dioxane and naphthalene along with minor concentration of PPO/POPOP. Each sample analysis generates about 10 ml of tritium contaminated spent scintillation liquid waste. Total generation rate of the waste in a typical PHWR reactor is about 2-3 m3 /year. Controlled incineration of scintillation liquids has been opted at BARC for the treatment of radioactive organic waste. Now that 1,4-dioxane has shown threat to human health and environment, it is important and necessary to know its levels (concentrations) in different environmental compartments to evaluate the risks associated with it. Standard methods are available for the measurement of 1,4-dioxane in air. Higher concentration can be estimated by direct analysis but estimation at lower levels (parts per billion-ppb) requires pre concentration prior to its analysis. Here an improved method that offers increased sensitivity has been used for determining lower levels of 1,4-dioxane. This report presents (1) the development of the methodology for the estimation of 1,4-dioxane at ppb levels using cryogenic pre-concentration and subsequent analysis by Gas Chromatograph with Electron Capture detector (GC-ECD) (2) techniques to check the incineration efficiency and release of 1,4-dioxane to the environment. The data generated by this study could be further used in the evaluation of risk. (author)

  3. Physical properties of sodium silicate based silica aerogels prepared by single step sol-gel process dried at ambient pressure

    International Nuclear Information System (INIS)

    The experimental results on physical properties of water glass (sodium silicate) based silica aerogels prepared by single step sol-gel process, dried at atmospheric pressure are reported. The hydrolysis and condensation reactions of the sodium silicate precursor proceeded with tartaric acid as a catalyst. The hydrogel was vapour passed in order to remove sodium salt from the gel network. Solvent exchange was carried out using methanol and hexane as a solvents. Finally, surface chemical modification of the gel was done using trimethylchlorosilane (TMCS) followed by ambient pressure drying of the gel up to the temperature 200 deg. C. To get good quality aerogels various sol-gel parameters such as water vapour passing period varied from 0.5 to 2 h, gel aging from 1 to 4 h, Na2SiO3/H2O molar ratio from 3 x 10-3 to 1.5 x 10-2, tartaric acid/Na2SiO3 molar ratio from 0.3 to 1.9 and TMCS/Na2SiO3 molar ratio from 4.8 to 12. The aerogels were characterized by percentage of volume shrinkage, bulk density, porosity and hydrophobicity. The hydrophobicity of the aerogel was confirmed by Fourier Transform Infrared (FTIR) Spectroscopy and contact angle measurements. Microstructural studies have been carried out by Scanning Electron Microscopy (SEM) and nitrogen adsorption BET analysis. From the TGA-DTA studies of the aerogels, it was found that the aerogels were thermally stable up to 470 oC. Low density (∼0.066 g/cm3), high hydrophobicity (∼145 deg.), high porosity (∼97 %), high pore volume, surface area of 510 m2/g aerogels have been obtained for Na2SiO3:H2O:tartaric acid (C4H6O6):TMCS molar ratio at 1:166.6:2.5:12 respectively with half an hour water vapour passing.

  4. The impact of hepatic pressurization on liver shear wave speed estimates in constrained versus unconstrained conditions

    International Nuclear Information System (INIS)

    Increased hepatic venous pressure can be observed in patients with advanced liver disease and congestive heart failure. This elevated portal pressure also leads to variation in acoustic radiation-force-derived shear wave-based liver stiffness estimates. These changes in stiffness metrics with hepatic interstitial pressure may confound stiffness-based predictions of liver fibrosis stage. The underlying mechanism for this observed stiffening behavior with pressurization is not well understood and is not explained with commonly used linear elastic mechanical models. An experiment was designed to determine whether the stiffness increase exhibited with hepatic pressurization results from a strain-dependent hyperelastic behavior. Six excised canine livers were subjected to variations in interstitial pressure through cannulation of the portal vein and closure of the hepatic artery and hepatic vein under constrained conditions (in which the liver was not free to expand) and unconstrained conditions. Radiation-force-derived shear wave speed estimates were obtained and correlated with pressure. Estimates of hepatic shear stiffness increased with changes in interstitial pressure over a physiologically relevant range of pressures (0–35 mmHg) from 1.5 to 3.5 m s−1. These increases were observed only under conditions in which the liver was free to expand while pressurized. This behavior is consistent with hyperelastic nonlinear material models that could be used in the future to explore methods for estimating hepatic interstitial pressure noninvasively. (paper)

  5. Experimental Determination of Spatial and Temporal Discharge Parameters for an Ambient Pressure Dielectric Barrier Discharge in Helium

    Science.gov (United States)

    Bures, Brian; Bourham, Mohamed

    2004-11-01

    Ambient pressure Dielectric Barrier Discharges (DBD's) are studied for a number of applications. Barrier discharges composed primarily of inert gases are potentially useful for the production of intense excimer light, sterilization of thermally sensitive materials and control of insects for quarantine. The neutral bremsstrahlung technique is used to determine spatial variations of electron density and electron temperature in a parallel plate, helium (99.9% by vol) dielectric barrier discharge operated at an average power density between 50 and 75 mW/cm^3. The applied frequency is varied between 2 kHz and 6 kHz. The time average electron density suggests a more intense discharge near the surface of the electrodes than the bulk of the discharge for all frequencies and power densities. When moving parallel to the electrodes, the electron temperature remains constant, while the electron density is constant within 20% of the average value. A monochromator tuned to a nitrogen ion line (391.4 nm) and a helium line (706.5 nm) has a more intense emission when the electrode is negatively biased.

  6. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  7. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  8. Vessel Elasticity Estimation by Normalized Blood Pressure Dynamics

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Leinveber, Pavel; Plachý, M.; Fráňa, P.; Souček, M.; Kára, T.

    Tel-Aviv : Israel Heart Society, 2008. s. 115. ISBN N. [IDSS 2008 - International Dead Sea Symposium on Cardiac Arrhythmias and Device Therapy /9./. 22.09.2008-24.09.2008, Tel-Aviv] Institutional research plan: CEZ:AV0Z20650511 Keywords : hypertension * vessel compliance * blood pressure * dynamic parameters Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  9. Effects of fluid penetration on breakdown pressures in hydraulic fracturing tectonic stress measurements and estimation of breakdown pressures

    International Nuclear Information System (INIS)

    A new method is proposed for the estimation of the so-called breakdown pressure in the hydraulic fracturing tectonic stress measurements. The stress field around the well bore was analyzed taking into account the influence of the fluid penetration into the porous rock due to the pressurization of the well bore. By the use of the stress field, the breakdown pressure, i.e., the well bore pressure required to induce cracks on the well bore was estimated based on a newly constructed fracture criterion. The criterion determines the breakdown pressure as a pressure value at which the maximum tensile effective stress at a characteristic depth beyond the well bore surface, reaches the tensile strength of the rock. To verify the new method, laboratory hydraulic fracturing experiments were conducted on cubical rock specimens under uniaxial compression. Results show that the breakdown pressures predicted by the classical method are erroneously lower than the experimental data when the uniaxial compressive stress is large. On the other hand, the breakdown pressures predicted by the present method perfectly agree with the experimental data independent of the magnitude of the uniaxial compressive stress. (author)

  10. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    Science.gov (United States)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  11. ESTIMATE OF BURSTING PRESSURE OF MILD STEEL PRESSURE VESSEL AND PRESENTATION OF BURSTING FORMULA

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuanxiang

    2006-01-01

    In order to get more precise bursting pressure formula of mild steel, hundreds of bursting experiments of mild steel pressure vessels such as Q235(Gr.D) and 20R(1020) are done. Based on statistical data of bursting pressure and modification of Faupel formula, a more precise modified formula is given out according to the experimental data. It is proved to be more accurate after examining other bursting pressure value presented in many references. This bursting formula is very accurate in these experiments using pressure vessels with different diameter and shell thickness.Obviously, this modified bursting formula can be used in mild steel pressure vessels with different diameter and thickness of shell.

  12. Challenges in estimating insecticide selection pressures from mosquito field data.

    Directory of Open Access Journals (Sweden)

    Susana Barbosa

    2011-11-01

    Full Text Available Insecticide resistance has the potential to compromise the enormous effort put into the control of dengue and malaria vector populations. It is therefore important to quantify the amount of selection acting on resistance alleles, their contributions to fitness in heterozygotes (dominance and their initial frequencies, as a means to predict the rate of spread of resistance in natural populations. We investigate practical problems of obtaining such estimates, with particular emphasis on Mexican populations of the dengue vector Aedes aegypti. Selection and dominance coefficients can be estimated by fitting genetic models to field data using maximum likelihood (ML methodology. This methodology, although widely used, makes many assumptions so we investigated how well such models perform when data are sparse or when spatial and temporal heterogeneity occur. As expected, ML methodologies reliably estimated selection and dominance coefficients under idealised conditions but it was difficult to recover the true values when datasets were sparse during the time that resistance alleles increased in frequency, or when spatial and temporal heterogeneity occurred. We analysed published data on pyrethroid resistance in Mexico that consists of the frequency of a Ile1,016 mutation. The estimates for selection coefficient and initial allele frequency on the field dataset were in the expected range, dominance coefficient points to incomplete dominance as observed in the laboratory, although these estimates are accompanied by strong caveats about possible impact of spatial and temporal heterogeneity in selection.

  13. Finite Element Estimation of Pressure Distribution inside the Trunk on a Mattress

    Directory of Open Access Journals (Sweden)

    Shigekazu Ishihara

    2015-12-01

    Full Text Available We developed a bedsore-prevention mattress and wheel chair cushion. Throughout development, we made numerous body pressure measurements on different mattresses and cushions. Such measurements required much time and effort. Simulation of body pressure has the potential to estimate the pressure distribution caused by physical parameters of different mattresses. In this study, we show attempts to model the body and estimate the pressure on its transverse plane. The computation was based on a non-linear finite element method with hyperelastic materials, such as muscle, skin and fat. Because the model simulates different tissues, we can estimate the pressure not only on the surface, but also that inside the trunk. The simulated results agreed well with actual pressure measurement results. Differences in physical properties of the mattresses were also modeled.

  14. Cardiac signal estimation based on the arterial and venous pressure signals of a hemodialysis machine.

    Science.gov (United States)

    Holmer, M; Sandberg, F; Solem, K; Olde, B; Sörnmo, L

    2016-09-01

    Continuous cardiac monitoring is usually not performed during hemodialysis treatment, although a majority of patients with kidney failure suffer from cardiovascular disease. In the present paper, a method is proposed for estimating a cardiac pressure signal by combining the arterial and the venous pressure sensor signals of the hemodialysis machine. The estimation is complicated by the periodic pressure disturbance caused by the peristaltic blood pump, with an amplitude much larger than that of the cardiac pressure signal. Using different techniques for combining the arterial and venous pressure signals, the performance is evaluated and compared to that of an earlier method which made use of the venous pressure only. The heart rate and the heartbeat occurrence times, determined from the estimated cardiac pressure signal, are compared to the corresponding quantities determined from a photoplethysmographic reference signal. Signals from 9 complete hemodialysis treatments were analyzed. For a heartbeat amplitude of 0.5 mmHg, the median absolute deviation between estimated and reference heart rate was 1.3 bpm when using the venous pressure signal only, but dropped to 0.6 bpm when combining the pressure signals. The results show that the proposed method offers superior estimation at low heartbeat amplitudes. Consequently, more patients can be successfully monitored during treatment without the need of extra sensors. The results are preliminary, and need to be verified on a separate dataset. PMID:27511299

  15. Pressure pipe damage: Numerical estimation of point load effect II

    Czech Academy of Sciences Publication Activity Database

    Majer, Zdeněk; Zouhar, Michal; Ševčík, Martin; Náhlík, Luboš; Hutař, Pavel

    Zurich : Trans Tech Publications, 2014 - (Milazzo, A.; Aliabadi, M.), s. 533-536 ISBN 978-3-03785-830-1. ISSN 1013-9826. - (Key Engineering Materials. 577-578). [FDM 2013 - International Conference on Fracture and Damage Mechanics /12./. Sardinia (IT), 17.09.2013-19.09.2013] Institutional support: RVO:68081723 Keywords : polymer pressure pipe s * point load * stress intensity factor * lifetime prediction Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Estimation of partial pressure during graphite conditioning by matrix method

    International Nuclear Information System (INIS)

    Plasma Facing Components (PFC) of SST-1 tokamak are designed to be compatible for UHV as it is kept in the main vacuum vessel. Graphite is the most widely used plasma facing material in present day tokamaks. High thermal shock resistance and low atomic number carbon are the most important properties of graphite for this application. However, graphite is porous and absorbs gases, which may be released during plasma operation. Graphite tiles are baked at high temperature of about 1000 deg. C in high vacuum (10-5 Torr) for several hours before installing them in the tokamak to remove the impurities (mainly water vapour and metal impurities), which may have been deposited during machining of the tiles. The measurements of the released gas (such as H2, H2O, CO, CO2, Hydrocarbons, etc.) from graphite tiles during baking are accomplished with the help of a Quadrupole Mass Analyzer (QMA). Since, the output of this measurement is a mass spectrum and not the partial pressures of the residual gases, one needs to adopt some procedure to convert the spectrum to obtain the partial pressures. The conventional method of analysis is tedious and time consuming. We propose a new approach based on constructing a set of linear equations and solving them using matrix operations. This is a simple method compared to the conventional one and also eliminates the limitations of the conventional method. A Fortran program has been developed which identifies the likely gases present in the vacuum system and calculates their partial pressures from the data of the residual gas analyzers. Application of this method of calculating partial pressures from mass spectra data will be discussed in detail in this paper

  17. Estimation of failure probabilities of reactor pressure vessel

    International Nuclear Information System (INIS)

    Full text: Probabilistic structural analysis of components used in nuclear industry is finding increasing popularity. One of the uses of this analysis is the estimation of probability of failure over the lifetime of the structure, considering the time dependent deteriorating mechanisms. The estimation of probability of failure of the nuclear reactor components over its service life is a very important issue. It is being used to optimize the design, optimize the schedules of in-service inspections, make decision regarding fitness for service and estimation of residual life. This has been traditionally been evaluated using the sophisticated Monte Carlo simulation programs on fastest available computers or on parallel processing machines. The time taken to make these calculation runs into days as the probability of failure expected is less than 10-6. The probability calculations involve solution of a multi-dimensional definite integral. This paper proposes the use of Lepage's VEGAS numerical integration algorithm for solution of these integrals. It essentially uses Monte Carlo simulation with adaptive importance sampling as the solution technique. The method is reliable and converges quickly. The paper demonstrates the use of this algorithm in estimating the probability of reactor components. The mode of failure considered is fracture mechanics. The deteriorating mechanisms considered are fatigue and embrittlement due to nuclear radiation. The probability of failure is obtained over the lifetime of the reactor. The results are compared with those obtained from Monte Carlo simulation, reported in literature. The results show a very good match with the published literature. The time taken for calculations by VEGAS algorithm is a few minutes on a Pentium based personal computer

  18. A numerical methodology for lifetime estimation of HDPE pressure pipes

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Ševčík, Martin; Náhlík, Luboš; Pinter, G.; Frank, A.; Mitev, I.

    2011-01-01

    Roč. 78, č. 17 (2011), s. 3049-3058. ISSN 0013-7944 R&D Projects: GA ČR GA106/09/0279; GA ČR GC101/09/J027 Institutional research plan: CEZ:AV0Z20410507 Keywords : time to failure curve * fracture mechanics * PE pipes * creep crack growth * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.353, year: 2011

  19. Estimating the remanent life of boiler pressure parts: Pt. 3

    International Nuclear Information System (INIS)

    A cast of 1Cr1/2Mo steel has been creep tested in argon at stresses in the range 34-80 MPa and temperatures between 590-6300C in various heat treatment states, including normalized and tempered, and overaged. To assess their use in remanent life evaluations, various techniques have been used including hardness, bulk extraction of carbides and X-ray examination of the phases present, determination of matrix solute content, X-ray determination of the matrix lattice parameter and carbide extraction replication of the structure and measurement of various interparticle spacing parameters. The dependence of the spacing on time and temperature has been established and used to calibrate a model of tertiary creep for the material, based on the coarsening of the interparticle separation. The model is shown to match and predict the material's behaviour well. In application to plant the interparticle spacing can be determined from a small sample removed from the component. The model can be used to give estimates of the time to rupture, or more usefully, estimate the time to any given strain. Of all the techniques used, interparticle spacing determinations give the best estimates of remanent life. (author)

  20. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying

    Directory of Open Access Journals (Sweden)

    Uzma K H Bangi, A Venkateswara Rao and A Parvathy Rao

    2008-01-01

    Full Text Available An in-depth investigation into the synthesis of hydrophobic silica aerogels prepared by the surface derivatization of wet gels followed by subsequent drying at ambient pressure is reported. The following sol–gel parameters were examined for their effect on the physical properties of the derived aerogels: number of gel washings with water, percentage of hexane or methanol in silylating mixture, molar ratio of tartaric acid: Na2SiO3, gel aging period, weight% of silica, trimethylchlorosilane (TMCS percentage, and silylation period. These parameters were varied from 1 to 4, 0 to 100%, 0.27 to 1.2, 0 to 4 h, 1.5 to 8 wt.%, 20 to 40% and 6 to 24 h, respectively. The properties of hydrophobic silica aerogels synthesized by this new route were investigated in terms of bulk density, percentage volume shrinkage, percentage porosity, thermal conductivity and contact angle with water, and by Fourier transform infrared spectroscopy (FTIR. The as-prepared hydrophobic silica aerogels exhibited high temperature stability (up to approximately 435 °C as measured by thermogravimetric/differential thermal analysis (TGA-DTA. The optimal sol-gel parameters were found to be a molar ratio of Na2SiO3:H2O : tartaric acid : TMCS of 1 : 146.67 : 0.86 : 9.46, an aging period of 3 h, four washings with water in 24 h and the use of a 50% hexane- or methanol-based silylating mixture. Aerogels prepared with these optimal parameters were found to exhibit 50% optical transparency in the visible range, 84 kg m−3 density, 0.090 W mK−1 thermal conductivity, 95% porosity and a contact angle of 146° with water.

  1. Hydrogen transfer hydrocracking of C. procera latex under ambient pressure conditions to get value added chemicals and fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K.; Behera, B.K.; Arora, M. (Indian Institute of Technology, New Delhi (India). Fuels and Biofuels Engineering Lab.)

    1994-01-01

    Biomass is renewable source of energy while the reserves of petroleum are being depleted. The latex of a potential petrocrop, Calotropis procera, a laticifer, arid-plant which is rich in hydrocarbon type triterpene compounds etc. was found to be a better feed stock for thermal hydrocracking as compared to whole plant biomass in terms of liquid product yield. Studies of chemical reaction dynamics of the thermal cracking of latex at 200-400[degree]C showed that the process should be termed as hydrogen-transfer (H-T) hydrocracking of latex under ambient pressure conditions. The hydrogen rich cracked triterpenoids act as the H-donors in this process, where nascent hydrogen atoms and free radicals chemically plug the cracked moieties to stabilise these. Latex was also coagulated and the H-T hydrocracking of the feedstock coagulum gave a higher yield of cracked oil in comparison to that from the dried latex. The temperature for hydrocracking of latex has been optimized to 350[degree]C and molecular sieve was found to catalyse the H-T hydrocracking process to yield more liquid product. The distillation range of cracked latex oil (CLO) obtained from H-T hydrocracking of C. procera latex indicated that it can be used as fuel oil or substitute for diesel fuel. Moreover, CLO resembled diesel fuels and was predominantly paraffinic in nature as characterised by NMR and FTIR spectral analysis. A process has been recommended for getting value added fuels and chemicals from C. procera latex. 29 refs., 5 figs., 3 tabs.

  2. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure

    Science.gov (United States)

    Wojnarowska, Z.; Swiety-Pospiech, A.; Grzybowska, K.; Hawelek, L.; Paluch, M.; Ngai, K. L.

    2012-04-01

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M″(f ) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across Tg. The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below Tg. At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  3. Estimated daily salt intake in relation to blood pressure and blood lipids

    DEFF Research Database (Denmark)

    Thuesen, Betina H; Toft, Ulla; Buhelt, Lone P;

    2015-01-01

    BACKGROUND: Excessive salt intake causes increased blood pressure which is considered the leading risk for premature death. One major challenge when evaluating associations between daily salt intake and markers of non-communicable diseases is that a high daily salt intake correlates with obesity......, which is also a well described risk factor for poor cardiometabolic outcome. The aim of this study was to evaluate the relationship of estimated daily salt intake with blood pressure and blood lipids and to investigate the effect of taking different measures of obesity into account. METHODS: We included...... estimated 24-hour sodium excretion with blood pressure and blood lipids were evaluated by linear regression models. RESULTS: The daily mean estimated intake of salt was 10.80 g and 7.52 g among men and women, respectively. Daily salt intake was significantly associated with blood pressure (β-estimates 1...

  4. Effect of confounding factors on blood pressure estimation using pulse arrival time

    International Nuclear Information System (INIS)

    Two confounding factors were selected and analyzed in blood pressure estimation using pulse arrival time (PAT) for each individual. The heart rate was used as the confounding factor for the cardiac cycle, and the duration from the maximum derivative point to the dicrotic peak (TDB) in the photoplethysmogram was used as another confounding factor representing arterial stiffness. By considering these factors with PAT in multiple regression analysis, the performance of blood pressure estimation is enhanced significantly in the diastolic phase as well as in the systolic phase. The reproducibility of this method was also validated with formerly obtained regression equations from the training set. The correlation between estimated and measured blood pressure decreased a little, but the validity was still maintained (r ≅ 0.8). This shows the value of the method in non-intrusive blood pressure estimation for individual patients and may be useful for various applications

  5. A real-time pressure estimation algorithm for closed-loop combustion control

    Science.gov (United States)

    Al-Durra, Ahmed; Canova, Marcello; Yurkovich, Stephen

    2013-07-01

    The cylinder pressure is arguably the most important variable characterizing the combustion process in internal combustion engines. In light of the recent advances in combustion technologies and in engine control, the use of cylinder pressure is now frequently considered as a feedback signal for closed-loop combustion control algorithms. In order to generate an accurate pressure trace for real-time combustion control and diagnostics, the output of the in-cylinder pressure transducer must be conditioned with signal processing methods to mitigate the well-known issues of offset and noise. While several techniques have been proposed for processing the cylinder pressure signal with limited computational burden, most of the available methods still require one to apply low-pass filters or moving average windows in order to mitigate the noise. This ultimately limits the opportunity of exploiting the in-cylinder pressure feedback for a cycle-by-cycle control of the combustion process. To this extent, this paper presents an estimation algorithm that extracts the pressure signal from the in-cylinder sensor in real-time, allowing for estimating the 50% burn rate location and IMEP on a cycle-by-cycle basis. The proposed approach relies on a model-based estimation algorithm whose starting point is a crank-angle based engine combustion model that predicts the in-cylinder pressure from the definition of a burn rate function. Linear parameter varying (LPV) techniques are then used to expand the region of estimation to cover the engine operating map, as well as allowing for real-time cylinder estimation during transients. The estimator is tested on the experimental data collected on an engine dynamometer as well as on a high-fidelity engine simulator. The results obtained show the effectiveness of the estimator in reconstructing the cylinder pressure on a crank-angle basis and in rejecting measurement noise and modeling errors, with considerably low computation effort.

  6. On the estimation of threshold pressures in infiltration of liquid metals into particle preforms

    International Nuclear Information System (INIS)

    Threshold pressures for infiltration of different metals into preforms of ceramic particles of various nature and morphology were experimentally determined and the results compared with those estimated by using the specific particle surface areas derived from laser diffraction and gas adsorption. Whilst laser diffraction provides an under estimation of the areas involved in the infiltration experiments, and thus of threshold pressures, gas adsorption offers reasonable values for particles that are regular and free of nanostructured surfaces

  7. Oxidation state and reducibility of supported VOx catalysts under ambient pressure and ultra-high-vacuum conditions

    OpenAIRE

    Klose, F.; Wolff, T; Suchorski, Y.; Weiß, H.

    2005-01-01

    Temperature programmed reduction/oxidation (TPR/TPO) and X-ray photoelectron spectroscopy (XPS) are two different fundamental techniques to acquire information on the oxidation state of metal oxide catalysts. In TPR experiments the consumption of hydrogen by a catalyst sample is measured as a function of the catalyst temperature. TPR works under ambient pressure, and the amount of hydrogen consumed can be correlated to the decrease of the oxidation state of the analyzed sample. In contrast to...

  8. Noninvasive estimation of the pressure profile in the male urethra using ultrasound imaging

    NARCIS (Netherlands)

    Idzenga, T.; Arif, M.; Mastrigt, R. van; Korte, C.L. de

    2015-01-01

    PURPOSE: Decreased prostatic compliance as a result of benign prostatic enlargement can result in bladder outlet obstruction. This changes the urethral pressure profile during voiding. In this study, the authors propose noninvasive estimation of this pressure profile. In four soft tissue mimicking m

  9. Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate

    OpenAIRE

    Wang, Ruiping; Jia, Wenyan; Mao, Zhi-Hong; Sclabassi, Robert J.; Sun, Mingui

    2014-01-01

    It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP). This phenomenon has been used as the basis to design portable systems for continuously cuff-less blood pressure measurement, benefiting numerous people with heart conditions. However, the PTT-ba...

  10. Experimental Feasibility Study of Estimation of the Normalized Central Blood Pressure Waveform from Radial Photoplethysmogram

    OpenAIRE

    Sohani, Vahid; Ali, M. A. Mohd.; Chellappan, Kalaivani; Beng, Gan Kok

    2015-01-01

    The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were...

  11. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  12. Estimation of trapped mass by in-cylinder pressure resonance in HCCI engines

    Science.gov (United States)

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Bares, Pau

    2016-01-01

    High pressure gradients at homogeneous charge compression ignition (HCCI) engines heavily excite the pressure resonance. The pressure resonant frequency depends on speed of sound in the cylinder, and thus on the bulk gas temperature. Present paper profits this relation estimating the trapped mass inside the cylinder. In contrast to other estimation methods in the literature, the presented method is based on the trace of the in-cylinder pressure during the cycle; therefore, it permits a cycle-to-cycle mass estimation, and avoids errors associated with other assumptions, such as heat transfer during compression or initial temperature of the in-cylinder gases. The proposed strategy only needs the pressure signal, a volume estimation and a composition assumption to obtain several trapped mass estimates during one cycle. These estimates can be later combined for providing an error estimate of the measurement, with the assumption of negligible blow-by. The method is demonstrated in two HCCI engines of different size, showing good performance in steady operation and presenting great potential to control transient operation.

  13. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    OpenAIRE

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-01-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, ...

  14. Stroke Volume estimation using aortic pressure measurements and aortic cross sectional area: Proof of concept.

    Science.gov (United States)

    Kamoi, S; Pretty, C G; Chiew, Y S; Pironet, A; Davidson, S; Desaive, T; Shaw, G M; Chase, J G

    2015-08-01

    Accurate Stroke Volume (SV) monitoring is essential for patient with cardiovascular dysfunction patients. However, direct SV measurements are not clinically feasible due to the highly invasive nature of measurement devices. Current devices for indirect monitoring of SV are shown to be inaccurate during sudden hemodynamic changes. This paper presents a novel SV estimation using readily available aortic pressure measurements and aortic cross sectional area, using data from a porcine experiment where medical interventions such as fluid replacement, dobutamine infusions, and recruitment maneuvers induced SV changes in a pig with circulatory shock. Measurement of left ventricular volume, proximal aortic pressure, and descending aortic pressure waveforms were made simultaneously during the experiment. From measured data, proximal aortic pressure was separated into reservoir and excess pressures. Beat-to-beat aortic characteristic impedance values were calculated using both aortic pressure measurements and an estimate of the aortic cross sectional area. SV was estimated using the calculated aortic characteristic impedance and excess component of the proximal aorta. The median difference between directly measured SV and estimated SV was -1.4ml with 95% limit of agreement +/- 6.6ml. This method demonstrates that SV can be accurately captured beat-to-beat during sudden changes in hemodynamic state. This novel SV estimation could enable improved cardiac and circulatory treatment in the critical care environment by titrating treatment to the effect on SV. PMID:26736434

  15. Daytime variation in ambient temperature affects skin temperatures and blood pressure: Ambulatory winter/summer comparison in healthy young women.

    Science.gov (United States)

    Martinez-Nicolas, Antonio; Meyer, Martin; Hunkler, Stefan; Madrid, Juan Antonio; Rol, Maria Angeles; Meyer, Andrea H; Schötzau, Andy; Orgül, Selim; Kräuchi, Kurt

    2015-10-01

    It is widely accepted that cold exposure increases peripheral vascular resistance and arterial blood pressure (BP) and, hence, increases cardiovascular risk primarily in the elderly. However, there is a lack of concomitantly longitudinal recordings at personal level of environmental temperature (PET) and cardiophysiological variables together with skin temperatures (STs, the “interface-variable” between the body core and ambient temperature). To investigate the intra-individual temporal relationships between PET, STs and BP 60 healthy young women (52 completed the entire study) were prospectively studied in a winter/summer design for 26 h under real life conditions. The main hypothesis was tested whether distal ST (Tdist)mediates the effect of PET-changes on mean arterial BP (MAP). Diurnal profiles of cardiophysiological variables (including BP), STs and PET were ambulatory recorded. Daytime variations between 0930 and 2030 h were analyzed in detail by intra-individual longitudinal path analysis. Additionally, time segments before, during and after outdoor exposure were separately analyzed. In both seasons short-term variations in PET were positively associated with short-term changes in Tdist (not proximal ST, Tprox) and negatively with those in MAP. However, long-term seasonal differences in daytime mean levels were observed in STs but not in BP leading to non-significant inter-individual correlation between STs and BP. Additionally, higher individual body mass index (BMI) was significantly associated with lower daytime mean levels of Tprox and higher MAP suggesting Tprox as potential mediator variable for the association of BMI with MAP. In healthy young women the thermoregulatory and BP-regulatory systems are closely linked with respect to short-term, but not long-term changes in PET. One hypothetical explanation could serve recent findings that thermogenesis in brown adipose tissue is activated in a cool environment, which could be responsible for the

  16. Spurious barometric pressure acceleration in Antarctica and propagation into GRACE Antarctic mass change estimates

    Science.gov (United States)

    Kim, Byeong-Hoon; Eom, Jooyoung; Seo, Ki-Weon; Wilson, Clark R.

    2016-06-01

    Apparent acceleration in GRACE Antarctic ice mass time series may reflect both ice discharge and surface mass balance contributions. However, a recent study suggests there is also contamination from errors in atmospheric pressure de-aliasing fields (ECMWF operational products) used during GRACE data processing. To further examine this question, we compare GRACE atmospheric pressure de-aliasing (GAA) fields with in-situ surface pressure data from coastal and inland stations. Differences between the two are likely due to GAA errors, and provide a measure of error in GRACE solutions. Time series of differences at individual weather stations are fit to four presumed error components: annual sinusoids, a linear trend, an acceleration term, and jumps at times of known ECMWF model changes. Using data from inland stations, we estimate that atmospheric pressure error causes an acceleration error of about +7.0 Gt/yr2, which is large relative to prior GRACE estimates of Antarctic ice mass acceleration in the range of -12 to -14 Gt/yr2. We also estimate apparent acceleration rates from other barometric pressure (reanalysis) fields, including ERA-Interim, MERRA and NCEP/DOE. When integrated over East Antarctica, the four mass acceleration estimates (from GAA and the three reanalysis fields) vary considerably (by ˜2-16 Gt/yr2). This shows the need for further effort to improve atmospheric mass estimates in this region of sparse in situ observations, in order to use GRACE observations to measure ice mass acceleration and related sea level change.

  17. Methodology to estimate the relative pressure field from noisy experimental velocity data

    Science.gov (United States)

    Bolin, C. D.; Raguin, L. G.

    2008-11-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  18. Mechanism to synthesize a `moving optical mark' at solid-ambient interface for the estimation of thermal diffusivity of solid

    OpenAIRE

    Settu Balachandar; N. C. Shivaprakash; L. Kameswara Rao

    2016-01-01

    supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a `moving optical-mark' at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. `Product of velo...

  19. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars

    International Nuclear Information System (INIS)

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO2 ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO2 ambient gas. Meanwhile the considerably weaker carbon emission from the CO2 gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO2 gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO2 ambient gas and suggesting its viability for broad ranging in-situ applications in Mars

  20. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars

    Science.gov (United States)

    Lie, Zener Sukra; Pardede, Marincan; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-08-01

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO2 ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO2 ambient gas. Meanwhile the considerably weaker carbon emission from the CO2 gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO2 gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO2 ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  1. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Fukui Science Education Academy, Takagi Chuou 2 choume, Fukui 910-0804 (Japan); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia)

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  2. Estimation method of water level behavior in the case of large pressure change in a BWR

    International Nuclear Information System (INIS)

    In a BWR, coolant of core and upper plenum involves so much void volume that free surface level change at downcomer is conspicuous owing to increase and decrease of void volume influenced by pressure change. When mass balance in a reactor vessel becomes non-equilibrium due to steam valve stuck open or feedwater pump trip, difference between liquid level and mixture level becomes very large because of void increased due to depressurization. Therefore, it is very difficult to estimate changes in water level after void exclusion by isolation valve closure etc. So a new parameter ''effective increased void volume'' was contrived to estimate water level in the occurrance of above mentioned phenomena, as a result of consideration about relation between discharged mass and reactor pressure. Degree of water level change under initial operating conditions and reactor pressure change can be estimated by using this parameter. (author)

  3. Estimation of fracture resistance curve of pressure tube from ring tension test

    International Nuclear Information System (INIS)

    For the estimation of through-wall axial critical crack length of zirconium alloy pressure tube in-residence in pressurized heavy water reactors, fracture resistance curves are needed. A method developed to derive the curve from tensile properties is elaborated. The critical crack length derived from the curve was compared with the critical crack length derived from fracture toughness KJic obtained from the tensile properties utilising another method. (author)

  4. A group contribution method for estimating the vapour pressures of α-pinene oxidation products

    OpenAIRE

    J. F. Müller; Capouet, M.

    2005-01-01

    A prediction method based on group contribution principles is proposed for estimating the vapour pressure of α-pinene oxidation products. Temperature dependent contributions are provided for the following chemical groups: carbonyl, nitrate, hydroxy, hydroperoxide, acyl peroxy nitrate and acid. On the basis of observed vapour pressure differences between isomers of diols and dinitrates, a simple refinement is introduced in the method, which allows to account for the influence of the subs...

  5. A new device to noninvasively estimate the intraocular pressure produced during ocular compression

    OpenAIRE

    Korenfeld MS; Dueker DK

    2016-01-01

    Michael S Korenfeld,1,2 David K Dueker3 1Comprehensive Eye Care, Ltd., 2Department of Ophthalmology and Visual Sciences, Washington University, Washington, MO, USA; 3Hamad Medical Corporation, Doha, Qatar Purpose: To describe a noninvasive instrument that estimates intraocular pressure during episodes of external globe compression and to demonstrate the accuracy and reliability of this device by comparing it to the intraocular pressures simultaneously and manometrically measured in cannulat...

  6. Algorithmic processing of pressure waveforms to facilitate estimation of cardiac elastance

    Directory of Open Access Journals (Sweden)

    Stevenson David

    2012-06-01

    Full Text Available Abstract Background Cardiac elastances are highly invasive to measure directly, but are clinically useful due to the amount of information embedded in them. Information about the cardiac elastance, which can be used to estimate it, can be found in the downstream pressure waveforms of the aortic pressure (Pao and the pulmonary artery (Ppa. However these pressure waveforms are typically noisy and biased, and require processing in order to locate the specific information required for cardiac elastance estimations. This paper presents the method to algorithmically process the pressure waveforms. Methods A shear transform is developed in order to help locate information in the pressure waveforms. This transform turns difficult to locate corners into easy to locate maximum or minimum points as well as providing error correction. Results The method located all points on 87 out of 88 waveforms for Ppa, to within the sampling frequency. For Pao, out of 616 total points, 605 were found within 1%, 5 within 5%, 4 within 10% and 2 within 20%. Conclusions The presented method provides a robust, accurate and dysfunction-independent way to locate points on the aortic and pulmonary artery pressure waveforms, allowing the non-invasive estimation of the left and right cardiac elastance.

  7. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised. PMID:25065794

  8. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  9. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Breen, Mike;

    2016-01-01

    This study assesses the seabed pressure of towed fishing gears and models the physical impact (area and depth of seabed penetration) from trip-based information of vessel size, gear type, and catch. Traditionally fishing pressures are calculated top-down by making use of large-scale statistics such...... the gear's impact. An industry-based survey covering 13 countries provided the basis for estimating the relative impact-area contributions from individual gear components, whereas sediment penetration was estimated based on a literature review. For each gear group, a vessel size–gear size relationship...... was estimated to enable the prediction of gear footprint area and sediment penetration from vessel size. Application of these relationships with average vessel sizes and towing speeds provided hourly swept-area estimates by métier. Scottish seining has the largest overall gear footprint of ∼1.6 km2 h...

  10. Estimation of fracture toughness of reactor pressure vessel steels using automated ball indentation test

    International Nuclear Information System (INIS)

    The automated ball indentation (ABI) test was utilized to develop a semi-nondestructive method for estimating the fracture toughness (KJC) in the transition temperature range. The key concept of the method is that the indentation deformation energy to the load at which the mean ball-specimen contact pressure reaches the fracture stress is related to the fracture energy of the material. ABI tests were performed for the reactor pressure vessel (RPV) base and weld metals at the temperatures of -150 .deg. C ∼ 0 .deg. C and the fracture toughness (estimated KJC) was calculated from the indentation load-depth data. For all steels the temperature dependence of the estimated fracture toughness was almost the same as that of the ASTM KJC master curve. The reference temperature (To) of the steels were determined from the estimated KJC versus temperature curves. The reference temperature was well correlated with the index temperature of 41J Charpy impact energy (T41J)

  11. Effect of acute endotoxemia on analog estimates of mean systemic pressure.

    Science.gov (United States)

    Lee, Jae Myeong; Ogundele, Olufunmilayo; Pike, Francis; Pinsky, Michael R

    2013-10-01

    Dynamic estimates of mean systemic pressure based on a Guytonian analog model (Pmsa) appear accurate under baseline conditions but may not remain so during septic shock because blood volume distribution and resistances between arterial and venous beds may change. Thus, we examined the effect of acute endotoxemia on the ability of Pmsa, estimated from steady-state cardiac output, right atrial pressure, and mean arterial pressure, to reflect our previously validated instantaneous venous return measure of mean systemic pressure (Pmsi), derived from beat-to-beat measures of right ventricular stroke volume and right atrial pressure during positive pressure ventilation. We studied 6 splenectomized pentobarbital-anesthetized close chested dogs. Right ventricular stroke volume was measured by a pulmonary arterial electromagnetic flow probe. Instantaneous venous return measure of mean systemic pressure and Pmsa were calculated during volume loading and removal (±100-mL bolus increments×5) both before (control) and 30 minutes after endotoxin infusion (endo). Cardiac output increased (2628±905 vs 3560±539 mL/min; PPmsi and Pmsa correlated during both control and endo (r2=0.7) with minimal bias by Bland-Altman analysis (mean difference±95% confidence interval, 0.47±5.04 mm Hg). We conclude that changes in Pmsa accurately tracts Pmsi under both control and endo. PMID:23731817

  12. Volume reduction on all particle size of the contaminated soil. Continuous processing technology of attrition, chemical wash under an ambient temperature and pressure condition and magnetic separation

    International Nuclear Information System (INIS)

    An examination was conducted in order to establish a practical purification system that could largely reduce the storage volume of radioactive waste in the Intermediate Storage Facility. The examination consists of a 3-step washing treatment of contaminated soil, which includes “Milling Washing” of removed contaminated soil, chemical extraction of fine soil fraction resulted from the “Milling Washing” under an ambient temperature and pressure condition, and magnetic separation of cesium from the extracted solution. As a result of the examination, we succeeded in development of a safe system with low initial cost and running cost. (author)

  13. An in situ near-ambient pressure X-ray Photoelectron Spectroscopy study of Mn polarised anodically in a cell with solid oxide electrolyte

    International Nuclear Information System (INIS)

    This paper reports an in situ study of the anodic behavior of a model solid oxide electrolysis cell (SOEC) by means of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) combined with near edge X-ray absorption fine structure (NEXAFS) measurements. The focus is on the anodic surface chemistry of MnOx, a model anodic material already considered in cognate SOFC-related studies, during electrochemical operation in CO2, CO2/H2O and H2O ambients. The XPS and NEXAFS results we obtained, complemented by electrochemical measurements and SEM characterisation, reveal the chemical evolution of Mn under electrochemical control. MnO is the stable chemical form at open-circuit potential (OCP), while Mn3O4 forms under anodic polarisation in all the investigated gas ambients. Carbon deposits are present on the Mn electrode at OCP, but they are readily oxidised under anodic conditions. Prolonged operation of the MnOx anode leads to pitting of the Mn films, damaging of the triple-phase boundary region and also to formation of discontinuities in the Mn patch. This is accompanied by chemical transformations of the electrolyte and formation of ZrC without impact on the surface chemistry of the Mn-based anode

  14. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation.

    Science.gov (United States)

    Donati, Fabrizio; Figueroa, C Alberto; Smith, Nicolas P; Lamata, Pablo; Nordsletten, David A

    2015-12-01

    Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245

  15. Method for Estimating the Acoustic Pressure in Tissues Using Low-Amplitude Measurements in Water.

    Science.gov (United States)

    Keravnou, Christina P; Izamis, Maria-Louisa; Averkiou, Michalakis A

    2015-11-01

    The aim of this study was to evaluate a simple, reliable and reproducible method for accuracy in estimating the acoustic pressure delivered in tissue exposed to ultrasound. Such a method would be useful for therapeutic applications of ultrasound with microbubbles, for example, sonoporation. The method is based on (i) low-amplitude water measurements that are easily made and do not suffer from non-linear propagation effects, and (ii) the attenuation coefficient of the tissue of interest. The range of validity of the extrapolation method for different attenuation and pressure values was evaluated with a non-linear propagation theoretical model. Depending on the specific tissue attenuation, the method produces good estimates of pressures in excess of 10 MPa. Ex vivo machine-perfused pig liver tissue was used to validate the method for source pressures up to 3.5 MPa. The method can be used to estimate the delivered pressure in vivo in diagnostic and therapeutic applications of ultrasound. PMID:26320668

  16. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-03-16

    The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

  17. The estimation of pressure on the surface of a flapping rigid plate by stereo PIV

    Energy Technology Data Exchange (ETDEWEB)

    Suryadi, Alexandre; Obi, Shinnosuke [Keio University, Department of Mechanical Engineering, Yokohama, Kanagawa (Japan)

    2011-11-15

    The method to estimate the dynamic load of a flapping wing by the integration of pressure on the wing's surface is discussed. The flapping wing was modeled as a plate flapping sinusoidally in hovering condition. The flow around the flapping plate was measured using stereo PIV on multiple measurement planes along the out-of-plane direction. The phase-averaged velocity field of each measurement plane was calculated so that three-dimensional analyses could be applied. The phase-averaged pressure field was obtained from the integration of the three-dimensional Poisson equation for pressure using the available information acquired from stereo PIV measurements. The pressure field is visualized on the measurement planes. In this study, the estimated load was the torque of the axis of rotation. This torque was compared with the result from strain gauge measurements. The torque estimation, although only on a partial surface of the plate, is within reasonable agreement with the measured torque. The integration of the Poisson equation based on stereo PIV measurements and estimations of the torque shows that an increase in the torque at the start of a flapping stroke is caused by the stagnation on the surface of the plate from the flow that is induced by the leading-edge vortices. (orig.)

  18. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  19. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  20. An automatic approach towards modal parameter estimation for high-rise buildings of multicomponent signals under ambient excitations via filter-free Random Decrement Technique

    Science.gov (United States)

    Nasser, Fatima; Li, Zhongyang; Martin, Nadine; Gueguen, Philippe

    2016-03-01

    This paper proposes an automatic modal analysis approach for signals of high-rise buildings recorded under real-world ambient excitations. The fact of working over such type of signals is faced with several challenges: the time-domain convolution between the system impulse response and the seismic noise, the existence of several components, the presence of closely-spaced frequency modes, with high additive noises, and low, exponential and damped amplitudes. The proposed approach handles these challenges simultaneously without the need for a user intervention. It is based on a filter-free Random Decrement Technique to estimate the free-decay response, followed by a spectral-based method for a rough modal estimate and finalized by a Maximum-Likelihood Estimation process to refine the modal estimates. Each of these processes is responsible to tackle one or more of the aforementioned challenges in the aim to provide an automatic and moreover a reliable modal analysis of the studied signals.

  1. Non-invasive Estimation of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand;

    2014-01-01

    This paper investigates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The presented set-up is based on vector velocity fields measured on a blood mimicking fluid moving at a peak flow rate of 1 ml/s through a constricted vessel. Fields of...... pressure gradients are calculated using the Navier-Stokes equations. Flow data are acquired to a depth of 3 cm using directional synthetic aperture flow imaging on a linear array transducer producing 1500 image frames of velocity estimates per second. Scans of a carotid bifurcation phantom with a 70......% constriction are performed using an experimental scanner. The performance of the presented estimator is evaluated by comparing its results to a numerical simulation model, which geometry is reconstructed from MRI data. The study showed pressure gradients varying from 0 kPa/m to 4.5 kPa/m with a maximum bias...

  2. Effects of drought and changes in vapour pressure deficit on water relations of Populusdeltoides growing in ambient and elevated CO2

    International Nuclear Information System (INIS)

    According to the Intergovernmental Panel on Climate Change (IPCC), changes in the earth's climate are expected to become more extreme as carbon dioxide (CO2) concentrations increase over the next century. This study examined the means by which growth CO2 concentration affects anatomy and water relation responses to drought and vapour pressure deficit (VPD). Yearly coppiced, 4-year-old Populus deltoides clones grown in either ambient or elevated CO2 for 3 years were examined to determine if trees growing in elevated CO2 during drought would have a lower volume flux density of water (JV), stomatal conductance (gs) and transpiration per leaf area (E), as well as a lower stomatal density and a greater stomatal response to drought and changes in VPD than would trees in ambient CO2. The study showed that trees in elevated CO2 actually had higher JV values, but did not differ from trees in ambient CO2 in terms of gs or E under saturating light or E scaled from JV. The higher JV in elevated CO2 was attributed to the greater leaf area in the trees and not from differences in gs. Plants in elevated CO2 had greater absolute leaf loss during the drought, but the percentage of leaf area lost was similar to that of trees in ambient CO2. Under saturating light, gs and E were influenced by changes in VPD after the first 9 days of the experiment, which coincided with a large decrease in water potential. It was concluded that longer-term growth of P. deltoides clone under elevated CO2 did not improve the effects of drought and high VPD on plant and water relations. 56 refs., 3 tabs., 4 figs.

  3. Electronic properties and the nature of metal-insulator transition in NdNiO3 prepared at ambient oxygen pressure

    Science.gov (United States)

    Hooda, M. K.; Yadav, C. S.

    2016-06-01

    We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m*~8me) in the metallic state indicates the narrow character of the 3d band. The electric conduction at low temperatures (T=2-20 K) is governed by the variable range hopping of the charge carriers.

  4. Detection and estimation of sensor drifts using Kalman filters with a demonstration on a pressurizer

    International Nuclear Information System (INIS)

    Highlights: ► How the expectation of the innovations changes in the drift case is formulated. ► Using the divergence in the expectation for detection of the drift is demonstrated. ► An augmented system model is proposed for estimation of the drift. ► Demonstration of the proposed algorithm is presented using a pressurizer model. - Abstract: An algorithm for detection and estimation of sensor drifts is proposed in this paper. The algorithm is based on estimation of the process states from which the measurements are made and the rate of drifts using a state augmented Kalman filter. The detection and the estimation of a drift are carried out by evaluating the mean of the innovation sequence of the Kalman filter. The relationship between the mean and the drift is analyzed in detail to provide insights on the connection between the innovation sequence and the drift. The developed algorithm has been successfully applied to a pressurizer for detection and estimation of pressure sensor drifts. The results convincingly demonstrate the capability of the algorithm.

  5. Spurious barometric pressure acceleration in Antarctica and propagation into GRACE Antarctic mass change estimates

    Science.gov (United States)

    Kim, Byeong-Hoon; Eom, Jooyoung; Seo, Ki-Weon; Wilson, Clark R.

    2016-08-01

    Apparent acceleration in Gravity Recovery and Climate Experiment (GRACE) Antarctic ice mass time-series may reflect both ice discharge and surface mass balance contributions. However, a recent study suggests there is also contamination from errors in atmospheric pressure de-aliasing fields [European Center for Medium-Range Weather Forecast (ECMWF) operational products] used during GRACE data processing. To further examine this question, we compare GRACE atmospheric pressure de-aliasing (GAA) fields with in situ surface pressure data from coastal and inland stations. Differences between the two are likely due to GAA errors, and provide a measure of error in GRACE solutions. Time-series of differences at individual weather stations are fit to four presumed error components: annual sinusoids, a linear trend, an acceleration term and jumps at times of known ECMWF model changes. Using data from inland stations, we estimate that atmospheric pressure error causes an acceleration error of about +7.0 Gt yr-2, which is large relative to prior GRACE estimates of Antarctic ice mass acceleration in the range of -12 to -14 Gt yr-2. We also estimate apparent acceleration rates from other barometric pressure (reanalysis) fields, including ERA-Interim, MERRA and NCEP/DOE. When integrated over East Antarctica, the four mass acceleration estimates (from GAA and the three reanalysis fields) vary considerably (by ˜2-16 Gt yr-2). This shows the need for further effort to improve atmospheric mass estimates in this region of sparse in situ observations, in order to use GRACE observations to measure ice mass acceleration and related sea level change.

  6. In situ study of an oxidation reaction on a Pt/C electrode by ambient pressure hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Yasumasa, E-mail: ytakagi@ims.ac.jp; Uemura, Yohei; Yokoyama, Toshihiko [Department of Molecular Structure, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585 (Japan); The Graduate University for Advanced Studies (SOKENDAI), Myodaiji-cho, Okazaki, Aichi 444-8585 (Japan); Wang, Heng [Department of Molecular Structure, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585 (Japan); Ikenaga, Eiji; Ohashi, Haruhiko; Senba, Yasunori; Yumoto, Hirokatsu; Yamazaki, Hiroshi; Goto, Shunji [Japan Synchrotron Radiation Research Institute, SPring-8, Koto, Sayo, Hyogo 679-5198 (Japan); Sekizawa, Oki; Iwasawa, Yasuhiro [Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Uruga, Tomoya [Japan Synchrotron Radiation Research Institute, SPring-8, Koto, Sayo, Hyogo 679-5198 (Japan); Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Tada, Mizuki [Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2014-09-29

    We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticles in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.

  7. Estimation of pressure gradients in pulsatile flow from magnetic resonance acceleration measurements.

    Science.gov (United States)

    Tasu, J P; Mousseaux, E; Delouche, A; Oddou, C; Jolivet, O; Bittoun, J

    2000-07-01

    A method for estimating pressure gradients from MR images is demonstrated. Making the usual assumption that the flowing medium is a Newtonian fluid, and with appropriate boundary conditions, the inertial forces (or acceleration components of the flow) are proportional to the pressure gradients. The technique shown here is based on an evaluation of the inertial forces from Fourier acceleration encoding. This method provides a direct measurement of the total acceleration defined as the sum of the velocity derivative vs. time and the convective acceleration. The technique was experimentally validated by comparing MR and manometer pressure gradient measurements obtained in a pulsatile flow phantom. The results indicate that the MR determination of pressure gradients from an acceleration measurement is feasible with a good correlation with the true measurements (r = 0.97). The feasibility of the method is demonstrated in the aorta of a normal volunteer. Magn Reson Med 44:66-72, 2000. PMID:10893523

  8. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    International Nuclear Information System (INIS)

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2)} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {1-octanol (1) + CCA (2)} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  9. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)], E-mail: ula@ch.pw.edu.pl; Morawski, Piotr; Piekarska, Maria [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2008-04-15

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {l_brace}1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2){r_brace} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {l_brace}1-octanol (1) + CCA (2){r_brace} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  10. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m−3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  11. Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine

    Science.gov (United States)

    Murai, Yuichi; Nakada, Taishi; Suzuki, Takao; Yamamoto, Fujio

    2007-08-01

    Particle tracking velocimetry (PTV) is applied to flows around a Savonius turbine. The velocity vector field measured with PTV is utilized to estimate the pressure field around the turbine, as well as to evaluate the torque performance. The main objective of the work is the establishment of the pressure estimation scheme required to discuss the turbine performance. First, the PTV data are interpolated on a regular grid with a fourth-order ellipsoidal differential equation to generate velocity vectors satisfying the third-order spatio-temporal continuity both in time and space. Second, the phase-averaged velocity vector information with respect to the turbine angle is substituted into three different types of pressure-estimating equations, i.e. the Poisson equation, the Navier-Stokes equation and the sub-grid scale model of turbulence. The results obtained based on the Navier-Stokes equation are compared with those based on the Poisson equation, and have shown several merits in employing the Navier-Stokes-based method for the PTV measurement. The method is applied to a rotating turbine with the tip-speed ratio of 0.5 to find the relationship between torque behaviour and flow structure in a phase-averaged sense. We have found that a flow attached to the convex surface of the blades induces low-pressure regions to drive the turbine, namely, the lift force helps the turbine blades to rotate even when the drag force is insufficient. Secondary mechanisms of torque generation are also discussed.

  12. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    Science.gov (United States)

    Goodarzi, Mohammad; Dos Santos Coelho, Leandro; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide. PMID:26890190

  13. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors

    International Nuclear Information System (INIS)

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations

  14. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks.

    Science.gov (United States)

    Xing, Xiaoman; Sun, Mingshan

    2016-08-01

    We introduce and validate a beat-to-beat optical blood pressure (BP) estimation paradigm using only photoplethysmogram (PPG) signal from finger tips. The scheme determines subject-specific contribution to PPG signal and removes most of its influence by proper normalization. Key features such as amplitudes and phases of cardiac components were extracted by a fast Fourier transform and were used to train an artificial neural network, which was then used to estimate BP from PPG. Validation was done on 69 patients from the MIMIC II database plus 23 volunteers. All estimations showed a good correlation with the reference values. This method is fast and robust, and can potentially be used to perform pulse wave analysis in addition to BP estimation. PMID:27570693

  15. Preliminary investigation of an ultrasound method for estimating pressure changes in deep-positioned vessels

    Science.gov (United States)

    Olesen, Jacob Bjerring; Villagomez-Hoyos, Carlos Armando; Traberg, Marie Sand; Chee, Adrian J. Y.; Yiu, Billy Y. S.; Ho, Chung Kit; Yu, Alfred C. H.; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a method for measuring pressure changes in deep-tissue vessels using vector velocity ultrasound data. The large penetration depth is ensured by acquiring data using a low frequency phased array transducer. Vascular pressure changes are then calculated from 2-D angle-independent vector velocity fields using a model based on the Navier-Stokes equations. Experimental scans are performed on a fabricated flow phantom having a constriction of 36% at a depth of 100 mm. Scans are carried out using a phased array transducer connected to the experimental scanner, SARUS. 2-D fields of angle-independent vector velocities are acquired using directional synthetic aperture vector flow imaging. The obtained results are evaluated by comparison to a 3-D numerical simulation model with equivalent geometry as the designed phantom. The study showed pressure drops across the constricted phantom varying from -40 Pa to 15 Pa with a standard deviation of 32%, and a bias of 25% found relative to the peak simulated pressure drop. This preliminary study shows that pressure can be estimated non-invasively to a depth that enables cardiac scans, and thereby, the possibility of detecting the pressure drops across the mitral valve.

  16. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    International Nuclear Information System (INIS)

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a open-quotes best estimateclose quotes of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards

  17. Sensitivity coefficients for the stochastic estimation of the radiation damage to the reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, C.M.; Hernandez Valle, S. [Centro de Investigaciones Tecnologicas, Nucleares y Ambientales, La Habana (Cuba). E-mail: calvarez@ctn.isctn.edu.cu; svalle@ctn.isctn.edu.cu

    2000-07-01

    The construction of the sensitivity matrix in the case of the vessel radiation damage estimation by Monte Carlo techniques poses new problems related to the uncertainties of the obtained responses. In the case of deterministic calculations, the sensitivity coefficient obtention is a straightforward procedure based on the perturbation formalism through the calculation of the adjoint fluxes. In the paper an alternative procedure implementation based on the differential operator method is described with the modifications needed to the used HEXANN-EVALU code for the response estimations in the VVER-440 pressure vessel. (author)

  18. Weighing the ocean with bottom-pressure sensors: robustness of the ocean mass annual cycle estimate

    OpenAIRE

    Williams, Joanne; Hughes, C. W.; Tamisiea, M. E; Williams, S. D. P.

    2014-01-01

    We use ocean bottom-pressure measurements from 17 tropical sites to determine the annual cycle of ocean mass. We show that such a calculation is robust, and use three methods to estimate errors in the mass determination. Our final best estimate, using data from the best sites and two ocean models, is that the annual cycle has an amplitude of 0.85 mbar (equivalent to 8.4 mm of sea level, or 3100 Gt of water), with a 95% chance of lying within the range 0.61–1.17 mbar. The time of the peak in o...

  19. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  20. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker;

    2005-01-01

    3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard......)/mol-s, with C6H5 + H as the dominating product channel. The estimated uncertainty in this value, a factor of 5, mainly originates from the uncertainty in the measured propargyl radical profile, although other experimental and kinetic uncertainties also contribute. (c) 2004 The Combustion Institute....... Published by Elsevier Inc. All rights reserved....

  1. Sum frequency generation vibrational spectroscopy at solid gas interfaces: CO adsorption on Pd model catalysts at ambient pressure

    Science.gov (United States)

    Rupprechter, Günther; Unterhalt, Holger; Morkel, Matthias; Galletto, Paolo; Hu, Linjie; Freund, Hans-Joachim

    2002-04-01

    Carbon monoxide adsorption on Pd(1 1 1) and Pd nanoparticles supported by Al 2O 3/NiAl(1 1 0) was examined by vibrational sum frequency generation spectroscopy from 10 -8 to 1000 mbar, and from 100 to 400 K. Identical CO saturation structures were observed on Pd(1 1 1) under ultrahigh vacuum (˜10 -7 mbar, 95 K) and at high pressure (e.g. ⩾1 mbar, 190 K) with no indications of pressure-induced surface rearrangements. Special attention was paid to experimental artifacts that may occur under elevated pressure and may be misinterpreted as "high pressure effects". Vibrational spectra of CO on defect-rich Pd(1 1 1) exhibited an additional peak that originated from CO bound to defect (step or edge) sites. The CO adsorbate structure on supported Pd nanoparticles was different from Pd(1 1 1) but more similar to stepped Pd(1 1 1). At low pressure (10 -7 mbar CO) the adsorbate structure depended strongly on the Pd morphology revealing specific differences in the adsorption properties of supported nanoparticles and single crystal surfaces. At high pressure (e.g. 200 mbar CO) these differences were even more pronounced. Prominent high coverage CO structures on Pd(1 1 1) could not be established on Pd particles. However, in spite of structural differences between well faceted and rough Pd nanoparticles nearly identical adsorption site occupancies were observed in both cases at 200 mbar CO. Initial tests of the catalytic activity of Pd/Al 2O 3/NiAl(1 1 0) for ethylene hydrogenation at 1 bar revealed a remarkable activity and stability of the model system with catalytic properties similar to impregnated catalysts.

  2. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram.

    Science.gov (United States)

    Zahedi, Edmond; Sohani, Vahid; Ali, M A Mohd; Chellappan, Kalaivani; Beng, Gan Kok

    2015-01-01

    The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV) of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5%) from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days. PMID:25708380

  3. Experimental Feasibility Study of Estimation of the Normalized Central Blood Pressure Waveform from Radial Photoplethysmogram

    Directory of Open Access Journals (Sweden)

    Edmond Zahedi

    2015-01-01

    Full Text Available The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN from the radial photoplethysmogram (PPG is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5% from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days.

  4. Estimation of the Pumping Pressure from Concrete Composition Based on the Identified Tribological Parameters

    Directory of Open Access Journals (Sweden)

    Chanh-Trung Mai

    2014-01-01

    Full Text Available A new method is proposed to estimate pumping pressure based on concrete composition without experimental measurements. Previous studies show that the pumping pressure depends on the interface friction between concrete and the wall of the pumping pipes. This friction is determined by the thickness and the rheology of the boundary layer formed at the interface. The latter is mainly formed by water, cement, and fine sand particles which come from concrete. Hence, interface parameters, which are the viscous constant and the interface yield stress, are directly related to concrete composition. In this work, at the first time the interface yield stress model is suggested and validated thanks to an experimental database also carried out in this study with a precision of around 13%. Then, the pressure estimation method is proposed using the two models to calculate the interface parameters. The validation of the method is carried out basing on the comparison with real measurements on the building site. This method enables the calculation of the pumping pressure with a precision of around 15%.

  5. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Directory of Open Access Journals (Sweden)

    R. Valorso

    2011-07-01

    Full Text Available The sensitivity of the formation of secondary organic aerosol (SOA to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A. Vapour pressures (Pvap were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation, differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  6. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Directory of Open Access Journals (Sweden)

    J. H. Seinfeld

    2011-03-01

    Full Text Available The sensitivity of the formation of secondary organic aerosol (SOA to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A. Vapour pressures (Pvap were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation, differences in the predicted Pvap range between a factor of 5 to 200 in average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  7. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, CZ-602 00 Brno (Czech Republic); Mester, Zoltan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Sturgeon, Ralph E., E-mail: Ralph.Sturgeon@nrc-cnrc.gc.ca [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-08-15

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  8. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    International Nuclear Information System (INIS)

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  9. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Science.gov (United States)

    Kratzer, Jan; Mester, Zoltán; Sturgeon, Ralph E.

    2011-08-01

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  10. Online Estimation of Model Parameters and State of Charge of LiFePO4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2015-04-01

    Full Text Available This study describes an online estimation of the model parameters and state of charge (SOC of lithium iron phosphate batteries in electric vehicles. A widely used SOC estimator is based on the dynamic battery model with predeterminate parameters. However, model parameter variances that follow with their varied operation temperatures can result in errors in estimating battery SOC. To address this problem, a battery online parameter estimator is presented based on an equivalent circuit model using an adaptive joint extended Kalman filter algorithm. Simulations based on actual data are established to verify accuracy and stability in the regression of model parameters. Experiments are also performed to prove that the proposed estimator exhibits good reliability and adaptability under different loading profiles with various temperatures. In addition, open-circuit voltage (OCV is used to estimate SOC in the proposed algorithm. However, the OCV based on the proposed online identification includes a part of concentration polarization and hysteresis, which is defined as parametric identification-based OCV (OCVPI. Considering the temperature factor, a novel OCV–SOC relationship map is established by using OCVPI under various temperatures. Finally, a validating experiment is conducted based on the consecutive loading profiles. Results indicate that our method is effective and adaptable when a battery operates at different ambient temperatures.

  11. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-09-15

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  12. Estimation of Coefficient of Pressure in High Rise Buildings Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    S. K. Verma

    2014-04-01

    Full Text Available Tendency to build more slender and more flexible tall buildings have made these structures susceptible to action of wind. Therefore, wind force is one of the prime considerations in design of tall buildings. The prediction of wind-induced pressure coefficients on the surface of the buildings is of considerable practical importance. Wind tunnel testing is one of the main methods for wind load determination on structures. But this being, time consuming and costly wind tunnel tests can only cover a limited number of cases. The present work focuses on the application of artificial neural networks (ANNs to estimate pressure coefficients on surface of tall buildings. In the present study, two cases of training data set (consisting of geometrical coordinates of pressure points and angle at which wind strikes at the face of the building as the input to the network has been used to predict the wind- induced `pressure coefficients Cp (mean (output of the network for the previously any wind incident angle. The performance of the network is assessed in terms of Root Mean Square Error (RMSE and Correlation Coefficient R. From the present study, it is concluded that the value of Cp (Mean goes on decreasing with increase in Wind Incidence Angle for the same pressure point. Also, suction effect is noticed near the corners of the building.

  13. Estimation of foot pressure from human footprint depths using 3D scanner

    Science.gov (United States)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  14. Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals

    Directory of Open Access Journals (Sweden)

    Rong-Chao Peng

    2015-09-01

    Full Text Available Cardiovascular disease, like hypertension, is one of the top killers of human life and early detection of cardiovascular disease is of great importance. However, traditional medical devices are often bulky and expensive, and unsuitable for home healthcare. In this paper, we proposed an easy and inexpensive technique to estimate continuous blood pressure from the heart sound signals acquired by the microphone of a smartphone. A cold-pressor experiment was performed in 32 healthy subjects, with a smartphone to acquire heart sound signals and with a commercial device to measure continuous blood pressure. The Fourier spectrum of the second heart sound and the blood pressure were regressed using a support vector machine, and the accuracy of the regression was evaluated using 10-fold cross-validation. Statistical analysis showed that the mean correlation coefficients between the predicted values from the regression model and the measured values from the commercial device were 0.707, 0.712, and 0.748 for systolic, diastolic, and mean blood pressure, respectively, and that the mean errors were less than 5 mmHg, with standard deviations less than 8 mmHg. These results suggest that this technique is of potential use for cuffless and continuous blood pressure monitoring and it has promising application in home healthcare services.

  15. Methods of precisely estimating the jacket pressure coefficient of controlled-clearance piston-cylinders at pressures up to 1 GPa

    Science.gov (United States)

    Kajikawa, Hiroaki; Ide, Kazunori; Kobata, Tokihiko

    2011-10-01

    Deformational characteristics of a controlled-clearance piston-cylinder (CCPC) have been evaluated to precisely estimate the pressure dependence of its effective area. Among the experimentally accessible characteristics, the jacket pressure coefficient d, which denotes the relative change in the effective area due to applied jacket pressure pj, is examined in this paper. Two methods for precisely determining d at pressures up to 1 GPa are proposed. One is a comparative method that uses a set of a pressure balance and a multiplier as the tare gauge. The other is a new method that uses precise pressure transducers as monitoring devices. Both pj and weights loaded on the CCPC are changed so that the pressure generated by the CCPC remains constant, which is monitored by the transducers. d is estimated by the relative change in the weights loaded on the CCPC itself. Using the two methods, d for a 1 MPa kg-1 CCPC is measured at pressures up to 1 GPa. At each system pressure, d obtained by each method is approximated by a linear function of pj. The consistency of the fit values of d by the two methods is confirmed. The method using pressure transducers as monitoring devices is advantageous in terms of efficiency and operability especially at higher pressures.

  16. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure

    International Nuclear Information System (INIS)

    The synthesis mechanism of ultrananocrystalline diamond via laser shock processing of graphite suspension was presented at room temperature and normal pressure, which yielded the ultrananocrystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The transformation model and growth restriction mechanism of high power density with short-pulsed laser shocking of graphite particles in liquid was put forward.

  17. Equation of state in the generalized density scaling regime studied from ambient to ultra-high pressure conditions.

    Science.gov (United States)

    Grzybowski, A; Koperwas, K; Paluch, M

    2014-01-28

    In this paper, based on the effective intermolecular potential with well separated density and configuration contributions and the definition of the isothermal bulk modulus, we derive two similar equations of state dedicated to describe volumetric data of supercooled liquids studied in the extremely wide pressure range related to the density range, which is extremely wide in comparison with the experimental range reached so far in pressure-volume-temperature measurements of glass-forming liquids. Both the equations comply with the generalized density scaling law of molecular dynamics versus h(ρ)/T at different densities ρ and temperatures T, where the scaling exponent can be in general only a density function γ(ρ) = d ln h/d ln ρ as recently argued by the theory of isomorphs. We successfully verify these equations of state by using data obtained from molecular dynamics simulations of the Kob-Andersen binary Lennard-Jones liquid. As a very important result, we find that the one-parameter density function h(ρ) analytically formulated in the case of this prototypical model of supercooled liquid, which implies the one-parameter density function γ(ρ), is able to scale the structural relaxation times with the value of this function parameter determined by fitting the volumetric simulation data to the equations of state. We also show that these equations of state properly describe the pressure dependences of the isothermal bulk modulus and the configurational isothermal bulk modulus in the extremely wide pressure range investigated by the computer simulations. Moreover, we discuss the possible forms of the density functions h(ρ) and γ(ρ) for real glass formers, which are suggested to be different from those valid for the model of supercooled liquid based on the Lennard-Jones intermolecular potential. PMID:25669550

  18. Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey

    OpenAIRE

    Si Hyung Lee; Seung Woo Kwak; Eun Min Kang; Gyu Ah Kim; Sang Yeop Lee; Hyoung Won Bae; Gong Je Seong; Chan Yun Kim

    2016-01-01

    Background To investigate the association between estimated trans-lamina cribrosa pressure difference (TLCPD) and prevalence of normal tension glaucoma (NTG) with low-teen and high-teen intraocular pressure (IOP) using a population-based study design. Methods A total of 12,743 adults (≥ 40 years of age) who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) from 2009 to 2012 were included. Using a previously developed formula, cerebrospinal fluid pressure (C...

  19. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    Science.gov (United States)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  20. Ambient gas/particle partitioning. 3. Estimating partition coefficients of apolar, polar, and ionizable organic compounds by their molecular structure.

    Science.gov (United States)

    Arp, Hans Peter H; Gosses, Kai-Uwe

    2009-03-15

    Equilibrium gas/particle partitioning coefficients of terrestrial aerosols, Kip, are dependent on various intermolecular interactions that can be quantified by experimentally determined compound-specific descriptors. For many compounds of environmental interest, such as emerging contaminants and atmospheric phototransformation products, these compound-specific descriptors are unknown or immeasurable. Often, only the molecular structure is known. Here we present the ability of two computer programs to predict equilibrium partitioning to terrestrial aerosols solely on the basis of molecular structure: COSMOtherm and SPARC. The greatest hurdle with designing such an approach is to identify suitable molecular surrogates to represent the dominating sorbing phases, which for ambient terrestrial aerosols are the water insoluble organic matter (WIOM) phase and the mixed-aqueous phase. For the WI0M phase, hypothetical urban secondary organic aerosol structural units from Kalberer et al. Science 2004, 303, 1659-1662 were investigated as input surrogates, and for the mixed-aqueous phase mildly acidic water was used as a surrogate. Using a validation data set of more than 1400 experimentally determined Kip values for polar, apolar, and ionic compounds ranging over 9 orders of magnitude (including semivolatile compounds such as PCDD/Fs, pesticides, and PBDEs), SPARC and COSMOtherm were generally able to predict Kip values well within an order of magnitude over an ambient range of temperature and relative humidity. This is remarkable as these two models were not fitted or calibrated to any experimental data. As these models can be used for potentially any organic molecule, they are particularly recommended for environmental screening purposes and for use when experimental compound descriptor data are not available. PMID:19368193

  1. The influence of calculation method on estimates of cerebral critical closing pressure

    International Nuclear Information System (INIS)

    The critical closing pressure (CrCP) of cerebral circulation is normally estimated by extrapolation of instantaneous velocity–pressure curves. Different methods of estimation were analysed to assess their robustness and reproducibility in both static and dynamic applications. In ten healthy subjects (mean ± SD age 37.5 ± 9.2 years) continuous recordings of arterial blood pressure (BP, Finapres) and bilateral cerebral blood flow velocity (transcranial Doppler ultrasound, middle cerebral arteries) were obtained at rest. Each session consisted of three separate 5 min recordings. A total of four recording sessions for each subject took place over a 2 week period. A total of 117 recordings contained 34 014 cardiac cycles. For each cardiac cycle, CrCP and resistance-area product (RAP) were estimated using linear regression (LR), principal component analysis (PCA), first harmonic fitting (H1), 2-point systolic/diastolic values (2Ps) and 2-point mean/diastolic values (2Pm). LR and PCA were also applied using only the diastolic phase (LRd, PCAd). The mean values of CrCP and RAP for the entire 5 min recording ('static' condition) were not significantly different for LRd, PCAd, H1 and 2Pm, as opposed to the other methods. The same four methods provided the best results regarding the absence of negative values of CrCP and the coefficient of variation (CV) of the intra-subject standard error of the mean (SEM). On the other hand, 'dynamic' applications, such as the transfer function between mean BP and RAP (coherence and RAP step response) led to a different ranking of methods, but without significant differences in CV SEM coherence. For the CV of the RAP step response though, LRd and PCAd performed badly. These results suggest that H1 or 2Pm perform better than LR analysis and should be used for the estimation of CrCP and RAP for both static and dynamic applications

  2. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure

    International Nuclear Information System (INIS)

    Energy expenditure (EE) is an important parameter in the assessment of physical activity. Most reliable techniques for EE estimation are too impractical for deployment in unsupervised free-living environments; those which do prove practical for unsupervised use often poorly estimate EE when the subject is working to change their altitude by walking up or down stairs or inclines. This study evaluates the augmentation of a standard triaxial accelerometry waist-worn wearable sensor with a barometric pressure sensor (as a surrogate measure for altitude) to improve EE estimates, particularly when the subject is ascending or descending stairs. Using a number of features extracted from the accelerometry and barometric pressure signals, a state space model is trained for EE estimation. An activity classification algorithm is also presented, and this activity classification output is also investigated as a model input parameter when estimating EE. This EE estimation model is compared against a similar model which solely utilizes accelerometry-derived features. A protocol (comprising lying, sitting, standing, walking, walking up stairs, walking down stairs and transitioning between activities) was performed by 13 healthy volunteers (8 males and 5 females; age: 23.8 ± 3.7 years; weight: 70.5 ± 14.9 kg), whose instantaneous oxygen uptake was measured by means of an indirect calorimetry system (K4b2, COSMED, Italy). Activity classification improves from 81.65% to 90.91% when including barometric pressure information; when analyzing walking activities alone the accuracy increases from 70.23% to 98.54%. Using features derived from both accelerometry and barometry signals, combined with features relating to the activity classification in a state space model, resulted in a .VO2 estimation bias of −0.00 095 and precision (1.96SD) of 3.54 ml min−1 kg−1. Using only accelerometry features gives a relatively worse performance, with a bias of −0.09 and precision (1.96SD) of 5

  3. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  4. Estimating the impact of high-production-volume chemicals on remote ecosystems by toxic pressure calculation.

    Science.gov (United States)

    Harbers, Jasper V; Huijbregts, Mark A J; Posthuma, Leo; Van de Meent, Dik

    2006-03-01

    Although many chemicals are in use, the environmental impacts of only a few have been established, usually on per-chemical basis. Uncertainty remains about the overall impact of chemicals. This paper estimates combined toxic pressure on coastal North Sea ecosystems from 343 high-production-volume chemicals used within the catchment of rivers Rhine, Meuse, and Scheldt. Multimedia fate modeling and species sensitivity distribution-based effects estimation are applied. Calculations start from production volumes and emission rates and use physicochemical substance properties and aquatic ecotoxicity data. Parameter uncertainty is addressed by Monte Carlo simulations. Results suggest that the procedure is technically feasible. Combined toxic pressure of all 343 chemicals in coastal North Seawater is 0.025 (2.5% of the species are exposed to concentration levels above EC50 values), with a wide confidence interval of nearly 0-1. This uncertainty appears to be largely due to uncertainties in interspecies variances of aquatic toxicities and, to a lesser extent, to uncertainties in emissions and degradation rates. Due to these uncertainties, the results support gross ranking of chemicals in categories: negligible and possibly relevant contributions only. With 95% confidence, 283 of the 343 chemicals (83%) contribute negligibly (less than 0.1%) to overall toxic pressure, and only 60 (17%) need further consideration. PMID:16568772

  5. Methods for estimating fracture toughness and bounds for irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Transition temperature shift effects due to neutron radiation embrittlement for ferritic nuclear pressure vessel steels are currently evaluated using changes in the Charpy V-notch energy curve at the 30 ft-lb (41 J) energy level. Transition temperature shifts (including margins for uncertainty) are often utilized based upon Nuclear Regulatory Commission Regulatory Guide 1.99, Revision 2. The estimate (or measured) Charpy shift is then applied to a lower bound reference (IR) curve to establish plant operating pressure-temperature limits by moving the curve the same shift amount but leaving the shape of the curve unaltered. Similarly, the flaw evaluation procedures in nonmandatory Appendix A of Section XI of the ASME Boiler and Pressure Vessel Code utilize the shifts in the equivalent of the KIR curve (termed the KIA curve for crack arrest) and the lower bound static crack initiation toughness (KIC) curve. This approach has been reviewed and tested as well as a statistically-based reference toughness method for estimating tolerance bounds. Comparisons of actual, but limited, fracture toughness data and the predicted bounding curves indicate that the shifted KIR/KIC curves are conservative in all cases. The reference toughness approach for 95% - 95% tolerance bounds is not as conservative as the regulatory and ASME code method and may provide a more realistic bounding method

  6. Carbon Monoxide in the Ambient Air and Blood Pressure: Evidence From NHANES II and the SAROAD System

    OpenAIRE

    Douglas Coate; Michael Grossman

    1988-01-01

    Prior to 1985, ten states adopted some kind of indexing provisions for their personal income tax systems. Seven of these states subsequently suspended their indexing laws for one or more years. In this paper we examine the states' experience with income tax indexing and see what lessons can be drawn from it. We describe the indexing statutes, and estimate simple econometric models of both the decisions to adopt indexing and to renege on a promise to index.

  7. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20-1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03-0.3 MPa) and liquid temperature (283-333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200±200 K and pressure of about 250±20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures. PMID:23769748

  8. Multi-morphological growth of nano-structured In{sub 2}Se{sub 3} by ambient pressure triethylene glycol based solution syntheses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tongfei; Wang, Jian; Lai, Junyun; Zheng, Xuerong; Liu, Weiyan; Ji, Junna [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Liu, Hui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-10-15

    In{sub 2}Se{sub 3} nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized by a new, facile, ambient pressure triethylene glycol based solution chemical route using indium(III) chloride and selenium powder as precursors. The growing morphology, crystallization, chemical stoichiometry and light absorption property of the In{sub 2}Se{sub 3} products synthesized were characterized by TEM, HRTEM, FESEM, XRD, EDX and UV–vis–NIR measurements. Multi-morphological growth of the nano-structured In{sub 2}Se{sub 3} in triethylene glycol based solution syntheses with changed assisting agents and reaction styles was demonstrated. - Highlights: • Multimorphological growth of In{sub 2}Se{sub 3} was demonstrated based on solution chemistry. • A new, facile, low cost and fast air pressure TEG based solution process was used. • Nanoparticles, flower-like shaped and sheet-shaped nanocrystals were synthesized. • Morphology, crystallization, stoichiometry and light absorption was characterized. • Solution growth of β-In{sub 2}Se{sub 3} nanosheets was firstly reported by this submission.

  9. Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface

    Science.gov (United States)

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-01

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt2+ and Pt4+ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  10. A novel numerical model for estimating the collapse pressure of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Victor P.P.; Antoun Netto, Theodoro [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia], e-mail: victor@lts.coppe.ufrj.br

    2009-07-01

    As the worldwide oil and gas industry operational environments move to ultra-deep waters, failure mechanisms in flexible pipes such as instability of the armor layers under compression and hydrostatic collapse are more likely to occur. Therefore, it is important to develop reliable numerical tools to reproduce the failure mechanisms that may occur in flexible pipes. This work presents a representative finite element model of flexible pipe capable to reproduce its pre and post-collapse behavior under hydrostatic pressure. The model, developed in the scope of this work, uses beam elements and includes nonlinear kinematics and material behavior influences. The dependability of the numerical results is assessed in light of experimental tests on flexible pipes with 4 inches and 8 inches nominal diameter available in the literature (Souza, 2002). The applied methodology provided coherent values regarding the estimation of the collapse pressures and results have shown that the proposed model is capable to reproduce experimental results. (author)

  11. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  12. Estimation of vapor composition and vapor pressure of alcohols and hydrocarbons binary systems

    International Nuclear Information System (INIS)

    The objective of this study were to apply the coordination state theory to assosiated systems, especially to estimate vapor pressure and vapor composition of alcohols and hydrcarbons binary systems. To achieve these objectives, a computer programme in Q. basic language was used to compute vapor composition and vapor pressure of may alcohols and hydrcarbons binary systems. The systems studied were methane- methanol, methane- n-propanol, n-pentane - n-propanol, ethanol- cyclohexane, ethanol- isooctane, n-pentane - ethanol, methanol - benzene, n-propanol- benzene, ethane- ethanol and ethane- n-propanol. The calculated VLE values were compared with experimental data using standard deviation. The values calculated agree, in general, with the experimental ones. Variations were observed among certain cases where phase seperation may occur.(Author)

  13. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided

  14. Review of external ocular compression: clinical applications of the ocular pressure estimator

    Directory of Open Access Journals (Sweden)

    Korenfeld MS

    2016-02-01

    Full Text Available Michael S Korenfeld,1,2 David K Dueker3 1Comprehensive Eye Care, Ltd. Washington, MO, USA; 2Washington University Department of Ophthalmology and Visual Sciences, St Louis, MO, USA; 3Ophthalmology, Hamad Medical Corporation, Doha, Qatar Purpose: The authors have previously validated an Ocular Pressure Estimator (OPE that can estimate the intraocular pressure (IOP during external ocular compression (EOC. The authors now apply the OPE in clinical states where EOC is clinically important. The original work is described for two periods of risk: during sleep and during the digital ocular massage (DOM maneuver used by surgeons after trabeculectomy to keep the operation functional. Other periods of risk for external ocular compression are then reviewed.Methods: The first protocol estimated the IOP in the dependent eye during simulated sleep. Subjects had their IOPs initially measured in an upright-seated position, immediately upon assuming a right eye dependent side sleeping position (with nothing contacting the eye, and then 5 minutes later while still in this position. While maintaining this position, the fluid filled bladder of the OPE was then placed between the subject’s closed eye and a pillow during simulated sleep. The IOP was continuously estimated in this position for 5 minutes. The subjects then had the IOP measured in both eyes in an upright-seated position. The second protocol determined if a larger vertical cup-to-disc ratio was more common on the side that patients reported they preferred to sleep on. The hypothesis was that chronic asymmetric, compression induced, elevations of IOP during sleep would be associated with otherwise unexplained asymmetry of the vertical cup-to-disc ratio. The third protocol assessed the IOP during DOM. The OPE was used to characterize the IOP produced during the DOM maneuver of five glaucoma surgeons. After this, 90 mmHg was chosen as a target pressure for DOM. The surgeons were then verbally coached

  15. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure.

    Science.gov (United States)

    Grzybowska, Katarzyna; Capaccioli, Simone; Paluch, Marian

    2016-05-01

    In recent years, there is a growing interest in improving the physicochemical stability of amorphous pharmaceutical solids due to their very promising applications to manufacture medicines characterized by a better water solubility, and consequently by a higher dissolution rate than those of their crystalline counterparts. In this review article, we show that the molecular mobility investigated both in the supercooled liquid and glassy states is the crucial factor required to understand molecular mechanisms that govern the physical stability of amorphous drugs. We demonstrate that pharmaceuticals can be thoroughly examined by means of the broadband dielectric spectroscopy, which is a very useful experimental technique to explore different relaxation processes and crystallization kinetics as well. Such studies conducted in the wide temperature and pressure ranges provide data needed in searching correlations between properties of molecular dynamics and crystallization process, which are aimed at developing effective and efficient methods for stabilizing amorphous drugs. PMID:26705851

  16. Estimation of the hot extrusion process pressure cycle of zircaloy tubes by torsion and compression tests

    International Nuclear Information System (INIS)

    In the production of Zircaloy-4 tubes for nuclear reactors, the first semi-processed tubular form is obtained using the extrusion process. Empirical equations are normally used, which can be applied to extrusion with axial symmetry, or analytical ones are used such as Seibel's equation to evaluate the extrusion process based on the material flow tension. When we use the flow tension corresponding to the mean value of the velocity of extrusion deformation, the extrusion pressure is significantly underestimated, with relation to the experimentally measured pressure. This is because of the flow tension's heavy dependence on the velocity of deformation, which is typical of commercial zirconium alloys. Therefore, the pressure was estimated by calculating the power dissipated during the deformation assuming a velocity field of homogenous deformation in each stage of deformation but without considering friction forces between the work and the extrusion matrix. The flow tension for the torsion tests performed are compared with the results obtained by compression as reported in the literature. These results are compared with four extrusion sequences carried out with different: reduction rates, temperatures, and deformation velocities. The flow tension from the compression test presents greater tension values than those estimated by the torsion test. The origin of these differences is discussed and the conclusion is that they can be attributed to the different crystallography textures generated in both tests. Once the correction is made for the texture variation, the flow tension values evaluated with both testing types in samples of Zircaloy-4 are the same. The peculiarities of each test in relation to the extrusion process are discussed. Despite the very simplified hypotheses that were assumed, the extrusion pressures calculated with the compression and torsion flow tension results, considering their dependence on the speed of deformation and temperature variation during

  17. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation (least squares and filtering) methods

    International Nuclear Information System (INIS)

    This thesis presents a study for the surveillance of the Primary circuit water inventory of a pressurized water reactor. A reference model is developed for the development of an automatic system ensuring detection and real-time diagnostic. The methods to our application are statistical tests and adapted a pattern recognition method. The estimation of the detected anomalies is treated by the least square fit method, and by filtering. A new projected optimization method with superlinear convergence is developed in this framework, and a segmented linearization of the model is introduced, in view of a multiple filtering. 46 refs

  18. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements

    OpenAIRE

    Hao, Hua; Chang, Howard H.; Holmes, Heather A.; Mulholland, James A.; Klein, Mitch; Darrow, Lyndsey A.; Strickland, Matthew J

    2015-01-01

    Background: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. Objective: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. Methods: Birth records for singleton births ≥ 27 weeks of gestation with complete covariate informatio...

  19. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    Science.gov (United States)

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  20. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase. PMID:24985659

  1. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure.

    Science.gov (United States)

    Molla, Rostam Ali; Ghosh, Kajari; Banerjee, Biplab; Iqubal, Md Asif; Kundu, Sudipta K; Islam, Sk Manirul; Bhaumik, Asim

    2016-09-01

    Ag nanoparticles (NPs) has been supported over a porous Co(II)-salicylate metal-organic framework to yield a new nanocatalyst AgNPs/Co-MOF and it has been thoroughly characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectrometry (EDX), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (DRS) and N2 adsorption/desorption analysis. The AgNPs/Co-MOF material showed high catalytic activity in the carboxylation of terminal alkynes via CO2 fixation reaction to yield alkynyl carboxylic acids under very mild conditions. Due to the presence of highly reactive AgNPs bound at the porous MOF framework the reaction proceeded smoothly at 1atm CO2 pressure. Moreover, the catalyst is very convenient to handle and it can be reused for several reaction cycles without appreciable loss of catalytic activity in this CO2 fixation reaction, which suggested a promising future of AgNPs/Co-MOF nanocatalyst. PMID:27309859

  2. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.

    Science.gov (United States)

    Li, Yanjun; Wang, Zengli; Zhang, Lin; Yang, Xianglin; Song, Jinzhong

    2014-06-01

    The continuous and noninvasive blood pressure (BP) measurement based on pulse transit time (PTT) doesn't need cuff and could monitor BP in real time for a long period. However, PTT is just a time index derived from electrocardiogram (ECG) and photoplethysmogram (PPG), while BP-related information within the PPG waveform has seldom been taken into consideration. We hypothesized that PPG waveform feature might be useful for BP estimation. Nine healthy subjects took part in an exercise stress test, including baseline resting, exercise on bicycle ergometry and recovering resting. ECG of lead V5 and PPG from left finger were collected simultaneously, and systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded from a cuff sphygmometer on the right wrist. The correlation coefficients were obtained between BP (SBP, DBP and pulse pressure (PP)) and PPG morphological indices (total 15 indices in terms of waveform amplitude, time span and area ratio). Five PPG indices were correlated with both SBP and PP (absolute value of correlation coefficient |r| > 0.6) and were further tested for the capability to BP estimation, which were: (1) PTTA, time delay between the R peak of ECG and the foot point of PPG; (2) RSD, time ratio of systole to diastole; (3) RtArea, area ratio of systole to diastole; (4) TmBB, time span of PPG cycle; (5) TmCA, diastolic duration. Comparisons were made between the measured BP and the estimated BP by regression lines and quadratic curve fitting, respectively. As a result, the mean errors of SBP liner fitting with RSD, RtArea, TmBB and TmCA respectively were 5.5, 5.4, 5.2, 5.1 mmHg, which were smaller than that with PTTA of 5.8 mmHg. And the mean errors of SBP quadratic curve fitting with RSD, RtArea, TmBB and TmCA were all 5.1 mmHg, which were smaller than that with PTTA of 5.7 mmHg. The mean errors of multiple regression for SBP, PP and DBP was 4.7, 4.7, 3.5 mmHg respectively, which were more accurate than the regression with

  3. Estimation of sound pressure levels of voiced speech from skin vibration of the neck

    Science.gov (United States)

    Švec, Jan G.; Titze, Ingo R.; Popolo, Peter S.

    2005-03-01

    How accurately can sound pressure levels (SPLs) of speech be estimated from skin vibration of the neck? Measurements using a small accelerometer were carried out in 27 subjects (10 males and 17 females) who read Rainbow and Marvin Williams passages in soft, comfortable, and loud voice, while skin acceleration levels (SALs) and SPLs were simultaneously registered and analyzed every 30 ms. The results indicate that the mean SPL of voiced speech can be estimated with accuracy better than +/-2.8 dB in 95% of the cases when the subjects are individually calibrated. This makes the accelerometer an interesting sensor for SPL measurement of speech when microphones are problematic to use (e.g., noisy environments or in voice dosimetry). The estimates of equivalent SPL, which is the logarithm of averaged relative energy of voiced speech, were found to be up to 1.5 dB less accurate than the mean SPL. The estimation accuracy for instantaneous SPLs was worse than for the mean and equivalent SPLs (on average +/-6 and +/-5 dB for males and females, respectively). .

  4. Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals

    International Nuclear Information System (INIS)

    Monitoring the uterine contraction provides important prognostic information during pregnancy and parturition. The existing methods employed in clinical practice impose a compromise between reliability and invasiveness. A promising technique for uterine contraction monitoring is electrohysterography (EHG). The EHG signal measures the electrical activity which triggers the contraction of the uterine muscle. In this paper, a non-invasive method for intrauterine pressure (IUP) estimation by EHG signal analysis is proposed. The EHG signal is regarded as a non-stationary signal whose frequency and amplitude characteristics are related to the IUP. After acquisition in a multi-channel configuration, the EHG signal is therefore analyzed in the time–frequency domain. A first estimation of the IUP is then derived by calculation of the unnormalized first statistical moment of the frequency spectrum. The estimation accuracy is finally increased by identification of a second-order polynomial model. The proposed method is compared to root mean squared analysis and optimal linear filtering and validated by simultaneous measurement of the IUP on nine women during labor. The results suggest that the proposed EHG signal analysis provides an accurate estimate of the IUP

  5. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  6. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    Energy Technology Data Exchange (ETDEWEB)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  7. First-principles calculations of the electronic, optical and elastic properties of CdIn2S4 thiospinel at ambient and elevated pressure

    International Nuclear Information System (INIS)

    CdIn2S4 thiospinel was studied by means of first-principles calculations in both generalized gradient and local density approximations (GGA and LDA). One of the main results of this paper is that the controversy regarding the character of the CdIn2S4 band gap previously encountered in the literature was clearly resolved in favor of the indirect gap. The calculated density of states was compared with the experimental XPS spectrum; very good agreement was demonstrated. The structural, electronic, optical and elastic properties were calculated in the pressure range of 0 to 10 GPa, below the pressure of phase transition for this compound. The estimated pressure coefficient of the band gap of 0.071/0.063 eV GPa−1 (GGA/LDA) is in excellent agreement with the experimental data of 0.076 or 0.069 eV GPa−1 found in the literature. The calculated pressure dependence of the unit cell volume follows the experimental results very closely. The dependence of the interionic distances, lattice parameter and all elastic constants on pressure was calculated. Refined estimations of the Debye temperature for CdIn2S4 are given as 280 K (LDA) and 252 K (GGA). The elastic anisotropy of CdIn2S4 was visualized by plotting the three-dimensional dependence of the Young’s modulus on a direction in the crystal lattice; it was established that the lowest Young’s moduli are realized if the external stress is applied along the crystallographic axes. (papers)

  8. Sublimation characterization and vapor pressure estimation of an HIV nonnucleoside reverse transcriptase inhibitor using thermogravimetric analysis.

    Science.gov (United States)

    Xie, Minli; Ziemba, Theresa M; Maurin, Michael B

    2003-01-01

    The purpose of this research is to investigate the sublimation process of DPC 963, a second-generation nonnucleoside reverse transcriptase inhibitor for HIV-1 retrovirus, and to better understand the effect of sublimation during active pharmaceutical ingredient (API) manufacture and formulation development, especially the drying processes. Sublimation of DPC 963 at 150 degrees C and above was determined by thermogravimetric analysis-Fourier transform infrared (TGA-FTIR). The rates of sublimation at different temperatures were measured using isothermal TGA. Condensed material was collected and analyzed by differential scanning calorimetry (DSC), x-ray powder diffraction (XRPD), and infrared (IR) spectrometry. Benzoic acid was used as a reference standard to derive a linear logarithmic relationship between sublimation/evaporation rate and vapor pressure specific to the TGA system used in this study. Sublimation and evaporation of DPC 963 were found to follow apparent zero-order kinetics. Using the Eyring equation, the enthalpy and entropy of the sublimation and evaporation processes were obtained. The enthalpies of sublimation and evaporation were found to be 29 and 22 kcal/mol, respectively. The condensed material from the vapor phase was found to exist in 2 physical forms, amorphous and crystalline. Using benzoic acid as a reference standard, vapor pressure of DPC 963 at different temperatures was calculated using the linear logarithmic relationship obtained. DPC 963 undergoes sublimation at appreciable rates at 150 degrees C and above but this is not likely to pose a serious issue during the manufacturing process. Vapor pressure estimation using thermogravimetric analysis provided sufficient accuracy to be used as a fast, simple, and safe alternative to the traditional methods of vapor pressure determination. PMID:12916905

  9. In vitro estimation of pressure drop across tracheal tubes during high-frequency percussive ventilation

    International Nuclear Information System (INIS)

    Tracheal tubes (TT) are used in clinical practice to connect an artificial ventilator to the patient's airways. It is important to know the pressure used to overcome tube impedance to avoid lung injury. Although high-frequency percussive ventilation (HFPV) has been increasingly used, the mechanical behavior of TT under HFPV has not yet been described. Thus, we aimed at characterizing in vitro the pressure drop across TT (ΔPTT) by identifying the model that best fits the measured pressure–flow (P– V-dot ) relationships during HFPV under different working pressures (PWork), percussive frequencies and mechanical loads. Three simple models relating ΔPTT and flow ( V-dot ) were tested. Model 1 is characterized by linear resistive [Rtube ⋅  V-dot (t)] and inertial [I ⋅ V¨(t)] terms. Model 2 takes into consideration Rohrer's approach [K1 ⋅  V-dot (t) + K2 ⋅  V-dot 2(t)] and inertance [I ⋅ V¨(t)]. In model 3 the pressure drop caused by friction is represented by the non-linear Blasius component [Kb ⋅  V-dot 1.75(t)] and the inertial term [I ⋅ V¨(t)]. Model 1 presented a significantly higher root mean square error of approximation than models 2 and 3, which were similar. Thus, model 1 was not as accurate as the latter, possibly due to turbulence. Model 3 presented the most robust resistance-related coefficient. Estimated inertances did not vary among the models using the same tube. In conclusion, in HFPV ΔPTT can be easily calculated by the physician using model 3. (paper)

  10. Estimation of radiological source term from fuel following postulated LOCA in Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    The estimation of source term from nuclear fuel is important for various radiological impact assessments including equipment qualification. This paper presents estimation of source term for Indian pressurized heavy water reactors (PHWRs) following postulated LOCA. A methodology has been developed for assessment of source term which considers effect of plant normal operating conditions, isotopic properties, distribution of the equilibrium core inventory due to power profile and geometric distribution of fuel mass and equilibrium core conditions. The source term takes into account the gap inventory on sheath failure and transient diffusional release predicted by in-house developed computer code 'STERCOR'. The estimations are carried out for selected radio-nuclides which contribute significantly to health effects upon release due to their quantities in reactor core, half-lives and emission properties. It is predicted that at the most 7.6% and 1.1% of the half core inventory of volatiles and noble gases respectively is released from fuel following postulated LOCA in 700 MWe. (author)

  11. A Comparison of Effects of Ambient Pressure on the Atomization Performance of Soybean Oil Methyl Ester and Dimethyl Ether Sprays Comparaison des effets de la pression ambiante sur l’atomisation en “spray” de methylester d’huile de soja et de dimethyléther

    OpenAIRE

    Kim H.J.; Park S.H.; Chon M.S.; Lee C. S.

    2010-01-01

    The purpose of this study is the experimental investigation of Soybean oil Methyl Ester (SME) and DiMethyl Ether (DME) spray characteristics injected through the common-rail injection system under various ambient pressures. A high pressure chamber that can be pressurized up to 4 MPa was utilized for a change of ambient pressure. In order to compare the spray development and atomization characteristics, the images of SME and DME were obtained by using a high speed camera with two metal ha...

  12. Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik; Salmeron, Miquel

    2010-03-31

    The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.

  13. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2015-06-01

    Full Text Available Hard carbon thin films were synthesized on Si (100 and quartz substrates by the Pulsed Laser Deposition (PLD technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  14. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water + tetrahydrofuran) at ambient pressure

    International Nuclear Information System (INIS)

    Graphical abstract: The standard molar volume of tetrahydrofuran (THF) in water, VTHF∘(■), is a close-to-linear function of temperature and becomes increasingly appreciable with rising of the latter. Herewith the molar volume of pure THF, VTHF (□), is retained to be larger, as compared to VTHF∘, over all the temperature range studied. - Highlights: • Densities of aqueous THF at nine temperatures from (278.15 to 318.15) K were measured. • Temperature-dependent standard molar volumes of THF in water were calculated. • The analysis of excess standard molar volumes in the (water + THF) system was made. • The use of Redlich–Kister equation to obtain standard molar volumes is discussed. - Abstract: This report presents a comparative analysis of temperature-dependent data on density of both dilute aqueous solutions of tetrahydrofuran (THF) and dilute solutions of water in THF, as well as standard molar volumes of water or THF as a solute. For this purpose, new results on studying the volume-related properties of THF in a water-rich region at temperatures from (278.15 to 318.15) K, with a step of 5 K, and at the ambient pressure have been derived densimetrically. In discussion, some comments on previously published investigations, being related to temperature-dependent changes in the solution density and standard molar volumes of components of the system (water + THF), have been made

  15. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    Science.gov (United States)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  16. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements

    International Nuclear Information System (INIS)

    Temporal variability of parameters which describe dynamic cerebral autoregulation (CA), usually quantified by the short-term relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous adjustments in physiological regulatory mechanisms or could be the result of artefacts in methods of measurement, such as the use of non-invasive measurements of BP in the finger. In 27 subjects (61 ± 11 years old) undergoing coronary artery angioplasty, BP was continuously recorded at rest with the Finapres device and in the ascending aorta (Millar catheter, BPAO), together with bilateral transcranial Doppler ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO2. Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 (absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI (ARI(t)) were obtained with an autoregressive moving-average (ARMA) model applied to a 60 s sliding data window. No significant differences were observed in the accuracy and precision of ARI(t) between estimates derived from the Finapres and BPAO. Highly significant correlations were obtained between ARI(t) estimates from the right and left middle cerebral artery (MCA) (Finapres r = 0.60 ± 0.20; BPAO r = 0.56 ± 0.22) and also between the ARI(t) estimates from the Finapres and BPAO (right MCA r = 0.70 ± 0.22; left MCA r = 0.74 ± 0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence of noise in the CBFV signal, with both the bias and dispersion of estimates increasing for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to zero as reported previously. Simulated sudden changes in ARI(t) can be detected by the Finapres, but the bias and variability of estimates also increase for lower values of ARI. In summary, the Finapres does not distort time-varying estimates of dynamic CA obtained with a sliding window combined with an ARMA model, but

  17. Estimativa da área foliar de plantas daninhas de ambiente aquático: Pistia stratiotes Estimate of the leaf area of aquatic weeds: Pistia stratiotes

    Directory of Open Access Journals (Sweden)

    L.B. Carvalho

    2011-03-01

    Full Text Available A área foliar é uma das principais características para avaliar o crescimento vegetal. Objetivou-se neste trabalho determinar uma equação matemática para estimar a área foliar de Pistia stratiotes a partir de dimensões lineares dos limbos foliares. A pesquisa foi desenvolvida na Universidade Estadual Paulista, Jaboticabal-SP, Brasil. Cem folhas, coletadas no ambiente natural, foram eletronicamente medidas em comprimento (C, largura máxima (L e área foliar (AF. Os dados de AF e C × L foram submetidos à análise de regressão linear, determinando-se uma equação matemática para estimar a área foliar da espécie. A análise de variância sobre a regressão linear e a análise de correlação entre os valores de área foliar e estimada foram significativas (p Leaf area is a major characteristic used to evaluate plant growth. This work aimed to determine a mathematical equation to estimate the leaf area of Pistia stratiotes in function of the linear measures of the leaf blades. The experiment was carried out at São Paulo State University,in Jaboticabal-SP, Brazil. Length (L, width (W and leaf area (LA of one hundred leaves collected from a natural environment were electronically measured. LA and L × W data were submitted to linear regression analysis, determining a mathematical equation to estimate the leaf area of the species. ANOVA on linear regression and correlation analysis between the obtained and estimated leaf area values were significant (p<0.01. Leaf area of P. stratiotes may be estimated by the equation: LA = 0.79499 (LW.

  18. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  19. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  20. Ambient Sensors

    OpenAIRE

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under the GNU LGPL licence version 3 or higher.

  1. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under th

  2. Evaluation of Cylinder Volume Estimation Methods for In–Cylinder Pressure Trace Analysis

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2012-09-01

    Full Text Available In–cylinder pressure trace analysis is an important investigation tool frequently employed in the study of internal combustion engines. While technical data is usually available for experimental engines, in some cases measurements are performed on automotive engines for which only the most basic geometry features are available. Therefore, several authors aimed to determine the cylinder volume and length of the connecting rod by other methods than direct measurement. This study performs an evaluation of two such methods. The most appropriate way was found to be the estimation of connecting rod length based on general engine category as opposed to the use of an equation that predicts cylinder volume with good accuracy around top dead centre for most geometries.

  3. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation methods (least error squares and filtering)

    International Nuclear Information System (INIS)

    This thesis presents a study for the surveillance of the ''primary coolant circuit inventory monitoring'' of a pressurized water reactor. A reference model is developed in view of an automatic system ensuring detection and diagnostic in real time. The methods used for the present application are statistical tests and a method related to pattern recognition. The estimation of failures detected, difficult owing to the non-linearity of the problem, is treated by the least error squares method of the predictor or corrector type, and by filtering. It is in this frame that a new optimized method with superlinear convergence is developed, and that a segmented linearization of the model is introduced, in view of a multiple filtering

  4. Chronic mitral regurgitation and Doppler estimation of left ventricular filling pressures in patients with heart failure

    Science.gov (United States)

    Temporelli, P. L.; Scapellato, F.; Corra, U.; Eleuteri, E.; Firstenberg, M. S.; Thomas, J. D.; Giannuzzi, P.

    2001-01-01

    Previous studies relating Doppler parameters and pulmonary capillary wedge pressures (PCWP) typically exclude patients with severe mitral regurgitation (MR). We evaluated the effects of varying degrees of chronic MR on the Doppler estimation of PCWP. PCWP and mitral Doppler profiles were obtained in 88 patients (mean age 55 +/- 8 years) with severe left ventricular (LV) dysfunction (mean ejection fraction 23% +/- 5%). Patients were classified by severity of MR. Patients with severe MR had greater left atrial areas, LV end-diastolic volumes, and mean PCWPs and lower ejection fractions (each P <.01). In patients with mild MR, multiple echocardiographic parameters correlated with PCWP; however, with worsening MR, only deceleration time strongly related to PCWP. From stepwise multivariate analysis, deceleration time was the best independent predictor of PCWP overall, and it was the only predictor in patients with moderate or severe MR. Doppler-derived early mitral deceleration time reliably predicts PCWP in patients with severe LV dysfunction irrespective of degree of MR.

  5. Best-estimate methodology for analysis of anticipated transients without scram in pressurized water reactors

    International Nuclear Information System (INIS)

    Union Fenosa, a utility company in Spain, has performed research on pressurized water reactor (PWR) safety with respect to the development of a best-estimate methodology for the analysis of anticipated transients without scram (ATWS), i.e., those anticipated transients for which failure of the reactor protection system is postulated. A scientific and technical approach is adopted with respect to the ATWS phenomenon as it affects a PWR, specifically the Zorita nuclear power plant, a single-loop Westinghouse-designed PWR in Spain. In this respect, an ATWS sequence analysis methodology based on published codes that is generically applicable to any PWR is proposed, which covers all the anticipated phenomena and defines the applicable acceptance criteria. The areas contemplated are cell neutron analysis, core thermal hydraulics, and plant dynamics, which are developed, qualified, and plant dynamics, which are developed, qualified, and validated by comparison with reference calculations and measurements obtained from integral or separate-effects tests

  6. Best-estimate methodology for analysis of anticipated transients without scram in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, L. (Union Fenosa, Madrid (Spain))

    1993-07-01

    Union Fenosa, a utility company in Spain, has performed research on pressurized water reactor (PWR) safety with respect to the development of a best-estimate methodology for the analysis of anticipated transients without scram (ATWS), i.e., those anticipated transients for which failure of the reactor protection system is postulated. A scientific and technical approach is adopted with respect to the ATWS phenomenon as it affects a PWR, specifically the Zorita nuclear power plant, a single-loop Westinghouse-designed PWR in Spain. In this respect, an ATWS sequence analysis methodology based on published codes that is generically applicable to any PWR is proposed, which covers all the anticipated phenomena and defines the applicable acceptance criteria. The areas contemplated are cell neutron analysis, core thermal hydraulics, and plant dynamics, which are developed, qualified, and plant dynamics, which are developed, qualified, and validated by comparison with reference calculations and measurements obtained from integral or separate-effects tests.

  7. Ultrasonic estimation of hydride degradation of zirconium pressure tubes of RBMK fuel channel

    International Nuclear Information System (INIS)

    Fuel channels of nuclear reactors, which are major structural elements of a reactor core, have to meet strict requirements in terms of operational reliability. The middle part of the fuel channel, located in a graphite stack, is a tube made of a zirconium-2.5% niobium alloy. However, zirconium alloys can pick up hydrogen during operation as a consequence of corrosion reaction with water. Hydrogen redistributes easily at elevated temperatures migrating down a temperature or concentration gradient and up a stress gradient. When the terminal solid solubility is exceeded in a component such as a pressure tube that is highly stressed for long periods of time, delayed hydride cracking failures may occur. To estimate degradation of the zirconium alloy in the presence of hydrides, predetermined amounts of hydrogen were added to the sections of the fuel channel tubes by electrolytic deposition of a layer of hydride on the surface of the pressure tube material followed by dissolving the hydride layer by diffusion annealing at an elevated temperature. For estimation of the concentration of zirconium hydride platelets in the zirconium alloy test samples ultrasonic testing methods were proposed. The first method is based on precise measurement of velocity of longitudinal and shear wave at different directions and the second is based on the investigation of high frequency ultrasonic signals backscattered in a focal zone of an ultrasonic transducer. The experimental investigations were performed on the zirconium alloy samples of different concentration of hydrides in the immersion tank at a room temperature. The results obtained on testing samples using different excitation conditions and different types of ultrasonic waves are presented. (orig.)

  8. Computational Fluid Dynamic Pressure Drop Estimation of Flow between Parallel Plates

    International Nuclear Information System (INIS)

    Many pool type reactors have forced downward flows inside the core during normal operation; there is a chance of flow inversion when transients occur. During this phase, the flow undergo transition between turbulent and laminar regions where drastic changes take place in terms of momentum and heat transfer, and the decrease in safety margin is usually observed. Additionally, for high Prandtl number fluids such as water, an effect of the velocity profile inside the channel on the temperature distribution is more pronounced over the low Prandtl number ones. This makes the checking of its pressure drop estimation accuracy less important, assuming the code verification is complete. With an advent of powerful computer hardware, engineering applications of computational fluid dynamics (CFD) methods have become quite common these days. Especially for a fully-turbulent and single phase convective heat transfer, the predictability of the commercial codes has matured enough so that many well-known companies adopt those to accelerate a product development cycle and to realize an increased profitability. In contrast to the above, the transition models for the CFD code are still under development, and the most of the models show limited generality and prediction accuracy. Unlike the system codes, the CFD codes estimate the pressure drop from the velocity profile which is obtained by solving momentum conservation equations, and the resulting friction factor can be a representative parameter for a constant cross section channel flow. In addition, the flow inside a rectangular channel with a high span to gap ratio can be approximated by flow inside parallel plates. The computational fluid dynamics simulation on the flow between parallel plates showed reasonable prediction capability for the laminar and the turbulent regime

  9. Development and applicability estimation of the tire contact pressure measurement system; Tire secchiatsukei no kaihatsu to oyosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Y.; Amago, T.; Takahashi, T.; Sakuma, S.; Mori, N. [Toyota Central R and D Laboratories, Inc., Aichi (Japan); Nagae, A. [Toyota Motor Corp., Aichi (Japan); Yasuoka, M. [Toyo Tire and Rubber Co. Ltd., Osaka (Japan)

    1995-04-20

    A pressure sensor more reliable than the conventional types and a tire pressure measurement system using a plurality of sensors of the said reliable type have been developed. The sensor is an inverted T in shape, the upper surface of the vertical beam thereof receives the pressure, and the two ends of the horizontal beam are fixed. The load per unit area imposed on the pressure receiving surface is separated into three components, the X and Y components in the tangential direction are sensed by the vertical beam while the Z component in the vertical direction is sensed by a distortion gauge attached to the horizontal beam. For the measurement of the contact pressure distribution for the entire contact surface, a measuring device was developed, comprising a multiple point contact pressure gauge with 30 sensors of the reliable type discussed here embedded therein, a tire rolling tester, and a data processing unit. A tire wear estimation test was conducted using this pressure sensor and a contact probe type slip sensor, and it was found that a tire of a greater friction energy ratio is easier to experience abnormal abrasion and that the new pressure sensor is useful in estimating abnormal abrasion. Further, it was indicated that the present measuring device is applicable to the analysis of the mechanism wherein shaft force results from contact pressure on the soil. 3 refs., 11 figs., 3 tabs.

  10. Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures

    Science.gov (United States)

    Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.

    2000-01-01

    A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.

  11. Non-invasive method for the aortic blood pressure waveform estimation using the measured radial EBI

    International Nuclear Information System (INIS)

    The paper presents a method for the Central Aortic Pressure (CAP) waveform estimation from the measured radial Electrical Bio-Impedance (EBI). The method proposed here is a non-invasive and health-safe approach to estimate the cardiovascular system parameters, such as the Augmentation Index (AI). Reconstruction of the CAP curve from the EBI data is provided by spectral domain transfer functions (TF), found on the bases of data analysis. Clinical experiments were carried out on 30 patients in the Center of Cardiology of East-Tallinn Central Hospital during coronary angiography on patients in age of 43 to 80 years. The quality and reliability of the method was tested by comparing the evaluated augmentation indices obtained from the invasively measured CAP data and from the reconstructed curve. The correlation coefficient r = 0.89 was calculated in the range of AICAP values from 5 to 28. Comparing to the traditional tonometry based method, the developed one is more convenient to use and it allows long-term monitoring of the AI, what is not possible with tonometry probes.

  12. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  13. First pressure- and temperature estimates of the metamorphic sole of the Pinarbasi ophiolite, central Turkey

    Science.gov (United States)

    Peters, Kalijn; van Hinsbergen, Douwe; van Roermund, Herman; Brouwer, Fraukje; Drury, Martyn

    2014-05-01

    Ophiolites are interpreted as remnants of oceanic lithosphere. Many have a so-called supra-subduction zone (SSZ) geochemical signature, suggestive of formation at a spreading ridge overlying a subduction zone. Supra-subduction zone ophiolites frequently have a several-hundred-meter thick sequence of metamorphic rocks below their mantle section: the metamorphic sole. These dominantly mafic and generally heavily sheared metamorphic rocks have been shown to preserve an inverted metamorphic gradient with the highest pressures and temperatures at the top of the sole, decreasing downwards. Pressure estimates from rocks found at the top of metamorphic soles may be as much as 10-15 kbar with temperature estimates up to 875°C. The metamorphic grade varies from greenschist near the base, up to granulite facies at the top, with the bulk comprising of amphibolite facies rocks. At some locations a blueschist overprint of the amphibolite facies mineral assemblages has been described. The relative high pressures preserved in the metamorphic sole cannot simply result from overburden pressure of the currently overlying ophiolite, which is a long-standing problem. This raises the question of what process(es) can explain pressures up to 10-15 kbar in the top of metamorphic soles, in relation to the approximately synchronous formation of the SSZ oceanic lithosphere above the sole. One of the places to study the formation of SSZ ophiolites and their metamorphic soles is the Neotethyan Suture zone. Remnants of Neotethyan lithosphere are preserved as ophiolites that are discontinuously exposed from the Mediterranean region through the Himalaya to SE Asia. Supra-subduction zone ophiolites are particularly widespread in Turkey. The Pinarbaşi ophiolite is located in the SE of Central Anatolia, and overlies the Tauride fold-and-thrust belt that formed since the Late Cretaceous. It comprises mantle tectonites consisting of serpentinized harzburgite and dunite with remnants of gabbro to the

  14. Heart Instantaneous Frequency Based Estimation of HRV from Blood Pressure Waveforms

    Science.gov (United States)

    Lucena, Fausto; Barros, Allan Kardec; Takeuchi, Yoshinori; Ohnishi, Noboru

    The heart rate variability (HRV) is a measure based on the time position of the electrocardiogram (ECG) R-waves. There is a discussion whether or not we can obtain the HRV pattern from blood pressure (BP). In this paper, we propose a method for estimating HRV from a BP signal based on a HIF algorithm and carrying out experiments to compare BP as an alternative measurement of ECG to calculate HRV. Based on the hypotheses that ECG and BP have the same harmonic behavior, we model an alternative HRV signal using a nonlinear algorithm, called heart instantaneous frequency (HIF). It tracks the instantaneous frequency through a rough fundamental frequency using power spectral density (PSD). A novelty in this work is to use fundamental frequency instead of wave-peaks as a parameter to estimate and quantify beat-to-beat heart rate variability from BP waveforms. To verify how the estimate HRV signals derived from BP using HIF correlates to the standard gold measures, i.e. HRV derived from ECG, we use a traditional algorithm based on QRS detectors followed by thresholding to localize the R-wave time peak. The results show the following: 1) The spectral error caused by misestimation of time by R-peak detectors is demonstrated by an increase in high-frequency bands followed by the loss of time domain pattern. 2) The HIF was shown to be robust against noise and nuisances. 3) By using statistical methods and nonlinear analysis no difference between HIF derived from BP and HRV derived from ECG was observed.

  15. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Science.gov (United States)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg

    2016-01-01

    The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core-shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core-shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.

  16. Ambient Gestures

    OpenAIRE

    Karam, Maria; Hare, Jonathon; Lewis, Paul; schraefel, m.c.

    2006-01-01

    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be p...

  17. Non-invasive estimation of the mean pressure difference in aortic stenosis by Doppler ultrasound.

    OpenAIRE

    Teien, D; Karp, K; Eriksson, P.

    1986-01-01

    The mean pressure difference across the valve in aortic stenosis is an indicator of the severity of the obstruction to flow. Non-invasive determination of the mean pressure gradient by Doppler ultrasonography is, however, complicated by the squared relation between instantaneous velocities and pressure differences. The validity of a new simple formula for calculation of the mean pressure difference from the peak pressure difference was evaluated in 26 patients with aortic stenosis. The formul...

  18. Clinical Commentary: How to Choose Blood Pressure Goals and Treatment: Influence of Estimated Glomerular Filtration Rate and Albuminuria

    OpenAIRE

    Weir, Matthew R

    2008-01-01

    Objective measures of cardiovascular disease are often lacking until patients develop symptoms associated with either coronary, cerebral or peripheral vascular disease. Estimating risk for cardiovascular disease is often based on classic Framingham Heart Study criteria, such as age, gender, blood pressure, cholesterol, glucose levels and family history. Moreover, there is a well described continuous relationship between blood pressure, cholesterol, and glucose and risk for cardiovascular even...

  19. Estimating the future burden of cardiovascular disease and the value of lipid and blood pressure control therapies in China

    OpenAIRE

    Stevens, Warren; Peneva, Desi; Li, Jim Z; Liu, Larry Z.; Liu, Gordon; Gao, Runlin; Lakdawalla, Darius N.

    2016-01-01

    Background Lifestyle and dietary changes reflect an ongoing epidemiological transition in China, with cardiovascular disease (CVD) playing an ever-increasing role in China’s disease burden. This study assessed the burden of CVD and the potential value of lipid and blood pressure control strategies in China. Methods We estimated the likely burden of CVD between 2016 and 2030 and how expanded use of lipid lowering and blood pressure control medication would impact that burden in the next 15 yea...

  20. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  1. Experimental investigation of influence of ambient pressure on properties of laser-induced cavitation bubble collapse sound waves%环境压强对激光空泡声波特性影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    李胜勇; 王晓宇; 王江安; 宗思光; 刘涛

    2015-01-01

    The ambient pressure is one of the basic factors determining cavitation. In order to investigate the influence of ambient pressure on properties of laser-induced cavitation bubble collapse sound waves, besides analysing the influence of ambient pressure on properties of laser-induced cavitation bubble oscillation, the experimental investigation of the laser-induced cavitation bubble callapse in liquids with different ambient pressure was done with high-speed video, the cavity sound waves generated by the cavitation bubble was detected with the high-frequency hydrophone. The pressure inside the tank was accurately controlled by an air pump. The results show that the ambient pressure has obvious influence on the bubble oscillation, but has no influence on sound intensity and spectrum. The radiation frequency range is 0- 50 kHz, the radiation sound wave energy is 0- 20 kHz, and have two obvious frequency peak value at 2 kHz and 8 kHz.%环境压强是影响空泡脉动的一个重要因素。为了研究环境压强对激光空泡声波特性的影响,采用理想液体中单空泡运动的理论模型,对不同环境压强下液体中空泡运动过程进行了数值模拟,并通过充气泵精确调节高压水箱内的气压,采用高速照相机、高频测量水听器,得到了在不同压强条件下,空泡脉动特性的序列图像和声谱图,根据实验数据研究了不同环境压强下液体中激光诱导产生的空泡脉动规律与声波特性。结果表明:环境压强的改变影响了空泡生存周期和脉动的剧烈程度,但对声波的强度和声谱分布没有影响。辐射的频率集中在0~50 kHz范围内,所辐射的声波能量主要集中在0~20 kHz频段范围,并在2 kHz与8 kHz有两个明显的频率峰值。

  2. Effect of water ethanol solvents mixture on textural and gas sensing properties of tin oxide prepared using epoxide-assisted sol-gel process and dried at ambient pressure

    Science.gov (United States)

    Mahadik, D. B.; Lee, Yoon Kwang; Park, Chang-Sun; Chung, Hee-Yoon; Hong, Min-Hee; Jung, Hae-Noo-Ree; Han, Wooje; Park, Hyung-Ho

    2015-12-01

    High-surface-area tin oxide aerogels have been synthesized by an ambient-pressure drying method, using a non-alkoxide tin precursor and a hybrid sol-gel technique. The tin precursor was dissolved in different volume ratios of mixed water and ethanol solvents, and gelation was attained by means of an epoxide-initiated gelation process. The solvent in the gel was successively replaced with low-surface-tension solvents, and finally the gels were dried at ambient pressure in an oven. It was observed that solvent combinations significantly altered the textural properties of tin oxide aerogels. The solvent exchange process used prior to ambient-pressure drying helped to minimize impurities originating from the tin precursor. The tin oxide aerogels had the maximum specific surface area of 209 m2/g and small crystallite size (<6.5 nm) after an annealing treatment at 500 °C for 2 h. The sensitivity of a SnO2 sensor to CO gas was found to be strongly affected as the specific surface area of its constituent tin oxide aerogel was increased from 121 m2/g to 209 m2/g. This study offers evidence of the effects of tin oxide aerogel's specific surface area upon its gas sensing performance.

  3. Turbine airfoil with ambient cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  4. Identification of the vibrational behaviour and system parameter estimation of pressure and core vessel of the Kernkraftwerk Biblis-A

    International Nuclear Information System (INIS)

    Previous investigations of the reactor vibrations have demonstrated that the pressure vessel and its internals perform pendular motions. In this report the identification of the vibrative behaviour by use of modern estimation methods is described. Based on a double-pendulum lumped parameter model, the state vector enlarged by unknown system parameters is estimated from noisy pre-operational measurements of the PWR BIBLIS-A. For this task a Maximum-A-Posteriori (MAP) identification filter algorithm was employed. (orig.)

  5. Accurate mass fragment library for rapid analysis of pesticides on produce using ambient pressure desorption ionization with high-resolution mass spectrometry.

    Science.gov (United States)

    Kern, Sara E; Lin, Lora A; Fricke, Frederick L

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]⁺) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]⁺ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]⁺ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli

  6. Accurate Mass Fragment Library for Rapid Analysis of Pesticides on Produce Using Ambient Pressure Desorption Ionization with High-Resolution Mass Spectrometry

    Science.gov (United States)

    Kern, Sara E.; Lin, Lora A.; Fricke, Frederick L.

    2014-08-01

    U.S. food imports have been increasing steadily for decades, intensifying the need for a rapid and sensitive screening technique. A method has been developed that uses foam disks to sample the surface of incoming produce. This work provides complimentary information to the extensive amount of published pesticide fragmentation data collected using LCMS systems (Sack et al. Journal of Agricultural and Food Chemistry, 59, 6383-6411, 2011; Mol et al. Analytical and Bioanalytical Chemistry, 403, 2891-2908, 2012). The disks are directly analyzed using transmission-mode direct analysis in real time (DART) ambient pressure desorption ionization coupled to a high resolution accurate mass-mass spectrometer (HRAM-MS). In order to provide more certainty in the identification of the pesticides detected, a library of accurate mass fragments and isotopes of the protonated parent molecular ion (the [M+H]+) has been developed. The HRAM-MS is equipped with a quadrupole mass filter, providing the capability of "data-dependent" fragmentation, as opposed to "all -ion" fragmentation (where all of the ions enter a collision chamber and are fragmented at once). A temperature gradient for the DART helium stream and multiple collision energies were employed to detect and fragment 164 pesticides of varying chemical classes, sizes, and polarities. The accurate mass information of precursor ([M+H]+ ion) and fragment ions is essential in correctly identifying chemical contaminants on the surface of imported produce. Additionally, the inclusion of isotopes of the [M+H]+ in the database adds another metric to the confirmation process. The fragmentation data were collected using a Q-Exactive mass spectrometer and were added to a database used to process data collected with an Exactive mass spectrometer, an instrument that is more readily available for this screening application. The commodities investigated range from smooth-skinned produce such as apples to rougher surfaces like broccoli. The

  7. Respiratory rate estimation from the oscillometric waveform obtained from a non-invasive cuff-based blood pressure device.

    Science.gov (United States)

    Pimentel, M A F; Santos, M D; Arteta, C; Domingos, J S; Maraci, M A; Clifford, G D

    2014-01-01

    The presence of respiratory activity in the electrocardiogram (ECG), the pulse oximeter's photoplethysmo-graphic and continuous arterial blood pressure signals is a well-documented phenomenon. In this paper, we demonstrate that such information is also present in the oscillometric signal acquired from automatic non-invasive blood pressure monitors, and may be used to estimate the vital sign respiratory rate (RR). We propose a novel method that combines the information from the two respiratory-induced variations (frequency and amplitude) via frequency analysis to both estimate RR and eliminate estimations considered to be unreliable because of poor signal quality. The method was evaluated using data acquired from 40 subjects containing ECG, respiration and blood pressure waveforms, the latter acquired using an in-house built blood pressure device that is able to connect to a mobile phone. Results demonstrated a good RR estimation accuracy of our method when compared to the reference values extracted from the reference respiration waveforms (mean absolute error of 2.69 breaths/min), which is comparable to existing methods in the literature that extract RR from other physiological signals. The proposed method has been implemented in Java on the Android device for use in an mHealth platform. PMID:25570824

  8. [Non-invasive evaluation of the hemodynamic profile in patients with heart failure: estimation of right atrial pressure].

    Science.gov (United States)

    Temporelli, P L; Scapellato, F; Giannuzzi, P

    2000-10-01

    The estimation of right atrial pressure is often needed for the diagnosis, management and monitoring of various pathologic hemodynamic conditions and plays a significant role in patients with chronic heart failure. In the past decade several attempts have been made to non-invasively estimate right atrial pressure, and echocardiography has always been considered the most reliable tool. Morphologic parameters such as respiratory motion of the inferior vena cava, its respiratory diameters and percent collapse (caval index), left hepatic vein diameter or right atrial dimension (areas, volumes) were initially studied. More recently, functional data such as left hepatic or tricuspid flow variables have been considered. Some of these indexes, however, offer only semiquantitative measures of right atrial pressure, and have failed to demonstrate any prognostic value. Others, although highly sensitive and specific, are useful only in selected groups of patients because of technical or clinical limitations. In recent years, attention has focused on Doppler diastolic tricuspid flow as a means of predicting mean right atrial pressure. Analyzing the Doppler tricuspid velocity profile and mean right atrial pressure (Swan-Ganz catheter) simultaneously recorded in patients with severe left ventricular systolic dysfunction and chronic heart failure, acceleration rate of early filling emerged as the strongest independent predictor of right atrial pressure both in patients in sinus rhythm and in those with atrial fibrillation (r = 0.98), irrespective of whether the recordings are at baseline or after acute loading manipulations. PMID:11068714

  9. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  10. Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles

    Directory of Open Access Journals (Sweden)

    Guillermo A. Narsilio

    2010-03-01

    Full Text Available Given a montmorillonitic clay soil at high porosity and saturated by monovalent counterions, we investigate the particle level responses of the clay to different external loadings. As analytical solutions are not possible for complex arrangements of particles, we employ computational micromechanical models (based on the solution of the Poisson-Nernst-Planck equations using the finite element method, to estimate counterion and electrical potential distributions for particles at various angles and distances from one another. We then calculate the disjoining pressures using the Van't Hoff relation and Maxwell stress tensor. As the distance between the clay particles decreases and double-layers overlap, the concentration of counterions in the micropores among clay particles increases. This increase lowers the chemical potential of the pore fluid and creates a chemical potential gradient in the solvent that generates the socalled 'disjoining' or 'osmotic' pressure. Because of this disjoining pressure, particles do not need to contact one another in order to carry an 'effective stress'. This work may lead towards theoretical predictions of the macroscopic load deformation response of montmorillonitic soils based on micromechanical modelling of particles.Dada uma argila montmorilonítica de alta porosidade e saturada por counteríons monovalentes, investigamos as respostas da argila ao nível de partículas para diferentes cargas externas. Como soluções analíticas não são possíveis para arranjos complexos de partículas, empregamos modelos computacionais micro-mecânicos (baseados na solução das equações de Poisson-Nernst-Planck, utilizando o método de elementos finitos, para estimar counteríons e distribuições de potencial elétrico para partículas em diversos ângulos e distâncias uma da outra. Nós então calculamos as pressões de separação usando a relação de Van't Hoff e a tensão de cisalhamento de Maxwell. À medida que a

  11. Ambient intelligence

    OpenAIRE

    Sanders, David; Gegov, Alexander

    2006-01-01

    This paper considers some history and the state of the art of Ambient Intelligence and from that seeks to identify new topics and future work. Ubiquitous computing, communications, human-centric computer interaction, embedded systems, context awareness, adaptive systems and distributed device networks are considered.

  12. Ambient intelligence

    CERN Document Server

    Weber, W; Aarts, E

    2005-01-01

    Addresses ambient intelligence used to support human contacts and accompany an individual''s path through the complicated modern world, from applications that are imminent, since they use essentially existing technologies, to ambitious ideas whose realization is still far away, due to major unsolved technical challenges.

  13. Estimation of Power Production Potential from Natural Gas Pressure Reduction Stations in Pakistan Using ASPEN HYSYS

    Directory of Open Access Journals (Sweden)

    Imran Nazir Unar

    2015-07-01

    Full Text Available Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure range of 600-1000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited and SSGCL (Sui Southern Gas Company Limited. The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station. As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in throttle valves where isenthalpic expansion takes place without producing any energy. Pressure potential of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS®7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3.

  14. Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography

    OpenAIRE

    E. Schmidt; Czosnyka, M; Gooskens, I; Piechnik, S; Matta, B.; Whitfield, P; Pickard, J

    2001-01-01

    OBJECTIVE—The direct calculation of cerebral perfusion pressure (CPP) as the difference between mean arterial pressure and intracranial pressure (ICP) produces a number which does not always adequately describe conditions for brain perfusion. A non-invasive method of CPP measurement has previously been reported based on waveform analysis of blood flow velocity measured in the middle cerebral artery (MCA) by transcranial Doppler. This study describes the results of clinica...

  15. The use of ambient air quality modeling to estimate individual and population exposure for human health research: a case study of ozone in the Northern Georgia Region of the United States.

    Science.gov (United States)

    Bell, Michelle L

    2006-07-01

    Ambient monitors are commonly used to estimate exposure for epidemiological studies, and air quality modeling is infrequently applied. However air quality modeling systems have the potential to alleviate some, although not all, of the limitations of monitoring networks. To investigate this application, exposure estimates were generated for a case study high ozone episode in the Northern Georgia Region of the United States based on measurements and concentration estimates from an air quality modeling system. Hourly estimates for 2268 4-km by 4-km gridcells were generated in a domain that includes only eight ozone monitors. Individual and population-based ozone exposures were estimated using multiple approaches, including area-weighted average of modeled estimates, nearest monitor, and spatial interpolation by inverse distance weighting and kriging. Results based on concentration fields from the air quality modeling system revealed spatial heterogeneity that was obscured by approaches based on the monitoring network. With some techniques, such as spatial interpolation, monitoring data alone was insufficient to estimate exposure for certain areas, especially for rural populations. For locations far from ozone monitors, the estimates from the nearest monitor approach tended to overestimate exposure, compared to modeled estimates. Counties in which one or more monitors were present had statistically higher population density and modeled ozone estimates than did counties without monitors (p-value <0.05). This work demonstrates the use of air quality modeling to generate higher spatial and temporal resolution exposure estimates, and compares the advantages of this approach to traditional methods that use monitoring data alone. The air quality modeling method faces its own limitations, such as the need to thoroughly evaluate concentration estimates and the use of ambient levels rather than personal exposure. PMID:16516968

  16. Estimation of power production potential from natural gas pressure reduction stations in pakistan using aspen hysys

    International Nuclear Information System (INIS)

    Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure-range of 600-1 000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited) and SSGCL (Sui Southern Gas Company Limited). The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station). As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS) may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS at the rate 7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW) can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3. (author)

  17. Efeito de estresse ambiental sobre a pressão arterial de trabalhadores Effect of environmental stress on blood pressure during the working journey

    Directory of Open Access Journals (Sweden)

    Renato Rocha

    2002-10-01

    Full Text Available OBJETIVO: Analisar o comportamento de pressão arterial (PA e a freqüência cardíaca (Fc de indivíduos ao longo da jornada de trabalho em dois ambientes com estresses ambientais distintos. MÉTODOS: Foram avaliados 46 funcionários, trabalhadores de uma indústria processadora de madeira, de Botucatu, SP, sendo 27 funcionários da linha de produção (esforço físico moderado-intenso, altas temperaturas e elevados níveis de ruído (G1, e 19 da administração (sem esforço físico, salas aclimatadas, baixos níveis de ruído (G2. Todos foram submetidos a avaliação antropométrica da composição corporal (obesidade e adiposidade e bioquímica do sangue (lipidemia e, adicionalmente, o registro da PA e da Fc em três momentos do turno de serviço: início, meio e fim. RESULTADOS: Houve semelhança na variação da PA entre G1 e G2, mas com maiores elevações de PA e Fc em G1. Os resultados mostraram grande variabilidade na resposta da PA, levando à subdivisão dos grupos G1 e G2 em respondedores (GR, aumento maior de 10% na PA média e não respondedores (GN. Os subgrupos GR e GN apresentaram semelhanças nos padrões antropométrico e bioquímico diferindo apenas na resposta pressórica e no caso do GR1 na história familiar de hipertensão. Comparando os subgrupos GR1 e GR2, foi constatado que os primeiros apresentaram maiores variações de PA e Fc que os segundos. CONCLUSÕES: A variação individual da resposta pressórica e da Fc conforme o tipo de estresse ambiental indica ser este um fator adicional a ser considerado na avaliação da pressão arterial e, talvez, na gênese da hipertensão arterial de operários.OBJECTIVE: To evaluate blood pressure (BP and heart rate (HR behavior in individuals during the working journey in two environments with different work stressors. METHODS: The study comprised 46 male individuals working in a wood processing factory in Botucatu, Brazil. Twenty seven (27.4±5.4 yrs, mean±SD worked in the

  18. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    Science.gov (United States)

    Schneiders, Jan F. G.; Pröbsting, Stefan; Dwight, Richard P.; van Oudheusden, Bas W.; Scarano, Fulvio

    2016-04-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the vorticity transport equation. The vorticity field calculated from the measured instantaneous velocity is advanced over a single integration time step using the vortex-in-cell (VIC) technique to update the vorticity field, after which the temporal derivative and material derivative of velocity are evaluated. The pressure in the measurement volume is subsequently evaluated by solving a Poisson equation. The procedure is validated considering data from a turbulent boundary layer experiment, obtained with time-resolved tomographic PIV at 10 kHz, where an independent surface pressure fluctuation measurement is made by a microphone. The cross-correlation coefficient of the surface pressure fluctuations calculated by the single-snapshot pressure method with respect to the microphone measurements is calculated and compared to that obtained using time-resolved pressure-from-PIV, which is regarded as benchmark. The single-snapshot procedure returns a cross-correlation comparable to the best result obtained by time-resolved PIV, which uses a nine-point time kernel. When the kernel of the time-resolved approach is reduced to three measurements, the single-snapshot method yields approximately 30 % higher correlation. Use of the method should be cautioned when the contributions to fluctuating pressure from outside the measurement volume are significant. The study illustrates the potential for simplifying the hardware configurations (e.g. high-speed PIV or dual PIV) required to determine instantaneous pressure from tomographic PIV.

  19. Estimation of the pore pressure distribution from three dimensional groundwater flow model at mine sites in Korea

    Science.gov (United States)

    Kang, Sangsoo; Jang, Myounghwan; Kim, Gyoungman; Kim, Donghui; Kim, Daehoon; Baek, Hwanjo

    2016-04-01

    Mining activities continually change the groundwater flow and associated pore pressure distributions within the rockmass around the mine openings or the open-pit bench during the operational periods. As the pore pressure distributions may substantially affect the mechanical behaviour or stability of the rockmass, it is important to monitor the variation of pore pressure incurred by mining operation. The pore pressure distributions within the rockmass can be derived using a two- or three-dimensional finite element groundwater flow model, adopted to simulate the groundwater flow. While the groundwater inflow at mines has generally been dealt with respect to the working environment, detailed case studies on the distribution of pore water pressure related to the stability analysis of mine openings have been relatively rare in Korea. Recently, however, as the health and safety problems are emerged for sustainable mining practice, these issues are of the major concerns for the mining industries. This study aims to establish a three dimensional groundwater flow model to estimate the pore pressure distributions in order to employ as an input parameter for numerical codes such as the FLAC 3D. Also, the groundwater flow simulated can be used for de-watering design at a mine site. The MINEDW code, a groundwater flow model code specifically developed to simulate the complicated hydro-geologic conditions related to mining, has mainly been used in this study. Based on the data collected from field surveys and literature reviews, a conceptual model was established and sensitivity analysis was performed.

  20. Mechanism to synthesize a ‘moving optical mark’ at solid-ambient interface for the estimation of thermal diffusivity of solid

    Directory of Open Access Journals (Sweden)

    Settu Balachandar

    2016-01-01

    Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.

  1. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    Science.gov (United States)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  2. Exploring surface science and restructuring in reactive atmospheres of colloidally prepared bimetallic CuNi and CuCo nanoparticles on SiO2 in situ using ambient pressure X-ray photoelectron spectroscopy.

    OpenAIRE

    Beaumont, Simon K.; Alayoglu, S.; V. V. Pushkarev; Liu, Z.; Kruse, N; Somorjai, G.A.

    2013-01-01

    Bimetallic nanoparticles (11 nm diameter) of CuNi and CuCo were prepared by a new synthetic route and the 1:1 atomic ratio of their constituent elements confirmed using STEM-EDS at a single particle level. These nanoparticles, supported on the native oxide layer of a silicon wafer, were studied in situ in a series of reactive gas atmospheres (H2 → CO or CO/H2 → O2 → H2) using ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Despite the deliberate similarity of nickel and cobalt wit...

  3. Energy-saving hydraulic power source with inverter-motor drive. Pressure estimation using state variables of electric motor

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yutaka; Nakano, Kazuo (Tokyo Inst. of Tech. (Japan))

    1989-05-15

    Upon progress in electric energy-saving purpose power electronics and microprocessing, the inverter-motor drive came to give a possibility to be applied to practical use. The AC induction motor, if controlled in number of rotations by the inverter, can be easily controlled at a low cost, high efficiency and wide speed range. From the energy-saving viewpoint, a new type variable delivery hydraulic power source with an inverter-motor drive was proposed and developed. In that hydraulic power source, a fixed displacement pump is controlled in speed to the required minimum flow rate for the duty cycle of servo system. In this power system, the system pressure and pump delivery flow rate are indirectly estimated by the state variables in inverter-motor drive. The pressure estimation was experimentally confirmed in principle. Based on a programmed control system, a digital feedback control system using the estimated system pressure was developed. Both those systems were demonstrated to be able to control the hydraulic power source to meet the duty cycle of servo system. 4 refs., 12 figs.

  4. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Mester, Z.; Sturgeon, R. E.

    2011-01-01

    Roč. 66, č. 8 (2011), s. 594-603. ISSN 0584-8547 Grant ostatní: Akademie věd České republiky(CZ) M200310971 Institutional research plan: CEZ:AV0Z40310501 Keywords : ambient mass spectrometry * direct analysis in real time * dielectric barrier discharge Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.876, year: 2011

  5. Estimated Trans-Lamina Cribrosa Pressure Differences in Low-Teen and High-Teen Intraocular Pressure Normal Tension Glaucoma: The Korean National Health and Nutrition Examination Survey.

    Directory of Open Access Journals (Sweden)

    Si Hyung Lee

    Full Text Available To investigate the association between estimated trans-lamina cribrosa pressure difference (TLCPD and prevalence of normal tension glaucoma (NTG with low-teen and high-teen intraocular pressure (IOP using a population-based study design.A total of 12,743 adults (≥ 40 years of age who participated in the Korean National Health and Nutrition Examination Survey (KNHANES from 2009 to 2012 were included. Using a previously developed formula, cerebrospinal fluid pressure (CSFP in mmHg was estimated as 0.55 × body mass index (kg/m2 + 0.16 × diastolic blood pressure (mmHg-0.18 × age (years-1.91. TLCPD was calculated as IOP-CSFP. The NTG subjects were divided into two groups according to IOP level: low-teen NTG (IOP ≤ 15 mmHg and high-teen NTG (15 mmHg < IOP ≤ 21 mmHg groups. The association between TLCPD and the prevalence of NTG was assessed in the low- and high-teen IOP groups.In the normal population (n = 12,069, the weighted mean estimated CSFP was 11.69 ± 0.04 mmHg and the weighted mean TLCPD 2.31 ± 0.06 mmHg. Significantly higher TLCPD (p < 0.001; 6.48 ± 0.27 mmHg was found in the high-teen NTG compared with the normal group. On the other hand, there was no significant difference in TLCPD between normal and low-teen NTG subjects (p = 0.395; 2.31 ± 0.06 vs. 2.11 ± 0.24 mmHg. Multivariate logistic regression analysis revealed that TLCPD was significantly associated with the prevalence of NTG in the high-teen IOP group (p = 0.006; OR: 1.09; 95% CI: 1.02, 1.15, but not the low-teen IOP group (p = 0.636. Instead, the presence of hypertension was significantly associated with the prevalence of NTG in the low-teen IOP group (p < 0.001; OR: 1.65; 95% CI: 1.26, 2.16.TLCPD was significantly associated with the prevalence of NTG in high-teen IOP subjects, but not low-teen IOP subjects, in whom hypertension may be more closely associated. This study suggests that the underlying mechanisms may differ between low-teen and high-teen NTG patients.

  6. Estimation of Pressure Index and Temperature Sensitivity Coefficient of Solid Rocket Propellants by Static Evaluation

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar

    2009-11-01

    Full Text Available Burning rate of a solid rocket propellant depends on pressure and temperature. Conventional strand burner and Crawford bomb test on propellant strands was conducted to assess these dependent parameters. However, behaviour of propellant in rocket motor is different from its behaviour in strand form. To overcome this anomaly, data from static evaluation of rocket motor was directly used for assessment of these burningrate controlling parameters. The conventional empirical power law (r=aoexp[p{T-To}]Pn was considered and a method was evolved for determination of pressure index (n and temperature sensitivity coefficient (p of burning rate for solid rocket propellants from static evaluation data. Effect of pressure index and temperature sensitivity coefficient on firing curve is also depicted. Propellant grain was fired in progressive mode to cover a very wide pressure range of 50 kg/cm2 to 250 kg/cm2 and propellant burning rate index was calculated to be 0.32 in the given pressure range. Propellant grain was fired at +35 °C and –20 °C temperatures and temperature sensitivity coefficient of burning rate was calculated to be 0.27 % per °C. Since both the values were evaluated from realised static evaluation curves, these are more realistic and accurate compared to data generated by conventional methods.Defence Science Journal, 2009, 59(6, pp.666-669, DOI:http://dx.doi.org/10.14429/dsj.59.1573

  7. Ambient intelligence

    CERN Document Server

    Basten, Twan; de Groot, Harmke

    2007-01-01

    ""This book is truly an eye-opener as it is the first book that relates the dream scenarios of Ambient Intelligence quantitatively to the technical challenges and requirements of the huge distributed and interoperable embedded systems needed to implement AmI systems in the real world. This book is strongly recommended to a wide spectrum of engineers interested to embark in this rapidly emerging and fascinating technology."" (From the foreword by Hugo De Man, Professor K.U. Leuven and Senior Research Fellow IMEC)

  8. Safety estimation of high-pressure hydraulic cylinder using FSI method

    Institute of Scientific and Technical Information of China (English)

    KIM J.H.; HAN S.M.; KIM Y.J.

    2016-01-01

    Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI (fluid-struc-ture interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.

  9. Estimates of crystalline LiF thermal conductivity at high temperature and pressure by a Green-Kubo method

    Science.gov (United States)

    Jones, R. E.; Ward, D. K.

    2016-07-01

    Given the unique optical properties of LiF, it is often used as an observation window in high-temperature and -pressure experiments; hence, estimates of its transmission properties are necessary to interpret observations. Since direct measurements of the thermal conductivity of LiF at the appropriate conditions are difficult, we resort to molecular simulation methods. Using an empirical potential validated against ab initio phonon density of states, we estimate the thermal conductivity of LiF at high temperatures (1000-4000 K) and pressures (100-400 GPa) with the Green-Kubo method. We also compare these estimates to those derived directly from ab initio data. To ascertain the correct phase of LiF at these extreme conditions, we calculate the (relative) phase stability of the B1 and B2 structures using a quasiharmonic ab initio model of the free energy. We also estimate the thermal conductivity of LiF in an uniaxial loading state that emulates initial stages of compression in high-stress ramp loading experiments and show the degree of anisotropy induced in the conductivity due to deformation.

  10. Inaccuracy of doppler echocardiographic estimates of pulmonary artery pressures in adult atrial septal defect patients with pulmonary arterial hypertension

    Institute of Scientific and Technical Information of China (English)

    Zhang Caojin; Huang Tao; Huang Xinsheng; Huang Yigao; Chen Jimei; Chen Jiyan; Wu Shulin

    2014-01-01

    Background While echocardiography has been a pivotal screening test in pulmonary arterial hypertension (PAH),the presence of structural cardiac defects may affect the ability to reliably predict pulmonary artery pressures (PAPs).This study sought to evaluate the accuracy of Doppler echocardiography (DE) for estimating PAPs in adult atrial septal defect (ASD) patients with PAH.Methods A prospective study was carried out to compare the echocardiographic assessment of PAP with the same pressures obtained by right heart catheterization (RHC) in adult ASD patients with PAH who underwent simultaneous DE and RHC.Bland-Altman analyses were performed to evaluate the agreement between DE and RHC measurements of PAPs.Results Two hundred and fifty-seven patients were included in the study.A significant overestimation of the systolic pulmonary arterial pressure (sPAP) and mean pulmonary artery pressure (mPAP) was reported by echocardiography compared with those by catheterization ((81.8±26.9) mmHg vs.(72.9±26.9) mmHg,P <0.01; (51.9±16.4) mmHg vs.(41.4±17.2) mmHg,P <0.01,respectively).Twenty-one percent (55/257) of the patients had PAH when estimated by echocardiography whereas showed normal results in the subsequent catheterization test.Using Bland-Altman analytic methods,the bias for the echocardiographic assessment of the sPAP was 9.1 mmHg with 95% limits of agreement ranging from-24.4 to 42.6 mmHg.For mPAP measurement,the bias was 10.5 mmHg with 95% limits of agreement ranging from-12.4 to 33.4 mmHg.On multiple linear regression analysis,age,gender,body surface area,ASDs' diameter,PVR,diastolic blood pressure,and echocardiographic assessment of right atrial pressure (RAP) explained 68.8% of the total variability in the model (r2=0.688,P <0.01).Conclusion Inaccuracy was frequently reported in Doppler echocardiographic assessment of the PAP in adult ASD patients with PAH and was often associated with age,gender,body surface area,ASDs' diameter

  11. Estimation of cerebral vascular tone during exercise; evaluation by critical closing pressure in humans

    DEFF Research Database (Denmark)

    Ogoh, Shigehiko; Brothers, R Matthew; Jeschke, Monica;

    2010-01-01

    . In addition, the increases in CCP were related to the increases in plasma noradrenaline concentrations (right, P = 0.001; left, P = 0.025) and decreases in the partial pressure of arterial carbon dioxide (right, P = 0.008; left, P = 0.086), but not to changes in mean arterial pressure (right, P = 0.......282; left, P = 0.564) or adrenaline concentrations (right, P = 0.138; left, P = 0.108). We consider that an exercise-induced increase in cerebral vascular tone serves to protect the blood-brain barrier from the exercise-induced hypertension....

  12. Thermal diffusivity estimation of the olive oil during its high-pressure treatment

    Czech Academy of Sciences Publication Activity Database

    Kubásek, M.; Houška, M.; Landfeld, A.; Strohalm, J.; Kamarád, Jiří; Žitný, R.

    2006-01-01

    Roč. 74, - (2006), s. 286-291. ISSN 0260-8774 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z10100521 Keywords : olive oil * food processing * high pressure * thermal diffusivity Subject RIV: GM - Food Processing Impact factor: 1.696, year: 2006

  13. A Green's Function Approach to PIV Pressure Estimates with an Application to Micro Energy Harvesters in Turbulent and Vortical Flows

    Science.gov (United States)

    Goushcha, Oleg

    layer flow, PPE solution was used to estimate pressure fluctuations that are present in the turbulent boundary layer. A simple cantilever harvester is then placed inside the boundary layer. The beam is placed inside the boundary layer at various distances from the wall (y/delta~0-1.5) and at various orientations with respect to the free stream flow angle of attack beta=0o°- -- 180°) for free stream flows 2--11 m/s. Power maps are presented showing the power harvested for various heights and orientations of the harvester. In a self-excited harvester experiment, a harvester with a cylindrical tip mass attached is placed in a uniform cross flow. The PPE solution is used to estimate the strength of pressure inside vortices that are shed off the cylinder forcing it into oscillation. In another experiment to characterize the performance of harvesters inside turbulent flows several simple-cantilever harvesters were placed downstream of passive, semi-passive or an active grid. Passive grid consists of square rods spanning the width and the height of the wind tunnel, semi passive grid is similar to passive but has threaded balls attached to the grid in order to increase turbulence intensity. Active grid has flaps attached to the rods that actively control the closing and opening of sections of the flow thus dramatically increasing turbulence intensity. It is shown that as long as the motion of the harvester actuator does not affect the flow field locally, the power produced to the harvester is proportional to the turbulent kinetic energy of the flow locally.

  14. Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease.

    Science.gov (United States)

    Pogue, Velvie; Rahman, Mahboob; Lipkowitz, Michael; Toto, Robert; Miller, Edgar; Faulkner, Marquetta; Rostand, Stephen; Hiremath, Leena; Sika, Mohammed; Kendrick, Cynthia; Hu, Bo; Greene, Tom; Appel, Lawrence; Phillips, Robert A

    2009-01-01

    Ambulatory blood pressure (ABP) monitoring provides unique information about day-night patterns of blood pressure (BP). The objectives of this article were to describe ABP patterns in African Americans with hypertensive kidney disease, to examine the joint distribution of clinic BP and ABP, and to determine associations of hypertensive target organ damage with clinic BP and ABP. This study is a cross-sectional analysis of baseline data from the African American Study of Kidney Disease Cohort Study. Masked hypertension was defined by elevated daytime (>or= 135/85 mm Hg) or elevated nighttime (>or= 120/70 mm Hg) ABP in those with controlled clinic BP (disease, in large part because of increased nighttime BP. Whether lowering nighttime BP improves clinical outcomes is unknown but should be tested given the substantial burden of BP-related morbidity in this population. PMID:19047584

  15. Numerical spatial marching techniques for estimating duct attenuation and source pressure profiles

    Science.gov (United States)

    Baumeister, K. J.

    1978-01-01

    A numerical method is developed that could predict the pressure distribution of a ducted source from far-field pressure inputs. Using an initial value formulation, the two-dimensional homogeneous Helmholtz wave equation (no steady flow) is solved using explicit marching techniques. The Von Neumann method is used to develop relationships which describe how sound frequency and grid spacing effect numerical stability. At the present time, stability considerations limit the approach to high frequency sound. Sample calculations for both hard and soft wall ducts compare favorably to known boundary value solutions. In addition, assuming that reflections in the duct are small, this initial value approach is successfully used to determine the attenuation of a straight soft wall duct. Compared to conventional finite difference or finite element boundary value approaches, the numerical marching technique is orders of magnitude shorter in computation time and required computer storage and can be easily employed in problems involving high frequency sound.

  16. Development of loose part signal location estimating technique in high pressured structure

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Ill Keun; Choi, Jae Won; Kim, Yong Up; Kim, Taek Hwan; Song, Young Joong [Hannam University, Taejon (Korea, Republic of)

    1997-07-01

    The main purpose of this project is to develop the metallic loose parts monitoring and diagnosis technology. This will contribute to the development of the domestic technology, and, at the some time, to the development of related domestic industries. This study has been performed as 3-year-project,= to provide to basic requirements in developing the integrated and intelligent loose part monitoring and diagnosis system for Reactor Pressure Vessel (RPV). The results from this project is expected to be applied to the development of the integrated and intelligent loose part monitoring and diagnosis system which can be used to analyze the main cause of the malfunctioning of the system under the worst circumstance - high temperature, high pressure and high speed of the flow of reactor coolant, with the efficient software package that could classify the characteristics of the metallic loose parts occurred inside the RPV of the nuclear steam supply system. (Author) 39 refs., 7 tabs., 74 figs.

  17. Stochastic Modelling and Estimation for Cyclic Pressure Variations in Spark Ignition Engines

    Science.gov (United States)

    Roberts, J. B.; Peyton Jones, J. C.; Landsborough, K. J.

    2001-03-01

    A new method of fitting linearised, parametric stochastic models of cycle-by-cycle variations of pressure, during the combustion region of a spark ignition petrol engine, is described. The technique is based on stochastically fitting the combustion models to the covariance function of the measured pressure fluctuations, obtained by averaging over the entire ensemble of measured cycles. Comparisons, for two specific combustion models, with corresponding results obtained by deterministic fitting on a cycle-by-cycle basis, show that the new method gives a similar degree of fit, but with much improved computational efficiency. It is also demonstrated that the degree of fit to the data can be further improved by modelling the residual error between the data and the combustion models in terms of Chebyshev polynomials: the parameters in these polynomials may be determined by stochastic fitting. The technique has wider applications in the condition monitoring of rotating machinery.

  18. Evaluation of Cylinder Volume Estimation Methods for In–Cylinder Pressure Trace Analysis

    OpenAIRE

    Adrian Irimescu

    2012-01-01

    In–cylinder pressure trace analysis is an important investigation tool frequently employed in the study of internal combustion engines. While technical data is usually available for experimental engines, in some cases measurements are performed on automotive engines for which only the most basic geometry features are available. Therefore, several authors aimed to determine the cylinder volume and length of the connecting rod by other methods than direct measurement. This stu...

  19. Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers

    OpenAIRE

    Thibeau, S.; Bachu, S.; Birkholzer, J.; Holloway, S.; Neele, F.P.; Zou, Q.

    2014-01-01

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation ...

  20. Estimating effect of terlipressin on portal pressure in cirrhosis by observing hepatic vein doppler waveform

    International Nuclear Information System (INIS)

    Objective: To observe the changes in doppler waveform of hepatic vein after the administration of terlipressin, and to assess indirectly the efficacy of the drug to reduce the Hepatic Vein Pressure Gradient and portal pressure. Methods: The quasi-experimental study was conducted at the Jinnah Postgraduate Medical Centre, Karachi, from April 1 to November 25, 2011, and comprised 50 patients with cirrhosis with abnormal doppler waveform of the hepatic vein. Patients with diseases causing abnormal hepatic vein doppler waveform were excluded. Doppler waveforms were studied for 20 minutes before and for 20 minutes after the administration of terlipressin. Tracings with best waveform before and after injection were saved for analysis. Changes in waveform after vasoactive drug were defined as mild, significant, marked and gross changes. SPSS 10 was used for statistical analysis. Results: Of the 50 patients, 36 (72%) were males and 14 (28%) females. Commonest waveform was monophasic 38(76%). Gross changes i.e. turning triphasic from monophasic waveform was observed in 8 (16%) patients. Significant gross changes were seen in 24 (48%) patients. Total number of patients showing improvement in waveform was 36 (72%). In no case, waveform deteriorated after the administration of terlipressin (p= 0.001). Conclusion: Non-invasive method of observing the improvement of hepatic vein waveform by duplex ultrasound, after more studies, may be an important tool for assessing and monitoring the effects of portal pressure lowering drugs. (author)

  1. ESTIMATES OF THE ERROR OF EXPERIMENTAL DATA AT STUDIES OF DENSITY AND THE SATURATED VAPOR PRESSURE (SVP PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-10-01

    Full Text Available At calculations, we have used the next assumptions: 1. Not excluded systematic errors distributed with equal probability; 2. Random errors are normally distributed; 3. Total error is the composition of not excluded systematic and random errors. In calculating of measurement error of pressure, we proceeded from working formula. The confidence interval of each variable less than instrumental error, therefore, to characterize the total error of the measured value P, we use the instrumental errors of all variables. In estimating of temperature measurement error was consider the systematic and random error. To estimate random error we used measurement data of the specific volume of water on six isotherms. Obtained values were compared with published data. As an approximate estimate of the random error of our experimental data, we can take it as a total for all the isotherms of the specific volume in comparison with the published data. For studied fractions confidence limit of total error of measurement results located in the range of 0,03 ч 0,1%. At temperatures close to the critical increasing influence of errors of reference and the error associated with the introduction of corrections on the thermal expansion of the piezometer. In the two-phase area confidence limit of total error increases and located between 0,08 ч 0,15%. This is due to the sharp increase in this area of reference error of pressure and error in determining to the weight of the substance in the piezometer

  2. Cuffless Blood Pressure Estimation with Photoplethysmograph Signal by Classifying on Account of Cardiovascular Characteristics of Old Aged Patients

    Science.gov (United States)

    Suzuki, Satomi; Oguri, Koji

    Blood Pressure (BP) is a very important factor for monitoring the cardiovascular condition. In general, non-invasive BP measurements need a cuff. However, such measurement techniques can hardly monitor BP continuously. Recently it has gotten easier to measure biological signals daily because sensor technologies have well-developed, and because of availability of many kinds of miniaturized measurement instruments consuming less power. This study suggests a method of estimating Systolic Blood Pressure (SBP) with a wearable sensor instead of a cuff. In particular, our study depends on only one pulse wave signal detected by a Photoplethysmograph (PPG) sensor since the PPG sensor is very small. Moreover, the human subject just wears the sensor on the surface of the body to measure the signal. Cardiovascular peculiarities keep changing as people get older. Additionally, the peculiarities vary among individuals according to the advanced rate of arteriosclerosis. Hence, it is necessary for estimating the SBP to divide the data into several classes, by parameters that relate to individual cardiovascular peculiarities. In this study, the regression equation of SBP was calculated from individual information and from features of the PPG signal in each class. As a result, the estimation accuracy was improved. This technique would make cuffless SBP monitoring become more convenient and helpful as only one device is required for monitoring, which is smaller than traditional measurements.

  3. Estimation of Right Atrial Pressure from the Inspiratory Collapse of the Inferior Vena cava in Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Gholamhossein Ajami

    2010-06-01

    Full Text Available Objective: Paucity of data exists between mean right atrial pressure (RAP and inferior vena cava (IVC size and collapsibility in pediatric patients with congenital heart disease.Methods: In a prospective study, fifty consecutive pediatric patients with different congenital heart diseases who had right side cardiac catheterization were studied, comparing right atrial pressure with simultaneous M-mode echocardiographic measurement of inferior vena cava diameter. Mean age of the patients was 4.96±4.05 years (30 male and 20 female. Patients were categorized into two groups according to their right atrial pressure (RAP as measured by cardiac catheterization: Group 1 (40 patients were those with mean RAP 8 mmHg when IVC diameter in inspiration was >3.6 (sensitivity of 100%, specificity of 47.5%, +LR=1.9 or if IVC diameter was >6mm in expiration (sensitivity of 70%, specificity of 87%, +LR=4.67.Conclusion: This study showed that measurement of IVC size in inspiration and expiration can be used as a reliable method for estimation of mean right atrial pressure.

  4. Estimation of Right Atrial Pressure from the Inspiratory Collapse of the Inferior Vena Cava in Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Hamid Amoozgar

    2010-06-01

    Full Text Available Objective:Paucity of data exists between mean right atrial pressure (RAP and inferior vena cava (IVC size and collapsibility in pediatric patients with congenital heart disease.Methods:In a prospective study, fifty consecutive pediatric patients with different congenital heart diseases who had right side cardiac catheterization were studied, comparing right atrial pressure with simultaneous M-mode echocardiographic measurement of inferior vena cava diameter. Mean age of the patients was 4.96�4.05 years (30 male and 20 female. Patients were categorized into two groups according to their right atrial pressure (RAP as measured by cardiac catheterization: Group 1 (40 patients were those with mean RAP 8 mmHg when IVC diameter in inspiration was >3.6 (sensitivity of 100%, specificity of 47.5%, +LR=1.9 or if IVC diameter was >6mm in expiration (sensitivity of 70%, specificity of 87%, +LR=4.67.Conclusion:This study showed that measurement of IVC size in inspiration and expiration can be used as a reliable method for estimation of mean right atrial pressure.

  5. Impact of long-term storage at ambient temperatures on the total quality and stability of high-pressure processed tomato juice

    OpenAIRE

    Jayathunge, K. G. L. R.; Grant, Irene R.; Linton, Mark; Patterson, Margaret F.; Koidis, Anastasios

    2015-01-01

    High-pressure processing (HPP) can produce tomato juice of high quality and safety with a short shelf life under refrigeration temperatures. Long-term higher temperature storage studies are rare and temperature tolerant products are challenging to develop. The effect of high-pressure processing (HPP) on the total quality (colour, microbial counts, phytochemical levels, antioxidant and enzymatic activities) and stability (retention over time) of tomato juice during long-term storage was invest...

  6. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  7. ESTIMATING A ROTATION'S SELECTION PRESSURE FOR WEEDS, BASED ON JOINTED GOATGRASS DEMOGRAPHICS

    Science.gov (United States)

    Rotations are rapidly changing in the Great Plains because of no-till systems. In place of winter wheat-fallow, producers are seeking rotations comprised of a diversity of crops. To help producers plan alternative rotations, we developed an empirical simulation model that estimated the impact of v...

  8. Non-invasive estimation and control of inlet pressure in an implantable rotary blood pump for heart failure patients.

    Science.gov (United States)

    Alomari, A H; Savkin, A V; Ayre, P J; Lim, E; Mason, D G; Salamonsen, R F; Fraser, J F; Lovell, N H

    2011-08-01

    We propose a dynamical model for mean inlet pressure estimation in an implantable rotary blood pump during the diastolic period. Non-invasive measurements of pump impeller rotational speed (ω), motor power (P), and pulse width modulation signal acquired from the pump controller were used as inputs to the model. The model was validated over a wide range of speed ramp studies, including (i) healthy (C1), variations in (ii) heart contractility (C2); (iii) afterload (C2, C3, C4), and (iv) preload (C5, C6, C7). Linear regression analysis between estimated and extracted mean inlet pressure obtained from in vivo animal data (greyhound dogs, N = 3) resulted in a highly significant correlation coefficients (R(2) = 0.957, 0.961, 0.958, 0.963, 0.940, 0.946, and 0.959) and mean absolute errors of (e = 1.604, 2.688, 3.667, 3.990, 2.791, 3.215, and 3.225 mmHg) during C1, C2, C3, C4, C5, C6, and C7, respectively. The proposed model was also used to design a controller to regulate mean diastolic pump inlet pressure using non-invasively measured ω and P. In the presence of model uncertainty, the controller was able to track and settle to the desired input within a finite number of sampling periods and minimal error (0.92 mmHg). The model developed herein will play a crucial role in developing a robust control system of the pump that detects and thus avoids undesired pumping states by regulating the inlet pressure within a predefined physiologically realistic limit. PMID:21666292

  9. Non-invasive estimation and control of inlet pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    We propose a dynamical model for mean inlet pressure estimation in an implantable rotary blood pump during the diastolic period. Non-invasive measurements of pump impeller rotational speed (ω), motor power (P), and pulse width modulation signal acquired from the pump controller were used as inputs to the model. The model was validated over a wide range of speed ramp studies, including (i) healthy (C1), variations in (ii) heart contractility (C2); (iii) afterload (C2, C3, C4), and (iv) preload (C5, C6, C7). Linear regression analysis between estimated and extracted mean inlet pressure obtained from in vivo animal data (greyhound dogs, N = 3) resulted in a highly significant correlation coefficients (R2 = 0.957, 0.961, 0.958, 0.963, 0.940, 0.946, and 0.959) and mean absolute errors of (e = 1.604, 2.688, 3.667, 3.990, 2.791, 3.215, and 3.225 mmHg) during C1, C2, C3, C4, C5, C6, and C7, respectively. The proposed model was also used to design a controller to regulate mean diastolic pump inlet pressure using non-invasively measured ω and P. In the presence of model uncertainty, the controller was able to track and settle to the desired input within a finite number of sampling periods and minimal error (0.92 mmHg). The model developed herein will play a crucial role in developing a robust control system of the pump that detects and thus avoids undesired pumping states by regulating the inlet pressure within a predefined physiologically realistic limit

  10. Muscle activation and estimated relative joint force during running with weight support on a lower-body positive pressure treadmill

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Hovgaard-Hansen, Line; Cappelen, Katrine Louise

    2016-01-01

    Running on a lower-body positive pressure (LBPP) treadmill allows effects of weight support on leg muscle activation to be assessed systematically, and has the potential to facilitate rehabilitation and prevent overloading. The aim was to study the effect of running with weight support on leg......, while activity of biceps femoris muscle remained unchanged. Unweighting with LBPP reduced estimated joint force significantly although less than proportional to the degree of weight support (ankle). It was concluded that leg muscle activation adapted to the new biomechanical environment, and the effect...... muscle activation and to estimate relative knee and ankle joint forces. Runners performed 6-min running sessions at 2.22 m/s and 3.33 m/s, at 100, 80, 60, 40 and 20% body-weight (BW). Surface EMG, ground reaction force and running characteristics were measured. Relative knee and ankle joint forces were...

  11. Estimation of lower-bound KJc on pressure vessel steels from invalid data

    International Nuclear Information System (INIS)

    Statistical methods are currently being introduced into the transition temperature characterization of ferritic steels. Objective is to replace imprecise correlations between empirical impact test methods and universal KIc or KIa lower-bound curves with direct use of material-specific fracture mechanics data. This paper introduces a computational procedure that couples order statistics, weakest-link statistical theory, and a constraint model to arrive at estimates of lower-bound KJc values. All of the above concepts have been used before to meet various objectives. In the present case, scheme is to make a best estimate of lower-bound fracture toughness when resource KJc data are too few to use conventional statistical analyses. Utility of the procedure is of greatest value in the middle-to-high toughness part of the transition range where specimen constraint loss and elevated lower-bound toughness interfere with conventional statistical analysis methods

  12. Understanding the need of ventricular pressure for the estimation of diastolic biomarkers

    OpenAIRE

    Xi, Jiahe; Shi, Wenzhe; Rueckert, Daniel; Razavi, Reza; Smith, Nicolas P.; Lamata De La Orden, Pablo

    2014-01-01

    The diastolic function (i.e., blood filling) of the left ventricle (LV) is determined by its capacity for relaxation, or the decay in residual active tension (AT) generated during systole, and its constitutive material properties, or myocardial stiffness. The clinical determination of these two factors (diastolic residual AT and stiffness) is thus essential for assessing LV diastolic function. To quantify these two factors, in our previous work, a novel model-based parameter estimation approa...

  13. Efeito de estresse ambiental sobre a pressão arterial de trabalhadores Effect of environmental stress on blood pressure during the working journey

    OpenAIRE

    Renato Rocha; Marcelo Porto; Monica Yara Gabriel Morelli; Nailza Maestá; Paulo Henrique Waib; Roberto Carlos Burini

    2002-01-01

    OBJETIVO: Analisar o comportamento de pressão arterial (PA) e a freqüência cardíaca (Fc) de indivíduos ao longo da jornada de trabalho em dois ambientes com estresses ambientais distintos. MÉTODOS: Foram avaliados 46 funcionários, trabalhadores de uma indústria processadora de madeira, de Botucatu, SP, sendo 27 funcionários da linha de produção (esforço físico moderado-intenso, altas temperaturas e elevados níveis de ruído) (G1), e 19 da administração (sem esforço físico, salas aclimatadas, b...

  14. A probabilistic approach for estimating water permeability in pressure-driven membranes.

    Science.gov (United States)

    Boateng, Linkel K; Madarshahian, Ramin; Yoon, Yeomin; Caicedo, Juan M; Flora, Joseph R V

    2016-08-01

    A probabilistic approach is proposed to estimate water permeability in a cellulose triacetate (CTA) membrane. Water transport across the membrane is simulated in reverse osmosis mode by means of non-equilibrium molecular dynamics (MD) simulations. Different membrane configurations obtained by an annealing MD simulation are considered and simulation results are analyzed by using a hierarchical Bayesian model to obtain the permeability of the different membranes. The estimated membrane permeability is used to predict full-scale water flux by means of a process-level Monte Carlo simulation. Based on the results, the parameters of the model are observed to converge within 5-ns total simulation time. The results also indicate that the use of unique structural configurations in MD simulations is essential to capture realistic membrane properties at the molecular scale. Furthermore, the predicted full-scale water flux based on the estimated permeability is within the same order of magnitude of bench-scale experimental measurement of 1.72×10(-5) m/s. PMID:27444876

  15. An estimation of core damage frequency of a pressurized water reactor during mid-loop operation

    International Nuclear Information System (INIS)

    The core damage frequency during mid-loop operation of a Westinghouse designed 3-loop Pressurizer Water Reactor (PWR) due to loss of Residual Heat Removal (RHR) events was assessed. The assessment considers two types of outages (refueling and drained maintenance), and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events was identified and human error probabilities were quantified using HCR and THERP model. The result showed that the core damage frequency due to loss of RHR events during mid-loop operation is 3.1x10-5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering mid-loop operation. The establishment of reflux cooling, i.e. decay heat removal through steam generator secondary side also plays important role in mitigating the loss of RHR events. (author)

  16. Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an Izbash's law-based empirical model

    Science.gov (United States)

    Chen, Yi-Feng; Hu, Shao-Hua; Hu, Ran; Zhou, Chuang-Bing

    2015-04-01

    High-pressure packer test (HPPT) is an enhanced constant head packer test for characterizing the permeability of fractured rocks under high-pressure groundwater flow conditions. The interpretation of the HPPT data, however, remains difficult due to the transition of flow conditions in the conducting structures and the hydraulic fracturing-induced permeability enhancement in the tested rocks. In this study, a number of HPPTs were performed in the sedimentary and intrusive rocks located at 450 m depth in central Hainan Island. The obtained Q-P curves were divided into a laminar flow phase (I), a non-Darcy flow phase (II), and a hydraulic fracturing phase (III). The critical Reynolds number for the deviation of flow from linearity into phase II was 25-66. The flow of phase III occurred in sparsely to moderately fractured rocks, and was absent at the test intervals of perfect or poor intactness. The threshold fluid pressure between phases II and III was correlated with RQD and the confining stress. An Izbash's law-based analytical model was employed to calculate the hydraulic conductivity of the tested rocks in different flow conditions. It was demonstrated that the estimated hydraulic conductivity values in phases I and II are basically the same, and are weakly dependent on the injection fluid pressure, but it becomes strongly pressure dependent as a result of hydraulic fracturing in phase III. The hydraulic conductivity at different test intervals of a borehole is remarkably enhanced at highly fractured zone or contact zone, but within a rock unit of weak heterogeneity, it decreases with the increase of depth.

  17. Estimativa da área foliar de plantas daninhas de ambiente aquático: Pistia stratiotes Estimate of the leaf area of aquatic weeds: Pistia stratiotes

    OpenAIRE

    L.B. Carvalho; M. C. SOUZA; M.S. Bianco; Bianco, S

    2011-01-01

    A área foliar é uma das principais características para avaliar o crescimento vegetal. Objetivou-se neste trabalho determinar uma equação matemática para estimar a área foliar de Pistia stratiotes a partir de dimensões lineares dos limbos foliares. A pesquisa foi desenvolvida na Universidade Estadual Paulista, Jaboticabal-SP, Brasil. Cem folhas, coletadas no ambiente natural, foram eletronicamente medidas em comprimento (C), largura máxima (L) e área foliar (AF). Os dados de AF e C × L foram ...

  18. Modelamiento del Ambiente Térmico y Aéreo de un Galpón de Presión Negativa Tipo Túnel para Pollitos / Modeling of the Thermal Environments in Shed Negative Pressure Tunnel Type of Chicks

    Directory of Open Access Journals (Sweden)

    Robinson Osorio Hernández

    2013-12-01

    Full Text Available La optimización de los procesos productivos tiene granimportancia en el mundo actual debido al continuo desarrollo y avance. Con la finalidad de evaluar el desempeño productivo en el sector avícola, se hace necesaria la adecuación del ambiente interno de las instalaciones avícolas con técnicas que atiendan las exigencias de confort térmico con mayor eficiencia energética. En este trabajo, se evaluó el ambiente térmico interno de un galpón de presión negativa tipo túnel durante la primera fase de crecimiento de pollos de engorde. La evaluación de comportamiento térmico en este período fue realizada utilizando la dinámica de fluidos computacionales (CFD. El modelo computacional demostró ser una herramienta eficaz para el entendimiento y mejora de diseños bioclimáticos de ambientes internos de galpones avícolas. / The optimization of production processes hasgreat importance in the world due to the development andadvancement. In order to evaluate the productive performance in poultry production, it becomes necessary the indoor environmental adequacy of the poultry buildings by technologies that attend the requirements of thermal comfort with major energy efficiency. This study evaluated the thermal environment of a domestic shed of negative pressure tunnel type, during the first growth phase of broilers. The evaluation of the thermal behavior model during this period was made using the computational fluid dynamics (CFD. The computational model proved to be an effective tool forunderstanding and improving of bioclimatic designs of indoorenvironments to create this kind of sheds.

  19. Estimation of Nonconservative Aerodynamic Pressure Leading to Flutter of Spinning Disks

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Raman, A; Mote Jr., C.D.

    2001-01-01

    An experimental method for predicting the onset of #utter of a disk spinning in a #uid medium is proposed. The method is based on a description of the aerodynamic loading on the disk as a distributed viscous damping force rotating relative to the disk. This model can arise from two aeroelastic...... theories described herein. It is shown analytically and experimentally that the few parameters of this model may be extracted from frequency response functions of the spinning disk. Parameters for a steel disk in air (with a near vacuum experiment as reference) are estimated at increasing rotation speeds...

  20. Estimation of dynamic properties of attractors observed in hollow copper electrode atmospheric pressure arc plasma system

    Indian Academy of Sciences (India)

    S Ghorul; S N Sahasrabudhe; P S S Murthy; A K Das; N Venkatramani

    2002-07-01

    Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.

  1. A RETROSPECTIVE STUDY OF THE IMPACT OF MEAN ARTERIAL PRESSURE ON ESTIMATED BLOOD LOSS DURING ENDOSCOPIC SINUS SURGERY

    Directory of Open Access Journals (Sweden)

    George W Williams

    2014-10-01

    Full Text Available The current practice of lowering mean arterial pressure (MAP during endoscopic sinus surgery (ESS is common, but unproven with regard to peer reviewed literature. The controlled hypotension induced is aimed for improved surgical field and lower the blood loss. Lower mean arterial pressures especially for prolonged surgeries may result in end organ hypoperfusion. The authors reviewed all patients who underwent outpatient endoscopic sinus surgery for the diagnosis of chronic sinusitis from January 1, 2012 to December 31, 2012 at Memorial Hermann Hospital – Texas Medical Centre. We individually reviewed case sheets of every patient and documented blood loss as recorded on the anaesthesia record or in the surgical procedure note, among other variables. A total of 326 patients were included in this study. The median estimated blood loss (EBL was found to be 50 ml. The multivariate regression analysis between these three groups showed that EBL was higher in MAP 75 group. The average of EBL in MAP75 group and the average of EBL in MAP 65-70 group is 42% higher than that in MAP>75 group when other variables were fixed. Hence we found the trend toward higher blood loss with lower MAP. The authors conclude that lower MAP does not result in lower EBL in endoscopic sinus surgery. Furthermore, increases in BMI and crystalloid administered during an aesthetic management of these cases correlates with increased estimate blood loss.

  2. Effect of Coexistent Hydrogen on the Selective Production of Ethane by Dehydrogenative Methane Coupling through Dielectric-Barrier Discharge under Ordinary Pressure at an Ambient Temperature

    OpenAIRE

    Katsuya Konno; Kaoru Onoe; Yasuyuki Takiguchi; Tatsuaki Yamaguchi

    2014-01-01

    The effect of coexistence of hydrogen on the product selectivity to ethane from methane by dielectric-barrier discharge (DBD) reactor was examined experimentally under ordinary pressure without use of catalyst and external heating. By the dilution of methane with hydrogen, both the increase of methane conversion and the decrease of alkene production were observed, improving the selectivities to ethane by ca. 70%.

  3. The estimation of a unique solution for steady-state diffuse optical tomography by applying mechanical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Mohammad Ali, E-mail: m_ansari@sbu.ac.ir; Mohajerani, Ezeddin

    2014-08-14

    The accuracy of diffuse optical tomography (DOT) highly depends on two important factors: first, the knowledge of the tissue optical heterogeneities for accurate modeling of light propagation, and second, the uniqueness of reconstructed values of optical properties. Previous studies illustrated that the inverse problem associated with steady-state DOT does not have unique solutions. In this study, we propose a simple method that can be applied to improve this challenging problem of steady-state DOT. In this method, we study the propagation of photons through compressed breast phantoms. The applied mechanical pressure can change the values of optical properties and this pressure dependence of optical properties as a set of constraint equations can be used to improve the inverse problem. The applied pressure can help us to restrict the distribution of possible values of depth and radius of defect inside breast phantom reconstructed by inverse problem. - Highlights: • An approach to estimate the unique solution for steady-state diffuse optical tomography. • Generate a number of constraint equation for solving the regularized inverse problem. • The efficiency of this method is experimentally tested.

  4. Effects of living at two ambient temperatures on 24-h blood pressure and neuroendocrine function among obese and non-obese humans: a pilot study

    Science.gov (United States)

    Kanikowska, Dominika; Sato, Maki; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko; Sugenoya, Junichi

    2013-05-01

    The effects of environmental temperature on blood pressure and hormones in obese subjects in Japan were compared in two seasons: summer vs winter. Five obese (BMI, 32 ± 5 kg/m2) and five non-obese (BMI, 23 ±3 kg/m2) men participated in this experiment at latitude 35°10' N and longitude 136°57.9' E. The average environmental temperature was 29 ± 1 °C in summer and 3 ± 1 °C in winter. Blood samples were analyzed for leptin, ghrelin, catecholamines, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), total cholesterol, triglycerides, insulin and glucose. Blood pressure was measured over the course of 24 h in summer and winter. A Japanese version of the Profile of Mood States (POMS) questionnaire was also administered each season. Systolic and diastolic blood pressures in obese men were significantly higher in winter (lower environmental temperatures) than in summer (higher environmental temperatures). Noradrenaline and dopamine concentrations were also significantly higher at lower environmental temperatures in obese subjects, but ghrelin, TSH, fT3, fT4, insulin and glucose were not significantly different in summer and winter between obese and non-obese subjects. Leptin, total cholesterol and triglyceride concentrations were significantly higher in winter in obese than non-obese men. Results from the POMS questionnaire showed a significant rise in Confusion at lower environmental temperatures (winter) in obese subjects. In this pilot study, increased blood pressure may have been due to increased secretion of noradrenaline in obese men in winter, and the results suggest that blood pressure control in obese men is particularly important in winter.

  5. Yield loss prediction models based on early estimation of weed pressure

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Andreasen, Christian

    2013-01-01

    Weed control thresholds have been used to reduce costs and avoid unacceptable yield loss. Estimation of weed infestation has often been based on counts of weed plants per unit area or measurement of their relative leaf area index. Various linear, hyperbolic, and sigmoidal regression models have...... been proposed to predict yield loss, relative to yield in weed free environment from early measurements of weed infestation. The models are integrated in some weed management advisory systems. Generally, the recommendations from the advisory systems are applied to the whole field, but weed control...... thresholds are more relevant for site-specific weed management, because weeds are unevenly distributed in fields. Precision of prediction of yield loss is influenced by various factors such as locations, yield potential at the site, variation in competitive ability of mix stands of weed species and emergence...

  6. Estimation of impact pressure due to rupture in beam-tube for research reactor

    International Nuclear Information System (INIS)

    Neutrons have been used for studies in material sciences of physics, chemistry, metals and alloys, ceramics, polymers, and biological sciences. This application leads to build up research reactor all over the world. JRTR (Jordan Research and Training Reactor) which plans to build up in Jordan is multipurpose research reactor which is developed entirely with domestic technology to overseas. Thermal power is 5MW upgradable 10MW. JRTR have four horizontal beam tubes, 3 ST(Standard) and 1NR (Neutron radiography). The beam tube's cavities are filled with helium, purged regularly to prevent a build-up of radioactive gases and moisture. They are highly reliable because they have no moving parts. The beam tube embedded part is aligned with its corresponding beam tube in the reflector. Objective of this study is to describe water hammer phenomenon in beam tube and determine an impact pressure charged in end film of beam tube for accomplishing nuclear safety function of research reactor while beam tube is ruptured due to some accident such as earthquake. The water hammer was experimentally and analytically studied by Lai, Saruba, Ballanco, and Watters

  7. Effect of Coexistent Hydrogen on the Selective Production of Ethane by Dehydrogenative Methane Coupling through Dielectric-Barrier Discharge under Ordinary Pressure at an Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Katsuya Konno

    2014-01-01

    Full Text Available The effect of coexistence of hydrogen on the product selectivity to ethane from methane by dielectric-barrier discharge (DBD reactor was examined experimentally under ordinary pressure without use of catalyst and external heating. By the dilution of methane with hydrogen, both the increase of methane conversion and the decrease of alkene production were observed, improving the selectivities to ethane by ca. 70%.

  8. Application of the extended Kalman filtering for the estimation of core coolant flow rate in pressurized water reactors

    International Nuclear Information System (INIS)

    In-core neutron detector and core-exit temperature signals in a pressurized water reactor (PWR) satisfy the condition of observability of the core dynamic system, and can be used to estimate nonmeasurable state variables and model parameters. The extension of the Kalman filtering technique is very useful for direct parameter estimation. This approach is applied to the determination of core coolant mass flow rate in PWRs and is evaluated using in-core measurements at the Loss-of-Fluid Test (LOFT) reactor. The influence of model uncertainties on the estimation accuracy was studied using the ambiguity function analysis. A sequential discretization method was developed to achieve faster convergence to the true value, avoiding model discretization at each sample point. The performance of the extended Kalman filter and the computational innovations were evaluated using a reduced order core dynamic model of the LOFT reactor and random data simulation. The technique was then applied to the determination of LOFT core coolant flow rate from operational data at 100% and 65% flow conditions

  9. Estimation of residual stresses in reactor pressure vessel steel specimens clad by stainless steel strip electrodes

    International Nuclear Information System (INIS)

    The equations to determine a two-dimensional state of residual stress in flat laminated plates are well known from an earlier work by one of the authors. The derivation of these equations leads to a linear, inhomogeneous system of Volterra's integral equations of the second kind. To ascertain the unknown residual stresses from these equations it is necessary to cut down the thickness of the test plate layer by layer. This results in two-dimensional deformation reactions in the rest of the test plate, which can be measured, e.g. by a strain gauge rosette applied to the opposite side of the plate. The above-mentioned stress analysis has been transferred to 86mm thick reactor pressure vessel steel specimens (Type 22NiMoCr 37, DIN-No. 1.6751, similar to ASTM A508, Class 2) double-run clad by austenitic stainless steel strip electrodes (first layer 24/13 Cr-Ni steel, second layer 21/10 Cr-Ni steel). The overall dimensions of the clad specimens investigated amounted to 200 x 200 x (86+4.5+4.5)mm. At the surface of the austenitic cladding there is a two-dimensional tensile normal stress state of about 200N/mm2 parallel, and about 300N/mm2 transverse, to the welding direction. The maximum tensile stress was 8mm below the interface (fusion line, material transition) in the parent material. The stress distributions of the specimens investigated, determined on the basis of the above-mentioned combined experimental mathematical procedure, are presented graphically for the as-welded (as-delivered) and annealed (6000C/12hr) conditions. (author)

  10. Systolic blood pressure of dogs at hospital and domestic environment Pressão arterial sistólica de cães nos ambientes hospitalar e doméstico

    Directory of Open Access Journals (Sweden)

    Frederico Aécio Carvalho Soares

    2012-07-01

    Full Text Available The measurement of blood pressure (BP is an important assessment of the cardiovascular system, being influenced by physical and pathological conditions. Certain situations of stress and anxiety during BP measurement can lead to elevated values in small animals, known in medicine as "white coat effect". The aim of this research was to compare systolic blood pressure (SBP measurement using Doppler ultrasonography in 45 adult healthy dogs in two environments, at a veterinary hospital and at home. Comparison of heart rate, serum concentrations of cortisol and glucose intended to help the evaluation of the stress level of the animals. The mean of SBP at the veterinary hospital was 154.7mmHg and it was significantly (PA medida da pressão arterial constitui uma importante avaliação do sistema cardiovascular, sendo influenciada por condições físicas e patológicas. Situações de estresse e ansiedade no momento da aferição podem causar valores de pressão sanguínea elevados, o que é conhecido na medicina humana como "efeito jaleco branco". O objetivo deste trabalho foi comparar os valores da pressão arterial sistólica (PAS pelo método Doppler em 45 cães em dois ambientes, o doméstico e o hospitalar. Além disso, foram comparadas as frequências cardíacas e concentrações séricas de glicose e cortisol nos dois ambientes, com o objetivo de auxiliar a avaliação o nível de estresse dos animais. A média de PAS observada no hospital foi de 154,7mmHg e foi significativamente superior que a observada em casa (136,3mmHg. Também foi observado que os valores de FC (média=122,7bpm e concentrações séricas de cortisol (mediana=4,5µg dL-1 e glicose (média=95,9mg dL-1 foram superiores (P<0,01 no ambiente hospitalar, quando comparados com os valores obtidos no lar dos animais (109,6bpm; 1,5µg dL-1 e 85,5mg dL-1, respectivamente. Assim, condições ambientais podem influenciar a PAS em cães, devido a fatores relacionados ao estresse.

  11. The impact of rock and fluid uncertainties in the estimation of saturation and pressure from a 4D petro elastic inversion

    Science.gov (United States)

    Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J.; UNICAMP

    2015-08-01

    The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data.

  12. Injection of CO2 at Ambient Temperature Conditions – Pressure and Temperature Results of the “cold injection” Experiment at the Ketzin Pilot Site

    OpenAIRE

    F. Moeller; A. Liebscher; S. Martens; Cornelia Schmidt-Hattenberger; M. Streibel

    2014-01-01

    From June 2008 to August 2013, slightly more than 67 kt of CO2 were injected at the Ketzin pilot site (Brandenburg, Germany). The CO2 reservoir is a saline aquifer at a depth of 630 – 650 m with initial pressure and temperature conditions of about 33 °C/62 bar. These reservoir conditions are near the critical point of pure CO2 (31.0 °C/73.8 bar) and the CO2 liquid-vapour equilibrium. In order to avoid phase transitions and near-critical phenomena throughout the injection process the CO2, whic...

  13. Injection of CO2 at ambient temperature level – Pressure/temperature results of the “cold injection” experiment from the Ketzin pilot site

    OpenAIRE

    F. Moeller; A. Liebscher; S. Martens; Cornelia Schmidt-Hattenberger; M. Streibel

    2014-01-01

    From June 2008 to August 2013, slightly more than 67 kt of CO2 were injected at the Ketzin pilot site (Brandenburg, Germany). The CO2 reservoir is a saline aquifer at a depth of 630 – 650 m with initial pressure and temperature conditions of about 33 °C/62 bar. These reservoir conditions are near the critical point of pure CO2 (31.0 °C/73.8 bar) and the CO2 liquid-vapour equilibrium. In order to avoid phase transitions and near-critical phenomena throughout the injection process the CO2, whic...

  14. Estimation of pulmonary wedge pressure by transmitral Doppler in patients with chronic heart failure and atrial fibrillation.

    Science.gov (United States)

    Temporelli, P L; Scapellato, F; Corrà, U; Eleuteri, E; Imparato, A; Giannuzzi, P

    1999-03-01

    Previous studies have demonstrated that left ventricular (LV) filling pressures can be estimated from transmitral Doppler recording in patients in sinus rhythm who have a broad spectrum of cardiac diseases. However, the correlation between pulmonary wedge pressure (PWP) and mitral Doppler profile has not yet been clearly defined in patients with atrial fibrillation, particularly in the presence of severe LV systolic dysfunction. The aim of this study was to evaluate the correlations between PWP and transmitral Doppler variables in patients with atrial fibrillation and chronic heart failure due to dilated cardiomyopathy. PWP and the mitral Doppler profile were simultaneously recorded in 35 consecutive heart failure patients (28 men, 7 women; mean age, 69 +/- 9 years) with severe LV dysfunction (mean ejection fraction 22% +/- 5%). Doppler measurements were averaged over 10 cardiac cycles. In addition, left atrial areas were derived from the apical 4-chamber view. Significant relations were observed between PWP and several parameters derived from the mitral flow: isovolumic relaxation time (r = -70), acceleration rate (r = 0.78), deceleration rate (r = 0.82), and deceleration time (r = -0.95). However, by stepwise multivariate analysis, deceleration time emerged as the sole independent predictor of PWP (r2 = 0.95, F = 590). The analysis led to the following equation: PWP = 51 - 0.26 (deceleration time). Our data suggest that mitral Doppler echocardiography is a useful tool for predicting PWP in heart failure patients with severe LV dysfunction even in the presence of atrial fibrillation. PMID:10080426

  15. Precise estimation of pressure-temperature paths from zoned minerals using Markov random field modeling: theory and synthetic inversion

    Science.gov (United States)

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Toriumi, Mitsuhiro

    2012-03-01

    The chemical zoning profile in metamorphic minerals is often used to deduce the pressure-temperature ( P- T) history of rock. However, it remains difficult to restore detailed paths from zoned minerals because thermobarometric evaluation of metamorphic conditions involves several uncertainties, including measurement errors and geological noise. We propose a new stochastic framework for estimating precise P- T paths from a chemical zoning structure using the Markov random field (MRF) model, which is a type of Bayesian stochastic method that is often applied to image analysis. The continuity of pressure and temperature during mineral growth is incorporated by Gaussian Markov chains as prior probabilities in order to apply the MRF model to the P- T path inversion. The most probable P- T path can be obtained by maximizing the posterior probability of the sequential set of P and T given the observed compositions of zoned minerals. Synthetic P- T inversion tests were conducted in order to investigate the effectiveness and validity of the proposed model from zoned Mg-Fe-Ca garnet in the divariant KNCFMASH system. In the present study, the steepest descent method was implemented in order to maximize the posterior probability using the Markov chain Monte Carlo algorithm. The proposed method successfully reproduced the detailed shape of the synthetic P- T path by eliminating appropriately the statistical compositional noises without operator's subjectivity and prior knowledge. It was also used to simultaneously evaluate the uncertainty of pressure, temperature, and mineral compositions for all measurement points. The MRF method may have potential to deal with several geological uncertainties, which cause cumbersome systematic errors, by its Bayesian approach and flexible formalism, so that it comprises potentially powerful tools for various inverse problems in petrology.

  16. Emissions estimates based on ambient N2O concentrations measured at a 200m high tower in the Netherlands 1995-1997

    International Nuclear Information System (INIS)

    In the period 1995 to 1997 the N2O concentration in ambient air at 200 m height was measured at the 200 m tower in Cabauw in the center of the Netherlands. These measurements were carried out simultaneously with CO2 and CH4 measurements. In this paper the time series for the different trace gas species are compared for the year 1995. This comparison shows the different nature of N2O as compared to the two more abundant trace gases, methane (CH4) and carbon dioxide (CO2). The diffuse character of the main N2O source in our region, the agricultural soils, in combination with the relatively poor resolution of the measurements as compared to the resolution of the CO2 and CH4 data, makes a detailed evaluation of the emissions impossible. Alternatively a simple calculation is proposed to evaluate the N2O emission for a region up to about 200 km upwind of the measurement location. This calculation uses the sudden increase in concentration that is observed after the break-up of a nocturnal inversion layer. The results of 26 nights show an emission level of 31 ±13 kton N/year. This level is lower compared to the emission level of 47.4 kton N/year that is reported for 1996 for the Netherlands using bottom up inventories. 4 refs

  17. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.

    Science.gov (United States)

    Ding, Xiao-Rong; Zhang, Yuan-Ting

    2015-01-01

    The most commonly used method for cuffless blood pressure (BP) measurement is using pulse transit time (PTT), which is based on Moens-Korteweg (M-K) equation underlying the assumption that arterial geometries such as the arterial diameter keep unchanged. However, the arterial diameter is dynamic which varies over the cardiac cycle, and it is regulated through the contraction or relaxation of the vascular smooth muscle innervated primarily by the sympathetic nervous system. This may be one of the main reasons that impair the BP estimation accuracy. In this paper, we propose a novel indicator, the photoplethysmogram (PPG) intensity ratio (PIR), to evaluate the arterial diameter change. The deep breathing (DB) maneuver and Valsalva maneuver (VM) were performed on five healthy subjects for assessing parasympathetic and sympathetic nervous activities, respectively. Heart rate (HR), PTT, PIR and BP were measured from the simultaneously recorded electrocardiogram (ECG), PPG, and continuous BP. It was found that PIR increased significantly from inspiration to expiration during DB, whilst BP dipped correspondingly. Nevertheless, PIR changed positively with BP during VM. In addition, the spectral analysis revealed that the dominant frequency component of PIR, HR and SBP, shifted significantly from high frequency (HF) to low frequency (LF), but not obvious in that of PTT. These results demonstrated that PIR can be potentially used to evaluate the smooth muscle tone which modulates arterial BP in the LF range. The PTT-based BP measurement that take into account the PIR could therefore improve its estimation accuracy. PMID:26736283

  18. Cycle studies: material balance estimation in the domain of pressurized water and boiling water reactors. Experimental qualification

    International Nuclear Information System (INIS)

    This study is concerned with the physics of the fuel cycle the aim being to develop and make recommendations concerning schemes for calculating the neutronics of light water reactor fuel cycles. A preliminary study carried out using the old fuel cycle calculation scheme APOLLO1- KAFKA and the library SERMA79 has shown that for the compositions of totally dissolved assemblies from Pressurized Water Reactors (type 17*17) and also for the first time, for Boiling Water Reactor assemblies (type 8*8), the differences between calculation and measurement are large and must be reduced. The integration of the APOLLO2 neutronics code into the fuel cycle calculation scheme improves the results because it can model the situation more precisely. A comparison between APOLLO1 and APOLLO2 using the same options, demonstrated the consistency of the two methods for PWR and BWR geometries. Following this comparison, we developed an optimised scheme for PWR applications using the library CEA86 and the code APOLLO2. Depending on whether the information required is the detailed distribution of the composition of the irradiated fuel or the average composition (estimation of the total material balance of the fuel assembly), the physics options recommended are different. We show that the use of APOLLO2 and the library CEA86 improves the results and especially the estimation of the Pu239 content. Concerning the Boiling Water Reactor, we have highlighted the need to treat several axial sections of the fuel assembly (variation of the void-fraction, heterogeneity of composition). A scheme using Sn transport theory, permits one to obtain a better coherence between the consumption of U235, the production of plutonium and burnup, and a better estimation of the material balance. (author)

  19. Relationship between brain atrophy estimated by a longitudinal computed tomography study and blood pressure control in patients with essential hypertension

    International Nuclear Information System (INIS)

    To evaluate the relationship between blood pressure control and the progression of brain atrophy in the elderly, patients with essential hypertension and brain atrophy were longitudinally evaluated using computerized tomography (CT). The study evaluated 48 patients with essential hypertension aged 46-78 years, and 30 sex- and age-matched normotensive control subjects. The extent of brain atrophy as determined by caudate head index (CHI), the inverse cella media index (iCMI), and Evans' ratio (ER) was estimated twice at an interval of 5-9 years (mean, 6.9 years). The mean annual increases in CHI (ΔCHI), iCMI (ΔiCMI), and ER (ΔER) were evaluated. Mean blood volume in the common carotid artery (BF) and the decrease in BF per year (ΔBF) were also determined. The ΔCHI, ΔiCMI, and ΔER increased with age in the hypertensive subjects as well as the control group across all age groups evaluated. The ΔCHI, ΔiCMI, and ΔER were significantly greater in the patients with essential hypertension in their 50s as compared with the controls. In patients with essential hypertension aged 65 years or older, the ΔCHI, ΔiCMI, and ΔER were significantly lower in the group in whom the blood pressure was controlled within the range of borderline hypertension than the groups in which it was controlled in the range of normal or mild hypertension. In the younger patients under the age of 65 with essential hypertension, blood pressure control did not affect the ΔCHI, ΔiCMI, and ΔER. The ΔCHI, ΔiCMI, and ΔER were significantly correlated with ΔBF in both groups. These findings indicate that control of systolic blood pressure within the range of borderline hypertension may delay the progression of brain atrophy in elderly patients with essential hypertension. (author)

  20. Estimates of site response based on spectral ratio between horizontal and vertical components of ambient vibrations in the source zone of 2001 Bhuj earthquake

    Science.gov (United States)

    Natarajan, Thulasiraman; Rajendran, Kusala

    2015-02-01

    We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our H/V curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f0) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low H/V peak amplitudes (A0 = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the H/V method to study complex geological settings as Kachchh.

  1. Measurement of Anterior-Posterior Diameter of Inferior Vena Cava by Ultrasonography: A Non-Invasive Method for Estimation of Central Venous Pressure

    OpenAIRE

    R Nafisi-Moghadam; Mansourian, H.R

    2007-01-01

    Background and Objective: The assessment of blood volume is now one of the most commonly needed interventions in the first line of care and severe ill patients. Measuring central venous pressure (CVP) is an invasive method, most frequently used in clinical practice for the assessment of volume status. The di-ameter of the inferior vena cava (IVC) is a parameter to estimate central venous pressure. The purpose of this study was to determine whether measurement of the anterior-posterior diamete...

  2. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  3. Determination and environmental estimation of NORMs in marine sediment environment of offshore platforms; Determinacao e avaliacao ambiental de NORMs em sedimento marinho entorno de plataformas offshore

    Energy Technology Data Exchange (ETDEWEB)

    Vegueria, Sergio F. Jerez, E-mail: sfjerez@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Departamento de Quimica Analitica; Godoy, Jose M., E-mail: rccampos@puc-rio.br, E-mail: jmgodoy@puc-rio.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The natural radioactive materials (NORM known as) are found in the earth's crust, and during the process of production of oil and gas are concentrated in the produced water and the fouling (scale) pipes used for extraction. The production of oil and gas from produced water comes, comprising: forming water (water naturally present in the well ); injection water , usually sea water previously injected into the well to maintaining the pressure while the oil is removed; and water condensed in some cases of gas production. A high radioactivity of {sup 226}Ra (natural grade of {sup 238}U) and {sup 228}Ra (from the natural series of {sup 232}Th) is detected in produced water due to the high solubility of radio in formation water as uranium and thorium, which are insoluble in this medium, remain the rock matrix. The study was conducted in the area of offshore oil production in the state of Rio de January and included the determination of uranium, {sup 226}Ra, {sup 210}Pb and {sup 228}Ra in marine sediment near the points of discharge of produced water from oil platforms. After the pre-treatment and digestion of samples, the determination of the natural uranium was performed on a mass spectrometer with inductively coupled plasma (ICP -MS). The activities of {sup 226}Ra and {sup 228}Ra were determined by high resolution gamma spectrometry through {sup 214}Bi and {sup 228}Ac , respectively. And in the case of {sup 210}Pb, a correction was made for self-absorption employing an external source of this radionuclide. The results showed that there is no impact in sediments in the vicinity of the studied platforms.

  4. Estimated aortic blood pressure based on radial artery tonometry underestimates directly measured aortic blood pressure in patients with advancing chronic kidney disease staging and increasing arterial stiffness

    DEFF Research Database (Denmark)

    Carlsen, Rasmus K; Peters, Christian D; Khatir, Dinah S;

    2016-01-01

    /min/1.73 m(2)) and 41 controls without renal disease undergoing scheduled coronary angiography. BP in the ascending aorta was measured through the angiography catheter and simultaneously estimated using radial tonometry. The mean difference between estimated central and aortic SBP was -13.2 (95...

  5. Estimation of selected heavy metals and arsenic in PM10 aerosols in the ambient air of the Greater Athens Area, Greece

    International Nuclear Information System (INIS)

    Aerosol samples of PM10 were collected during summer and winter 2003 at two different sites in the Messogia Basin northeast of Athens, to demonstrate the variations of heavy metals in PM10 and examine their relationship with both gaseous pollutants and meteorological parameters. Estimated heavy metals during the experimental campaign were mercury (Hg), cadmium (Cd), lead (Pb), nickel (Ni) and arsenic (As). The average heavy metal concentrations for the first site (Spata) constituted 0.66-14.7 ng/m3 for the summer period and 0.14-19.5 ng/m3 for the winter period. At the second site (Koropi), the corresponding values varied between 0.89 and 13.3 ng/m3 and 0.16 and 24.7 ng/m3, respectively. PM10 Hg, PM10 Cd and PM10 Ni contents showed regular daily variations, with higher mass percentages during the summer, indicating differences in local PM10 sources for each season. On the contrary, PM10 Pb presented higher mass percentages during the winter. Examination of the relationship between heavy metals and meteorological parameters indicated a higher correlation with temperature and relative humidity, especially for Pb. In addition, most of the heavy metals (apart from Hg) presented an expected correlation with nitrate oxides (NO x), PM10 and ozone (O3). Higher correlations with both meteorological parameters and gaseous pollutants were observed during the winter experimental campaign. Maximum heavy metal concentrations at both sites were observed during days with NE or NNE prevailing winds during the summer campaign, while the winter period was characterized with maximums during days with W or WNW prevailing winds

  6. Psicologia do Ambiente

    OpenAIRE

    Antunes, Dalila; Bernardo, Fátima; Palma-Oliveira, José-Manuel

    2011-01-01

    Na aplicação da Psicologia à área do AMBIENTE importa em primeiro lugar definir o que se entende, neste contexto, por ambiente. O conceito é entendido como toda a envolvente que rodeia o ser humano. Referimo-nos pois ao espaço físico e aos estímulos que nele existem (som, ar, paisagem…), dirigindo-se a Psicologia do Ambiente ao estudo e intervenção sobre a forma como o ambiente influencia o indivíduo ou grupos, e sobre o modo como o comportamento dos indivíduos e grupos influenciam o ambiente...

  7. Estimates of black carbon and size-resolved particle number emission factors from residential wood burning based on ambient monitoring and model simulations.

    Science.gov (United States)

    Olivares, Gustavo; Ström, Johan; Johansson, Christer; Gidhagen, Lars

    2008-06-01

    In this paper we derive typical emission factors for coarse particulate matter (PM(10)), oxides of nitrogen (NO(x)), black carbon (BC), and number particle size distributions based on a combination of measurements and air quality dispersion modeling. The advantage of this approach is that the emission factors represent integrated emissions from several vehicle types and different types of wood stoves. Normally it is very difficult to estimate the total emissions in cities on the basis of laboratory measurements on single vehicles or stoves because of the large variability in conditions. The measurements were made in Temuco, Chile, between April 18 and June 15, 2005 at two sites. The first one was located in a residential area relatively far from major roads. The second site was located in a busy street in downtown Temuco where wood consumption is low. The measurements support the assumption that the monitoring sites represent the impact of different emission sources, namely traffic and residential wood combustion (RWC). Fitting model results to the available measurements, emission factors were obtained for PM(10) (RWC = 2160 +/- 100 mg/kg; traffic = 610 +/- 51 mg/veh-km), NO(x) (RWC = 800 +/- 100 mg/kg; traffic = 4400 +/- 100 mg/veh-km), BC (RWC = 74 +/- 6 mg/kg; traffic = 60 +/- 3 mg/veh-km) and particle number (N) with size distribution between 25 and 600 nm (N(25-600)) (RWC = 8.9 +/- 1 x 10(14) pt/kg; traffic = 6.7 +/- 0.5 x 10(14) pt/veh-km). The obtained emission factors are comparable to results reported in the literature. The size distribution of the N emission factors for traffic was shown to be different than for RWC. The main difference is that although traffic emissions show a bimodal size distribution with a main mode below 30 nm and a secondary one around 100 nm, RWC emissions show the main mode slightly below 100 nm and a smaller nucleation mode below 50 nm. PMID:18581814

  8. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  9. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    levels that shows good agreement with 85% of the temporal data. Bed stresses associated with currents can produce propagating ambient noise by mobilizing sediments. The strength of the tidal currents in northern Admiralty Inlet produces bed stresses in excess of 20 Pa. Significant increases in noise levels at frequencies from 4-30 kHz, with more modest increases noted from 1-4 kHz, are attributed to mobilized sediments. Sediment-generated noise during strong currents masks background noise from other sources, including vessel traffic. Inversions of the acoustic spectra for equivalent grain sizes are consistent with qualitative observations of the seabed composition. Bed stress calculations using log layer, Reynolds stress, and inertial dissipation techniques generally agree well and are used to estimate the shear stresses at which noise levels increase for different grain sizes. Ambient noise levels in one-third octave bands with center frequencies from 1 kHz to 25 kHz are dominated by sediment-generated noise and can be accurately predicted using the near-bed current velocity above a critical threshold. When turbulence is advected over a pressure sensitive transducer, the turbulent pressure fluctuations can be measured as noise, though these pressure fluctuations are not propagating sound and should not be interpreted as ambient noise. Based on measurements in both Admiralty Inlet, Puget Sound and the Chacao Channel, Chile, two models are developed for flow-noise. The first model combined measurements of mean current velocities and turbulence and agrees well with data from both sites. The second model uses scaling arguments to model the flow-noise based solely on the mean current velocity. This model agrees well with the data from the Chacao Channel but performs poorly in Admiralty Inlet, a difference attributed to differences turbulence production mechanisms. At both sites, the spectral slope of flow noise follows a f-3.2 dependence, suggesting partial cancellation of

  10. Estimation of maximum burial depth of Neogene-Quaternary fore-arc basin formation based on laboratory porosity measurements under pressure

    Science.gov (United States)

    Uehara, Shin-ichi; Tamura, Yukie; Marumo, Haruna; Mitsuhashi, Shunsuke

    2016-05-01

    Estimating the maximum effective stress that rocks have experienced, Pe,max, or the maximum burial depth for sedimentary rocks, Dmax, is important for many types of research, ranging from engineering applications to estimation of tectonic evolution. We estimated Pe,max and Dmax for the Kazusa fore-arc basin formations (the Kazusa Group) in the Boso Peninsula of Japan using a laboratory-based method. We carried out measurements of porosity n with siltstone specimens from the Kazusa Group formations (the Umegase, Otadai, Kiwada, Ohara, and Katsuura formations) under various effective pressure Pe conditions and estimated Pe,max from the inflection points of the log Pe-log n curve on the Pe increasing path. Except for the specimens from the Ohara Formation, estimated values of Pe,max ranged from approximately 13-24 MPa. This range corresponded to approximately 1.3-3.2 km of Dmax. Differences in Dmax among the specimens were at least four times smaller than distances normal to bedding planes among the sampling locations. This suggests that the formations were not deposited horizontally, but that deposition proceeded as the subsidence center of the fore-arc basin moved in a northwestward (NW) direction, and that formations were then uplifted almost horizontally. The Pe,max of the specimens from the Ohara Formation were 6-10 MPa smaller than the others. Thus, it is possible that pore pressure at the sampling location was more than 6 MPa larger than the hydrostatic condition when the sediments were deposited and lithified. Previous studies reported the center of a high-porosity zone at the Ohara Formation, and this high-porosity zone probably developed due to Pp over-pressurization. These results support the applicability of this method to estimation of tectonic evolution of sedimentary basins and magnitude of over-pressurization.

  11. Relative pressure estimation from velocity measurements in blood flows: state-of-the-art and new approaches

    OpenAIRE

    Bertoglio, Cristobal; Núñez, Rodolfo; Galarce, Felipe; Nordsletten, David; Osses, Axel

    2016-01-01

    The pressure gradient across stenotic blood vessels is an important clinical index for diagnosis of the pathological severity of the cardiovascular disease. While the clinical gold standard for its measurement is invasive catheterization, Phase-Contrast MR-imaging has emerged as a promising tool for enabling a non-invasive quantification of the relative pressures, by linking the (highly spatially resolved) velocity measurements with the relative pressure via the Navier-Stokes equations. In th...

  12. Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting Estimativa da área foliar do pepino em ambiente protegido por medidas lineares sob salinidade e enxertia

    Directory of Open Access Journals (Sweden)

    Flávio Favaro Blanco

    2005-08-01

    Full Text Available The measurement of leaf area by linear parameters is a useful tool when plants cannot be destroyed for direct measurement. The objectives of this study were to establish equations to estimate the leaf area of greenhouse-cucumber and to evaluate the effects of salinity and grafting on this estimative. Non-grafted cucumber seedlings, cv. 'Hokushin', were transplanted in a greenhouse and were irrigated with water of different salinities (1.0, 3.2 and 5.0 dS m-1. In the second growing period, the same cultivar was grafted on Cucurbita spp. and the plants were irrigated with water of 1.4, 3.0 and 5.3 dS m-1. Leaves of different sizes were collected from both experiments and leaf area was determined by an integrating area meter. Leaf length (L and width (W were also recorded. An equation for estimating the leaf area from L and W was developed for a given salinity level or grafting condition and estimated well the area of leaves collected in the other treatments. The leaf area (LA of cucumber 'Hokushin' could be estimated using the equation LA = 0.88LW - 4.27, for any grafting and salinity conditions.A determinação da área foliar por medidas lineares é uma ferramenta útil quando as plantas não podem ser destruídas para que a medição direta seja realizada. Os objetivos desse trabalho foram definir equações para a estimativa da área foliar do pepino em ambiente protegido e avaliar os efeitos da salinidade e da a enxertia nessa estimativa. Mudas de pepino, cv. 'Hokushin', não enxertadas, foram transplantadas em um ambiente protegido e irrigadas com água de diferentes salinidades (1,0, 3,2 e 5,0 dS m-1. No segundo período de cultivo, a mesma cultivar foi enxertada sobre Cucurbita spp., sendo as plantas irrigadas com água de 1,4, 3,0 e 5,3 dS m-1. Foram coletadas folhas de diferentes tamanhos dos dois cultivos e dos três tratamentos e a área foliar foi determinada por um medidor de área foliar. O comprimento (C e a largura (L da folha

  13. Measure and estimation of the evapotranspiration of tomato plants cultivated with organic fertilization in protected ambient / Medida e estimativa da evapotranspiração do tomateiro cultivado sob adubação orgânica em ambiente protegido

    Directory of Open Access Journals (Sweden)

    Viviane Aires de Paula

    2010-09-01

    Full Text Available The present work had the aim of determining the water consumption for tomato crop cultivated in protected ambient under organic fertilization and of evaluating the estimates of evapotranspiration and of crop coefficients (Kc in greenhouse, with the use of the methods Class A Pan, Solar Radiation, Penman and Penman-Monteith. The experiment was carried out from September/2004 to January/2005, at the Campus of Universidade Federal de Pelotas, Brazil. The organic fertilization of the soil consisted of two doses of vermicompost from bovine manure, and ‘Floradade’ tomato plants were transplanted in 4/11/2004, with 0.50 x 0.70 m spacing. In the central part of the greenhouse, a datalogger was installed in order to receive the signals originated from the agrometeorologicals sensors installed in the greenhouse. In order to determine the water consumption of the plants, the method of water balance of the soil was used associated to evapotranspirometers, constructed in the central of the polyethylene greenhouse. The water consumption of the tomato plants in the 88 days of cultivation was of 477 mm. The estimation of the evapotranspiration for the methods Class A Pan, Solar Radiation and Penman, presented high precision and had agreement with the measured values of the crop evapotranspiration. The reference evapotranspiration presented values close to the crop evapotranspiration during the crop growth with the use of the methods Class A Pan, Solar Radiation and Penman, with Kc values of 0.95; 1.02; and 1.01, respectively, while for the Penman-Monteith method the Kc was 1.41.O presente trabalho teve por objetivos determinar o consumo hídrico do tomateiro com adubação orgânica e avaliar as estimativas da evapotranspiração e do coeficiente de cultura (Kc em ambiente protegido, com o uso dos métodos do Tanque Classe A, Radiação Solar, Penman e Penman-Monteith. O experimento foi conduzido de setembro de 2004 a janeiro de 2005, no Campus da

  14. The association between pressure pain sensitivity, and answers to questionnaires estimating psychological stress level in the workplace. A feasibility study

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille; Gyntelberg, Finn;

    2012-01-01

    To examine the association between pressure pain sensitivity (PPS) at the sternum as a measure of persistent stress assessed by questionnaires in a working population.......To examine the association between pressure pain sensitivity (PPS) at the sternum as a measure of persistent stress assessed by questionnaires in a working population....

  15. Structural behaviour of YGa under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, M., E-mail: sekarm@igcar.gov.in; Shekar, N. V. Chandra, E-mail: sekarm@igcar.gov.in; Sahu, P. Ch., E-mail: sekarm@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102 Tamil Nadu (India); Babu, R. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102 Tamil Nadu (India)

    2014-04-24

    High pressure X-ray diffraction studies on rare-earth gallide YGa was carried up to a pressure of ∼ 33 GPa using rotating anode x-ray source in an angle dispersive mode. YGa exhibits CrB (B33) type orthorhombic structure (space group Cmcm) at ambient pressure. It undergoes a reversible structural phase transition from orthorhombic to tetragonal structure at ∼ 8.8 GPa. Both the phases coexist up to the highest pressure studied. The zero pressure bulk modulus and its derivative for parent phase have been estimated to be B{sub o} = 60 ± 3 GPa, B{sub o}' = 4.6 ± 1.5.

  16. AIRSLUG: A fortran program for the computation of type curves to estimate transmissivity and storativity from prematurely terminated air-pressurized slug tests

    Science.gov (United States)

    Greene, E.A.; Shapiro, A.M.

    1998-01-01

    The Fortran code AIRSLUG can be used to generate the type curves needed to analyze the recovery data from prematurely terminated air-pressurized slug tests. These type curves, when used with a graphical software package, enable the engineer or scientist to analyze field tests to estimate transmissivity and storativity. Prematurely terminating the slug test can significantly reduce the overall time needed to conduct the test, especially at low-permeability sites, thus saving time and money.The Fortran code AIRSLUG can be used to generate the type curves needed to analyze the recovery data from prematurely terminated air-pressurized slug tests. These type curves, when used with a graphical software package, enable the engineer or scientist to analyze field tests to estimate transmissivity and storativity. Prematurely terminating the slug test can significantly reduce the overall time needed to conduct the test, especially at low-permeability sites, thus saving time and money.

  17. Estimation of Right Atrial Pressure from the Inspiratory Collapse of the Inferior Vena cava in Pediatric Patients

    OpenAIRE

    Gholamhossein Ajami; Khobiar Zare; Hamid Amoozgar; Mohammad Borzoee; Saeed Abtahi

    2010-01-01

    Objective: Paucity of data exists between mean right atrial pressure (RAP) and inferior vena cava (IVC) size and collapsibility in pediatric patients with congenital heart disease.Methods: In a prospective study, fifty consecutive pediatric patients with different congenital heart diseases who had right side cardiac catheterization were studied, comparing right atrial pressure with simultaneous M-mode echocardiographic measurement of inferior vena cava diameter. Mean age of the patients was 4...

  18. Anisotropic Ambient Volume Shading.

    Science.gov (United States)

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  19. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  20. Method for estimating critical properties of heavy compounds suitable for cubic equations of state and its application to the prediction of vapor pressures

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Ioannis, Smirlis; Iakovos, Yakoumis; Vassilis, Harismiadis; Dimitrios, Tassios

    1997-01-01

    extensive pure-compound vapor-pressure data which, for heavy and/or complex compounds, are often not available. This work presents a method for estimating T-c, P-c, and omega values for heavy compounds (typically with MW > 130) suitable for vapor-pressure calculations with generalized cubic EoS. The......S at a single experimental vapor-pressure point (e.g., the normal boiling point). We have employed a modified version of the Peng-Robinson EoS, but we have verified that any cubic EoS yields similar results at least for n-alkanes up to n-octacosane (MW = 394). The method is applied to the prediction of...

  1. Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure

    Science.gov (United States)

    Kataoka, M.; Obara, Y.; Kuruppu, M.

    2015-07-01

    In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness ( K Ic) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10-2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. K Ic of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that K Ic depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of K Ic is the distribution of grains rather than inherent microcracks in these rocks.

  2. Negative pressures in full-scale distribution system: field investigation, modelling, estimation of intrusion volumes and risk for public health

    Directory of Open Access Journals (Sweden)

    M. C. Besner

    2010-03-01

    Full Text Available Various investigations encompassing microbial characterization of external sources of contamination (soil and trenchwater surrounding water mains, flooded air-valve vaults, field pressure monitoring, and hydraulic and transient analyses were conducted in the same distribution system where two epidemiological studies showing an increase in gastrointestinal illness for people drinking tap water were conducted in the 1990's. Interesting results include the detection of microorganisms indicators of fecal contamination in all external sources investigated but at a higher frequency in the water from flooded air-valve vaults, and the recording of 18 negative pressure events in the distribution system during a 17-month monitoring period. Transient analysis of this large and complex distribution system was challenging and highlighted the need to consider field pressure data in the process.

  3. Preliminary investigation of an ultrasound method for estimating pressure changes in deep-positioned vessels

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand;

    2016-01-01

    This paper presents a method for measuring pressure changes in deep-tissue vessels using vector velocity ultrasound data. The large penetration depth is ensured by acquiring data using a low frequency phased array transducer. Vascular pressure changes are then calculated from 2-D angle......-independent vector velocity fields using a model based on the Navier-Stokes equations. Experimental scans are performed on a fabricated flow phantom having a constriction of 36% at a depth of 100 mm. Scans are carried out using a phased array transducer connected to the experimental scanner, SARUS. 2-D fields...... of angle-independent vector velocities are acquired using directional synthetic aperture vector flow imaging. The obtained results are evaluated by comparison to a 3-D numerical simulation model with equivalent geometry as the designed phantom. The study showed pressure drops across the constricted phantom...

  4. Liquid Water Structure from Anomalous Density under Ambient Condition

    Institute of Scientific and Technical Information of China (English)

    SUN Qiang; ZHENG Hai-Fei

    2006-01-01

    @@ From discussion of the structure of liquid water, we deduce that water under ambient condition is mainly composed of ice Ih-like molecular clusters and clathrate-like molecular clusters. The water molecular clusters remain in a state of chemical equilibrium (reversible clustering reactions). This structural model can be demonstrated by quantitative study on anomalous density with increasing temperature at ambient pressure.

  5. The Novel Method to Estimate Effect of Cement Slurry Consistency toward Friction Pressure in Oil/Gas Well Cementing

    Directory of Open Access Journals (Sweden)

    Adrian Pattinasarany

    2012-11-01

    Full Text Available The aim of this study is to investigate effect of cement slurry consistency toward friction pressure during oil/gas cementing operation. Completion of an oil/gas well has become more important because the reserve has become harder to find. The oil/gas company cannot afford to lose million dollars they spent when locating, drilling and recovering the oil from the Earth if they failed it. The safety, health and environment also have become more important issue, because any completion problem can lead to prolong operation and creating more hazard and risk. Cementing operation plays a very important role during completion because it creates a secure conduit to bring the precious oil/gas to the surface and a place to install completion jewelry. During cementing operation lost circulation can be one of the serious problems that arise. Circulation is said to be lost when the cement slurry pumped flows into one or more geological formations instead of returning up casing annulus. This is due to sum of hydrostatic pressure and friction pressure is exceeding fracture gradient. Method that commonly used to calculate friction from American Petroleum Institute (API assumed the cement slurry will exhibit time independent nature. Cement slurry consistency was found to have significant effect to friction pressure.

  6. Risk Stratification by 24-Hour Ambulatory Blood Pressure and Estimated Glomerular Filtration Rate in 5322 Subjects From 11 Populations

    DEFF Research Database (Denmark)

    Boggia, José; Thijs, Lutgarde; Li, Yan;

    2013-01-01

    subjects (median age, 51.8 years; 43.1% women) randomly recruited from 11 populations, who had baseline measurements of 24-hour ambulatory blood pressure (ABP(24)) and eGFR. We computed hazard ratios using multivariable-adjusted Cox regression. Median follow-up was 9.3 years. In fully adjusted models...

  7. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    Science.gov (United States)

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  8. Minimum miscibility pressure estimation for a CO{sub 2}/n-decane system in porous media by X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu; Jiang, Lanlan; Tang, Lingyue; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Yang, Mingjun [Dalian University of Technology, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian (China)

    2015-07-15

    Accurate determination of gas-fluid miscibility conditions is important to optimize the displacement efficiency during CO{sub 2}-enhanced oil recovery. This paper presents a new technique to investigate the phase behavior and to estimate the minimum miscibility pressure (MMP) of a CO{sub 2}/n-decane system using an X-ray computerized tomography (CT) scanner. CT scans of the CO{sub 2}/n-decane system are taken at various pressures during the experiments. The image intensity values taken from the CT images have a linear relationship with the densities of the measured objects; therefore, we can estimate the miscible point of CO{sub 2} and n-decane because the difference between the intensity values for each phase decays to zero as the pressure increases toward the MMP. This paper provides experimental evidence for the validity of the new CT method by comparing the results with previous studies and presents an application of the method to investigate the MMP of the CO{sub 2}/n-decane system in porous media. Additionally, the influence of porous media on the equilibrium state when the CO{sub 2}/n-decane system is close to miscibility is discussed. (orig.)

  9. Assessment of congenital heart disease by a thallium-201 SPECT study in children; Accuracy of estimated right to left ventricular pressure ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Iwao; Nakajima, Kenichi; Taki, Junichi; Taniguchi, Mitsuru; Bunko, Hisashi; Tonami, Norihisa; Hisada, Kinichi; Ohno, Takashi (Kanazawa Univ. (Japan). School of Medicine)

    1993-01-01

    The characteristics of correlation between the right-to-left ventricular systolic pressure ratios (RVp/LVp) and the thallium-201 right-to-left ventricular ([sup 201]Tl R/L) count ratios was investigated in children with various congenital heart diseases. High-resolution three-headed SPECT system equipped with either parallel-hole or fan-beam collimators was used. In a total of 102 patients, the correlation between RVp/LVp and [sup 201]Tl R/L average count ratios was good in both planar (r=0.89, p=0.0001) and SPECT studies (r=0.80, p=0.0001). Quantitative analysis of myocardial uptake by SPECT demonstrated the characteristic pattern of each disease as well as the differences in the right ventricular overload types. When the linear regression analysis was performed in each heart disease, ventricular septal defect showed most excellent correlation. Complex heart anomalies also showed positive correlation (r=0.51, p=0.05) with RVp/LVp, and it can be used to estimate right ventricular pressure. After surgical treatment of tetralogy of Fallot and pulmonary stenosis, the decrease of [sup 201]Tl R/L count ratio was in accordance with improvement of right ventricular overload. We conclude that [sup 201]Tl SPECT study can be a good indicator for estimation of right ventricular pressure. (author).

  10. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R2 = 0.982) and a mean absolute error (e) of 0.323 L min−1, while for head, R2 = 0.933 and e = 7.682 mmHg were obtained. R2 = 0.849 and e = 0.584 L min−1 were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N = 6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands

  11. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  12. ESTIMATES OF THE ERROR OF EXPERIMENTAL DATA AT STUDIES OF DENSITY AND THE SATURATED VAPOR PRESSURE (SVP) PETROLEUM PRODUCTS

    OpenAIRE

    Kharchenko P. M.; Timofeev V. P.; Chizhov D. S.; Khristichienko V. V.

    2015-01-01

    At calculations, we have used the next assumptions: 1. Not excluded systematic errors distributed with equal probability; 2. Random errors are normally distributed; 3. Total error is the composition of not excluded systematic and random errors. In calculating of measurement error of pressure, we proceeded from working formula. The confidence interval of each variable less than instrumental error, therefore, to characterize the total error of the measured value P, we use the instrumental error...

  13. Estimation of C*-Integral for Radial Cracks in Annular Discs under Constant Angular Velocity and Internal Pressure

    OpenAIRE

    A. R. Gowhari-Anaraki; Djavanroodi, F.; S. Shadlou

    2008-01-01

    The finite element method has been used to predict the creep rupture parameter, C*-Integral for single and double-edge cracks in eight annular rotating discs under constant angular velocity with and without internal pressure. In this study, a new dimensionless creeping crack configuration factor, Q* has been introduced. Power law creeping finite element analyses have been performed and the results are presented in the form of Q* for a wide range of components and crack geometry parameters. Th...

  14. Solubilities of selected organic electronic materials in pressurized hot water and estimations of aqueous solubilities at 298.15 K

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Šťavíková, Lenka; Roth, Michal

    2013-01-01

    Roč. 90, č. 6 (2013), s. 2035-2040. ISSN 0045-6535 R&D Projects: GA ČR(CZ) GAP206/11/0138; GA ČR(CZ) GPP503/11/P523; GA ČR(CZ) GAP106/12/0522 Institutional support: RVO:68081715 Keywords : solubility * pressurized hot water * hole transport materials Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.499, year: 2013

  15. Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis

    Science.gov (United States)

    Carrere, Loren; Faugère, Yannice; Ablain, Michaël

    2016-06-01

    The new dynamic atmospheric correction (DAC) and dry tropospheric (DT) correction derived from the ERA-Interim meteorological reanalysis have been computed for the 1992-2013 altimeter period. Using these new corrections significantly improves sea level estimations for short temporal signals (altimetry, unexpectedly DT_ERA still gives better results compared to the operational DT. Concerning climate signals, both DAC_ERA and DT_ERA have a low impact on global mean sea level rise (MSL) trends, but they can have a strong impact on long-term regional trends' estimation, up to several millimeters per year locally.

  16. Wideband high-resolution direction of arrival estimation method based on the pressure-velocity combined processing using the acoustic vector sensor array

    Institute of Scientific and Technical Information of China (English)

    BAI Xingyu; YANG Desen; ZHAO Chunhui

    2007-01-01

    In order to solve the problem of DOA (Direction of Arrival) estimation of underwater distant wideband targets, a novel coherent signal-subspace method based on the cross spectral matrix of pressure and particle velocity using the Acoustic Vector Sensor Array (AVSA)is proposed in this paper. The proposed method is different from existing AVSA based DOA estimation methods in using particle velocity information of Acoustic Vector Sensor (AVS) as an independent array element. It is entirely based on the combined information processing of pressure and particle velocity, namely, the P-V cross spectrum, has better DOA estimation performance than existing methods in isotropic noise field. By theoretical analysis, both focusing principle and eigendecomposition theory based on the P-V cross spectral matrix are given.At the same time, the corresponding criteria for source number detection is also presented.Computer simulations with data from lake trials demonstrate that the proposed method is effective and obviously outperforms existing methods in resolution and accuracy in the case of low Signal-to-Noise Ratio (SNR).

  17. APLICACIÓN EN MATLAB PARA LA ESTIMACIÓN DE LA VARIABILIDAD DE LA PRESIÓN ARTERIAL / MATLAB APPLICATION FOR THE ESTIMATION OF BLOOD PRESSURE VARIABILITY

    Directory of Open Access Journals (Sweden)

    JUAN CARLOS MALDONADO BELTRÁN

    2012-08-01

    Full Text Available RESUMEN ANALÍTICO En el presente trabajo se abordan los conceptos fundamentales para la estimación de la variabilidad de la presión arterial a partir de registros digitalizados, empleando metodologías basadas en la implementación de métodos matemáticos para el procesamiento de la señal de presión arterial, con el objetivo de estimar los índices de variabilidad en el dominio del tiempo y frecuencia. En el dominio del tiempo se estimó la presión arterial máxima, mínima, promedio y desviación estándar, y en el dominio de la frecuencia, el índice de bajas frecuencias (LF, por sus siglas en ingles, low frequency, de altas frecuencias (HF, por sus siglas en ingles, high frequency, la relación entre bajas y altas frecuencias (LF/HF y la potencia total (TP, por sus siglas en ingles, total power. Se desarrolló una aplicación usando el entorno de desarrollo integrado de Matlab, que implementa el algoritmo de Pan-Tompkins para la detección de los picos máximos de presión arterial y el método de Welch para la estimación de la densidad espectral de potencia. La herramienta se validó usando 20 señales correspondientes a 13 mujeres y 7 hombres entre los 12 y 87 años de edad y se comprobó la similitud entre los resultados obtenidos a partir de las estimaciones de variabilidad de la presión arterial arrojadas por la aplicación desarrollada, respecto a las estimaciones realizadas para los mismos índices usando el software WinCPRS (Absolute Aliens, Finland. ANALYTICAL SUMMARY This work presents an approach of the fundamental concepts to estimate blood pressure variability from digitalized records, using methodologies based on implementation of mathematical methods for blood pressure signal processing, with the objective to estimate the indicators of variability in time domain and in frequency domain. On the time domain it were estimated the maximum blood pressure, minimum, average and standard deviation, and in frequency domain it

  18. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment

    Directory of Open Access Journals (Sweden)

    Westenberg Jos JM

    2012-01-01

    significantly (p = 0.01 stronger association between distensibility and PWV for local assessment (r = 0.8 than for regional assessment (r = 0.7, both for CMR and for pressure-assessed PWV. Theoretical PWV is strongly correlated (r = 0.8 with pressure-assessed PWV, with a statistically significant (p = 0.04 mean underestimation of 0.6 ± 1.1 m/s. This theoretical PWV-estimation is more accurate when invasively-assessed pulse pressure is used instead of brachial cuff-assessment (p = 0.03. Conclusions CMR with in-plane velocity-encoding is the optimal approach for studying Bramwell-Hill associations between local PWV and aortic distensibility. This approach enables non-invasive estimation of local pulse pressure and distensibility.

  19. Precise evaluation of corrosion environments of structural materials under complex water flow condition, (1). Estimation of corrosion potentials in reactor pressure vessel bottom of BWRs

    International Nuclear Information System (INIS)

    To estimate the corrosion potentials of structural materials under complex water flow condition, such as reactor pressure vessel (RPV) bottom region of Boiling Water Reactors (BWRs), a method was newly developed. Three-dimensional water flow analysis was performed and corrosion potentials of structural materials were calculated on the basis of the flow analysis results. Water flow analysis showed the velocities in the RPV bottom region varied from about 0.1 ms-1 to 4.5 ms-1. From the corrosion potential estimation under hydrogen water chemistry (HWC) condition, at the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential because of high flow velocity condition. Conversely, a small amount of hydrogen was sufficient in the case of the stub tube of the control rod drive (CRD) guide tubing located in the center of the bottom region. (author)

  20. Measurement of Anterior-Posterior Diameter of Inferior Vena Cava by Ultrasonography: A Non-Invasive Method for Estimation of Central Venous Pressure

    Directory of Open Access Journals (Sweden)

    R. Nafisi-Moghadam

    2007-05-01

    Full Text Available Background and Objective: The assessment of blood volume is now one of the most commonly needed interventions in the first line of care and severe ill patients. Measuring central venous pressure (CVP is an invasive method, most frequently used in clinical practice for the assessment of volume status. The di-ameter of the inferior vena cava (IVC is a parameter to estimate central venous pressure. The purpose of this study was to determine whether measurement of the anterior-posterior diameter of the IVC by ultra-sonography, correlates with CVP. Materials and Methods: It was a descriptive and pro-spective study on 50 patients; CVP was measured in supine position by CVP manometer. Anterior – pos-terior IVC diameter was assessed by ultrasonography during inspiration and expiration. Results: The mean of CVP during inspiration and ex-piration was 11.31+5.59, 12.20 + 5.65cmH2o, respec-tively. The mean of inspiratory and expiratory IVC diameter was 7.71+3.56, 11.97+3.28 mm, respectively. There was significant relation between CVP and IVC diameter in the inspiration (r=0.664, p<0.0001 and expiration (r=0.495, p=0.001. The relation between these two variables was linear. Conclusion: Result of this study showed that IVC di-ameter measurement by ultrasonography can be used to estimate the mean of CVP.

  1. An investigation of ambient gameplay

    OpenAIRE

    Eyles, Mark

    2012-01-01

    Inspired by Brian Eno's ambient music, which is persistent and supports different levels of engagement, this research explores ambient gameplay in computer, video and pervasive games. Through the creation of original games containing ambient gameplay and looking for ambient gameplay in existing commercial games, this research focuses on gameplay that supports a range of depths of player engagement. This research is not concerned with ambient intelligent environments or other technologies that...

  2. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  3. Real time noninvasive estimation of work of breathing using facemask leak-corrected tidal volume during noninvasive pressure support: validation study.

    Science.gov (United States)

    Banner, Michael J; Tams, Carl G; Euliano, Neil R; Stephan, Paul J; Leavitt, Trevor J; Martin, A Daniel; Al-Rawas, Nawar; Gabrielli, Andrea

    2016-06-01

    We describe a real time, noninvasive method of estimating work of breathing (esophageal balloon not required) during noninvasive pressure support (PS) that uses an artificial neural network (ANN) combined with a leak correction (LC) algorithm, programmed to ignore asynchronous breaths, that corrects for differences in inhaled and exhaled tidal volume (VT) from facemask leaks (WOBANN,LC/min). Validation studies of WOBANN,LC/min were performed. Using a dedicated and popular noninvasive ventilation ventilator (V60, Philips), in vitro studies using PS (5 and 10 cm H2O) at various inspiratory flow rate demands were simulated with a lung model. WOBANN,LC/min was compared with the actual work of breathing, determined under conditions of no facemask leaks and estimated using an ANN (WOBANN/min). Using the same ventilator, an in vivo study of healthy adults (n = 8) receiving combinations of PS (3-10 cm H2O) and expiratory positive airway pressure was done. WOBANN,LC/min was compared with physiologic work of breathing/min (WOBPHYS/min), determined from changes in esophageal pressure and VT applied to a Campbell diagram. For the in vitro studies, WOBANN,LC/min and WOBANN/min ranged from 2.4 to 11.9 J/min and there was an excellent relationship between WOBANN,LC/breath and WOBANN/breath, r = 0.99, r(2) = 0.98 (p relationship between WOBANN,LC/breath and WOBPHYS/breath, r = 0.93, r(2) = 0.86 (p < 0.01). An ANN combined with a facemask LC algorithm provides noninvasive and valid estimates of work of breathing during noninvasive PS. WOBANN,LC/min, automatically and continuously estimated, may be useful for assessing inspiratory muscle loads and guiding noninvasive PS settings as in a decision support system to appropriately unload inspiratory muscles. PMID:26070542

  4. Mujer y medio ambiente

    OpenAIRE

    Zuluaga Sánchez, Gloria Patricia

    1998-01-01

    El debate sobre mujer y medio ambiente es bastante nuevo y, por lo tanto, aun no hay consenso sobre como abordarlo, ni análisis muy profundos sobre la interacción de estas dos problemáticas tan complejas y que además atraviesan las demás temáticas. Con ello no se quiere negar el importante aporte que se ha hecho en tal sentido, por parte de colectividades y de algunas personas. Selene Herculano y Jacqueline Pitanguy (1993), mencionan que el medio ambiente no es una categoría específica y que ...

  5. Ambientes de aprendizaje computacionales

    OpenAIRE

    Señas, Perla

    2001-01-01

    En el marco de las aplicaciones de la tecnología computacional a la educación se destaca de manera especial el trabajo sobre Ambientes de Aprendizaje. En él convergen tópicos relevantes de las Ciencias de la Computación y de la Educación. Se puede definir un Ambiente de Aprendizaje Computacional como un entorno integrado por un conjunto no homogéneo de elementos capaces de crear o recrear situaciones a partir de las cuales el alumno puede construir conocimiento y realizar aprendizajes y meta-...

  6. Estimation of C*-Integral for Radial Cracks in Annular Discs under Constant Angular Velocity and Internal Pressure

    Directory of Open Access Journals (Sweden)

    A. R. Gowhari-Anaraki

    2008-01-01

    Full Text Available The finite element method has been used to predict the creep rupture parameter, C*-Integral for single and double-edge cracks in eight annular rotating discs under constant angular velocity with and without internal pressure. In this study, a new dimensionless creeping crack configuration factor, Q* has been introduced. Power law creeping finite element analyses have been performed and the results are presented in the form of Q* for a wide range of components and crack geometry parameters. These parameters are chosen to be representative of typical practical situations and have been determined from evidence presented in the open literature. The extensive range of Q* obtained from the analyses are then used to obtain equivalent prediction equations using a statistical multiple non-linear regression model. The predictive equations for Q*, can also be used easily to calculate the C*-Integral values for extensive range of geometric parameters. The C*-Integral values obtained from predictive equations were also compared with those obtained from reference stress method (RSM. Finally, creep zone growth behavior was studied in the component during transient time.

  7. Blood pressure-lowering peptides from neo-fermented buckwheat sprouts: a new approach to estimating ACE-inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Masahiro Koyama

    Full Text Available Neo-fermented buckwheat sprouts (neo-FBS contain angiotensin-converting enzyme (ACE inhibitors and vasodilators with blood pressure-lowering (BPL properties in spontaneously hypertensive rats (SHRs. In this study, we investigated antihypertensive mechanisms of six BPL peptides isolated from neo-FBS (FBPs by a vasorelaxation assay and conventional in vitro, in vivo, and a new ex vivo ACE inhibitory assays. Some FBPs demonstrated moderate endothelium-dependent vasorelaxation in SHR thoracic aorta and all FBPs mildly inhibited ACE in vitro. Orally administered FBPs strongly inhibited ACE in SHR tissues. To investigate detailed ACE-inhibitory mechanism of FBPs in living body tissues, we performed the ex vivo assay by using endothelium-denuded thoracic aorta rings isolated from SHRs, which demonstrated that FBPs at low concentration effectively inhibited ACE in thoracic aorta tissue and suppressed angiotensin II-mediated vasoconstriction directly associated with BPL. These results indicate that the main BPL mechanism of FBP was ACE inhibition in living body tissues, suggesting that high FBP's bioavailability including absorption, tissue affinity, and tissue accumulation was responsible for the superior ACE inhibition in vivo. We propose that our ex vivo assay is an efficient and reliable method for evaluating ACE-inhibitory mechanism responsible for BPL activity in vivo.

  8. Relationship of percent body fat (estimated by bioelectrical impedance analysis with blood pressure among young adult females of Amritsar (Punjab

    Directory of Open Access Journals (Sweden)

    Bindiya Rana

    2012-10-01

    Full Text Available The present cross-sectional study was carried out to find the association of percent body fat (PBF with blood pressure (BP variables among apparently healthy young females studying in Guru Nanak Dev University, Amritsar. A total of 150 females ranging in age from 20-25 years were personally interviewed. Height and weight of each subject was taken using standard methodology. Their body composition parameters were taken by using body fat analyzer. Subjects were categorized as obese and non-obese according to PBF, in which those having >30% body fat was considered as obese. BP of each subject was measured by using the standard methodology. The prevalence of hypertension was calculated according to JNC VII criteria. In the pooled data, the percentage prevalence of obesity according to PBF was 36%. The percentage prevalence of pre-hypertension and hypertension in the pooled sample was 54% and 12%, respectively. However, it was observed that prevalence of hypertension was slightly more among obese females (7.3% as compared to non-obese (4.7% but the prevalence of pre-hypertension was significantly (p<0.05 more in non-obese females (39.3% as compared to obese females (14.7%. The underline cause of this high prevalence of pre-hypertension in non-obese subjects was not known. It is clear from the correlation analysis that no association was observed between SBP and MAP with PBF in obese and non-obese subjects while DBP is positively and significantly (p<0.05 correlated with weight, fat mass and fat free mass in non-obese subjects only. Thus it is concluded from this study that PBF measured by BIA was not likely to be a good predictor of high BP. Therefore, further large prospective studies on the association of hypertension and whole body fat and abdominal fat should be carried out to confirm the role of fat on BP.

  9. Familial aggregation of blood pressure and weight in adoptive families: II. Estimation of the relative contributions of genetic and common environmental factors to blood pressure correlations between family members

    Energy Technology Data Exchange (ETDEWEB)

    Annest, J.L. (National Center for Health Statistics, Hyattsville, MD); Sing, C.F.; Biron, P.; Mongeau, J.G.

    1979-01-01

    An analysis of the familial aggregation of blood pressure (BP) was conducted to provide estimates of the role of genes and household environment in determining the phenotypic resemblance between biologically related family members. The biological model used for this analysis parameterizes the correlations between family members into the contributions of genetic and environmental variability shared within and across generations. Hypothesis testing about different parameters in the model suggests that shared environment explains larger fractions of the parent-natural child and the full sib correlations for diastolic BP than for systolic BP. Dependence of the degree of resemblance between household members on the effects of environmental factors shared within and across generations is not explained by the variability of length of cohabitation among individuals.

  10. La radioactividad ambiental

    Directory of Open Access Journals (Sweden)

    Rafael Núñez-Lagos Roglá

    2011-01-01

    Full Text Available Se explican los conceptos fundamentales relacionados con la radiactividad y se utilizan para describir la radiactividad ambiental. Se explican también los isótopos de largo periodo y las principales familias radioactivas junto con la radiación cósmica y los radionucleidos cosmogénicos.

  11. Ambient mass spectrometry imaging

    DEFF Research Database (Denmark)

    Janfelt, Christian; Nørgaard, Asger W

    2012-01-01

    Easy ambient sonic spray ionization (EASI) and desorption electrospray ionization (DESI) were used for imaging of a number of samples, including sections of rat brain and imprints of plant material on porous Teflon. A novel approach termed Displaced Dual-mode Imaging was utilized for the direct c...

  12. Equipment errors: A prevalent cause for fallacy in blood pressure recording - A point prevalence estimate from an indian health university

    Directory of Open Access Journals (Sweden)

    Badrinarayan Mishra

    2013-01-01

    Full Text Available Background: Blood pressure (BP recording is the most commonly measured clinical parameter. Standing mercury sphygmomanometer is the most widely used equipment to record this. However, recording by sphygmomanometer is subject to observer and instrumental error. The different sources of equipment error are faulty manometer tube calibration, baseline deviations and improper arm bladder cuff dimensions. This is further compounded by a high prevalence of arm bladder miss-cuffing in the target population. Objectives: The study was designed to assess the presence of equipment malcalibrations, cuff miss-matching and their effect on BP recording. Materials and Methods: A cross-sectional check of all operational sphygmomanometers in a health university was carried out for the length of the manometer tube, deviation of resting mercury column from "0" level, the width and length of arm bladder cuff and extent of bladder cuff-mismatch with respect to outpatient attending population. Results: From the total of 50 apparatus selected, 39 (78% were from hospital setups and 11 (22% from pre-clinical departments. A manometer height deficit of 13 mm was recorded in 36 (92.23% of the equipment in hospital and 11 (100% from pre-clinical departments. Instruments from both settings showed significant deviation from recommended dimensions in cuff bladder length, width and length to width ratio (P < 0.001. Significant number of apparatus from hospital setups showed presence of mercury manometer baseline deviation either below or above 0 mmHg at the resting state (χ2 = 5.61, D. F. = 1, P = 0.02. Positive corelationship was observed between manometer height deficit, baseline deviation and width of arm cuff bladder (Pearson correlation, P < 0.05. Bladder cuff mismatching in response to the target population was found at 48.52% for males and 36.76% for females. The cumulative effect of these factors can lead to an error in the range of 10-12 mmHg. Conclusion : Faulty

  13. Contrasting velocity-porosity relationships in differing tectonic regimes, Nankai Trough subduction zone, Japan: implications for pore pressure and effective stress estimation

    Science.gov (United States)

    Tudge, J.; Webb, S. I.; Tobin, H. J.

    2012-12-01

    The identification of areas of anomalously high porosity in subduction zones can have implications for fluid pressure, flow paths and the calculation of vertical effective stress in and under accretionary wedges. The relationship between p-wave velocity (Vp) and porosity is particularly useful for the estimation of fluid and solid material budgets in the subduction process because Vp is detectable with seismic reflection and refraction imaging. Data from cores and borehole logging can be used to develop quantitative Vp to porosity transforms, which in turn permit estimation of porosity from seismic reflection and refraction interval velocity. The relationship between Vp and porosity in sediments, however, is intrinsically linked to their burial history and tectonic evolution. Focusing on data from recent IODP drilling for the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) offshore Japan, we investigate the relationship between Vp and porosity for the different tectonic regions of a subduction zone accretionary complex, since universal transforms are shown to fit the data poorly. We demonstrate that each of the tectonic domains, Kumano forearc basin, accretionary wedge, and incoming Shikoku Basin sediments, exhibit very different Vp-porosity relationships. In addition, we show for sediments of the incoming plate (Shikoku Basin) section that correction of the core porosity data for smectite content results in a substantially modified Vp-porosity relationship. We use these new tectonic domain-specific Vp-porosity relationships to calculate estimated porosity from p-wave velocity models derived from seismic reflection data and OBS studies. By applying the specific Vp-porosity relationship in each tectonic region, a better-constrained estimate of distribution of porosity within the subduction zone accretionary prism complex, particularly across the main fault zones and décollement can be made. For example, when this approach is applied to the velocity reversal

  14. Response of cyanobacteria to low atmospheric pressure

    Science.gov (United States)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  15. Ambient- and low-temperature synchrotron x-ray diffraction study of BaFe2As2 and CaFe2As2 at high pressures up to 56 GPa

    OpenAIRE

    Mittal, R.; Mishra, S.K.; Hosono, H.; Garbarino, G.; Chaplot, S. L.; Ovsyannikov, S. V.; Greenberg, E; Trots, D. M.; Dubrovinsky, L.; Su, Y.; Brückel, T.; Matsuishi, S.

    2011-01-01

    We report on high-pressure powder synchrotron x-ray diffraction studies on MFe2As2 (M = Ba, Ca) over a range of temperatures and pressures up to about 56 GPa using a membrane diamond-anvil cell. Our data indicate a phase transition to a collapsed tetragonal phase in both compounds upon compression. The data at 300 K are measured in both pressure-increasing and -decreasing cycles. Our measurements show that at 300 K in the Ba compound, the transition occurs at 27 GPa, which is much higher than...

  16. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application.

    Directory of Open Access Journals (Sweden)

    Hojin Ha

    Full Text Available Although the measurement of turbulence kinetic energy (TKE by using magnetic resonance imaging (MRI has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required.The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored.MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared.MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 400. The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986. However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography.These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique.

  17. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  18. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients

  19. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application

    Science.gov (United States)

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Huh, Hyung Kyu; Lee, Sang Joon; Koo, Hyun Jung; Kang, Joon-Won; Lim, Tae-Hwan; Kim, Dae-Hee; Kim, Young-Hak

    2016-01-01

    Background Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. Objectives The goal of this study is to verify MRI measurements of TKE by using a phantom stenosis with particle image velocimetry (PIV) as the reference standard. In addition, the feasibility of measuring TKE with MRI is explored. Methods MRI measurements of TKE through a phantom stenosis was performed by using clinical 3T MRI scanner. The MRI measurements were verified experimentally by using PIV as the reference standard. In vivo application of MRI-driven TKE was explored in seven patients with aortic valve disease and one healthy volunteer. Transvalvular gradients measured by MRI and echocardiography were compared. Results MRI and PIV measurements of TKE are consistent for turbulent flow (0.666 400). The turbulence pressure drop correlates strongly with total TKE (R2 = 0.986). However, in vivo measurements of TKE are not consistent with the transvalvular pressure gradient estimated by echocardiography. Conclusions These results suggest that TKE measurement via MRI may provide a potential benefit as an energy-loss index to characterize blood flow through the aortic valve. However, further clinical studies are necessary to reach definitive conclusions regarding this technique. PMID:26978529

  20. Systolic blood pressure of dogs at hospital and domestic environment Pressão arterial sistólica de cães nos ambientes hospitalar e doméstico

    OpenAIRE

    Frederico Aécio Carvalho Soares; Elisa Barp Neuwald; Verônica Santos Mombach; Ana Elize Ribeiro D'Avila; Francisco de Oliveira Conrado; Félix Hilario Diaz González

    2012-01-01

    The measurement of blood pressure (BP) is an important assessment of the cardiovascular system, being influenced by physical and pathological conditions. Certain situations of stress and anxiety during BP measurement can lead to elevated values in small animals, known in medicine as "white coat effect". The aim of this research was to compare systolic blood pressure (SBP) measurement using Doppler ultrasonography in 45 adult healthy dogs in two environments, at a veterinary hospital and at ho...

  1. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation??s (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  2. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  3. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  4. Behavior and source characteristic of PCBS in urban ambient air of Yokohama, Japan

    International Nuclear Information System (INIS)

    To understand the behavior and sources of polychlorinated biphenyls (PCBs) in ambient air, gaseous and particulate phase concentrations were measured at Yokohama City, Japan, during March 2002 and February 2003. The concentration of total PCB and TEQ ranged from 62 to 250 pg/m3 and from 2 to 14 fgTEQ/m3, respectively. The gas-particle partition coefficient (K p) was obtained as a function of temperature. The relationship between the partition coefficient and the sub-cooled liquid vapor pressure (P L) was also established (coefficients of determination for log K p versus log P L plot were >0.76, except for three samples). As a result, the partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. Principal component analysis (PCA) was applied to the source identification of PCBs in ambient air. The concentrations of 122 congeners between tetra-CBs and deca-CB were used as input variables, and three PCs with eigenvalue more than 10 were obtained. The principal component 1 (PC 1) accounted for 43.4% of the total variance, and was interpreted as volatilization from PCB products and/or sites polluted by PCBs. The concentrations of PCB congeners were strongly related with PC 1 which showed high correlation with temperature. PC 2 accounted for 22.3%, and was interpreted as PCBs from incineration sources, while PC 3 accounted for 10.8%, but could not be interpreted. - The relationship between the gas-particle partition coefficient (Kp) and sub-cooled liquid vapor pressure was estimated using gaseous and particle phase concentration in ambient air, and was estimated source apportionment of PCBs

  5. Correlation between caudal pulmonary artery diameter to body surface area ratio and echocardiography-estimated systolic pulmonary arterial pressure in dogs.

    Science.gov (United States)

    Lee, Youngjae; Choi, Wooshin; Lee, Donghoon; Chang, Jinhwa; Kang, Ji-Houn; Choi, Jihye; Chang, Dongwoo

    2016-06-30

    Caudal pulmonary artery diameter (CPAD) to body surface area (BSA) ratios were measured in ventrodorsal thoracic radiographs to assess the correlation between CPAD to BSA ratios and systolic pulmonary arterial pressure (PAP) in dogs. Thoracic radiographs of 44 dogs with systolic pulmonary arterial hypertension (PAH) and 55 normal dogs were evaluated. Systolic PAP was estimated by Doppler echocardiography. CPADs were measured at their largest point at the level of tracheal bifurcation on ventrodorsal radiographs. Both right and left CPAD to BSA ratios were significantly higher in the PAH group than in the normal group (p PAP and right and left CPAD to BSA ratio (right, p = 0.0230; left, p = 0.0012). The receiver operating characteristic curve analysis revealed that the CPAD to BSA ratio had moderate diagnostic accuracy for detecting PAH. The operating point, sensitivity, specificity, and area under the curve were 28.35, 81.40%, 81.82%, and 0.870; respectively, for the right side and 26.92, 80.00%, 66.67%, and 0.822, respectively, for the left. The significant correlation of CPAD to BSA ratio with echocardiography-estimated systolic PAP supports its use in identifying PAH on survey thoracic radiographs in dogs. PMID:26645336

  6. Some measurements of ambient air pollution

    International Nuclear Information System (INIS)

    Ambient air pollution arising from different sources in Karachi and its surroundings has been studied. The urban centres like Karachi are mostly confronted with eye-irritation, reduce visibility, heart-diseases, nervous disorder, smog and other unpleasant experiences. In this paper quantitative estimations of some air-pollutants such as sulphur dioxide, carbon monoxide, oxides of nitrogen, chlorine and particular matters are presented with their hazardous effects. The remedial measures for the control of major air emissions are also discussed. (author)

  7. Salud ambiental: conceptos y actividades

    OpenAIRE

    Ordóñez Gonzalo A.

    2000-01-01

    La finalidad del trabajo es aportar información y propuestas conceptuales que faciliten la tarea de quienes tienen a su cargo la sistematización institucional de la salud ambiental. Se hace un análisis de la noción de "ambiente" para la cual se sugiere una definición, y se examina el lugar de la salud ambiental en el contexto de los problemas ambientales y sus vertientes "verde" y "azul". Se examinan denominaciones equivalentes de salud ambiental y se introducen los servicios de salud ambient...

  8. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  9. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  10. Arquitectura y medio ambiente

    OpenAIRE

    Saura Carulla, Magdalena

    2003-01-01

    La arquitectura y la planificación son el resultado de una integración ponderada de conocimientos técnicos y una multiplicidad de aspectos relacionados con el conocimiento natural y social. En este trabajo el autor propone, desde el ámbito de las ciencias del medio ambiente, diversos planteamientos teóricos y prácticos relacionados con la arquitectura y el urbanismo. El conocimiento de la naturaleza de los sistemas naturales y de los sistemas ecosociales permite al diseñador aplicar un marco ...

  11. Ambiente il nostro futuro

    OpenAIRE

    Canigiani, Franca

    2016-01-01

    L’ambiente è il quadro di vita, la casa comune, il patrimonio di base delle società umane – scriveva un indimenticabile maestro della geografia italiana: Giuseppe Barbieri. Due gli avvenimenti che nel 2015 hanno segnato il passo dell’umanità sulla strada di una più matura coscienza ambientale, fino a comprendere che è necessario e urgente prendersi cura della Terra: primo, la pubblicazione della lettera enciclica di papa Francesco, Laudato si’ sulla cura della casa comune, straordinario saggi...

  12. AOX y medio ambiente.

    OpenAIRE

    Riva Juan, Mª del Carmen; López Ribas, David

    1996-01-01

    Los productos organohalogenados son muy utilizados por la industria y su presencia en el medio ambiente está siendo controlada. En los últimos años se han desarrollado varias técnicas de detección, siendo desde finales de los 80 los AOX (adsorbable organic halogens) uno de los parámetros sobre los que se han realizado más estudios. En muchos paises de la Unión Europea y en E.E.U.U. de América, la presencia de compuestos organohalogenados en aguas continentales y suelos está legislada indicand...

  13. Electron temperature and pressure at the edge of ASDEX Upgrade plasmas. Estimation via electron cyclotron radiation and investigations on the effect of magnetic perturbations

    International Nuclear Information System (INIS)

    Understanding and control of the plasma edge behaviour are essential for the success of ITER and future fusion plants. This requires the availability of suitable methods for assessing the edge parameters and reliable techniques to handle edge phenomena, e.g. to mitigate 'Edge Localized Modes' (ELMs) - a potentially harmful plasma edge instability. This thesis introduces a new method for the estimation of accurate edge electron temperature profiles by forward modelling of the electron cyclotron radiation transport and demonstrates its successful application to investigate the impact of Magnetic Perturbation (MP) fields used for ELM mitigation on the edge kinetic data. While for ASDEX Upgrade bulk plasmas, straightforward analysis of the measured electron cyclotron intensity spectrum based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin edge region relies on full treatment of the radiation transport considering broadened emission and absorption profiles. This is realized in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different independent and complementary diagnostics. The method reveals that in regimes with improved confinement ('High-confinement modes' (H-modes)) the edge gradient of the electron temperature can be several times higher than that of the radiation temperature. Furthermore, the model is able to reproduce the 'shine-through' peak - the observation of increased radiation temperatures at frequencies with cold resonance outside the confined plasma region. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. The accurate knowledge about the edge profiles and gradients of the electron temperature and - including the

  14. Impact of mitral E/A ratio on the accuracy of different echocardiographic indices to estimate left ventricular end-diastolic pressure.

    Science.gov (United States)

    Poerner, Tudor C; Goebel, Björn; Kralev, Stefan; Kaden, Jens J; Süselbeck, Tim; Haase, Karl K; Borggrefe, Martin; Haghi, Dariusch

    2007-05-01

    The objective was to determine the influence of left ventricular (LV) inflow pattern on the accuracy of different echocardiographic indices for estimation of LV end-diastolic pressure (LVEDP). Echocardiography with color tissue Doppler imaging (TDI) and LVEDP measurements using fluid-filled catheters were performed in 176 consecutive patients on the same day. Mitral peak diastolic velocities (E, A) and the difference in duration between pulmonary venous retrograde velocity and mitral A-velocity (PV(R)-A) were recorded by pulsed Doppler. Propagation velocity of the early mitral inflow (V(P)) was assessed using color M-mode. Early diastolic longitudinal (E'(lat)) and radial (E'(radial)) velocities of mitral annulus were measured by TDI. Area under ROC curve (AUC) for prediction of elevated LVEDP (> or =15 mm Hg) was computed for each parameter. For E/A > or =1 (98 patients, 46 with elevated LVEDP), the AUC values were: PV(R)-A: 0.914; E/E'(lat): 0.780; E/E'(radial): 0.729; E/V(P): 0.712 (p < 0.001). When E/A <1 (78 patients, 26 with elevated LVEDP), only PV(R)-A reached statistical significance (AUC = 0.893, p < 0.001). The conclusions were: PV(R)-A enabled the most accurate noninvasive estimation of LVEDP irrespective of LV filling profile and combined indices E/V(P), E/E'(lat) and E/E'(radial) represent more feasible alternatives for patients with mitral E/A-1. PMID:17383798

  15. Potential of right to left ventricular volume ratio measured on chest CT for the prediction of pulmonary hypertension: correlation with pulmonary arterial systolic pressure estimated by echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon [Soon Chun Hyang University, Department of Radiology, Bucheon (Korea, Republic of); Kim, Seok Yeon [Seoul Medical Center, Department of Cardiology, Seoul (Korea, Republic of); Lee, Soo Jeong [Terarecon Korea, Seoul (Korea, Republic of); Kim, Jae Kyun [Chung-Ang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Reddy, Ryan P.; Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science and Division of Cardiology, Department of Medicine, Charleston, SC (United States)

    2012-09-15

    To investigate the correlation of right ventricular (RV) to left ventricular (LV) volume ratio measured by chest CT with pulmonary arterial systolic pressure (PASP) estimated by echocardiography. 104 patients (72.47 {+-} 13.64 years; 39 male) who had undergone chest CT and echocardiography were divided into two groups (hypertensive and normotensive) based upon an echocardiography-derived PASP of 25 mmHg. RV to LV volume ratios (RV{sub V}/LV{sub V}) were calculated. RV{sub V}/LV{sub V} was then correlated with PASP using regression analysis. The Area Under the Curve (AUC) for predicting pulmonary hypertension on chest CT was calculated. In the hypertensive group, the mean PASP was 46.29 {+-} 14.42 mmHg (29-98 mmHg) and there was strong correlation between the RV{sub V}/LV{sub V} and PASP (R = 0.82, p < 0.001). The intraobserver and interobserver correlation coefficients for RV{sub V}/LV{sub V} were 0.990 and 0.892. RV{sub V}/LV{sub V} was 1.01 {+-} 0.44 (0.51-2.77) in the hypertensive and 0.72 {+-} 0.14 (0.52-1.11) in the normotensive group (P <0.05). With 0.9 as the cutoff for RV{sub V}/LV{sub V}, sensitivity and specificity for predicting pulmonary hypertension over 40 mmHg were 79.5 % and 90 %, respectively. The AUC for predicting pulmonary hypertension was 0.87 RV/LV volume ratios on chest CT correlate well with PASP estimated by echocardiography and can be used to predict pulmonary hypertension over 40 mmHg with high sensitivity and specificity. (orig.)

  16. Potential of right to left ventricular volume ratio measured on chest CT for the prediction of pulmonary hypertension: correlation with pulmonary arterial systolic pressure estimated by echocardiography

    International Nuclear Information System (INIS)

    To investigate the correlation of right ventricular (RV) to left ventricular (LV) volume ratio measured by chest CT with pulmonary arterial systolic pressure (PASP) estimated by echocardiography. 104 patients (72.47 ± 13.64 years; 39 male) who had undergone chest CT and echocardiography were divided into two groups (hypertensive and normotensive) based upon an echocardiography-derived PASP of 25 mmHg. RV to LV volume ratios (RVV/LVV) were calculated. RVV/LVV was then correlated with PASP using regression analysis. The Area Under the Curve (AUC) for predicting pulmonary hypertension on chest CT was calculated. In the hypertensive group, the mean PASP was 46.29 ± 14.42 mmHg (29-98 mmHg) and there was strong correlation between the RVV/LVV and PASP (R = 0.82, p V/LVV were 0.990 and 0.892. RVV/LVV was 1.01 ± 0.44 (0.51-2.77) in the hypertensive and 0.72 ± 0.14 (0.52-1.11) in the normotensive group (P V/LVV, sensitivity and specificity for predicting pulmonary hypertension over 40 mmHg were 79.5 % and 90 %, respectively. The AUC for predicting pulmonary hypertension was 0.87 RV/LV volume ratios on chest CT correlate well with PASP estimated by echocardiography and can be used to predict pulmonary hypertension over 40 mmHg with high sensitivity and specificity. (orig.)

  17. Crisis ambiental y cristianismo

    Directory of Open Access Journals (Sweden)

    Felipe Cárdenas

    2008-01-01

    Full Text Available En el artículo se identifican y reconocen algunas opciones que se pueden desarrollar en el cristianismo en relación con la problemática ambiental. Se aborda el dilema bíblico suscitado por interpretaciones antiecológicas y ecológicas. Con base en una lectura de la Biblia, de testimonios cristianos, y en una rememoria de estructuras institucionales, como la parroquia, se analiza el valor que tiene el mensaje cristiano en lo referido a la mitigación de la crisis ambiental.This article identifies and recognizes some options that can be developed in Christianity in relation to the environmental problem. It starts by analyzing the biblical dilemma provoked by both ecological and antiecological interpretations. Based on a reading of the Bible, testimonies from Christians and with a rememory of institutional structures, like the parish, the valué of the Christian message for mitigating the environmental crisis is analyzed.

  18. Thermodynamic Pressure/Temperature Transducer Health Check

    Science.gov (United States)

    Immer, Christopher D. (Inventor); Eckhoff, Anthony (Inventor); Medelius, Pedro J. (Inventor); Deyoe, Richard T. (Inventor); Starr, Stanley O. (Inventor)

    2004-01-01

    A device and procedure for checking the health of a pressure transducer in situ is provided. The procedure includes measuring a fixed change in pressure above ambient pressure and a fixed change in pressure below ambient pressure. This is done by first sealing an enclosed volume around the transducer with a valve. A piston inside the sealed volume is increasing the pressure. A fixed pressure below ambient pressure is obtained by opening the valve, driving the piston The output of the pressure transducer is recorded for both the overpressuring and the underpressuring. By comparing this data with data taken during a preoperative calibration, the health of the transducer is determined from the linearity, the hysteresis, and the repeatability of its output. The further addition of a thermometer allows constant offset error in the transducer output to be determined.

  19. Application of the best estimate plus uncertainty method to the small break LOCA with high pressure injection failure. Effect evaluation of the model uncertainty on the safety evaluation parameter

    International Nuclear Information System (INIS)

    By applying the BEPU (best estimate plus uncertainty) method, uncertainties of best estimate results can be estimated quantitatively, and excessive conservatism can be reasonably removed to obtain evaluation results with enhanced reliability. Application of the BEPU method is being made to analyses of 'low pressure injection by intentional depressurization of the steam generator secondary side' which is an accident management approach in a SBLOCA (small break loss-of-coolant accident) with high pressure injection failure. In the previous study, the applicability of the analysis code and the uncertainties of the parameters were evaluated. In this research, sensitivity analysis was performed for each model uncertainty separately and the influence of the model on the safety evaluation parameter was estimated. The evaluation result is used to confirm the validity of ranking in the PIRT (phenomena identification and ranking table), and to evaluate the result of the statistical analysis with combined model uncertainties. (author)

  20. Ambient dose assessment around TRACY using deterministic methods

    International Nuclear Information System (INIS)

    Ambient dose was measured in the Transient Experiment Critical Facility (TRACY) supercritical experiments. In the analyses, The DORT code, the ANISN code and the MCNP code were used. Ambient dose equivalent calculated with DORT and ANSIN were compared to results calculated with MCNP. So we found that ambient dose equivalents calculated with DORT and ANISN, is larger than ones of MCNP, by 7∼50%. As a cause of this difference, we estimate that it is the difference of calculated source distribution inside the fuel solution, and that it is reflecting effect in wall. In following study, examination concerning this point is necessary. (author)