WorldWideScience

Sample records for ambient air sampling

  1. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1985-01-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous 85 Kr air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where 85 Kr was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State-of-the-art 85 Dr sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of 85 Kr

  2. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1984-10-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous krypton-85 air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where krypton-85 was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State of the art krypton-85 sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of krypton-85. 3 references, 3 figures, 1 table

  3. Sampling and analysis of pesticides in ambient air.

    Science.gov (United States)

    Yusà, V; Coscollà, C; Mellouki, W; Pastor, A; de la Guardia, M

    2009-04-10

    Developments in the sampling and determination of pesticides in ambient air have been discussed and data on the occurrence of pesticides in atmosphere have been presented. Developments in active sampling methods were reviewed and the different materials used for trapping pesticides from gas and particulate phases were discussed. Likewise, the use and developments of passive air samplers were reviewed. This article pays special attention to the analysis of pesticides trapped from ambient air, and recapitulate the procedures for extraction, clean-up and determination of these substances. Improvements in sampling procedures, analytical methods and monitoring activities are necessary to advance the knowledge of occurrence of currently used pesticides in atmosphere and their impact over environment and humans.

  4. Report on sampling and analysis of ambient air at the central waste complex

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, M., Fluor Daniel Hanford

    1997-02-13

    Over 160 ambient indoor air samples were collected from warehouses at the Central Waste Complex used for the storage of low- level radioactive and mixed wastes. These grab (SUMMA) samples were analyzed by gas chromatography-mass spectrometry using a modified EPA TO-14 procedure. The data from this survey suggest that several buildings had elevated concentrations of volatile organic compounds.

  5. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    International Nuclear Information System (INIS)

    He, X.N.; Xie, Z.Q.; Gao, Y.; Hu, W.; Guo, L.B.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  6. Ambient air sampling of organic pollutants and heavy metals within the EU/93/AIR/22 PHARE Project

    International Nuclear Information System (INIS)

    Kocan, A.

    1997-01-01

    Within the framework of the project the concentrations of eight heavy metals, vapour mercury, seven polychlorinated dibenzo-p-dioxin's, ten polychlordibenzofuran congeners, eighteen polychlorinated biphenyls, two chlorinated pesticides (hexachlorobenzene, p,p'-DDE and p,p'-DDT), fourteen polycyclic aromatic hydrocarbons, forty-two volatile organic compounds, total suspended particles were analysed. The morphology characterization of collected airborne particles and bioassays aimed at the evaluation of the mutagenic potency of pollutants present in collected air were also performed. Ambient air heavy metals were caught on cellulose filters using the same type of the sampler used for semi-volatile compounds sampling and analysed by atomic spectrometry. Vapour mercury was trapped on gold sand packed in a tube through which about 280 L of ambient air during 24 hours were drawn. On-site analysis was performed by an atomic fluorescence analyzer. Inhalable air particles, i.e particles less than 10 μm in diameter were collected by a sampler equipped with a cascade impactor fractionating into five size fractions involving respirable (<3 μm) fractions. The morphology and composition of the respirable fractions was investigated by scanning electron microscopy and X-ray microanalysis

  7. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    Science.gov (United States)

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  8. Sampling and analysis of trace-organic constituents in ambient and workplace air at coal-conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Flotard, R D

    1980-07-01

    A review of the recent literature reveals that current sampling procedures involve the use of glass fiber filters for particulate-sorbed organics and sorbent resins such as Tenax GC and XAD-2 for vapor-phase organics. Ultra trace-organic analysis of air pollutants or particulates may require the collection of a large (1000 to 3000 m/sup 3/) sample by a high volume air sampler. Personal air sampling requires a smaller (approx. = 0.5 m/sup 3/) and a portable collection apparatus. Trapped organic chemicals are recovered by solvent extraction or thermal desorption of the collector. Recovered organics are separated by using liquid chromatography or gas chromatography and are identified by ultraviolet or fluorescence spectroscopy, gas chromatography, or mass spectrometry. For quantification, standards are added to the air stream during sampling or to the filter or resin following sampling. Analysis of the requirement for air sampling in and around coal conversion plants, coupled with the findings of the literature review, indicates that a combined particulate-filter and solvent-extractable-resin sampling unit should be used to collect both particulate-sorbed organics and vapor-phase organics from workplace or ambient plant air. Such a sampler was developed for stationary, moderate-to-high-volume air sampling. Descriptions of the sampler are provided together with sampling efficiency information and recommendations for a sampling procedure.

  9. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  10. A comparison of flux chambers and ambient air sampling to measure gamma-hexachlorocyclohexane volatilisation from canola (Brassica napus) fields.

    Science.gov (United States)

    Waite, D T; Cabalo, E; Chau, D; Sproull, J F

    2007-06-01

    The insecticide gamma-hexachlorocyclohexane (gamma-HCH) is primarily used in Canada in treatments of canola (Brassica napus) seed. It has been shown that gamma-HCH so applied will volatilise with 12-30% entering the atmosphere within 6 wk after the seed is planted. Both flux chambers and high-volume air samplers were used to measure gamma-HCH volatilisation from a canola field and the results from each method compared. Daily samples were collected from three flux chambers located on the field. gamma-HCH was found in the air of the chambers on the first day after planting. Volatilisation rates were low for the first 7d (40.0 mg ha(-1) wk(-1)) but increased during the second week (143.8 mg ha(-1) wk(-1)). This was consistent with previous studies. Weekly composite air samples, from three heights above the canola field, were used to calculate volatilisation rates from the field. These were 190 mg ha(-1) wk(-1) (week 1) and 420 mg ha(-1) wk(-1) (week 2). Soil temperatures in the open field were warmer than those under the flux chambers and this may have contributed to the higher ambient air measurements.

  11. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    International Nuclear Information System (INIS)

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V b ) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel's color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber

  12. Influence of sample temperature and environmental humidity on measurements of benzene in ambient air by transportable GC-PID

    Science.gov (United States)

    Romero-Trigueros, Cristina; Doval Miñarro, Marta; González Duperón, Esther; González Ferradás, Enrique

    2017-10-01

    Calibration of in situ analysers of air pollutants is usually done with dry standards. In this paper, the influence of sample temperature and environmental humidity on benzene measurements by gas chromatography coupled with a photoionisation detector (GC-PID) is studied. Two reference gas mixtures (40 and 5 µg m-3 nominal concentration benzene in air) were subjected to two temperature cycles (20/5/20 °C and 20/35/20 °C) and measured with two identical GC-PIDs. The change in sample temperature did not produce any significant change in readings. Regarding ambient humidity, the chromatographs were calibrated for benzene with dry gases and subjected to measure reference standards with humidity (20 and 80 % at 20 °C). When measuring a concentration of 0.5 µg m-3 benzene in air, the levels of humidity tested did not produce any significant interference in measurements taken with any of the analysers. However, when measuring a concentration of 40 µg m-3, biases in measurements of 18 and 21 % for each respective analyser were obtained when the relative humidity of the sample was 80 % at 20 °C. Further tests were carried out to study the nature of this interference. Results show that humidity interference depends on both the amount fractions of water vapour and benzene. If benzene concentrations in an area are close to its annual limit value (5 µg m-3), biases of 2.2 % can be expected when the absolute humidity is 8.6 g cm-3 - corresponding to a relative humidity of 50 % at 20 °C. This can be accounted for in the uncertainty budget of measurements with no need for corrections. If benzene concentrations are above the annual limit value, biases become higher. Thus, in these cases, actions should be taken to reduce the humidity interference, as an underestimation of benzene concentrations may cause a mismanagement of air quality in these situations.

  13. Influence of sample temperature and environmental humidity on measurements of benzene in ambient air by transportable GC-PID

    Directory of Open Access Journals (Sweden)

    C. Romero-Trigueros

    2017-10-01

    Full Text Available Calibration of in situ analysers of air pollutants is usually done with dry standards. In this paper, the influence of sample temperature and environmental humidity on benzene measurements by gas chromatography coupled with a photoionisation detector (GC-PID is studied. Two reference gas mixtures (40 and 5 µg m−3 nominal concentration benzene in air were subjected to two temperature cycles (20/5/20 °C and 20/35/20 °C and measured with two identical GC-PIDs. The change in sample temperature did not produce any significant change in readings. Regarding ambient humidity, the chromatographs were calibrated for benzene with dry gases and subjected to measure reference standards with humidity (20 and 80 % at 20 °C. When measuring a concentration of 0.5 µg m−3 benzene in air, the levels of humidity tested did not produce any significant interference in measurements taken with any of the analysers. However, when measuring a concentration of 40 µg m−3, biases in measurements of 18 and 21 % for each respective analyser were obtained when the relative humidity of the sample was 80 % at 20 °C. Further tests were carried out to study the nature of this interference. Results show that humidity interference depends on both the amount fractions of water vapour and benzene. If benzene concentrations in an area are close to its annual limit value (5 µg m−3, biases of 2.2 % can be expected when the absolute humidity is 8.6 g cm−3 – corresponding to a relative humidity of 50 % at 20 °C. This can be accounted for in the uncertainty budget of measurements with no need for corrections. If benzene concentrations are above the annual limit value, biases become higher. Thus, in these cases, actions should be taken to reduce the humidity interference, as an underestimation of benzene concentrations may cause a mismanagement of air quality in these situations.

  14. Apply Woods Model in the Predictions of Ambient Air Particles and Metallic Elements (Mn, Fe, Zn, Cr, and Cu at Industrial, Suburban/Coastal, and Residential Sampling Sites

    Directory of Open Access Journals (Sweden)

    Guor-Cheng Fang

    2012-01-01

    Full Text Available The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, and Cu in total suspended particulates (TSPs concentration, dry deposition at three characteristic sampling sites of central Taiwan. Additionally, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements were calculated with Woods models at these three characteristic sampling sites during years of 2009-2010. As for ambient air particles, the results indicated that the Woods model generated the most accurate dry deposition prediction results when particle size was 18 μm in this study. The results also indicated that the Woods model exhibited better dry deposition prediction performance when the particle size was greater than 10 μm for the ambient air metallic elements in this study. Finally, as for Quan-xing sampling site, the main sources were many industrial factories under process around these regions and were severely polluted areas. In addition, the highest average dry deposition for Mn, Fe, Zn, and Cu species occurred at Bei-shi sampling site, and the main sources were the nearby science park, fossil fuel combustion, and Taichung thermal power plant (TTPP. Additionally, as for He-mei sampling site, the main sources were subjected to traffic mobile emissions.

  15. The potential effect of differential ambient and deployment chamber temperatures on PRC derived sampling rates with polyurethane foam (PUF) passive air samplers

    International Nuclear Information System (INIS)

    Kennedy, Karen; Hawker, Darryl W.; Bartkow, Michael E.; Carter, Steve; Ishikawa, Yukari; Mueller, Jochen F.

    2010-01-01

    Performance reference compound (PRC) derived sampling rates were determined for polyurethane foam (PUF) passive air samplers in both sub-tropical and temperate locations across Australia. These estimates were on average a factor of 2.7 times higher in summer than winter. The known effects of wind speed and temperature on mass transfer coefficients could not account for this observation. Sampling rates are often derived using ambient temperatures, not the actual temperatures within deployment chambers. If deployment chamber temperatures are in fact higher than ambient temperatures, estimated sampler-air partition coefficients would be greater than actual partition coefficients resulting in an overestimation of PRC derived sampling rates. Sampling rates determined under measured ambient temperatures and estimated deployment chamber temperatures in summer ranged from 7.1 to 10 m 3 day -1 and 2.2-6.8 m 3 day -1 respectively. These results suggest that potential differences between ambient and deployment chamber temperatures should be considered when deriving PRC-based sampling rates. - Internal deployment chamber temperatures rather than ambient temperatures may be required to accurately estimate PRC-based sampling rates.

  16. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  17. Final work plan : indoor air and ambient air sampling near the former CCC/USDA grain storage facility in Everest, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2010-05-24

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at the western edge of Everest, Kansas, from the early 1950s to the early 1970s. Sampling by the Kansas Department of Health and Environment (KDHE) in 1997 resulted in the detection of carbon tetrachloride in one domestic well (the Nigh well) northwest of the former facility. On behalf of the CCC/USDA, Argonne National Laboratory subsequently conducted a series of investigations to characterize the contamination (Argonne 2003, 2006a,b,c). Automatic, continuous monitoring of groundwater levels began in 2002 and is ongoing at six locations. The results have consistently indicated groundwater flow toward the north-northwest from the former CCC/USDA property to the Nigh property, then west-southwest from the Nigh property to the intermittent creek. Sitewide periodic groundwater and surface water sampling with analysis for volatile organic compounds (VOCs) began in 2008. Argonne's combined data indicate no significant downgradient extension of contamination since 2000. At present, the sampling is annual, as approved by the KDHE (2009) in response to a plan developed for the CCC/USDA (Argonne 2009). This document presents a plan for collecting indoor air samples in homes located along and adjacent to the defined extent of the carbon tetrachloride contamination. The plan was requested by the KDHE. Ambient air samples to represent the conditions along this pathway will also be taken. The purpose of the proposed work is to satisfy KDHE requirements and to collect additional data for assessing the risk to human health due to the potential upward migration of carbon tetrachloride and its primary degradation product (chloroform) into homes located in close proximity to the former grain storage facility, as well as along and within 100 ft laterally from the currently defined plume emanating from the former Everest facility. Investigation of the indoor air

  18. Determination of particle-associated polycyclic aromatic hydrocarbons in ambient air samples from the upper Silesia region of Poland

    Science.gov (United States)

    Bodzek, Danuta; Luks-Betlej, Krystyna; Warzecha, Lidia

    A gas chromatograph-mass spectrometer (GC-MS) data system and capillary gas chromatography have been used for qualitative-quantitative determination of PAHs in air samples from Upper Silesia, Poland. Airborne particulate samples were collected in the winter and summer, on glass-fiber filters which were Soxhlet-extracted using cyclohexane. The extractable organic matter was submitted to several steps of clean-up procedure by using liquid-liquid chromatography in system Sephadex LH-20, 85% methanol/ n-hexane and adsorption chromatography on Sephadex LH-20/isopropanol. The PAH fractions containing three and more rings in a molecule were particularly analysed. Retention times and mass spectra for standards were compared with the data obtained for PAH fractions using the GC-MS system. All 14 identified PAHs were determined quantitatively by the internal standard method using GC. The amounts of 14 estimated PAHs ranged from above 3 to 400 ng m -3 in the winter season, while in the summer they ranged from 1 to above 60 ng m -3. The identification of numerous PAHs, most of which exhibit biological activity, indicates a high degree of air pollution in the Upper Silesia region of Poland. In almost all places of sampling in both seasons tested the standard limit for permissible benzo( a)pyrene content in the air was exceeded.

  19. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  20. Determination of triacetonetriperoxide in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Schulte-Ladbeck, Rasmus; Karst, Uwe

    2003-04-15

    A method for the analysis of the explosive triacetonetriperoxide (TATP) in ambient air is introduced. The high volatility of the peroxide leads to significant concentrations in the air surrounding even minute quantities of TATP, thus enabling the analyst to avoid direct contact with the sensitive explosive. Air sampling is performed using gas-washing bottles filled with acetonitrile and air sampling pumps at a flow-rate of 0.6 l min{sup -1}. A sampling and a back-up gas-washing bottle are connected in series to allow monitoring of possible breakthroughs in the sampling gas-washing bottle. After sampling, two different analytical methods were used: first, reversed-phase high-performance liquid chromatography (HPLC) with subsequent post-column UV irradiation and electrochemical detection; and second, photochemical degradation of TATP with enzyme-catalyzed photometric detection. The limits of detection for 20 min of sampling time (12 l sample volume) were 190 ng l{sup -1} air for the photometric method and 550 ng l{sup -1} air for LC with electrochemical detection. The recovery was at least 75%.

  1. PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: passive and active sampling measurements near industrial and vehicular pollution sources.

    Science.gov (United States)

    Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H

    2014-09-01

    Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ambient air pollution and thrombosis.

    Science.gov (United States)

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  3. Ambient air pollution and low birth weight

    DEFF Research Database (Denmark)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy

    2017-01-01

    Background and objectives: Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term...... the effect of ambient air pollution. The aim of this commentary is to review the published literature on the association between ambient air pollution and TLBW regarding increased vulnerability for the above-mentioned subgroups.  Results: Although more than fifty epidemiological studies have examined...... the associations between ambient air pollution and TLBW to date, we only identified six studies that examined the potential effect modification of the association between ambient air pollution and TLBW by the above listed maternal risk factors. Two studies assessed effect modification caused by smoking...

  4. Development and application of an optical sensor for ethene in ambient air using near infra-red cavity ring down spectroscopy and sample preconcentration.

    Science.gov (United States)

    Aziz, M S I; Orr-Ewing, Andrew J

    2012-12-01

    An automated near infra-red (IR) continuous wave cavity ring down spectrometer with sample preconcentration has been developed for the measurement of ethene (C₂H₄) in air. The spectrometer incorporated a distributed feedback diode laser operating at wavelengths λ∼ 1.6 μm and a pre-concentration system containing an adsorbent, molecular sieve 4A (MS4A). An absorption line located at 6148.58 cm⁻¹, and free from spectral overlap with other atmospheric molecules, was used for ethene detection. The spectrometer has a capacity for determination of atmospheric ethene mixing ratios at half hour time intervals, with a detection limit (2 SD above baseline noise) of 280 ppt. Both weekday and weekend measurements were performed in ambient air for periods of up to 30 hours. Average daytime mixing ratios of ethene were observed to be 2 ppbv and 1 ppbv during weekdays and weekends respectively. The mixing ratios of ethene varied from 0.6 ppbv to 1.2 ppbv in Bristol air during the weekend, with influence of meteorological conditions. The observed variations are discussed with consideration of probable sources and various meteorological parameters. A correlation is observed in the mixing ratio of ethene and nitrogen dioxide.

  5. Inertial impaction air sampling device

    Science.gov (United States)

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  6. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  7. Status of ambient air quality at Barauni

    International Nuclear Information System (INIS)

    Kannan, G.K.

    1993-01-01

    Due to industrialization, Barauni has become a well developed industrial estate to be considered as industrial hub of Bihar. Contemporary to the industrial growth, the environmental quality also gradually deteriorated. Hence a need was felt to know the status of ambient air quality for proper planning of the future growth of industries. The ambient air quality was monitored at 16 stations in and around Barauni industrial estate during 3 major seasons for the period of one year. The results are discussed as to the status of the ambient air quality and suggestion have also been made for improvement. (author). 5 refs., 2 figs., 7 tabs

  8. Determination of triacetonetriperoxide in ambient air

    NARCIS (Netherlands)

    Schulte-Ladbeck, R.J.; Karst, U.

    2003-01-01

    A method for the analysis of the explosive triacetonetriperoxide (TATP) in ambient air is introduced. The high volatility of the peroxide leads to significant concentrations in the air surrounding even minute quantities of TATP, thus enabling the analyst to avoid direct contact with the sensitive

  9. Ambient air pollution and the fetus

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2013-06-01

    Full Text Available There is a growing evidence on the hazards of ambient air pollution on fetal development. Several review articles have been published on the adverse fetal outcomes including low birth weight, preterm birth, small-for-gestational age, and congenital anomalies. Recent studies have linked ambient air pollution to gestational hypertension, and preeclampsia which may be related to the detrimental effect of ambient air pollution on placental growth and function. Short-term and long-term exposure to particulate air pollution may cause systemic inflammatory response which may trigger preterm delivery in pregnant women. Environmental toxic chemicals that alter intrauterine environment disregulates fetal epigenome causing epigenetic-mediated changes in gene expression that may be linked to later childhood and adulthood diseases. Exposure to ambient air pollution during the whole pregnancy especially in third-trimester may cause intrauterine vitamin D deficiency which is critical for the normal development of the lung, and immune system in fetus. However, more research is needed to understand the cause and effect interaction between air pollution and fetal development. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  10. Setting priorities for ambient air quality objectives

    International Nuclear Information System (INIS)

    2004-10-01

    Alberta has ambient air quality objectives in place for several pollutants, toxic substances and other air quality parameters. A process is in place to determine if additional air quality objectives are required or if existing objectives should be changed. In order to identify the highest priority substances that may require an ambient air quality objective to protect ecosystems and public health, a rigorous, transparent and cost effective priority setting methodology is required. This study reviewed, analyzed and assessed successful priority setting techniques used by other jurisdictions. It proposed an approach for setting ambient air quality objective priorities that integrates the concerns of stakeholders with Alberta Environment requirements. A literature and expert review were used to examine existing priority-setting techniques used by other jurisdictions. An analysis process was developed to identify the strengths and weaknesses of various techniques and their ability to take into account the complete pathway between chemical emissions and damage to human health or the environment. The key strengths and weaknesses of each technique were identified. Based on the analysis, the most promising technique was the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Several considerations for using TRACI to help set priorities for ambient air quality objectives were also presented. 26 refs, 8 tabs., 4 appendices

  11. Monitoring the levels of toxic air pollutants in the ambient air of ...

    African Journals Online (AJOL)

    user

    The ambient air quality in Freetown, Sierra Leone was investigated for the first time for toxic air pollutants. We investigated the levels of polycyclic aromatic hydrocarbons (PAHs), suspended particulate matter (SPM) and carbon monoxide (CO) and considered the implication of air quality and health risks. Particulate samples ...

  12. Ambient air monitoring of Beijing MSW logistics facilities in 2006.

    Science.gov (United States)

    Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu

    2008-11-01

    In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.

  13. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  14. Alberta ambient air quality objectives : sulphur dioxide

    International Nuclear Information System (INIS)

    2011-02-01

    Sulphur dioxide (SO 2 ) is a colourless, non-flammable gas with a pungent odour. Exposure to SO 2 can result in numerous effects to the pulmonary system. This paper outlined current Alberta ambient air quality objectives in relation to SO 2 . The 1-hour average Alberta ambient air quality objective for SO 2 is currently 450 μg per m 3 . Studies conducted with healthy humans showed increased airway resistance and bronchoconstriction, as well as decreased maximum expiratory flow. Exercise can increase the severity of response to SO 2 in healthy and asthmatic individuals. Long-term exposure to SO 2 levels can also impact the metabolic activity of vegetation. The United States Environmental Protection Agency (EPA) recently announced their intention to reduce the 1-hour SO 2 standard to between 131 to 262 μg per m 3 . 7 refs.

  15. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    Science.gov (United States)

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured

  16. Ambient air monitoring for mercury around an industrial complex

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.

    1991-01-01

    Public and scientific interest in mercury in the environment has experienced an upsurge in the past few years, due in part to disclosures that fish in certain waters, which have apparently received no direct industrial discharges, were contaminated with mercury. Atmospheric releases of mercury from fossil fuel energy generators, waste incinerators and other industrial sources are suspected to be contributing to this problem. Such releases can be evaluated in a variety of ways, including stack sampling, material balance studies, soil/vegetation sampling and ambient air monitoring. Ambient air monitoring of mercury presents significant challenges because of the typically low concentrations (ng/m 3 ) encountered and numerous opportunities for sample contamination or analyte loss. There are presently no EPA-approved protocols for such sampling and analysis. Elemental mercury was used in large quantities at a nuclear weapons plant in Oak Ridge, Tennessee between 1950 and 1963 in a process similar to chloralkali production. Soil and water contamination with mercury were known to be present at the facility but outdoor ambient air contamination had not been investigated prior to the present study. In addition, one large building still contained original process equipment with mercury residuals. The objectives of this study were to establish a monitoring network for mercury which could be used (1) to demonstrate whether or not human health and the environment was being protected, and (2), to establish a decommissioning activities at the facility

  17. Ambient air pollution: a cause of COPD?

    Science.gov (United States)

    Schikowski, Tamara; Mills, Inga C; Anderson, H Ross; Cohen, Aaron; Hansell, Anna; Kauffmann, Francine; Krämer, Ursula; Marcon, Alessandro; Perez, Laura; Sunyer, Jordi; Probst-Hensch, Nicole; Künzli, Nino

    2014-01-01

    The role of ambient air pollution in the development of chronic obstructive pulmonary disease (COPD) is considered to be uncertain. We review the evidence in the light of recent studies. Eight morbidity and six mortality studies were identified. These were heterogeneous in design, characterisation of exposure to air pollution and methods of outcome definition. Six morbidity studies with objectively defined COPD (forced expiratory volume in 1 s/forced vital capacity ratio) were cross-sectional analyses. One longitudinal study defined incidence of COPD as the first hospitalisation due to COPD. However, neither mortality nor hospitalisation studies can unambiguously distinguish acute from long-term effects on the development of the underlying pathophysiological changes. Most studies were based on within-community exposure contrasts, which mainly assess traffic-related air pollution. Overall, evidence of chronic effects of air pollution on the prevalence and incidence of COPD among adults was suggestive but not conclusive, despite plausible biological mechanisms and good evidence that air pollution affects lung development in childhood and triggers exacerbations in COPD patients. To fully integrate this evidence in the assessment, the life-time course of COPD should be better defined. Larger studies with longer follow-up periods, specific definitions of COPD phenotypes, and more refined and source-specific exposure assessments are needed.

  18. Exposure to ambient air pollutants and spontaneous abortion.

    Science.gov (United States)

    Moridi, Maryam; Ziaei, Saeideh; Kazemnejad, Anoshirvan

    2014-03-01

    This study aimed to evaluate the correlation between ambient concentrations of air pollutants and first-trimester spontaneous abortion. This was a retrospective case–control study, which was conducted on 296 women from June 2010 to February 2011 in Tehran, Iran. Cases were 148 women who experienced a spontaneous abortion before 14 weeks of gestation while the controls were 148 pregnant women after 14 weeks of gestation and groups were matched on sociodemographics and obstetrics characteristics. The samples were recruited randomly from 10 hospitals. In total, pollutants concentrations were collected at 29 stations hourly throughout the study area. We estimated the mean exposure for each participant and investigated the association between spontaneous abortion and ambient pollutants. Findings demonstrated that the average of ambient air pollutants in the cases was significantly higher than in the controls (P abortion in the areas with higher concentrations of CO, NO₂, O₃ and PM₁₀ were 1.98, 0.96, 0.94 and 1.01, respectively (P abortion (P > 0.05). Our findings suggest that pregnant women exposed to ambient air pollutants may be at increased risk of spontaneous abortion. Confirmation by further research is needed.

  19. Ambient air quality trends in Alberta

    International Nuclear Information System (INIS)

    2007-01-01

    This document provided an overview of ambient air pollutant trends in Alberta. The report discussed the following pollutants having effect on human and environmental health: carbon monoxide (CO), hydrogen sulphide (H2 S ), nitrogen dioxide (NO 2 ), sulphur dioxide (SO 2 ), ozone (O 3 ), fine particulate matter (PM 2 .5), benzene, and benzopyrene. Each of these pollutants was described. The report provided data on annual average concentration trends and annual 99th percentile concentration as an indicator of peak concentrations. A map illustrating air quality monitoring stations in 2006 was also provided. The findings revealed that mean annual CO levels were the lowest they have been since 1990; hydrogen sulphide concentrations have fluctuated in time since 1990; most Edmonton and Calgary area stations showed significant decreasing trends in annual average NO 2 levels since 1990; and higher SO 2 concentrations have been found in the industrial areas of Alberta, such as the Redwater and Scotford oil sands locations. tabs., figs

  20. 77 FR 12482 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES: This... FR 66964) and codified at 40 CFR 50.16, ``National primary and secondary ambient air quality...

  1. The Impact of Ambient Air Pollution on Hospital Admissions

    OpenAIRE

    Filippini, Massimo; Masiero, Giuliano; Steinbach, Sandro

    2017-01-01

    Ambient air pollution is the environmental factor with the greatest impact on human health. Several epidemiological studies provide evidence for an association between ambient air pollution and human health. However, the recent economic literature has challenged the identification strategy used in these studies. This paper contributes to the ongoing discussion by investigating the association between ambient air pollution and morbidity using hospital admission data from Switzerland. Our ident...

  2. Wash-out of ambient air contaminations for breath measurements.

    Science.gov (United States)

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value VOCs in this setting was not observed, whereby a statistically significant reduction up to 65% as for terpinolene was achieved. Our setting successfully demonstrated a reduction of ambient air contaminations from the airways by a lung wash-out with synthetic air.

  3. Air sampling in the workplace

    International Nuclear Information System (INIS)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC's Regulatory Guide 8.25, Revision 1, ''Air sampling in the Workplace.'' That guide addresses air sampling to meet the requirements in NRC's regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed

  4. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    Science.gov (United States)

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicityAbstractMutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  5. East Mountain Area 1995 air sampling results

    International Nuclear Information System (INIS)

    Deola, R.A.

    1996-09-01

    Ambient air samples were taken at two locations in the East Mountain Area in conjunction with thermal testing at the Lurance Canyon Burn Site (LCBS). The samples were taken to provide measurements of particulate matter with a diameter less than or equal to 10 micrometers (PM 10 ) and volatile organic compounds (VOCs). This report summarizes the results of the sampling performed in 1995. The results from small-scale testing performed to determine the potentially produced air pollutants in the thermal tests are included in this report. Analytical results indicate few samples produced measurable concentrations of pollutants believed to be produced by thermal testing. Recommendations for future air sampling in the East Mountain Area are also noted

  6. East Mountain Area 1995 air sampling results

    Energy Technology Data Exchange (ETDEWEB)

    Deola, R.A. [Sandia National Labs., Albuquerque, NM (United States). Air Quality Dept.

    1996-09-01

    Ambient air samples were taken at two locations in the East Mountain Area in conjunction with thermal testing at the Lurance Canyon Burn Site (LCBS). The samples were taken to provide measurements of particulate matter with a diameter less than or equal to 10 micrometers (PM{sub 10}) and volatile organic compounds (VOCs). This report summarizes the results of the sampling performed in 1995. The results from small-scale testing performed to determine the potentially produced air pollutants in the thermal tests are included in this report. Analytical results indicate few samples produced measurable concentrations of pollutants believed to be produced by thermal testing. Recommendations for future air sampling in the East Mountain Area are also noted.

  7. Organochlorine pesticides in the ambient air of Chiapas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alegria, Henry [Chemistry Department, California Lutheran University, 60 West Olsen Road, Thousand Oaks, CA 91360 (United States)]. E-mail: halegria@clunet.edu; Bidleman, Terry F. [Centre for Atmospheric Research Experiments, Meteorological Service of Canada, 6248 Eighth Line, Egbert, ON L0L 1N0 (Canada); Figueroa, Miguel Salvador [Area de Biotecnologia, Facultad de Ciencias Quimicas, University Autonoma de Chiapas, Carretera a Puerto, Madero Km. 2, Tapachula, Chiapas (Mexico)

    2006-04-15

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use. - Elevated levels of several organochlorine pesticides were found in the ambient air of southern Mexico.

  8. Organochlorine pesticides in the ambient air of Chiapas, Mexico

    International Nuclear Information System (INIS)

    Alegria, Henry; Bidleman, Terry F.; Figueroa, Miguel Salvador

    2006-01-01

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use. - Elevated levels of several organochlorine pesticides were found in the ambient air of southern Mexico

  9. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  10. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... the Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the Clean Air Act. On April 8, 2009, and...

  11. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Williams, C.H.; Eberhart, C.F.

    1992-01-01

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  12. Evaluation of the effect of different sampling time periods and ambient air pollutant concentrations on the performance of the Radiello diffusive sampler for the analysis of VOCs by TD-GC/MS.

    Science.gov (United States)

    Gallego, E; Roca, F J; Perales, J F; Guardino, X

    2011-09-01

    The effect of different sampling exposure times and ambient air pollutant concentrations on the performance of Radiello® samplers for analysis of volatile organic compounds (VOCs) is evaluated. Quadruplicate samples of Radiello® passive tubes were taken for 3, 4, 7 and 14 days. Samples were taken indoors during February and March 2010 and outdoors during July 2010 in La Canonja (Tarragona, Spain). The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detection (MS). The results show significant differences (t-test, p VOCs obtained from the sum of two short sampling periods and a single equivalent longer sampling period for 65% of all the data. 17% of the results show significantly larger amounts of pollutant in the sum of two short sampling periods. Back diffusion due to changes in concentrations together with saturation and competitive effects between the compounds during longer sampling periods could be responsible for these differences. The other 48% of the results that are different show significantly larger amounts in the single equivalent longer sampling period. The remaining 35% of the results do not show significant differences. Although significant differences are observed in the amount of several VOCs collected over two shorter sampling intervals compared to the amount collected during a single equivalent longer sampling period, the ratios obtained are very close to unity (between 0.7 and 1.2 in 75% of cases). We conclude that Radiello® passive samplers are useful tools if their limitations are taken into account and the manufacturer's recommendations are followed.

  13. Biological Sample Ambient Preservation (BioSAP) Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for alternative methods for ambient preservation of human biological samples collected during extended spaceflight and planetary operations,...

  14. Health Effects of Ambient Air Pollution in Developing Countries.

    Science.gov (United States)

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-09-12

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.

  15. Time to harmonize national ambient air quality standards.

    Science.gov (United States)

    Kutlar Joss, Meltem; Eeftens, Marloes; Gintowt, Emily; Kappeler, Ron; Künzli, Nino

    2017-05-01

    The World Health Organization has developed ambient air quality guidelines at levels considered to be safe or of acceptable risk for human health. These guidelines are meant to support governments in defining national standards. It is unclear how they are followed. We compiled an inventory of ambient air quality standards for 194 countries worldwide for six air pollutants: PM 2.5 , PM 10 , ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. We conducted literature and internet searches and asked country representatives about national ambient air quality standards. We found information on 170 countries including 57 countries that did not set any air quality standards. Levels varied greatly by country and by pollutant. Ambient air quality standards for PM 2.5 , PM 10 and SO 2 poorly complied with WHO guideline values. The agreement was higher for CO, SO 2 (10-min averaging time) and NO 2 . Regulatory differences mirror the differences in air quality and the related burden of disease around the globe. Governments worldwide should adopt science based air quality standards and clean air management plans to continuously improve air quality locally, nationally, and globally.

  16. Xe-133: ambient air concentrations in upstate New York

    International Nuclear Information System (INIS)

    Kunz, C.; State Univ. of New York, Albany, NY

    1989-01-01

    Ambient air concentrations of 133 Xe have been measured in upstate New York for the years 1975, 1981, 1983 and 1984 at 96, 70, 67 and 81 mBqm -3 (2.6, 1.9, 1.8 and 2.2 pCim -3 ), respectively. A regional and global dispersion model was used to predict the average annual 133 Xe concentration in Albany, New York based on reported 133 Xe releases from nuclear reactors in eastern North America. Calculated and measured concentrations agreed within a factor of 2. The model calculations indicate that over 60% of the activity in Albany originates from six nearby reactor sites. Ambient air concentrations measured at three locations in Europe are about a factor of 5 less than concentrations measured in Albany. This appears to be due to lower 133 Xe release rates, particularly for the reactors located near the sampling points. 133 Xe is suggested as a gas that is suitable for studying regional and global dispersion from multiple sources since it is released from known sources at measured and reported rates. (author)

  17. The assessment of ambient air pollution pattern in Shah Alam ...

    African Journals Online (AJOL)

    The assessment of ambient air pollution pattern in Shah Alam, Selangor, Malaysia. ... was significantly low. Thus, it concluded that pollution in Shah Alam was due to high combustion and emission from vehicles. Keywords: principal component analysis; statistical process control; spearman correlation; air pollution trends.

  18. Electric scooters : Batteries in the battle against ambient air pollution?

    NARCIS (Netherlands)

    van Boven, Job FM; An, Pham Le; Kirenga, Bruce J; Chavannes, Niels H.

    2017-01-01

    Ambient air pollution is a major global health threat, responsible for an estimated loss of 103 million disability-adjusted life-years in 2015,1,2 and a main contributor to numerous health problems, such as cardiovascular and respiratory diseases.3,4 Within the traffic domain of air pollution, cars,

  19. Biomarkers of ambient air pollution and lung cancer

    DEFF Research Database (Denmark)

    Demetriou, Christiana A; Raaschou-Nielsen, Ole; Loft, Steffen

    2012-01-01

    The association between ambient air pollution exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution may cause lung cancer. Despite the prospective nature and consistent findings...... the relationships between ambient air pollution and biological markers of dose and early response. The evidence for each marker was evaluated using assessment criteria which rate a group of studies from A (strong) to C (weak) on amount of evidence, replication of findings, and protection from bias. Biomarkers...

  20. Citizen participatory dioxin monitoring campaign by pine needles as biomonitor of ambient air dioxin pollution

    Energy Technology Data Exchange (ETDEWEB)

    Komichi, I.; Takatori, A. [Environmental Research Institute Inc., Tokyo (Japan); Aoyama, T. [Musashi Institute of Technology, Yokohama (Japan). Faculty of Environment and Informations; Vrzic, B. [Maxxam Analytics Inc. HRMS Laboratory, Waterloo, ON (Canada)

    2004-09-15

    The needle-type leaves of Japanese black pine trees (hereafter abbreviated as pine needles) have been used as an effective bio-monitor of ambient air pollution. Miyata Laboratory of Setsunan University has reported that the pine needles accumulate PCDDs and PCDFs (hereafter abbreviated as D/F) through photosynthesis and respiration during their lifetime. On the basis of this study, we have revealed the correlation between ambient air and pine needle concentrations to be estimated at or near 1:10 by analyzing long term continuous ambient dioxin monitoring data and that of pine needles sampled from the same area as ambient air in the Kanagawa Prefecture in 1999. Since then, the citizen groups of each local area all over Japan have started monitoring the ambient air dioxin concentration levels by using pine needles. Samples analyzed during these 5 years totaled more than 650 throughout Japan. The results of these citizen participatory environmental monitoring activities are the tremendous effects achieved in reducing the dioxin levels. This occurs through observation of the dioxin emission sources such as Municipal Solid Waste Incineration Plants as well as the Industrial Waste Incineration plants, which exist in numbers exceeding several thousands in Japan. This short paper will present the results of 56 municipalities of western Japan where ambient air dioxin levels have improved steadily against local averages during these 5 years.

  1. Evaluation of air quality zone classification methods based on ambient air concentration exposure.

    Science.gov (United States)

    Freeman, Brian; McBean, Ed; Gharabaghi, Bahram; Thé, Jesse

    2017-05-01

    Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO 2 and 8-hr O 3 within a zone that meets the compliance requirements of each method. The first method, the "3 Strike" method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity

  2. Ambient air pollution and birth defects in brisbane, australia.

    Directory of Open Access Journals (Sweden)

    Craig A Hansen

    Full Text Available BACKGROUND: Birth defects are a major public health concern as they are the leading cause of neonatal and infant mortality. Observational studies have linked environmental pollution to adverse birth outcomes, including congenital anomalies. This study examined potential associations between ambient air pollution and congenital heart defects and cleft lip or palate among births in Brisbane, Australia (1998-2004. METHODS: Ambient air pollution levels were averaged over weeks 3-8 of pregnancy among 150,308 births. Using a case-control design, we used conditional logistic regression and matched cases to 5 controls. Analyses were conducted using all births, and then births where the mother resided within 6 and 12 kilometers of an ambient air quality monitor. FINDINGS: When analyzing all births there was no indication that ambient air pollution in Brisbane was associated with a higher risk of cardiac defects. Among births where the mother resided within 6 kilometers of an ambient air quality monitor, a 5 ppb increase in O(3 was associated with an increased risk of pulmonary artery and valve defects (OR 2.96, 95% CI: 1.34, 7.52 while a 0.6 ppb increase in SO(2 was associated with an increased risk of aortic artery and valve defects (OR 10.76, 95% CI: 1.50, 179.8. For oral cleft defects among all births, the only adverse association was between SO(2 and cleft lip with or without cleft palate (OR 1.27, 95% CI: 1.01, 1.62. However, various significant inverse associations were also found between air pollutants and birth defects. CONCLUSIONS: This study found mixed results and it is difficult to conclude whether ambient air pollution in Brisbane has an adverse association with the birth defects examined. Studies using more detailed estimates of air pollution exposure are needed.

  3. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  4. Rainwater capacities for BTEX scavenging from ambient air

    Science.gov (United States)

    Šoštarić, A.; Stanišić Stojić, S.; Vuković, G.; Mijić, Z.; Stojić, A.; Gržetić, I.

    2017-11-01

    The contribution of atmospheric precipitation to volatile organic compound (VOC) removal from the atmosphere remains a matter of scientific debate. The aim of this study was to examine the potential of rainwater for benzene, toluene, ethylbenzene and xylene (BTEX) scavenging from ambient air. To that end, air and rainwater samples were collected simultaneously during several rain events that occurred over two distinct time periods in the summer and autumn of 2015. BTEX concentrations in the gaseous and aqueous phases were determined using proton transfer reaction mass spectrometry. The results reveal that the registered amounts of BTEX in rainwater samples were higher than those predicted by Henry's law. Additional analysis, including physico-chemical characterization and source apportionment, was performed and a possible mechanism underlying the BTEX adsorption to the aqueous phase was considered and discussed herein. Finally, regression multivariate methods (MVA) were successfully applied (with relative errors from 20%) to examine the functional dependency of BTEX enrichment factor on gaseous concentrations, physico-chemical properties of rainwater and meteorological parameters.

  5. Ambient air pollution and children's lung function in China.

    Science.gov (United States)

    Liu, Ling; Zhang, Jinliang

    2009-01-01

    To describe the correlations between ambient air pollutants (TSP, SO(2), NO(x)) and the level of children's lung function (FVC, FEV(1), MMEF) in China. We collected the research articles on ambient air pollution and children's lung function published from 1985 to 2006 and selected 11 articles finally according to the following criteria: (1) Children between the age of 7 and 15 as objects; (2) Local air quality monitoring results were reported; (3) Strict quality control was taken when testing children's lung function; (4) The results were expressed by the average of measured value. Then we analyzed the correlation relationship between the level of ambient air pollutants and children's lung function and compared the effects of ambient air pollutants on children's lung function of boy and girl. The selected articles included the results of 7 cities in China. Among them, the results of 6 cities' studies revealed that the levels of children's lung function were significantly lower in the areas with heavy ambient air pollution than those in the areas with light ambient air pollution. According to the articles, the average levels of TSP were at the range of 0.084 mg/m(3)-0.835 mg/m(3), SO(2) were 0.013 mg/m(3)-0.929 mg/m(3), NO(x) were 0.044 mg/m(3)-0.229 mg/m(3). Correlation analysis showed significant negative correlation between the levels of TSP and SO(2) and children's FVC and FEV(1), as well as the levels of NO(x) and children's MMEF. The correlation coefficient was -0.797 (t=-4.384, P=0.001) between TSP and FVC, -0.693 (t=-4.190, Pair pollution were significantly greater for boy. The levels of ambient air TSP and SO(2) correlated with the damage of the big airway function of children, while NO(x)NO(x) affected the small airway function chiefly. Furthermore, lung function of girl was more susceptible to ambient air pollutants than boy.

  6. Canadian pesticide air sampling campaign

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y.; Harner, T.; Blanchard, P.; Li, Y.F.; Aulagnier, F. [Environment Canada, Gatineau, PQ (Canada). Meteorological Service of Canada; Tuduri, L. [Laboratoire de Physico Toxicochimie des Systemes Naturels, Talence (France). Equipe Perigourdine de Chimie Appliquee; Waite, D.; Belzer, W. [Environment Canada, Ottawa, ON (Canada). Environmental Conservation Branch; Murphy, C. [Environment Canada, Ottawa, ON (Canada). Environmental Protection Service

    2005-07-01

    Although pesticides are widely used in Canada, little is known about the presence, distribution, and fate of currently used pesticides (CUPs) in the Canadian atmosphere. This paper provided details of a campaign conducted in 2003 to provide information on air and precipitation levels of CUPs. The objective of the campaign was to create pesticide emission inventories and to identify important pesticide issues related to environmental fate, exposure, and risk assessment in order to develop effective pesticide policies. A Canadian atmospheric network for currently used pesticides was established, which was then followed by an intensive field study in the Canadian prairies. Air samples were collected weekly using high volume PS-1 samplers with polyurethane foam (PUF) XAD sandwiches and glass fibre filters. Precipitation samples were collected each month using MIC samplers equipped with XAD columns. Passive air samplers were deployed at many of the sites for periods of 1 to 3 months. Results of the study showed relatively high concentrations of endosulfan at all sites. High levels of chloropyrifos, malathion, and carbofurans were also detected from air samples. High concentrations of lindane were also observed. Alachlor, metochlor, and trifluralin concentrations were detected in most Ontario and Quebec air and rainfall samples. Eleven target pesticides were detected from air samples during the prairie study. High concentrations of triallate were observed, and good correlations between air concentration trends and dry deposition trends were seen for triallate, 2,4-D, MCPA, dicamba, and bromoxynil. Results of the campaign are now being modelled using a simplified gridded pesticide emission and residue model. 4 refs., 7 figs.

  7. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2013-04-03

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...

  8. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  9. Influence of Ambient Air Pollution on Television Use among Residents in Shanghai, China.

    Science.gov (United States)

    Zhang, Sheng; An, Ruopeng

    2018-03-01

    We examined the impact of ambient air pollution on television use among residents in Shanghai, China. Device-measured daily average duration of television use from January 2014 to December 2016 was obtained from a random sample of 300 households, and was matched to air pollution and weather data. We used an autoregressive moving-average model to estimate the association between air quality index (AQI) and television use. There was a negative non-linear relationship between air pollution level and television use. Compared to the days when air quality was good (0≤AQI≤50), days with fair air quality (50air pollution (100air pollution (AQI>150) were associated with a reduction in daily average television use by 2.9 (p = .002), 4.6 (p air pollution was associated with reduced television use. People might mitigate the detrimental impact of air pollution by engaging in other indoor activities and/or sleeping.

  10. Ambient air pollution and pregnancy-induced hypertensive disorders

    DEFF Research Database (Denmark)

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy

    2014-01-01

    to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December...... 2009 and December 2013. Combined risk estimates were calculated using random-effect models for each exposure that had been examined in ≥4 studies. Heterogeneity and publication bias were evaluated. A total of 17 articles evaluating the impact of nitrogen oxides (NO2, NOX), particulate matter (PM10, PM2...

  11. Ambient air quality in Lower Town Quebec

    International Nuclear Information System (INIS)

    Sebez, S.

    2007-01-01

    A municipal waste incinerator near Lower Town Quebec has been identified as a major source of air pollution, notably emissions of dioxins, furans, nitrogen oxides (NOx), volatile organic matter (VOC) and polycyclic aromatic hydrocarbons (PAH). Combustion fumes contain gases such as carbon monoxide (CO), carbon dioxide (CO 2 ) and sulphur dioxide (SO 2 ), as well as dusts, fly ash and particulate matter that is easily airborne. The risks associated with poor air quality have been evaluated along with the effects of pollutants on young children, pregnant women, senior citizens and those with cardiac problems. Some studies have reported that exposure to NOx may cause lung cancer and certain VOCs can irritate the respiratory tract system. Air quality tests have also revealed the presence of mercury. In combination, all these pollutants create smog. The concrete actions that have been taken to address smog issues were discussed. The distance between the incinerator and different residential areas within Lower Town Quebec have been measured along with air quality. Health risks were found to be higher in areas closer to the incinerator. Major modifications have been recommended in order to reduce pollution emissions from the incinerator. These include modernizing the equipment, installing proper scrubbers, and to ultimately the close the incinerator if it continues to underperform. refs., tabs., figs

  12. A cautionary note on the effects of laboratory air contaminants on ambient ionization mass spectrometry measurements.

    Science.gov (United States)

    Kumbhani, Sambhav R; Wingen, Lisa M; Perraud, Véronique; Finlayson-Pitts, Barbara J

    2017-10-15

    Ambient ionization mass spectrometry methods are convenient, sensitive and require little sample preparation. However, they are susceptible to species present in air surrounding the mass spectrometer. This study identifies some challenges associated with the potential impacts of indoor air contaminants on ionization and analysis involving open-air methods. Unexpected effects of volatile organic compounds (VOCs) from floor maintenance activities on ambient ionization mass spectrometry were studied using three different ambient ionization techniques. Extractive electrospray ionization (EESI), direct analysis in real time (DART) and ionization by piezoelectric direct discharge (PDD) plasma were demonstrated in this study to be affected by indoor air contaminants. Identification of contaminant vapors was verified by comparison with standards using EESI-MS/MS product ion scans. Emissions of diethylene glycol monoethyl ether and ethylene glycol monobutyl ether are identified from floor stripping and waxing solutions using three ambient ionization mass spectrometry techniques. These unexpected indoor air contaminants are capable of more than 75% ion suppression of target analytes due to their high volatility, proton affinity and solubility compared with the target analytes. The contaminant vapors are also shown to form adducts with one of the target analytes. The common practice in MS analysis of subtracting a background air spectrum may not be appropriate if the presence of ionizable air contaminants alters the spectrum in unexpected ways. For example, VOCs released into air from floor stripping and waxing are capable of causing ion suppression of target analytes. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Permeability of gypsum samples dehydrated in air

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  14. Electric scooters: Batteries in the battle against ambient air pollution?

    OpenAIRE

    van Boven, Job FM; An, Pham Le; Kirenga, Bruce J; Chavannes, Niels H.

    2017-01-01

    Ambient air pollution is a major global health threat, responsible for an estimated loss of 103 million disability-adjusted life-years in 2015,1,2 and a main contributor to numerous health problems, such as cardiovascular and respiratory diseases.3,4 Within the traffic domain of air pollution, cars, lorries, busses, mopeds, and scooters are all partly responsible, with the latter being of particular importance regarding, amongst others, black carbon, carcinogenic benzene, and (ultrafine) part...

  15. Ambient air pollution associated to domestic wood burning heating systems

    International Nuclear Information System (INIS)

    Friboulet, I.; Durif, M.; Malherbe, L.

    2009-01-01

    Main publications are considering effects of wood burning appliances on indoor air quality, which is a major issue in some countries. But impacts on ambient air, close environment and human exposure are rather poorly characterised so far. Besides, woods burning for domestic purpose may develop in the next years while promoting bio fuels. The aim of the ongoing study is to assess in which conditions associated air pollution and population exposure could be significant, this poster shows preliminary results of the impact of a village of 98 houses equipped with a wood burning heating system. (N.C.)

  16. Assessment of ambient air quality in Eskişehir, Turkey.

    Science.gov (United States)

    Ozden, O; Döğeroğlu, T; Kara, S

    2008-07-01

    This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO(2)), particulate matter (PM), nitrogen dioxide (NO(2)), ozone (O(3)), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region. The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO(2) and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO(2) (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union

  17. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO 2 ), and nitrogen oxides (NO, NO 2 , and NO x ). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks

  18. Ambient Air Pollution and Biomarkers of Health Effect.

    Science.gov (United States)

    Yang, Di; Yang, Xuan; Deng, Furong; Guo, Xinbiao

    2017-01-01

    Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.

  19. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis.

    Science.gov (United States)

    Jayaraj, Richard L; Rodriguez, Eric A; Wang, Yi; Block, Michelle L

    2017-06-01

    Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.

  20. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    Science.gov (United States)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  1. Results of monitoring for PCDDs and PCDFs in ambient air at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Lugar, R.M.

    1993-09-01

    This report presents the results of ambient air monitoring for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) performed during the 1992-1993 austral summer in the vicinity of McMurdo Station, Antarctica. Fifteen air samples were collected from four different locations for determination of the presence and concentration of PCDD/PCDF compounds. General Metal Works Inc. PS-1 air samplers equipped with polyurethane foam (PUF) with a sample flow rate of approximately 0.27 m{sup 3}/min. were used to collect air samples. Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with U.S. Environmental Protection Agency guidance for local ambient air quality networks. PCDD/PCDF compounds were not detected at the predominantly upwind location and at a more remote site on Black Island. Trace levels of only a few PCDD/PCDF congeners were detected sporadically at a location approximately 500 meters downwind of the station. The most frequent, most varied, and highest levels of PCDDs/PCDFs were measured at a {open_quotes}downtown{close_quotes} location, where concentrations of total PCDDs ranged from 0.27 to 1.80 pg/m{sup 3} and total PCDFs from less than 0.1 to 2.77 pg/m{sup 3}. Results from the remote Black Island site indicate that the background Antarctic air is still {open_quotes}free{close_quotes} of PCDD/PCDF compounds (not detectable at current method detection limits). The initial baseline effort demonstrated that site selection and sampling equipment performance were satisfactory, provided useful data for assessing the impact of McMurdo operations on the local ambient air quality, and provided baseline data for assessing the Antarctica continental air quality.

  2. Ambient-air ozonolysis of triglycerides in aged fingerprint residues.

    Science.gov (United States)

    Pleik, Stefanie; Spengler, Bernhard; Ram Bhandari, Dhaka; Luhn, Steven; Schäfer, Thomas; Urbach, Dieter; Kirsch, Dieter

    2018-02-26

    In forensic science, reconstructing the timing of events occurring during a criminal offense is of great importance. In some cases, the time when particular evidence was left on a crime scene is a critical matter. The ability to estimate the fingerprint age would raise the evidentiary value of fingerprints tremendously. For this purpose the most promising approach is the analysis of changes in the chemical compositions of fingerprint residues in the course of aging. The focus of our study is the identification of human specific compounds in fingerprint residues, characterized by a significant aging behavior that could analytically be used for the age determination of fingerprints in future. The first challenge is the sensitive detection of trace amounts of relevant human specific fingerprint compounds. Highly sensitive LC-MS methods were developed for the reliable structure identification of unsaturated triglycerides and their natural degradation products in order to proof the aging mechanism that takes place in fingerprint residues. Thus our results build the fundamental basis for further forensic method development and potential application in forensic investigation. Ozonolysis was found to be one of the major lipid degradation pathways in fingerprint residues in ambient air. High-resolution tandem mass spectrometry (HRMS 2 ) was carried out to identify the ozonolysis products (TG48:0-monoozonide) formed under exposure to the highly reactive ozone in atmospheric air. The obtained products were confirmed by matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Despite several challenges and limitations in the age estimation of fingerprints, the identification of individual degradation products of specific unsaturated lipids in aged fingerprint samples represents a significant analytical progress, resulting in a strong increase in the validity of chemical analysis of fingerprints.

  3. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  4. Detection of allergens adsorbed to ambient air particles collected in four European cities.

    Science.gov (United States)

    Namork, Ellen; Johansen, Bjørn V; Løvik, Martinus

    2006-08-01

    Air pollution has been implicated as one of the factors responsible for the increased incidence of allergic diseases observed in recent years. High concentrations of air pollutants may promote airway sensitization by acting as adjuvants. Ambient particles as carriers of adsorbed allergens are, therefore, of special interest since they may act as mediators of inflammatory as well as allergic responses. Ambient air particles from four cities in Europe were collected, in three different seasons, to examine the variation of allergens and their possible binding to the pollution particles. The particle fraction, PM10, was collected on polycarbonate filters using a low-volume sampling regime. The presence of pollen allergens, latex and beta-glucans was investigated using an immunogold labelling method directly on the collection filters. Scanning electron microscopy revealed mainly the classical carbon particles and aggregates determined to originate from vehicle exhaust. The immunogold labelling visualised in the backscatter electron imaging mode, showed that allergens from pollens, latex and also beta-glucans were bound to and, hence, transported by the combustion particles in ambient air. Thus, combustion particles in ambient air are carriers of allergens and act as depots of allergens inhaled into the airways.

  5. Long-term continuous sampling of ¹²CO₂, ¹³CO₂ and ¹²C¹⁸O¹⁶O in ambient air with a quantum cascade laser spectrometer.

    Science.gov (United States)

    McManus, J Barry; Nelson, David D; Zahniser, Mark S

    2010-03-01

    A recently developed laser spectroscopic instrument allows real-time continuous measurements of the stable isotopologues of carbon dioxide at ambient concentrations. This compact instrument offers sufficient precision (0.2 per thousand in 1 s, 0.02 per thousand in 60 s) and stability (drift in 1 h ofair nearly continuously for more than 10 months, in a heterogeneous urban area northwest of Boston, MA. During this long sampling experiment, we continued to improve and modify the instrument and sampling system. In this paper, we present data collected during that long sampling experiment in order to demonstrate some of the possibilities provided by such real-time continuous monitoring. We have observed distinct isotopic signatures in CO(2) variations from timescales of seconds to seasons. We also present a method of performing continuous Keeling regressions on a cascade of timescales and show some results in application of that method to the continuous sampling data set.

  6. Sampling and chemical analysis by TXRF of size-fractionated ambient aerosols and emissions

    International Nuclear Information System (INIS)

    John, A.C.; Kuhlbusch, T.A.J.; Fissan, H.; Schmidt, K.-G-; Schmidt, F.; Pfeffer, H.-U.; Gladtke, D.

    2000-01-01

    Results of recent epidemiological studies led to new European air quality standards which require the monitoring of particles with aerodynamic diameters ≤ 10 μm (PM 10) and ≤ 2.5 μm (PM 2.5) instead of TSP (total suspended particulate matter). As these ambient air limit values will be exceeded most likely at several locations in Europe, so-called 'action plans' have to be set up to reduce particle concentrations, which requires information about sources and processes of PMx aerosols. For chemical characterization of the aerosols, different samplers were used and total reflection x-ray fluorescence analysis (TXRF) was applied beside other methods (elemental and organic carbon analysis, ion chromatography, atomic absorption spectrometry). For TXRF analysis, a specially designed sampling unit was built where the particle size classes 10-2.5 μm and 2.5-1.0 μm were directly impacted on TXRF sample carriers. An electrostatic precipitator (ESP) was used as a back-up filter to collect particles <1 μm directly on a TXRF sample carrier. The sampling unit was calibrated in the laboratory and then used for field measurements to determine the elemental composition of the mentioned particle size fractions. One of the field campaigns was carried out at a measurement site in Duesseldorf, Germany, in November 1999. As the composition of the ambient aerosols may have been influenced by a large construction site directly in the vicinity of the station during the field campaign, not only the aerosol particles, but also construction material was sampled and analyzed by TXRF. As air quality is affected by natural and anthropogenic sources, the emissions of particles ≤ 10 μm and ≤ 2.5 μm, respectively, have to be determined to estimate their contributions to the so called coarse and fine particle modes of ambient air. Therefore, an in-stack particle sampling system was developed according to the new ambient air quality standards. This PM 10/PM 2.5 cascade impactor was

  7. Monitoring of total suspended air particulate in the ambient air of ...

    African Journals Online (AJOL)

    Monitoring of total suspended air particulate in the ambient air of welding, car painting and. V. C. IKAMAISE, I. B. OBIOH, I. E. OFOZIE, F. A. AKEREDOLU. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjpas.v7i4.16316.

  8. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2009-0443; FRL-9492-3] RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues of Tuesday, November 22, 2011...

  9. Seasonal variations of ambient air mercury species nearby an airport

    Science.gov (United States)

    Fang, Guor-Cheng; Tsai, Kai-Hsiang; Huang, Chao-Yang; Yang, Kuang-Pu Ou; Xiao, You-Fu; Huang, Wen-Chuan; Zhuang, Yuan-Jie

    2018-04-01

    This study focuses on the collection of ambient air mercury species (total gaseous mercury (TGM), reactive gaseous mercury (RGM), gaseous element mercury (GEM) and particulate bound mercury (PBM) pollutants at airport nearby sampling site during the year of Apr. 2016 to Mar. 2017 by using Four-stage gold amalgamation and denuder. The results indicated that the average TGM, RGM and GEM concentrations were 5.04 ± 2.43 ng/m3, 29.58 ± 80.54 pg/m3, 4.70 ± 2.63 ng/m3, respectively during the year of Apr. 2016 to Mar. 2017 (n = 49) period at this airport sampling site nearby. In addition, the results also indicated that the average PBM concentrations in TSP and PM2.5 were 0.35 ± 0.08 ng/m3 and 0.09 ± 0.03 ng/m3, respectively. And the average PBM in TSP concentrations order follows as summer > autumn > spring > winter, while the average PBM in PM2.5 concentrations order follows as spring > summer > winter > autumn. Moreover, the average TGM, RGM and GEM concentrations order follow as spring > summer > autumn > winter. Finally, the Asian continent has the highest average mercury species concentrations (TGM, RGM, GEM and PBM) when compared with the American and European continents, and the average mercury species concentrations (TGM, RGM, GEM and PBM) displayed declined trends for North America (United States and Canada) and Europe (Spain, Sweden and Southern Baltic) during the years of 2004-2014. Also noteworthy is that the average mercury species concentrations (TGM, RGM, GEM) displayed increasing trends in China and Taiwan during the years of 2008-2016. Japan and Korea are the only two exceptions. Those above two countries mercury species concentrations displayed decreasing trends during years of 2008-2015.

  10. Novel Semi-Direct OH Reactivity (kOH) Measurements by Chemical Ionization Mass Spectrometry during a Chamber Instrument Comparison Campaign and Continuous Ambient Air Sampling at a Central European GAW Station

    Science.gov (United States)

    Muller, J.; Kubistin, D.; Elste, T.; Plass-Duelmer, C.; Claude, A.; Englert, J.; Holla, R.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Novelli, A.; Tillmann, R.; Wegener, R.; Rohrer, F.; Yu, Z.; Bohn, B.; Williams, J.; Pfannerstill, E.; Edtbauer, A.; Kluepfel, T.

    2016-12-01

    Total OH reactivity (kOH) has been recognized as a useful measure to gauge the potential atmospheric oxidation capacity and a few different in-situ measurement techniques have been developed over the last 15 years. Here results are presented from a novel semi-direct method developed by the German Weather Service (DWD) utilizing a chemical ionization mass spectrometer (CIMS). Recently in April 2016, the CIMS system participated in a half-blind kOH instrument comparison campaign at the Forschungszentrum Jülich (FZJ) SAPHIR chamber. Experiments provided controlled conditions with a range of different VOC mixtures and varying NOx levels, representing environments dominated by biogenic or urban emissions. Alongside CIMS, kOH was also measured by systems using the comparative reactivity method (CRM) and the pump-probe technique with OH detection. The intercomparison revealed a good performance of CIMS at lower OH reactivities (0-15 s-1), a range for which the instrumental set up was optimized. Limitations of the CIMS system consist of an upper limit for kOH detection and the need for applying a chemical correction function as a result of instrument-internal HOx recycling. Findings and instrument parameters obtained from the FZJ SAPHIR campaign and flow tube experiments are then applied to ambient air kOH measurements at the Meteorological Observatory Hohenpeissenberg (MOHp), Germany. The CIMS instrument is used there for long-term measurements of OH, H2SO4, ROx and kOH. Here, we show ambient air kOH measurements, interpreted in conjunction with volatile organic compounds (VOC) and inorganic trace gases also measured at the GAW station Hohenpeissenberg. These observations provide a unique dataset to investigate turnover rates and seasonal cycles of reactive trace gases, i.e. sources that make up total OH reactivity in this central European, rural setting.

  11. Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC

    International Nuclear Information System (INIS)

    Melaku, Samuel; Morris, Vernon; Raghavan, Dharmaraj; Hosten, Charles

    2008-01-01

    Atmospheric samples of precipitation and ambient air were collected at a single site in Washington, DC, for 7 months (for ambient air samples) and 1 year (for wet deposition samples) and analyzed for arsenic, cadmium, chromium and lead. The ranges of heavy metal concentrations for 6-day wet deposition samples collected over the 1-year period were 0.20-1.3 μg/l, 0.060-5.1 μg/l, 0.062-4.6 μg/l and 0.11-3.2 μg/l for arsenic, cadmium, chromium and lead, respectively, with a precision better than 5% for more than 95% of the measurements. The ranges of heavy metal concentrations for the 6-day ambient air samples were 0.800-15.7 ng/m 3 , 1.50-30.0 ng/m 3 , 16.8-112 ng/m 3 , and 2.90-137 ng/m 3 for arsenic, cadmium, chromium and lead, respectively, with a precision better than 10%. The spread in the heavy metal concentration over the observation period suggests a high seasonal variability for heavy metal content in both ambient air and wet deposition samples. - High seasonal variability of heavy metals were observed in both ambient air and wet deposition samples

  12. Ambient air monitoring to support HLW repository site characterization

    International Nuclear Information System (INIS)

    Fransioli, P.M.; Dixon, W.R.

    1993-01-01

    Site characterization at the Yucca Mountain site includes an ambient air quality and meteorological monitoring program to provide information for environmental and site characterization issues. The program is designed to provide data for four basic purposes: Atmospheric dispersion calculations to estimate impacts of possible airborne releases of radiological material; Engineering design and extreme weather event characterization; Local climate studies for environmental impact analyses and climate characterization; and, Air quality permits required for site characterization work. The program is compiling a database that will provide the basis for analyses and reporting related to the purposes of the program. Except for reporting particulate matter and limited meteorological data to the State of Nevada for an air quality permit condition, the data have yet to be formally analyzed and reported

  13. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-04-27

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9142-1] Office of Research and Development; Ambient Air... Assurance Handbook for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program...

  14. 78 FR 12052 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Science.gov (United States)

    2013-02-21

    ... pollution control agencies, and tribal entities which collect and report ambient air quality data for the..., environmental groups, academic institutions, industrial groups) use the ambient air quality data for many..., documenting episodes and initiating episode controls, air quality trends assessment, and air pollution...

  15. Ambient air pollution as a risk factor for lung cancer

    Directory of Open Access Journals (Sweden)

    COHEN AARON J

    1997-01-01

    Full Text Available Epidemiologic studies over the last 40 years have observed that general ambient air pollution, chiefly due to the by- products of the incomplete combustion of fossil fuels, is associated with small relative increases in lung cancer. The evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30-50% increases in the risk of lung cancer in relation to approximately a doubling of respirable particle exposure. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the US continue to be exposed to pollutant mixtures containing known or suspected carcinogens. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the US, based largely on the results of animal experimentation, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution in the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer related to air pollution.

  16. Guidance for air sampling at nuclear facilities

    International Nuclear Information System (INIS)

    Breslin, A.J.

    1976-11-01

    The principal uses of air sampling at nuclear facilities are to monitor general levels of radioactive air contamination, identify sources of air contamination, and evaluate the effectiveness of contaminant control equipment, determine exposures of individual workers, and provide automatic warning of hazardous concentrations of radioactivity. These applications of air sampling are discussed with respect to standards of occupational exposure, instrumentation, sample analysis, sampling protocol, and statistical treatment of concentration data. Emphasis is given to the influence of spacial and temporal variations of radionuclide concentration on the location, duration, and frequency of air sampling

  17. Air toxics in Canada measured by the National Air Pollution Surveillance (NAPS) program and their relation to ambient air quality guidelines.

    Science.gov (United States)

    Galarneau, Elisabeth; Wang, Daniel; Dabek-Zlotorzynska, Ewa; Siu, May; Celo, Valbona; Tardif, Mylaine; Harnish, David; Jiang, Ying

    2016-02-01

    This study reports ambient concentrations of 63 air toxics that were measured in Canada by the National Air Pollution Surveillance (NAPS) program over the period 2009-2013. Measured concentrations are compared with ambient air quality guidelines from Canadian jurisdictions, and compounds that exceeded guidelines are identified and discussed. Although this study does not assess risk or cumulative effects, air toxics that approached guidelines are also identified so that their potential contribution to ambient air toxics pollution can be considered. Eleven air toxics exceeded at least one guideline, and an additional 16 approached guidelines during the study period. Four compounds were measured using methods whose detection limits exceeded a guideline value, three of which could not be compared with guidelines, since they were not detected in any samples. The assessment of several metal(loid) concentrations is tentative, since they were measured only in fine particulate matter (PM) but compared with guidelines based on coarse or total PM. Improvements to sampling and analysis techniques for the latter compounds as well as for those whose methods are subject to known uncertainties would improve confidence in reported concentrations and their relation to applicable guidelines. Analysis of sampling strategies for all compounds found to exceed or approach guidelines would contribute to ensuring that their spatiotemporal coverage is adequate. Examination of the air toxics not measured by NAPS but having guidelines in Canadian jurisdictions or being included in other programs such as the U.S. National-Scale Air Toxics Assessment (NATA) would contribute to ensuring that the full suite of pollutants relevant to ambient air quality in Canada is subject to adequate study. The results of this study can be applied to evaluating the effectiveness of toxic substances management in Canada. Recent measurements of 63 air toxics in Canada by the National Air Pollution Surveillance

  18. Ambient air pollution, climate change, and population health in China.

    Science.gov (United States)

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Characterization of ambient air pollution for stochastic health models

    Energy Technology Data Exchange (ETDEWEB)

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  20. 40 CFR 61.34 - Air sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Air sampling. 61.34 Section 61.34... sampling. (a) Stationary sources subject to § 61.32(b) shall locate air sampling sites in accordance with a... concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...

  1. Pure air-plasma bullets propagating inside microcapillaries and in ambient air

    KAUST Repository

    Lacoste, Deanna

    2014-11-04

    This paper reports on the characterization of air-plasma bullets in microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets were produced by nanosecond repetitively pulsed discharges, applied in a dielectric barrier discharge configuration. The anode was a tungsten wire with a diameter of 50 μm, centered in the microcapillary, while the cathode was a silver ring, fixed on the outer surface of the fused silica tube. The effects of the applied voltage and the inner diameter of the microcapillary tube on the plasma behavior were investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity is only a function of the amplitude of the applied voltage. In ambient air, the propagation of air bullets with a velocity of about 1.25 ×105 m s-1 is observed.

  2. The State of Ambient Air Quality of Jeddah, Saudi Arabia

    Science.gov (United States)

    Hussain, M. M.; Aburizaiza, O. S.; Khwaja, H. A.; Siddique, A.; Nayebare, S. R.; Zeb, J.; Blake, D. R.

    2014-12-01

    Ambient air pollution in major cities of Saudi Arabia is a substantial environmental and health concern. A study was undertaken to assess the air quality of Jeddah, Saudi Arabia by the analysis of respirable particulate matter (PM2.5), black carbon (BC), trace metals (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Cd, Sb, and Pb), and water-soluble ions (F-, Cl-, NO3-, SO42-, C2O42-, and NH42+). Sulfur and BC mass concentration ranged 0.99 - 7.39 μg/m3 and 0.70 - 3.09 μg/m3, respectively, while the PM2.5 mass concentration ranged 23 - 186 μg/m3. Maximum BC contribution to PM2.5 was 5.6%. Atmospheric PM2.5 concentrations were well above the 24 h WHO guideline of 20 μg/m3. Air Quality Index (AQI) indicates that there were 8% days of moderate air quality, 28% days of unhealthy air quality for sensitive groups, 55% days of unhealthy air quality, and 9% days of very unhealthy air quality during the study period. Sulfate SO42- dominated the identifiable components. The major contributors to PM2.5 were soil and crustal material; vehicle emissions (black carbon factor); and fuel oil combustion in industries (sulfur factor), according to the Positive Matrix Factorization (PMF). This study highlights the importance of focusing control strategies not only on reducing PM concentration, but also on the reduction of toxic components of the PM, to most effectively protect human health and the environment.

  3. 40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology

    Science.gov (United States)

    2010-07-01

    ... Methodology C Appendix C to Part 58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Quality Monitoring Methodology 1.0 Purpose 2.0 SLAMS Ambient Air Monitoring Stations 3.0 NCore Ambient Air... alternative SO2, CO, NO2, O3, PM2.5, or PM10−2.5 monitoring methodologies are proposed for monitors not...

  4. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning environmental test... conditioning environmental test facility ambient requirements. The goal of an air conditioning test facility is... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating...

  5. Ambient air pollution and hypertensive disorder of pregnancy.

    Science.gov (United States)

    Xu, Xiaohui; Hu, Hui; Ha, Sandie; Roth, Jeffrey

    2014-01-01

    Ambient air pollution has been implicated in the development of hypertensive disorders of pregnancy (HDP). However, evidence of the association between air pollution and HDP is still limited, and the effects of gaseous air pollutants on HDP and their time windows of exposure have not been well studied. We used the Florida birth registry data to investigate the associations between air pollutants (NO2, SO2, PM(2.5), O3 and CO) and the risks of HDP in 22,041 pregnant women in Jacksonville, Florida, USA from 2004 to 2005. Further, we examined whether air pollution exposure during different time windows defined by trimesters and the entire pregnancy had different effects on HDP. The single-pollutant logistic regression model showed that exposure to four pollutants during the full pregnancy period was significantly associated with prevalence of HDP after adjusting for covariates: NO2 (OR=1.21, 95% CI 1.09 to 1.35), PM2.5 (OR=1.24, 95% CI 1.08 to 1.43), SO2 (OR=1.13, 95% CI 1.01 to 1.25) and CO (OR=1.12, 95% CI 1.03 to 1.22) per IQR increase. Similar effects were observed when first trimester exposure to NO2, SO2 and CO, and second trimester exposures to PM2.5 were examined. Consistent results were confirmed in multiple-pollutant models. This study suggests that exposure to high levels of air pollution during early pregnancy and the full gestational period was associated with increased prevalence of HDP in Florida, USA.

  6. Effects of Ambient Air Pollution on Hemostasis and Inflammation

    Science.gov (United States)

    Rudež, Goran; Janssen, Nicole A.H.; Kilinc, Evren; Leebeek, Frank W.G.; Gerlofs-Nijland, Miriam E.; Spronk, Henri M.H.; Cate, Hugo ten; Cassee, Flemming R.; de Maat, Moniek P.M.

    2009-01-01

    Background Air pollution has consistently been associated with increased morbidity and mortality due to respiratory and cardiovascular disease. Underlying biological mechanisms are not entirely clear, and hemostasis and inflammation are suggested to be involved. Objectives Our aim was to study the association of the variation in local concentrations of airborne particulate matter (PM) with aerodynamic diameter < 10 μm, carbon monoxide, nitrogen monoxide, nitrogen dioxide, and ozone with platelet aggregation, thrombin generation, fibrinogen, and C-reactive protein (CRP) levels in healthy individuals. Methods From 40 healthy volunteers, we collected 13 consecutive blood samples within a 1-year period and measured light-transmittance platelet aggregometry, thrombin generation, fibrinogen, and CRP. We performed regression analysis using generalized additive models to study the association between the hemostatic and inflammatory variables, and local environmental concentrations of air pollutants for time lags within 24 hr before blood sampling or 24–96 hr before blood sampling. Results In general, air pollutants were associated with platelet aggregation [average, +8% per interquartile range (IQR), p < 0.01] and thrombin generation (average, +1% per IQR, p < 0.05). Platelet aggregation was not affected by in vitro incubation of plasma with PM. We observed no relationship between any of the air pollutants and fibrinogen or CRP levels. Conclusions Air pollution increased platelet aggregation as well as coagulation activity but had no clear effect on systemic inflammation. These prothrombotic effects may partly explain the relationship between air pollution and the risk of ischemic cardiovascular disease. PMID:19590696

  7. Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004

    Science.gov (United States)

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  8. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  9. Ambient air levels and health risk assessment of benzo(a)pyrene in atmospheric particulate matter samples from low-polluted areas: application of an optimized microwave extraction and HPLC-FL methodology.

    Science.gov (United States)

    de la Gala Morales, María; Holgado, Fernando Rueda; Marín, Ma Rosario Palomo; Blázquez, Lorenzo Calvo; Gil, Eduardo Pinilla

    2015-04-01

    A new methodology involving a simple and fast pretreatment of the samples by microwave-assisted extraction and concentration by N2 stream, followed by HPLC with fluorescence detection, was used for determining the concentration of benzo(a)pyrene (BaP) in atmospheric particulate matter (PM10 fraction). Obtained LOD, 1.0 × 10(-3) ng/m(3), was adequate for the analysis of benzo(a)pyrene in the samples, and BaP recovery from PAH in Fine Dust (PM10-like) certified reference material was nearly quantitative (86%). The validated procedure was applied for analyzing 115 PM10 samples collected at different sampling locations in the low-polluted area of Extremadura (Southwest Spain) during a monitoring campaign carried out in 2011-2012. BaP spatial variations and seasonal variability were investigated as well as the influence of meteorological conditions and different air pollutants concentrations. A normalized protocol for health risk assessment was applied to estimate lifetime cancer risk due to BaP inhalation in the sampling areas, finding that around eight inhabitants per million people may develop lung cancer due to the exposition to BaP in atmospheric particulates emitted by the investigated sources.

  10. Volcanic gas emissions and their effect on ambient air character

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, A.J. [Geological Survey, Menlo Park, CA (United States); Elias, T. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  11. Surface Properties of Metal Hydroxide Microparticles in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Zakharenko Valery

    2017-01-01

    Full Text Available The adsorption and photoadsorption properties of Mg(OH2 and Ca(OH2 microparticles in the ambient air were investigated. The compositional analysis of an adsorption layer of microparticles was carried out. The kinetics of photodesorption of molecules from microcrystal surfaces and the interaction of HCFC-22 (CHF2Cl in the dark and under light were studied. Quantum yields and their spectral dependencies were determined for CO2 photodesorption, O2 and CO photoadsorption. The effect of weakly bound CO displacement from the surface of microparticles was revealed during dark adsorption of HCFC-22. It is supposed that adsorbed CO is formed as a result of atmospheric CO2 reduction after the break of Mg—OH bonds. In case of calcium hydroxide, CO is generated during the interaction of calcium hydroxide with carbon dioxide in the presence of water.

  12. Unexpected O and O3 production in the effluent of He/O2 microplasma jets emanating into ambient air

    International Nuclear Information System (INIS)

    Ellerweg, D; Von Keudell, A; Benedikt, J

    2012-01-01

    Microplasma jets are commonly used to treat samples in ambient air. The effect of admixing air into the effluent may severely affect the composition of the emerging species. Here, the effluent of a He/O 2 microplasma jet has been analyzed in a helium and in an air atmosphere by molecular beam mass spectrometry. First, the composition of the effluent in air was recorded as a function of the distance to determine how fast air admixes into the effluent. Then, the spatial distribution of atomic oxygen and ozone in the effluent was recorded in ambient air and compared with measurements in a helium atmosphere. Additionally, a fluid model of the gas flow with reaction kinetics of reactive oxygen species in the effluent was constructed. In ambient air, the O density declines only slightly faster with distance compared with a helium atmosphere. In contrast, the O 3 density in ambient air increases significantly faster with distance compared with a helium atmosphere. This unexpected behavior cannot be explained by simple recombination reactions of O atoms with O 2 molecules. A reaction scheme involving the reaction of plasma-produced excited O 2 * species of unknown identity with ground state O 2 molecules is proposed as a possible explanation for these observations. (paper)

  13. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  14. Assessment of ambient air quality in Chidambaram a south Indian town

    Directory of Open Access Journals (Sweden)

    P. Balashanmugam

    2012-06-01

    Full Text Available Worldwide preliminary studies in large number are advocated to create data base, to identify potential cities / towns that warrant “continuous ambient air quality monitoring and control mechanism” and to evolve priorities for clean air target. The results reported pertain to an eight hour random preliminary air sampling exercise carried out at each of the eight select locations in Chidambaram, a southern semi urban settlement in India. Criteria pollutants SPM, CO, SO2 and NO2 measured are found to have either crossed or on the verge of crossing the limits, necessitating the immediate installation of a continuous monitoring and control mechanism. While transport related emissions are the major sources of air contamination, increasing civil construction activities also contribute to particulates. The exponential rise in volume of vehicles, disadvantageous traffic flow pattern, differing driving cycle pattern and human interceptions deserve due attention. It is concluded that Chidambaram town is a strong case for continuous monitoring of ambient air quality due to alarming and increasing level of pollutants.

  15. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease

    Science.gov (United States)

    Investigation has repeatedly demonstrated an association between exposure to ambient air pollution particles and numerous indices of human morbidity and mortality. Individuals with chronic obstructive pulmonary disease (COPD) are among those with an increased sensitivity to air p...

  16. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  17. Ambient air pollution, smog episodes and mortality in Jinan, China.

    Science.gov (United States)

    Zhang, Jun; Liu, Yao; Cui, Liang-Liang; Liu, Shou-Qin; Yin, Xi-Xiang; Li, Huai-Chen

    2017-09-11

    We aimed to assess the acute effects of ambient air pollution and weather conditions on mortality in the context of Chinese smog episodes. A total of 209,321 deaths were recorded in Jinan, a large city in eastern China, during 2011-15. The mean concentrations of daily particulate matter ≤10 μm (PM 10 ), fine particulate matter (PM 2.5 ), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) were 169 μg/m 3 , 100 μg/m 3 , 77 μg/m 3 , and 54 μg/m 3 , respectively. Increases of 10 μg/m 3 in PM 10 , PM 2.5 , SO 2 and NO 2 were associated with 1.11% (95% CI 0.96-1.26%), 0.71% (95% CI 0.60-0.82%), 1.69% (95% CI 1.56-1.83%), and 3.12% (95% CI 2.72-3.53%) increases in daily non-accidental mortality rates, respectively. Moreover, the risk estimates for these 4 pollutants were higher in association with respiratory and cardiovascular mortality. The effects of all the evaluated pollutants on mortality were greater in winter than in summer. Smog episodes were associated with a 5.87% (95% CI 0.16-11.58%) increase in the rate of overall mortality. This study highlights the effect of exposure to air pollution on the rate of mortality in China.

  18. Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium

    International Nuclear Information System (INIS)

    Zhu Wenchao; Li Qing; Zhu Ximing; Pu Yikang

    2009-01-01

    An investigation of atmospheric pressure helium plasma jets emerging into ambient air and helium was carried out with the aim of shedding light on the mechanism for the formation of extended plasma plumes. By electron multiplying charge coupled device imaging, it is shown that the geometrical shape of the jet in ambient helium is not an arrow-like shape as that in ambient air, but a diffusive one. In ambient helium, the jet length increased continuously with the applied voltage. For ambient air, the jet length was determined by both the helium flow rate and the applied voltage. In addition, the N 2 (C-B) band and the N 2 + lines dominate the emission spectra of the jet in ambient air. The Penning ionization between metastable He atoms and N 2 molecular may be the main source of N 2 + . (fast track communication)

  19. Correlation of Air Quality Data to Ultrafine Particles (UFP Concentration and Size Distribution in Ambient Air

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2010-07-01

    Full Text Available This study monitored ultrafine particles (UFP concurrent with environmental air quality data, investigating whether already existing instrumentation used by environmental authorities can provide reference values for estimating UFP concentrations. Of particular interest was the relation of UFP to PM10 (particulate matter and nitrogen oxides (NOx, NO2 in ambient air. Existing PM measurement methods alone did not correspond exactly enough with the actual particle number, but we observed a link between NOx and NO2 to UFP concentration. The combined data could act as proxy-indicator for authorities in estimating particle number concentrations, but cannot replace UFP monitoring.

  20. Ambient air pollution and low birth weight - are some women more vulnerable than others?

    NARCIS (Netherlands)

    Westergaard, Nadja; Gehring, Ulrike|info:eu-repo/dai/nl/304831344; Slama, Rémy; Pedersen, Marie

    BACKGROUND AND OBJECTIVES: Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term

  1. Ambient air pollution, traffic noise and adult asthma prevalence : A BioSHaRE approach

    NARCIS (Netherlands)

    Cai, Yutong; Zijlema, Wilma L.; Doiron, Dany; Blangiardo, Marta; Burton, Paul R.; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stephane; Morley, David W; Stolk, Ronald P.; Elliott, Paul; Hansell, Anna L.; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank). Residential exposures to ambient air pollution (particulate matter with

  2. Levels, seasonal variations and sources of organochlorine pesticides in ambient air of Guangzhou, China

    Science.gov (United States)

    Yang, Yunyun; Li, Deliang; Mu, Dehai

    Air samples were collected at an urban site and a suburban site of Guangzhou city, China, from April 2005 to March 2006, to measure concentrations of organochlorine pesticides (OCPs) in the ambient air and study their seasonal variations and sources. The average concentrations of ∑HCHs, ∑chlordane and ∑DDTs in the air were 93, 287 and 351 pg m -3 at the urban site, and 94, 2258 and 399 pg m -3 at the suburban site, respectively. OCPs in the air were predominantly in gas phase in this study but their concentrations in particle phase were still not neglectable. The air concentrations and seasonal variations of ∑HCHs and ∑DDTs at the urban and suburban sites were similar without obvious difference. The seasonal variations of ∑chlordane concentrations were extremely different at the two sampling sites and the air concentrations were unusually high at suburban site, especially in April and May 2005. The potential sources of HCHs in the air of Guangzhou might come from lindane due to the relative low α-HCH/γ-HCH ratios. Technical chlordane was likely used, especially at or near the suburban site, because the t-chlordane/ c-chlordane ratios were >1.2 and the air concentrations of chlordane were extremely high. Present usage of dicofol at or near Pearl River Delta (PRD) region was implied by the much higher ratios of DDT/(DDE+DDD) and o, p'-DDT/ p, p'-DDT. The air concentrations of aldrich were low, and dieldrin and endrin were detected in none of the samples.

  3. An enzymatic-fluorimetric method for monitoring of ethanol in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, M.; Voigt, G.; Klockow, D. [Institut fuer Spektrochemie und Angewandte Spektroskopie (ISAS), Dortmund (Germany); Tavares, T. [Instituto de Quimica, Universidade Federal da Bahia (UFBa), Rua Augusto Viana, s/n - Canela, 40110-010 Salvador/Bahia (Brazil)

    1999-05-01

    A method is described for the continuous monitoring of ethanol in ambient air. The system consists of a scrubber coil for enrichment of the analyte from air in an aqueous solution and a directly connected fluorescence detector. Because of using a reagent solution containing alcohol dehydrogenase (ADH) and nicotinamide adenine dinucleotide (NAD{sup +}) for absorption, ethanol can react directly with ADH and NAD{sup +} during air sampling, producing NADH, which can be measured by fluorescence detection. The influence of reagent concentrations, gas flow rate and scrubber solution flow rate on the performance of the instrument was tested. Possible ozone interferences can be avoided by placing a KI coated filter in front of the scrubber inlet. The response time of the system was found to be 2.3 min and the detection limit about 1 ppb{sub V}. The applicability of the developed method was demonstrated during a field campaign in Brazil. (orig.) With 7 figs., 35 refs.

  4. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    Science.gov (United States)

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  5. Intraurban Spatiotemporal Variability of Ambient Air Pollutants across Metropolitan St. Louis

    Science.gov (United States)

    Du, Li

    Ambient air monitoring networks have been established in the United States since the 1970s to comply with the Clean Air Act. The monitoring networks are primarily used to determine compliance but also provide substantive support to air quality management and air quality research including studies on health effects of air pollutants. The Roxana Air Quality Study (RAQS) was conducted at the fenceline of a petroleum refinery in Roxana, Illinois. In addition to providing insights into air pollutant impacts from the refinery, these measurements increased the St. Louis area monitoring network density for gaseous air toxics and fine particulate matter (PM2.5) speciation and thus provided an opportunity to examine intraurban spatiotemporal variability for these air quality parameters. This dissertation focused on exploring and assessing aspects of ambient air pollutant spatiotemporal variability in the St. Louis area from three progressively expanded spatial scales using a suite of methods and metrics. RAQS data were used to characterize air quality conditions in the immediate vicinity of the petroleum refinery. For example, PM2.5 lanthanoids were used to track impacts from refinery fluidized bed catalytic cracker emissions. RAQS air toxics data were interpreted by comparing to network data from the Blair Street station in the City of St. Louis which is a National Air Toxics Trends Station. Species were classified as being spatially homogeneous (similar between sites) or heterogeneous (different between sites) and in the latter case these differences were interpreted using surface winds data. For PM 2.5 species, there were five concurrently operating sites in the St. Louis area - including the site in Roxana - which are either formally part of the national Chemical Speciation Network (CSN) or rigorously follow the CSN sampling and analytical protocols. This unusually large number of speciation sites for a region the size of St. Louis motivated a detailed examination of

  6. Review of the Primary National Ambient Air Quality Standard for Sulfur Oxides: Risk and Exposure Assessment

    Science.gov (United States)

    Sulfur oxides are one of the six major air pollutants for which EPA has issued air quality criteria and established national ambient air quality standards (NAAQS) based on those criteria. The Clear Air Act (CAA) requires EPA to periodically review and revise, as appropriate, exis...

  7. Ambient air pollution and low birth weight - are some women more vulnerable than others?

    Science.gov (United States)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy; Pedersen, Marie

    2017-07-01

    Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term (TLBW, pollution. The aim of this commentary is to review the published literature on the association between ambient air pollution and TLBW regarding increased vulnerability for the above-mentioned subgroups. Although more than fifty epidemiological studies have examined the associations between ambient air pollution and TLBW to date, we only identified six studies that examined the potential effect modification of the association between ambient air pollution and TLBW by the above listed maternal risk factors. Two studies assessed effect modification caused by smoking on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women and no statistically significant effect modification was evident for the risk of TLBW associated with ambient air pollution. The current epidemiologic evidence is scarce, but suggests that pregnant women who are smoking, being underweight, overweight/obese or having lower SES are a vulnerable subpopulation when exposed to ambient air pollution, with and increased risk of having a child with TLBW. The limited evidence precludes for definitive conclusions and further studies are recommended. Copyright © 2017. Published by

  8. Comparitive study of ambient air quality status for big cities of Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Shahid, M.A.K.; Mahmood, A.

    2010-01-01

    This study was undertaken to investigate the quality of air in Lahore and Faisalabad at selected sites. Total eight sampling stations were selected and all the sampling locations fall in different environmental backdrops such as residential, commercial, industrial and rural (control) areas. To study the quality of air, Suspended Particulate Matter (SPM), Nitrogen dioxide (NO/sub 2/) and Sulphur dioxide (SO/sub 2/) were selected In the present study, it was found that the SPM NO/sub 2/ and SO/sub 2/ levels in all the sampling locations are within the permissible limits. However, the raising levels indicated at Residential cum Industrial area (shopping complex along with banks) followed by pure industrial area. The source of these pollutants is primarily transport sector and secondly industries. The ambient air quality reported to be low except 2Kl reported as medium. Sociological survey was conducted to determine the health hazards and the diseases related to air pollution. The results were alarming and found to be compatible with Punjab Public Health and Engineering Department (PPHE). There fore it is suggested that air quality management demands. (author)

  9. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    Science.gov (United States)

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  10. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution.

    Science.gov (United States)

    Zhu, Xianlei; Fan, Zhihua Tina; Wu, Xiangmei; Jung, Kyung Hwa; Ohman-Strickland, Pamela; Bonanno, Linda J; Lioy, Paul J

    2011-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ∼1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44-96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution.

  11. Air Monitoring: New Advances in Sampling and Detection

    Directory of Open Access Journals (Sweden)

    Nicola Watson

    2011-01-01

    Full Text Available As the harmful effects of low-level exposure to hazardous organic air pollutants become more evident, there is constant pressure to improve the detection limits of indoor and ambient air monitoring methods, for example, by collecting larger air volumes and by optimising the sensitivity of the analytical detector. However, at the other end of the scale, rapid industrialisation in the developing world and growing pressure to reclaim derelict industrial land for house building is driving the need for air monitoring methods that can reliably accommodate very-high-concentration samples in potentially aggressive matrices. This paper investigates the potential of a combination of two powerful gas chromatography—based analytical enhancements—sample preconcentration/thermal desorption and time-of-flight mass spectrometry—to improve quantitative and qualitative measurement of very-low-(ppt level organic chemicals, even in the most complex air samples. It also describes new, practical monitoring options for addressing equally challenging high-concentration industrial samples.

  12. Setting ambient air quality standards for particulate matter

    International Nuclear Information System (INIS)

    McClellan, Roger O.

    2002-01-01

    Ambient air particulate matter (PM), unspecified as to chemical composition, is of concern because of its health effects. Air quality standards for PM have been established in many countries. The earliest standards were based on threshold models and use of a margin of safety. Initially, standards were based on the mass of total suspended material. In the 1980s a shift to a size-specific standard, PM 10 , began. PM 10 is the fraction of PM captured with 50% efficiency at 10 μm and greater efficiency at smaller sizes. In the late 1990s, standards were proposed for PM 2.5 , which is captured with 50% efficiency at 2.5 μm. The standards for PM are based almost exclusively on human epidemiological data, with laboratory animal and in vitro data used in a supporting role. During the 1990s, new statistical tools began to be used and demonstrated an association between increased PM and an increase in cardiorespiratory morbidity and mortality. The analyses are complicated by the effects of other pollutants such as ozone. Effects have been observed down to 10-20 μg of PM 10 per cubic meter, levels equal to or below background in many parts of the world. In many studies there has been no evidence of a threshold. In the absence of a threshold, a critical issue becomes how to determine how low is low enough? This paper reviews the current literature on PM health effects and suggests research avenues that may yield data which, combined with public policy considerations, may be able to address the issue of 'how low is low enough?'

  13. Cooling system with compressor bleed and ambient air for gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  14. Urgency to Assess the Health Impact of Ambient Air Pollution in China.

    Science.gov (United States)

    Yang, Bo-Yi; Liu, Yimin; Hu, Li-Wen; Zeng, Xiao-Wen; Dong, Guang-Hui

    2017-01-01

    As the world's second-largest economy, China is going on suffering from environmental pollution, especially for ambient air pollution, which has become a major threat to public health; public awareness of the detrimental effects of air pollution on health is increasing-particularly in relation to haze days. Considering the nonlinear relationship of ambient air pollution exposure and health impacts, and the differences in specific sources of air pollution with those in North America and Europe, conducting health impact assessments of ambient air pollution in China has thus become an urgent task for public health practitioners. Systematic review of the health effects of exposure to ambient air pollution from quantitative studies conducted in Chinese could provide vital information for epidemiology-based health impact assessments and the implementation of a national environmental protection policy.

  15. Assessing environmental inequalities in ambient air pollution across urban Australia.

    Science.gov (United States)

    Knibbs, Luke D; Barnett, Adrian G

    2015-04-01

    Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Presence of organophosphorus pesticide oxygen analogs in air samples

    Science.gov (United States)

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2013-02-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  17. Adaptive Preheating Duration Control for Low-Power Ambient Air Quality Sensor Networks

    OpenAIRE

    Baek, Yoonchul; Atiq, Mahin K.; Kim, Hyung Seok

    2014-01-01

    Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback—large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC) method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption...

  18. The impact of ambient air pollution on the human blood metabolome.

    Science.gov (United States)

    Vlaanderen, J J; Janssen, N A; Hoek, G; Keski-Rahkonen, P; Barupal, D K; Cassee, F R; Gosens, I; Strak, M; Steenhof, M; Lan, Q; Brunekreef, B; Scalbert, A; Vermeulen, R C H

    2017-07-01

    Biological perturbations caused by air pollution might be reflected in the compounds present in blood originating from air pollutants and endogenous metabolites influenced by air pollution (defined here as part of the blood metabolome). We aimed to assess the perturbation of the blood metabolome in response to short term exposure to air pollution. We exposed 31 healthy volunteers to ambient air pollution for 5h. We measured exposure to particulate matter, particle number concentrations, absorbance, elemental/organic carbon, trace metals, secondary inorganic components, endotoxin content, gaseous pollutants, and particulate matter oxidative potential. We collected blood from the participants 2h before and 2 and 18h after exposure. We employed untargeted metabolite profiling to monitor 3873 metabolic features in 493 blood samples from these volunteers. We assessed lung function using spirometry and six acute phase proteins in peripheral blood. We assessed the association of the metabolic features with the measured air pollutants and with health markers that we previously observed to be associated with air pollution in this study. We observed 89 robust associations between air pollutants and metabolic features two hours after exposure and 118 robust associations 18h after exposure. Some of the metabolic features that were associated with air pollutants were also associated with acute health effects, especially changes in forced expiratory volume in 1s. We successfully identified tyrosine, guanosine, and hypoxanthine among the associated features. Bioinformatics approach Mummichog predicted enriched pathway activity in eight pathways, among which tyrosine metabolism. This study demonstrates for the first time the application of untargeted metabolite profiling to assess the impact of air pollution on the blood metabolome. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Air sampling with solid phase microextraction

    Science.gov (United States)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  20. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Science.gov (United States)

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2 NAAQS...

  1. 76 FR 59599 - Extension of Comment Period for Secondary National Ambient Air Quality Standards for Oxides of...

    Science.gov (United States)

    2011-09-27

    ... Extension of Comment Period for Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and... National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur to October 10, 2011. DATES: The... CONTACT: Questions concerning the ``Secondary National Ambient Air Quality Standards for Oxides of...

  2. 75 FR 57220 - Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard: New Source Review...

    Science.gov (United States)

    2010-09-20

    ... National Ambient Air Quality Standard: New Source Review Anti-Backsliding Provisions for Former 1-Hour... ``Proposed Rule to Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard: New Source Review... AGENCY 40 CFR Part 51 RIN 2060-AP30 Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality...

  3. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  4. [The health status of children from industrial towns due ambient air pollution].

    Science.gov (United States)

    Meĭbaliev, M T

    2008-01-01

    The author's observations suggest that hygienic monitoring in an industrial city should be made in two areas: 1) ambient air quality and 2) human health. Ambient air quality should be monitored in each town in accordance with an individual program, by taking into account the volume and nature of hazardous substances from the stationary stations, as well as weather conditions, the planning system of residential areas, and the layout of an industrial zone. Monitoring of the population's health in the industrial town should be adapted to the forms and conditions of ambient air quality monitoring in order to reveal environmental pollution-induced changes.

  5. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Science.gov (United States)

    2012-09-11

    ... equivalent method determination for the PM 2.5 method was received by the Office of Research and Development... Assurance Handbook for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program...

  6. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-10-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9476-7] Office of Research and Development; Ambient Air... recommendations of applicable sections of the ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution Measurement Systems...

  7. 75 FR 30022 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-05-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9156-1] Office of Research and Development; Ambient Air... guidance and recommendations of applicable sections of the ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution...

  8. Personal and ambient exposures to air toxics in Camden, New Jersey.

    Science.gov (United States)

    Lioy, Paul J; Fan, Zhihua; Zhang, Junfeng; Georgopoulos, Panos; Wang, Sheng-Wei; Ohman-Strickland, Pamela; Wu, Xiangmei; Zhu, Xianlei; Harrington, Jason; Tang, Xiaogang; Meng, Qingyu; Jung, Kyung Hwa; Kwon, Jaymin; Hernandez, Marta; Bonnano, Linda; Held, Joann; Neal, John

    2011-08-01

    Personal exposures and ambient concentrations of air toxics were characterized in a pollution "hot spot" and an urban reference site, both in Camden, New Jersey. The hot spot was the city's Waterfront South neighborhood; the reference site was a neighborhood, about 1 km to the east, around the intersection of Copewood and Davis streets. Using personal exposure measurements, residential ambient air measurements, statistical analyses, and exposure modeling, we examined the impact of local industrial and mobile pollution sources, particularly diesel trucks, on personal exposures and ambient concentrations in the two neighborhoods. Presented in the report are details of our study design, sample and data collection methods, data- and model-analysis approaches, and results and key findings of the study. In summary, 107 participants were recruited from nonsmoking households, including 54 from Waterfront South and 53 from the Copewood-Davis area. Personal air samples were collected for 24 hr and measured for 32 target compounds--11 volatile organic compounds (VOCs*), four aldehydes, 16 polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) with an aerodynamic diameter 0.6) was found between benzene and MTBE in both locations. These results suggest that automobile exhausts were the main contributors to benzene and MTBE air pollution in both neighborhoods. Formaldehyde and acetaldehyde concentrations were found to be high in both neighborhoods. Mean (+/- SD) concentrations of formaldehyde were 20.2 +/- 19.5 microg/m3 in Waterfront South and 24.8 +/- 20.8 microg/m3 in Copewood-Davis. A similar trend was observed for the two compounds during the saturation-sampling campaigns. The results indicate that mobile sources (i.e., diesel trucks) had a large impact on formaldehyde and acetaldehyde concentrations in both neighborhoods and that both are aldehyde hot spots. The study also showed that PM2.5, aldehydes, BTEX, and MTBE concentrations in both Waterfront South

  9. Concentrations of persistent organic pollutants in ambient air in Durban, South Africa

    CSIR Research Space (South Africa)

    Batterman, S

    2007-01-01

    Full Text Available This paper reports on an extensive ambient air quality monitoring program in Durban (eThekwini Municipality), South Africa, on Africa’s southeast coast. Following a multi stakeholder process coordinated by the Municipality Metropolitan Health...

  10. RELATIONSHIP BETWEEN AMBIENT AIR QUALITY AND SELECTED BIRTH DEFECTS, SEVEN COUNTY STUDY, TEXAS, 1997-2000

    Science.gov (United States)

    Background and Objectives: A number of epidemiologic investigations have shown adverse effects of ambient air pollution on reproductive outcomes including spontaneous abortion, fetal growth, preterm delivery, and infant mortality. A southern California, population-based, case-c...

  11. Increased ambient air temperature alters the severity of soil water repellency

    Science.gov (United States)

    van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard

    2017-04-01

    Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with

  12. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Directory of Open Access Journals (Sweden)

    Chayut Pinichka

    Full Text Available Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs. We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand.We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA framework developed by the World Health Organization (WHO and the Global Burden of Disease study (GBD. We integrated geographical information systems (GIS-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR and concentration of air pollutants from the epidemiological literature.We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality

  13. Ambient air quality and asthma cases in Niğde, Turkey.

    Science.gov (United States)

    Kara, Ertan; Özdilek, Hasan Göksel; Kara, Emine Erman

    2013-06-01

    Urban air quality is one of the key factors affecting human health. Turkey has transformed itself into an urban society over the last 30 years. At the same time, air pollution has become a serious impairment to health in many urban areas in the country. This is due to many reasons. In this study, a nonparametric evaluation was conducted of health effects that are triggered by urban air pollution. Niğde, the city which is the administrative centre of Nigde province was chosen of the effects of air pollution since, like many central Turkish cities, it is situated on a valley where atmospheric inversion occurs. In this paper, the relationship between ambient urban air quality, namely PM10 and sulphur dioxide (SO2), and human health, specifically asthma, during the winter season is examined. Air pollution data and asthma cases from 2006 to 2010 are covered in this study. The results of our study indicate that total asthma cases reported in Nigde between 2008 and 2010 were highly dependent on ambient SO2 concentration. More asthma cases were recorded when 30 μg m(-3) or higher SO2 was present in the ambient air than those recorded under cleaner ambient air conditions. Moreover, it was determined that in Nigde in 2010, asthma cases reported in males aged between 45 and 64 were closely correlated with ambient SO2 (α=0.05).

  14. Combination syringe provides air-free blood samples

    Science.gov (United States)

    Pool, S. L.

    1970-01-01

    Standard syringe and spinal needle are combined in unique manner to secure air-free blood samples. Combination syringe obtains air free samples because air bubbles become insignificant when samples greater than 1 cc are drawn.

  15. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir

    2017-02-28

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  16. Determination and impact of volatile organics emitted during rush hours in the ambient air around gasoline stations.

    Science.gov (United States)

    Wu, Ben-Zen; Hsieh, Ling-Ling; Sree, Usha; Chiu, Kong-Hwa; Lo, Jiunn-Guang

    2006-09-01

    This study analyzes the volatile organic compounds (VOCs) in the ambient air around gasoline stations during rush hours and assesses their impact on human health. Results from this study clearly indicate that methyl tertiary butyl ether (MTBE), toluene, and isobutane are the major VOCs emitted from gasoline stations. Moreover, the concentrations of MTBE and toluene in the ambient air near gasoline stations are remarkably higher than those sampled on surrounding roads, revealing that these compounds are mainly released from gasoline stations. The concentration of VOCs near the gasoline stations without vapor recovery systems are approximately 7.3 times higher than those around the gasoline stations having the recovery systems. An impact on individual health and air quality because of gasoline station emissions was done using Integrated Risk Information System and Industrial Source Complex Short Term model.

  17. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air

    International Nuclear Information System (INIS)

    Santos, Germán; Fernández-Olmo, Ignacio

    2016-01-01

    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values – those to be compared with the limit/target values – fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models. - Highlights: • EU encourages modelling techniques over measurements for air quality assessment. • A methodology for minor pollutants assessment by statistical modelling is presented.

  18. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis.

    Science.gov (United States)

    An, Ruopeng; Zhang, Sheng; Ji, Mengmeng; Guan, Chenghua

    2018-03-01

    This study systematically reviewed literature regarding the impact of ambient air pollution on physical activity among children and adults. Keyword and reference search was conducted in PubMed and Web of Science to systematically identify articles meeting all of the following criteria - study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies, and case-control studies; subjects: adults; exposures: specific air pollutants and overall air quality; outcomes: physical activity and sedentary behaviour; article types: peer-reviewed publications; and language: articles written in English. Meta-analysis was performed to estimate the pooled effect size of ambient PM 2.5 air pollution on physical inactivity. Seven studies met the inclusion criteria. Among them, six were conducted in the United States, and one was conducted in the United Kingdom. Six adopted a cross-sectional study design, and one used a prospective cohort design. Six had a sample size larger than 10,000. Specific air pollutants assessed included PM 2.5 , PM 10 , O 3 , and NO x , whereas two studies focused on overall air quality. All studies found air pollution level to be negatively associated with physical activity and positively associated with leisure-time physical inactivity. Study participants, and particularly those with respiratory disease, self-reported a reduction in outdoor activities to mitigate the detrimental impact of air pollution. Meta-analysis revealed a one unit (μg/m 3 ) increase in ambient PM 2.5 concentration to be associated with an increase in the odds of physical inactivity by 1.1% (odds ratio = 1.011; 95% confidence interval = 1.001, 1.021; p-value air pollution discouraged physical activity. Current literature predominantly adopted a cross-sectional design and focused on the United States. Future studies are warranted to implement a longitudinal study design and evaluate the impact of air pollution on physical

  19. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    Science.gov (United States)

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  20. Contribution of mineral dust sources to street side ambient and suspension PM10 samples

    Science.gov (United States)

    Kupiainen, Kaarle; Ritola, Roosa; Stojiljkovic, Ana; Pirjola, Liisa; Malinen, Aleksi; Niemi, Jarkko

    2016-12-01

    The aim of this study was to determine the relative contributions of mineral dust sources, particularly pavement wear and traction sanding in the PM10 samples collected from 1) street side ambient air and 2) street dust suspension emission samples. The study was conducted between autumn 2011 and spring 2012 at Suurmetsäntie in Helsinki, Finland. The results showed that dust from pavement aggregates was the largest source during spring, accounting for 40-50 percent of the particulate matter in the air and suspension samples. Based on studies on formation of dust, major source of the dust from pavement aggregates is the wear by studded tyres. Traction sanding (1-5.6 mm wet sieved crushed stone) and road salting (NaCl) were applied frequently during the winter 2011/2012. Sanding material explained about 25 percent of the street dust in the air and suspension samples. Traction sanding is estimated to account for approximately few percent of the pavement dust via "the sandpaper effect". Effect of road salt was few percent in the samples. The source contributions from pavement and traction sanding observed in spring 2012 at Suurmetsäntie are similar to what has been estimated in a previous study conducted in the early 2000s in Finland. The general perception in Finland has been that traction sanding is the main source of airborne street dust. Studies conducted in 2000s and the results of this study, however, indicate that traction sanding has been an important but not the main source of dust in PM10 even in winters with extensive use of sanding for traction control.

  1. A diffusive sampling device for measurement of ammonia in air

    Science.gov (United States)

    Yamada, Tomomi; Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki; Nakagome, Hideki; Seto, Hiroshi

    2012-07-01

    A diffusive sampling device, the DSD-NH3, has been developed for measurement of ammonia in air. The DSD-NH3 comprises silica gel impregnated with phosphoric acid as the absorbent, a porous sintered polyethylene tube that acts as a diffusive membrane, and a small polypropylene syringe that is used for the elution of analytes from the absorbent. Silica gel impregnated with phosphoric acid is used as absorbent for the DSD-NH3; basic gases in ambient air, including ammonia, are trapped in the DSD-NH3 device by their reaction with phosphoric acid in the sampler to form their corresponding phosphoric acid salts. After collection, the DSD-NH3 samplers are eluted by water. Cations in the eluate, including ammonium ions, are analyzed by ion chromatography. A side-by-side comparison was made with active samplers, demonstrating good correlation (r2 = 0.996). The sampling rate (94.5 ml min-1) was determined from comparison with an active sampling method and sampling rates. The sampling rate is also calculated from the respective molecular weights according to a rule based on Graham's law. The theoretical sampling rate with the DSD-NH3 is 95.4 ml min-1 and agrees with the experimental value (94.5 ml min-1). Little influence of wind velocity on the sampler was observed. The relative standard deviations for ammonia concentrations were 4.7% with face velocity ranging 0-5.0 m/s.

  2. Overview of ambient air quality monitoring in South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2006-10-01

    Full Text Available Air quality data is currently collected, processed and archived by a number of independent institutes. No collaboration exists between these organisations and there is no provincial or national air quality data information system or archive...

  3. Sampling and preparation of air pollutants at the Coal Paiton Power Plant area Probolinggo

    International Nuclear Information System (INIS)

    Iswantoro; Sutanto, W.W

    2013-01-01

    Sampling has been conducted on April 8 th to 18 th, 2012 at the plant area of Paiton Coal Power Plant using e-sampler for particulated matter PM-2,5 and PM-10, high volume air sampler for total suspended particulate (TSP) at the three sampling locations as the representative pollution. Filter before and after sampling was weighed and extremely guarded contamination. Air filters stored in desiccator filter for 24 hours. Determination of concentration of ambient air pollutants conducted by gravimetric method derived from a reduction in weight the samples on the filter PM-2,5; PM-10 and TSP to the weight of the empty filter. (author)

  4. Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants.

    Science.gov (United States)

    Azuma, Kenichi; Ikeda, Koichi; Kagi, Naoki; Yanagi, U; Osawa, Haruki

    2018-03-01

    We conducted a cross-sectional epidemiological study to examine the correlation between indoor air quality (IAQ) and building-related symptoms (BRSs) of office workers in air-conditioned office buildings. We investigated 11 offices during winter and 13 offices during summer in 17 buildings with air-conditioning systems in Tokyo, Osaka, and Fukuoka, and we included 107 office workers during winter and 207 office workers during summer. We conducted environmental sampling for evaluating IAQ and concurrently administered self-reported questionnaires to collect information regarding work-related symptoms. Multivariate analyses revealed that upper respiratory symptoms showed a significant correlation with increased indoor temperature [odds ratio (OR), 1.55; 95% confidence interval (CI), 1.11-2.18] and increased indoor concentration of suspended particles released from the ambient air pollution via air-conditioning systems (OR, 1.31; 95% CI, 1.08-1.59) during winter. In particular, smaller particles (particle size>0.3μm), which possibly penetrated through the filter media in air-conditioning systems from ambient air, were correlated with upper respiratory symptoms. The use of high-efficiency particulate air filters in air-conditioning systems and their adequate maintenance may be an urgent solution for reducing the indoor air concentration of submicron particles. Several irritating volatile organic compounds (VOCs) (e.g., formaldehyde, acetaldehyde, ethylbenzene, toluene, and xylenes) that were positively correlated with the indoor air concentration among their VOCs, were associated with upper respiratory symptoms, although their indoor air concentrations were lower than those specified by the indoor air quality guideline. A new approach and strategy for decreasing the potential combined health risks (i.e., additive effect of risks) associated with multiple low-level indoor pollutants that have similar hazardous properties are required. Copyright © 2017 Elsevier B

  5. Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex

    International Nuclear Information System (INIS)

    Faghihi-Zrandi, A.; Akhgar, M. R.

    2016-01-01

    Air pollutants including gases, vapors and particles, are emitted from different sources. Volatile organic compounds are the most important pollutants in the ambient air of industries. The present study was carried out to identify and measurement of volatile organic compounds in concentration unit of Sar-Cheshmeh Copper Complex. In this study, sampling of the volatile organic compounds was done by using activated charcoal tube. To identify and measure these compounds gas chromatography/mass spectroscopy were used. Thirteen volatile organic compounds were identified in the ambient air of concentration unit. Among these compounds, the mean value and maximum concentration of isopropyl alcohol and nonane were 255, 640 μg/m3 and 1577, 14400 μg/m3, respectively. By using SPSS software and independent sample t- test, showed that there were no significant difference between mean value concentration of isopropyl alcohol and nonane in the ambient air and TLV values of these compounds (isopropyl alcohol; 200 ppm and nonane; 200 ppm) (P >0.05).

  6. Detection of Coxiella burnetii in Ambient Air after a Large Q Fever Outbreak.

    Directory of Open Access Journals (Sweden)

    Myrna M T de Rooij

    Full Text Available One of the largest Q fever outbreaks ever occurred in the Netherlands from 2007-2010, with 25 fatalities among 4,026 notified cases. Airborne dispersion of Coxiella burnetii was suspected but not studied extensively at the time. We investigated temporal and spatial variation of Coxiella burnetii in ambient air at residential locations in the most affected area in the Netherlands (the South-East, in the year immediately following the outbreak. One-week average ambient particulate matter < 10 μm samples were collected at eight locations from March till September 2011. Presence of Coxiella burnetii DNA was determined by quantitative polymerase chain reaction. Associations with various spatial and temporal characteristics were analyzed by mixed logistic regression. Coxiella burnetii DNA was detected in 56 out of 202 samples (28%. Airborne Coxiella burnetii presence showed a clear seasonal pattern coinciding with goat kidding. The spatial variation was significantly associated with number of goats on the nearest goat farm weighted by the distance to the farm (OR per IQR: 1.89, CI: 1.31-2.76. We conclude that in the year after a large Q fever outbreak, temporal variation of airborne Coxiella burnetii is suggestive to be associated with goat kidding, and spatial variation with distance to and size of goat farms. Aerosol measurements show to have potential for source identification and attribution of an airborne pathogen, which may also be applicable in early stages of an outbreak.

  7. Ambient air pollution and assessment of ozone creation potential for ...

    African Journals Online (AJOL)

    Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field studies at ...

  8. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project

    NARCIS (Netherlands)

    Pedersen, Marie; Andersen, Zorana J; Stafoggia, Massimo; Weinmayr, Gudrun; Galassi, Claudia; Sørensen, Mette; Eriksen, Kirsten T; Tjønneland, Anne; Loft, Steffen; Jaensch, Andrea; Nagel, Gabriele; Concin, Hans; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Sokhi, Ranjeet; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; Hoogh, Kees de; Wang, Meng; Beelen, Rob|info:eu-repo/dai/nl/30483100X; Vineis, Paolo; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Hoek, Gerard|info:eu-repo/dai/nl/069553475; Raaschou-Nielsen, Ole

    2017-01-01

    BACKGROUND: Tobacco smoke exposure increases the risk of cancer in the liver, but little is known about the possible risk associated with exposure to ambient air pollution. OBJECTIVES: We evaluated the association between residential exposure to air pollution and primary liver cancer incidence.

  9. Biomarkers of ambient air pollution and lung cancer: a systematic review

    NARCIS (Netherlands)

    Demetriou, C.A.; Raaschou-Nielsen, O.; Loft, S.; Møller, P.; Vermeulen, R.; Palli, D.; Chadeau-Hyam, M.; Xun, W.W.; Vineis, P.

    2012-01-01

    The association between ambient air pollution exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution may cause lung cancer. Despite the prospective nature and consistent findings of

  10. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-03-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9121-6] Office of Research and Development; Ambient Air... by the Office of Research and Development on December 16, 2009. The analytical procedure of this... applicable sections of the ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume I...

  11. 78 FR 67360 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent Methods

    Science.gov (United States)

    2013-11-12

    ...: Internal permeation bench; ESTEL analog inputs/outputs. The application for equivalent method determination... sections of the ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume I,'' EPA/600/R-94/038a and ``Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient...

  12. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... arsenic. 61.184 Section 61.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to which...

  13. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-18

    ... and recommendations of applicable sections of the ``Quality Assurance Handbook for Air Pollution... any of these conditions should be reported to: Director, Human Exposure and Atmospheric Sciences... ENVIRONMENTAL PROTECTION AGENCY [FRL-9190-5] Office of Research and Development; Ambient Air...

  14. Radon discrimination for work place air samples

    International Nuclear Information System (INIS)

    Bratvold, T.

    1994-01-01

    Gross alpha/beta measurement systems are designed solely to identify an incident particle as either an alpha or a beta and register a count accordingly. The tool of choice for radon identification, via decay daughters, is an instrument capable of identifying the energy of incident alpha particles and storing that information separately from detected alpha emissions of different energy. In simpler terms, the desired instrument is an alpha spectroscopy system. K Basins Radiological Control (KBRC) procured an EG ampersand G ORTEC OCTETE PC alpha spectroscopy system to facilitate radon identification on work place air samples. The alpha spectrometer allows for the identification of any alpha emitting isotope based on characteristic alpha emission energies. With this new capability, KBRC will explicitly know whether or not there exists a true airborne concern. Based on historical air quality data, this new information venue will reduce the use of respirators substantially. Situations where an area remains ''on mask'' due solely to the presence of radon daughters on the grab air filter will finally be eliminated. This document serves to introduce a new method for radon daughter detection at the 183KE Health Physics Analytical Laboratory (HPAL). A new work place air sampling analysis program will be described throughout this paper. There is no new technology being introduced, nor any unproven analytical process. The program defined over the expanse of this document simply explains how K Basins Radiological Control will employ their alpha spectrometer

  15. Origin and Distribution of PAHs in Ambient Particulate Samples at High Mountain Region in Southern China

    Directory of Open Access Journals (Sweden)

    Peng-hui Li

    2015-01-01

    Full Text Available To understand the deposition and transport of PAHs in southern China, a measurement campaign was conducted at a high-elevation site (the summit of Mount Heng, 1269 m A.S.L. from April 4 to May 31, 2009, and a total of 39 total suspended particulate samples were collected for measurement of PAH concentrations. The observed particulate-bound PAHs concentrations ranged from 1.63 to 29.83 ng/m3, with a mean concentration of 6.03 ng/m3. BbF, FLA, and PYR were the predominant compounds. Good correlations were found between individual PAHs and meteorological parameters such as atmospheric pressure, relative humidity, and ambient temperature. The backward trajectory analysis suggested that particulate samples measured at the Mount Heng region were predominantly associated with the air masses from southern China, while the air masses transported over northern and northwestern China had relative higher PAHs concentrations. Based on the diagnostic ratios and factor analysis, vehicular emission, coal combustion, industry emission, and unburned fossil fuels were suggested to be the PAHs sources at Mount Heng site. However, the reactivity and degradation of individual PAHs could influence the results of PAH source profiles, which deserves further investigations in the future.

  16. Development of an ambient air sampler that satisfies RF plant monitoring requirements

    International Nuclear Information System (INIS)

    Nininger, R.C.; Pauley, B.J.

    1993-01-01

    EG ampersand G Rocky Flats Plant (RFP) is developing a new ambient air particulate sampler to replace units that have been in service for about twenty years. The new sampler is required to operate at a flow rate approximately twice that of the existing samplers and admit particles as large as 70 micrometers aerodynamic diameter. The sampler provides two size fractions with separation at 10 micrometers. using a single stage impactor designed at RFP and carrying a Department of Energy (DOE) patent. The sampler is modular for easy servicing in the field and its operation can be checked via radiotelemetry. The sampler, designed to meet Environmental Protection Agency (EPA) requirements for PM-10 sampling, is currently being characterized in EPA's laboratories at Research Triangle Park, North Carolina

  17. Ambient air quality during wheat and rice crop stubble burning episodes in Patiala

    Science.gov (United States)

    Mittal, Susheel K.; Singh, Nirankar; Agarwal, Ravinder; Awasthi, Amit; Gupta, Prabhat K.

    Open crop stubble burning events were observed in and around Patiala city, India. A ground level study was deliberated to analyze the contribution of wheat ( Triticum aestivum) and rice ( Oriza sativa) crop stubble burning practices on concentration levels of aerosol, SO 2 and NO 2 in ambient air at five different sites in and around Patiala city covering agricultural, commercial and residential areas. Aerosols were collected on GMF/A and QMF/A (Whatman) sheets for a 24 h period throughout the year in 2007. Simultaneously, sampling of SO 2 and NO 2 was conducted and results obtained during stubble burning periods were compared to the non-stubble burning periods. Results clearly pointed out a distinct increase in aerosol, SO 2 and NO 2 levels during the crop stubble burning periods.

  18. A simple methodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-07-01

    The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.

  19. Ambient air quality monitoring during the H1N1 influence period in Pune (India).

    Science.gov (United States)

    Pathak, M; Deshpande, A; Mirashe, P K; Sorte, R B; Ojha, A

    2010-10-01

    Ambient air quality in an urban area is directly linked with activity level in the city including transport, business and industrial activities. Maharashtra Pollution Control Board (MPCB) has established an ambient air quality network in the city including state-of-the-art continuous air quality monitoring stations which indicate short duration air quality variations for criteria and non-criteria pollutants. The influence of H1N1 outbreak in Pune hitting its worst pandemic condition, led the civic authorities to implement stringent isolation measures including closure of schools, colleges, business malls, cinema halls, etc. Additionally, the fear of such a pandemic brought the city to a stand still. It was therefore necessary to assess the impacts of such activity level on ambient air quality in the city. It has been observed that such events have positive impacts on air quality of the city. There was a decrease in PM concentration almost to the tune of 30 to 40% if the impacts of precipitation, i.e. seasonal variations, are taken into account. Similarly, the non criteria pollutants too showed a marked but unusual decrease in their concentrations in this ever growing city. The influence of these in turn led to lowered concentrations of secondary pollutants, i.e. O3. Overall, the ambient air quality of Pune was found to be improved during the study period.

  20. Ambient air pollution triggers wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Loft, S; Ketzel, Matthias

    2008-01-01

    There is limited evidence for the role of air pollution in the development and triggering of wheezing symptoms in young children. A study was undertaken to examine the effect of exposure to air pollution on wheezing symptoms in children under the age of 3 years with genetic susceptibility to asthma....

  1. Studies on Respirable Particulate Matter and Heavy Metal Pollution of Ambient Air in Delhi, India

    OpenAIRE

    Pramod R. Chaudhari; D.G. Gajghate; Dheeraj Kumar Singh

    2015-01-01

    Delhi is the large metro city and capital of India which has been reported to be having worst air pollution as per urban data base released by the World Health Organization in September 2011. Ambient air quality survey of Respirable Particulate Matter (PM10) and heavy metal pollution of air was carried out in Delhi in industrial, commercial and residential area in 2006 and 2011. Vehicular emission, dust emanated from heavy traffic and construction activity and industrial activities were fo...

  2. Landfills as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air

    Science.gov (United States)

    Weinberg, Ingo; Dreyer, Annekatrin; Ebinghaus, Ralf

    2011-02-01

    In order to investigate landfills as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two landfills (one active and one closed) and two reference sites using high volume air samplers. Contaminants were accumulated on glass fiber filters (particle phase) and PUF/XAD-2/PUF cartridges (gas phase), extracted by methyl-tert butyl ether/acetone (neutral PFCs), methanol (ionic PFCs) or hexane/acetone (PBDEs, musk fragrances), and detected by GC-MS (neutral PFCs, PBDEs, musk fragrances) or HPLC-MS/MS (ionic PFCs). Total concentrations ranged from 84 to 706 pg m -3 (volatile PFCs, gas phase), from MQL to 42 pg m -3 (ionic PFCs, particle phase), from 204 to 1963 pg m -3 (synthetic musk fragrances, gas + particle phase) and from 1 to 11 pg m -3 (PBDEs, gas + particle phase). Observed sum concentrations of PFCs and synthetic musk fragrances and partly PBDE concentrations were elevated at landfill sites compared to corresponding reference sites. Concentrations determined at the active landfill were higher than those of the inactive landfill. Overall, landfills can be regarded as a source of synthetic musk fragrances, several PFCs and potentially of PBDEs to ambient air.

  3. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... the data handling procedures for the reported data). 2.3Comparisons with the Primary and Secondary... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY...

  4. Ambient and household air pollution: complex triggers of disease.

    Science.gov (United States)

    Farmer, Stephen A; Nelin, Timothy D; Falvo, Michael J; Wold, Loren E

    2014-08-15

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.

  5. Ambient air pollution and allergic diseases in children

    Directory of Open Access Journals (Sweden)

    Byoung-Ju Kim

    2012-06-01

    Full Text Available The prevalence of allergic diseases has increased worldwide, a phenomenon that can be largely attributed to environmental effects. Among environmental factors, air pollution due to traffic is thought to be a major threat to childhood health. Residing near busy roadways is associated with increased asthma hospitalization, decreased lung function, and increased prevalence and severity of wheezing and allergic rhinitis. Recently, prospective cohort studies using more accurate measurements of individual exposure to air pollution have been conducted and have provided definitive evidence of the impact of air pollution on allergic diseases. Particulate matter and groundlevel ozone are the most frequent air pollutants that cause harmful effects, and the mechanisms underlying these effects may be related to oxidative stress. The reactive oxidative species produced in response to air pollutants can overwhelm the redox system and damage the cell wall, lipids, proteins, and DNA, leading to airway inflammation and hyper-reactivity. Pollutants may also cause harmful effects via epigenetic mechanisms, which control the expression of genes without changing the DNA sequence itself. These mechanisms are likely to be a target for the prevention of allergies. Further studies are necessary to identify children at risk and understand how these mechanisms regulate gene-environment interactions. This review provides an update of the current understanding on the impact of air pollution on allergic diseases in children and facilitates the integration of issues regarding air pollution and allergies into pediatric practices, with the goal of improving pediatric health.

  6. Ambient and household air pollution: complex triggers of disease

    Science.gov (United States)

    Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.

    2014-01-01

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855

  7. Ambient air pollution: an emerging risk factor for diabetes mellitus.

    Science.gov (United States)

    Rao, Xiaoquan; Montresor-Lopez, Jessica; Puett, Robin; Rajagopalan, Sanjay; Brook, Robert D

    2015-06-01

    Growing evidence supports that air pollution has become an important risk factor for developing diabetes mellitus. Understanding the contributing effect of air pollution in population studies, elucidating the potential mechanisms involved, and identifying the most responsible pollutants are all required in order to promulgate successful changes in policy and to help formulate preventive measures in an effort to reduce the risk for diabetes. This review summarizes recent findings from epidemiologic studies and mechanistic insights that provide links between exposure to air pollution and a heightened risk for diabetes.

  8. An Evaluation of Uncertainty Associated to Analytical Measurements of Selected Polycyclic Aromatic Compounds in Ambient Air

    International Nuclear Information System (INIS)

    Barrado, A. I.; Garcia, S.; Perez, R. M.

    2013-01-01

    This paper presents an evaluation of uncertainty associated to analytical measurement of eighteen polycyclic aromatic compounds (PACs) in ambient air by liquid chromatography with fluorescence detection (HPLC/FD). The study was focused on analyses of PM 1 0, PM 2 .5 and gas phase fractions. Main analytical uncertainty was estimated for eleven polycyclic aromatic hydrocarbons (PAHs), four nitro polycyclic aromatic hydrocarbons (nitro-PAHs) and two hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) based on the analytical determination, reference material analysis and extraction step. Main contributions reached 15-30% and came from extraction process of real ambient samples, being those for nitro- PAHs the highest (20-30%). Range and mean concentration of PAC mass concentrations measured in gas phase and PM 1 0/PM 2 .5 particle fractions during a full year are also presented. Concentrations of OH-PAHs were about 2-4 orders of magnitude lower than their parent PAHs and comparable to those sparsely reported in literature. (Author)

  9. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  10. Concentration and Size Distribution of Particulate Matter in a Broiler House Ambient Air

    Directory of Open Access Journals (Sweden)

    Ismael Rodrigues Amador

    2016-07-01

    Full Text Available Atmospheric particulate matter (PM is an important constituent of ambient air. The determination of its concentration and size distribution in different environments is essential because of its ability to penetrate deeply into animal and human respiratory tract. In this study, air sampling was performed in a broiler house to estimate the concentration and size distribution of PM emitted along with its activities. Low-vol impactor (< 10 mm, cyclones (< 2.5 e < 1.0 mm, and Sioutas cascade impactor (> 2.5; 1.0 – 2.5; 0.50 – 1.0; 0.25 – 0.50; < 0.25 mm connected with membrane pumps were used. PM10 showed high concentration (209 - 533 mg m-3. PM2.5 and PM1.0 initially showed relatively low concentration (20.8 and 16.0 mg m-3 respectively with significantly increasing levels (412.9 and 344.8 mg m-3 respectively during the samplings. It was also possible to observe the contribution of fine particles. This was evidenced by the high correlation between PM2.5 and PM1.0 and by the profile of particle distribution in the Sioutas sampler. PM concentration levels are considered excessively high, with great potential to affect animal and human health. DOI: http://dx.doi.org/10.17807/orbital.v8i3.847 

  11. Exposure to Ambient Air Pollution and Premature Rupture of Membranes

    OpenAIRE

    Wallace, Maeve E.; Grantz, Katherine L.; Liu, Danping; Zhu, Yeyi; Kim, Sung Soo; Mendola, Pauline

    2016-01-01

    Premature rupture of membranes (PROM) is a major factor that predisposes women to preterm delivery. Results from previous studies have suggested that there are associations between exposure to air pollution and preterm birth, but evidence of a relationship with PROM is sparse. Modified Community Multiscale Air Quality models were used to estimate mean exposures to particulate matter less than 10 ��m or less than 2.5 ��m in aerodynamic diameter, nitrogen oxides, carbon monoxide, sulfur dioxide...

  12. Ambient Air Pollution and Autism in Los Angeles County, California

    DEFF Research Database (Denmark)

    Becerra, Tracy Ann; Wilhelm, Michelle; Olsen, Jørn

    2013-01-01

    Background: The prevalence of Autistic Disorder (AD), a serious developmental condition, has risen dramatically over the past two decades but high-quality population-based research addressing etiology is limited. Objectives: We studied the influence of exposures to traffic-related air pollution d...... during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures....

  13. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea.

    Science.gov (United States)

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-08-05

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  14. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2015-08-01

    Full Text Available This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory

  15. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    Science.gov (United States)

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-01-01

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  16. Quality assurance and quality control for Hydro-Quebec's ambient air monitoring networks

    International Nuclear Information System (INIS)

    Lambert, M.; Varfalvy, L.

    1993-01-01

    Hydro Quebec has three ambient air monitoring networks to determine the contribution of some of its thermal plants to ambient air quality. They are located in Becancour (gas turbines), Iles-de-la-Madeleine (diesel), and Tracy (conventional oil-fired). To ensure good quality results and consistency between networks, a quality assurance/quality control program was set up. A description is presented of the ambient air quality monitoring network and the quality assurance/quality control program. A guide has been created for use by the network operators, discussing objectives of the individual network, a complete description of each network, field operation for each model of instrument in use, treatment of data for each data logger in use, global considerations regarding quality assurance and control, and reports. A brief overview is presented of the guide's purpose and contents, focusing on the field operation section and the sulfur dioxide and nitrogen oxide monitors. 6 figs., 1 tab

  17. Ambient air pollution and suicide in Tokyo, 2001-2011.

    Science.gov (United States)

    Ng, Chris Fook Sheng; Stickley, Andrew; Konishi, Shoko; Watanabe, Chiho

    2016-09-01

    Some evidence suggests an association may exist between the level of air pollution and suicide mortality. However, this relation has been little studied to date. The current study examined the association in Tokyo, Japan. Suicide mortality data for Tokyo for the 11-year period 2001-2011 were obtained together with data on four air pollutants: fine particulate matter (PM2.5), suspended particulate matter (SPM), sulphur dioxide (SO2) and nitrogen dioxide (NO2). A time-stratified case-crossover study design was used to examine the daily association between the level of air pollution and suicide mortality. During the study period there were 29,939 suicide deaths. In stratified analyses an interquartile range (IQR) increase in the same-day concentration of NO2 was linked to increased suicide mortality among those aged under 30 (percentage change: 6.73%, 95% CI: 0.69-13.12%). An IQR increase in PM2.5 and SO2 was associated with a 10.55% (95% CI: 2.05-19.75%) and 11.47% (95% CI: 3.60-19.93%) increase, respectively, in suicide mortality among widowed individuals for mean exposure on the first four days (average lags 0-3). Positive associations were observed for the air pollutants in the summer although associations were reversed in autumn. We relied on monitoring data to approximate individual exposure to air pollutants. Higher levels of air pollution are associated with increased suicide mortality in some population subgroups in Tokyo. Further research is needed to elucidate the mechanisms linking air pollutants and suicide in this setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Air Sampling Instruments for Evaluation of Atmospheric Contaminants. Fourth Edition.

    Science.gov (United States)

    American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

    This text, a revision and extension of the first three editions, consists of papers discussing the basic considerations in sampling air for specific purposes, sampler calibration, systems components, sample collectors, and descriptions of air-sampling instruments. (BT)

  19. Environmentally Persistent Free Radical (EPFRs) - Ambient Air Particulates, Soils and Fate of Some Pollutants

    Science.gov (United States)

    Lomnicki, S. M.

    2017-12-01

    Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.

  20. Impact of National Ambient Air Quality Standards Nonattainment Designations on Particulate Pollution and Health.

    Science.gov (United States)

    Zigler, Corwin M; Choirat, Christine; Dominici, Francesca

    2018-03-01

    Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.

  1. Measurements of Potential Secondary Organic Aerosol Formation from OH, O3, and NO3 oxidation of Ambient Air: a Contrast of Different Anthropogenically-Influenced Biogenic Environments

    Science.gov (United States)

    Jimenez, J. L.

    2016-12-01

    Oxidation flow reactors (OFRs) are useful tools for studying potential secondary organic aerosol (SOA) formation from OH, O3, or NO3 oxidation in both laboratory and field experiments. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for oxidizing ambient air to investigate in situ SOA formation from real ambient precursors. In recent years, our team has pioneered the use of OFRs to quantify SOA potential from a wide variety of environments, including a rural pine forest in the Rocky Mountains, a regionally polluted deciduous/coniferous forest in the SE US, the Amazon rain forest, air influenced by biomass burning, and urban outflow. We present a comparison of the SOA production from these contrasting sources. In all settings, the amount of SOA formed was larger at night than during the day. In forests, the amount of potential SOA after oxidation of ambient air correlated with biogenic precursors (e.g., monoterpenes). In urban air, potential SOA formation correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). Despite these correlations, the SOA predicted to be formed by the oxidation of speciated ambient VOC concentrations could only explain approximately 10-50% of the total SOA formed from the oxidation of ambient air, regardless of location. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic compounds; S/IVOCs) are present in ambient air and are a likely source of the SOA formation that cannot be explained by VOCs. These measurements show that S/IVOCs likely play an important intermediary role in ambient SOA formation in all of the sampled locations, from rural forests to urban air. Characteristics of the SOA formed from different air masses, e.g., H:C and O:C ratios of newly formed SOA as well as PMF factor analysis, will also be discussed.

  2. Evaluación Ambiental Estratégica - Sector Saneamiento - Provincia de Buenos Aires

    OpenAIRE

    Angelaccio, Carlos M.; Gregori, Marcela; Cipponeri, Marcos; Salvioli, Mónica L.; Patat, Claudio A.; Larrivey, Guillermo; Moreno, Juan Manuel; Jelinski, Guillermo; González, Francisco; Espinosa Viale, Guillermo; Bisignano, Javier; Covelli, Vicente; Moreyra, soledad; Coman, Adriana; Bertin, Mónica Viviana

    2004-01-01

    La Evaluación Ambiental Estratégica para el Sector Saneamiento requerida por el Banco Mundial al Ministerio de Infraestructura, Vivienda y Servicios Públicos de la Provincia de Buenos Aires, es un instrumento de gestión preventivo de daño socio-ambiental útil para la toma de decisiones estratégicas vinculadas con obras de saneamiento básico (agua potable y cloacas). El Ministerio de Infraestructura, Vivienda y Servicios Públicos de la Provincia de Buenos Aires, ha solicitado a la UIDD Gestión...

  3. Air sampling unit for breath analyzers

    Science.gov (United States)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  4. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  5. Ambient air pollution, temperature and kawasaki disease in Shanghai, China.

    Science.gov (United States)

    Lin, Zhijing; Meng, Xia; Chen, Renjie; Huang, Guoying; Ma, Xiaojing; Chen, Jingjing; Huang, Min; Huang, Meirong; Gui, Yonghao; Chu, Chen; Liu, Fang; Kan, Haidong

    2017-11-01

    Kawasaki disease (KD) is a kind of pediatric vasculitis of unknown etiology which mainly affects the development of coronary artery aneurysms. Few studies have explored the potential environmental risk factors on KD incidence. We performed a time-series analysis to investigate the associations between air pollution and temperature and KD in Shanghai, China. We collected daily-hospitalized KD patients that were admitted in major pediatric specialty hospitals located in the urban areas of Shanghai from 2001 to 2010. The over-dispersed generalized additive model was used to estimate the effects of air pollutants on KD incidence on each day. Then, this model was combined with a distributed lag non-linear model to estimate the cumulative effects of temperature over a week. There were positive but statistically insignificant associations between three major air pollutants and KD incidence. The association between daily mean temperature and KD was generally J-shaped with higher risks on hot days. The cumulative relative risk of KD at extreme hot temperature (99th percentile, 32.4 °C) over a week was 1.91 [95% confidence interval (CI): 1.13, 3.23], compared with the referent temperature (10.0 °C). This study suggested that a short-term exposure to high temperature may significantly increase the incidence of KD, and the evidence linking air pollution and KD incidence was limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 75 FR 81126 - Revisions to Lead Ambient Air Monitoring Requirements

    Science.gov (United States)

    2010-12-27

    ... arithmetic average because the median is more representative of the central tendency of the site-specific... to a level much higher than the median (i.e., central tendency) of the data. As can be seen, five of... Clean Air Agencies (NACAA) agreed there is evidence that high levels of lead exposure can occur near...

  7. Ambient Air Quality Monitoring in Metropolitan City of Lagos, Nigeria ...

    African Journals Online (AJOL)

    ... traffic intersection where they were both poor and very poor (D-E). The results suggest that strict and appropriate vehicle emission management, industrial air pollution control coupled with close burning management of wastes should be considered in the study area to reduce the risks associated with these pollutants.

  8. IMPACT OF THE AMBIENT AIR PM2.5 ON CARDIOVASCULAR DISEASES OF ULAANBAATAR RESIDENTS

    Directory of Open Access Journals (Sweden)

    Altangerel Enkhjargal

    2015-01-01

    Full Text Available Mongolia is a landlocked country with a total land area of 1,564,116 square kilometers. The ambient annual average particulate matter (PM concentration in Ulaanbaatar is 10–25 times greater than the Mongolian air quality standards (AQS. More than 40 percent of the nation’s total population lives in Ulaanbaatar. The study aims at defining the relationship between the ambient air PM2.5 level and hospital admissions in Ulaanbaatar in 2011–2014. The pollution data included a 24-hour average PM2.5. Theair was sampled daily and recorded by the national air monitoring stations located in Ulaanbaatar. The sampling frame of hospital admissions for cardiovascular disease (CVDwere the records of all outpatient hospitals of Ulaanbaatar. The data covered the periodfrom January 2011 to January 2014. To test the differences of the results, appropriatestatistical tests were employed. During 2011–2014, the highest concentration of PM2.5 was in the coldest period and the particulate matter level recorded was 3.7 times higher in the cold period than the warm period. The number of admissions for CVD were the highest during cold periods. Four days after exposure, the PM2.5 impact on hospital admissions weakened but there remained a positive correlation. For PM2.5, 100 μg/m3 growth of the pollutant led to 0.65 % increase in the hospitalization for CVD on the exposure day. On the second day of exposure, 10 μg/m3 growth of the pollutant led to 0.66 % increase; on the third day of exposure, 10 μg/m3 growth of the pollutant led to 0.08 % increase of hospital admissions for CVD, and at the fourth day, such growth led to 0.6 % increase of CVD cases in 2011–2014 in Ulaanbaatar. In conclusion we may state that most incidences of CVD registered during the cold months in Ulaanbaatar in the last four years were a result of PM2.5 exposure. This shows that the PM2.5 exposure and hospital admissions for cardiovascular system chronic diseases are positively correlated

  9. Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia

    Science.gov (United States)

    Bian, Qijing; Alharbi, Badr; Collett, Jeffrey; Kreidenweis, Sonia; Pasha, Mohammad J.

    2016-07-01

    Ambient air samples were obtained in Riyadh, the capital and largest city of Saudi Arabia, during two measurement campaigns spanning September 2011 to September 2012. Sixteen particle-phase polycyclic aromatic hydrocarbons (PAH) were quantified in 167 samples. Pyrene and fluoranthene were the most abundant PAH, with average of 3.37 ± 14.01 ng m-3 and 8.00 ± 44.09 ng m-3, respectively. A dominant contribution from low molecular weight (LMW) PAH (MW oil combustion emissions dominated total PAH concentrations, accounting for on average 96%, likely due to widespread use of oil fuels in energy production (power plants and industries). Our results demonstrate the significant influence of petroleum product production and consumption on particulate-phase PAH concentrations in Riyadh, but also point to the importance of traffic and solid fuel burning, including coke burning and seasonal biomass burning, especially as they contribute to the ambient levels of HMW PAH.

  10. Perspective for Future Research Direction About Health Impact of Ambient Air Pollution in China.

    Science.gov (United States)

    Dong, Guang-Hui

    2017-01-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. Although lots of works on the health impact of ambient air pollution have been done in China, the following recommendations for future research were identified in this chapter: (1) the synergistic effect of indoor air pollution with climate change; (2) develop new technologies to improve accurate assessment of air pollution exposure; (3) well-designed cohort study of sensitive populations including children, older people, and people with chronic health problems; (4) multi-omics technologies in the underlying mechanisms study; and (5) benefits evaluation of improvement of air quality. In conclusion, China is becoming a suitable study site, providing an ideal opportunity to evaluate the effects of environmental pollution, including air pollution, on human health, which might serve as an example for developing countries where health impacts of air pollution are as serious as in China.

  11. Exposure to Ambient Air Pollution and Premature Rupture of Membranes.

    Science.gov (United States)

    Wallace, Maeve E; Grantz, Katherine L; Liu, Danping; Zhu, Yeyi; Kim, Sung Soo; Mendola, Pauline

    2016-06-15

    Premature rupture of membranes (PROM) is a major factor that predisposes women to preterm delivery. Results from previous studies have suggested that there are associations between exposure to air pollution and preterm birth, but evidence of a relationship with PROM is sparse. Modified Community Multiscale Air Quality models were used to estimate mean exposures to particulate matter less than 10 µm or less than 2.5 µm in aerodynamic diameter, nitrogen oxides, carbon monoxide, sulfur dioxide, and ozone among 223,375 singleton deliveries in the Air Quality and Reproductive Health Study (2002-2008). We used log-linear models with generalized estimating equations to estimate adjusted relative risks and 95% confidence intervals for PROM per each interquartile-range increase in pollutants across the whole pregnancy, on the day of delivery, and 5 hours before delivery. Whole-pregnancy exposures to carbon monoxide and sulfur dioxide were associated with an increased risk of PROM (for carbon monoxide, relative risk (RR) = 1.09, 95% confidence interval (CI): 1.04, 1.14; for sulfur dioxide, RR = 1.15, 95% CI: 1.06, 1.25) but not preterm PROM. Ozone exposure increased the risk of PROM on the day of delivery (RR = 1.06, 95% CI: 1.02, 1.09) and 1 day prior (RR = 1.04, 95% CI: 1.01, 1.07). In the 5 hours preceding delivery, there were 3%-7% increases in risk associated with exposure to ozone and particulate matter less than 2.5 µm in aerodynamic diameter and inverse associations with exposure to carbon monoxide and nitrogen oxides. Acute and long-term air pollutant exposures merit further study in relation to PROM. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  13. Oxidation of ST55, LH15 and Arema steels at high temperatures in ambient air

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jaroslav; Million, Bořivoj; Adamaszek, K.

    2004-01-01

    Roč. 42, č. 4 (2004), s. 242-250 ISSN 0023-432X Institutional research plan: CEZ:AV0Z2041904 Keywords : high temperatures * oxidation steels * ambient air Subject RIV: JG - Metallurgy Impact factor: 1.056, year: 2004

  14. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    Science.gov (United States)

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  15. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9184-5] Office of Research and Development; Ambient Air... Research and Development on March 30, 2010. The analytical procedure of this method has been tested in... general accordance with the guidance and recommendations of applicable sections of the ``Quality Assurance...

  16. 76 FR 15974 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-03-22

    ..., Research Triangle Park, North Carolina 27711. Designation of these new equivalent methods is intended to... ENVIRONMENTAL PROTECTION AGENCY [FRL-9285-2] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Four New Equivalent Methods AGENCY: Environmental...

  17. Ambient air ammonia (NH 3 ) concentration in two solid waste dump ...

    African Journals Online (AJOL)

    This work monitored the level of ammonia in the ambient air of two major solid waste dump sites in Abakaliki urban, Ebonyi State, in the morning for a period of a month on the onset of wet season, using portable monitor based on electrochemical sensor. The result showed that site 1 had a relatively higher mean ammonia ...

  18. Ambient Air for Offshore Liquified Natural Gas Broadwater Project

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  19. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  20. 75 FR 20595 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Science.gov (United States)

    2010-04-20

    ... National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur AGENCY: Environmental... Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of... policy assessment by two weeks, EPA is committed to issuing a proposal addressing the nitrogen oxides (NO...

  1. 75 FR 61486 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Science.gov (United States)

    2010-10-05

    ... National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur AGENCY: Environmental... Assessment for the Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur: Second External Review Draft (75 FR 57463, September 21, 2010). The EPA released this...

  2. 75 FR 70258 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Science.gov (United States)

    2010-11-17

    ... National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur AGENCY: Environmental... Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur: Second... (summary of options for elements of the nitrogen oxides (NO X ) and sulfur oxides (SO X ) standard...

  3. 75 FR 11877 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Science.gov (United States)

    2010-03-12

    ... National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur AGENCY: Environmental..., Policy Assessment for the Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur: First External Review Draft. The EPA is releasing this preliminary draft...

  4. 40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Interpretation of the National Ambient Air Quality Standards for Lead R Appendix R to Part 50 Protection of Environment ENVIRONMENTAL.... 50, App. R Appendix R to Part 50—Interpretation of the National Ambient Air Quality Standards for...

  5. Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro.

    Science.gov (United States)

    Novák, Jirí; Jálová, Veronika; Giesy, John P; Hilscherová, Klára

    2009-01-01

    Traditionally, contamination of air has been evaluated primarily by chemical analyses of indicator contaminants and these studies have focused mainly on compounds associated with particulates. Some reports have shown that air contaminants can produce specific biological effects such as toxicity mediated by the aryl hydrocarbon receptor (AhR) or modulation of the endocrine system. This study assessed the dioxin-like toxicity, anti-/estrogenicity, anti-/androgenicity and anti-/retinoic activity of both the particulate and gas phase fractions of air in two regions with different types of pollution sources and a background locality situated in an agricultural area of Central Europe. The first region (A) is known to be significantly contaminated by organochlorine pesticides and chemical industry. The other region (B) has been polluted by historical releases of PCBs, but the major current sources of contamination are probably combustion sources from local traffic and heating. Samples of both particle and gas fractions produced dioxin-like (AhR-mediated) activity, anti-estrogenic and antiandrogenic effects, but none had any effect on retinoid signaling. AhR-mediated activities were observed in all samples and the TEQ values were comparable in both fractions in region A, but significantly greater in the particulate fraction in region B. The greater AhR-mediated activity corresponded to a greater coincident antiestrogenicity of both phases in region B. Our study is the first report of antiestrogenicity and antiandrogenicity in ambient air. Anti-androgenicity was observed in the gas phase of all regions, while in the particulate phase only in one region due to the specific type of pollution in that area. Even though based on concentrations of individual compounds, except for the OCPs, the level of contamination of the two regions was similar, there were strong differences in responses in the bioassays between the two regions. Moreover, AhR-mediated activity and

  6. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    Science.gov (United States)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on

  7. Social inequalities resulting from health risks related to ambient air quality--A European review.

    Science.gov (United States)

    Deguen, Séverine; Zmirou-Navier, Denis

    2010-02-01

    Environmental nuisances, including ambient air pollution, are thought to contribute to social inequalities in health. There are two major mechanisms, which may act independently or synergistically, through which air pollution may play this role. Disadvantaged groups are recognized as being more often exposed to air pollution (differential exposure) and may also be more susceptible to the resultant health effects (differential susceptibility). European research articles were obtained through a literature search in the Medline database using keywords 'Socioeconomic Factors, Air Pollution, Health' and synonymous expressions. Some studies found that poorer people were more exposed to air pollution whereas the reverse was observed in other papers. A general pattern, however, is that, irrespective of exposure, subjects of low socio-economic status experience greater health effects of air pollution. So far as we are aware, no European study has explored this relationship among children. The housing market biases land use decisions and may explain why some subgroups suffer from both a low socio-economic status and high exposure to air pollution. Some data may be based on inaccurate exposure assessment. Cumulative exposures should be taken into account to explore health problems more accurately. The issue of exposure and health inequalities in relation to ambient air quality is complex and calls for global appraisal. There is no single pattern. Policies aimed at reducing the root causes of these inequalities could be based on urban multipolarity and diversity, two attributes that require long-term urban planning.

  8. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    Science.gov (United States)

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  9. Adaptive preheating duration control for low-power ambient air quality sensor networks.

    Science.gov (United States)

    Baek, Yoonchul; Atiq, Mahin K; Kim, Hyung Seok

    2014-03-20

    Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback-large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC) method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption. Furthermore, the APC can allow systems to meet user requirements such as accuracy and periodicity factor when detecting the concentration of a target gas. A performance evaluation of the power consumption of gas sensors is conducted with various user requirements and factors that affect the preheating duration of the gas sensor. This shows that the power consumption of the APC is lower than that of continuous power supply methods and constant power supply/cutoff methods.

  10. Adaptive Preheating Duration Control for Low-Power Ambient Air Quality Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yoonchul Baek

    2014-03-01

    Full Text Available Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback—large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption. Furthermore, the APC can allow systems to meet user requirements such as accuracy and periodicity factor when detecting the concentration of a target gas. A performance evaluation of the power consumption of gas sensors is conducted with various user requirements and factors that affect the preheating duration of the gas sensor. This shows that the power consumption of the APC is lower than that of continuous power supply methods and constant power supply/cutoff methods.

  11. Policy Assessment for the Review of the Primary National Ambient Air Quality Standard for Sulfur Oxides, External Review Draft

    Science.gov (United States)

    Sulfur oxides are one of the six major air pollutants for which EPA has issued air quality criteria and established national ambient air quality standards (NAAQS) based on those criteria. The Clear Air Act (CAA) requires EPA to periodically review and revise, as appropriate, exis...

  12. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  13. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    Directory of Open Access Journals (Sweden)

    C. Hak

    2005-01-01

    Full Text Available Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS, Fourier Transform Infra Red (FTIR interferometry, the fluorimetric Hantzsch reaction technique (five instruments and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine. White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  14. Ambient air pollution and congenital heart defects in Lanzhou, China

    International Nuclear Information System (INIS)

    Jin, Lan; Bell, Michelle L; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Xu, Xiaoying; Liu, Qing; Zhang, Yaqun; Li, Min; Zhao, Nan; Huang, Huang; Zhang, Yawei

    2015-01-01

    Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010–2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM 10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester  = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester  = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy  = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM 10 (IQR = 71.2, 61.6, and 27.4 μg m −3 , respectively)), and associations with NO 2 during 2nd trimester and the entire pregnancy (OR 2nd trimester  = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy  = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO 2 (IQR = 13.4 and 10.9 μg m −3 , respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM 10 exposures in the 2nd trimester and the entire pregnancy, and SO 2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects. (letter)

  15. Ambient air pollution and congenital heart defects in Lanzhou, China

    Science.gov (United States)

    Jin, Lan; Qiu, Jie; Zhang, Yaqun; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Li, Min; Zhao, Nan; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Xu, Xiaoying; Huang, Huang; Liu, Qing; Bell, Michelle L.; Zhang, Yawei

    2015-07-01

    Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010-2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM10 (IQR = 71.2, 61.6, and 27.4 μg m-3, respectively)), and associations with NO2 during 2nd trimester and the entire pregnancy (OR 2nd trimester = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO2 (IQR = 13.4 and 10.9 μg m-3, respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM10 exposures in the 2nd trimester and the entire pregnancy, and SO2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects.

  16. Energy saving potential of natural ventilation in China: The impact of ambient air pollution

    International Nuclear Information System (INIS)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Liu, Zhu; Freeman, Richard B.

    2016-01-01

    Highlights: • Natural ventilation potential is affected largely by ambient air pollution in China. • NV hours of 76 Chinese cities based on weather and ambient air quality are estimated. • Cooling energy savings and carbon reductions of 35 major Chinese cities are estimated. • 8–78% of the cooling energy usage can be potentially reduced by NV. • Our findings provide guidelines to improve energy policies in China. - Abstract: Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China’s serious air pollution issue especially in North China. 8–78% of the cooling energy consumption can be potentially reduced by natural

  17. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  18. Applying policy and health effects of air pollution in South Korea: focus on ambient air quality standards.

    Science.gov (United States)

    Ha, Jongsik

    2014-01-01

    South Korea's air quality standards are insufficient in terms of establishing a procedure for their management. The current system lacks a proper decision-making process and prior evidence is not considered. The purpose of this study is to propose a measure for establishing atmospheric environmental standards in South Korea that will take into consideration the health of its residents. In this paper, the National Ambient Air Quality Standards (NAAQS) of the US was examined in order to suggest ways, which consider health effects, to establish air quality standards in South Korea. Up-to-date research on the health effects of air pollution was then reviewed, and tools were proposed to utilize the key results. This was done in an effort to ensure the reliability of the standards with regard to public health. This study showed that scientific research on the health effects of air pollution and the methodology used in the research have contributed significantly to establishing air quality standards. However, as the standards are legally binding, the procedure should take into account the effects on other sectors. Realistically speaking, it is impossible to establish standards that protect an entire population from air pollution. Instead, it is necessary to find a balance between what should be done and what can be done. Therefore, establishing air quality standards should be done as part of an evidence-based policy that identifies the health effects of air pollution and takes into consideration political, economic, and social contexts.

  19. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Science.gov (United States)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  20. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2018-01-01

    Full Text Available Secondary organic aerosol (SOA formation from ambient air was studied using an oxidation flow reactor (OFR coupled to an aerosol mass spectrometer (AMS during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5 field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3 or weeks (OH of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m−3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  1. New screening approach for risk assessment of pesticides in ambient air

    Science.gov (United States)

    Yusà, Vicent; Coscollà, Clara; Millet, Maurice

    2014-10-01

    We present a novel screening approach for inhalation risk assessment of currently used pesticides (CUPs) in ambient air, based on the measurements of pesticide levels in the inhalable fraction of the particulate matter (PM10). Total concentrations in ambient air (gas + particle phases) were estimated using a theoretical model of distribution of semi-volatile organic compounds between the gas and the particulate phase based on the octanol-air partition (Koa) of each pesticide. The proposed approach was used in a pilot study conducted in a rural station in Valencia (Spain) from April through to October 2010. Twenty out of 82 analysed pesticides were detected in average concentrations ranging from 1.63 to 117.01 pg m-3. For adults, children and infants the estimated chronic inhalation risk, expressed as Hazard Quotient (HQ) was pesticides. Likewise, the cumulative exposure for detected organophosphorus, pyrethroids and carbamates pesticides, was estimated using as metrics the Hazard Index (HI), which was less than 1 for the three families of pesticides assessed. The cancer risk estimated for the detected pesticides classified as Likely or Possible carcinogens was less than 1.15E-7 for infants. In our opinion, the screening approach proposed could be used in the monitoring and risk assessment of pesticides in ambient air.

  2. Adaptive Sampling for Urban Air Quality through Participatory Sensing

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zeng

    2017-11-01

    Full Text Available Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency.

  3. Adaptive Sampling for Urban Air Quality through Participatory Sensing.

    Science.gov (United States)

    Zeng, Yuanyuan; Xiang, Kai

    2017-11-03

    Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q -learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency.

  4. Occurrence of currently used pesticides in ambient air of Centre Region (France)

    Science.gov (United States)

    Coscollà, Clara; Colin, Patrice; Yahyaoui, Abderrazak; Petrique, Olivier; Yusà, Vicent; Mellouki, Abdelwahid; Pastor, Agustin

    2010-10-01

    Ambient air samples were collected, from 2006 to 2008 at three rural and two urban sites in Centre Region (France) and analyzed for 56 currently used pesticides (CUPs), of which 41 were detected. The four CUPs most frequently detected were the herbicides trifluralin, acetochlor and pendimethalin and the fungicide chlorothalonil, which were found with frequencies ranging between 52 and 78%, and with average concentrations of 1.93, 1.32, 1.84 and 12.15 ng m -3, respectively. Among the detected pesticides, concentrations of eight fungicides (spiroxamine, fenpropimorph, cyprodinil, tolyfluanid, epoxiconazole, vinchlozolin, fluazinam, fludioxinil), two insecticides (propargite, ethoprophos), and one herbicide (oxyfluorfen) are, to our knowledge, reported for the first time in the literature. The majority of the CUPs showed a seasonal trend, with most of the detections and the highest concentrations occurring during the spring and early summer. The most important pesticides detected were related to arable crops and fruit orchards, the main cultures in this region, highlighting the fact that the main sources come from local applications. Minor differences were found in the profiles of pesticides within rural areas and between rural and urban areas.

  5. Volatile organic compounds in urban atmospheres: Long-term measurements of ambient air concentrations in differently loaded regions of Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch, T.; Asperger, A.; Engewald, W. [University of Leipzig, Institute of Analytical Chemistry, Leipzig (Germany)

    1997-09-01

    For the comprehensive characterization of ambient air concentrations of a broad spectrum of volatile organic compounds (VOCs) an analytical method is described, consisting of adsorptive enrichment, thermal desorption without cryofocusing, and capillary gas chromatographic separation. The method was applied during two-week measuring campaigns in winter and summer 1995, and in the winter of 1996. Long-term sampling was carried out at sampling points in residential areas in the suburbs and near the city center of Leipzig. About 70 VOCs - mainly hydrocarbons from propene to hexadecane - were identified both by GC-MS and chromatographic retention data and quantified after external calibration. Mean values of VOC concentrations obtained during the sampling periods are reported and discussed with regard to the topographical location of the sampling points in the Leipzig area, seasonal variations, and possible emission sources. (orig.) With 7 figs., 3 tabs., 18 refs.

  6. Determination of metals in thoracic fraction of ambient air particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, P. [Istituto Inquinamento Atmosferico, Consiglio Nazionale delle Ricerche, Monterotondo, Rome (Italy); Canepari, S.; Cardarelli, E.; Del Cavaliere, C.; Ghighi, S. [Rome Univ. La Sapienza, Rome (Italy). Dept. of Chemistry

    2000-12-01

    The present work deals with the optimization and validation of a method for the quantitative simultaneous ICP determination of metals in ambient air particulate matter. The attention has been focused on the thoracic fraction (PM10) and twelve different metals were chosen on the basis of their toxicity and of their possible use as chemical tracers. The microwave acidic digestion of the samples has been performed in the presence of different reagents and under different conditions and particular attention has been paid to the optimization of the whole analytical procedure and to the evaluation of accuracy and precision related to the single operative steps. The interferences due to the reagents and to the sampling supports have also been evaluated. In addition, the analytical procedure has been checked by examining the equivalence of results related to parallel sampled filters pairs. [Italian] Il lavoro riguarda l'ottimizzazione e la validazione di una metodica per la determinazione simultanea mediante ICP di metalli nel materiale particellare sopseso. In particolare, l'attenzione e' stata rivolta alla frazione respirabile (PM10) ed ha riguardato dieci differenti metalli, scelti sulla base della tossicita' e di un loro possibile impiego come traccianti chimici. Sono state esaminate differenti metodiche di digestione acida con microonde, impiegando differenti reattivi e differenti condizioni di mineralizzazione. E' stata posta particolare attenzione all'ottimizzazione del procedimento analitico ed alla valutazione della riproducibilita' ed accuratezza associate ai singoli stadi operativi. E' stata inoltre valutata l'entita' delle interferenze causate dall'impiego di reattivi a diverso grado di purezza e dei supporti impiegati per il campionamento. Infine il metodo e' stato validato esaminando l'equivalenza dei dati analitici relativi a coppie di filtri campionati in parallelo.

  7. Time-varying cycle average and daily variation in ambient air pollution and fecundability.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Buck Louis, Germaine M; Sherman, Seth; Mendola, Pauline

    2018-01-01

    Does ambient air pollution affect fecundability? While cycle-average air pollution exposure was not associated with fecundability, we observed some associations for acute exposure around ovulation and implantation with fecundability. Ambient air pollution exposure has been associated with adverse pregnancy outcomes and decrements in semen quality. The LIFE study (2005-2009), a prospective time-to-pregnancy study, enrolled 501 couples who were followed for up to one year of attempting pregnancy. Average air pollutant exposure was assessed for the menstrual cycle before and during the proliferative phase of each observed cycle (n = 500 couples; n = 2360 cycles) and daily acute exposure was assessed for sensitive windows of each observed cycle (n = 440 couples; n = 1897 cycles). Discrete-time survival analysis modeled the association between fecundability and an interquartile range increase in each pollutant, adjusting for co-pollutants, site, age, race/ethnicity, parity, body mass index, smoking, income and education. Cycle-average air pollutant exposure was not associated with fecundability. In acute models, fecundability was diminished with exposure to ozone the day before ovulation and nitrogen oxides 8 days post ovulation (fecundability odds ratio [FOR] 0.83, 95% confidence interval [CI]: 0.72, 0.96 and FOR 0.84, 95% CI: 0.71, 0.99, respectively). However, particulate matter ≤10 microns 6 days post ovulation was associated with greater fecundability (FOR 1.25, 95% CI: 1.01, 1.54). Although our study was unlikely to be biased due to confounding, misclassification of air pollution exposure and the moderate study size may have limited our ability to detect an association between ambient air pollution and fecundability. While no associations were observed for cycle-average ambient air pollution exposure, consistent with past research in the United States, exposure during critical windows of hormonal variability was associated with prospectively measured couple

  8. Early life exposure to ambient air pollution and childhood asthma in China.

    Science.gov (United States)

    Deng, Qihong; Lu, Chan; Norbäck, Dan; Bornehag, Carl-Gustaf; Zhang, Yinping; Liu, Weiwei; Yuan, Hong; Sundell, Jan

    2015-11-01

    Early life is suggested to be a critical time in determining subsequent asthma development, but the extent to which the effect of early-life exposure to ambient air pollution on childhood asthma is unclear. We investigated doctor-diagnosed asthma in preschool children due to exposure to ambient air pollution in utero and during the first year of life. In total 2490 children aged 3-6 years participated in a questionnaire study regarding doctor-diagnosed asthma between September 2011 and January 2012 in China. Children's exposure to critical air pollutants, sulfur dioxide (SO2) as proxy of industrial air pollution, nitrogen dioxide (NO2) as proxy of traffic pollution, and particulate matter≤10µm in diameter (PM10) as a mixture, was estimated from the concentrations measured at the ambient air quality monitoring stations by using an inverse distance weighted (IDW) method. Logistic regression analysis was employed to determine the relationship between early-life exposure and childhood asthma in terms of odds ratio (OR) and 95% confidence interval (CI). Association between early-life exposure to air pollutants and childhood asthma was observed. SO2 and NO2 had significant associations with adjusted OR (95% CI) of 1.45 (1.02-2.07) and 1.74 (1.15-2.62) in utero and 1.62 (1.01-2.60) and 1.90 (1.20-3.00) during the first year for per 50 µg/m(3) and 15 µg/m(3) increase respectively. Exposure to the combined high level of SO2 and NO2 in China significantly elevated the asthmatic risk with adjusted OR (95% CI) of 1.76 (1.18-2.64) in utero and 1.85 (1.22-2.79) during the first year compared to the low level exposure. The associations were higher for males and the younger children aged 3-4 than females and the older children aged 5-6. Early-life exposure to ambient air pollution is associated with childhood asthma during which the level and source of air pollution play important roles. The high level and nature of combined industrial and traffic air pollution in China may

  9. Ambient air pollution and risk of tuberculosis: a cohort study.

    Science.gov (United States)

    Lai, Ting-Chun; Chiang, Chen-Yuan; Wu, Chang-Fu; Yang, Shiang-Lin; Liu, Ding-Ping; Chan, Chang-Chuan; Lin, Hsien-Ho

    2016-01-01

    Several respirable hazards, including smoking and indoor air pollution from biomass, were suggested to increase the risk of tuberculosis. Few studies have been conducted on ambient air pollution and tuberculosis. We investigated the association between exposure to ambient air pollution and incidence of active tuberculosis. We conducted a cohort study using 106,678 participants of a community-based screening service in Taiwan, 2005-2012. We estimated individual exposure to air pollution using data from the nearest air quality monitoring station and the road intensity within a 500 m buffer zone. The incidence of tuberculosis was ascertained from the national tuberculosis registry. After a median follow-up of 6.7 years, 418 cases of tuberculosis occurred. Exposure to fine particulate matter (PM2.5) was associated with increased risk of active tuberculosis (adjusted HR: 1.39/10 μg/m3 (95% CI 0.95 to 2.03)). In addition, traffic-related air pollution including nitrogen dioxide (adjusted HR: 1.33/10 ppb; 95% CI 1.04 to 1.70), nitrogen oxides (adjusted HR: 1.21/10 ppb; 95% CI 1.04 to 1.41) and carbon monoxide (adjusted HR: 1.89/ppm; 95% CI 0.78 to 4.58) was associated with tuberculosis risk. There was a non-significant trend between the length of major roads in the neighbourhood and culture-confirmed tuberculosis (adjusted HR: 1.04/km; 95% CI 0.995 to 1.09). Our study revealed a possible link between ambient air pollution and risk of active tuberculosis. Since people from developing countries continue to be exposed to high levels of ambient air pollution and to experience high rates of tuberculosis, the impact of worsening air pollution on global tuberculosis control warrants further investigation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Estimating the effects of ambient conditions on the performance of UVGI air cleaners

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Josephine; Bahnfleth, William; Freihaut, James [Indoor Environment Center, Department of Architectural Engineering, The Pennsylvania State University, University Park, PA (United States)

    2009-07-15

    Ultraviolet germicidal irradiation (UVGI) uses UVC radiation produced by low pressure mercury vapor lamps to control biological air contaminants. Ambient air velocity and temperature have a strong effect on lamp output by influencing the lamp surface cold spot temperature. In-duct UVGI systems are particularly susceptible to ambient effects due to the range of velocity and temperature conditions they may experience. An analytical model of the effect of ambient conditions on lamp surface temperature was developed for three common lamp types in cross flow from a convective-radiative energy balance assuming constant surface temperature. For one lamp type, a single tube standard output lamp, UVC output and cold spot temperature data were obtained under typical in-duct operating conditions. Over an ambient temperature range of 10-32.2 C and an air velocity range of 0-3.25 m/s, measured cold spot temperature varied from 12.7 to 41.9 C and measured lamp output varied by 68% of maximum. Surface temperatures predicted by the heat transfer model were 6-17 C higher than corresponding measured cold spot temperatures, but were found to correlate well with cold spot temperature via a two-variable linear regression. When corrected using this relationship, the simple model predicted the cold spot temperature within 1 C and lamp UVC output within {+-}5%. To illustrate its practical use, the calibrated lamp model was employed in a simulation of the control of a contaminant in a single-zone ventilation system by an in-duct UVGI device. In this example, failure to account for the impact of ambient condition effects resulted in under-prediction of average space concentration by approximately 20% relative to a constant output system operating at maximum UVC output. (author)

  11. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data.... Primary and Secondary Ambient Air Quality Standards for Ozone. 2.1 Data Reporting and Handling Conventions... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of...

  12. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Science.gov (United States)

    2012-05-21

    ..., Kansas 66101- 2907, (913) 551-7606. Monica Morales, Leader, Air Quality Colorado, Montana, North Planning...'s ``design value,'' which represents air quality in the area for the most recent 3 years).\\4\\ The... tables at the end of this designations rule. \\4\\ The air quality design value for the 8-hour ozone NAAQS...

  13. [Hygienic assessment of the risk of ambient air pollution to human health in the Ukraine's industrial towns].

    Science.gov (United States)

    Kireeva, I S; Chernichenko, I A; Litvichenko, O N

    2007-01-01

    The paper presents the results of a hygienic analysis of ambient air pollution in 18 industrial cities of the Ukraine in 1990, 1996, and 2003 and the calculations of noncarcinogenic and carcinogenic hazards of ambient air pollutions to human health. According to the calculated complex indices P, the cities were ranked by the magnitude of ambient air pollution (an environmental disaster area; extreme, severe, moderate, weak, and permissible pollution). The non-carcinogenic and (total indices, indices for critical organs and systems) carcinogenic risks were estimated for the populations of the studied cities in relation to the level of atmospheric pollution on their territories. Proposals are given for further development of studies.

  14. Assessing plant response to ambient ozone: growth of young apple trees in open-top chambers and corresponding ambient air plots

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W.J. [Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003-9298 (United States)]. E-mail: wmanning@microbio.umass.edu; Cooley, D.R. [Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003-9298 (United States); Tuttle, A.F. [Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003-9298 (United States); Frenkel, M.A. [Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003-9298 (United States); Bergweiler, C.J. [Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003-9298 (United States)

    2004-12-01

    Open-top chambers (OTCs) and corresponding ambient air plots (AA) were used to assess the impact of ambient ozone on growth of newly planted apple trees at the Montague Field research center in Amherst, MA. Two-year-old apple trees (Malus domestica Borkh 'Rogers Red McIntosh') were planted in the ground in circular plots. Four of the plots were enclosed with OTCs where incoming air was charcoal-filtered (CF); four were enclosed with OTCs where incoming air was not charcoal-filtered (NF) and four were not enclosed, allowing access to ambient air conditions (AA). Conditions in both CF and NF OTCs resulted in increased tree growth and changed incidence of disease and arthropod pests, compared to trees in AA. As a result, we were not able to use the OTC method to assess the impact of ambient ozone on growth of young apple trees in Amherst, MA. - Capsule: Conditions in charcoal-filtered and non-filtered open-top chambers affected apple tree growth equally and prevented assessment of ambient ozone effects.

  15. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  16. Effects of ambient room temperature on cold air cooling during laser hair removal.

    Science.gov (United States)

    Ram, Ramin; Rosenbach, Alan

    2007-09-01

    Forced air cooling is a well-established technique that protects the epidermis during laser heating of deeper structures, thereby allowing for increased laser fluences. The goal of this prospective study was to identify whether an elevation in ambient room temperature influences the efficacy of forced air cooling. Skin surface temperatures were measured on 24 sites (12 subjects) during cold air exposure in examination rooms with ambient temperatures of 72 degrees F (22.2 degrees C) and 82 degrees F (27.8 degrees C), respectively. Before cooling, mean skin surface temperature was 9 degrees F (5 degrees C) higher in the warmer room (P cooling (within 1 s), the skin surface temperature remained considerably higher (10.75 degrees F, or 5.8 degrees C, P cooling in a room with an ambient temperature of 82 degrees F (27.8 degrees C) is not as effective as in a room that is at 72 degrees F (22.2 degrees C).

  17. Ambient air pollution and daily outpatient visits for cardiac arrhythmia in Shanghai, China.

    Science.gov (United States)

    Zhao, Ang; Chen, Renjie; Kuang, Xingya; Kan, Haidong

    2014-01-01

    Cardiac arrhythmias are cardiac rhythm disorders that comprise an important public health problem. Few prior studies have examined the association between ambient air pollution and arrhythmias in general populations in mainland China. We performed a time-series analysis to investigate the short-term association between air pollution (particulate matter with an aerodynamic diameter less than 10 µm [PM10], sulfur dioxide [SO2], and nitrogen dioxide [NO2]) and outpatient visits for arrhythmia in Shanghai, China. We applied the over-dispersed Poisson generalized additive model to analyze the associations after control for seasonality, day of the week, and weather conditions. We then stratified the analyses by age, gender, and season. We identified a total of 56 940 outpatient visits for cardiac arrhythmia. A 10-µg/m3 increase in the present-day concentrations of PM10, SO2, and NO2 corresponded to increases of 0.56% (95% CI 0.42%, 0.70%), 2.07% (95% CI 1.49%, 2.64%), and 2.90% (95% CI 2.53%, 3.27%), respectively, in outpatient arrhythmia visits. The associations were stronger in older people (aged ≥65 years) and in females. This study provides the first evidence that ambient air pollution is significantly associated with increased risk of cardiac arrhythmia in mainland China. Our analyses provide evidence that the current air pollution levels have an adverse effect on cardiovascular health and strengthened the rationale for further limiting air pollution levels in the city.

  18. Air/superfund national technical guidance study series. Volume 4. Guidance for ambient air monitoring at superfund sites (revised). Final report

    International Nuclear Information System (INIS)

    Roffman, A.; Stoner, R.

    1993-05-01

    The report presents the results of an EPA-sponsored study to develop guidance for designing and conducting ambient air monitoring at Superfund sites. By law, all exposure pathways - including the air pathway - must be evaluated for every Superfund site; therefore, some level of ambient air monitoring usually is necessary at each site. The document offers technical guidance for use by a diverse audience, including EPA Air and Superfund Regional and Headquarters staff, State Air and Superfund staff, federal and state remedial and removal contractors, and potentially responsible parties. The manual is written to serve the needs of individuals with various levels of scientific training and experience in selecting and using ambient air monitoring methods in support of air pathway assessments

  19. Crossett Hydrogen Sulfide Air Sampling Report

    Science.gov (United States)

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  20. Study of temporal variation in ambient air quality during Diwali festival in India.

    Science.gov (United States)

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  1. Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air.

    Science.gov (United States)

    Cahill, Thomas M; Charles, M Judith; Seaman, Vincent Y

    2010-05-01

    Acrolein, an unsaturated aldehyde, has been identified as one of the most important toxic air pollutants in recent assessments of ambient air quality. Current methods for determining acrolein concentrations, however, suffer from poor sensitivity, selectivity, and reproducibility. The collection and analysis of unsaturated carbonyls, and acrolein in particular, is complicated by unstable derivatives, coelution of similar compounds, and ozone interference. The primary objective of this research was to develop an analytical method to measure acrolein and other volatile carbonyls present in low part-per-trillion concentrations in ambient air samples obtained over short sampling periods. The method we devised uses a mist chamber in which carbonyls from air samples form water-soluble adducts with bisulfite in the chamber solution, effectively trapping the carbonyls in the solution. The mist chamber methodology proved effective, with collection efficiency for acrolein of at least 70% for each mist chamber at a flow rate of approximately 17 L/min. After the sample collection, the carbonyls are liberated from the bisulfite adducts through the addition of hydrogen peroxide, which converts the bisulfite to sulfate, reversing the bisulfite addition reaction. The free carbonyls are then derivatized by o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA*), which stabilizes the analytes and makes them easier to detect by electron-capture negative ionization mass spectrometry (ECNI-MS). The derivatives are then extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The mist chamber method was applied in a field test to determine the extent of acrolein in ambient air near the Peace Bridge plaza in Buffalo, New York, an area of heavy traffic near a major border crossing between the United States and Canada. In addition, XAD-2 adsorbent cartridges coated with 2-(hydroxymethyl)piperidine (2-HMP) according to Occupational Safety and Health Administration (OSHA) Method

  2. Multi-Gas analysis of ambient air using FTIR spectroscopy over Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Grutter, Michel [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2003-01-01

    A Fourier Transform Infrared (FTIR) spectrometer was used to analyze the composition of ambient air at a specific site in Mexico City metropolitan area. A continuous flow of air was passed through a multi-pass cell and the absorption spectra were collected over a period of two weeks. Quantitative analysis was performed by means of the classical-least square (CLS) method using synthetically generated spectra as references and calibration sources. Ambient levels of CO, CO{sup 2}, CH{sub 4} and N{sub 2}O are reported with a time resolution of five minutes for September 2001, showing interesting results in their diurnal patterns. Comments on the precision, detection limits and signal to noise of the instrument are included for the evaluation of this technique. Water concentrations were estimated and compared with those obtained with a relative humidity sensor. The technique of extractive FTIR for ambient trace gas monitoring was utilized in Mexico for the fist time and some potential applications are given. [Spanish] Se utilizo un espectrometro en el infrarrojo por transformadas de Fourier (FTIR) para analizar la composicion de aire ambiente en un sitio de la zona metropolitana de la Ciudad de Mexico. Para ello se introdujo un flujo constante de aire a una celda de gases de paso multiple y se colectaron los espectros durante un periodo de dos semanas. Para el analisis cuantitativo, se aplico el metodo clasico de minimos cuadrados (CLS) utilizando espectros sinteticos como referencias y fuentes de calibracion. Se observaron patrones interesantes en los niveles ambientales de CO, CO{sup 2}, CH{sub 4} y N{sub 2}O, los cuales son reportados con una resolucion temporal de cinco minutos para el mes de septiembre del 2001. En la evaluacion de esta tecnica se incluyen comentarios sobre la precision, los limites de deteccion, asi como de la relacion senal/ruido del instrumento. Se estimaron concentraciones de vapor de agua a traves de sus absorciones en el infrarrojo y se

  3. Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain.

    Science.gov (United States)

    Cirera, Lluís; Rodríguez, Miguel; Giménez, Joaquín; Jiménez, Enrique; Saez, Marc; Guillén, José-Jesús; Medrano, José; Martínez-Victoria, María-Aurelia; Ballester, Ferran; Moreno-Grau, Stella; Navarro, Carmen

    2009-03-01

    Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city's air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 microg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution. The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized

  4. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James; Klett, Lynn

    2018-04-03

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambient air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.

  5. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China

    International Nuclear Information System (INIS)

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-01-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m 3 increase in the present-day PM 10 , PM 2.5 , SO 2 , NO 2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0–21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0–3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. - Highlights: • Few studies have evaluated the effects of air pollution and temperature on OHCDs in China. • The present-day concentrations of air pollution were associated with OHCDs. • The effect of high temperatures on OHCDs was more immediate than low temperatures. • No significant effects were found for in-hospital coronary deaths. - Ambient air pollution and temperature may trigger out-of-hospital coronary deaths but not in-hospital coronary deaths

  6. Proposed Pathophysiologic Framework to Explain Some Excess Cardiovascular Death Associated with Ambient Air Particle Pollution: Insights for Public Health Translation

    Science.gov (United States)

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regularory en...

  7. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-11-22

    ...) 551-7606. Monica Morales, Leader, Air Quality Colorado, Montana, North Planning Unit, EPA Region 8... requirements of 40 CFR part 58, including Appendices A, C, and E, are used in design value calculations.\\8\\ \\8\\ A design value is the air quality value that is compared to the NAAQS to determine compliance. For...

  8. Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants – Analytical approach

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.

    2016-01-01

    Highlights: • An analytical method regulated the air flow rate in an air-cooled heat exchanger. • Performance of an ACHE in a propane cycle in an LNG plant was evaluated. • Summer inlet air temperature had higher impact on ACHE air flow rate requirement. - Abstract: An analytical method is presented to evaluate the air flow rate required in an air-cooled heat exchanger used in a propane pre-cooling cycle operating in an LNG (liquefied natural gas) plant. With variable ambient air inlet temperature, the air flow rate is to be increased or decreased so as to assure and maintain good performance of the operating air-cooled heat exchanger at the designed parameters and specifications. This analytical approach accounts for the variations in both heat load and ambient air inlet temperature. The ambient air inlet temperature is modeled analytically by simplified periodic relations. Thus, a complete analytical method is described so as to manage the problem of determining and accordingly regulate, either manually or automatically, the flow rate of air across the finned tubes of the air-cooled heat exchanger and thus, controls the process fluid outlet temperature required for the air-cooled heat exchangers for both cases of constant and varying heat loads and ambient air inlet temperatures. Numerical results are obtained showing the performance of the air-cooled heat exchanger of a propane cycle which cools both NG (natural gas) and MR (mixed refrigerant) streams in the LNG plant located at Damietta, Egypt. The inlet air temperature variation in the summer time has a considerable effect on the required air mass flow rate, while its influence becomes relatively less pronounced in winter.

  9. Declining ambient air pollution and lung function improvement in Austrian children

    Science.gov (United States)

    Neuberger, Manfred; Moshammer, Hanns; Kundi, Michael

    Three thousand four hundred fifty-one Austrian elementary school children were examined (between 2 and 8 times) by spirometry by standardized methods, over a 5 yr period. The districts where they lived were grouped into those where NO 2 declined during this period (by at least 30 μg/m 3 measured as half year means) and those with less or no decline in ambient NO 2. In both groups of districts, SO 2 and TSP fell by similar amounts over this period. A continuous improvement of MEF25 (maximum exspiratory flow rate at 25% vital capacity) was found in districts with declining ambient NO 2. Populations did not differ in respect of anthropometric factors, passive smoking or socioeconomic status. A birth cohort from this study population which was followed up to age 18 confirmed the improved growth of MEF25 with decline in NO 2, while the improved growth of forced vital capacity was more related to decline in SO 2. This study provides the first evidence that improvements in the outdoor air quality during the 1980s are correlated with health benefits, and suggest that adverse effects on lung function related to ambient air pollution are reversible before adulthood. Improvement of small airway functions appeared to be more dependent on reductions of NO 2 than reduction in SO 2 and TSP.

  10. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  11. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    International Nuclear Information System (INIS)

    Pogány, Andrea; Ebert, Volker; Balslev-Harder, David; Braban, Christine F; Twigg, Marsailidh M; Cassidy, Nathan; Ferracci, Valerio; Martin, Nicholas A; Hieta, Tuomas; Peltola, Jari; Leuenberger, Daiana; Pascale, Céline; Niederhauser, Bernhard; Persijn, Stefan; Van Wijk, Janneke; Tiebe, Carlo; Vaittinen, Olavi; Wirtz, Klaus

    2016-01-01

    The environmental impacts of ammonia (NH 3 ) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5–500 nmol mol −1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project. (paper)

  12. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    Science.gov (United States)

    Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-11-01

    The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.

  13. The ambient air quality accounts for the Nova Scotia Genuine Progress Index

    International Nuclear Information System (INIS)

    Monette, A.; Colman, R.

    2004-01-01

    The Nova Scotia Genuine Progress Index (GPI) is a measure of sustainable development which provides a complete and accurate picture of our well-being as a society. The GPI assigns explicit values to environmental quality, population health, livelihood security, equity, free time, and educational attainment. The Nova Scotia GPI includes 22 social, economic and environmental components, including ambient air quality. This report investigates Nova Scotia's ambient air concentrations and emissions of carbon monoxide (CO), total particulate matter (PM), sulphur dioxide (SO 2 ), nitrogen oxides (NOx), and volatile organic compounds (VOC). The costs of damages caused by the these key air pollutants are also examined. Exposure to these pollutants results in negative impacts on human health, damage to materials, agricultural crops and changes in forest productivity. From 1979 to 1996, national ambient concentrations of each of these pollutants decreased significantly. However, the national average concentration of ground-level ozone increased by 34 per cent during the same time period. In Nova Scotia, concentrations of CO, PM and SO 2 have declined dramatically since 1979, but the trends for NO 2 and ground-level ozone do not show significant declines. On a per capita basis, SOx emissions from electric power generation in the province are more than 8 times the Canadian average. The province also had higher per capita emissions of CO, PM, SOx and VOCs than all reporting OECD countries. Electric power generation is the greatest source of fuel combustion emissions in the province, followed by industrial and transportation sources. This report also described some individual actions that can be taken to reduce air pollutant emissions. 174 refs., 37 tabs., 60 figs

  14. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality.

    Science.gov (United States)

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-10-27

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability.

  15. Long-term Exposure to Ambient Air Pollution and Incidence of Brain Tumor

    DEFF Research Database (Denmark)

    Andersen, Zorana J; Pedersen, Marie; Weinmayr, Gudrun

    2018-01-01

    Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods: In 12 cohorts from six European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated...... of air pollutant concentrations and traffic intensity with total, malignant and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results: Of 282,194 subjects from 12 cohorts, 466 developed...... malignant brain tumors during 12 years of follow-up. Six of the cohorts had also data on nonmalignant brain tumor, where among 106,786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically non-significant association between malignant brain tumor and PM2...

  16. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  17. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Science.gov (United States)

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  18. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis.

    Science.gov (United States)

    Yang, Bo-Yi; Qian, Zhengmin; Howard, Steven W; Vaughn, Michael G; Fan, Shu-Jun; Liu, Kang-Kang; Dong, Guang-Hui

    2018-04-01

    Although numerous studies have investigated the association of ambient air pollution with hypertension and blood pressure (BP), the results were inconsistent. We performed a comprehensive systematic review and meta-analysis of these studies. Seven international and Chinese databases were searched for studies examining the associations of particulate (diameter10 μm (PM 10 )) and gaseous (sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), nitrogen oxides (NO x ), ozone (O 3 ), carbon monoxide (CO)) air pollutants with hypertension or BP. Odds ratios (OR), regression coefficients (β) and their 95% confidence intervals were calculated to evaluate the strength of the associations. Subgroup analysis, sensitivity analysis, and meta-regression analysis were also conducted. The overall meta-analysis showed significant associations of long-term exposures to PM 2.5 with hypertension (OR = 1.05), and of PM 10 , PM 2.5 , and NO 2 with DBP (β values: 0.47-0.86 mmHg). In addition, short-term exposures to four (PM 10 , PM 2.5 , SO 2 , NO 2 ), two (PM 2.5 and SO 2 ), and four air pollutants (PM 10 , PM 2.5 , SO 2 , and NO 2 ), were significantly associated with hypertension (ORs: 1.05-1.10), SBP (β values: 0.53-0.75 mmHg) and DBP (β values: 0.15-0.64 mmHg), respectively. Stratified analyses showed a generally stronger relationship among studies of men, Asians, North Americans, and areas with higher air pollutant levels. In conclusion, our study indicates a positive association between ambient air pollution and increased BP and hypertension. Geographical and socio-demographic factors may modify the pro-hypertensive effects of air pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Remote measurements of ambient air pollutants with a bistatic laser system

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    The ambient air pollutants ozone, nitric oxide, and ethylene have been monitored in the Pasadena area with a bistatic IR laser apparatus. These pollutants were measured with a differential absorption technique, using selected wavelengths in the 9.5-, 5.2-, and 10.5-micron regions, respectively. The transmitted laser radiation was detected using both direct and heterodyne detection techniques. In the direct detection case, cube corner retroreflectors provided the return, and the heterodyne detection responded to scattered radiation from various rough surfaces, ranging from 400 m to 1.9 km in distance from the apparatus. Significant departures from ambient background concentration levels were noticed in the region near a local freeway during periods of moderate and heavy traffic.

  20. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  1. Ambient air pollution exposure and the incidence of related health effects among racial/ethnic minorities

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Wernette, D.R.

    1997-02-01

    Differences among racial and ethnic groups in morbidity and mortality rates for diseases, including diseases with environmental causes, have been extensively documented. However, documenting the linkages between environmental contaminants, individual exposures, and disease incidence has been hindered by difficulties in measuring exposure for the population in general and for minority populations in particular. After briefly discussing research findings on associations of common air pollutants with disease incidence, the authors summarize recent studies of radial/ethnic subgroup differences in incidence of these diseases in the US. They then present evidence of both historic and current patterns of disproportionate minority group exposure to air pollution as measured by residence in areas where ambient air quality standards are violated. The current indications of disproportionate potential exposures of minority and low-income populations to air pollutants represent the continuation of a historical trend. The evidence of linkage between disproportionate exposure to air pollution of racial/ethnic minorities and low-income groups and their higher rates of some air pollution-related diseases is largely circumstantial. Differences in disease incidence and mortality rates among racial/ethnic groups are discussed for respiratory diseases, cancers, and lead poisoning. Pollutants of concern include CO, Pb, SO{sub 2}, O{sub 3}, and particulates.

  2. Measurement of Ambient Air Particle (TSP, PM10, PM2,5) Around Candidate Location of PLTN Semenanjung Lemahabang

    International Nuclear Information System (INIS)

    AgusGindo S; Budi Hari H

    2008-01-01

    Measurement analysis of ambient air particle (TSP, PM 10 , PM 2,5 ) around location candidate of PLTN (Power Station of Nuclear Energy) Semenanjung Lemahabang has been carried out. The measurement was conducted in May 2007 with a purpose to providing information about concentration of ambient air particle (TSP, PM 10 , PM 2,5 ) and diameter distribution of its air particle. The measurement was conducted in three locations i.e. 1). Balong village 2). Bayuran 3). Bondo. Concentration of TSP, PM 10 , and PM 2,5 per 24 hours in all measured locations in area candidate of PLTN exceed quality standard of national ambient air is specified by government. All measurement locations for the TSP, PM 10 , and PM 2,5 was include category of ISPU (Standard Index of Air Pollution) moderate. (author)

  3. Ambient air cooling for concealed soft body armor in a hot environment.

    Science.gov (United States)

    Ryan, Greg A; Bishop, Stacy H; Herron, Robert L; Katica, Charles P; Elbon, Bre'anna L; Bosak, Andrew M; Bishop, Phillip

    2014-01-01

    Concealed soft body armor inhibits convective and evaporative heat loss and increases heat storage, especially in hot environments. One option to potentially mitigate heat storage is to promote airflow under the soft body armor. The purpose of this study was to evaluate the effect of ambient air induction (∼100 liters per minute) on heat strain while wearing concealed soft body armor in a hot environment (wet bulb globe temperature = 30°C). A counter-balanced, repeated measures protocol was performed with nine healthy male volunteers. Participants were fitted with either a traditional or modified Level II concealed soft body armor. Participants performed cycles of 12 min of walking (1.25 liters per minute) and 3 min of arm curls (0.6 liters per minute) for a total of 60 min. Two-way repeated measures ANOVA was used to assess the mean differences in physiological measures (rectal temperature, heart rate, micro-environment [temperature and relative humidity]). Post hoc Bonferroni analysis and paired samples t-tests (alpha = 0.01) were conducted on omnibus significant findings. Perceptual measures (perceived exertion, thermal comfort) were analyzed using Wilcoxon Signed Ranks Tests. Modification led to an improvement in perceived exertion at 45 min (MOD: 10 ± 1; CON: 11 ± 2; p ≤ 0.001) and 60 min (MOD: 10 ± 2; CON: 12 ± 2; p ≤ 0.001) and a reduction in micro-environment temperature in MOD (1.0 ± 0.2°C, p = 0.03) compared to CON. Modification did not attenuate change in rectal temperature or heart rate (p < 0.01) during 60-min work bout. Change in rectal temperature approached significance between MOD and CON at the end of the work bout (MOD: 0.4 ± 0.2°C; CON: 0.7 ± 0.3°C; p = 0.048). The slope of rectal temperature was significantly greater (p = 0.04) under CON compared to MOD. These data suggest that air induction may provide small benefits while wearing concealed soft body armor, though improvements are needed to lessen physiological strain.

  4. Carbon Dioxide Capture from Ambient Air Using Amine-Grafted Mesoporous Adsorbents

    Directory of Open Access Journals (Sweden)

    Annemarie Wagner

    2013-01-01

    Full Text Available Anthropogenic emissions of carbon dioxide (CO2 have been identified as a major contributor to climate change. An attractive approach to tackle the increasing levels of CO2 in the atmosphere is direct extraction via absorption of CO2 from ambient air, to be subsequently desorbed and processed under controlled conditions. The feasibility of this approach depends on the sorbent material that should combine a long lifetime with nontoxicity, high selectivity for CO2, and favorable thermodynamic cycling properties. Adsorbents based on pore-expanded mesoporous silica grafted with amines have previously been found to combine high CO2 adsorption capacity at low partial pressures with operational stability under highly defined laboratory conditions. Here we examine the real potential and functionality of these materials by using more realistic conditions using both pure CO2, synthetic air, and, most importantly, ambient air. Through a combination of thermogravimetric analysis and Fourier transform infrared (TGA-FTIR spectroscopy we address the primary functionality and by diffuse reflectance infrared Fourier transform (DRIFT spectroscopy the observed degradation of the material on a molecular level.

  5. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution.

    Science.gov (United States)

    Kelly, Frank J; Fussell, Julia C

    2017-09-01

    Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China

    International Nuclear Information System (INIS)

    Yu Zhiqiang; Liao Ru'e; Li Huiru; Mo Ligui; Zeng Xiangying; Sheng Guoying; Fu Jiamo

    2011-01-01

    In present study, atmospheric particles from Shanghai, the biggest city and the most important industrial base in China, were analyzed for polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DP). Concentrations of Σ 20 PBDEs and DP both exhibited the changing trend of industrial area > urban areas. Jiading District had the highest levels of particulate PBDEs and DP with values of 744 ± 152 pg/m 3 and 5.48 ± 1.28 pg/m 3 , respectively. Compared with similar data in other areas of the world, PBDEs in Shanghai were at medium pollution level, while DP was at lower level, which reflected their different production and use in Shanghai. The results from multiple linear regression analysis suggested that deca-BDE mixture was the most important contributor of particulate PBDEs in Shanghai. The fractions of anti-DP showed no significant differences to those of the technical mixtures (p > 0.05), which suggested that no obviously stereoselective process occurred in ambient air around Shanghai. - Highlights: → Atmospheric PBDEs of Shanghai were at moderate levels and dominated by BDE-209. → Particulate DP was low even Shanghai is not far from the DP manufacturing factory. → DP showed no obviously stereoselective process in air particles from Shanghai. → Significant positive correlation was found between particulate PBDEs and PBDD/Fs. - The moderate PBDEs levels with deca-BDE being the most important contributor and low DP levels in ambient air around Shanghai reflected their different usage in this area.

  7. Uncertainty associated with the gravimetric measurement of particulate matter concentration in ambient air.

    Science.gov (United States)

    Lacey, Ronald E; Faulkner, William Brock

    2015-07-01

    This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min(-1) (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min(-1) (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min(-1) (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1x10(-6) g m(-3) to 18.0x10(-6) g m(-3), which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically. This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate

  8. Ambient Air Pollution and Apnea and Bradycardia in High-Risk Infants on Home Monitors

    Science.gov (United States)

    Klein, Mitchel; Flanders, W. Dana; Mulholland, James A.; Freed, Gary; Tolbert, Paige E.

    2011-01-01

    Background: Evidence suggests that increased ambient air pollution concentrations are associated with health effects, although relatively few studies have specifically examined infants. Objective: We examined associations of daily ambient air pollution concentrations with central apnea (prolonged pauses in breathing) and bradycardia (low heart rate) events among infants prescribed home cardiorespiratory monitors. Methods: The home monitors record the electrocardiogram, heart rate, and respiratory effort for detected apnea and bradycardia events in high-risk infants [primarily premature and low birth weight (LBW) infants]. From August 1998 through December 2002, 4,277 infants had 8,960 apnea event-days and 29,450 bradycardia event-days in > 179,000 days of follow-up. We assessed the occurrence of apnea and bradycardia events in relation to speciated particulate matter and gaseous air pollution levels using a 2-day average of air pollution (same day and previous day), adjusting for temporal trends, temperature, and infant age. Results: We observed associations between bradycardia and 8-hr maximum ozone [odds ratio (OR) = 1.049 per 25-ppb increase; 95% confidence interval (CI), 1.021–1.078] and 1-hr maximum nitrogen dioxide (OR =1.025 per 20-ppb increase; 95% CI, 1.000–1.050). The association with ozone was robust to different methods of control for time trend and specified correlation structure. In secondary analyses, associations of apnea and bradycardia with pollution were generally stronger in infants who were full term and of normal birth weight than in infants who were both premature and LBW. Conclusions: These results suggest that higher air pollution concentrations may increase the occurrence of apnea and bradycardia in high-risk infants. PMID:21447453

  9. Human exposure to carcinogens in ambient air in Denmark, Finland and Sweden

    Science.gov (United States)

    Fauser, P.; Ketzel, M.; Becker, T.; Plejdrup, M. S.; Brandt, J.; Gidhagen, L.; Omstedt, G.; Skårman, T.; Bartonova, A.; Schwarze, P.; Karvosenoja, N.; Paunu, V.-V.; Kukkonen, J.; Karppinen, A.

    2017-10-01

    The concentrations of seventeen pollutants (particulate mass fractions PM2.5 and PM10, a range of metals, inorganic gases and organic compounds) are for the first time analyzed in a screening of the carcinogenic risk at a resolution of 1 × 1 km2 in ambient air in three Nordic countries. Modelled annual mean air concentrations in 2010 show no exceedances of the EU air quality limit, guideline or target values. The only modelled exceedance of US-EPA 1:100,000 cancer risk concentrations (0.12 ng/m3, US-EPA IRIS, 2015) occurs for B(a)P in Denmark, for approximately 80% of the Danish population. However, the EU target value threshold of 1 ng/m3 for B(a)P is not exceeded in the modelled values in any parts of Denmark. No emission data for B(a)P were available for the whole domain of the other two considered Nordic countries and important uncertainties are still related to the emissions. Long-range transport is significant for the concentrations of all of the considered pollutants, except for B(a)P that commonly originates mostly from local residential wood combustion. The ambient air concentrations of NOx, SO2, Cd, Cr and Pb also have significant contributions from national sources; 45-65% for NOx and SO2, and for the metals from 15 to 60% in urban areas and from 1 to 20% in rural areas, within the considered Nordic area. High national contributions occur especially in urban air, due to primarily road traffic, residential wood combustion, energy production and industrial point sources. It is recommended to monitor the influence from residential wood combustion more extensively, and to analyze longer time trends for long-term human exposure.

  10. Ambient air pollution exposure and full-term birth weight in California

    Directory of Open Access Journals (Sweden)

    Sadd James L

    2010-07-01

    Full Text Available Abstract Background Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births. Methods We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth. Results 3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g per pphm ozone, -7.7 g (-7.9 g, -6.6 g per 10 μg/m3 particulate matter under 10 μm, -12.8 g (-14.3 g, -11.3 g per 10 μg/m3 particulate matter under 2.5 μm, and -9.3 g (-10.7 g, -7.9 g per 10 μg/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters. Conclusions This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether

  11. Polyurethane foam (PUF) disk passive samplers derived polychlorinated biphenyls (PCBs) concentrations in the ambient air of Bursa-Turkey: Spatial and temporal variations and health risk assessment.

    Science.gov (United States)

    Birgül, Aşkın; Kurt-Karakus, Perihan Binnur; Alegria, Henry; Gungormus, Elif; Celik, Halil; Cicek, Tugba; Güven, Emine Can

    2017-02-01

    Polyurethane foam (PUF) passive samplers were employed to assess air concentrations of polychlorinated biphenyls (PCBs) in background, agricultural, semi-urban, urban and industrial sites in Bursa, Turkey. Samplers were deployed for approximately 2-month periods from February to December 2014 in five sampling campaign. Results showed a clear rural-agricultural-semi-urban-urban-industrial PCBs concentration gradient. Considering all sampling periods, ambient air concentrations of Σ 43 PCBs ranged from 9.6 to 1240 pg/m 3 at all sites with an average of 24.1 ± 8.2, 43.8 ± 24.4, 140 ± 190, 42.8 ± 24.6, 160 ± 280, 84.1 ± 105, 170 ± 150 and 280 ± 540 pg/m 3 for Mount Uludag, Uludag University Campus, Camlica, Bursa Technical University Osmangazi Campus, Hamitler, Agakoy, Kestel Organised Industrial District and Demirtas Organised Industrial District sampling sites, respectively. The ambient air PCB concentrations increased along a gradient from background to industrial areas by a factor of 1.7-11.4. 4-Cl PCBs (31.50-81.60%) was the most dominant homologue group at all sampling sites followed by 3-Cl, 7-Cl, 6-Cl and 5-Cl homologue groups. Sampling locations and potential sources grouped in principal component analysis. Results of PCA plots highlighted a large variability of the PCB mixture in air, hence possible related sources, in Bursa area. Calculated inhalation risk levels in this study indicated no serious adverse health effects. This study is one of few efforts to characterize PCB composition in ambient air seasonally and spatially for urban and industrial areas of Turkey by using passive samplers as an alternative sampling method for concurrent monitoring at multiple sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Quantification of Alkyl Nitrates in Ambient Air by Thermal Dissociation Cavity Ring-Down Spectroscopy with Preconcentration

    Science.gov (United States)

    Ye, C. Z.; Osthoff, H. D.; Taha, Y. M.; Pak, J. K.; Saowapon, M. T.

    2015-12-01

    Alkyl nitrates (AN, molecular formula RONO2) play a crucial role in the troposphere as temporary reservoirs of nitrogen oxides (NOx =NO +NO2) and by acting as chain terminators in the photochemical production of ozone. Mixing ratios of AN in ambient air are commonly quantified by gas chromatography with electron capture or mass spectrometric detection (GC-ECD or GC-MS) coupled to purge-and-trap preconcentration, usually on Tenax sorbent, to improve the detection limits. The analysis, however, is quite laborious as there are many alkyl nitrates that are low in individual abundance (often less than 1 parts-per-trillion by volume, pptv) and that exhibit different instrumental response factors. An alternative method is to determine alkyl nitrates as a sum (ΣAN) by thermal dissociation (TD) to a common fragment (NO2), which can then be quantified with a uniform response factor by optical absorption, for example by cavity ring-down spectroscopy (CRDS). However, the determination of ΣAN by TD-CRDS is hampered by its relatively high detection limits (several 100 pptv) and secondary chemistry following TD that results in both negative and positive interferences and depends on the composition of the ambient air sampled. In this work, a TD-CRDS equipped with a Tenax preconcentration unit is described. Matrix effects are minimized by desorbing the samples from the Tenax in a background of nitrogen. The performance of the instrument, in particular the recovery from the Tenax sorbent, was evaluated by sampling laboratory-generated mixtures of alkyl and peroxyacyl nitrates. Field data from a coastal site collected during the Ozone-depleting reactions in a coastal atmosphere (ORCA) campaign, which took place at the Amphitrite Point Observatory in Ucluelet, BC, from July 6 - 31, 2015, are presented. Advantages and disadvantages of the new method are discussed.

  13. Quantifying regional consumption-based health impacts attributable to ambient air pollution in China.

    Science.gov (United States)

    Zhang, Yanxia; Qu, Shen; Zhao, Jing; Zhu, Ge; Zhang, Yanxu; Lu, Xi; Sabel, Clive E; Wang, Haikun

    2018-03-01

    Serious air pollution has caused about one million premature deaths per year in China recently. Besides cross-border atmospheric transport of air pollution, trade also relocates pollution and related health impacts across China as a result of the spatial separation between consumption and production. This study proposes an approach for calculating the health impacts of emissions due to a region's consumption based on a multidisciplinary methodology coupling economic, atmospheric, and epidemiological models. These analyses were performed for China's Beijing and Hebei provinces. It was found that these provinces' consumption-based premature deaths attributable to ambient PM 2.5 were respectively 22,500 and 49,700, which were 23% higher and 37% lower than the numbers solely within their boundaries in 2007. The difference between the effects of trade and trade-related emissions on premature deaths attributable to air pollution in a region has also been clarified. The results illustrate the large and broad impact of domestic trade on regional air quality and the need for comprehensive consideration of supply chains in designing policy to mitigate the negative health impacts of air pollution across China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Energy and material balance of CO2 capture from ambient air.

    Science.gov (United States)

    Zeman, Frank

    2007-11-01

    Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.

  15. CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent.

    Science.gov (United States)

    Seipp, Charles A; Williams, Neil J; Kidder, Michelle K; Custelcean, Radu

    2017-01-19

    Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO 2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO 2 concentration is to remove the CO 2 directly from air (direct air capture). Herein we report a simple aqueous guanidine sorbent that captures CO 2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (K sp =1.0(4)×10 -8 ), which facilitates its separation from solution by filtration. The bound CO 2 can be released by relatively mild heating of the crystals at 80-120 °C, which regenerates the guanidine sorbent quantitatively. Thus, this crystallization-based approach to CO 2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 75 FR 71033 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2010-11-22

    ... Nebraska. Street, Kansas City, KS 66101-2907, (913) 551-7606. Monica Morales, Leader, Air Quality Colorado..., C, and E are used in design value calculations.\\5\\ In some cases, states requested unclassifiable designations for areas around monitors with a design value exceeding the standard. EPA does not believe such a...

  17. 40 CFR Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5

    Science.gov (United States)

    2010-07-01

    ... Air Quality Standards for PM2.5 N Appendix N to Part 50 Protection of Environment ENVIRONMENTAL.... 50, App. N Appendix N to Part 50—Interpretation of the National Ambient Air Quality Standards for PM2...], x[2], x[3], * * *, x[n]). In this case, x[1] is the largest number and x[n] is the smallest value...

  18. A Causal Inference Analysis of the Effect of Wildland Fire Smoke on Ambient Air Pollution Levels and Health Burden

    Science.gov (United States)

    Wildfire smoke is a major contributor to ambient air pollution levels. In this talk, we develop a spatio-temporal model to estimate the contribution of fire smoke to overall air pollution in different regions of the country. We combine numerical model output with observational da...

  19. Spatial and temporal variation in endotoxin and PM10 concentrations in ambient air in a livestock dense area

    NARCIS (Netherlands)

    de Rooij, Myrna; Heederik, Dick|info:eu-repo/dai/nl/072910542; Borlée, Floor|info:eu-repo/dai/nl/315138661; Hoek, Gerard|info:eu-repo/dai/nl/069553475; Wouters, Inge|info:eu-repo/dai/nl/274156652

    Several studies have reported associations between farming and respiratory health in neighboring residents. Health effects are possibly linked to fine dust and endotoxin emissions from livestock farms. Little is known about levels of these air pollutants in ambient air in livestock dense areas. We

  20. Investigations into the environmental conditions experienced during ambient sample transport: impact to dried blood spot sample shipments.

    Science.gov (United States)

    Bowen, Chester L; Dopson, Wesley; Kemp, Daniel C; Lewis, Mark; Lad, Rakesh; Overvold, Carol

    2011-07-01

    Prior to bioanalysis, sample transport and storage are critical considerations in any pharmacokinetic or toxicokinetic study design. Care must be taken to ensure the shipment is properly packaged and tracked to make certain it arrives at the desired, final destination in the appropriate timeframe, and that the integrity of the sample is not compromised. When dealing with biological specimens, environmental conditions may have a deleterious effect on the stability and conditions of the sample. Currently, frozen plasma or blood samples are the matrix of choice within the pharmaceutical industry for analysis within both preclinical and clinical trials. Liquid samples are shipped and received frozen and, therefore, the assumption is made that the frozen conditions are maintained throughout the entire transit process. Dried blood spot and dried matrix spot samples are becoming popular alternatives to plasma sampling in many small- and even large-molecule applications. With the implementation of dried blood spot and dried matrix spot samples, shipping and storage occurs under ambient conditions. In this article we discuss various shipping containers for these samples, illustrate the environmental extremes encountered during the shipping process, demonstrate a cost-effective method of monitoring both temperature and humidity, and discuss validation steps that may be implemented to minimize the impact of these variables on your study design.

  1. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  2. Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

    Science.gov (United States)

    Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki

    2018-03-01

    We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.

  3. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, R.M.; Santella, R.M.; Jedrychowski, W.; Garte, S.J.; Bell, D.A.; Ottman, R.; Gladek-Yarborough, A.; Cosma, G.; Young, T.L.; Cooper, T.B.; Randall, M.C.; Manchester, D.K.; Perera, F.P. [Columbia University, New York, NY (United States). Division of Environmental Health Sciences

    1998-06-01

    Industrialized regions in Poland are characterized by high ambient pollution, including polycyclic aromatic hydrocarbons (PAHs) from coal burning for industry and home heating. In experimental bioassays, certain PAHs are transplacental carcinogens and developmental toxicants. The amount of PAHs bound to DNA (PAH-DNA adducts) in maternal and umbilical white blood cells were measured in 70 mothers and newborns from Krakow, Poland. Modulation of adduct levels by genotypes previously linked to risk of lung cancer, specifically glutathione S-transferase M1(GSTM1) and cytochrome P4501A1 (CYP1A1). There was a dose-related increase in maternal and newborn adduct levels with ambient pollution at the women`s place of residence among subjects who were not employed away from home (p less than or equal to 0.05). Maternal smoking (active and passive) significantly increased maternal (p less than or equal to 0.01) but not newborn adduct levels. Results indicate that PAH-induced DNA damage in mothers and newborns is increased by ambient air pollution.

  4. Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Mortensen, Jann; Møller, Peter

    2009-01-01

    Particulate air pollution is associated with increased risk of pulmonary diseases and detrimental outcomes related to the cardiovascular system, including altered vessel functions. This study's objective was too evaluate the effects of ambient particle exposure on the blood-gas permeability, lung.......5-15.8 microg/m(3) PM(10-2.5)) or filtered (91-542 particles/cm(3)) air collected above a busy street. The clearance rate of aerosolized (99m)Tc-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA) was measured as an index for the alveolar epithelial membrane integrity and permeability of the lung blood......-gas barrier after rush-hour exposure. Lung function was assessed using body plethysmography, flow-volume curves, and measurements of the diffusion capacity of carbon monoxide. CC16 was measured in plasma and urine as another marker of alveolar integrity. Particulate matter exposure had no significant effect...

  5. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy; Sørensen, Mette; Figueras, Francesc; Nieuwenhuijsen, Mark J; Raaschou-Nielsen, Ole; Dadvand, Payam

    2014-09-01

    Pregnancy-induced hypertensive disorders can lead to maternal and perinatal morbidity and mortality, but the cause of these conditions is not well understood. We have systematically reviewed and performed a meta-analysis of epidemiological studies investigating the association between exposure to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December 2009 and December 2013. Combined risk estimates were calculated using random-effect models for each exposure that had been examined in ≥4 studies. Heterogeneity and publication bias were evaluated. A total of 17 articles evaluating the impact of nitrogen oxides (NO2, NOX), particulate matter (PM10, PM2.5), carbon monoxide (CO), ozone (O3), proximity to major roads, and traffic density met our inclusion criteria. Most studies reported that air pollution increased risk for pregnancy-induced hypertensive disorders. There was significant heterogeneity in meta-analysis, which included 16 studies reporting on gestational hypertension and preeclampsia as separate or combined outcomes; there was less heterogeneity in findings of the 10 studies reporting solely on preeclampsia. Meta-analyses showed increased risks of hypertensive disorders in pregnancy for all pollutants except CO. Random-effect meta-analysis combined odds ratio associated with a 5-μg/m3 increase in PM2.5 was 1.57 (95% confidence interval, 1.26-1.96) for combined pregnancy-induced hypertensive disorders and 1.31 (95%confidence interval, 1.14-1.50) for preeclampsia [corrected]. Our results suggest that exposure to air pollution increases the risk of pregnancy-induced hypertensive disorders. © 2014 American Heart Association, Inc.

  6. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    Science.gov (United States)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  7. Modeling the effects of reformulated gasoline usages on ambient concentrations of ozone and five air toxics

    International Nuclear Information System (INIS)

    Ligocki, M.P.; Schulhof, R.R.; Jackson, R.E.; Jimenez, M.M.; Atkinson, D.

    1993-01-01

    The use of reformulated gasolines to reduce motor-vehicle-related hydrocarbon emissions has been mandated by the 1990 Clean Air Act Amendments for nine severely polluted urban areas. Using a version of the Urban Airshed Model that includes explicit representation of five motor-vehicle-related air toxics, the effects of reformulated gasoline usage on ambient ozone and toxics concentrations were simulated. Simulations were conducted for two urban areas. Baltimore-Washington and Houston, for the year 1995. Additional simulation were conducted for Baltimore-Washington including winter and 1999 scenarios. In the Baltimore-Washington areas, the 1995 Federal reformulated gasoline scenario produce reductions of 1.1 percent in simulated peak ozone and 2.7 percent in the areal extent of simulated ozone exceedances. Simulated ozone reductions were much smaller in Houston. In the reformulated gasoline simulations, secondary formulation of formaldehyde and acetaldehyde was reduced, and decreases in ambient benzene and polycyclic organic matter (POM) concentrations were simulated. Larger reductions in ozone and toxics concentrations were simulated for reformulated gasolines meeting California Phase II standards than for those meeting Federal standards. The effects of reductions in motor-vehicle-related nitrogen oxides (NO x ) emissions, alone and in combination with hydrocarbon reductions, were also examined

  8. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Science.gov (United States)

    Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J.

    2010-11-01

    A headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS), 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS). Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m-2 s-1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  9. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; hide

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level.

  10. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  11. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  12. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series for carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, and oxidants (Ox were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.

  13. The cardiopulmonary effects of ambient air pollution and mechanistic pathways: a comparative hierarchical pathway analysis.

    Directory of Open Access Journals (Sweden)

    Ananya Roy

    Full Text Available Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001 and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005. These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours and the hemostasis pathway responds gradually over a 2-3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system.

  14. An Evaluation of Uncertainty Associated to Analytical Measurements of Selected Polycyclic Aromatic Compounds in Ambient Air; Estudio sobre las Incertidumbres Asociadas al Metodo de Determinacion de PAC's Seleccionados en Muestras de Aire Ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Barrado, A. I.; Garcia, S.; Perez, R. M.

    2013-06-01

    This paper presents an evaluation of uncertainty associated to analytical measurement of eighteen polycyclic aromatic compounds (PACs) in ambient air by liquid chromatography with fluorescence detection (HPLC/FD). The study was focused on analyses of PM{sub 1}0, PM{sub 2}.5 and gas phase fractions. Main analytical uncertainty was estimated for eleven polycyclic aromatic hydrocarbons (PAHs), four nitro polycyclic aromatic hydrocarbons (nitro-PAHs) and two hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) based on the analytical determination, reference material analysis and extraction step. Main contributions reached 15-30% and came from extraction process of real ambient samples, being those for nitro- PAHs the highest (20-30%). Range and mean concentration of PAC mass concentrations measured in gas phase and PM{sub 1}0/PM{sub 2}.5 particle fractions during a full year are also presented. Concentrations of OH-PAHs were about 2-4 orders of magnitude lower than their parent PAHs and comparable to those sparsely reported in literature. (Author) 7 refs.

  15. Gas/particle partitioning and particle size distribution of PCDD/Fs and PCBs in urban ambient air.

    Science.gov (United States)

    Barbas, B; de la Torre, A; Sanz, P; Navarro, I; Artíñano, B; Martínez, M A

    2018-05-15

    Urban ambient air samples, including gas-phase (PUF), total suspended particulates (TSP), PM 10 , PM 2.5 and PM 1 airborne particle fractions were collected to evaluate gas-particle partitioning and size particle distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Clausius-Clapeyron equation, regressions of logKp vs logP L and logK OA, and human respiratory risk assessment were used to evaluate local or long-distance transport sources, gas-particle partitioning sorption mechanisms, and implications for health. Total ambient air levels (gas phase+particulate phase) of TPCBs and TPCDD/Fs, were 437 and 0.07pgm -3 (median), respectively. Levels of PCDD/F in the gas phase (0.004-0.14pgm -3 , range) were significantly (pgas phase, and displayed maximum levels in warm seasons, probably due to an increase in evaporation rates, supported by significant and strong positive dependence on temperature observed for several congeners. No significant differences in PCDD/Fs and PCBs concentrations were detected between the different particle size fractions considered (TSP, PM 10 , PM 2.5 and PM 1 ), reflecting that these chemicals are mainly bounded to PM 1 . The toxic content of samples was also evaluated. Total toxicity (PUF+TSP) attributable to dl-PCBs (13.4fg-TEQ 05 m -3 , median) was higher than those reported for PCDD/Fs (6.26fg-TEQ 05 m -3 ). The inhalation risk assessment concluded that the inhalation of PCDD/Fs and dl-PCBs pose a low cancer risk in the studied area. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evaluation of non-methane hydrocarbon (NMHC) emissions based on an ambient air measurement in Tokyo area, Japan

    Science.gov (United States)

    Matsunaga, Sou N.; Chatani, Satoru; Morikawa, Tazuko; Nakatsuka, Seiji; Suthawaree, Jeeranut; Tajima, Yosuke; Kato, Shungo; Kajii, Yoshizumi; Minoura, Hiroaki

    2010-12-01

    Non-methane hydrocarbons (NMHCs) are known to have an important role on air quality due to their high reactivity. NMHC analysis has been performed on 148 ambient air samples collected at five different sites in the Kanto area (Tokyo metropolitan area and surrounding six prefectures) of Japan in summer and winter of 2008, and fifty NMHCs have been determined and quantified. A field measurement campaign has been conducted at one of the busiest intersections in Tokyo metropolitan area in winter of 2008. NMHC emissions are evaluated through comparison of distributions of individual NMHCs emitted from motor vehicles, which are estimated from the measurements, with those determined from the current emissions inventory. The comparison revealed that the measured distributions of acetylene, ethylene and toluene showed a good agreement with those estimated from the emissions inventory (the values estimated from the measurements are a factor of 1.5, 0.56 and 2.3 larger than the emissions inventory in median, respectively), however, propane and isobutane are found to be significantly underestimated in the emissions inventory (the measured values were a factor of 18 and 5.1 larger than the emissions inventory, respectively). The significant underestimate of propane can be explained by that the current emissions inventory does not consider emissions from liquefied propane gas (LPG) fueled vehicles. However, for isobutane, reasons for the underestimate are still unclear. Another field measurement has been conducted in summer of 2008, where the air samples have been collected at three different sites on the ground and by a helicopter as well. Remarkable high concentrations of 1-butene and cis- and trans-2-butenes have been sporadically observed in the samples collected at Urayasu in the coastal area of Tokyo bay. Calculated propylene equivalent (PE) concentrations of butenes revealed that those have a significantly important role in ozone formation when the air plume is affected

  17. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    Science.gov (United States)

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.

    Science.gov (United States)

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-08-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Forty years increase of the air ambient temperature in Greece: The impact on buildings

    International Nuclear Information System (INIS)

    Kapsomenakis, J.; Kolokotsa, D.; Nikolaou, T.; Santamouris, M.; Zerefos, S.C.

    2013-01-01

    Highlights: • Forty years hourly data series from nine meteorological stations in Greece are analysed. • The air temperature increase influences the buildings’ energy demand. • A typical office building’s energy demand is examined. • The heating load is decreased by about 1 kWh/m 2 per decade. • The cooling load is increased by about 5 kWh/m 2 per decade. - Abstract: Air temperatures in urban areas continue to increase because of the heat island phenomenon (UHI) and the undeniable warming of the lower atmosphere during the past few decades. The observed high ambient air temperatures intensify the energy demand in cities, deteriorate urban comfort conditions, endanger the vulnerable population and amplify pollution problems especially in regions with hot climatic conditions. The present paper analyses 40 years of hourly data series from nine meteorological stations in Greece in order to understand the impact of air temperature and relative humidity trends on the energy consumption of buildings. Using a typical office building, the analysis showed that for the period in question the heating load in the Greek building sector has decreased by about 1 kWh/m 2 per decade, while the cooling load increased by about 5 kWh/m 2 per decade. This phenomenon has major environmental, economic and social consequences, which will be amplified in the upcoming decades in view of the expected man-made climatic changes in this geographic area

  20. Long-term trends in ambient air 1,3-butadiene levels in Houston, Texas.

    Science.gov (United States)

    Hendler, Albert H; Goodmanson Bunch, Alea T; Crow, Walter L

    2010-10-01

    1,3-Butadiene is one of the top air pollution risk drivers in the United States. The ambient air concentrations in Houston, TX are of particular interest because of the relatively large number of stationary industrial sources that report 1,3-butadiene emissions and the relatively large number of vehicle miles traveled every day on Houston roadways. Several Federal and State regulatory programs initiated over the last two decades regulate the amount of 1,3-butadiene emitted to the air from industrial, mobile, and area sources. Emissions reductions from industrial sources in Houston have also been achieved through voluntary agreements between individual facilities and the Texas Commission on Environmental Quality (TCEQ). The impact of these regulatory and voluntary initiatives on air quality has been measured by a network of 30 monitors stationed within the Houston area. Most of the area's monitors have measured reductions in annual average 1,3-butadiene levels in the range of 40-80%. The greatest decreases and statistically significant downward trends have been measured at the monitoring sites closest to industrial facilities.

  1. A Review of Epidemiological Research on Adverse Neurological Effects of Exposure to Ambient Air Pollution

    Science.gov (United States)

    Xu, Xiaohui; Ha, Sandie Uyen; Basnet, Rakshya

    2016-01-01

    There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology. PMID:27547751

  2. EML Surface Air Sampling Program, 1990--1993 data

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.J.; Sanderson, C.G.; Kada, J.

    1995-11-01

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory`s Surface Air Sampling Program (SASP) during 1990--1993, with the exception of April 1993, indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the sampling and analytical techniques that were used to collect and measure them. The occasional detection of {sup 137}Cs in some air filter samples may have resulted from resuspension of previously deposited debris. Following the April 6, 1993 accident and release of radionuclides into the atmosphere at a reprocessing plant in the Tomsk-7 military nuclear complex located 16 km north of the Siberian city of Tomsk, Russia, weekly air filter samples from Barrow, Alaska; Thule, Greenland and Moosonee, Canada were selected for special analyses. The naturally occurring radioisotopes that the authors measure, {sup 7}Be and {sup 210}Pb, continue to be detected in most air filter samples. Variations in the annual mean concentrations of {sup 7}Be at many of the sites appear to result primarily from changes in the atmospheric production rate of this cosmogenic radionuclide. Short-term variations in the concentrations of {sup 7}Be and {sup 210}Pb continued to be observed at many sites at which weekly air filter samples were analyzed. The monthly gross gamma-ray activity and the monthly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb measured at sampling sites in SASP during 1990--1993 are presented. The weekly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb for samples collected during 1990--1993 are given for 17 sites.

  3. EML Surface Air Sampling Program, 1990--1993 data

    International Nuclear Information System (INIS)

    Larsen, R.J.; Sanderson, C.G.; Kada, J.

    1995-11-01

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory's Surface Air Sampling Program (SASP) during 1990--1993, with the exception of April 1993, indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the sampling and analytical techniques that were used to collect and measure them. The occasional detection of 137 Cs in some air filter samples may have resulted from resuspension of previously deposited debris. Following the April 6, 1993 accident and release of radionuclides into the atmosphere at a reprocessing plant in the Tomsk-7 military nuclear complex located 16 km north of the Siberian city of Tomsk, Russia, weekly air filter samples from Barrow, Alaska; Thule, Greenland and Moosonee, Canada were selected for special analyses. The naturally occurring radioisotopes that the authors measure, 7 Be and 210 Pb, continue to be detected in most air filter samples. Variations in the annual mean concentrations of 7 Be at many of the sites appear to result primarily from changes in the atmospheric production rate of this cosmogenic radionuclide. Short-term variations in the concentrations of 7 Be and 210 Pb continued to be observed at many sites at which weekly air filter samples were analyzed. The monthly gross gamma-ray activity and the monthly mean surface air concentrations of 7 Be, 95 Zr, 137 Cs, 144 Ce, and 210 Pb measured at sampling sites in SASP during 1990--1993 are presented. The weekly mean surface air concentrations of 7 Be, 95 Zr, 137 Cs, 144 Ce, and 210 Pb for samples collected during 1990--1993 are given for 17 sites

  4. Operational air sampling report, July 1--December 31, 1992

    International Nuclear Information System (INIS)

    Lyons, C.L.

    1993-04-01

    Nevada Test Site postshot and tunnel events generate beta/gamma fission products. The REECo air sampling program is designed for measurement of these radionuclides at various facilities supporting these events. Monthly radon sampling is done for documentation of working levels in the tunnel complexes, which would be expected to have the highest radon levels for on-site facilities. Out of a total of 628 air samples taken in the tunnel complexes, 24 showed airborne fission products with concentrations well below their respective Derived Air Concentrations (DAC). All of these were related to event reentry or mineback operations. Tritiated water vapor concentrations were very similar to previously reported levels. The 838 air samples taken at the Area-6 decontamination bays and laundry were again well below any DAC calculation standard and negative for any airborne fission products from laboratory analyses

  5. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines.

    Science.gov (United States)

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup; Sharma, Anoop Kumar; Wallin, Håkan; Bossi, Rossana; Autrup, Herman; Mølhave, Lars; Ravanat, Jean-Luc; Briedé, Jacob Jan; de Kok, Theo Martinus; Loft, Steffen

    2011-02-18

    Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.

  6. Anthropogenic Vanadium emissions to air and ambient air concentrations in North-West Europe

    Directory of Open Access Journals (Sweden)

    Visschedijk A. H. J.

    2013-04-01

    Full Text Available An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were calculated bottom-up using energy use activity data and collected fuel and sector-specific emissions factors, taking into account various emission control measures. The NW European emissions were dominated by combustion of heavy fuel oil and petroleum cokes. Total emissions for 2005 amounted to 1569 tons/yr. The major sources are sea going ships (39%, petroleum refineries (35% and industry (19%. Emission is strongly concentrated at the densely populated cities with major sea ports. The location of sources at or near the major port cities was confirmed by observational data, as was the downward trend in emissions due to emission control, fuel switches in industry and fuel quality improvement. The results show the positive impact of lower sulphur fuels on other possible health relevant air pollutants such as particle bound Vanadium. The emission inventory can be expanded to the full European domain and can be used to for air quality modeling and particularly for the tracing of source contributions from certain types of fossil fuels (petroleum coke and residual fuel oil. Moreover, it will allow the monitoring of changes in fuel use over time.

  7. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  8. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].

    Science.gov (United States)

    Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X

    2018-02-10

    Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.

  9. Bioassay-directed chemical analysis and detection of mutagenicity in ambient air of the coke oven.

    Science.gov (United States)

    Dobiás, L; Kůsová, J; Gajdos, O; Vidová, P; Gajdosová, D; Havránková, J; Fried, M; Binková, B; Topinka, J

    1999-09-30

    In the present study, we summarize the results of studies on the mutagenic potential of the main fractions and subfractions of extractable organic material (EOM) in the ambient air at the workplaces of the coke oven. The objective of our experiments was to apply the Bioassay-Directed Chemical Analysis (with the use of the Ames test) for the identification of the differences in the mutagenicity of these fractions, in relationship to the complex mixture of EOM in occupational air. From the evaluation of results, it is possible to deduce the following conclusions: (1) The comparison of the mutagenicity in the main fractions (basic, acidic, neutral) demonstrates the existence of differences in mutagenic potential. Of the total mutagenicity, 20.4% is in the basic fraction, 25.4% in the acidic fraction and 54.2% in the neutral fraction. (2) In general, 90.1% of the mutagenicity found in the basic, acidic and neutral fractions together was associated with the requirement of metabolic activation in vitro (+S9). In the case of the neutral fraction, it was 51.8%. (3) These results also suggest that frameshift mutations are the major component (53.8%) of the total mutagenicity of the main fractions. (4) With regards to the mutagenicity of organic compounds in the neutral fraction it appeared that genotoxicants of its subfractions (slightly and moderately polar and aromatic) play the main role. Carcinogenic aromatic hydrocarbons (PAH) and genotoxic nitrocompounds play an important role as determinants of the mutagenic potential of complex mixtures of harmful compounds in ambient air. This is confirmed first by the results of short-term bacterial tests.

  10. Ambient Air Pollution Exposure and Respiratory, Cardiovascular and Cerebrovascular Mortality in Cape Town, South Africa: 2001?2006

    OpenAIRE

    Wichmann, Janine; Voyi, Kuku

    2012-01-01

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM10, SO2 and NO2 levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001–2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM1...

  11. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  12. Assessment and remediation of odor emissions from a complex industrial facility (Ambient air odor regulations in Canada and the United States)

    International Nuclear Information System (INIS)

    Boose, T.; Reusing, G.

    2002-01-01

    This paper describes the findings of a review and presents examples of ambient air odor regulations in Canada and the United States. State and provincial odor regulations were reviewed and other metropolitan cities or counties (regions) that have separate odor regulations were also included. The key topics addressed in this paper include an assessment of the methods used for odor regulation and the methods used to evaluate the odor impact to determine compliance with the regulation. Three types of ambient air odor regulations were identified: 1. 28 States, Provinces and regions (jurisdictions) have specific odor regulations. These regulations generally define what constitutes an odor impact and typically provide requirements for remedial measures; 2. 25 jurisdictions regulate odors by a general prohibition regulation. These regulations define odor in ambient air as a condition of air pollution, nuisance or objectionable odor that would typically prevent persons from the enjoyment of life and property; and 3. 13 jurisdictions do not have specific or general prohibition regulations regarding odors. For the jurisdictions that have specific or general prohibition odor regulations, there are a number of different techniques used to define what constitutes an odor impact. Odor impacts are typically defined in a regulation by one (or more) of the following techniques: dilution to threshold, or odor unit limit; determination of odor emission rates; odor concentration limits for selected chemicals (ppm); comparison with the n-butanol intensity scale (1 to 8); and investigation by an agency investigator. Compliance with odor regulations is typically determined using one (or more) of the following field methods: odor stack testing and dispersion modelling; odor panel analysis of stack or ambient air samples; chemical monitoring (ppm); odor school certified / agency investigator; and scentometer. (author)

  13. Annual report of the ambient air quality measurements in Austria 2000

    International Nuclear Information System (INIS)

    Spangl, W.; Schneider, J.

    2001-01-01

    This report presents the result of the ambient air quality measurements conducted according to the air quality act (Austrian Federal Law Gazette I 115/97) in Austria in 2000. This act defines ambient air quality limit values for sulphur dioxide, nitrogen dioxide, total suspended particulates (TSP), carbon monoxide, benzene, lead in air, deposition (total mass including lead and cadmium) and a target value for ozone. The report also comprises results of explorative measurements of PM10 and PM2,5. Only one exceedance of the limit value for sulphur dioxide (0,20 mg/m 3 as half hour mean value, not to be exceeded more than three times a day; 0,50 mg/m 3 as half hour mean value) was observed. The exceedance was caused by air pollution transport from Slovenia. The limit values for nitrogen dioxide and total suspended particulates were exceeded quite frequently in 2000. For nitrogen dioxide, mainly traffic stations were affected. Exceedances of the limit value (0,20 mg/m 3 as half hour mean value) were observed both during winter episodes with unfavourable conditions for dispersion, as well as in spring/summer at a heavily frequented road during episodes with high ozone levels, causing rapid oxidation of NO to NO 2 . Exceedances of the limit value for total suspended particulates (0,15 mg/m 3 as daily mean value) were predominately recorded in urban areas in the vicinity of heavily frequented streets, especially in southern alpine basins and valleys with unfavourable dispersion conditions. The highest pollution was recorded at a heavily frequented crossroad in Graz. For carbon monoxide (eight hour mean value of 10 mg/m 3 ), benzene ( 10 μg/m 3 as annual mean value) and lead (1 μg/m 3 , as annual mean value), no exceedances were recorded. The pollution levels of sulphur dioxide and carbon monoxide show a strong decrease during the last decade, whereas for nitrogen dioxide and particulate matter no clear trend can be identified. The target value of ozone is exceeded at

  14. Impact of ambient air pollution on gestational age is modified by season in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Lincoln Doug

    2007-06-01

    Full Text Available Abstract Background The effect of individual pollutants and the period(s during pregnancy when pollutant levels are likely to have most impact on preterm birth is not clear. We evaluated the effect of prenatal exposure to six common urban air pollutants in the Sydney metropolitan area on preterm birth. Methods We obtained information on all births in metropolitan Sydney between January 1, 1998 and December 31, 2000. For each birth, exposure to each air pollutant was estimated for the first trimester, the three months preceding birth, the first month after the estimated date of conception and the month prior to delivery. Gestational age was analysed as a categorical variable in logistic regression models. Results There were 123 840 singleton births in Sydney in 1998–2000 and 4.9% were preterm. Preterm birth was significantly associated with maternal age, maternal smoking, male infant, indigenous status and first pregnancy. Air pollutant levels in the month and three months preceding birth had no significant effect on preterm birth after adjusting for maternal and infant covariates. Ozone levels in the first trimester of pregnancy and spring months of conception and sulphur dioxide were associated with increased risks for preterm births. Nitrogen dioxide was associated with a decreased risk of preterm births. Conclusion We found more protective than harmful associations between ambient air pollutants and preterm births with most associations non-significant. In view of these inconsistent associations, it is important to interpret the harmful effects with caution. If our results are confirmed by future studies then it will be imperative to reduce Sydney's already low air pollution levels even further.

  15. Effect of Ambient Air Pollution on Hospitalization for Heart Failure in 26 of China's Largest Cities.

    Science.gov (United States)

    Liu, Hui; Tian, Yaohua; Song, Jing; Cao, Yaying; Xiang, Xiao; Huang, Chao; Li, Man; Hu, Yonghua

    2018-03-01

    There is growing interest in the association between ambient air pollution and congestive heart failure (CHF), but research data from developing countries are very limited. The primary aim of this study was to examine the association between short-term exposure to air pollution and hospital admission for CHF in China. A time-stratified case-crossover study was conducted between 2014 and 2015 in 26 large Chinese cities among 105,501 CHF hospitalizations. Conditional logistic regression models were applied to estimate the percentage changes in CHF admissions in relation to per interquartile range increases in air pollutant concentrations. Air pollution was positively associated with CHF hospitalizations. An interquartile range increase in fine particulate, particulate matter less than 10 µm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone concentrations on the current day corresponded to 1.2% (95% confidence interval [CI] 0.5%, 1.8%), 1.3% (95% CI 0.5%, 2.0%), 1.0% (95% CI 0.2%, 1.7%), 1.6% (95% CI 0.6%, 2.5%), 1.2% (95% CI 0.5%, 1.9%), and 0.4% (95% CI -0.9%, 1.7%) increases in CHF admissions, respectively. In conclusion, our findings contribute to the limited scientific literature concerning the effects of air pollution on CHF risk for high-exposure settings typical in developing countries, which may have significant public health implications for prevention of CHF in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ambient air pollutant concentrations during pregnancy and the risk of fetal growth restriction

    Science.gov (United States)

    Rich, David Q.; Demissie, Kitaw; Lu, Shou-En; Kamat, Leena; Wartenberg, Daniel; Rhoads, George G.

    2014-01-01

    Background Previous studies of air pollution and birth outcomes have not evaluated whether complicated pregnancies might be susceptible to the adverse effects of air pollution. We hypothesized that trimester mean pollutant concentrations would be associated with fetal growth restriction, with larger risks among complicated pregnancies. Methods We used a multiyear linked birth certificate and maternal/newborn hospital discharge dataset of singleton, term births to mothers residing in New Jersey at the time of birth, who were White (non-Hispanic), African American (non-Hispanic), or Hispanic. We defined very small for gestational age (VSGA) as a fetal growth ratio pregnancy complications. Results We found significantly increased risk of SGA associated with 1st and 3rd trimester PM2.5, and increased risk of VSGA associated with 1st, 2nd, and 3rd trimester NO2 concentrations. Pregnancies complicated by placental abruption and premature rupture of the membrane had ~2-5 fold greater excess risks of SGA/VSGA than pregnancies not complicated by these conditions, although these estimates were not statistically significant. Conclusions These findings suggest that ambient air pollution, perhaps specifically traffic emissions during early and late pregnancy and/or factors associated with residence near a roadway during pregnancy, may affect fetal growth. Further, pregnancy complications may increase susceptibility to these effects in late pregnancy. PMID:19359274

  17. Associations between ambient air pollution and daily mortality among persons with congestive heart failure

    International Nuclear Information System (INIS)

    Goldberg, Mark S.; Burnett, Richard T.; Valois, M.-F.; Flegel, Kenneth; Bailar III, John C.; Brook, Jeffrey; Vincent Renaud; Radon, Katja

    2003-01-01

    We conducted a mortality time series study to investigate the association between daily mortality for congestive heart failure (CHF), and dail concentrations of particles and gaseous pollutants in the ambient air o Montreal, Quebec, during the period 1984-1993. In addition, using data fro the universal Quebec Health Insurance Plan, we identified individuals ≥6 years of age who, one year before death, had a diagnosis of CHF. Fixed-sit air pollution monitors in Montreal provided daily mean levels of pollutants We regressed the logarithm of daily counts of mortality on the daily mean levels of each pollutant, after accounting for seasonal and subseasonal fluctuations in the mortality time series, non-Poisson dispersion, weather variables, and other gaseous and particle pollutants. Using cause of deat information, we did not find any associations between daily mortality for CH and any air pollutants. The analyses of CHF defined from the medical record showed positive associations with coefficient of haze, the extinction coefficient, SO 2 , and NO 2 . For example, the mean percent increase in dail mortality for an increase in the coefficient of haze across the interquartile range was 4.32% (95% CI: 0.95-7.80%) and for NO 2 it was 4.08% (95% CI 0.59-7.68%). These effects were generally higher in the warm season

  18. Printed Self-Powered Miniature Air Sampling Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Birmingham

    2017-07-01

    Full Text Available The recent geo-political climate has increased the necessity for autonomous, chip-sized, lightweight, air sampling systems which can quickly detect and characterize chemical, biological, radiological, nuclear, and high explosive (CBRNE hazardous materials and relay the results. To address these issues, we have developed a self-powered 3-D chip architecture that processes air to produce concentrated size- sorted particle (and vapor samples that could be integrated with on-chip nanoelectronic detectors for the discovery of weapons of mass destruction (WMD. The unique air movement approach is composed of a nanoscale energy harvester that provides electricity to a printed ion-drag pump to push air through coated-microstructured arrays. The self-powered microstructured array air sampler was designed using computational fluid dynamics (CFD modeling to collect particles from 1-10 microns at greater than 99.9999 % efficiency with less than 100 Pascal [Pa] pressure drop at a specified air flow rate. Surprisingly, even at minimum air flow rates below specifications, these CFD predictions were matched by experimental results gathered in a Government aerosol chamber. The microstructured array engineered filter equaled the collection capability of a membrane or a high efficiency particle air (HEPA filter at a fraction of the filter pressure drop.

  19. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization.

    Science.gov (United States)

    Lee, I-Su; Tsai, Shih-Wei

    2008-03-10

    The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 degrees C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 x 10(-4) cm(3) s(-1) with detection limit of 58.8 microg m(-3) h(-1). Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r=0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone.

  20. Organochlorine pesticides in ambient air in selected urban and rural residential areas in the Philippines derived from passive samplers with polyurethane disks.

    Science.gov (United States)

    Santiago, Evangeline C; Cayetano, Mylene G

    2011-01-01

    The passive sampler with PUF disk was applied to investigate the types and concentrations of organochlorine pesticides (OCPs) in ambient air in three urban and rural residential areas simultaneously at different weather conditions in the Philippines. The concentrations of OCPs derived from the passive samplers indicated clear distinctions in the predominance of certain types and amounts of OCPs in air at different sampling sites and periods of sampling. Chlordanes were detected in concentrations ranging from 218 to 2,324 pg/m³ in the urban residential sites in all the sampling periods, indicating the possible use of these pesticides as termiticides in houses. Endosulfans were detected in two rural sites at 491 pg/m³ and 904 pg/m³ during one sampling period; indicating the possible use of the pesticide in the farm areas at that period.

  1. Organic analysis of ambient samples collected near Tank 241-C-103: Results from samples collected on May 12, 1994

    International Nuclear Information System (INIS)

    Clauss, T.W.; Ligotke, M.W.; McVeety, B.D.; Lucke, R.B.; Young, J.S.; McCulloch, M.; Fruchter, J.S.; Goheen, S.C.

    1995-06-01

    This report describes organic analyses results from ambient samples collected both upwind and through the vapor sampling system (VSS) near Hanford waste storage Tank 241-C-103 (referred to as Tank C-103). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed. Quantitative results were obtained for organic compounds. Five organic tentatively identified compounds (TICS) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, we looked for the 40 standard TO-14 analytes. We observed 39. Of these, only one was observed above the 2-ppbv calibrated instrument detection limit. Dichloromethane was above the detection limits using both methods, but the result from the TO-14 method is traceable to a standard gas mixture and is considered more accurate. Organic analytes were found only in the sample collected through the VSS, suggesting that these compounds were residual contamination from a previous sampling job. Detailed descriptions of the results appear in the text

  2. Tandem differential mobility spectrometry with ion dissociation in air at ambient pressure and temperature.

    Science.gov (United States)

    Menlyadiev, M R; Tarassov, A; Kielnecker, A M; Eiceman, G A

    2015-05-07

    Proton-bound dimers were dissociated to protonated monomers in air at ambient pressure and temperature using electric fields of ultrahigh Field Asymmetric Ion Mobility Spectrometry (ultraFAIMS) with the onset of dissociation for ethyl acetate as 96 Td and for dimethyl methyl phosphonate as 170 Td. Ions then were measured by differential mobility spectrometry (DMS). Fragment ions were formed with propyl acetate at electric fields of 90 Td or greater. The dissociation in ultraFAIMS of ions, with compensation fields near zero, to form smaller ions with new compensation fields, provided a method to improve peak capacity in DMS without gas modifiers. These findings also lay the foundation for a triple stage DMS with a centre stage for ion dissociation or fragmentation.

  3. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  4. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  5. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project

    DEFF Research Database (Denmark)

    Pedersen, Marie; Andersen, Zorana J.; Stafoggia, Massimo

    2017-01-01

    . Methods: We obtained data from four cohorts with enrolment during 1985–2005 in Denmark, Austria and Italy. Exposure to nitrogen oxides (NO2 and NOX), particulate matter (PM) with diameter of less than 10 µm (PM10), less than 2.5 µm (PM2.5), between 2.5 and 10 µm (PM2.5–10) and PM2.5 absorbance (soot......-analyses to estimate summary hazard ratios (HRs) and 95% confidence intervals (CIs). Results: Out of 174,770 included participants, 279 liver cancer cases were diagnosed during a mean follow-up of 17 years. In each cohort, HRs above one were observed for all exposures with exception of PM2.5 absorbance and traffic...... in PM2.5. Conclusions: The results provide suggestive evidence that ambient air pollution may increase the risk of liver cancer. Confidence intervals for associations with NO2 and NOX were narrower than for the other exposures....

  6. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City

    Directory of Open Access Journals (Sweden)

    Qing CHANG

    2015-06-01

    Full Text Available In order to further explore the pollution characteristics of volatile organic compounds in ambient air in winter and spring in Shijiazhuang City, the pollution characteristics of 62 volatile organic compounds (VOCs, monthly and quarterly variation, the correlation between VOCs and PM2.5, and the main sources of VOCs are investigated by using EPA TO-15 method. It shows that 40 organic compounds of the 64 VOCs have been quantitatively determined in winter and spring in the city, which are mainly acetone, benzene, carbon tetrachloride, dichloromethane, toluene, ethyl acetate, etc.. In the no-quantitatively determined components, higher ethanol, butyl acetate, butane etc. are detected. The VOCs concentration has positive correlation with the PM2.5 concentration during haze days.

  7. Polycyclic aromatic hydrocarbons in air samples of meat smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Olsen, I L; Poulsen, O M

    1992-01-01

    in smokehouses curing fish (Nordholm et al., 1986). In contrast to the study on PAH exposure in smokehouses curing fish, the present study revealed no significant difference between total PAH content in air samples collected above the kilns compared with samples collected approximately 2 m in front of the kiln...... exposure during hot fish curing....

  8. [Prenatal exposure to ambient air pollution and congenital heart disease: a Meta-analysis].

    Science.gov (United States)

    Li, S S; Zhang, R; Lan, X; Qu, P F; Dang, S N; Chen, F Y; Yan, H

    2017-08-10

    Objective: To explore the association between exposure to ambient air pollution during pregnancy and congenital heart disease so as to provide evidence for primary prevention of congenital heart disease. Methods: Epidemiologic studies on ambient air pollution and congenital heart diseases were reviewed. Summary risk estimates were calculated at high versus low exposure levels and risk per-unit-increase in continuous pollutant concentration. Meta-analysis was conducted with Stata 12.0 software. Results: A total of 20 articles in English were qualified for inclusion. Results from Meta-analysis showed that CO exposures were related to the increase on the risk of tetralogy of fallot (high versus low exposure level OR =1.22, 95% CI : 1.03-1.44), while the exposures to NO(2) were related to the increase on risk of coarctation of aorta (per 10 mm(3)/m(3) OR =1.01, 95% CI : 1.01-1.20). Exposures to O(3) were related to the increase on risk of atrial septal defect (per 10 mm(3)/m(3) OR =1.14, 95% CI : 1.03-1.26), and PM(10) exposures were related to the increase on risk of atrial septal defect (per 10 μg/m(3) OR =1.10, 95% CI : 1.03-1.19). In addition, there were inverse associations between CO and atrial septal defect and between PM(10) and ventricular septal defect. Conclusion: Exposures to CO, NO(2), O(3), PM(10) during pregnancy seemed to be associated with congenital heart diseases.

  9. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  10. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran

    Science.gov (United States)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-02-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM10-bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m-3). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m-3 and 42.60, 37.70, and 40.07 μg m-3, respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM10-bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM10 for children and adults via inhalation and dermal exposures exceeded 1 × 10-4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should be further

  11. [Ambient air pollution of territories of children preschool institutions by emissions of vehicle components and health of children population].

    Science.gov (United States)

    Makarov, O A; Zimina, A N; Nenakhova, E V

    The aim of this study was the assessment of levels of pollution of territories of preschool educational institutions (PEI) by components of vehicle emissions, in dependence on their locations relatively to highways with different traffic load and, in this regard, the assessment of children health according to the incidence on the seeking medical advice. To achieve this goal there were solved following tasks: to assess air pollution levels of PEI territories by components of vehicle emissions; to evaluate levels and the structure of morbidity rate according to seeking medical advice by children attending observed PEI. In the article there is presented the evaluation of air pollution levels of the components of vehicle emissions territories 4 PEI of the city of Irkutsk located near to highways with different intensity the road transport load. The research results were obtained with the use of «Methodics for the determination vehicle emissions for summary calculations of ambient air pollution in cities», which allows to determine the maximum emissions of a moving vehicle per time unit (g/s) for the main combustion components and with following use of software «Superhighway -city» to calculate surface concentrations of considered pollutants in the surface ambient air layer (1 m) in MPC proportions. The highest levels of contamination on the content of nitric oxide and benzo- (a)-pyrene (4 and 6,5 MPC respectively) are registered in the territories adjacent to the PEI motorways with high load tracking. To assess the morbidity rate according to seeking medical advice by children attending PEI with different road transport load there were used records from outpatient medical cards «Medical card of the child» (f.112/y). Morbidity rate according to seeking medical advice was evaluated in dynamics throughout five years and calculated per 1000 cases. The total sample size accounted for 670 children. The highest morbidity incidence rate levels according both to seeking

  12. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran.

    Science.gov (United States)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-02-20

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM 10 -bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM 10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m -3 ). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m -3 and 42.60, 37.70, and 40.07 μg m -3 , respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM 10 -bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM 10 for children and adults via inhalation and dermal exposures exceeded 1 × 10 -4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should

  13. Ambient air pollution and hypertensive disorders of pregnancy: A systematic review and meta-analysis

    Science.gov (United States)

    Hu, Hui; Ha, Sandie; Roth, Jeffrey; Kearney, Greg; Talbott, Evelyn O.; Xu, Xiaohui

    2014-11-01

    Hypertensive disorders of pregnancy (HDP, including gestational hypertension, preeclampsia, and eclampsia) have a substantial public health impact. Maternal exposure to high levels of air pollution may trigger HDP, but this association remains unclear. The objective of our report is to assess and quantify the association between maternal exposures to criteria air pollutants (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter ≤10, 2.5 μm) on HDP risk. PubMed, EMBASE, MEDLINE, Current Contents, Global Health, and Cochrane were searched (last search: September, 2013). After a detailed screening of 270 studies, 10 studies were extracted. We conducted meta-analyses if a pollutant in a specific exposure window was reported by at least four studies. Using fixed- and random-effects models, odds ratios (ORs) and 95% CIs were calculated for each pollutant with specific increment of concentration. Increases in risks of HDP (OR per 10 ppb = 1.16; 95% CI, 1.03-1.30) and preeclampsia (OR per 10 ppb = 1.10; 95% CI, 1.03-1.17) were observed to be associated with exposure to NO2 during the entire pregnancy, and significant associations between HDP and exposure to CO (OR per 1 ppm = 1.79; 95% CI, 1.31-2.45) and O3 (OR per 10 ppb = 1.09; 95% CI, 1.05-1.13) during the first trimester were also observed. Our review suggests an association between ambient air pollution and HDP risk. Although the ORs were relatively low, the population-attributable fractions were not negligible given the ubiquitous nature of air pollution.

  14. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution.

    Science.gov (United States)

    Hazlehurst, Marnie F; Spalt, Elizabeth W; Nicholas, Tyler P; Curl, Cynthia L; Davey, Mark E; Burke, Gregory L; Watson, Karol E; Vedal, Sverre; Kaufman, Joel D

    2018-03-06

    Exposure estimates that do not account for time in-transit may underestimate exposure to traffic-related air pollution, but exact contributions have not been studied directly. We conducted a 2-week monitoring, including novel in-vehicle sampling, in a subset of the Multi-Ethnic Study of Atherosclerosis and Air Pollution cohort in two cities. Participants spent the majority of their time indoors and only 4.4% of their time (63 min/day) in-vehicle, on average. The mean ambient-source NO 2 concentration was 5.1 ppb indoors and 32.3 ppb in-vehicle during drives. On average, indoor exposure contributed 69% and in-vehicle exposure contributed 24% of participants' ambient-source NO 2 exposure. For participants in the highest quartile of time in-vehicle (≥1.3 h/day), indoor and in-vehicle contributions were 60 and 31%, respectively. Incorporating infiltrated indoor and measured in-vehicle NO 2 produced exposure estimates 5.6 ppb lower, on average, than using only outdoor concentrations. The indoor microenvironment accounted for the largest proportion of ambient-source exposure in this older population, despite higher concentrations of NO 2 outdoors and in vehicles than indoors. In-vehicle exposure was more influential among participants who drove the most and for participants residing in areas with lower outdoor air pollution. Failure to characterize exposures in these microenvironments may contribute to exposure misclassification in epidemiologic studies.

  15. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    Science.gov (United States)

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM 2.5 ) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM 2.5 , maximum hourly concentrations 21-103 μg m -3 , and mean concentrations between 7.7 and 13.2 μg m -3 . Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m -3 , and mean concentrations 6.7-11.7 μg m -3 . The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m -3 ) over the NAAQS 98th percentile for PM 2.5 (35 μg m -3 ). Pinehurst remained below the federal standards for PM 2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire

  16. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    Science.gov (United States)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  17. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    Science.gov (United States)

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  18. Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand.

    Science.gov (United States)

    Harnpicharnchai, Kallaya; Chaiear, Naesinee; Charerntanyarak, Lertchai

    2013-11-01

    Agricultural pesticide utilization is one of the important problems in rural and urban crop-cultivated areas, with the majority of pollutants dispersing via ambient air, water and other natural pathways. This study was therefore conducted in a specially selected village which is known to be a leading vegetable growing area in Khon Kaen Province. The aim of the study was to assess pesticide residues, and measure the seasonal fluctuations in organophosphate concentrations during 2010 in the environment of a risk area. Samples from selected sites were collected in two phases: Phase I was in summer (during March to May) and Phase II was in winter (during October to December). A total of 150 samples were analyzed using gas chromatography with flame photometric detection. The results showed that dicrotophos, chlorpyrifos, profenofos and ethion were found at the highest concentrations in soil and at the lowest concentrations in ambient air (ppesticide in ambient air samples was 0.2580 +/- 0.2686 mg/m(3) for chlorpyrifos in summer and 0.1003 +/- 0.0449 mg/m(3) for chlorpyrifos in winter. In surface water samples, the highest mean concentration of a pesticide was 1.3757 +/- 0.5014 mg/l for dicrotophos in summer and 0.3629 +/- 0.4338 mg/l for ethion in winter. The highest mean concentration of a pesticide in soil samples was 42.2893 +/- 39.0711 mg/kg ethion in summer and 90.0000 +/- 24.1644 mg/kg of ethion in winter.

  19. The adverse effect of low levels of ambient air pollutants on lung function growth in preadolescent children.

    OpenAIRE

    Jedrychowski, W; Flak, E; Mróz, E

    1999-01-01

    The main purpose of our study was to assess the effect of low concentrations of ambient air pollution on lung function growth in preadolescent children. We accounted for height velocity over the follow-up period and also for other possible confounders such as baseline anthropometric and physiologic characteristics of children. In addition to outdoor air pollution, we considered the possible effects of social class and exposure to indoor pollutants such as gas stove fumes or environmental toba...

  20. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    OpenAIRE

    J. A. Olorunmaiye; O. O. Awolola; J. F. Oladiji

    2012-01-01

    One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150) THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in...

  1. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    Science.gov (United States)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by

  2. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Hang Qiu

    2018-03-01

    Full Text Available Evidence on the burden of chronic obstructive pulmonary disease (COPD morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM with aerodynamic diameter <10 μm (PM10 and <2.5 μm (PM2.5, nitrogen dioxide (NO2, sulfur dioxide (SO2, carbon monoxide (CO and ozone (O3 with risk of hospital admissions (HAs for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM2.5, PM10 and SO2 and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19% and 14.72% (95% CI: 10.38%, 19.06% of COPD HAs were attributable to PM2.5 and PM10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO2 on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  3. The determination of nitrogen dioxide in ambient air with free hanging filters as passive samplers, and a new calibration method using fritted bubblers.

    Science.gov (United States)

    Heeres, Paul; Setiawan, Rineksa; Krol, Maarten Cornelis; Adema, Eduard Hilbrand

    2009-12-01

    This paper describes two new methods for the determination of NO(2) in the ambient air. The first method consists of free hanging filters with a diameter of 2.5 cm as passive samplers. The filters are impregnated with triethanolamine to bind NO(2). With standard colorimetrical analysis, the amount of NO(2) on the filters is determined. The second method is performed with fritted bubblers filled with Saltzman reagent, where, with a special procedure the absorption efficiencies of the bubblers are determined using ambient air, without the use of standard gases and electronic analytical instruments. The results of the bubblers are used to calibrate the free hanging filters. The two methods were applied simultaneously in the city of Yogyakarta, Indonesia. The methods are inexpensive and very well suited for use in low-budget situations. A characteristic of the free filter is the Sampling Volume, SV. This is the ratio of the amount of NO(2) on the filter and the ambient concentration. With the filter used in this study, the amount of triethanolamine and exposure time, the SV is 0.0166 m(3). The sampling rate (SR) of the filter, 4.6 cm(3)/s, is high. Hourly averaged measurements are performed for 15 hours per day in four busy streets. The measured amounts of NO(2) on the filters varied between 0.57 and 2.02 microg NO(2), at ambient air concentrations of 32 to 141 microg/m(3) NO(2). During the experiments the wind velocity was between 0.2 and 2.0 m/s, the relative humidity between 24 and 83 % and the temperature between 295 K and 311 K. These variations in weather conditions have no influence on the uptake of NO(2).

  4. Dioxin emission factors for automobiles from tunnel air sampling in Northern Taiwan.

    Science.gov (United States)

    Chang, Moo Been; Chang, Shu Hao; Chen, Yuan Wu; Hsu, Hsuan Chien

    2004-06-05

    This study measured PCDD/F concentrations in tunnel air and vehicle exhaust. The ambient air samples were collected with air samplers (Tisch PS-1) complying with USEPA TO-9A. The results indicate that the tunnel air had a PCDD/F TEQ concentration about two times as high as that of outside air (47.3 and 57.1 fg-I-TEQ/m3 for tunnel air vs. 37.1 fg-I-TEQ/m3 and 23.3 fg-I-TEQ/m3 for outside air, respectively). This provides the direct evidence that PCDD/F compounds are emitted from the combustion processes in gasoline- and diesel-fueled engines. According to the tunnel study, the emission factors ranged from 5.83 to 59.2 pg I-TEQ/km for gasoline vehicles and 23.32 to 236.65 pg I-TEQ/km of diesel vehicles. This indicates that the dioxin emission factor in Taiwan is lower than that measured in USA, Norway and Germany. When the speed of the diesel vehicle was set at 40 km/h, the dioxin concentration emitted from diesel vehicle was 278 pg/m3 (6.27 pg-I-TEQ/m3) from tailpipe testing. However, when the diesel vehicle was idled, the dioxin concentration increased greatly to 4078 pg/m3 (41.9 pg-I-TEQ/m3). From the results of tunnel air sampling, the PCDD/Fs emission from automobiles in Taiwan was estimated as 3.69 g I-TEQ per year. Copryright 2003 Elsevier B.V.

  5. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review

    International Nuclear Information System (INIS)

    Helsen, Lieve

    2005-01-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices. - Submicron arsenic fumes are difficult to control in conventional air pollution control devices

  6. Real-time monitoring of BTEX in air via ambient-pressure MPI

    Science.gov (United States)

    Swenson, Orven F.; Carriere, Josef P.; Isensee, Harlan; Gillispie, Gregory D.; Cooper, William F.; Dvorak, Michael A.

    1998-05-01

    We have developed and begun to field test a very sensitive method for real-time measurements of single-ring aromatic hydrocarbons in ambient air. In this study, we focus on the efficient 1 + 1 resonance enhanced multiphoton ionization (REMPI) of the BTEX species in the narrow region between 266 and 267 nm. We particularly emphasize 266.7 nm, a wavelength at which both benzene and toluene exhibit a sharp absorbance feature and benzene and its alkylated derivatives all absorb. An optical parametric oscillator system generating 266.7 nm, a REMPI cell, and digital oscilloscope detector are mounted on a breadboard attached to a small cart. In the first field test, the cart was wheeled through the various rooms of a chemistry research complex. Leakage of fuel through the gas caps of cars and light trucks in a parking lot was the subject of the second field test. The same apparatus was also used for a study in which the performance of the REMPI detector and a conventional photoionization detector were compared as a BTEX mixture was eluted by gas chromatography. Among the potential applications of the methodology are on-site analysis of combustion and manufacturing processes, soil gas and water headspace monitoring, space cabin and building air quality, and fuel leak detection.

  7. Low temperature and moisture swing sorption of CO2 from ambient air using a Na-based adsorbent

    NARCIS (Netherlands)

    Rodriguez Mosqueda, Rafael; Brem, Gerrit; Bramer, Eduard A.

    2017-01-01

    The continuous increase of the carbon dioxide concentration in the atmosphere is a recognized problem that will lead the humanity to catastrophic scenarios unless it is drastically reduced. One option to tackle this issue is to retrieve CO2 directly from ambient air, which has the advantage that it

  8. Valoracion economica ambiental de la calidad del aire por emisiones industriales en la ciudad de quevedo,ecuador

    OpenAIRE

    Espol; Cabrera Casillas, Elvis Antonio; Lozano Mendoza, Pedro Harrys

    2017-01-01

    El objetivo principal del estudio es realizar una valoracion economico ambiental por la mejora de la calidad del aire en quevedo, para esto se elaboro un escenario hipotètico utilizando el metodo de valoracion contingente en su formato dicotomico doble. Guayaquil CAMBIO CLIMATICO

  9. 75 FR 57463 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Science.gov (United States)

    2010-09-21

    ... National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur AGENCY: Environmental... Oxides of Nitrogen and Oxides of Sulfur: Second External Review Draft. The EPA is releasing this... for oxides of nitrogen (NO X ) and oxides of sulfur (SO X ). Because NO X , SO X , and their...

  10. Significantly reduced health burden from ambient air pollution in the U.S. under emission reductions from 1990 to 2010

    Science.gov (United States)

    The recent 2013 Global Burden of Disease Study 2013 has attributed the ambient PM2.5 as the fifth-ranking mortality risk factor in 2015. While assessing the global or national burden of disease attributed to air pollution has become more common, fewer studies have tried to unders...

  11. 75 FR 16459 - Draft Document Related to the Review of the National Ambient Air Quality Standards for...

    Science.gov (United States)

    2010-04-01

    ... AGENCY Draft Document Related to the Review of the National Ambient Air Quality Standards for Particulate.... SUMMARY: The EPA is announcing an extension of the public comment period for a draft assessment document.... The EPA recognizes that this document was released for public comment nine days later than originally...

  12. Assessment of suspended particulate matters and their heavy metal content in the ambient air of Mobarakeh city, Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Avazali Saririan Mobarakeh

    2014-01-01

    Conclusion: This study showed that ambient air of Mobarakeh city is polluted by TSP. The high concentration of Fe and Ni in this area may be attributed to the nearby industrial emissions. Therefore, in industrial areas, efforts should be taken to control the atmospheric pollution in order to protect humans from hazardous health effects of these potentially toxic pollutants.

  13. Chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA): laboratory and field based evaluation

    Science.gov (United States)

    Evaluation of the semi-continuous Monitor for Aerosols and Gases in Ambient Air (MARGA, Metrohm Applikon B.V.) was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measureme...

  14. Polycyclic aromatic hydrocarbons in air samples of meat smokehouses

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Olsen, I L; Poulsen, O M

    1992-01-01

    In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors or approx......In a screening programme nine Danish meat smokehouses were randomly selected for measurements on concentration of airborne polycyclic aromatic hydrocarbons (PAH). A total of 23 stationary air samples were collected during the entire working period of the kiln either above the kiln doors...

  15. Sample design considerations of indoor air exposure surveys

    International Nuclear Information System (INIS)

    Cox, B.G.; Mage, D.T.; Immerman, F.W.

    1988-01-01

    Concern about the potential for indoor air pollution has prompted recent surveys of radon and NO 2 concentrations in homes and personal exposure studies of volatile organics, carbon monoxide and pesticides, to name a few. The statistical problems in designing sample surveys that measure the physical environment are diverse and more complicated than those encountered in traditional surveys of human attitudes and attributes. This paper addresses issues encountered when designing indoor air quality (IAQ) studies. General statistical concepts related to target population definition, frame creation, and sample selection for area household surveys and telephone surveys are presented. The implications of different measurement approaches are discussed, and response rate considerations are described

  16. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies

    Science.gov (United States)

    Coker, Eric; Kizito, Samuel

    2018-01-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region. PMID:29494501

  17. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies.

    Science.gov (United States)

    Coker, Eric; Kizito, Samuel

    2018-03-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region.

  18. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies

    Directory of Open Access Journals (Sweden)

    Eric Coker

    2018-03-01

    Full Text Available An important aspect of the new sustainable development goals (SDGs is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region.

  19. Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup

    2011-01-01

    Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke...

  20. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution : an analysis of data from the Global Burden of Diseases Study 2015

    NARCIS (Netherlands)

    Cohen, Aaron J; Brauer, Michael; Burnett, Richard; Anderson, H Ross; Frostad, Joseph; Estep, Kara; Balakrishnan, Kalpana; Brunekreef, Bert; Dandona, Lalit; Dandona, Rakhi; Feigin, Valery; Freedman, Greg; Hubbell, Bryan; Jobling, Amelia; Kan, Haidong; Knibbs, Luke; Liu, Yang; Martin, Randall; Morawska, Lidia; Pope, C Arden; Shin, Hwashin; Straif, Kurt; Shaddick, Gavin; Thomas, Matthew; van Dingenen, Rita; van Donkelaar, Aaron; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H

    BACKGROUND: Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country

  1. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China.

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    Full Text Available BACKGROUND: The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10, sulfur dioxide (SO(2 and nitrogen dioxide (NO(2] and mortality in Shenyang, China, using 12 years of data (1998-2009. Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m(3 in a year average concentration of PM(10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60 and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53, respectively. The corresponding figures of adjusted HR (95%CI for a 10 µg/m(3 increase in NO(2 was 2.46 (2.31 to 2.63 for cardiovascular mortality and 2.44 (2.27 to 2.62 for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. CONCLUSION/SIGNIFICANCE: Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.

  2. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China.

    Science.gov (United States)

    Teng, Bo; Zhang, Xuelei; Yi, Chunhui; Zhang, Yan; Ye, Shufeng; Wang, Yafang; Tong, Daniel Q; Lu, Binfeng

    2017-02-23

    With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis) in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR) from 2013 to 2015. Environmental monitoring showed that PM 2.5 and PM 10 were the major air pollutants in Changchun, followed by SO₂, NO₂ and O₃. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM 10 had higher daily mean concentrations in spring (May, dust storms), autumn (October, straw burning) and winter (November to April, coal burning). The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM 2.5 , PM 10 , SO₂ and NO₂, and the increased mobility was 10.2% (95% CI, 5.5%-15.1%), 4.9% (95% CI, 0.8%-9.2%), 8.5% (95% CI, -1.8%-19.8%) and 11.1% (95% CI, 5.8%-16.5%) for exposure to each 1-Standard Deviation (1-SD) increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O₃. As for lag effects, the highest Relative Risks (RRs) of AR from SO₂, NO₂, PM 10 and PM 2.5 were on the same day, and the highest RR from CO was on day 4 (L4). The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM 2.5 and PM 10 , which are usually present in high concentrations) and the prevalence of respiratory effects (allergic rhinitis) in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be

  3. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Directory of Open Access Journals (Sweden)

    Bo Teng

    2017-02-01

    Full Text Available With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms, autumn (October, straw burning and winter (November to April, coal burning. The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%, 4.9% (95% CI, 0.8%–9.2%, 8.5% (95% CI, −1.8%–19.8% and 11.1% (95% CI, 5.8%–16.5% for exposure to each 1-Standard Deviation (1-SD increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4. The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations and the prevalence of respiratory effects (allergic rhinitis in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  4. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Science.gov (United States)

    Teng, Bo; Zhang, Xuelei; Yi, Chunhui; Zhang, Yan; Ye, Shufeng; Wang, Yafang; Tong, Daniel Q.; Lu, Binfeng

    2017-01-01

    With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis) in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR) from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms), autumn (October, straw burning) and winter (November to April, coal burning). The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%), 4.9% (95% CI, 0.8%–9.2%), 8.5% (95% CI, −1.8%–19.8%) and 11.1% (95% CI, 5.8%–16.5%) for exposure to each 1-Standard Deviation (1-SD) increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs) of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4). The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations) and the prevalence of respiratory effects (allergic rhinitis) in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  5. Sampling density for the quantitative evaluation of air trapping

    International Nuclear Information System (INIS)

    Goris, Michael L.; Robinson, Terry E.

    2009-01-01

    Concerns have been expressed recently about the radiation burden on patient populations, especially children, undergoing serial radiological testing. To reduce the dose one can change the CT acquisition settings or decrease the sampling density. In this study we determined the minimum desirable sampling density to ascertain the degree of air trapping in children with cystic fibrosis. Ten children with cystic fibrosis in stable condition underwent a volumetric spiral CT scan. The degree of air trapping was determined by an automated algorithm for all slices in the volume, and then for 1/2, 1/4, to 1/128 of all slices, or a sampling density ranging from 100% to 1% of the total volume. The variation around the true value derived from 100% sampling was determined for all other sampling densities. The precision of the measurement remained stable down to a 10% sampling density, but decreased markedly below 3.4%. For a disease marker with the regional variability of air trapping in cystic fibrosis, regardless of observer variability, a sampling density below 10% and even more so, below 3.4%, apparently decreases the precision of the evaluation. (orig.)

  6. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  7. Developing a source-receptor methodology for the characterization of VOC sources in ambient air

    International Nuclear Information System (INIS)

    Borbon, A.; Badol, C.; Locoge, N.

    2005-01-01

    Since 2001, in France, a continuous monitoring of about thirty ozone precursor non-methane hydrocarbons (NMHC) is led in some urban areas. The automated system for NMHC monitoring consists of sub-ambient preconcentration on a cooled multi-sorbent trap followed by thermal desorption and bidimensional Gas Chromatography/Flame Ionisation Detection analysis.The great number of data collected and their exploitation should provide a qualitative and quantitative assessment of hydrocarbon sources. This should help in the definition of relevant strategies of emission regulation as stated by the European Directive relative to ozone in ambient air (2002/3/EC). The purpose of this work is to present the bases and the contributions of an original methodology known as source-receptor in the characterization of NMHC sources. It is a statistical and diagnostic approach, adaptable and transposable in all urban sites, which integrates the spatial and temporal dynamics of the emissions. The methods for source identification combine descriptive or more complex complementary approaches: 1) univariate approach through the analysis of NMHC time series and concentration roses, 2) bivariate approach through a Graphical Ratio Analysis and a characterization of scatterplot distributions of hydrocarbon pairs, 3) multivariate approach with Principal Component Analyses on various time basis. A linear regression model is finally developed to estimate the spatial and temporal source contributions. Apart from vehicle exhaust emissions, sources of interest are: combustion and fossil fuel-related activities, petrol and/or solvent evaporation, the double anthropogenic and biogenic origin of isoprene and other industrial activities depending on local parameters. (author)

  8. Association of ambient air quality with children`s lung function in urban and rural Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M.M.; Dubois, A.; Beckett, W.S. [Yale Univ. School of Medicine, New Haven, CT (United States); Asgari, M. [Shaheed Beheshti Univ., Tehran (Iran, Islamic Republic of); Gent, J. [John B. Pierce Lab., New Haven, CT (United States)

    1998-05-01

    During the summer of 1994, a cross-sectional epidemiological study, in which the pulmonary function of children in Tehran was compared with pulmonary function in children in a rural town in Iran, was conducted. Four hundred children aged 5--11 y were studied. Daytime ambient nitrogen dioxide, sulfur dioxide, and particulate matter were measured with portable devices, which were placed in the children`s neighborhoods on the days of study. Levels of these ambient substances were markedly higher in urban Tehran than in rural areas. Children`s parents were questioned about home environmental exposures (including heating source and environmental tobacco smoke) and the children`s respiratory symptoms. Pulmonary function was assessed, both by spirometry and peak expiratory flow meter. Forced expiratory volume in 1 s and forced vital capacity--as a percentage of predicted for age, sex and height--were significantly lower in urban children than in rural children. Both measurements evidenced significant reverse correlations with levels of sulfur dioxide, nitrogen dioxide, and particulate matter. Differences in spirometric lung function were not explained by nutritional status, as assessed by height and weight for age, or by home environmental exposures. Reported airway symptoms were higher among rural children, whereas reported physician diagnosis of bronchitis and asthma were higher among urban children. The association between higher pollutant concentrations and reduced pulmonary function in this urban-rural comparison suggests that there is an effect of urban air pollution on short-term lung function and/or lung growth and development during the preadolescent years.

  9. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    Science.gov (United States)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  10. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    International Nuclear Information System (INIS)

    Cong Khanh Huynh; Trinh Vu Duc

    2009-01-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  11. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    International Nuclear Information System (INIS)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A.

    2003-01-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture

  12. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A

    2003-09-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture.

  13. Instrumental neutron activation analysis of air filter samples

    International Nuclear Information System (INIS)

    Kuykendall, W.E.; Fite, L.E. Jr.; Wainerdi, R.E.

    1974-01-01

    This paper reports the capabilities of automated instrumental neutron activation analysis as demonstrated on 40 air filter samples from Cleveland's area. The results indicate the usefulness of the method in the measurement of elemental concentrations in airborne particulates. Through the use of automated gamma-ray spectrometry procedures, magnetic tape recording of spectral data and computerized processing of data, the method becomes very competitive from the standpoint of sensitivity and cost. The capabilities of the technique for air filter analysis may be summarized as follows: a., over 33 elements are measurable in a filter sample; b., the median detection limit for airborne concentration of an element is approximately 4.10 -9 grams.meter -3 ; c., around 26 elements are detectable in a typical cellulose filter sample; d., the method is non-destructive, therefore the sample can be retained for further analysis. (T.G.)

  14. Long-Term Exposure to Ambient Air Pollution and Subclinical Cerebrovascular Disease in NOMAS (the Northern Manhattan Study).

    Science.gov (United States)

    Kulick, Erin R; Wellenius, Gregory A; Kaufman, Joel D; DeRosa, Janet T; Kinney, Patrick L; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S

    2017-07-01

    Long-term exposure to ambient air pollution is associated with higher risk of cardiovascular disease and stroke. We hypothesized that long-term exposure to air pollution would be associated with magnetic resonance imaging markers of subclinical cerebrovascular disease. Participants were 1075 stroke-free individuals aged ≥50 years drawn from the magnetic resonance imaging subcohort of the Northern Manhattan Study who had lived at the same residence for at least 2 years before magnetic resonance imaging. Cross-sectional associations between ambient air pollution and subclinical cerebrovascular disease were analyzed. We found an association between distance to roadway, a proxy for residential exposure to traffic pollution, and white matter hyperintensity volume; however, after adjusting for risk factors, this relationship was no longer present. All other associations between pollutant measures and white matter hyperintensity volume were null. There was no clear association between exposure to air pollutants and subclinical brain infarcts or total cerebral brain volume. We found no evidence that long-term exposure to ambient air pollution is independently associated with subclinical cerebrovascular disease in an urban population-based cohort. © 2017 American Heart Association, Inc.

  15. Assessment of Ambient Air Quality and Air Quality Index in Golden Corridor of Gujarat, India: A Case Study of Dahej Port

    Directory of Open Access Journals (Sweden)

    Hiren B. Soni

    2018-01-01

    Full Text Available Clean air is the basic requirement of all living organisms. In recent times, due to population growth, urban sprawl, industrial development, and vehicular boom, the quality of air is deteriorating and being polluted. Pollutants of major public health concerns include particulate matter, carbon monoxide, ozone, nitrogen dioxide, and sulfur dioxide, which pose serious threats to human health and hygiene. In the present study, prime particulate pollutants (PM10, PM2.5, and gaseous pollutants (SO2, and NO2 were estimated at seven stations in and around Dahej Port, Gujarat, India. The obtained values of PM10, PM2.5, SO2, and NO2 in all the studied stations (seven ranged from 67.39 to 98.75, 29.57 to 45.79, 17.76 to 22.29 and 28.29 to 32.42 mg/m3, respectively. The level of PM10 at all sampling locations, and that of PM2.5 at Station A3 (Lakhigam were found little higher than prescribed permissible limits of CPCB standards, while SO2 and NO2levels were within the acceptable range. The Air Quality Index (AQI score was found to be ranged from 76.50 to 97.75, which is at satisfactory level as per CPCB standards. Further, precautionary measures and management strategies to minimize the effect of particulate as well as gaseous pollutants have also been suggested for achieving its ambient levels in and around Dahej Port, Gujarat, India.International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 28-41

  16. Passive sampling of polychlorinated biphenyls (PCB) in indoor air

    DEFF Research Database (Denmark)

    Vorkamp, Katrin; Mayer, Philipp

    PCBs were widely used in construction materials in the 1906s and 1970s, a period of high building activity in Denmark. The objective of this study was therefore to use passive sampling techniques to develop a simple and cost-effective screening tool for PCBs in indoor air. The study proceeded in ...

  17. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.

    Science.gov (United States)

    Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-06-28

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

  18. Study on an air quality evaluation model for Beijing City under haze-fog pollution based on new ambient air quality standards.

    Science.gov (United States)

    Li, Li; Liu, Dong-Jun

    2014-08-28

    Since 2012, China has been facing haze-fog weather conditions, and haze-fog pollution and PM2.5 have become hot topics. It is very necessary to evaluate and analyze the ecological status of the air environment of China, which is of great significance for environmental protection measures. In this study the current situation of haze-fog pollution in China was analyzed first, and the new Ambient Air Quality Standards were introduced. For the issue of air quality evaluation, a comprehensive evaluation model based on an entropy weighting method and nearest neighbor method was developed. The entropy weighting method was used to determine the weights of indicators, and the nearest neighbor method was utilized to evaluate the air quality levels. Then the comprehensive evaluation model was applied into the practical evaluation problems of air quality in Beijing to analyze the haze-fog pollution. Two simulation experiments were implemented in this study. One experiment included the indicator of PM2.5 and was carried out based on the new Ambient Air Quality Standards (GB 3095-2012); the other experiment excluded PM2.5 and was carried out based on the old Ambient Air Quality Standards (GB 3095-1996). Their results were compared, and the simulation results showed that PM2.5 was an important indicator for air quality and the evaluation results of the new Air Quality Standards were more scientific than the old ones. The haze-fog pollution situation in Beijing City was also analyzed based on these results, and the corresponding management measures were suggested.

  19. Summer concentrations of NMHCs in ambient air of the Arctic and Antarctic

    Energy Technology Data Exchange (ETDEWEB)

    Hellen, H.; Paatero, J.; Hakola, H.; Virkkula, A. [Finnish Meteorological Inst., Helsinki (Finland); Leck, C. [Stockholm Univ. (Sweden). Dept. of Meteorology

    2012-11-01

    Summer concentrations of C{sub 2}-C{sub 6} non-methane hydrocarbons (NMHCs) were measured in Antarctica and in the Arctic in 2008. The results show that NMHC concentrations are on average five times higher in the Arctic than in Antarctica. In Antarctica, there were few concentration peaks, but during most of the remaining time concentrations were below or close to the detection limits. Over the Arctic pack ice area north of 80 deg, concentrations of most of the measured NMHCs were always above the detection limits. No differences based on air-mass origin were detected in Antarctica, but samples collected over the central Arctic Ocean showed higher concentrations in air masses being advected from the Kara Sea and the western-central Arctic Ocean. The relatively higher NMHC-to-ethyne molar ratios calculated for samples collected over the central Arctic Ocean suggest additional alkane sources in the region. (orig.)

  20. Stratospheric whole air sampling experiments at Syowa Station with compact cryogenic air samplers in JARE-49

    Directory of Open Access Journals (Sweden)

    Shinji Morimoto

    2009-03-01

    Full Text Available As a part of summer observations of the 49th Japanese Antarctic Research Expedition, stratospheric whole air sampling experiments were conducted at Syowa Station using newly developed compact cryogenic air samplers. The compact sampler uses liquefied neon (produced in-situ as a refrigerant to solidify or liquefy atmospheric constituents. Because of its reduced size and weight, the sampler can be launched using small-size balloons (1000–2000 m3 in volume. On December 30, 2007 and January 4, 2008, a total of 4 samplers were launched from Syowa Station and recovered on the same day as their launches. Two of them functioned as designed and collected stratospheric air samples at altitudes of 18 and 25 km. The air samples were analyzed for greenhouse gas concentrations and stable isotopes after return to Japan.

  1. Ambient Air Pollution-Related Mortality in Dairy Cattle: Does It Corroborate Human Findings?

    Science.gov (United States)

    Cox, Bianca; Gasparrini, Antonio; Catry, Boudewijn; Fierens, Frans; Vangronsveld, Jaco; Nawrot, Tim S

    2017-01-01

    Background Despite insights for humans, short-term associations of air pollution with mortality to our knowledge have never been studied in animals. We investigated the association between ambient air pollution and risk of mortality in dairy cows and effect modification by season. Methods We collected ozone (O3), particulate matter (PM10), and nitrogen dioxide (NO2) concentrations at the municipality level for 87,108 dairy cow deaths in Belgium from 2006 to 2009. We combined a case-crossover design with time-varying distributed lag models. Results We found acute and delayed associations between air pollution and dairy cattle mortality during the warm season. The increase in mortality for a 10 µg/m3 increase in 2-day (lag 0−1) O3 was 1.2% (95% confidence interval [CI] = 0.3%, 2.1%), and the corresponding estimates for a 10 µg/m3 increase in same-day (lag 0) PM10 and NO2 were 1.6% (95% CI = 0.0%, 3.1%) and 9.2% (95% CI = 6.3%, 12%), respectively. Compared to the acute increases, the cumulative 26-day (lag 0−25) estimates were considerably larger for O3 (3.0%; 95% CI = 0.2%, 6.0%) and PM10 (3.2%; 95% CI = -0.6%, 7.2%), but not for NO2 (1.4%; 95% CI = -4.9%, 8.2%). In the cold season, we only observed increased mortality risks associated with same-day (lag 0) exposure to NO2 (1.4%; 95% CI = -0.1%, 3.1%) and with 26-day (lag 0–25) exposure to O3 (4.6%; 95% CI = 2.2%, 7.0%). Conclusions Our study adds to the epidemiologic findings in humans and reinforces the evidence on the plausibility of causal effects. Furthermore, our results indicate that air pollution associations go beyond short-term mortality displacement. PMID:27468004

  2. Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China.

    Science.gov (United States)

    An, R; Yu, H

    2018-03-19

    Poor air quality has become a national public health concern in China. This study examines the impact of ambient fine particulate matter (PM 2.5 ) air pollution on health behaviors among college students in Beijing, China. Prospective cohort study. Health surveys were repeatedly administered among 12,000 newly admitted students at Tsinghua University during 2012-2015 over their freshman year. Linear individual fixed-effect regressions were performed to estimate the impacts of ambient PM 2.5 concentration on health behaviors among survey participants, adjusting for various time-variant individual characteristics and environmental measures. Ambient PM 2.5 concentration was found to be negatively associated with time spent on walking, vigorous physical activity and sedentary behavior in the last week, but positively associated with time spent on nighttime/daytime sleep among survey participants. An increase in the ambient PM 2.5 concentration by one standard deviation (36.5 μg/m³) was associated with a reduction in weekly total minutes of walking by 7.3 (95% confidence interval [CI] = 5.3-9.4), a reduction in weekly total minutes of vigorous physical activity by 10.1 (95% CI = 8.5-11.7), a reduction in daily average hours of sedentary behavior by 0.06 (95% CI = 0.02-0.10) but an increase in daily average hours of nighttime/daytime sleep by 1.07 (95% CI = 1.04-1.11). Ambient PM 2.5 air pollution was inversely associated with physical activity level but positively associated with sleep duration among college students. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently called to reduce air pollution level in China's urban areas. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  3. Annual report on the ambient air quality measurement in Austria 2004

    International Nuclear Information System (INIS)

    Spangl, W.; Nagl, C.; Schneider, J.

    2006-01-01

    A summary of the ambient air quality situation (measurements) conducted according to the Air Quality Act and the Ozone Act in Austria during 2004 is presented. The situation was assessed mainly in relation to Austrian limit and target values of sulfur dioxide, nitrogen oxides, particulate matter (this is measured using two different indicators: total suspended particulates (TSP) and PM10), carbon monoxide, benzene and lead. The PM10 limit value - 35 days with average concentrations above 50 μg/m 3 - was exceeded at 27 sites. The highest exceedances were measured at traffic related sites in large cities, in particular the city of Graz, in Vienna, at industrial sites (e.g. Linz). Main sources for primary particulate matter are road traffic, domestic heating (in particular wood burning), industrial emissions, construction activities and off-road sources. For nitrogen dioxide, the short term limit value was exceeded at few traffic related sites, mainly - but not only - in larger towns. The limit value for the protection of vegetation of 30 μg/m 3 NO x was exceeded at one site in Tyrol (Kramsach). Limit values for sulfur dioxide were exceeded at three sites. Neither the limit values for carbon monoxide, lead and benzene nor the alert thresholds for nitrogen dioxide or sulfur dioxide were exceeded in this year. Deposition of total particulates limit value was exceeded at a few sites, lead and cadmium in two industrial sites. Low ozone levels were measured at most monitoring sites, the information threshold of 180 μg/m 3 ozone as one hour mean was exceeded at 21 sites on all together 9 days and the alert threshold of 240 μg/m 3 as one hour mean was not exceeded. 45 figs., 57 tabs. (nevyjel)

  4. Ambient air pollution, lung function, and airway responsiveness in asthmatic children.

    Science.gov (United States)

    Ierodiakonou, Despo; Zanobetti, Antonella; Coull, Brent A; Melly, Steve; Postma, Dirkje S; Boezen, H Marike; Vonk, Judith M; Williams, Paul V; Shapiro, Gail G; McKone, Edward F; Hallstrand, Teal S; Koenig, Jane Q; Schildcrout, Jonathan S; Lumley, Thomas; Fuhlbrigge, Anne N; Koutrakis, Petros; Schwartz, Joel; Weiss, Scott T; Gold, Diane R

    2016-02-01

    Although ambient air pollution has been linked to reduced lung function in healthy children, longitudinal analyses of pollution effects in asthmatic patients are lacking. We sought to investigate pollution effects in a longitudinal asthma study and effect modification by controller medications. We examined associations of lung function and methacholine responsiveness (PC20) with ozone, carbon monoxide (CO), nitrogen dioxide, and sulfur dioxide concentrations in 1003 asthmatic children participating in a 4-year clinical trial. We further investigated whether budesonide and nedocromil modified pollution effects. Daily pollutant concentrations were linked to ZIP/postal code of residence. Linear mixed models tested associations of within-subject pollutant concentrations with FEV1 and forced vital capacity (FVC) percent predicted, FEV1/FVC ratio, and PC20, adjusting for seasonality and confounders. Same-day and 1-week average CO concentrations were negatively associated with postbronchodilator percent predicted FEV1 (change per interquartile range, -0.33 [95% CI, -0.49 to -0.16] and -0.41 [95% CI, -0.62 to -0.21], respectively) and FVC (-0.19 [95% CI, -0.25 to -0.07] and -0.25 [95% CI, -0.43 to -0.07], respectively). Longer-term 4-month CO averages were negatively associated with prebronchodilator percent predicted FEV1 and FVC (-0.36 [95% CI, -0.62 to -0.10] and -0.21 [95% CI, -0.42 to -0.01], respectively). Four-month averaged CO and ozone concentrations were negatively associated with FEV1/FVC ratio (P Air pollution adversely influences lung function and PC20 in asthmatic children. Treatment with controller medications might not protect but rather worsens the effects of CO on PC20. This clinical trial design evaluates modification of pollution effects by treatment without confounding by indication. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Severe and Moderate Asthma Exacerbations in Asthmatic Children and Exposure to Ambient Air Pollutants.

    Science.gov (United States)

    Tétreault, Louis-Francois; Doucet, Marieve; Gamache, Philippe; Fournier, Michel; Brand, Allan; Kosatsky, Tom; Smargiassi, Audrey

    2016-08-01

    It is well established that short-term exposure to ambient air pollutants can exacerbate asthma, the role of early life or long-term exposure is less clear. We assessed the association between severe asthma exacerbations with both birth and annual exposure to outdoor air pollutants with a population-based cohort of asthmatic children in the province of Quebec (Canada). Exacerbations of asthma occurring between 1 April 1996 and 31 March 2011 were defined as one hospitalization or emergency room visit with a diagnosis of asthma for children (exposure. Of the 162,752 asthmatic children followed (1,020,280 person-years), 35,229 had at least one asthma exacerbation. The HRs stratified by age groups and adjusted for the year of birth, the ordinal number of exacerbations, sex, as well as material and social deprivation, showed an interquartile range increase in the time-dependant exposure to NO₂ (4.95 ppb), O₃ (3.85 ppb), and PM2.5 (1.82 μg/m³) of 1.095 (95% CI 1.058-1.131), 1.052 (95% CI 1.037-1.066) and 1.025 (95% CI 1.017-1.031), respectively. While a positive association was found to PM2.5, no associations were found between exposure at birth to NO₂ or O₃. Our results support the conclusion, within the limitation of this study, that asthma exacerbations in asthmatic children are mainly associated with time dependent residential exposures less with exposure at birth.

  6. Personal carbon monoxide exposures of preschool children in Helsinki, Finland - comparison to ambient air concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Mukala, K.; Tittanen, P.; Jantunen, M.J. [KTL National Public Health Institute, Kuopio (Finland). Dept. of Environmental Health

    2001-07-01

    The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3-6yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6mgm{sup -3}) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3mgm{sup -3}).The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (-0.03 -- -0.12 to 0.13-0.16) with increasing averaging times from 1 to 8h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites. (author)

  7. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    Science.gov (United States)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  8. Particle size distribution in ambient air of Delhi and its statistical analysis.

    Science.gov (United States)

    Chelani, A B; Gajghate, D G; Chalapatirao, C V; Devotta, S

    2010-07-01

    Particle size distribution in ambient air has been studied in an urban city, Delhi. Different activity sites namely; kerbside, industrial and residential were selected for the study. The statistical analysis was carried out to study the frequency distribution and sources of different particle size fractions. The dominance of coarse particles attributed to local activities was observed at all the sites. It was observed that at kerbside sites, up to 52% of the particles were lower respiratory tract and up to 47% of the particles were upper respiratory tract particles. At residential and industrial sites, up to 40% and 31% were lower and upper respiratory tract particles, respectively. Factor analysis results indicated auto-exhaust as the dominant source of particulate matter at two of the kerbside sites. Resuspended dust was dominant at remaining two kerbside and residential sites. It was inferred using geometric standard deviation of particle size fractions that these were from different sources at residential and industrial site and from similar sources at three of the kerbside sites.

  9. Time series analysis of ambient air concentrations in Alexandria and Nile delta region, Egypt

    International Nuclear Information System (INIS)

    EI Raev, M.; Shalaby, E.A.; Ghatass, Z.F.; Marey, H.S.

    2007-01-01

    Data collected from the Air Monitoring Network of Alexandria and Delta (EEAA/EIMP-program), were analyzed. Emphasis is given to indicator pollutants PM 10 , NO 2 , SO 2 , O 3 and CO. Two sites have been selected in Alexandria (IGSR and Shohada) and three sites in Delta region (Kafr Elzyat, Mansoura and Mahalla) for analysis of three years from 2000-2002. Box -Jenkins modeling has been used mainly for forecasting and assessing relative importance of various parameters or pollutants. Results showed that, the autoregressive (AR) order for all series ranged from 0-2 except NO 2 at Mansoura site. Also the moving average order ranged from 0-2 except CO at IGSR site. Nitrogen dioxide and Ozone at IGSR site have the same ARIMA model which is (0, 1, and 2). Cross correlation analysis has revealed important information on the dynamics, chemistry and interpretation of ambient pollution. Cross-correlation functions of SO 2 and PM 10 at IGSR sites suggest that, sulfur dioxide has been adsorbed on the surface of particulates which has an alkaline nature. This enhances the oxidation of sulfur dioxide to sulfate, which results in low levels of SO 2 in spite of the presence of sources

  10. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air.

    Directory of Open Access Journals (Sweden)

    M Tanweer Khan

    Full Text Available The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precluded its clinical application in the treatment of patients with inflammatory bowel diseases. The present studies were therefore aimed at developing a strategy to keep F. prausnitzii alive at ambient air. Our previous research showed that F. prausnitzii can survive in moderately oxygenized environments like the gut mucosa by transfer of electrons to oxygen. For this purpose, the bacterium exploits extracellular antioxidants, such as riboflavin and cysteine, that are abundantly present in the gut. We therefore tested to what extent these antioxidants can sustain the viability of F. prausnitzii at ambient air. The present results show that cysteine can facilitate the survival of F. prausnitzii upon exposure to air, and that this effect is significantly enhanced the by addition of riboflavin and the cryoprotectant inulin. The highly oxygen-sensitive gut bacterium F. prausnitzii can be kept alive at ambient air for 24 h when formulated with the antioxidants cysteine and riboflavin plus the cryoprotectant inulin. Improved formulations were obtained by addition of the bulking agents corn starch and wheat bran. Our present findings pave the way towards the biomedical exploitation of F. prausnitzii in redox-based therapeutics for treatment of dysbiosis-related inflammatory disorders of the human gut.

  11. Methods for Sampling and Measurement of Compressed Air Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.

    1976-10-15

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  12. Study on element concentrations in aerosol in ambient air from Phnom Penh, Cambodia

    International Nuclear Information System (INIS)

    Kashima, Yuji; Sakai, Haruya; Matsui, Mitsuaki

    2004-01-01

    In order to accumulate basic information necessary for reduction of suspended particle materials (SPM) in Phnom Penh, various element concentrations were measured with ICP-mass spectrometry and neutron activation analysis, and some their sources were estimated. SPM were collected at a roadside area in the middle of the City (1 point, 11 samples of 24 hours and 14 samples of 7 ∼ 16 hours) and two residence areas (2 points, 13 samples of 24 hours and 1 sample of 16 hours) with membrane filters of air samplers set at the level of 8∼9 m height. For research SPM sources, two kinds of comparative samples were also collected from roadside dust and soil (2 points, 9 samples) and from exhaust deposit of vehicles (bicycle 11, gasoline automobile 7, diesel car 10 samples) and electric generator (6 samples). SPM concentrations measured were 67∼1,000 μg/m 3 (average 410 μg/m 3 ). The concentrations in the roadside area were several times higher than in the residence area. Toxic element concentrations were all higher in roadside with an exception of Cd. The concentrations of Pb was 44 ng/m 3 on the average, amounting to 1/10 of WHO Guidelines. Comparing element concentrations of SPM with those of the soils and deposits, factor analysis using 18 elements including Ba, V, Pb suggests three major sources of soil, vehicle exhaust, and oil burning. (H. Yokoo)

  13. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    Science.gov (United States)

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small

  14. Acute effects of ambient air pollution on lower respiratory infections in Hanoi children: An eight-year time series study.

    Science.gov (United States)

    Nhung, Nguyen Thi Trang; Schindler, Christian; Dien, Tran Minh; Probst-Hensch, Nicole; Perez, Laura; Künzli, Nino

    2018-01-01

    Lower respiratory diseases are the most frequent causes of hospital admission in children worldwide, particularly in developing countries. Daily levels of air pollution are associated with lower respiratory diseases, as documented in many time-series studies. However, investigations in low-and-middle-income countries, such as Vietnam, remain sparse. This study investigated the short-term association of ambient air pollution with daily counts of hospital admissions due to pneumonia, bronchitis and asthma among children aged 0-17 in Hanoi, Vietnam. We explored the impact of age, gender and season on these associations. Daily ambient air pollution concentrations and hospital admission counts were extracted from electronic databases received from authorities in Hanoi for the years 2007-2014. The associations between outdoor air pollution levels and hospital admissions were estimated for time lags of zero up to seven days using Quasi-Poisson regression models, adjusted for seasonal variations, meteorological variables, holidays, influenza epidemics and day of week. All ambient air pollutants were positively associated with pneumonia hospitalizations. Significant associations were found for most pollutants except for ozone and sulfur dioxide in children aged 0-17. Increments of an interquartile range (21.9μg/m 3 ) in the 7-day-average level of NO 2 were associated with a 6.1% (95%CI 2.5% to 9.8%) increase in pneumonia hospitalizations. These associations remained stable in two-pollutant models. All pollutants other than CO were positively associated with hospitalizations for bronchitis and asthma. Associations were stronger in infants than in children aged 1-5. Strong associations between hospital admissions for lower respiratory infections and daily levels of air pollution confirm the need to adopt sustainable clean air policies in Vietnam to protect children's health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. KCl-Induced High-Temperature Corrosion Behavior of HVAF-Sprayed Ni-Based Coatings in Ambient Air

    Science.gov (United States)

    Jafari, Reza; Sadeghimeresht, Esmaeil; Farahani, Taghi Shahrabi; Huhtakangas, Matti; Markocsan, Nicolaie; Joshi, Shrikant

    2018-02-01

    KCl-induced high-temperature corrosion behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5Al, Ni21Cr7Al1Y and Ni21Cr9Mo) under KCl deposit has been investigated in ambient air at 600 °C up to 168 h. The coatings were deposited onto 16Mo3 steel—a widely used boiler tube material. Uncoated substrate, 304L and Sanicro 25 were used as reference materials in the test environment. SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples. The results showed that the small addition of KCl significantly accelerated degradation to the coatings. All coatings provided better corrosion resistance compared to the reference materials. The alumina-forming Ni5Al coating under KCl deposit was capable of forming a more protective oxide scale compared to the chromia-forming coatings as penetration of Cl through diffusion paths was hindered. Both active corrosion and chromate formation mechanisms were found to be responsible for the corrosion damages. The corrosion resistance of the coatings based on the microstructure analysis and kinetics had the following ranking (from the best to worst): Ni5Al > Ni21Cr > Ni21Cr7Al1Y > Ni21Cr9Mo.

  16. Ambient air pollution and preterm birth: A prospective birth cohort study in Wuhan, China.

    Science.gov (United States)

    Qian, Zhengmin; Liang, Shengwen; Yang, Shaoping; Trevathan, Edwin; Huang, Zhen; Yang, Rong; Wang, Jing; Hu, Ke; Zhang, Yiming; Vaughn, Michael; Shen, Longjiao; Liu, Wenjin; Li, Pu; Ward, Patrick; Yang, Li; Zhang, Wei; Chen, Wei; Dong, Guanghui; Zheng, Tongzhang; Xu, Shunqing; Zhang, Bin

    2016-03-01

    Although studies in western countries suggest that ambient air pollution is positively associated with adverse pregnancy outcomes, the upper levels of pollutant exposures have been relatively low, thus eroding confidence in the conclusions. Meanwhile, in Asia, where upper levels of exposure have been greater, there have been limited studies of the association between air pollution and adverse pregnancy outcomes. The primary objective was to evaluate whether high levels of pollution, including particulate matter pollution with a mass median aerodynamic diameter of less than 2.5 μm (PM2.5) and 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) are related to increased occurrence of preterm birth (PTB). We conducted a population-based study in Wuhan, China in a cohort of 95,911 live births during a two-year period from 2011 to 2013. The exposure was estimated based on daily mean concentrations of pollutants estimated using the pollutants' measurements from the nine closest monitors. Logistic regressions were performed to determine the relationships between exposure to each of the pollutants during different pregnancy periods and PTB while controlling for key covariates. We found 3% (OR=1.03; 95% CI: 1.02, 1.05), 2% (OR=1.02; 95% CI: 1.02, 1.03), 15% (OR=1.15; 95% CI: 1.11, 1.19), and 5% (OR=1.05; 95% CI: 1.02, 1.07) increases in risk of PTB with each 5-μg/m(3) increase in PM2.5 and PM10 concentrations, 100-μg/m(3) increase in CO concentrations, and 10-μg/m(3) increase in O3 concentrations, respectively. There was negligible evidence for associations for SO2 and NO2. The effects from two-pollutant models were similar to the estimated effects from single pollutant models. No critical exposure windows were identified consistently: the strongest effect for PTB was found in the second trimester for PM2.5, PM10, and CO, but for SO2 it was in the first trimester, second month, and third month. For NO2 it was in the first

  17. Ambient air pollution exposure and damage to male gametes: human studies and in situ 'sentinel' animal experiments.

    Science.gov (United States)

    Somers, Christopher M

    2011-02-01

    Globally there is concern that adverse reproductive outcomes and fertility impairment in humans may be caused by exposure to environmental contaminants. Air pollution in particular has been linked to DNA damage, abnormal sperm morphology, and reduced sperm performance in men. Experimental studies using model species (mice and rats) exposed in situ provide evidence that ambient air pollution can cause damage to the respiratory system and other tissues or organs. This can take the form of DNA damage and other genetic changes throughout the body, including induced mutations, DNA strand breaks, and altered methylation patterns in male germ cells. Human and animal studies together provide strong evidence that air pollution, especially airborne particulate matter, at commonly occurring ambient levels is genotoxic to male germ cells. The mechanistic link between air pollution exposure and induced genetic changes in male germ cells is currently unclear. 'Sentinel' animal experiments explicitly examining air pollution affects on sperm quality in laboratory rodents have not been conducted and would provide a critical link to observations in humans. The importance of air pollution compared to other factors affecting fertility and reproductive outcomes in humans is not clear and warrants further investigation.

  18. Research ambient air industrial hygiene survey of the Pittsburgh Energy Technology Center at Bruceton, Pennsylvania. Final report, April 15--August 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Speicher, H.W.; Kretchman, K.W.

    1978-01-01

    This ambient air industrial hygiene evaluation was made in six selected process areas at the Pittsburgh Energy Technology Center on April 15--August 30, 1978. Personal and area sampling for predetermined dusts, vapors, gases and fumes was conducted with NIOSH approved equipment and procedures. The sample analyses were performed at the Industrial Health Foundation's AIHA accredited Analytical Laboratory. The results, reported as time-weighted average concentrations during the sampling period, indicate compliance with the present OSHA permissible values except for benzene concentrations in both laboratory areas. The present benzene TLV was exceeded on one occasion in each of the laboratory areas. These results indicate a need for periodic monitoring of both areas. Recommendations involve additional local exhaust ventilation, adjustable hood windows and periodic benzene sampling.

  19. Characterization of Carbonyl Compounds in the Ambient Air of an Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2011-01-01

    Full Text Available The purpose of this study was to characterize spatial and temporal variations of carbonyl compounds in Gumi city, where a number of large electronic-industrial complexes are located. Carbonyl samples were collected at five sites in the Gumi area: three industrial, one commercial, and one residential area. Sampling was carried out throughout a year from December 2003 to November 2004. At one industrial site, samples were taken every six days, while those of the other sites were for seven consecutive days in every season. Each sample was collected for 150 minutes and at intervals of three times a day (morning, afternoon, and evening. A total of 476 samples were analyzed to determine 15 carbonyl compounds by the USEPA TO-11A (DNPH-cartridge/HPLC method. In general, acetaldehyde appeared to be the most abundant compound, followed by formaldehyde, and acetone+acrolein. Mean concentrations of acetaldehyde were two to three times higher in the industrial sites than in the other sites, with its maximum of 77.7 ppb. In contrast, ambient levels of formaldehyde did not show any significant difference between the industrial and non-industrial groups. Its concentrations peaked in summer probably due to the enhanced volatilization and photochemical reactivity. These results indicate significant emission sources of acetaldehyde in the Gumi industrial complexes. Mean concentrations of organic solvents (such as acetone+acrolein and methyl ethyl ketone were also significantly high in industrial areas. In conclusion, major sources of carbonyl compounds, including acetaldehyde, are strongly associated with industrial activities in the Gumi city area.

  20. Rapid separation method for actinides in emergency air filter samples.

    Science.gov (United States)

    Maxwell, Sherrod L; Culligan, Brian K; Noyes, Gary W

    2010-12-01

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified (90)Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and (90)Sr in air filter results were reported in less than 4 h with excellent quality. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.

    2001-01-01

    contribution of the OH initiated formation is estimated to be in the range of 90-100%. However, under wintertime conditions with cloudy weather implying low OH radical production, NO3 radicals may also be important as initiators of nitro-PAH formation. Samples influenced by transport of polluted air masses...... been developed and applied. The nitro-PAK levels have been compared with levels of other air pollutants including unsubstituted PAHs, inorganic gases and particulate matter, as well as with meteorological parameters. Correlations and concentration ratios suggest that the dominant source of 9...... from the European continent have significantly elevated concentrations of atmospherically formed nitro-PAHs. The directly emitted nitro-PAHs, 1-nitropyrene and 3-nitrofluoranthene, do not exhibit elevated levels during such long-range transport episodes. (C) 2000 Elsevier Science Ltd. All rights...

  2. Study of indoor and ambient air fungual bioaerosols and its relation with particulate matters in a hospital of khorramabad

    Directory of Open Access Journals (Sweden)

    Hasan Basiri

    2016-02-01

    Full Text Available Background: The climate change and particulate matter emission contented of bioaerosols is known as an important reason of increasing the allergic interactions especially in patients with defect in immunity system. The aim of this study was to investigate fungal bioaerosol concentrations in relation to particulate matter (PM10, PM2.5 and PM1 in indoor parts and ambient air of the generd educational hospital of Khorramabad city. Materials and Methods: In this descriptive-analytical study, 192 samples (168 for indoor and 24 for outdoor were gathered during 6 months at the seven indoor wards and one outdoor unit using Quick Take-30 method  at an airflow rate of 28.3 L/min and sampling time of 2.5 min on to Sabouraud dextrose agar medium containing chloramphenicol. The sampling of particulate matter was carried out by Monitor Dust-Trak 8520. Also, the relative humidity and temperature were surveyed by TES-1360 digital. Results: The results showed that infectious ward with 101.7 CFU/m3 was as the most contaminated part and operating room with 46.4 CFU/m3 was the cleanest part. Cladosporium with 36.75% and Rodotorolla with 1.3% had higher and lower of fungi rates, respectively. The rate of  I/O<1  illustrate that this contamination had an outdoor source. Conclusion: The surveys demonstrated that the increase of temperature and relative humidity have an effective influence on the pollutant accumulation. In addition, between fungi bioaerosols frequency and particulate matter ther was a significant correlation.

  3. Design of an online spot air sampling system

    International Nuclear Information System (INIS)

    Rath, D.P.; Govalkar, Atul; Yadav, S.A.; Mukherjee, Govinda; Murali, S.; Babu, D.A.R.; Prasad, R.S.

    2012-01-01

    In all the alpha handling facilities spot air sampling is essential while clearing a lab consequent to week end ventilation shut down or subsequent to completion of work/operations goes inside the facility. The sampling head is designed for 5 micron particles. Following pints are noticed over a period of such operational activities: Health Physicist goes inside a lab with a half face mask whose protection factor is 10, thereby useful for lab air activity up to ten DACs. Many times HP goes inside the lab when activity is more which is highly unsafe. On many occasions simultaneously a number of samples have to be taken by HP from a large number of laboratories inside the facility or for any special job where continuous radiological protection is required. Based on this it is proposed to design a sampling system which will overcome the above limitations. The design of the sampling head has been carried out which is for 5 micron particle size. The pump which is available in the existing facilities can be utilized. An innovative way of counting for large number of samples is fabricated in the RHC wing, RMD which can count ten samples at a time. Removal and counting of the sample may be carried out in a similar sampling carousel which is being used in RHC Unit, Radiometallurgy wing successfully with a little modification. In the proposed system, three samples can be operated in-line such that health physics intervention during the active operation would be minimum and during alarm situations (i.e. on the DAC level) proper protective equipment shall be advised by health physicist or he may suggest any other protective action. This type of online monitors will help in establishing the airborne activity inside the lab where special jobs are being carried out which will provide maximum protection to the lab personnel as well as to the health physicist who supervises the entire operation

  4. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    Energy Technology Data Exchange (ETDEWEB)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  5. The comparison of pollen abundance in air and honey samples

    OpenAIRE

    Ingrida Šaulienė; Laura Šukienė; Auste Noreikaite-Merkeliene; Vidmantas Pileckas

    2015-01-01

    Honey as a food has long been used in human nutrition and is still popular. Honey is important because of its therapeutic, prophylactic and strengthening value. Pollen is one of the most decisive components that ensure the quality and type of honey. Modern society becomes more and more sensitive to airborne pollen. Therefore, it is crucial to determine the composition of allergenic plant pollen in natural honey. For this purpose, we studied and compared pollen abundance in honey and air sampl...

  6. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1997-03-01

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  7. High efficiency mixed species radioiodine air sampling, readout, and dose assessment system

    International Nuclear Information System (INIS)

    Distenfeld, C.; Klemish, J.

    1976-05-01

    Reactor accidents require monitoring to assess the impact to persons in the environment. This implies methods and apparatus to accurately and economically sample and evaluate possible released activity. The development of a prototype iodine air sampling system that can differentiate against noble gas activity and be evaluated by standard Civil Defense instrumentation is reported. The apparatus can efficiently (95 percent) collect organic or inorganic, particulate or gaseous radioiodine in concentrations below stable atmospheric iodine, and under severe ambient conditions. Response to noble fission gases was reduced to less than 4 x 10 -4 of an equal iodine airborne activity by heating the collector to approximately 100 0 C. Reliable sample size, +-5 percent, was achieved by using a simple air flow regulator. Thyroid dose commitment was mathematically and graphically related to the iodine isotope distribution expected in the environment and to the response of the Civil Defense CDV-700 instrument used to evaluate the sample. Sensitivity of the method allows dose assessment of 1 to 2 rads to a child's thyroid

  8. A fast responding continuous tritium-in-air monitor with multi stream sampling for area monitoring

    International Nuclear Information System (INIS)

    Narayanan, A.; Padmanabhan, N.; Raman, N.; Kulakarni, V.N.; Babu, D.A.R.; Sharma, D.N.

    2008-01-01

    A fast responding Tritium-in-Air monitor with multi stream sampling up to a maximum of 8 lines has been developed and field tested for continuous area monitoring in Pressurised Heavy Water Reactors (PHWR) and other tritium handling facilities. The instrument has built in electronic compensation for external gamma and gaseous radionuclide 133 Xe (FPNG). The monitor is based on plastic scintillator detector prepared from 5μm thick scintillator film of surface area (each side) of about 250 cm 2 . Four such films of each weighing 150 mg are packed in a flow cell of 6.3 cm 3 volume, made of stainless steel body and Teflon window. The flow cell is coupled face to face to a matched pair of photomultipliers. Measurement is made in coincidence mode of counting. The complete monitor consists of electronic counting system, the detector probe assembly, a diaphragm type of air sampling pump, a particulate filter trap and a rotometer for controlling the air flow rate. For multi stream sampling an external solenoid driver cum isolation unit has been integrated with the system. The efficiency for Tritium vapour for direct passage of sample air through the detector is ∼22%. The instrument records 0.2 cps under normal gamma background of 0.1 - 0.2 μSv/hr, without shielding. With the detector fully shielded (∼ 10 cm thick lead), the instrument does not register significant increase in the background counts with 200 μSv/hr ambient gamma field. Under conditions of gaseous radionuclide interference such as 133 Xe (26 MBq/m 3 concentrations) the MDA rises to ∼1 DAC for a counting time of 300 s. The MDA under ideal conditions is found to be 0.2 DAC for Tritium vapour. The sensitivity of the system is 0.4 CPS per DAC. The instrument response time is 10 minutes. (author)

  9. New passive samplers for chlorinated semivolatile organic pollutants in ambient air.

    Science.gov (United States)

    Paschke, Heidrun; Popp, Peter

    2005-02-01

    Two new types of passive samplers were designed and tested on semivolatile organic compounds. The first type (a spiral-rod sampler) consists of a low-density polyethylene membrane acting as a permeation film and a silicone elastomer as the receiving material; the second (a stir-bar sampler) has the same membrane material but a polydimethylsiloxane-coated stir bar acting as the collector phase and installed radially symmetrically in the sampler. The advantages of the new samplers are their simple design, low costs, and their easy processing via thermodesorption coupled with capillary gas chromatography and mass selective detection. In both samplers, the uptake of selected analytes was integrative over exposure periods of up to 384 h. The sampling rates calculated from a laboratory calibration study using the chlorinated semivolatiles hexachlorobenzene, hexachlorocyclohexane isomers and polychlorinated biphenyls ranged from 88.1 ml h-1 for delta-hexachlorocyclohexane to 3443 ml h-1 for 2,2',5,5'-tetrachlorobiphenyl. A field trial at a hazardous waste dump near Bitterfeld, Germany, for up to 21 days combined with periodical determinations of air concentrations using low-volume sampling indicated that the new samplers can in principle be used in the field, although the sampling rates derived from the field results differed considerably from the laboratory findings. Nevertheless the preliminary results suggest that the new sampler types are promising for the long-term air monitoring of semivolatiles.

  10. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans.

    Science.gov (United States)

    Clemens, Tom; Turner, Steve; Dibben, Chris

    2017-10-01

    Maternal ambient air pollution exposure is associated with reduced birthweight. Few studies have examined the effect on growth in utero and none have examined the effect of exposure to particulates less than 2.5µm (PM 2.5 ) and possible effect modification by smoking status. Examine the effect of maternal exposure to ambient concentrations of PM 10 , PM 2.5 and nitrogen dioxide (NO 2 ) for in utero fetal growth, size at birth and effect modification by smoking status. Administratively acquired second and third trimester fetal measurements (bi-parietal diameter, femur length and abdominal circumference), birth outcomes (weight, crown heel length and occipito-frontal circumference) and maternal details were obtained from routine fetal ultrasound scans and maternity records (period 1994-2009). These were modelled against residential annual pollution concentrations (calendar year mean) adjusting for covariates and stratifying by smoking status. In the whole sample (n=13,775 pregnancies), exposure to PM 10 , PM 2.5 and NO 2 was associated with reductions in measurements at birth and biparietal diameter from late second trimester onwards. Among mothers who did not smoke at all during pregnancy (n=11,075), associations between biparietal diameter and pollution exposure remained significant but were insignificant among those who did smoke (n=2700). Femur length and abdominal circumference were not significantly associated with pollution exposure. Fetal growth is strongly associated with particulates exposure from later in second trimester onwards but the effect appears to be subsumed by smoking. Typical ambient exposures in this study were relatively low compared to other studies and given these results, it may be necessary to consider reducing recommended "safe" ambient air exposures. Copyright © 2017. Published by Elsevier Ltd.

  11. Automatic system for ecological monitoring of ambient air in the region of energy complex 'Maritsa-Iztok'

    International Nuclear Information System (INIS)

    Vasilev, V.; Videnova, I.; Nedyalkov, N.

    2000-01-01

    This report presents the automatic system for ecological monitoring of ambient air in the region of the energy complex 'Maritza-Iztok', developed by CCS-Bulgaria, Bulgarian Academy of Sciences, Institute of Control and System Research. The automatic station takes the concentration of nitric oxides, sulfuric dioxide and dust, as well as the meteorological indicators: temperature and humidity, atmospheric pressure, wind direction and speed, sun heat and radiation. The data appears on a information board and is kept in a database

  12. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    Science.gov (United States)

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  13. Comparison of emission inventory and ambient concentration ratios of CO, NMOG, and NOx in California South Coast Air Basin

    International Nuclear Information System (INIS)

    Fujita, E.M.; Croes, B.E.; Bennett, C.L.; Lawson, D.R.; Lurmann, F.W.; Main, H.H.

    1992-01-01

    In the present study, the author performed a top-down validation of the reactive organic gas and carbon monoxide emission inventories for California's South Coast Air Basin by comparing speciation profiles for nonmethane organic gases (NMOG) and ratios of CO/NO x and NMOG/NO x derived from early-morning (0700 to 0800) ambient measurements taken during the 1987 Southern California Air Quality Study with the corresponding ratios and speciation profiles derived from day-specific, hourly, gridded emission inventories. Twenty separate comparisons were considered for each ratio, each representing a different combination of season, emission category, and spatial and temporal averaging of emissions. It was determined that the most appropriate comparison in summer was ambient pollutant ratios with ratios derived from morning on-road motrovehicle emission inventories, and in the fall, ambient ratios with ratios derived from overnight on-road motor vehicle emission inventories with some contribution from overnight stationary-source NO x emission inventories. From these comparisons, the ambient CO/CO x and NMOG/NO x ratios are about 1.5 and 2 to 2.5 times higher, respectively, than the corresponding inventory ratios. On the assumption that inventories of NO x emissions are reasonably correct, these results indicate that on-road motor vehicle CO and NMOG emissions are significantly underestimated. Comparisons of measured CO, NMOG, and NO x concentrations and CO/NO x and NMOG/NO x ratios with air quality model predictions obtained by the California Air Resources Board show similar differences

  14. The association between low level exposures to ambient air pollution and term low birth weight: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Stieb David

    2006-02-01

    Full Text Available Abstract Background Studies in areas with relatively high levels of air pollution have found some positive associations between exposures to ambient levels of air pollution and several birth outcomes including low birth weight (LBW. The purpose of this study was to examine the association between LBW among term infants and ambient air pollution, by trimester of exposure, in a region of lower level exposures. Methods The relationship between LBW and ambient levels of particulate matter up to 10 um in diameter (PM10, sulfur dioxide (SO2 and ground-level ozone (O3 was evaluated using the Nova Scotia Atlee Perinatal Database and ambient air monitoring data from the Environment Canada National Air Pollution Surveillance Network and the Nova Scotia Department of Environment. The cohort consisted of live singleton births (≥37 weeks of gestation between January1,1988 and December31,2000. Maternal exposures to air pollution were assigned to women living within 25 km of a monitoring station at the time of birth. Air pollution was evaluated as a continuous and categorical variable (using quartile exposures for each trimester and relative risks were estimated from logistic regression, adjusted for confounding variables. Results There were 74,284 women with a term, singleton birth during the study period and with exposure data. In the analyses unadjusted for year of birth, first trimester exposures in the highest quartile for SO2 and PM10suggested an increased risk of delivering a LBW infant (relative risk = 1.36, 95% confidence interval = 1.04 to 1.78 for SO2 exposure and relative risk = 1.33, 95% confidence interval = 1.02 to 1.74 for PM10. After adjustment for birth year, the relative risks were attenuated somewhat and not statistically significant. A dose-response relationship for SO2 was noted with increasing levels of exposure. No statistically significant effects were noted for ozone. Conclusion Our results suggest that exposure during the first

  15. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    Science.gov (United States)

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air

  16. Programmable automatic alpha--beta air sample counter

    International Nuclear Information System (INIS)

    Howell, W.P.

    1978-01-01

    A programmable automatic alpha-beta air sample counter was developed for routine sample counting by operational health physics personnel. The system is composed of an automatic sample changer utilizing a large silicon diode detector, an electronic counting system with energy analysis capability, an automatic data acquisition controller, an interface module, and a teletypewriter with paper tape punch and paper tape reader. The system is operated through the teletypewriter keyboard and the paper tape reader, which are used to instruct the automatic data acquisition controller. Paper tape programs are provided for background counting, Chi 2 test, and sample counting. Output data are printed by the teletypewriter on standard continuous roll or multifold paper. Data are automatically corrected for background and counter efficiency

  17. Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China.

    Science.gov (United States)

    Ma, Yuxia; Zhao, Yuxin; Yang, Sixu; Zhou, Jianding; Xin, Jinyuan; Wang, Shigong; Yang, Dandan

    2017-11-01

    Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age pollutant model. Three major pollutants (SO 2 , NO 2 and PM 10 ) had lag effects of 0-2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m 3 increase in PM 10 , SO 2 and NO 2 were 1.008 (0.997-1.020), 1.008(0.999-1.018) and 1.014(1.003-1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    Directory of Open Access Journals (Sweden)

    J. A. Olorunmaiye

    2012-12-01

    Full Text Available One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150 THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in a room with the air-conditioner switched off and near an oven in a bakery. The electric power consumption of the refrigerator was measured using "Watts up?.net" Watt meter and the ambient temperature was measured using FLUKE temperature/humidity meter. The average hourly energy consumption of the refrigerator operating at mean ambient temperatures of 25.4°C, 30.7oC, 38.8°C were 93.844 Wh, 100.32 Wh and 105.08 Wh respectively. Some possible ways to reduce the increase in power consumption of refrigerators due to global warming include using compressors of higher efficiency and condensers of greater effectiveness.

  19. Growth Responses of Wheat (Triticum aestivumL. var. HD 2329 Exposed to Ambient Air Pollution under Varying Fertility Regimes

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2003-01-01

    Full Text Available The problem of urban air pollution has attracted special attention in India due to a tremendous increase in the urban population; motor vehicles vis a vis the extent of energy utilization. Field studies were conducted on wheat crops (Triticum aestivum L. var. HD 2329 by keeping the pot-grown plants in similar edaphic conditions at nine different sites in Allahabad City to quantify the effects of ambient air pollution levels on selected growth and yield parameters. Air quality monitoring was done at all the sites for gaseous pollutants viz. SO2, NO2, and O3. Various growth parameters (plant height, biomass, leaf area, NPP, etc. showed adverse effects at sites receiving higher pollution load. Reduction in test weight and harvest index was found to be directly correlated with the levels of pollutant concentrations. The study clearly showed the negative impact of air pollution on periurban agriculture.

  20. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles

    Directory of Open Access Journals (Sweden)

    Pengcheng Song

    2017-01-01

    Full Text Available The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation.

  1. Low-carbon energy policy and ambient air pollution in Shanghai, China: A health-based economic assessment

    International Nuclear Information System (INIS)

    Chen Changhong; Chen Bingheng; Wang Bingyan; Huang Cheng; Zhao Jing; Dai Yi; Kan Haidong

    2007-01-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM 10 -related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis

  2. Ambient air pollutant PM10 and risk of pregnancy-induced hypertension in urban China

    International Nuclear Information System (INIS)

    Huang, Xin; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Lv, Ling; Lin, Xiaojuan; Zhang, Chong; Zhang, Honghong; Xu, Ruifeng; Zhu, Daling; Zhang, Yaqun; Zhao, Nan

    2015-01-01

    Background: The relationship between air borne particulate matter ≤10 μm (PM 10 ) exposure and pregnancy-induced hypertension (PIH) is inconclusive. Few studies have been conducted, and fewer were conducted in areas with high levels of PM 10 . Methods: To examine the association between PM 10 and PIH by different exposure time windows during pregnancy, we analyzed data from a birth cohort study conducted in Lanzhou, China including 8 745 pregnant women with available information on air pollution during pregnancy. A total of 333 PIH cases (127 gestational hypertension (GH) and 206 preeclampsia (PE)) were identified. PM 10 daily average concentrations of each subject were calculated according to the distance between home/work addresses and monitor stations using an inverse-distance weighting approach. Results: Average PM 10 concentration over the duration of entire pregnancy was significantly associated with PIH (OR = 1.12, 95%CI: 1.02, 1.23 per 10 μg m −3 increase), PE (OR = 1.16, 95%CI: 1.03, 1.30 per 10 μg m −3 increase), late onset PE (OR = 1.17, 95% CI: 1.03, 1.32 per10 μg m −3 increase), and severe PE (OR = 1.25, 95% CI: 1.06, 1.48 per 10 μg m −3 increase). Average PM 10 during the first 12 gestational weeks was associated with the risk of GH (OR = 1.10, 95% CI: 1.00, 1.21 per 10 μg m −3 increase), and PM 10 exposure before 20 gestational weeks was associated with the risk of severe PE (OR = 1.14, 95% CI: 1.01, 1.30 per 10 μg m −3 increase). Conclusions: We found that high level exposure to ambient PM 10 during pregnancy was associated with an increased risk of PIH, GH and PE and that the strength of the association varied by timing of exposure during pregnancy. (letter)

  3. The impact of ambient air pollution on suicide mortality: a case-crossover study in Guangzhou, China.

    Science.gov (United States)

    Lin, Guo-Zhen; Li, Li; Song, Yun-Feng; Zhou, Ying-Xue; Shen, Shuang-Quan; Ou, Chun-Quan

    2016-08-30

    Preventing suicide is a global imperative. Although the effects of social and individual risk factors of suicide have been widely investigated, evidence of environmental effects of exposure to air pollution is scarce. We investigated the effects of ambient air pollution on suicide mortality in Guangzhou, China during 2003-2012. A conditional logistic regression analysis with a time-stratified case-crossover design was performed to assess the effects of daily exposure to three standard air pollutants, including particulate matter less than 10 μm in aerodynamic diameter (PM10), sulphur dioxide (SO2) and nitrogen dioxide (NO2), on suicide mortality, after adjusting for the confounding effects of daily mean temperature, relative humidity, atmospheric pressure and sunshine duration. Further analyses were stratified by season, gender, age group, educational attainment and suicide type. Between 2003 and 2012, there were a total of 1 550 registered suicide deaths in Guangzhou. A significant increase in suicide risk were associated with interquartile-range increases in the concentration of air pollutant, with an odds ratio of 1.13 (95 % confidence interval (CI): 1.01, 1.27) and 1.15 (95 % CI: 1.03, 1.28) for PM10 and NO2 at lag 02, and 1.12 (95 % CI: 1.02, 1.23) for SO2 at lag 01, respectively. The suicide risks related to air pollution for males and people with high education level were higher than for females and those with low education level, respectively. Significant air pollution effects were found on violent suicide mortality and in cool season but not on non-violent suicide mortality or in warm season. Suicide risk was positively associated with ambient air pollution levels. This finding would provide important information for the health impact assessment of air pollution and for the development of effective strategies and interventions for the prevention of suicide.

  4. Controlled environment laboratory for the energy certification of refrigeration and air conditioning systems; Laboratorio de ambiente controlado para la certificacion energetica de sistemas de refrigeracion y aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, Juan Jose; Romero Paredes, Hernando; Dorantes, Ruben [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)

    1999-07-01

    In this paper the general characteristics of the Controlled Environment Laboratory (CELAB) are described and some of the possible tests that could be performed in this device to evaluate the energy efficiency in air conditioning systems, domestic refrigeration and industrial refrigeration, as well as tests to evaluate the hydrothermal comfort in national populations, are presented. [Spanish] En este trabajo se describen las caracteristicas generales del Laboratorio de Ambiente Controlado (LAB), y se presentan algunas de las posibles pruebas que podran ser desarrolladas en este dispositivo para evaluar la eficiencia energetica en sistemas de aire acondicionado, refrigeracion domestica y refrigeracion industrial, asi como para pruebas para evaluar el confort hidrotermico en poblaciones nacionales.

  5. Pilot study investigating ambient air toxics emissions near a Canadian kraft pulp and paper facility in Pictou County, Nova Scotia.

    Science.gov (United States)

    Hoffman, Emma; Guernsey, Judith R; Walker, Tony R; Kim, Jong Sung; Sherren, Kate; Andreou, Pantelis

    2017-09-01

    Air toxics are airborne pollutants known or suspected to cause cancer or other serious health effects, including certain volatile organic compounds (VOCs), prioritized by the US Environmental Protection Agency (EPA). While several EPA-designated air toxics are monitored at a subset of Canadian National Air Pollution Surveillance (NAPS) sites, Canada has no specific "air toxics" control priorities. Although pulp and paper (P&P) mills are major industrial emitters of air pollutants, few studies quantified the spectrum of air quality exposures. Moreover, most NAPS monitoring sites are in urban centers; in contrast, rural NAPS sites are sparse with few exposure risk records. The objective of this pilot study was to investigate prioritized air toxic ambient VOC concentrations using NAPS hourly emissions data from a rural Pictou, Nova Scotia Kraft P&P town to document concentration levels, and to determine whether these concentrations correlated with wind direction at the NAPS site (located southwest of the mill). Publicly accessible Environment and Climate Change Canada data (VOC concentrations [Granton NAPS ID: 31201] and local meteorological conditions [Caribou Point]) were examined using temporal (2006-2013) and spatial analytic methods. Results revealed several VOCs (1,3-butadiene, benzene, and carbon tetrachloride) routinely exceeded EPA air toxics-associated cancer risk thresholds. 1,3-Butadiene and tetrachloroethylene were significantly higher (p towns and contribute to poor health in nearby communities.

  6. Source attribution and quantification of benzene event emissions in a Houston ship channel community based on real-time mobile monitoring of ambient air.

    Science.gov (United States)

    Olaguer, Eduardo P; Erickson, Matthew H; Wijesinghe, Asanga; Neish, Bradley S

    2016-02-01

    A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km(2) model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2-6. Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.

  7. Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: The Seven Northeastern Cities (SNEC) study

    Science.gov (United States)

    Zeng, Xiao-Wen; Vivian, Elaina; Mohammed, Kahee A.; Jakhar, Shailja; Vaughn, Michael; Huang, Jin; Zelicoff, Alan; Xaverius, Pamela; Bai, Zhipeng; Lin, Shao; Hao, Yuan-Tao; Paul, Gunther; Morawska, Lidia; Wang, Si-Quan; Qian, Zhengmin; Dong, Guang-Hui

    2016-08-01

    Epidemiological studies have reported inconsistent and inconclusive associations between long-term exposure to ambient air pollution and lung function in children from Europe and America, where air pollution levels were typically low. The aim of the present study is to examine the relationship between air pollutants and lung function in children selected from heavily industrialized and polluted cities in northeastern China. During 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities. Portable electronic spirometers were used to measure lung function. Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts. Two-staged regression models were used in the data analysis, controlling for covariates. Overall, for all subjects, the increased odds of lung function impairment associated with exposure to air pollutants, ranged from 5% (adjusted odds ratio [aOR] = 1.05; 95% confidence interval [CI] = 1.01, 1.10) for FVC gender differences for lung function impairment and pulmonary function from exposure to some pollutants (P < 0.10). In conclusion, long term exposure to high concentrations of ambient air pollution is associated with decreased pulmonary function and lung function impairment, and females appear to be more susceptible than males.

  8. Meteorology drives ambient air quality in a valley: a case of Sukinda chromite mine, one among the ten most polluted areas in the world.

    Science.gov (United States)

    Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar

    2016-07-01

    The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.

  9. Association between ambient air pollution and hospitalization for ischemic and hemorrhagic stroke in China: A multicity case-crossover study.

    Science.gov (United States)

    Liu, Hui; Tian, Yaohua; Xu, Yan; Huang, Zhe; Huang, Chao; Hu, Yonghua; Zhang, Jun

    2017-11-01

    There is growing interest in the association between ambient air pollution and stroke, but few studies have investigated the association in developing countries. The primary objective of this study was to examine the association between levels of ambient air pollutants and hospital admission for stroke in China. A time-stratified case-crossover analysis was conducted between 2014 and 2015 in 14 large Chinese cities among 200,958 ischemic stroke and 41,746 hemorrhagic stroke hospitalizations. We used conditional logistic regression to estimate the percentage changes in stroke admissions in relation to interquartile range increases in air pollutants. Air pollution was positively associated with ischemic stroke. A difference of an interquartile range of the 6-day average for particulate matter less than 10 μm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone corresponded to 0.7% (95% CI: 0%, 1.4%), 1.6% (95% CI: 1.0%, 2.3%), 2.6% (95% CI: 1.8%, 3.5%), 0.5% (95% CI: -0.2%, 1.1%), and 1.3% (95% CI: 0.3%, 2.3%) increases in ischemic stroke admissions, respectively. For hemorrhagic stroke, we observed the only significant association in relation to nitrogen dioxide on the current day (percentage change: 1.6%; 95% CI: 0.3%, 2.9%). Our findings contribute to the limited scientific literature concerning the effect of ambient air pollution on stroke in developing countries. Our findings may have significant public health implications for primary prevention of stroke in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Passive air sampling of polychlorinated biphenyls, organochlorine compounds, and polybrominated diphenyl ethers across Asia.

    Science.gov (United States)

    Jaward, Foday M; Zhang, Gan; Nam, Jae Jak; Sweetman, Andrew J; Obbard, Jeffrey P; Kobara, Yuso; Jones, Kevin C

    2005-11-15

    Asia is of global importance economically, yet data on ambient persistent organic pollutant levels are still sparse for the region, despite international efforts under the Stockholm Convention to identify and reduce emissions. A large-scale passive air sampling survey was therefore conducted in Asia, specifically in China, Japan, South Korea, and Singapore. Polyurethane foam disks were deployed simultaneously at 77 sites, between Sept 21 and Nov 16, 2004, and analyzed for polychlorinated biphenyls (PCBs), organochlorine compounds (hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), chlordane), and polybrominated diphenyl ethers (PBDEs). The meteorological conditions prevailing in the region at this time facilitated the assessment of local/regional differences in atmospheric emissions, because large-scale advection effects due to monsoons or dust storms did not occur. Air concentrations estimated assuming an average sampler uptake rate of 3.5 m3/day ranged as follows (pg m(-3)): PCBs, 5-340; HCB, 10-460; DDTs, 0.4-1800; chlordanes, 1-660; PBDEs, < 0.13-340. South Korea and Singapore generally had regionally low concentrations. Elevated concentrations of PCBs, DDTs, and HCB occurred at sites in China, higher than reported in a similar recent sampling campaign in Europe. Chlordane was highest in samples from Japan (which also had elevated levels of PCBs and DDTs) and was also elevated in some Chinese locations. PBDE levels were generally low in the region.

  11. EMRP JRP MetNH3: Towards a Consistent Metrological Infrastructure for Ammonia Measurements in Ambient Air

    Science.gov (United States)

    Leuenberger, Daiana; Balslev-Harder, David; Braban, Christine F.; Ebert, Volker; Ferracci, Valerio; Gieseking, Bjoern; Hieta, Tuomas; Martin, Nicholas A.; Pascale, Céline; Pogány, Andrea; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. In addition to its acidifying effect on natural waters and soils and to the additional nitrogen input to ecosystems, ammonia is an important precursor for secondary aerosol formation in the atmosphere. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation regarding certified reference material (CRM), applicable analytical methods, measurement uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. As shown in a key comparison in 2007, there are even discrepancies between reference materials provided by European National Metrology Institutes (NMIs) at amount fraction levels up to three orders of magnitude higher than ambient air levels. MetNH3 (Metrology for ammonia in ambient air), a three-year project that started in June 2014 in the framework of the European Metrology Research Programme (EMRP), aims to reduce the gap between requirements set by the European emission regulations and state-of-the-art of analytical methods and reference materials. The overarching objective of the JRP is to achieve metrological traceability for ammonia measurements in ambient air from primary certified reference material CRM and instrumental standards to the field level. This requires the successful completion of the three main goals, which have been assigned to three technical work packages: To develop improved reference gas mixtures by static and dynamic gravimetric generation methods Realisation and characterisation of traceable preparative calibration standards (in pressurised cylinders as well as mobile generators) of ammonia amount fractions similar to those in ambient air based on existing methods for other reactive analytes. The

  12. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project

    DEFF Research Database (Denmark)

    Andersen, Zorana J.; Stafoggia, Massimo; Weinmayr, Gudrun

    2017-01-01

    BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. METHODS: In 15...... cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts......)], and NO(2) [1.02 (95% CI: 0.98, 1.07 per 10 μg/m(3)], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m(3), p=0.04]. CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European...

  13. Association between exposure to ambient air pollution before conception date and likelihood of giving birth to girls in Guangzhou, China

    Science.gov (United States)

    Lin, Hualiang; Liang, Zhijiang; Liu, Tao; Di, Qian; Qian, Zhengmin; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; Guo, Lingchuan; Ma, Wenjun; Zhao, Qingguo

    2015-12-01

    A few studies have linked ambient air pollution with sex ratio at birth. Most of these studies examined the long-term effects using spatial or temporal comparison approaches. This study aimed to investigate whether parental exposure to air pollution before conception date could affect the likelihood of the offspring being male or female. We used the information collected in a major maternal hospital in Guangzhou, China. The parental exposure to air pollution was assessed using the air pollution concentration before the conception date. Logistic regression models were used to assess the association between air pollution exposure and birth sex with adjustment for potential confounding factors, such as maternal age, parental education levels, long-term trend, season, and weather condition (mean temperature and relative humidity). The analysis revealed that higher air pollution was associated with higher probability of female newborns, with the effective exposure around one week prior to conception date. In the one-pollutant models, PM10, SO2 and NO2 had significant effects. For example, the excess risk was 0.61% (95% confidence interval (95% CI): 0.36%, 0.86%) for a 10 ug/m3 increase in lag 2 day's PM10, 0.42% (95% CI: 0.21%, 0.64%) for lag 3 day's SO2 and 0.97% (95% CI: 0.44%, 1.50%) for lag 3 day's NO2; and in two-pollutant models, PM10 remained statistically significant. These results suggest that parental exposure to ambient air pollution a few days prior to conception might be a contributing factor to higher probability of giving birth to female offspring in Guangzhou.

  14. Using silver nano particles for sampling of toxic mercury vapors from industrial air sample

    Directory of Open Access Journals (Sweden)

    M. Osanloo

    2014-05-01

    .Conclusion: The presented adsorbent is very useful for sampling of the trace amounts of mercury vapors from air. Moreover, it can be regenerated easily is suitable or sampling at 25 to 70 °C. Due to oxidation of silver and reduction in uptake of nanoparticles, oven temperature of 245 °C is used for the recovery of metallic silver. Low amount of adsorbent, high absorbency, high repeatability for sampling, low cost and high accuracy are of the advantages of the presented method.

  15. Assessment of ambient air pollution in the Waterberg Priority Area 2012-2015

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2016-06-01

    Full Text Available Quality Information System (SAAQIS) and analysed to assess patterns in atmospheric concentrations, including seasonal and diurnal patterns of the ambient concentrations and to assess the impacts that such reported pollution concentration may have. Local...

  16. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples.

    Science.gov (United States)

    Baranov, Dmitry; Hill, Robert J; Ryu, Jisu; Park, Samuel D; Huerta-Viga, Adriana; Carollo, Alexa R; Jonas, David M

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  17. Development of Green Pavement for Reducing Oxides of Nitrogen (NOx in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Kania Dewi

    2016-05-01

    Full Text Available The transportation sector is the biggest contributor to air pollution in Indonesia, especially in metropolitan cities. Gases such as oxides of nitrogen (NOx are produced during the combustion of fossil fuels in the internal combustion of vehicle engines. Oxides of nitrogen such as nitric oxide (NO and nitrogen dioxide (NO2 are important air pollutants, because they cause significant harm to human health and play an important role in being precursors of other dangerous pollutants such as photochemical smog. One of the simple ways to reduce NOx concentrations is utilizing a catalytic process involving UV light and semiconductor particles such as TiO2. Illuminated TiO2 UV light is capable of producing an electron (e- and hole (h- pair, which initiates a chemical reaction that alters the NOx to become NO3- or NO2-. A field scale paving block reactor coated with TiO2 placed by the roadside was exposed to UV light using various exposure times. The results showed that the sample with a composition of 200 g/m2 TiO2 was capable of adsorbing NOx gas at an average rate of 0.0046 mg/m2/minute. Additional costs due to TiO2 coating for every square meter of paving are IDR 13,180.

  18. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    Science.gov (United States)

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further

  19. Composition of Surface Adsorbed Layer of TiO2 Stored in Ambient Air

    Directory of Open Access Journals (Sweden)

    Zakharenko V.S.

    2017-11-01

    Full Text Available The processes of dark, UV, and visible light promoted desorption of surface species were investigated for three different TiO2 samples: TiO2 prepared by dispersion of the titania single crystal, TiO2 prepared by combustion of a pyrotechnic mixture in air, and commercial TiO2 P25. The composition of the adsorbed layer was identified in the dark and under UV and visible light irradiation. The composition of desorption products showed the dependence of the adsorption layer state on the TiO2 nature. Methane photodesorption was detected only for the commercial TiO2 P25. Possible reasons for methane emission include the capturing of complete molecules during the TiO2 production process and photocatalytic hydrogenation of CO2 under UV-light.

  20. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China

    International Nuclear Information System (INIS)

    Xie, R.K.; Seip, H.M.; Leinum, J.R.; Winje, T.; Xiao, J.S.

    2005-01-01

    PM 10 samples were collected during 5 days in Guiyang, China in July 2003. A total of about 2300 particles was analyzed by an automated Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS). Hierarchical cluster analysis (HCA) was used to identify different particle types that occurred in the aerosol. Seventeen particle types were identified and presented in the order of decreasing number abundance as: silicomanganese slag, soil and fly ash, coal burning, silicomanganese, quartz, syngenite, S-bearing iron, calcium rich, gypsum, sphalerite, dolomite, iron, alloy, lead sulfate, zinc rich, sulfur-rich particles and aluminum manufacturing dust. The majority of the particles in the studied size range are of anthropogenic origin, especially from metallurgical industry. The study illustrates the complexity of particle pollution in air of an industrial Chinese city and the results should be useful in planning mitigation measures

  1. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  2. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Directory of Open Access Journals (Sweden)

    A. M. Ortega

    2016-06-01

    Full Text Available Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH  ∼  0.3 day SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope  ∼  −0.65. Oxidation state of carbon (OSc in reactor SOA increased steeply with age and remained elevated (OSC  ∼  2 at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background vs. photochemical age is similar to

  3. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The

  4. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study.

    Science.gov (United States)

    Chen, Renjie; Zhang, Yuhao; Yang, Chunxue; Zhao, Zhuohui; Xu, Xiaohui; Kan, Haidong

    2013-04-01

    There have been no multicity studies on the acute effects of air pollution on stroke mortality in China. This study was undertaken to examine the associations between daily stroke mortality and outdoor air pollution (particulate matter air pollution with daily stroke mortality. Air pollution was associated with daily stroke mortality in 8 Chinese cities. In the combined analysis, an increase of 10 μg/m(3) of 2-day moving average concentrations of particulate matter air pollution and risk of stroke mortality. To our knowledge, this is the first multicity study in China, or even in other developing countries, to report the acute effect of air pollution on stroke mortality. Our results contribute to very limited data on the effect of air pollution on stroke for high-exposure settings typical in developing countries.

  5. Effects of sampling interval on the passive air sampling of atmospheric PCBs levels.

    Science.gov (United States)

    Sakin, Ahmet Egemen; Esen, Fatma; Tasdemir, Yucel

    2017-06-07

    In this study, we collected Polychlorinated biphenyls (PCBs) using passive air samplers (PASs), between February 4, 2013 and February 2, 2014, with the sampling periods ranging from 10 to 60 days. The samples were collected with PASs that contained polyurethane foam (PUF). With these samples, 87 PCB congeners were analyzed. Sampling coefficient (R) values for the four seasons were calculated using both the high volume air sampler (HVAS) and PAS samples collected with the same time interval. The average of the annual concentrations of 87 PCB congeners, calculated using the R values specific to this study, was 234 ± 175 pg/m 3 . PCB congeners with 3- and 4- chlorines were dominant. The samples were collected at the same time interval but at different times to represent accumulation in the PASs. The linear regression coefficients (r) of the PCB mass accumulated in PASs against time ranged from 0.89 and 0.97 indicating that accumulation was linear. Moreover, the concentrations of the PCB congeners were statistically correlated with atmospheric conditions.

  6. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Emission Standards for Hazardous Air Pollutants maximum exposed individual location (i.e., Frenchman’s Cabin) was no more than 0.1 mrem yr–1 (i.e., 1% of the 10 mrem yr–1 standard). Detection frequencies were calculated separately for the onsite and offsite monitoring network. As expected, detection frequencies were generally less for the offsite sampling network compared to the onsite network. Overall, the monitoring network is very effective at detecting the potential releases of Cs-137 or Sr-90 from all sources/facilities using either the ESER or BEA MDAs. The network was less effective at detecting releases of Pu-239. Maximum detection frequencies for Pu-239 using ESER MDAs ranged from 27.4 to 100% for onsite samplers and 3 to 80% for offsite samplers. Using BEA MDAs, the maximum detection frequencies for Pu-239 ranged from 2.1 to 100% for onsite samplers and 0 to 5.9% for offsite samplers. The only release that was not detected by any of the samplers under any conditions was a release of Pu-239 from the Idaho Nuclear Technology and Engineering Center main stack (CPP-708). The methodology described in this report could be used to improve sampler placement and detection frequency, provided clear performance objectives are defined.

  7. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    Science.gov (United States)

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS). Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009. 414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model. At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at

  8. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    Science.gov (United States)

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  9. Cold Start Emissions of Spark-Ignition Engines at Low Ambient Temperatures as an Air Quality Risk

    Directory of Open Access Journals (Sweden)

    Bielaczyc Piotr

    2014-12-01

    Full Text Available SI engines are highly susceptible to excess emissions when started at low ambient temperatures. This phenomenon has multiple air quality and climate forcing implications. Direct injection petrol engines feature a markedly different fuelling strategy, and so their emissions behaviour is somewhat different from indirect injection petrol engines. The excess emissions of direct injection engines at low ambient temperatures should also differ. Additionally, the direct injection fuel delivery process leads to the formation of PM, and DISI engines should show greater PM emissions at low ambient temperatures. This study reports on laboratory experiments quantifying excess emissions of gaseous and solid pollutants over a legislative driving cycle following cold start at a low ambient temperature for both engine types. Over the legislative cycle for testing at -7°C (the UDC, emissions of HC, CO, NOx and CO2 were higher when tested at -7°C than at 24°C. Massive increases in emissions of HC and CO were observed, together with more modest increases in NOx and CO2 emissions. Results from the entire driving cycle showed excess emissions in both phases (though they were much larger for the UDC. The DISI vehicle showed lower increases in fuel consumption than the port injected vehicles, but greater increases in emission of HC and CO. DISI particle number emissions increased by around 50%; DISI particle mass by over 600%. The observed emissions deteriorations varied somewhat by engine type and from vehicle to vehicle. Excesses were greatest following start-up, but persisted, even after several hundred seconds’ driving. The temperature of the intake air appeared to have a limited but significant effect on emissions after the engine has been running for some time. All vehicles tested here comfortably met the relevant EU limits, providing further evidence that these limits are no longer challenging and need updating.

  10. Traditional and novel halogenated flame retardants in urban ambient air: Gas-particle partitioning, size distribution and health implications.

    Science.gov (United States)

    de la Torre, A; Barbas, B; Sanz, P; Navarro, I; Artíñano, B; Martínez, M A

    2018-02-21

    Urban ambient air samples, including gas-phase (PUF), total suspended particulates (TSP), PM 10 , PM 2.5 and PM 1 airborne particle fractions were collected to evaluate gas-particle partitioning and size particle distribution of traditional and novel halogenated flame retardants. Simultaneously, passive air samplers (PAS) were deployed in the same location. Analytes included 33 polybrominated diphenyl ether (PBDE), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), hexabromobenzene (HBB), pentabromoethylbenzene (PBEB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), dechloranes (Dec 602, 603, 604, 605 or Dechorane plus (DP)) and chlordane plus (CP). Clausius-Clapeyron equation, gas-particle partition coefficient (K p ), fraction partitioned onto particles (φ) and human respiratory risk assessment were used to evaluate local or long-distance transport sources, gas-particle partitioning sorption mechanisms, and implications for health, respectively. PBDEs were the FR with the highest levels (13.9pgm -3 , median TSP+PUF), followed by DP (1.56pgm -3 ), mirex (0.78pgm -3 ), PBEB (0.05pgm -3 ), and BB-153 (0.04pgm -3 ). PBDE congener pattern in particulate matter was dominated by BDE-209, while the contribution of more volatile congeners, BDE-28, -47, -99, and -100 was higher in gas-phase. Congener contribution increases with particle size and bromination degree, being BDE-47 mostly bounded to particles≤PM 1 , BDE-99 to > PM 1 and BDE-209 to > PM 2.5 . No significant differences were found for PBDE and DP concentrations obtained with passive and active samplers, demonstrating the ability of the formers to collect particulate material. Deposition efficiencies and fluxes on inhaled PBDEs and DP in human respiratory tract were calculated. Contribution in respiratory track was dominated by head airway (2.16 and 0.26pgh -1 , for PBDE and DP), followed by tracheobronchial (0.12 and 0.02pgh -1 ) and alveoli (0.01-0.002pgh -1 ) regions. Finally, hazard

  11. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel D; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2017-09-01

    The objective of this study is to examine associations between short-term exposure to ambient air pollution and circulating biomarkers of systemic inflammation in participants from the Framingham Offspring and Third Generation cohorts in the greater Boston area. We included 3996 noncurrent smoking participants (mean age, 53.6 years; 54% women) who lived within 50 km from a central air pollution monitoring site in Boston, MA, and calculated the 1- to 7-day moving averages of fine particulate matter (diameterfactor receptor 2, which were measured up to twice for each participant; we used linear regression models for interleukin-6, fibrinogen, and tumor necrosis factor α, which were measured once. We adjusted for demographics, socioeconomic position, lifestyle, time, and weather. The 3- to 7-day moving averages of fine particulate matter (diameterfactor receptor 2. However, black carbon, sulfate, and nitrogen oxides were negatively associated with fibrinogen, and sulfate was negatively associated with tumor necrosis factor α. Higher short-term exposure to relatively low levels of ambient air pollution was associated with higher levels of C-reactive protein, interleukin-6, and tumor necrosis factor receptor 2 but not fibrinogen or tumor necrosis factor α in individuals residing in the greater Boston area. © 2017 American Heart Association, Inc.

  12. Development of improved ambient computation methods in support of the National Parks Air Tour Management Act

    Science.gov (United States)

    2008-09-01

    Approximately 85 National Park units with commercial air tours will need Air Tour : Management Plans (ATMPs). The objective of an ATMP is to prevent or mitigate : significant adverse impacts to National Park resources. Noise impacts must be : charact...

  13. Ambient air pollution and years of life lost in Ningbo, China

    Science.gov (United States)

    He, Tianfeng; Yang, Zuyao; Liu, Tao; Shen, Yueping; Fu, Xiaohong; Qian, Xujun; Zhang, Yuelun; Wang, Yong; Xu, Zhiwei; Zhu, Shankuan; Mao, Chen; Xu, Guozhang; Tang, Jinling

    2016-03-01

    To evaluate the burden of air pollution on years of life lost (YLL) in addition to mortality, we conducted a time series analysis based on the data on air pollution, meteorological conditions and 163,704 non-accidental deaths of Ningbo, China, 2009-2013. The mean concentrations of particulate matter with aerodynamic diameter population for both outcomes. These findings clarify the burden of air pollution on YLL and highlight the importance and urgency of air pollution control in China.

  14. Method for the determination of perfluorooctanoic acid in air samples using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Kaiser, Mary A; Larsen, Barbara S; Dawson, Barbara J; Kurtz, Kristine; Lieckfield, Robert; Miller, James R; Flaherty, John

    2005-06-01

    Perfluorooctanoic acid is a completely fluorinated carboxylic acid that is usually used in the ammonium salt form as a processing aid in the production of many fluoropolymers and fluoroelastomers. Ammonium perfluorooctanoate readily dissociates in water to give the ammonium and perfluorooctanoate ions. Perfluorooctanoate has been reported to be present in low levels in human serum in the United States and Europe. This study reports on the development and validation of a method for the determination of perfluorooctanoic acid in air samples. This method uses the Occupational Safety and Health Administration (OSHA) Versatile Sampler (OVS) with a nominal 0.3 micro m filter and polystyrene resin sorbent (XAD-2 or XAD-4) followed by determination of the perfluorooctanoate anion by liquid chromatography mass spectrometry. The method was validated in the range of 0.474 to 47.4 microg/m3 for a 480-L sample. Breakthrough studies showed samples could be collected at 1 L/min for 24 hours or at 15 L/min up to 8 hours without breakthrough. Extract storage stability tests showed that sample extracts in methanol remain stable in glass autosampler vials for up to 13 days following initial injection. Perfluorooctanoic acid stability on OVS tubes was unaffected at both refrigerated and ambient temperatures. The overall average retention efficiency was 92.1% with a pooled RSD95 of 5.8% at five concentration levels (0.474 microg/m3 to 47.4 microg/m3).

  15. Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE)

    NARCIS (Netherlands)

    Jacquemin, Bénédicte; Siroux, Valérie; Sanchez, Margaux; Carsin, Anne-Elie; Schikowski, Tamara; Adam, Martin; Bellisario, Valeria; Buschka, Anna; Bono, Roberto; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Cai, Yutong; Cirach, Marta; Clavel-Chapelon, Françoise; Declercq, Christophe; de Marco, Roberto; de Nazelle, Audrey; Ducret-Stich, Regina E; Ferretti, Virginia Valeria; Gerbase, Margaret W; Hardy, Rebecca; Heinrich, Joachim; Janson, Christer; Jarvis, Deborah; Al Kanaani, Zaina; Keidel, Dirk; Kuh, Diana; Le Moual, Nicole; Nieuwenhuijsen, Mark J; Marcon, Alessandro; Modig, Lars; Pin, Isabelle; Rochat, Thierry; Schindler, Christian; Sugiri, Dorothea; Stempfelet, Morgane; Temam, Sofia; Tsai, Ming-Yi; Varraso, Raphaëlle; Vienneau, Danielle; Vierkötter, Andrea; Hansell, Anna L; Krämer, Ursula; Probst-Hensch, Nicole M; Sunyer, Jordi; Künzli, Nino; Kauffmann, Francine

    BACKGROUND: Short-term exposure to air pollution has adverse effects among patients with asthma, but whether long-term exposure to air pollution is a cause of adult-onset asthma is unclear. OBJECTIVE: We aimed to investigate the association between air pollution and adult onset asthma. METHODS:

  16. Geographic variations in female breast cancer incidence in relation to ambient air emissions of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Large, Courtney; Wei, Yudan

    2017-07-01

    A significant geographic variation of breast cancer incidence exists, with incidence rates being much higher in industrialized regions. The objective of the current study was to assess the role of environmental factors such as exposure to ambient air pollution, specifically carcinogenic polycyclic aromatic hydrocarbons (PAHs) that may be playing in the geographic variations in breast cancer incidence. Female breast cancer incidence and ambient air emissions of PAHs were examined in the northeastern and southeastern regions of the USA by analyzing data from the Surveillance, Epidemiology, and End Results (SEER) Program and the State Cancer Profiles of the National Cancer Institute and from the Environmental Protection Agency. Linear regression analysis was conducted to evaluate the association between PAH emissions and breast cancer incidence in unadjusted and adjusted models. Significantly higher age-adjusted incidence rates of female breast cancer were seen in northeastern SEER regions, when compared to southeastern regions, during the years of 2000-2012. After adjusting for potential confounders, emission densities of total PAHs and four carcinogenic individual PAHs (benzo[a]pyrene, dibenz[a,h]anthracene, naphthalene, and benzo[b]fluoranthene) showed a significantly positive association with annual incidence rates of breast cancer, with a β of 0.85 (p = 0.004), 58.37 (p = 0.010), 628.56 (p = 0.002), 0.44 (p = 0.041), and 77.68 (p = 0.002), respectively, among the northeastern and southeastern states. This study suggests a potential relationship between ambient