WorldWideScience

Sample records for ambient air particulate

  1. Monitoring of total suspended air particulate in the ambient air of ...

    African Journals Online (AJOL)

    Monitoring of total suspended air particulate in the ambient air of welding, car painting and. V. C. IKAMAISE, I. B. OBIOH, I. E. OFOZIE, F. A. AKEREDOLU. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjpas.v7i4.16316.

  2. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Setting ambient air quality standards for particulate matter

    International Nuclear Information System (INIS)

    McClellan, Roger O.

    2002-01-01

    Ambient air particulate matter (PM), unspecified as to chemical composition, is of concern because of its health effects. Air quality standards for PM have been established in many countries. The earliest standards were based on threshold models and use of a margin of safety. Initially, standards were based on the mass of total suspended material. In the 1980s a shift to a size-specific standard, PM 10 , began. PM 10 is the fraction of PM captured with 50% efficiency at 10 μm and greater efficiency at smaller sizes. In the late 1990s, standards were proposed for PM 2.5 , which is captured with 50% efficiency at 2.5 μm. The standards for PM are based almost exclusively on human epidemiological data, with laboratory animal and in vitro data used in a supporting role. During the 1990s, new statistical tools began to be used and demonstrated an association between increased PM and an increase in cardiorespiratory morbidity and mortality. The analyses are complicated by the effects of other pollutants such as ozone. Effects have been observed down to 10-20 μg of PM 10 per cubic meter, levels equal to or below background in many parts of the world. In many studies there has been no evidence of a threshold. In the absence of a threshold, a critical issue becomes how to determine how low is low enough? This paper reviews the current literature on PM health effects and suggests research avenues that may yield data which, combined with public policy considerations, may be able to address the issue of 'how low is low enough?'

  4. Environmentally Persistent Free Radical (EPFRs) - Ambient Air Particulates, Soils and Fate of Some Pollutants

    Science.gov (United States)

    Lomnicki, S. M.

    2017-12-01

    Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.

  5. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  6. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  7. Impact of National Ambient Air Quality Standards Nonattainment Designations on Particulate Pollution and Health.

    Science.gov (United States)

    Zigler, Corwin M; Choirat, Christine; Dominici, Francesca

    2018-03-01

    Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.

  8. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    Science.gov (United States)

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  10. Mortality, hospital days and expenditures attributable to ambient air pollution from particulate matter in Israel.

    Science.gov (United States)

    Ginsberg, Gary M; Kaliner, Ehud; Grotto, Itamar

    2016-01-01

    Worldwide, ambient air pollution accounts for around 3.7 million deaths annually. Measuring the burden of disease is important not just for advocacy but also is a first step towards carrying out a full cost-utility analysis in order to prioritise technological interventions that are available to reduce air pollution (and subsequent morbidity and mortality) from industrial, power generating and vehicular sources. We calculated the average national exposure to particulate matter particles less than 2.5 μm (PM2.5) in diameter by weighting readings from 52 (non-roadside) monitoring stations by the population of the catchment area around the station. The PM2.5 exposure level was then multiplied by the gender and cause specific (Acute Lower Respiratory Infections, Asthma, Circulatory Diseases, Coronary Heart Failure, Chronic Obstructive Pulmonary Disease, Diabetes, Ischemic Heart Disease, Lung Cancer, Low Birth Weight, Respiratory Diseases and Stroke) relative risks and the national age, cause and gender specific mortality (and hospital utilisation which included neuro-degenerative disorders) rates to arrive at the estimated mortality and hospital days attributable to ambient PM2.5 pollution in Israel in 2015. We utilised a WHO spread-sheet model, which was expanded to include relative risks (based on more recent meta-analyses) of sub-sets of other diagnoses in two additional models. Mortality estimates from the three models were 1609, 1908 and 2253 respectively in addition to 184,000, 348,000 and 542,000 days hospitalisation in general hospitals. Total costs from PM2.5 pollution (including premature burial costs) amounted to $544 million, $1030 million and $1749 million respectively (or 0.18 %, 0.35 % and 0.59 % of GNP). Subject to the caveat that our estimates were based on a limited number of non-randomly sited stations exposure data. The mortality, morbidity and monetary burden of disease attributable to air pollution from particulate matter in Israel is of

  11. Concentration and Size Distribution of Particulate Matter in a Broiler House Ambient Air

    Directory of Open Access Journals (Sweden)

    Ismael Rodrigues Amador

    2016-07-01

    Full Text Available Atmospheric particulate matter (PM is an important constituent of ambient air. The determination of its concentration and size distribution in different environments is essential because of its ability to penetrate deeply into animal and human respiratory tract. In this study, air sampling was performed in a broiler house to estimate the concentration and size distribution of PM emitted along with its activities. Low-vol impactor (< 10 mm, cyclones (< 2.5 e < 1.0 mm, and Sioutas cascade impactor (> 2.5; 1.0 – 2.5; 0.50 – 1.0; 0.25 – 0.50; < 0.25 mm connected with membrane pumps were used. PM10 showed high concentration (209 - 533 mg m-3. PM2.5 and PM1.0 initially showed relatively low concentration (20.8 and 16.0 mg m-3 respectively with significantly increasing levels (412.9 and 344.8 mg m-3 respectively during the samplings. It was also possible to observe the contribution of fine particles. This was evidenced by the high correlation between PM2.5 and PM1.0 and by the profile of particle distribution in the Sioutas sampler. PM concentration levels are considered excessively high, with great potential to affect animal and human health. DOI: http://dx.doi.org/10.17807/orbital.v8i3.847 

  12. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    Science.gov (United States)

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM 2.5 ) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM 2.5 , maximum hourly concentrations 21-103 μg m -3 , and mean concentrations between 7.7 and 13.2 μg m -3 . Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m -3 , and mean concentrations 6.7-11.7 μg m -3 . The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m -3 ) over the NAAQS 98th percentile for PM 2.5 (35 μg m -3 ). Pinehurst remained below the federal standards for PM 2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire

  13. Uncertainty associated with the gravimetric measurement of particulate matter concentration in ambient air.

    Science.gov (United States)

    Lacey, Ronald E; Faulkner, William Brock

    2015-07-01

    This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min(-1) (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min(-1) (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min(-1) (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1x10(-6) g m(-3) to 18.0x10(-6) g m(-3), which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically. This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate

  14. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    Science.gov (United States)

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  15. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1997-03-01

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  16. Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China.

    Science.gov (United States)

    An, R; Yu, H

    2018-03-19

    Poor air quality has become a national public health concern in China. This study examines the impact of ambient fine particulate matter (PM 2.5 ) air pollution on health behaviors among college students in Beijing, China. Prospective cohort study. Health surveys were repeatedly administered among 12,000 newly admitted students at Tsinghua University during 2012-2015 over their freshman year. Linear individual fixed-effect regressions were performed to estimate the impacts of ambient PM 2.5 concentration on health behaviors among survey participants, adjusting for various time-variant individual characteristics and environmental measures. Ambient PM 2.5 concentration was found to be negatively associated with time spent on walking, vigorous physical activity and sedentary behavior in the last week, but positively associated with time spent on nighttime/daytime sleep among survey participants. An increase in the ambient PM 2.5 concentration by one standard deviation (36.5 μg/m³) was associated with a reduction in weekly total minutes of walking by 7.3 (95% confidence interval [CI] = 5.3-9.4), a reduction in weekly total minutes of vigorous physical activity by 10.1 (95% CI = 8.5-11.7), a reduction in daily average hours of sedentary behavior by 0.06 (95% CI = 0.02-0.10) but an increase in daily average hours of nighttime/daytime sleep by 1.07 (95% CI = 1.04-1.11). Ambient PM 2.5 air pollution was inversely associated with physical activity level but positively associated with sleep duration among college students. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently called to reduce air pollution level in China's urban areas. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    Science.gov (United States)

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  18. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  19. A study of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012

    Directory of Open Access Journals (Sweden)

    hatam Godini

    2015-05-01

    Full Text Available Introduction: Particulate matter refers to the combination of atmospheric pollutants that a portion of this particulate is bioaerosol. The aim of this study was the evaluation of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012. Materials and Methods: This study was a cross sectional study that conducted in Khorramabad city during summer and fall 2012. Sampling has been done via high-volume sampler. The special cultures were used for cultivation and determination of fungal and Heterotrophic Plate Count (HPC (and Bradford method were used to determine bacteria and protein as biomass indicator, respectively. Relationship between these variables with metrological parameters was evaluated too. Results: The highest PM10 in July (257.18 µg/m3 and lowest in September (92.45 µg/m3 had been recorded. The highest amount of bacteria and fungi were measured as monthly in November (605 No/m3 and December (120 No/m3, respectively. The highest of protein concentration was measured in August, September and December (27-30 µg/m3. With the increase in PM10, biomass concentration in the air showed a meaningful increase. Conclusion: Biomass concentration in the air increased with increasing PM10 but it had no significant effect on the concentration of bacteria and fungi in the air. Meteorological factors such as temperature, humidity, wind speed, solar radiation and the amount of exposure time had a significant impact on bioaerosol concentrations in the air.

  20. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    Science.gov (United States)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  1. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    Science.gov (United States)

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air

  2. Study of indoor and ambient air fungual bioaerosols and its relation with particulate matters in a hospital of khorramabad

    Directory of Open Access Journals (Sweden)

    Hasan Basiri

    2016-02-01

    Full Text Available Background: The climate change and particulate matter emission contented of bioaerosols is known as an important reason of increasing the allergic interactions especially in patients with defect in immunity system. The aim of this study was to investigate fungal bioaerosol concentrations in relation to particulate matter (PM10, PM2.5 and PM1 in indoor parts and ambient air of the generd educational hospital of Khorramabad city. Materials and Methods: In this descriptive-analytical study, 192 samples (168 for indoor and 24 for outdoor were gathered during 6 months at the seven indoor wards and one outdoor unit using Quick Take-30 method  at an airflow rate of 28.3 L/min and sampling time of 2.5 min on to Sabouraud dextrose agar medium containing chloramphenicol. The sampling of particulate matter was carried out by Monitor Dust-Trak 8520. Also, the relative humidity and temperature were surveyed by TES-1360 digital. Results: The results showed that infectious ward with 101.7 CFU/m3 was as the most contaminated part and operating room with 46.4 CFU/m3 was the cleanest part. Cladosporium with 36.75% and Rodotorolla with 1.3% had higher and lower of fungi rates, respectively. The rate of  I/O<1  illustrate that this contamination had an outdoor source. Conclusion: The surveys demonstrated that the increase of temperature and relative humidity have an effective influence on the pollutant accumulation. In addition, between fungi bioaerosols frequency and particulate matter ther was a significant correlation.

  3. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    Science.gov (United States)

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  4. 77 FR 39205 - Public Hearings for Proposed Rules-National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2012-07-02

    ..., respectively, and to make corresponding revisions to the data handling conventions for PM and ambient air.... Environmental Protection Agency, Office of Air Quality Planning and Standards, Ariel Rios Building, 1200...

  5. Association between Exposure to Ambient Air Particulates and Metabolic Syndrome Components in a Saudi Arabian Population

    Directory of Open Access Journals (Sweden)

    Magdy Shamy

    2017-12-01

    Full Text Available Recent epidemiological evidence suggests that exposure to particulates may be a factor in the etiology of metabolic syndrome (MetS. In this novel study, we investigated the relationship between particulate levels and prevalence of MetS component abnormalities (hypertension, hyperglycemia, obesity in a recruited cohort (N = 2025 in Jeddah, Saudi Arabia. We observed significant associations between a 10 μg/m3 increase in PM2.5 and increased risks for MetS (Risk Ratio (RR: 1.12; 95% Confidence Interval (CI: 1.06–1.19, hyperglycemia (RR: 1.08; 95% CI: 1.03–1.14, and hypertension (RR: 1.09; 95% CI: 1.04–1.14. PM2.5 from soil/road dust was found to be associated with hyperglycemia (RR: 1.12; 95% CI: 1.06–1.19 and hypertension (RR: 1.11; 95% CI: 1.05–1.18, while PM2.5 from traffic was associated with hyperglycemia (RR: 1.33; 95% CI: 1.05–1.71. We did not observe any health associations with source-specific mass exposures. Our findings suggest that exposure to specific elemental components of PM2.5, especially Ni, may contribute to the development of cardiometabolic disorders.

  6. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  7. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort.

    Science.gov (United States)

    Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B

    2016-04-01

    , Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484-490; http://dx.doi.org/10.1289/ehp.1509676.

  8. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Zheng Wei; Wang Shaofeng; Lu, Julia Y.

    2008-01-01

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m -3 , which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m -3 ) while the minimum mean concentration was observed in winter (4.0 pg m -3 ). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m -3 and had a clear seasonal variation: winter (74.1 pg m -3 ), autumn (22.5 pg m -3 ), spring (15.3 pg m -3 ) and summer (10.8 pg m -3 ), listed in decreasing order. The annual wet deposition was 9.1 μg m -2 and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation

  9. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.W.; Feng, X.B.; Zhu, W.Z.; Zheng, W.; Wang, S.F.; Lu, J.Y. [Chinese Academy of Sciences, Guiyang (China)

    2008-03-15

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m{sup -3}, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m{sup -3}) while the minimum mean concentration was observed in winter (4.0 pg m{sup -3}). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 Pg m{sup -3} and had a clear seasonal variation: winter (74.1 pg m{sup -3}), autumn (22.5 Pg m{sup -3}), spring (15.3 Pg m{sup -3}) and summer (10.8 Pg m{sup -3}), listed in decreasing order. The annual wet deposition was 9.1 {mu} g m{sup -2} and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.

  10. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xuewu [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of the Chinese Academy Sciences, Beijing 100049 (China); Feng Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)], E-mail: fengxinbin@vip.skleg.cn; Zhu Wanze [Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041 (China); Zheng Wei; Wang Shaofeng [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of the Chinese Academy Sciences, Beijing 100049 (China); Lu, Julia Y. [Department of Chemistry and Biology, Ryerson University, Toronto, Ont., M5B 2K3 (Canada)

    2008-03-15

    Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m{sup -3}, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m{sup -3}) while the minimum mean concentration was observed in winter (4.0 pg m{sup -3}). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m{sup -3} and had a clear seasonal variation: winter (74.1 pg m{sup -3}), autumn (22.5 pg m{sup -3}), spring (15.3 pg m{sup -3}) and summer (10.8 pg m{sup -3}), listed in decreasing order. The annual wet deposition was 9.1 {mu}g m{sup -2} and wet deposition in the rainy season (May-October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.

  11. Assessment of suspended particulate matters and their heavy metal content in the ambient air of Mobarakeh city, Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Avazali Saririan Mobarakeh

    2014-01-01

    Conclusion: This study showed that ambient air of Mobarakeh city is polluted by TSP. The high concentration of Fe and Ni in this area may be attributed to the nearby industrial emissions. Therefore, in industrial areas, efforts should be taken to control the atmospheric pollution in order to protect humans from hazardous health effects of these potentially toxic pollutants.

  12. Respiratory diseases in preschool children in the city of Niš exposed to suspended particulates and carbon monoxide from ambient air

    Directory of Open Access Journals (Sweden)

    Đorđević Amelija

    2016-01-01

    Full Text Available Background/Aim. Analysis of air quality in Serbia indicates that the city of Niš belongs to a group of cities characterized by the third category of air quality (excessive air pollution. The aim of the study was to analyze the degree of causality between ambient air quality affected by particulate matter of 10 μm (PM10 and carbon monoxide (CO and the incidence of respiratory diseases in preschool children in the city of Niš. Methods. We quantified the influence of higher PM10 concentrations and carbon monoxide comprising motor vehicle exhausts in the city of Niš on the occurrence of unwanted health effects in preschool children by means of the hazard quotient (HQ, individual health risk (Ri, and the probability of cancer (ICR. The methodology used was according to the US Environmental Protection Agency (EPA, and it included basic scientific statistical methods, compilation methods, and the relevant mathematical methods for assessing air pollution health risk, based on the use of attribute equations. Results. Measurement of ambient air pollutant concentrations in the analyzed territory for the entire monitoring duration revealed that PM10 concentrations were significantly above the allowed limits during 80% of the days. The maximum measured PM10 concentration was 191.6 μg/m3, and carbon monoxide 5.415 mg/m3. The incidence of respiratory diseases in the experimental group, with a prominent impact of polluted air was 57.17%, whereas the incidence in the control group was considerably lower, 41.10 %. There were also significant differences in the distribution of certain respiratory diseases. Conclusion. In order to perform good causal analysis of air quality and health risk, it is very important to establish and develop a system for long-term monitoring, control, assessment, and prediction of air pollution. We identified the suspended PM10 and CO as ambient air pollutants causing negative health effects in the exposed preschool children

  13. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Jacobsen, Nicklas Raun

    2010-01-01

    Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric...

  14. Ambient air particulate matter in Lagos, Nigeria: a study using receptor modeling with x-ray flourescence analysis

    Directory of Open Access Journals (Sweden)

    E.A. Oluyemi

    2001-12-01

    Full Text Available The need for comprehensive air pollution studies in Lagos cannot be overemphasized in view of the level of industrialization of the city and its nearness to the ocean. Air particulate samples collected with a high-volume air sampler at three locations in Lagos, Nigeria were analyzed by the combination of wavelength-dispersive X-ray fluorescence and atomic absorption spectroscopy methods. Elemental concentrations were subjected to factor analysis for source identification and chemical mass balance model was used for source apportionment. Prominent among sources identified with the ranges of their contributions at the sites are: soil 35-54%, marine 26-34%, automobile exhaust 0.3-3.5%, refuse incineration 2-3%, and regional sulphate 2-12%.

  15. Ambient air quality of karachi city as reflected by atmospheric particulate matter (PM/sub 10/) concentrations

    International Nuclear Information System (INIS)

    Hashmi, D.R.; Shareef, A.

    2016-01-01

    The present study examines the variation of ambient aerosol (PM/sub 10/) concentrations in Karachi, city. Samples were collected from ten different locations, representative of urban background, residential, traffic and industrial areas from 2007 to 2011. At each location, PM/sub 10/) was measured continuously from 08:00 am to 06:00 pm at local time. The maximum 10 h average particulate matter (PM/sub 10/) mass concentrations were found at Tibet Centre (440.1 mg/m/sup 3/) and minimum at PCSIR Campus (21.7 mg/m/sup 3/) during 2008. A rising trend during 2008 may be due to the civil works for bridges and extension of roads at different locations in Karachi. The results also suggest that urban traffic and industrial areas appeared to have higher PM/sub 10/) concentration than residential and background areas. (author)

  16. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    Science.gov (United States)

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  17. Identification of chemical composition and measurement of V, As, Cr and Fe in Yogyakarta ambient air particulate by neutron activation method

    International Nuclear Information System (INIS)

    Gede-Sutresna W; Sutjipto

    1996-01-01

    Activation neutron analysis can be used to identify chemical composition and measure V, As, Cr and Fe contents in Yogyakarta ambient particulate. The air sampling has been done around Yogyakarta city such as: Gg. Narada Gandok around North Ring road (A1 post), Mentri Supeno cross road (A2 post), Purbanegaran GK II (A3 post), Wirobrajan cross road (A4 post), Adisutjipto (A5 post), and in front of Sentul market on JI. Sultan Agung with low volume sampler equipped with AP millipore fiber glass filter. Other places used for air sampling were around PPNY, JI. Babarsari (B1) and Jl. Gejayan (B2) by using high volume sampler equipped with TF A 21133 series filter. The filter was irradiated at Kartini reactor at the average of 1.04 x 10 1 1 n.cm -2 .s -1 on January 10, 1995. The V, As, Cr and Fe content in air around Yogyakarta respectively was: 81.5 - 264.9 ng/m 3 air; 56.7 - 596.4 ng/m 3 air; 30.5 - 153.8 ng/m 3 air and 22.4 - 108μg/m 3 air. The accuracy of the analysis method was checked by comparing the analysis result to the certificate label of the reference material SRM 1633a. The accuracy was: 21.1%; 13.9%; 7.7% and 13.3% for V, As, Cr and Fe. The V, As, Cr and Fe content in air particulate around Yogyakarta is still the below permissible level of the World Health Organization (WHO) in 1987

  18. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  19. Chemical characterization of airborne particulate matter in ambient air of Nagoya, Japan, as studied by the multielement determination with ICP-AES and ICP-MS

    International Nuclear Information System (INIS)

    Fukai, Taku; Kobayashi, Tatsuya; Sakaguchi, Masahiro; Aoki, Masanori; Saito, Tsuyoshi; Fujimori, Eiji; Haraguchi, Hiroki

    2007-01-01

    The multielement determination of PM 10 (airborne particulate matter smaller than 10 μm) samples, which was collected by a high volume air sampler at the urban site of Nagoya City, was carried out by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The present analytical method was validated by analyzing urban particulate matter standard reference material of NIST SRM 1648. The analytical data for ca. 30 elements in PM 10 samples collected during a period from 8 September to 9 October, 2003, were obtained in the concentration range from sub-μg g -1 to several-10 mg g -1 , but the data for 18 elements among ca. 30 elements were available for the characterization of PM 10 samples in ambient air, because of problems caused by the filter blanks. Then, the trends concerning the distributions of diverse elements in PM 10 samples were analyzed based on the enrichment factors and size distribution factors. The lithophile and siderophile elements were distributed more than 50% in coarse particle fraction (>2.1 μm), which was derived mainly from natural sources, such as soils and crustal minerals. On the other hand, chalcophile elements were distributed more than 50% in fine particle fraction ( 10 samples as well as their mining influence factors (MIFs) suggested their wide use in industrial productions. (author)

  20. Redox Toxicology of Ambient Air Pollution

    Science.gov (United States)

    Ambient air pollution is a leading global cause of morbidity and mortality. Millions of Americans live in areas in which levels of tropospheric ozone exceed air quality standards, while exposure to particulate matter (PM2.5) alone results in 3.2 million excess deaths annually wor...

  1. Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Wang, Bin [Institute of Reproductive & Child Health, Peking University School of Public Health, Beijing (China); Huang, Jing [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Baccarelli, Andrea A. [Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Shima, Masayuki [Department of Public Health, Hyogo College of Medicine, Hyogo (Japan); Deng, Furong, E-mail: lotus321321@126.com [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Guo, Xinbiao, E-mail: guoxb@bjmu.edu.cn [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China)

    2016-08-01

    than PM{sub 2.5}, and therefore highlight the research necessity to examine pollution chemical constituents in future studies. - Highlights: • Ambient particulate air pollution has been associated with endothelial dysfunction. • Chemical constituents and pollution sources behind the association have been unclear. • We investigated the association in healthy adults with repeated measurements. • PM{sub 2.5} total mass was not significantly associated with examined biomarkers. • PM{sub 2.5} metals and sources were significantly associated with examined biomarkers.

  2. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  3. Ambient air pollution and thrombosis.

    Science.gov (United States)

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  4. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  5. Gender Disparity in Lung Function Abnormalities among a Population Exposed to Particulate Matter Concentration in Ambient Air in the National Capital Region, India

    Directory of Open Access Journals (Sweden)

    Chandrasekharan Nair Kesavachandran

    2015-01-01

    Conclusions. Since the women in this study were non-smokers, the PM in ambient air can be considered to be the major reason for the decline in lung function. The sources of PM pollutants in the study locations are large scale infrastructural development activities such as building and road construction activities. Narrowed lung airways can alter the airway caliber or resistance and flow rates proportional to the airway radius, especially in smaller airways. The present study suggests the need for policy makers and stake holders to take the necessary steps to identify PM sources and reduce the emissions of PM concentrations in ambient air.

  6. Health Effects of Ambient Air Pollution in Developing Countries

    OpenAIRE

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-01-01

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality...

  7. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  8. Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter

    International Nuclear Information System (INIS)

    Braun, A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

    2008-01-01

    Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

  9. Air Quality Criteria for Particulate Matter.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  10. Associations between long-term exposure to ambient particulate air pollution and type 2 diabetes prevalence, blood glucose and glycosylated hemoglobin levels in China

    Science.gov (United States)

    Zhao, Yaohui; Ma, Zongwei; Bi, Jun; Liu, Yang; Meng, Xia; Wang, Yafeng; Cai, Jing; Chen, Renjie; Kan, Haidong

    2016-01-01

    Background The evidence for an association between particulate air pollution and type 2 diabetes mellitus (T2DM) in developing countries was very scarce. Objective To investigate the associations of long-term exposure to fine particulate matter (PM2.5) with T2DM prevalence and with fasting glucose and glycosylated hemoglobin (HbA1c) levels in China. Methods This is a cross-sectional study based on a nation-wide baseline survey of 11,847 adults who participated in the China Health and Retirement Longitudinal Study from June 2011 to March 2012. The average residential exposure to PM2.5 for each participant in the same period was estimated using a satellite-based spatial statistical model. We determined the association between PM2.5 and T2DM prevalence by multivariable logistic regression models. We also evaluated the association between PM2.5 and fasting glucose and HbA1c levels using multivariable linear regression models. Stratification analyses were conducted to explore potential effect modification. Results We identified 1,760 cases of T2DM, corresponding to 14.9% of the study population. The average PM2.5 exposure for all participants was 72.6 μg/m3 during the study period. An interquartile range increase in PM2.5 (41.1μg/m3) was significantly associated with increased T2DM prevalence (prevalence ratio, PR=1.14), and elevated levels of fasting glucose (0.26 mmol/L) and HbA1c (0.08%). The associations of PM2.5 with T2DM prevalence and with fasting glucose and HbA1c were stronger in several subgroups. Conclusions This nationwide cross-sectional study suggested that long-term exposure to PM2.5 might increase the risk of T2DM in China. PMID:27148900

  11. Effects of ambient particulate matter on aerobic exercise performance

    Directory of Open Access Journals (Sweden)

    Dale R. Wagner

    2018-04-01

    Full Text Available Background/Objective: Wintertime thermal inversions in narrow mountain valleys create a ceiling effect, increasing concentration of small particulate matter (PM2.5. Despite potential health risks, many people continue to exercise outdoors in thermal inversions. This study measured the effects of ambient PM2.5 exposure associated with a typical thermal inversion on exercise performance, pulmonary function, and biological markers of inflammation. Methods: Healthy, active adults (5 males, 11 females performed two cycle ergometer time trials outdoors in a counterbalanced design: 1 low ambient PM2.5 concentrations ( .05 for PM2.5 concentration and the measured variables. Conclusion: An acute bout of vigorous exercise during an AQI of “yellow” did not diminish exercise performance in healthy adults, nor did it have a negative effect on pulmonary function or biological health markers. These variables might not be sensitive to small changes from acute, mild PM2.5 exposure. Keywords: Air pollution, Cycle ergometry, Pulmonary function, Time trial, Vigorous exercise

  12. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  13. Particulate matter urban air pollution from traffic car

    Science.gov (United States)

    Filip, G. M.; Brezoczki, V. M.

    2017-05-01

    The particulate matters (PM) are very important compounds of urban air pollution. There are a lot of air pollution sources who can generate PM and one of the most important of them it is urban traffic car. Air particulate matters have a major influence on human health so everywhere are looking for PM reducing solutions. It is knows that one of the solution for reduce the PM content from car traffic on ambient urban air is the fluidity of urban traffic car by introduction the roundabout intersections. This paper want to present some particulate matter determinations for PM10 and PM2.5 conducted on the two types of urban intersection respectively traffic light and roundabout intersections in Baia Mare town in the approximate the same work conditions. The determinations were carried out using a portable particulate matter monitor Haz - Dust model EPAM - 5000, who can provide a real time data for PM10, PM 2.5.Determinations put out that there are differences between the two locations regarding the PM content on ambient air. On roundabout intersection the PM content is less than traffic light intersection for both PM10 and PM 2.5 with more than 30%.

  14. Co-exposure to inhaled ambient particulate matter and acrolein alters myocardial synchrony in mice: evidence for TRPA1 involvement

    Science.gov (United States)

    Because air pollution is a complex mixture of constituents, often including particulates and aldehydes, attributing health effects to air pollutants in a given ambient air shed can be difficult when pollutants are studied in isolation. The purpose of this study was to examine the...

  15. Ambient particulate matter as a risk factor for suicide.

    Science.gov (United States)

    Kim, Changsoo; Jung, Sang Hyuk; Kang, Dae Ryong; Kim, Hyeon Chang; Moon, Ki Tae; Hur, Nam Wook; Shin, Dong Chun; Suh, Il

    2010-09-01

    The authors assessed the relationship between exposure to ambient particulate matter and suicide in urban settings during a 1-year period. The association between particulate matter and suicide was determined using a time-stratified case-crossover approach in which subjects served as their own controls. All suicide cases (4,341) in 2004 that occurred in seven cities in the Republic of Korea were included. Hourly mean concentrations of particulate matter suicide risk associated with an interquartile range increase in particulate matter was determined by conditional logistic regression analysis after adjusting for national holidays and meteorological factors. Subgroup analysis was performed after stratification by underlying disease (cardiovascular disease, diabetes mellitus, chronic obstructive pulmonary disease, cancer, and psychiatric illness). The largest associations were a 9.0% increase (95% CI=2.4-16.1) and a 10.1% (95% CI=2.0-19.0) increase in suicide risk related to an interquartile range increase in particulate matter suicide) and particulate matter suicide), respectively. Among individuals with cardiovascular disease, a significant association between particulate matter suicide) and suicide was observed (18.9%; 95% CI=3.2-37.0). Conclusions: A transient increase in particulate matter was associated with increased suicide risk, especially for individuals with preexisting cardiovascular disease.

  16. Ambient air quality trends in Alberta

    International Nuclear Information System (INIS)

    2007-01-01

    This document provided an overview of ambient air pollutant trends in Alberta. The report discussed the following pollutants having effect on human and environmental health: carbon monoxide (CO), hydrogen sulphide (H2 S ), nitrogen dioxide (NO 2 ), sulphur dioxide (SO 2 ), ozone (O 3 ), fine particulate matter (PM 2 .5), benzene, and benzopyrene. Each of these pollutants was described. The report provided data on annual average concentration trends and annual 99th percentile concentration as an indicator of peak concentrations. A map illustrating air quality monitoring stations in 2006 was also provided. The findings revealed that mean annual CO levels were the lowest they have been since 1990; hydrogen sulphide concentrations have fluctuated in time since 1990; most Edmonton and Calgary area stations showed significant decreasing trends in annual average NO 2 levels since 1990; and higher SO 2 concentrations have been found in the industrial areas of Alberta, such as the Redwater and Scotford oil sands locations. tabs., figs

  17. AGE AND STRAIN INFLUENCES ON LUNG RESPONSES TO CONCENTRATED AIR PARTICULATES (CAPS) IN RODENTS

    Science.gov (United States)

    Asthma, an inflammatory airways disease, is an urgent health problem. Recent epidemiologic studies have demonstrated positive associations between ambient air particulate matter concentrations and daily respiratory morbidity ? including exacerbations of asthma. Of note, elderly i...

  18. The National Shipbuilding Program. Preliminary Impact Analysis of Proposed Revisions of National Ambient Air Quality Standard for Ozone and Particulate Matter

    National Research Council Canada - National Science Library

    1997-01-01

    ...) and particulate matter (PM). The analysis was performed to provide information to the U.S. ship building and ship repair industry, so that companies in that industry could determine whether to submit comments on these EPA proposals...

  19. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications.

    Science.gov (United States)

    Lippmann, Morton

    2014-04-01

    Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.

  20. Health Effects of Ambient Air Pollution in Developing Countries.

    Science.gov (United States)

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-09-12

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.

  1. Physico-chemical characterisation of particulate heavy metals from municipal solid waste incinerator emissions and their contributions to ambient air quality. Case of Toulon MSWI (South of France)

    International Nuclear Information System (INIS)

    Le Floch, M.

    2004-07-01

    The aims of this study are the physico-chemical characterisation, the apportionment and the following of particulate heavy metals from MSWI emissions. Various methods (in situ data treatment, unmixing models and codes, UNMIX or CMB, sequential extractions and extended X-ray absorption fine structure (EXAFS) agree in the following: - identification of the MSWI source in two profiles (Zn - Ca and Ba - Cu - Fe - Zn - Pb - Ca); - estimation of its contribution of up to 25% of the total sources contribution; - showing the seasonal variability in term of profile and contribution of this source; - suggest the potential of emitted elements to enter the food chain; This EXAFS first approach on atmospheric particulate matter shows that zinc and lead are in an atomic environment with calcium, silicon and aluminum. In spite of disputable conclusions, isotopic lead ratios define a 'MSWI' end-member and confirm that the town-center of Toulon is outside the MSWI plume influence. (author)

  2. Ambient air pollution, traffic noise and adult asthma prevalence : A BioSHaRE approach

    NARCIS (Netherlands)

    Cai, Yutong; Zijlema, Wilma L.; Doiron, Dany; Blangiardo, Marta; Burton, Paul R.; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stephane; Morley, David W; Stolk, Ronald P.; Elliott, Paul; Hansell, Anna L.; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank). Residential exposures to ambient air pollution (particulate matter with

  3. Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup

    2011-01-01

    PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparingWSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area...... from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage...

  4. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  5. HUMAL ALVEOLAR MACROPHAGE RESPONSES TO AIR POLLUTION PARTICULATES ARE ASSOCIATED WITH INSOLUBLE OCMPONENTS OF COARSE MATERIAL, INCLUDING PARTICULATE ENDOTOXIN

    Science.gov (United States)

    Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...

  6. Ambient air quality predictions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents dispersion modelling predictions for SO 2 , NOx, CO, HC and particulate matter (PM), which complement regional monitoring observations. The air quality simulation models provide a scientific means of relating industrial emissions to changes in ambient air quality. The four models applied to the emission sources in the region were: (1) SCREEN3, (2) ISC3BE, (3) ADEPT2, and (4) the box model. Model predictions were compared to air quality guidelines. It was concluded that the largest SO 2 concentrations were associated with intermittent flaring, and with the Suncor Powerhouse whose emissions are continuous. 45 refs., 36 tabs., 40 figs

  7. Ambient air quality observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Both Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. In recognition of the effects that this will have on the environment, Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere, while Syncrude plans to develop additional ambient air quality, sulphur deposition and biomonitoring programs. This report discussed the ambient air quality monitoring that was undertaken in the Fort McMurray-Fort McKay airshed. Twelve continuous ambient air quality stations and 76 passive monitoring stations are maintained in the region. Environment Canada maintains eight precipitation monitoring stations in northern Alberta and Saskatchewan. Source characterization, ambient air quality and meteorology observations, air quality monitoring, and air quality data from continuous sulphur dioxide, hydrogen sulphide, nitrogen oxides, ozone, carbon monoxide, hydrocarbon, acid rain and particulates analyzers were reviewed. The documentation of all computer files used for the analysis of the air quality data is discussed in the Appendix. 47 refs., 39 tabs., 53 figs

  8. Ambient particulate matter induces IL-8 expression through an alternative NF-kB mechanism in human airway epithelial cells

    Science.gov (United States)

    BACKGROUND: Exposure to ambient air particulate matter (PM) has been shown to increase rates of cardio-pulmonary morbidity and mortality, but the underlying mechanisms are still not well understood. OBJECTIVE: To examine signaling events involved in the expression of the inflamma...

  9. 76 FR 22665 - Release of Final Document Related to the Review of the National Ambient Air Quality Standards for...

    Science.gov (United States)

    2011-04-22

    ... criteria. The revised air quality criteria reflect advances in scientific knowledge on the effects of the... National Ambient Air Quality Standards, contains staff analyses of the scientific bases for alternative... Document Related to the Review of the National Ambient Air Quality Standards for Particulate Matter AGENCY...

  10. Characteristic of ambient airborne and respirable particulate around a non formal industrial area

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Mariana Marselina; Rita Mukhtar

    2016-01-01

    Characterization of airborne particulate matter and respirable particulate in Parung Panjang district especially on surrounding non formal used batteries industrial area has been carried out to follow up the previous results with respect to high concentrations of lead detected in Serpong area. Sampling of airborne particulate matter in Parung Panjang was conducted using Gent stacked filter unit sampler, while the respirable particulate matter samples collected using personal dust sampler in Parung Panjang as a non formal Industrial area and Sukarasa village as a control, during 2011-2012. The concentration of masses were determined gravimetrically, while for elemental concentrations by X-Ray based methods. The average of mass concentration of air ambient PM 2.5 and PM 10 in Parung Panjang were 27.3 ± 13.7 and 77.5 ± 17.1 μg.m -3 , respectively. While the average concentration of respirable particulate in non formal industrial and control areas were 260 ± 233 and 82 ± 38 μg.m -3 , respectively. The percentage of average Pb concentration in PM 2.5 and PM 2.5-10 were contribute up to 45 and 10 % of the mass concentration, respectively. The maximum percentage concentration of Pb in respirable particulate in industrial and control area were 12.11 and 0.27 %, respectively. These results showed that the Pb concentrations in respirable particulate in industrial area were significantly tens times higher than in the control area. The high concentration of Pb in Parung Panjang was the main key element came from the used lead battery industry and one of pollutant source that contributed to the Pb pollution in Serpong area. (author)

  11. Status of ambient air quality at Barauni

    International Nuclear Information System (INIS)

    Kannan, G.K.

    1993-01-01

    Due to industrialization, Barauni has become a well developed industrial estate to be considered as industrial hub of Bihar. Contemporary to the industrial growth, the environmental quality also gradually deteriorated. Hence a need was felt to know the status of ambient air quality for proper planning of the future growth of industries. The ambient air quality was monitored at 16 stations in and around Barauni industrial estate during 3 major seasons for the period of one year. The results are discussed as to the status of the ambient air quality and suggestion have also been made for improvement. (author). 5 refs., 2 figs., 7 tabs

  12. Ambient air contamination: Characterization and detection techniques

    Science.gov (United States)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  13. Particulate air pollution and daily mortality in Detroit.

    Science.gov (United States)

    Schwartz, J

    1991-12-01

    Particulate air pollution has been associated with increased mortality during episodes of high pollution concentrations. The relationship at lower concentrations has been more controversial, as has the relative role of particles and sulfur dioxide. Replication has been difficult because suspended particle concentrations are usually measured only every sixth day in the U.S. This study used concurrent measurements of total suspended particulates (TSP) and airport visibility from every sixth day sampling for 10 years to fit a predictive model for TSP. Predicted daily TSP concentrations were then correlated with daily mortality counts in Poisson regression models controlling for season, weather, time trends, overdispersion, and serial correlation. A significant correlation (P less than 0.0001) was found between predicted TSP and daily mortality. This correlation was independent of sulfur dioxide, but not vice versa. The magnitude of the effect was very similar to results recently reported from Steubenville, Ohio (using actual TSP measurements), with each 100 micrograms/m3 increase in TSP resulting in a 6% increase in mortality. Graphical analysis indicated a dose-response relationship with no evidence of a threshold down to concentrations below half of the National Ambient Air Quality Standards for particulate matter.

  14. Origin and Distribution of PAHs in Ambient Particulate Samples at High Mountain Region in Southern China

    Directory of Open Access Journals (Sweden)

    Peng-hui Li

    2015-01-01

    Full Text Available To understand the deposition and transport of PAHs in southern China, a measurement campaign was conducted at a high-elevation site (the summit of Mount Heng, 1269 m A.S.L. from April 4 to May 31, 2009, and a total of 39 total suspended particulate samples were collected for measurement of PAH concentrations. The observed particulate-bound PAHs concentrations ranged from 1.63 to 29.83 ng/m3, with a mean concentration of 6.03 ng/m3. BbF, FLA, and PYR were the predominant compounds. Good correlations were found between individual PAHs and meteorological parameters such as atmospheric pressure, relative humidity, and ambient temperature. The backward trajectory analysis suggested that particulate samples measured at the Mount Heng region were predominantly associated with the air masses from southern China, while the air masses transported over northern and northwestern China had relative higher PAHs concentrations. Based on the diagnostic ratios and factor analysis, vehicular emission, coal combustion, industry emission, and unburned fossil fuels were suggested to be the PAHs sources at Mount Heng site. However, the reactivity and degradation of individual PAHs could influence the results of PAH source profiles, which deserves further investigations in the future.

  15. Air quality more extensive monitoring of particulates pollution but concentrations must be reduced by 2005

    International Nuclear Information System (INIS)

    Ba, M.; Colosio, J.

    2000-09-01

    Most epidemiological data point to a link between the concentrations of particles measured in the ambient air and the effects of air pollution on human health. Particulates emitted by road traffic and industry are among the most harmful; they carry serious risks. The particulate monitoring network and legislation on the issue are constantly changing. In France, the number of monitoring stations has more than doubled in recent years. EC Directive 1999/30/EC of 22 April 1999 sets limit values for concentrations of particulates in ambient air to be complied with at certain given dates. In France, while the concentrations measured in urban areas with over 100 000 inhabitants are below the limit values set by the Directive for today, they are significantly higher than those to be complied with by 1 January 2005. (author)

  16. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1988-11-01

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  17. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Rossbach, M.; Jayasekera, R.; Kniewald, G.

    2000-01-01

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  18. Some measurements of ambient air pollution

    International Nuclear Information System (INIS)

    Memon, H.R.; Memon, A.A.; Behan, M.Y.

    1999-01-01

    Ambient air pollution arising from different sources in Karachi and its surroundings has been studied. The urban centres like Karachi are mostly confronted with eye-irritation, reduce visibility, heart-diseases, nervous disorder, smog and other unpleasant experiences. In this paper quantitative estimations of some air-pollutants such as sulphur dioxide, carbon monoxide, oxides of nitrogen, chlorine and particular matters are presented with their hazardous effects. The remedial measures for the control of major air emissions are also discussed. (author)

  19. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

    Science.gov (United States)

    BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...

  20. Setting priorities for ambient air quality objectives

    International Nuclear Information System (INIS)

    2004-10-01

    Alberta has ambient air quality objectives in place for several pollutants, toxic substances and other air quality parameters. A process is in place to determine if additional air quality objectives are required or if existing objectives should be changed. In order to identify the highest priority substances that may require an ambient air quality objective to protect ecosystems and public health, a rigorous, transparent and cost effective priority setting methodology is required. This study reviewed, analyzed and assessed successful priority setting techniques used by other jurisdictions. It proposed an approach for setting ambient air quality objective priorities that integrates the concerns of stakeholders with Alberta Environment requirements. A literature and expert review were used to examine existing priority-setting techniques used by other jurisdictions. An analysis process was developed to identify the strengths and weaknesses of various techniques and their ability to take into account the complete pathway between chemical emissions and damage to human health or the environment. The key strengths and weaknesses of each technique were identified. Based on the analysis, the most promising technique was the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Several considerations for using TRACI to help set priorities for ambient air quality objectives were also presented. 26 refs, 8 tabs., 4 appendices

  1. Ambient air pollution and low birth weight

    DEFF Research Database (Denmark)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy

    2017-01-01

    (TLBW, restriction (IUGR), and suggest that some subgroups of pregnant women who are smoking, of low or high body-mass index (BMI), low socioeconomic status (SES) or asthma are more vulnerable towards...... on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite...... direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women...

  2. Ambient Air Pollution and Morbidity in Chinese.

    Science.gov (United States)

    Hu, Li-Wen; Lawrence, Wayne R; Liu, Yimin; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Dong, Guang-Hui

    2017-01-01

    The rapid economic growth in China is coupled with a severe ambient air pollution, which poses a huge threat to human health and the sustainable development of social economy. The rapid urbanization and industrialization over the last three decades have placed China as one of countries with the greatest disease burden in world. Notably, the prevalence rate of chronic noncommunicable diseases (CND), including respiratory diseases, CVD, and stroke, in 2010 reaches 16.9%. The continuous growth of the incidence of CND urgent needs for effective regulatory action for health protection. This study aims to evaluate the impact of rapid urbanization on status of ambient air pollution and associated adverse health effects on the incidence and the burden of CND and risk assessment. Our findings would be greatly significant in the prediction of the risk of ambient air pollution on CND and for evidence-based policy making and risk management in China.

  3. Ambient air monitoring to support HLW repository site characterization

    International Nuclear Information System (INIS)

    Fransioli, P.M.; Dixon, W.R.

    1993-01-01

    Site characterization at the Yucca Mountain site includes an ambient air quality and meteorological monitoring program to provide information for environmental and site characterization issues. The program is designed to provide data for four basic purposes: Atmospheric dispersion calculations to estimate impacts of possible airborne releases of radiological material; Engineering design and extreme weather event characterization; Local climate studies for environmental impact analyses and climate characterization; and, Air quality permits required for site characterization work. The program is compiling a database that will provide the basis for analyses and reporting related to the purposes of the program. Except for reporting particulate matter and limited meteorological data to the State of Nevada for an air quality permit condition, the data have yet to be formally analyzed and reported

  4. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  5. Correlation of Air Quality Data to Ultrafine Particles (UFP Concentration and Size Distribution in Ambient Air

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2010-07-01

    Full Text Available This study monitored ultrafine particles (UFP concurrent with environmental air quality data, investigating whether already existing instrumentation used by environmental authorities can provide reference values for estimating UFP concentrations. Of particular interest was the relation of UFP to PM10 (particulate matter and nitrogen oxides (NOx, NO2 in ambient air. Existing PM measurement methods alone did not correspond exactly enough with the actual particle number, but we observed a link between NOx and NO2 to UFP concentration. The combined data could act as proxy-indicator for authorities in estimating particle number concentrations, but cannot replace UFP monitoring.

  6. Health effects associated with exposure to ambient air pollution.

    Science.gov (United States)

    Samet, Jonathan; Krewski, Daniel

    2007-02-01

    The World Health Organization has identified ambient air pollution as a high public health priority, based on estimates of air pollution related death and disability-adjusted life years derived in its Global Burden of Disease initiative. The NERAM Colloquium Series on Health and Air Quality was initiated to strengthen the linkage between scientists, policymakers, and other stakeholders by reviewing the current state of science, identifying policy-relevant gaps and uncertainties in the scientific evidence, and proposing a path forward for research and policy to improve air quality and public health. The objective of this paper is to review the current state of science addressing the impacts of air pollution on human health. The paper is one of four background papers prepared for the 2003 NERAM/AirNet Conference on Strategies for Clean Air and Health, the third meeting in the international Colloquium Series. The review is based on the framework and findings of the U.S. National Research Committee (NRC) on Research Priorities for Airborne Particulate Matter and addresses key questions underlying air quality risk management policy decisions.

  7. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Wee Boon Siong; Ab. Khalik Bin Haji Wood

    2006-01-01

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  8. New Council of State degree on ambient air quality is in the making

    International Nuclear Information System (INIS)

    Rahnasto, O.

    2000-01-01

    The Finnish Ministry of the Environment is currently preparing a new Council of State decree on ambient air quality to implement EC directive 1999/30/EC relating to limit values for SO 2 , NO 2 , particulate matter and lead in the ambient air, the EC directive 2000/69/EC relating to benzene and carbon monoxide in the ambient air, and regulations in EC directive 96/62/EC on ambient air quality assessment and management. The national legislation will come into force in July 2001. Current studies based on measurements and calculations show that the SO 2 concentrations in ambient air are generally low and clearly below the limit values. The same holds good for lead. However, the new limit values for NO 2 are exceeded in the largest towns, and the 2010 limit values for particulate matter presented in the guidelines are generally exceeded in small towns, too. The 2005 limit values for particulate matter are not so strict, and it is estimated that they will be exceeded especially in years when spring dust problems are serious. The limit values for CO may at times be exceeded in areas with heavy traffic. The limit values intended to protect the vegetation and the ecosystems are not exceeded in background areas to the implementation. As for benzene, it is assumed that the concentrations will generally be below the limit value in other parts of the world as well

  9. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  10. Characterization of ambient air pollution for stochastic health models

    Energy Technology Data Exchange (ETDEWEB)

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  11. Properties and cellular effects of particulate matter from direct emissions and ambient sources.

    Science.gov (United States)

    Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2016-10-14

    The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.

  12. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    Science.gov (United States)

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  13. YOGYAKARTA AIR BORNE QUALITY BASED ON THE LEAD PARTICULATE CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zaenal Abidin

    2010-06-01

    Full Text Available Analysis of Yogyakarta air quality based on concentration of lead particulate using Fast Neutron Activation Analysis (FNAA method has been done. The sample was taken 3 times in 16 strategic locations of Yogyakarta city using Hi-Vol air sampler that equipped with cellulose filter TFA 2133. The sample irradiated for 30 min with 14 MeV fast neutron and then counted using gamma spectroscopy (AccuSpec. The result indicated that concentration of Pb-208 along Diponegoro street up to Janti street respectively are minimally (0.689 - 0.775 mg/m3, and maximally:  (1.598 - 1.785 mg/m3. According to DIY governor decree No. 153/2002 about the limited toxicity ambient on Yogyakarta area it is concentration that Pb. The concentration of Pb-208 are still below the permitted value of 2 mg/m3, but in certain areas, the Pb concentration is almost equal to upper limit of permitted concentration of Pb.   Keywords: air borne, neutron generator, FNAA

  14. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    Science.gov (United States)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  15. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis.

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case-crossover analysis was used to examine the data for evidence of triggering stroke mortality. The 1-hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 microg/m3 (threshold)). The higher risk was independent of the 24-hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24-hour mean concentrations, but also on hourly data.

  16. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case‐crossover analysis

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    Aims To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Methods Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case‐crossover analysis was used to examine the data for evidence of triggering stroke mortality. Results The 1‐hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 μg/m3 (threshold)). The higher risk was independent of the 24‐hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Conclusions Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24‐hour mean concentrations, but also on hourly data. PMID:16847037

  17. Oxidative Potential of ambient particulate matter in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Bougiatioti, Aikaterini; Fang, Ting; Liakakou, Eleni; Weber, Rodney; Nenes, Athanasios; Mihalopoulos, Nikolaos

    2017-04-01

    Exposure of populations to airborne particulate matter (PM) is a leading cause of premature death worldwide. Oxidative stress resulting from exposure of chemical species present in PM is a mechanism thought to cause adverse health effects. Apart from radicals present in aerosol, species that can catalytically deplete the antioxidant buffering capacity of cells, called Oxidative Potential (OP), are thought to be particularly toxic. The variability of OP over location, particle age, source and environmental conditions is virtually unknown for most populated regions of the world. Motivated by this, we have built and deployed one of the first operational measurements of OP in Europe at the National Observatory of Athens site in downtown Athens, Greece. OP for fine and coarse mode is measured using a semi-automated dithiothreitol (DTT) assay developed at the Georgia Institute of Technology; the assay measures the oxidation rate of DTT by water-soluble aerosol constituents, and simulates the rate at which the same compounds would deplete antioxidants in-vivo. The DTT oxidation rate per unit volume of air (water-soluble "DTT activity") and aerosol size class (fine, coarse) are used as a measure of aerosol toxicity. We present continuous (24hr average) OP measurements in downtown Athens from July 2016 to January 2017, conducted through quartz fiber filter analysis. The dataset covers a broad range of aerosol sources (pollution from Europe, regional and local biomass burning, dust, marine aerosol, biogenic aerosol) and meteorological conditions. The daily water-soluble DTT activity ranges between 0.02-0.81 nmolmin-1 m-3 (averaging at 0.24 nmolmin-1 m-3) for fine aerosol and between 0.01-0.52 nmolmin-1 m-3 (averaging at 0.08 nmolmin-1 m-3) for coarse particulate matter, indicating that water-soluble fine mode aerosol components possess a significant fraction of the OP. The seasonal variability demonstrates a higher DTT activity during the coldest period of the year for both

  18. Study on Concentration of Particulate Matter with Diameter Less than 10 Microns, Heavy Metals and Polycyclic Aromatic Hydrocarbons Related to PM2.5 in the Ambient Air of Sina Hospital District

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2014-03-01

    Full Text Available Background:In recent decades, extensive studies have shown a number of short and long-term health effects of particle matters. In addition to particle matters, polycyclic aromatic hydrocarbons (PAHs and heavy metals in airborne particles due to their mutagenic and carcinogenic properties are considered major air pollutants. So, the aim of this study was to evaluate the concentration of PM2.5particulate, 7heavy metal concentrations and 13 PAHs compound associated with fine particles (PM2.5-boud PAHs in the district of Sina hospital, Tehran. Methods: This cross-sectional study was carried out in air of Sina Hospital district in Tehran. Concentrations of fine particulate matter (PM2.5 were determined by gravimetric. Also heavy metal concentrations in samples after digestion were determined with ICP-AES instrument through injection. Then the PAHs compounds from each sample were extracted by ultrasonic method. After this step, extracted sample was injected for analysis by GC-MS and concentration of each compound was read. Results: The daily average concentration of PM2.5 during the study was 41.19 µg/m3.Concentration values for zinc, lead, cadmium, chromium, nickel and arsenic, were 92/69, 05/38, 2/18, 24/4, 19/4 and 34/1 ng/m3 respectively but mercury not found in this study. Average concentrations of PAHs compounds have been variable from0.07 ng/m3 for Chrysene to 1.21ng/m3 for Dibenzo(ahanthracene. Conclusion: In this study, the daily average of PM2.5 concentrations was above the Iranian National PM, WHO (25 µg/m3 and EPA (35 µg/m3 standards established for PM2.5 particles. Heavy metal concentrations in this study were lower than values reported in previous studies in Tehran. The highest concentrations among PAHs compounds belonging toIndeo(cd 1,2,3pyren, Dibenzo(ah anthracene, Benzo (B flouranthin and Benzo (Kflouranthin that all of these compounds are related to vehicle emissions.

  19. Ambient air pollution, smog episodes and mortality in Jinan, China.

    Science.gov (United States)

    Zhang, Jun; Liu, Yao; Cui, Liang-Liang; Liu, Shou-Qin; Yin, Xi-Xiang; Li, Huai-Chen

    2017-09-11

    We aimed to assess the acute effects of ambient air pollution and weather conditions on mortality in the context of Chinese smog episodes. A total of 209,321 deaths were recorded in Jinan, a large city in eastern China, during 2011-15. The mean concentrations of daily particulate matter ≤10 μm (PM 10 ), fine particulate matter (PM 2.5 ), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) were 169 μg/m 3 , 100 μg/m 3 , 77 μg/m 3 , and 54 μg/m 3 , respectively. Increases of 10 μg/m 3 in PM 10 , PM 2.5 , SO 2 and NO 2 were associated with 1.11% (95% CI 0.96-1.26%), 0.71% (95% CI 0.60-0.82%), 1.69% (95% CI 1.56-1.83%), and 3.12% (95% CI 2.72-3.53%) increases in daily non-accidental mortality rates, respectively. Moreover, the risk estimates for these 4 pollutants were higher in association with respiratory and cardiovascular mortality. The effects of all the evaluated pollutants on mortality were greater in winter than in summer. Smog episodes were associated with a 5.87% (95% CI 0.16-11.58%) increase in the rate of overall mortality. This study highlights the effect of exposure to air pollution on the rate of mortality in China.

  20. Short term respiratory health effects of ambient air pollution: results of the APHEA project in Paris.

    OpenAIRE

    Dab, W; Medina, S; Quénel, P; Le Moullec, Y; Le Tertre, A; Thelot, B; Monteil, C; Lameloise, P; Pirard, P; Momas, I; Ferry, R; Festy, B

    1996-01-01

    STUDY OBJECTIVE: To quantify the short term respiratory health effects of ambient air pollution in the Paris area. DESIGN: Time series analysis of daily pollution levels using Poisson regression. SETTING: Paris, 1987-92. MEASUREMENTS AND MAIN RESULTS: Air pollution was monitored by measurement of black smoke (BS) (15 monitoring stations), sulphur dioxide (SO2), nitrogen dioxide (NO2), particulate matter less than 13 microns in diameter (PM13), and ozone (O3) (4 stations). Daily mortality and ...

  1. Air pollution in Aleppo city, gases,suspended particulates

    International Nuclear Information System (INIS)

    Othman, I.; Sabra, Sh.; Al-Kharfan, K.

    1994-06-01

    Total suspended particulates measured by using High Volume Air Sampler. The Co and O 3 were measured during weekday and weekend. The concentration of all pollutants at city center are higher than other measured areas. (author). 10 figs., 10 tabs

  2. Particulate Air Contamination in Puerto Rico: A Student Involvement Project.

    Science.gov (United States)

    Eckert, Richard R.

    1979-01-01

    Describes a research project undertaken by physics undergraduate students to monitor particulate air contamination in Ponce, Puerto Rico, and to determine the meteorological factors which contribute to it. (GA)

  3. Limitations of ambient air quality standards in evaluating indoor environments

    International Nuclear Information System (INIS)

    Peterson, J.E.

    1992-01-01

    Analysis of the kinds of data used for the derivation of ambient air quality standards (AAQSs) for carbon monoxide and ozone shows that these values are based on the toxicology of the materials and thus are suitable for evaluating potential health effects of indoor environments, especially on the very young, the aged, and the infirm. A similar analysis shows that the AAQSs for suspended particulate matter, nitrogen dioxide, and sulfur dioxide are strictly empirical and that they should not be used for any but their first, intended purpose. The AAQSs for non-methane hydrocarbons are based on photochemical smog production, not injury of any kind, and have no utility for indoor environment evaluation

  4. Fine Particulate Matter Air Pollution and Cognitive Function Among Older US Adults

    OpenAIRE

    Ailshire, Jennifer A.; Crimmins, Eileen M.

    2014-01-01

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large...

  5. Respiratory dose analysis for components of ambient particulate matter#

    Science.gov (United States)

    Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to cause health hazard, specific attributes of PM that may cause health effects are somewhat ambiguous. The dose of each specific compo...

  6. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  7. Ambient air quality in Lower Town Quebec

    International Nuclear Information System (INIS)

    Sebez, S.

    2007-01-01

    A municipal waste incinerator near Lower Town Quebec has been identified as a major source of air pollution, notably emissions of dioxins, furans, nitrogen oxides (NOx), volatile organic matter (VOC) and polycyclic aromatic hydrocarbons (PAH). Combustion fumes contain gases such as carbon monoxide (CO), carbon dioxide (CO 2 ) and sulphur dioxide (SO 2 ), as well as dusts, fly ash and particulate matter that is easily airborne. The risks associated with poor air quality have been evaluated along with the effects of pollutants on young children, pregnant women, senior citizens and those with cardiac problems. Some studies have reported that exposure to NOx may cause lung cancer and certain VOCs can irritate the respiratory tract system. Air quality tests have also revealed the presence of mercury. In combination, all these pollutants create smog. The concrete actions that have been taken to address smog issues were discussed. The distance between the incinerator and different residential areas within Lower Town Quebec have been measured along with air quality. Health risks were found to be higher in areas closer to the incinerator. Major modifications have been recommended in order to reduce pollution emissions from the incinerator. These include modernizing the equipment, installing proper scrubbers, and to ultimately the close the incinerator if it continues to underperform. refs., tabs., figs

  8. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Science.gov (United States)

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  9. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Science.gov (United States)

    2012-05-21

    ... and 81 Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards; Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications...-9668-2] RIN 2060-AP37 Air Quality Designations for the 2008 Ozone National Ambient Air Quality...

  10. Interactions between particulate air pollution and temperature in air pollution mortality time series studies

    International Nuclear Information System (INIS)

    Roberts, Steven

    2004-01-01

    In many community time series studies on the effect of particulate air pollution on mortality, particulate air pollution is modeled additively. In this study, we investigated the interaction between daily particulate air pollution and daily mean temperature in Cook County, Illinois and Allegheny County, Pennsylvania, using data for the period 1987-1994. This was done through the use of joint particulate air pollution-temperature response surfaces and by stratifying the effect of particulate air pollution on mortality by temperature. Evidence that the effect of particulate air pollution on mortality may depend on temperature is found. However, the results were sensitive to the number of degrees of freedom used in the confounder adjustments, the particulate air pollution exposure measure, and how the effects of temperature on mortality are modeled. The results were less sensitive to the estimation method used--generalized linear models and natural cubic splines or generalized additive models and smoothing splines. The results of this study suggest that in community particulate air pollution mortality time series studies the possibility of an interaction between daily particulate air pollution and daily mean temperature should be considered

  11. The State of Ambient Air Quality of Jeddah, Saudi Arabia

    Science.gov (United States)

    Hussain, M. M.; Aburizaiza, O. S.; Khwaja, H. A.; Siddique, A.; Nayebare, S. R.; Zeb, J.; Blake, D. R.

    2014-12-01

    Ambient air pollution in major cities of Saudi Arabia is a substantial environmental and health concern. A study was undertaken to assess the air quality of Jeddah, Saudi Arabia by the analysis of respirable particulate matter (PM2.5), black carbon (BC), trace metals (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Cd, Sb, and Pb), and water-soluble ions (F-, Cl-, NO3-, SO42-, C2O42-, and NH42+). Sulfur and BC mass concentration ranged 0.99 - 7.39 μg/m3 and 0.70 - 3.09 μg/m3, respectively, while the PM2.5 mass concentration ranged 23 - 186 μg/m3. Maximum BC contribution to PM2.5 was 5.6%. Atmospheric PM2.5 concentrations were well above the 24 h WHO guideline of 20 μg/m3. Air Quality Index (AQI) indicates that there were 8% days of moderate air quality, 28% days of unhealthy air quality for sensitive groups, 55% days of unhealthy air quality, and 9% days of very unhealthy air quality during the study period. Sulfate SO42- dominated the identifiable components. The major contributors to PM2.5 were soil and crustal material; vehicle emissions (black carbon factor); and fuel oil combustion in industries (sulfur factor), according to the Positive Matrix Factorization (PMF). This study highlights the importance of focusing control strategies not only on reducing PM concentration, but also on the reduction of toxic components of the PM, to most effectively protect human health and the environment.

  12. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    Science.gov (United States)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  13. Characterization of the particulate air pollution in contrasted mega cities

    International Nuclear Information System (INIS)

    Favez, O.

    2008-02-01

    This work aims at characterizing the physics and the chemistry that govern particulate air pollution in two mega cities (Paris and Cairo) for which the size distribution and the chemical composition of airborne particles were poorly documented. Seasonal variations of the main aerosol sources and transformation processes are investigated in these two urban centres, with a particular attention to semi-volatile material and secondary organic aerosols. Short-term health effects of Paris size-segregated aerosols, as well as particulate pollution during the Cairo 'Black Cloud' season, are also emphasized here. Finally, the comparison of results obtained for the two mega cities and for another one (Beijing) allows investigating main factors responsible for particulate air pollution in urban centres with contrasted climatic conditions and development levels. Notably, this work also allows the build-up of an experimental dataset which is now available for the modelling of urban air quality and of environmental impacts of mega city air pollution. (author)

  14. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  15. 77 FR 12482 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES: This... FR 66964) and codified at 40 CFR 50.16, ``National primary and secondary ambient air quality...

  16. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1985-01-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous 85 Kr air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where 85 Kr was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State-of-the-art 85 Dr sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of 85 Kr

  17. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1984-10-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous krypton-85 air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where krypton-85 was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State of the art krypton-85 sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of krypton-85. 3 references, 3 figures, 1 table

  18. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  19. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals.

    Science.gov (United States)

    Rodosthenous, Rodosthenis S; Coull, Brent A; Lu, Quan; Vokonas, Pantel S; Schwartz, Joel D; Baccarelli, Andrea A

    2016-03-08

    Air pollution from particulate matter (PM) has been linked to cardiovascular morbidity and mortality; however the underlying biological mechanisms remain to be uncovered. Gene regulation by microRNAs (miRNAs) that are transferred between cells by extracellular vesicles (EVs) may play an important role in PM-induced cardiovascular risk. This study sought to determine if ambient PM2.5 levels are associated with expression of EV-encapsulated miRNAs (evmiRNAs), and to investigate the participation of such evmiRNAs in pathways related to cardiovascular disease (CVD). We estimated the short- (1-day), intermediate- (1-week and 1-month) and long-term (3-month, 6-month, and 1-year) moving averages of ambient PM2.5 levels at participants' addresses using a validated hybrid spatio-temporal land-use regression model. We collected 42 serum samples from 22 randomly selected participants in the Normative Aging Study cohort and screened for 800 miRNAs using the NanoString nCounter® platform. Mixed effects regression models, adjusted for potential confounders were used to assess the association between ambient PM2.5 levels and evmiRNAs. All p-values were adjusted for multiple comparisons. In-silico Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways that are regulated by PM-associated evmiRNAs. We found a significant association between long-term ambient PM2.5 exposures and levels of multiple evmiRNAs circulating in serum. In the 6-month window, ambient PM2.5 exposures were associated with increased levels of miR-126-3p (0.74 ± 0.21; p = 0.02), miR-19b-3p (0.52 ± 0.15; p = 0.02), miR-93-5p (0.78 ± 0.22; p = 0.02), miR-223-3p (0.74 ± 0.22; p = 0.02), and miR-142-3p (0.81 ± 0.21; p = 0.03). Similarly, in the 1-year window, ambient PM2.5 levels were associated with increased levels of miR-23a-3p (0.83 ± 0.23; p = 0.02), miR-150-5p (0.90 ± 0.24; p = 0.02), miR-15a-5p (0.70 ± 0.21; p = 0

  20. Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhiqiang [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Liao Ru' e [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li Huiru, E-mail: huiruli@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Mo Ligui [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zeng Xiangying; Sheng Guoying; Fu Jiamo [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-10-15

    In present study, atmospheric particles from Shanghai, the biggest city and the most important industrial base in China, were analyzed for polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DP). Concentrations of {Sigma}{sub 20}PBDEs and DP both exhibited the changing trend of industrial area > urban areas. Jiading District had the highest levels of particulate PBDEs and DP with values of 744 {+-} 152 pg/m{sup 3} and 5.48 {+-} 1.28 pg/m{sup 3}, respectively. Compared with similar data in other areas of the world, PBDEs in Shanghai were at medium pollution level, while DP was at lower level, which reflected their different production and use in Shanghai. The results from multiple linear regression analysis suggested that deca-BDE mixture was the most important contributor of particulate PBDEs in Shanghai. The fractions of anti-DP showed no significant differences to those of the technical mixtures (p > 0.05), which suggested that no obviously stereoselective process occurred in ambient air around Shanghai. - Highlights: > Atmospheric PBDEs of Shanghai were at moderate levels and dominated by BDE-209. > Particulate DP was low even Shanghai is not far from the DP manufacturing factory. > DP showed no obviously stereoselective process in air particles from Shanghai. > Significant positive correlation was found between particulate PBDEs and PBDD/Fs. - The moderate PBDEs levels with deca-BDE being the most important contributor and low DP levels in ambient air around Shanghai reflected their different usage in this area.

  1. Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China

    International Nuclear Information System (INIS)

    Yu Zhiqiang; Liao Ru'e; Li Huiru; Mo Ligui; Zeng Xiangying; Sheng Guoying; Fu Jiamo

    2011-01-01

    In present study, atmospheric particles from Shanghai, the biggest city and the most important industrial base in China, were analyzed for polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DP). Concentrations of Σ 20 PBDEs and DP both exhibited the changing trend of industrial area > urban areas. Jiading District had the highest levels of particulate PBDEs and DP with values of 744 ± 152 pg/m 3 and 5.48 ± 1.28 pg/m 3 , respectively. Compared with similar data in other areas of the world, PBDEs in Shanghai were at medium pollution level, while DP was at lower level, which reflected their different production and use in Shanghai. The results from multiple linear regression analysis suggested that deca-BDE mixture was the most important contributor of particulate PBDEs in Shanghai. The fractions of anti-DP showed no significant differences to those of the technical mixtures (p > 0.05), which suggested that no obviously stereoselective process occurred in ambient air around Shanghai. - Highlights: → Atmospheric PBDEs of Shanghai were at moderate levels and dominated by BDE-209. → Particulate DP was low even Shanghai is not far from the DP manufacturing factory. → DP showed no obviously stereoselective process in air particles from Shanghai. → Significant positive correlation was found between particulate PBDEs and PBDD/Fs. - The moderate PBDEs levels with deca-BDE being the most important contributor and low DP levels in ambient air around Shanghai reflected their different usage in this area.

  2. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    Science.gov (United States)

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicityAbstractMutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  3. Ambient Air Ammonia (NH3) Concentration in Two Solid Waste ...

    African Journals Online (AJOL)

    MBI

    2017-05-22

    May 22, 2017 ... and thereby adds significantly to the external costs related to air pollution in ... condensation nuclei and indirectly increase cloud life time (Myhre et al., 2009). ..... Cost Effective Strategy for Reducing. Atmospheric Particulate ...

  4. 75 FR 81126 - Revisions to Lead Ambient Air Monitoring Requirements

    Science.gov (United States)

    2010-12-27

    ... tons per year of lead is necessary to provide sufficient information about airborne lead levels near... Revisions to Lead Ambient Air Monitoring Requirements AGENCY: Environmental Protection Agency (EPA). ACTION...) that revised the primary and secondary National Ambient Air Quality Standards (NAAQS) for lead and...

  5. Association between exposure to ambient air pollution and renal function in Korean adults.

    Science.gov (United States)

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p   0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  6. Characterization of biological particulate loads in metropolitan air

    Science.gov (United States)

    J. A. Snow; R. D. Schein; W. J. Moroz

    1977-01-01

    The atmospheric particulate load includes a wide range of naturally occurring particles of biological origin that serve as a reservoir of allergenic agents in respiratory disease. Improved knowledge of potential aeroallergens is needed by medical clinicians. Aims are to better characterize air spora, qualitatively and quantitatively, and determine daily (by hour)...

  7. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  8. Ambient fine particulate matter in China: Its negative impacts and possible countermeasures.

    Science.gov (United States)

    Qi, Zihan; Chen, Tingjia; Chen, Jiang; Qi, Xiaofei

    2018-03-01

    In recent decades, China has experienced rapid economic development accompanied by increasing concentrations of ambient PM 2.5 , particulate matter of less than 2.5 μm in diameter. PM 2.5 is now believed to be a carcinogen, causing higher lung cancer risks and generating losses to the economy and society. This meta-analysis evaluates the losses generated by ambient PM 2.5 in Suzhou from 2014 to 2016 and predicts losses at different concentrations. Estimations of total losses in Beijing, Shanghai, Hangzhou, Guangzhou, Dalian, and Xiamen are also presented, with a total national loss in 2015. The authors then demonstrate that lowering ambient PM 2.5 concentrations would be a realistic way for China to reduce the evaluated social losses in the short term. Possible legal measures are listed for lowering ambient PM 2.5 concentrations. The present findings quantify the economic effects of ambient PM 2.5 due to the increased incidence rate and mortality rate of lung cancer. Lowering ambient PM 2.5 concentrations would be the most realistic way for China to reduce tghe evaluated social losses in the short term. Possible legal measures for lowering ambient PM 2.5 concentrations to reduce the total losses are identified.

  9. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    Science.gov (United States)

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  10. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  11. Particulate air pollution, with emphasis on traffic generated aerosols

    DEFF Research Database (Denmark)

    Fauser, Patrik

    constitute each about 5 wt-% of the collected suspended particulate matter in inner city air. The particle size distribution shows that 92 % of the mass of airborne particulate tire debris have aerodynamic diameters smaller than 1 µm. The mean aerodynamic diameter is about 1 µm for the bitumen particles...... % of this concentration derives from adsorbed particles on both leaf sides. The remainder is either respired through stomata or incorporated in the epicuticular wax layer. The fact that a substantial amount of the airborne tire and bitumen particles occur in the submicron range permits long range transportation...

  12. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  13. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems

    Science.gov (United States)

    Nieuwenhuijsen, M. J.; Gómez-Perales, J. E.; Colvile, R. N.

    The aim of this study was to review and summarise the levels of particulate air pollution, its elemental composition, its determinants, and its potential health effects in metro systems. A number of studies have been conducted to assess the levels of particulate matter and its chemical composition in metro systems. The monitoring equipment used varied and may have led to different reporting and makes it more difficult to compare results between metro systems. Some of the highest average levels of particulate matter were measured in the London metro system. Whereas some studies have reported higher levels of particulate matter in the metro system (e.g. London, Helsinki, Stockholm) compared to other modes of transport (London) and street canyons (Stockholm and Helsinki), other studies reported lower levels in the metro system (e.g. Hong Kong, Guangzhou, and Mexico City). The differences may be due to different material of the wheel, ventilation levels and breaking systems but there is no good evidence to what extent the differences may be explained by this, except perhaps for some elements (e.g. Fe, Mn). The dust in the metro system was shown to be more toxic than ambient airborne particulates, and its toxicity was compared with welding dust. The higher toxicity may be due to the higher iron content. Although the current levels of particulate matter and toxic matter are unlikely to lead to any significant excess health effects in commuters, they should be reduced where possible. It will be difficult to introduce measures to reduce the levels in older metro systems, e.g. by introducing air conditioning in London, but certainly they should be part of any new designs of metro systems.

  14. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    Science.gov (United States)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  15. Simulated reaction of formaldehyde and ambient atmospheric particulate matter using a chamber

    Institute of Scientific and Technical Information of China (English)

    Yueyue Chen; Jia Liu; Jing Shang; Tong Zhu

    2017-01-01

    The reaction of HCHO with Beijing winter's real ambient particulate matter (PM) inside a 3.3 m3 Teflon Chamber was conducted in this study.NO2,O3 and H2O gases were removed from the ambient aerosol before entering into the chamber.The decays of HCHO were monitored (acetylacetone spectrophotometry method) during the reactions at different PM number concentrations (Na) and relative humidities (RHs),and the formed particulate formate was detected by IC and XPS techniques.The results showed that when RH was 10%-15%,the decay rate of HCHO in the chamber was higher with the existence of PM from relatively clean days (with number concentration (Na) < 200,000 particle/L,0.35-22.5 μm) compared to dirty days (Na > 200,000 particle/L,0.35-22.5 μm).When RH increased to 30%-45%,PM can hardly have significant influences on the decay of HCHO.The formations of formate on the reacted PM were consistent with the HCHO decay rates at different ambient PM Na and RH conditions.This is a first study related to the "real" ambient PM reacted with HCHO and suggested that in the clean and low RH days,PM could be an effective medium for the conversion of HCHO to formate.

  16. 77 FR 12524 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... Indiana State Implementation Plan (SIP) for lead (Pb) under the Clean Air Act (CAA). This submittal incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES...

  17. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... the Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the Clean Air Act. On April 8, 2009, and...

  18. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  19. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-11-22

    ... Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This rule establishes air quality designations for most areas in the United States for the 2008 lead (Pb) National Ambient Air Quality Standards...

  20. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    Science.gov (United States)

    2003 AAR PM MeetingParticulate Matter: Atmospheric Sciences,Exposure and the Fourth Colloquium on PM and Human HealthLACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  1. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO 2 ), and nitrogen oxides (NO, NO 2 , and NO x ). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks

  2. Particulate air pollution and mortality in a cohort of Chinese men

    International Nuclear Information System (INIS)

    Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong

    2014-01-01

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990–1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM 10 , were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM 10 and mortality from cardiopulmonary diseases; each 10 μg/m 3 PM 10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. -- Highlights: • There have been few air pollution cohort studies in developing countries. • PM 10 was associated with increased cardiorespiratory mortality in 71,431 Chinese men. • PM was not significantly associated with lung cancer mortality. -- PM 10 was associated with increased cardiorespiratory mortality in a cohort of 71,431 Chinese men

  3. Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge

    Directory of Open Access Journals (Sweden)

    Cristan Herbert

    2013-03-01

    Childhood exposure to environmental particulates increases the risk of development of asthma. The underlying mechanisms might include oxidant injury to airway epithelial cells (AEC. We investigated the ability of ambient environmental particulates to contribute to sensitization via the airways, and thus to the pathogenesis of childhood asthma. To do so, we devised a novel model in which weanling BALB/c mice were exposed to both ambient particulate pollutants and ovalbumin for sensitization via the respiratory tract, followed by chronic inhalational challenge with a low mass concentration of the antigen. We also examined whether these particulates caused oxidant injury and activation of AEC in vitro. Furthermore, we assessed the potential benefit of minimizing oxidative stress to AEC through the period of sensitization and challenge by dietary intervention. We found that characteristic features of asthmatic inflammation developed only in animals that received particulates at the same time as respiratory sensitization, and were then chronically challenged with allergen. However, these animals did not develop airway hyper-responsiveness. Ambient particulates induced epithelial injury in vitro, with evidence of oxidative stress and production of both pro-inflammatory cytokines and Th2-promoting cytokines such as IL-33. Treatment of AEC with an antioxidant in vitro inhibited the pro-inflammatory cytokine response to these particulates. Ambient particulates also induced pro-inflammatory cytokine expression following administration to weanling mice. However, early-life dietary supplementation with antioxidants did not prevent the development of an asthmatic inflammatory response in animals that were exposed to particulates, sensitized and challenged. We conclude that injury to airway epithelium by ambient environmental particulates in early life is capable of promoting the development of an asthmatic inflammatory response in sensitized and antigen-challenged mice. These

  4. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High efficiency particulate air filter experience survey

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1983-01-01

    Causes and magnitude of HEPA filter changeouts and failures at DOE sites for the years 1977 to 1979 were evaluated. Conclusions inferred from the data follow: HEPA filters have been generally performing the task they were designed for; most changeouts have been made because of filter plugging, preventive maintenance, or precautionary reasons rather than evidence of filter failure; where failures have been experienced, records generally have not been adequate to determine the cause of failure; where cause of failure has been determined, damage attributed to personnel handling and installation has been substantially more prevalent than that from filter environmental exposure. The need for improved personnel training in handling and installation was stressed. Some reduction in filter failure frequency can be achieved by improving the acid and moisture resistance of filters, and providing adequate pretreatment of air prior to HEPA filtration

  6. Collaboration in air particulate analysis through sharing of regional resources

    International Nuclear Information System (INIS)

    Santos, Flora L.

    2003-01-01

    The air pollution research program of the Philippine Nuclear Research Institute is being pursued in support of the 1999 Clean Air Act. This is being undertaken as part of the RCA/IAEA subproject, 'Air Pollution and Its Trends'. Since the PNRI research reactor (PRR-I) has been on extended shut down for the past 18 years, the PNRI depends solely on X-ray Fluorescence (XRF) spectrometry for elemental characterization of air particulate samples. NAA is a powerful and efficient tool in air particulate characterization and is used in many national programs in the region. Collaboration in air pollution studies through exchange of samples between XRF and NAA groups will widen the range of elements that could be detected by one group. In the RCA/IAEA RAS/4/020, 'Improvement of Research Reactor Operation and Utilization' sharing of research reactor facilities is encouraged. Working out of mechanisms for such sharing will be advantageous to research groups without operational research reactors. This could take the form of exchange of samples or fellowship at a regional host institution. This will allow training of technical staff from countries without research reactors, thus ensuring continuing expertise in NAA even after long periods of reactor shutdown. (author)

  7. Collaboration in air particulate analysis through sharing of regional resources

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flora L. [Philippine Nuclear Research Institute, Diliman, Quezon (Philippines)

    2003-03-01

    The air pollution research program of the Philippine Nuclear Research Institute is being pursued in support of the 1999 Clean Air Act. This is being undertaken as part of the RCA/IAEA subproject, 'Air Pollution and Its Trends'. Since the PNRI research reactor (PRR-I) has been on extended shut down for the past 18 years, the PNRI depends solely on X-ray Fluorescence (XRF) spectrometry for elemental characterization of air particulate samples. NAA is a powerful and efficient tool in air particulate characterization and is used in many national programs in the region. Collaboration in air pollution studies through exchange of samples between XRF and NAA groups will widen the range of elements that could be detected by one group. In the RCA/IAEA RAS/4/020, 'Improvement of Research Reactor Operation and Utilization' sharing of research reactor facilities is encouraged. Working out of mechanisms for such sharing will be advantageous to research groups without operational research reactors. This could take the form of exchange of samples or fellowship at a regional host institution. This will allow training of technical staff from countries without research reactors, thus ensuring continuing expertise in NAA even after long periods of reactor shutdown. (author)

  8. Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Walters, D.M.; Breysse, P.N.; Wills-Karp, M. [Childrens Hospital, Cincinnati, OH (United States). Medical Centre, Division of Immunobiology

    2001-10-15

    Airborne particulate matter (PM) is hypothesized to play a role in increases in asthma prevalence, although a causal relationship has yet to be established. To investigate the effects of real-world PM exposure on airway reactivity (AHR) and bronchoalveolar lavage (BAL) cellularity, mice were exposed to a single dose (0.5 mg/ mouse) of ambient PM, coal fly ash, or diesel PM. It was found that ambient PM exposure induced increases in AHR and BAL cellularity, whereas diesel PM induced significant increases in BAL cellularity, but not AHR. On the other hand, coal fly ash exposure did not elicit significant changes in either of these parameters. Ambient PM-induced temporal changes in AHR, BAL cells, and lung cytakine levels over a 2-wk period were then examined. Ambient PM-induced AHR was sustained over 7 d. The increase in AHR was preceded by dramatic increases in BAL eosinophils, whereas a decline in AHR was associated with increases in macrophages. It is concluded that ambient PM can induce asthmalike parameters in mice, suggesting that PM exposure may be an important factor in increases in asthma prevalence.

  9. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China.

    Science.gov (United States)

    Xu, Meimei; Guo, Yuming; Zhang, Yajuan; Westerdahl, Dane; Mo, Yunzheng; Liang, Fengchao; Pan, Xiaochuan

    2014-12-12

    Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal analysis approach. We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during 2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287 township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the effects of averaged PM10 concentration as well. The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3. Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95% confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger response to PM10 exposure. Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.

  10. Nickel and vanadium in air particulates at Dhahran (Saudi Arabia) during and after the Kuwait oil fires

    Science.gov (United States)

    Sadiq, M.; Mian, A. A.

    April-July 1991. Concentrations of these elements were largely below their proposed limits in the ambient air (for nickel-50 μg m -3, air; for vanadium—1 μg m -3 air). It is, therefore, anticipated that concentrations of nickel and vanadium in the air particulate samples were not a health concern during Kuwait oil fires at Dhahran, Saudi Arabia.

  11. Particulate air pollution and mortality in a cohort of Chinese men.

    Science.gov (United States)

    Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong

    2014-03-01

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990-1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM10, were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM10 and mortality from cardiopulmonary diseases; each 10 μg/m(3) PM10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ambient air pollution and cancer in California Seventh-day Adventists.

    Science.gov (United States)

    Mills, P K; Abbey, D; Beeson, W L; Petersen, F

    1991-01-01

    Cancer incidence and mortality in a cohort of 6,000 Seventh-day Adventist nonsmokers who were residents of California were monitored for a 6-y period, and relationships with long-term ambient concentrations of total suspended particulates (TSPs) and ozone (O3) were studied. Ambient concentrations were expressed as mean concentrations and exceedance frequencies, which are the number of hours during which concentrations exceeded specified cutoffs (e.g., federal and California air quality standards). Risk of malignant neoplasms in females increased concurrently with exceedance frequencies for all TSP cutoffs, except the lowest, and these increased risks were highly statistically significant. An increased risk of respiratory cancers was associated with only one cutoff of O3, and this result was of borderline significance. These results are presented in the context of setting standards for these two air pollutants.

  13. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  14. COPPER-DEPENDENT INFLAMMATION AND NUCLEAR FACTOR-KB ACTIVATION BY PARTICULATE AIR POLLUTION

    Science.gov (United States)

    Particulate air pollution causes increased cardiopulmonary morbidity and mortality, but the chemical determinants responsible for its biologic effects are not understood. We studied the effect of total suspended particulates collected in Provo, Utah, an area where an increase in ...

  15. Seasonal variations of ambient air mercury species nearby an airport

    Science.gov (United States)

    Fang, Guor-Cheng; Tsai, Kai-Hsiang; Huang, Chao-Yang; Yang, Kuang-Pu Ou; Xiao, You-Fu; Huang, Wen-Chuan; Zhuang, Yuan-Jie

    2018-04-01

    This study focuses on the collection of ambient air mercury species (total gaseous mercury (TGM), reactive gaseous mercury (RGM), gaseous element mercury (GEM) and particulate bound mercury (PBM) pollutants at airport nearby sampling site during the year of Apr. 2016 to Mar. 2017 by using Four-stage gold amalgamation and denuder. The results indicated that the average TGM, RGM and GEM concentrations were 5.04 ± 2.43 ng/m3, 29.58 ± 80.54 pg/m3, 4.70 ± 2.63 ng/m3, respectively during the year of Apr. 2016 to Mar. 2017 (n = 49) period at this airport sampling site nearby. In addition, the results also indicated that the average PBM concentrations in TSP and PM2.5 were 0.35 ± 0.08 ng/m3 and 0.09 ± 0.03 ng/m3, respectively. And the average PBM in TSP concentrations order follows as summer > autumn > spring > winter, while the average PBM in PM2.5 concentrations order follows as spring > summer > winter > autumn. Moreover, the average TGM, RGM and GEM concentrations order follow as spring > summer > autumn > winter. Finally, the Asian continent has the highest average mercury species concentrations (TGM, RGM, GEM and PBM) when compared with the American and European continents, and the average mercury species concentrations (TGM, RGM, GEM and PBM) displayed declined trends for North America (United States and Canada) and Europe (Spain, Sweden and Southern Baltic) during the years of 2004-2014. Also noteworthy is that the average mercury species concentrations (TGM, RGM, GEM) displayed increasing trends in China and Taiwan during the years of 2008-2016. Japan and Korea are the only two exceptions. Those above two countries mercury species concentrations displayed decreasing trends during years of 2008-2015.

  16. Electric scooters : Batteries in the battle against ambient air pollution?

    NARCIS (Netherlands)

    van Boven, Job FM; An, Pham Le; Kirenga, Bruce J; Chavannes, Niels H.

    2017-01-01

    Ambient air pollution is a major global health threat, responsible for an estimated loss of 103 million disability-adjusted life-years in 2015,1,2 and a main contributor to numerous health problems, such as cardiovascular and respiratory diseases.3,4 Within the traffic domain of air pollution, cars,

  17. High diversity of fungi in air particulate matter.

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-04

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  18. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  19. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  20. The relationships between ambient air pollutants and childhood asthma and eczema are modified by emotion and conduct problems.

    Science.gov (United States)

    Zhou, Cailiang; Baïz, Nour; Banerjee, Soutrik; Charpin, Denis André; Caillaud, Denis; de Blay, Fréderic; Raherison, Chantal; Lavaud, François; Annesi-Maesano, Isabella

    2013-12-01

    This study examined the hypothesis that emotion and conduct problems (ECPs) may modify the relationships between ambient air pollutants and childhood asthma and eczema. In the cross-sectional study, 4209 French schoolchildren (aged 10e12 years) were investigated between March 1999 and October 2000. Ambient air pollutants exposures were estimated with dispersion modeling. Health outcomes and ECPs were evaluated by validated questionnaires, completed by the parents. Marginal models were used to analyze the relationships of exposures to ambient air pollutants and/or ECPs to asthma phenotypes and current eczema, adjusting for potential confounders. In our population, interactions were found between ECPs and exposures to ambient air pollutants (benzene, carbon monoxide, nitrogen dioxide, nitrogen oxides, particulate matter with an aerodynamic diameter below 10 mm, volatile organic compounds) (P eczema (aOR, 2.21; 95% CI, 1.61e3.02). Children with ECPs had 1.17e1.51 times higher aORs for the associations between ambient air pollutants and asthma phenotypes and current eczema than those without ECPs. ECPs may modify the relationships between ambient air pollutants and childhood asthma and eczema. 2013 Elsevier Inc. All rights reserved.

  1. [Burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China].

    Science.gov (United States)

    Liu, Shiwei; Zhou, Maigeng; Wang, Lijun; Li, Yichong; Liu, Yunning; Liu, Jiangmei; You, Jinling; Yin, Peng

    2015-04-01

    To assess the burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China. On the basis of the results of the Global Burden of Diseases Study 2010 (GBD 2010) for China's estimates, we used population attributable fractions (PAF) to examine the burden of disease (mortality and disability-adjusted life years (DALY)) attributable to ambient particulate matter pollution in 1990 and 2010 in China, with 95% uncertainty interval (95% UI) estimate, and increasing rate to explore the trends of attributed burden of disease across the study period of 20 years. In 2010, 38.9% (95% UI: 27.0%-49.4%) of lower respiratory infections for disease, 35.0% (95% UI: 27.4%-41.1%) of stroke, and 21.0% (95% UI: 10.7%-30.3%) of chronic obstructive pulmonary disease (COPD) for ≥ 25 years adults were attributable to ambient particulate matter pollution, which accounted for 1.235 (95% UI: 1.038-1.410) million deaths and 25.230 (95% UI: 21.770-28.600) million person years DALY in total, and increased by 33.4% and 4.0%, respectively by comparison with that in 1990 (0.926 million and 24.260 million person years). Lung cancer accounted for the largest increasing rate of 154.5% (from 0.055 million to 0.140 million) and 130.1% (from 1.330 million person years to 3.060 million person years), followed by ischemic heart disease (118.5%, from 0.130 million to 0.284 million, and 86.6%, from 3.280 million person years to 6.120 million person years) and stroke (41.0%, from 0.429 million to 0.605 million, and 33.8%, from 8.970 million person years to 12.000 million person years). The attributed mortality for both gender mostly occurred in age group of 60-79 years (male: 0.260 million and 0.404 million accounting for 53.7% and 54.8%; female: 0.214 million and 0.236 million accounting for 48.5% and 47.5%) both in 1990 and 2010. The age group of 40-79 years accounted for the most portion of attributed DALY for both gender (male: 8.458 million person years and 13

  2. Hazardous air pollutant handbook: measurements, properties, and fate in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, C.W. (ed.); Gordon, S.M.; Kelly, T.J.; Holdren, M.W.; Mukund, R. [Battelle, Columbus, OH (United States)

    2002-07-01

    Focussing on the 188 hazardous air pollutants (HAPs) identified in the Title III of the US Clean Air Act Amendments, this work reviews the methods used to identify, measure, and locate the presence of toxics in ambient air. After a classification and characterization of the HAPs, the current status of ambient measurement methods are surveyed and categorized according to applicable, likely, and potential methods. The results of studies of ambient air concentrations of the HAPs are presented. Methods used to study atmospheric transformations of toxic air pollutants are reviewed and the concept of atmospheric lifetimes of HAPs is discussed.

  3. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  4. Ambient air particulate matter in Lagos, Nigeria: A study using ...

    African Journals Online (AJOL)

    chemical mass balance model was used for source apportionment. ... world are: soil or entrained dust, vehicular exhaust, marine (in a city situated close ... Mn is a marker element for steel industry and can also be attributed to .... The high enrichment of Br and Pb at the three sites in Lagos is believed to be due to the heavy.

  5. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: a European multicentre panel study

    NARCIS (Netherlands)

    Karakatsani, A.; Analitis, A.; Perifanou, D.; Ayres, J.G.; Harrison, R.M.; Kotronarou, A.; Kavouras, I.G.; Pekkanen, J.; Hameri, K.; Kos, G.P.; de Hartog, J.J.; Hoek, G.; Katsouyanni, K.

    2012-01-01

    ABSTRACT: BACKGROUND: Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction

  6. Annual report of the ambient air quality measurements in Austria 2000

    International Nuclear Information System (INIS)

    Spangl, W.; Schneider, J.

    2001-01-01

    This report presents the result of the ambient air quality measurements conducted according to the air quality act (Austrian Federal Law Gazette I 115/97) in Austria in 2000. This act defines ambient air quality limit values for sulphur dioxide, nitrogen dioxide, total suspended particulates (TSP), carbon monoxide, benzene, lead in air, deposition (total mass including lead and cadmium) and a target value for ozone. The report also comprises results of explorative measurements of PM10 and PM2,5. Only one exceedance of the limit value for sulphur dioxide (0,20 mg/m 3 as half hour mean value, not to be exceeded more than three times a day; 0,50 mg/m 3 as half hour mean value) was observed. The exceedance was caused by air pollution transport from Slovenia. The limit values for nitrogen dioxide and total suspended particulates were exceeded quite frequently in 2000. For nitrogen dioxide, mainly traffic stations were affected. Exceedances of the limit value (0,20 mg/m 3 as half hour mean value) were observed both during winter episodes with unfavourable conditions for dispersion, as well as in spring/summer at a heavily frequented road during episodes with high ozone levels, causing rapid oxidation of NO to NO 2 . Exceedances of the limit value for total suspended particulates (0,15 mg/m 3 as daily mean value) were predominately recorded in urban areas in the vicinity of heavily frequented streets, especially in southern alpine basins and valleys with unfavourable dispersion conditions. The highest pollution was recorded at a heavily frequented crossroad in Graz. For carbon monoxide (eight hour mean value of 10 mg/m 3 ), benzene ( 10 μg/m 3 as annual mean value) and lead (1 μg/m 3 , as annual mean value), no exceedances were recorded. The pollution levels of sulphur dioxide and carbon monoxide show a strong decrease during the last decade, whereas for nitrogen dioxide and particulate matter no clear trend can be identified. The target value of ozone is exceeded at

  7. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  8. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    Science.gov (United States)

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  9. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  10. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2013-04-03

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...

  11. The impact of ambient air pollution on the human blood metabolome.

    Science.gov (United States)

    Vlaanderen, J J; Janssen, N A; Hoek, G; Keski-Rahkonen, P; Barupal, D K; Cassee, F R; Gosens, I; Strak, M; Steenhof, M; Lan, Q; Brunekreef, B; Scalbert, A; Vermeulen, R C H

    2017-07-01

    Biological perturbations caused by air pollution might be reflected in the compounds present in blood originating from air pollutants and endogenous metabolites influenced by air pollution (defined here as part of the blood metabolome). We aimed to assess the perturbation of the blood metabolome in response to short term exposure to air pollution. We exposed 31 healthy volunteers to ambient air pollution for 5h. We measured exposure to particulate matter, particle number concentrations, absorbance, elemental/organic carbon, trace metals, secondary inorganic components, endotoxin content, gaseous pollutants, and particulate matter oxidative potential. We collected blood from the participants 2h before and 2 and 18h after exposure. We employed untargeted metabolite profiling to monitor 3873 metabolic features in 493 blood samples from these volunteers. We assessed lung function using spirometry and six acute phase proteins in peripheral blood. We assessed the association of the metabolic features with the measured air pollutants and with health markers that we previously observed to be associated with air pollution in this study. We observed 89 robust associations between air pollutants and metabolic features two hours after exposure and 118 robust associations 18h after exposure. Some of the metabolic features that were associated with air pollutants were also associated with acute health effects, especially changes in forced expiratory volume in 1s. We successfully identified tyrosine, guanosine, and hypoxanthine among the associated features. Bioinformatics approach Mummichog predicted enriched pathway activity in eight pathways, among which tyrosine metabolism. This study demonstrates for the first time the application of untargeted metabolite profiling to assess the impact of air pollution on the blood metabolome. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults.

    Science.gov (United States)

    Chen, Jiu-Chiuan; Schwartz, Joel

    2009-03-01

    In vivo animal experiments demonstrate neurotoxicity of exposures to particulate matter (PM) and ozone, but only one small epidemiological study had linked ambient air pollution with central nervous system (CNS) functions in children. To examine the neurobehavioral effects associated with long-term exposure to ambient PM and ozone in adults. We conducted a secondary analysis of the Neurobehavioral Evaluation System-2 (NES2) data (including a simple reaction time test [SRTT] measuring motor response speed to a visual stimulus; a symbol-digit substitution test [SDST] for coding ability; and a serial-digit learning test [SDLT] for attention and short-term memory) from 1764 adult participants (aged 37.5+/-10.9 years) of the Third National Health and Nutrition Examination Survey in 1988-1991. Based on ambient PM(10) (PM with aerodynamic diameter SDLT, but not in SRTT. Each 10-ppb increase in annual ozone was associated with increased SDST and SDLT scores by 0.16 (95%CI: 0.01, 0.23) and 0.56 (95%CI: 0.07, 1.05), equivalent to 3.5 and 5.3 years of aging-related decline in cognitive performance. Our study provides the first epidemiological data supporting the adverse neurobehavioral effects of ambient air pollutants in adults.

  13. PARTICULATE MATTER IN ATMOSPHERIC AIR IN URBAN AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2017-05-01

    Full Text Available The study aimed to determine the mass concentration of PM10 in the air in urban area. The specific objective of the research was to analyze and assess the impact of transport road emissions on the level of concentration of particulate matter in the atmosphere in the Lublin agglomeration. The measuring points were located in places at different distances from the communications emission sources and, at the same time, possibly varying degrees of air pollution dust. Measuring the concentration of dust at the measuring points was performed using an indirect method using a laser photometer. In the research point which was not under direct influence of a heavy traffic road dust levels lower by 10.5% to 65.4% than in the vicinity of the transport route were reported. Small particle air pollution at all the points covered by the study increased significantly during the heating season. Based on the comparison of the obtained values of PM10 concentrations with legal standards, it was found that the air pollution exceeded the limits in all measurement points only during a series of measurements in the months of November-December. The recorded increase in air pollution during the heating season should be associated with an increased dust emissions in this period from the "low" emitters - local house boilers and detached houses.

  14. EFFECTS OF SUBCHRONIC EXPOSURE TO CONCENTRATED AMBIENT PARTICULATES ON ELECTROCARDIOGRAM AND HEART RATE VARIABILITY IN SPONTANEOUSLY HYPERTENSIVE RATS

    Science.gov (United States)

    Epidemiological studies have linked air pollution exposure to adverse respiratory health effects, especially in individuals with inflammatory airways disease. Symptomatic asthmatics appear to be at greatest risk. We previously demonstrated that exposure of rats to particulate...

  15. Elemental characterization of air particulate matter in Buenos Aires, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Jasan, Raquel C.; Pla, Rita R.; Invernizzi, Rodrigo [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Grupo Tecnicas Analiticas Nucleares], E-mail: jasan@cae.cnea.gov.ar, E-mail: rpla@cae.cnea.gov.ar; Santos, Marina dos [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Constituyentes. Lab. de Contaminacion del Aire], E-mail: mdossant@cnea.gov.ar

    2007-07-01

    Buenos Aires, the capital city of Argentina, is surrounded by 24 neighboring districts forming the so-called Buenos Aires metropolitan area (AMBA) that holds a population of 14 million people. In this work, the atmospheric aerosol of this metropolitan area was characterized through the determination of mass concentration, black carbon and elemental concentrations, on PM10 and PM2.5 samples taken using a 'Gent' sampler. The sampling site was located at an urban area characterized by fast and heavy traffic and samples were collected each third day, along 24 hours, between October 2005 and February 2006. A number of elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Se, Sm, Th, Yb and Zn) were determined by Neutron Activation Analysis and their results, as well as those of gravimetric mass concentrations, were compared with historical data. Enrichment factors were calculated for both fractions, using Sc as reference element and Mason's crustal concentration values, showing enrichment for As, Br, Sb, Se and Zn. Although the number of analyzed filters is still small, a preliminary factor analysis was run on both fraction results and different source profiles were found. The attribution of the sources to soil, high temperature processes including refuse incineration, fuel combustion and others, metal processes, traffic and other anthropogenic ones is discussed. (author)

  16. Elemental characterization of air particulate matter in Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Jasan, Raquel C.; Pla, Rita R.; Invernizzi, Rodrigo; Santos, Marina dos

    2007-01-01

    Buenos Aires, the capital city of Argentina, is surrounded by 24 neighboring districts forming the so-called Buenos Aires metropolitan area (AMBA) that holds a population of 14 million people. In this work, the atmospheric aerosol of this metropolitan area was characterized through the determination of mass concentration, black carbon and elemental concentrations, on PM10 and PM2.5 samples taken using a 'Gent' sampler. The sampling site was located at an urban area characterized by fast and heavy traffic and samples were collected each third day, along 24 hours, between October 2005 and February 2006. A number of elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Se, Sm, Th, Yb and Zn) were determined by Neutron Activation Analysis and their results, as well as those of gravimetric mass concentrations, were compared with historical data. Enrichment factors were calculated for both fractions, using Sc as reference element and Mason's crustal concentration values, showing enrichment for As, Br, Sb, Se and Zn. Although the number of analyzed filters is still small, a preliminary factor analysis was run on both fraction results and different source profiles were found. The attribution of the sources to soil, high temperature processes including refuse incineration, fuel combustion and others, metal processes, traffic and other anthropogenic ones is discussed. (author)

  17. Controlling particulate matter under the Clean Air Act: a menu of options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document was prepared by STAPPA and ALAPCO to help US state and local air pollution control officials understand the effects of particulate matter (PM) on human health and air quality, the relative contribution of various sources to particulate emissions, and the effectiveness and costs of various approaches - including innovative ones - to minimizing these emissions. The document covers particulate matter with a nominal diameter of 10 microns ({mu}m) or less (PM{sub 10}), including `fine` PM of 2.5 microns or less in diameter (PM{sub 2.5}). Sections cover: the effects of particulate matter on human health; regulatory issues; characterization of particulate matter; emission control strategies for mobile sources (diesel engines, small nonroad engines, alternative fuels etc.), particulates from stationary sources (electric utilities, industry and commercial fuel combustion; mineral products industry, metallurgical industry etc.); particulates from area sources; and market-based strategies for controlling particulate matter. 2 apps.

  18. Ambient air pollution exposure and full-term birth weight in California

    Directory of Open Access Journals (Sweden)

    Sadd James L

    2010-07-01

    Full Text Available Abstract Background Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births. Methods We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth. Results 3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g per pphm ozone, -7.7 g (-7.9 g, -6.6 g per 10 μg/m3 particulate matter under 10 μm, -12.8 g (-14.3 g, -11.3 g per 10 μg/m3 particulate matter under 2.5 μm, and -9.3 g (-10.7 g, -7.9 g per 10 μg/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters. Conclusions This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether

  19. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  20. An electrostatic sensor for the continuous monitoring of particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Intra, Panich; Yawootti, Artit [Rajamangala University of Technology Lanna, Chiang Mai (Thailand); Tippayawong, Nakorn [Chiang Mai University, Chiang Mai (Thailand)

    2013-12-15

    We developed and evaluated a particulate air pollution sensor for continuous monitoring of size resolved particle number, based on unipolar corona charging and electrostatic detection of charged aerosol particles. The sensor was evaluated experimentally using combustion aerosol with particle sizes in the range between approximately 50 nm and several microns, and particle number concentrations larger than 10{sup 10} particles/m{sup 3}. Test results were very promising. It was demonstrated that the sensor can be used in detecting particle number concentrations in the range of about 2.02x10{sup 11} and 1.03x10{sup 12} particles/m{sup 3} with a response of approximately 100 ms. Good agreement was found between the developed sensor and a commercially available laser particle counter in measuring ambient PM along a roadside with heavy traffic for about 2 h. The developed sensor proved particularly useful for measuring and detecting particulate air pollution, for number concentration of particles in the range of 10{sup 8} to 10{sup 12} particles/m{sup 3}.

  1. Ambient concentrations of total suspended particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki, Greece.

    Science.gov (United States)

    Gaidajis, George

    2003-01-01

    To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.

  2. Assessment of ambient air quality in Chidambaram a south Indian town

    Directory of Open Access Journals (Sweden)

    P. Balashanmugam

    2012-06-01

    Full Text Available Worldwide preliminary studies in large number are advocated to create data base, to identify potential cities / towns that warrant “continuous ambient air quality monitoring and control mechanism” and to evolve priorities for clean air target. The results reported pertain to an eight hour random preliminary air sampling exercise carried out at each of the eight select locations in Chidambaram, a southern semi urban settlement in India. Criteria pollutants SPM, CO, SO2 and NO2 measured are found to have either crossed or on the verge of crossing the limits, necessitating the immediate installation of a continuous monitoring and control mechanism. While transport related emissions are the major sources of air contamination, increasing civil construction activities also contribute to particulates. The exponential rise in volume of vehicles, disadvantageous traffic flow pattern, differing driving cycle pattern and human interceptions deserve due attention. It is concluded that Chidambaram town is a strong case for continuous monitoring of ambient air quality due to alarming and increasing level of pollutants.

  3. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    Science.gov (United States)

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured

  4. ORGANOCHLORINE PESTICIDES IN THE AMBIENT AIR OF MEXICO

    Science.gov (United States)

    Recent and past use of organochlorine pesticides (OCPs) in Mexico has resulted in concentrations in ambient air that are 1-2 orders of magnitude above levels in the Great Lakes region. Atmospheric transport from Mexico and Central America may be contributing significant amounts ...

  5. Three Mile Island ambient-air-temperature sensor measurements

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1983-01-01

    Data from the ambient-air-temperature sensors in Three Mile Island-Unit 2 (TMI-2) reactor containment building are analyzed. The data were for the period of the hydrogen burn that was part of the TMI-2 accident. From the temperature data, limits are placed on the duration of the hydrogen burn

  6. Ambient air quality at the wider area of an industrial mining facility at Stratoni, Chalkidiki, Greece.

    Science.gov (United States)

    Gaidajis, Georgios; Angelakoglou, Komninos; Gazea, Emmy

    2012-01-01

    To assess ambient air quality at the wider area of a mining-industrial facility in Chalkidiki, Greece, the particulate matter with an aerodynamic diameter of 10 μm (PM(10)) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn were monitored for a period of three years (2008-2010). Gravimetric air samplers were employed for the particulate matter sampling at three sampling stations located in the immediate vicinity of the industrial facility and at a neighbouring residential site. Monitoring data indicated that the 3-year median PM(10) concentrations were 23.3 μg/m(3) at the residential site close to the facility and 28.7 μg/m(3) at the site within the facility indicating a minimal influence from the industrial activities to the air quality of the neighbouring residential area. Both annual average and median PM(10) concentration levels were below the indicative European standards, whereas similar spatial and temporal variation was observed for the PM(10) constituents. The average Pb concentrations measured for the three sampling sites were 0.2, 0.146 and 0.174 μg/m(3) respectively, well below the indicative limit of 0.5 μg/m(3). The quantitative and qualitative comparison of PM(10) concentrations and its elemental constituent for the three sampling stations did not indicate any direct influence of the mining-industrial activities to the air quality of the Stratoni residential area.

  7. Behavior and source characteristic of PCBS in urban ambient air of Yokohama, Japan

    International Nuclear Information System (INIS)

    Kim, Kyoung-Soo; Masunaga, Shigeki

    2005-01-01

    To understand the behavior and sources of polychlorinated biphenyls (PCBs) in ambient air, gaseous and particulate phase concentrations were measured at Yokohama City, Japan, during March 2002 and February 2003. The concentration of total PCB and TEQ ranged from 62 to 250 pg/m 3 and from 2 to 14 fgTEQ/m 3 , respectively. The gas-particle partition coefficient (K p ) was obtained as a function of temperature. The relationship between the partition coefficient and the sub-cooled liquid vapor pressure (P L ) was also established (coefficients of determination for log K p versus log P L plot were >0.76, except for three samples). As a result, the partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. Principal component analysis (PCA) was applied to the source identification of PCBs in ambient air. The concentrations of 122 congeners between tetra-CBs and deca-CB were used as input variables, and three PCs with eigenvalue more than 10 were obtained. The principal component 1 (PC 1) accounted for 43.4% of the total variance, and was interpreted as volatilization from PCB products and/or sites polluted by PCBs. The concentrations of PCB congeners were strongly related with PC 1 which showed high correlation with temperature. PC 2 accounted for 22.3%, and was interpreted as PCBs from incineration sources, while PC 3 accounted for 10.8%, but could not be interpreted. - The relationship between the gas-particle partition coefficient (K p ) and sub-cooled liquid vapor pressure was estimated using gaseous and particle phase concentration in ambient air, and was estimated source apportionment of PCBs

  8. Radiation dose estimates due to air particulate emissions from selected phosphate industry operations

    International Nuclear Information System (INIS)

    Partridge, J.E.; Horton, T.R.; Sensintaffar, E.L.; Boysen, G.A.

    1978-06-01

    The EPA Office of Radiation Programs has conducted a series of studies to determine the radiological impact of the phosphate mining and milling industry. This report describes the efforts to estimate the radiation doses due to airborne emissions of particulates from selected phosphate milling operations in Florida. Two wet process phosphoric acid plants and one ore drying facility were selected for this study. The 1976 Annual Operations/Emissions Report, submitted by each facility to the Florida Department of Environmental Regulation, and a field survey trip by EPA personnel to each facility were used to develop data for dose calculations. The field survey trip included sampling for stack emissions and ambient air samples collected in the general vicinity of each plant. Population and individual radiation dose estimates are made based on these sources of data

  9. Particulate air pollution and vascular reactivity: the bus stop study.

    Science.gov (United States)

    Dales, Robert; Liu, Ling; Szyszkowicz, Mietek; Dalipaj, Mary; Willey, Jeff; Kulka, Ryan; Ruddy, Terrence D

    2007-11-01

    Particulate air pollution is associated with cardiovascular morbidity but mechanisms are not well understood. We tested the effects on vascular reactivity of exposure to fine particulates matter mass (PM(2.5)), number of particles bus stops. Flow-mediated vasodilation (FMD) of the brachial artery was then measured by ultrasound and expressed as: (maximum artery diameter after release of a blood pressure cuff inflated above systolic pressure-baseline resting diameter)/baseline resting diameter. A 30 microg/m(3) increase in PM(2.5) exposure corresponded to a 0.48% reduction in FMD, P=0.05 representing a 5% relative change in the maximum ability to dilate. Results were consistent between the two bus stops and not sensitive to type of analysis. No significant association was found between FMD and NO(2), PM(1.0) or traffic density. PM(2.5) may reduce the capacity to vasodilate, a potential explanation for the documented association with cardiovascular morbidity.

  10. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  11. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  12. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China.

    Science.gov (United States)

    Yang, Shaoping; Tan, Yafei; Mei, Hui; Wang, Fang; Li, Na; Zhao, Jinzhu; Zhang, Yiming; Qian, Zhengmin; Chang, Jen Jen; Syberg, Kevin M; Peng, Anna; Mei, Hong; Zhang, Dan; Zhang, Yan; Xu, Shunqing; Li, Yuanyuan; Zheng, Tongzhang; Zhang, Bin

    2018-04-01

    Recent studies suggest that ambient air pollution exposure during pregnancy is associated with stillbirth occurrence. However, the results on the associations between ambient air pollutants and stillbirths are inconsistent and little is known about the gestational timing of sensitive periods for the effects of ambient air pollutants exposure on stillbirth. This study aimed to examine whether exposure to high levels of ambient air pollutants in a Chinese population is associated with an increased risk of stillbirth, and determine the gestational period when the fetus is most susceptible. We conducted a population-based cohort study in Wuhan, China, involving 95,354 births between June 10, 2011 and June 9, 2013. The exposure assessments were based on the daily mean concentrations of air pollutants obtained from the exposure monitor nearest to the pregnant women's residence. Logistic regression analyses were performed to determine the associations between stillbirths and exposure to each of the air pollutants at different pregnancy periods with adjustment for confounding factors. Stillbirth increased with a 10 μg/m 3 increase in particulate matter 2.5 (PM 2.5 ) in each stage of pregnancy, and a significant association between carbon monoxide (CO) exposure and stillbirth was found during the third trimester (adjusted odds ratio (aOR): 1.01, 95% confidence interval (CI): 1.00-1.01) and in the entire pregnancy (aOR: 1.18, 95% CI: 1.04-1.34). Furthermore, an increased risk of stillbirth in the third trimester was associated with a 10 μg/m 3 increase in PM 10 (aOR: 1.08, 95% CI: 1.04-1.11), nitrogen dioxide (NO 2 ) (aOR: 1.13, 95% CI: 1.07-1.21) and sulfur dioxide (SO 2 ) (aOR: 1.26, 95% CI: 1.16-1.35). However, no positive association was observed between ozone exposure and stillbirth. In the two-pollutant models, PM 2.5 and CO exposures were found to be consistently associated with stillbirth. Our study revealed that exposure to high levels of PM 2.5 , PM 10 , SO 2

  13. Ambient air pollution and pregnancy-induced hypertensive disorders

    DEFF Research Database (Denmark)

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy

    2014-01-01

    to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December.......5), carbon monoxide (CO), ozone (O3), proximity to major roads, and traffic density met our inclusion criteria. Most studies reported that air pollution increased risk for pregnancy-induced hypertensive disorders. There was significant heterogeneity in meta-analysis, which included 16 studies reporting...... on gestational hypertension and preeclampsia as separate or combined outcomes; there was less heterogeneity in findings of the 10 studies reporting solely on preeclampsia. Meta-analyses showed increased risks of hypertensive disorders in pregnancy for all pollutants except CO. Random-effect meta...

  14. Ambient air pollution associated to domestic wood burning heating systems

    International Nuclear Information System (INIS)

    Friboulet, I.; Durif, M.; Malherbe, L.

    2009-01-01

    Main publications are considering effects of wood burning appliances on indoor air quality, which is a major issue in some countries. But impacts on ambient air, close environment and human exposure are rather poorly characterised so far. Besides, woods burning for domestic purpose may develop in the next years while promoting bio fuels. The aim of the ongoing study is to assess in which conditions associated air pollution and population exposure could be significant, this poster shows preliminary results of the impact of a village of 98 houses equipped with a wood burning heating system. (N.C.)

  15. Ambient Air Pollution and Adverse Pregnancy Outcomes in Wuhan, China.

    Science.gov (United States)

    Qian, Zhengmin; Zhang, Bin; Liang, Shengwen; Wang, Jing; Yang, Shaoping; Hu, Ke; Trevathan, Edwin; Yang, Rong; Li, Qijie; Flick, Louise H; Hu, Ronghua; Huang, Zhen; Zhang, Yimin; Hu, Shixiang; Wang, Jing; Shen, Longjiao; Lu, Yuan; Peng, Hui; Yu, Yuzhen; Yang, Li; Chen, Wei; Liu, Wenjin; Zhang, Wei

    2016-09-01

    Several recent studies have suggested that maternal exposures to air pollution and temperature extremes might contribute to low birth weight (LBW), preterm birth (PTB), and other outcomes that can adversely affect infant health. At the time the current study began, most other studies had been conducted in the United States or Europe. Dr. Zhengmin Qian proposed to extend work he had done on ambient particulate air pollution and daily mortality in Wuhan, China (Qian et al. 2010), as part of the HEIsponsored Public Health and Air Pollution in Asia program, to study adverse birth outcomes. Wuhan is the capital city of Hubei province, has a large population of about 6.4 million within the urban study area, experiences temperature extremes, and generally has higher air pollution levels than those observed in the United States and Europe, thus providing a good opportunity to explore questions about air pollution and health. Qian and colleagues planned a cohort and nested case–control design with four specific aims, examining whether increased exposures to air pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) during vulnerable pregnancy periods were associated with increased rates of PTB, LBW (air pollution and daily weather data for August 2010 to June 2013 from nine monitoring stations representing background air pollution sites in seven Wuhan inner-city districts. Only two of these stations provided PM2.5 data. For the cohort study, the investigators assigned exposures to mothers according to the daily mean concentrations from the monitor nearest the residential community in which the mother lived at the time of the birth. For the case–control study, they assigned exposures based on the inverse distance weighted average of daily mean concentrations from the three nearest monitors, for all but PM2.5 for which the method was not specified. They also collected data on various factors that might confound or modify the impact of the pollutants on the adverse outcomes

  16. Regional anomalies in chronic obstructive pulmonary disease; comparison with acid air pollution particulate characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Winchester, J W

    1989-01-01

    Mortality rates due to chronic obstructive pulmonary disease (COPD) for males and females in standard metropolitan statistical areas are highest in two broad regions of the U.S. One is the southeast, with age-adjusted rates high in Georgia and north Florida but decreasing toward south Florida; the other is the western plains, with rates high in Colorado and north Texas but decreasing toward south Texas. Rates are generally low in the northeast, upper midwest, and far west, as well as in the largest cities of these regions. These geographic patterns suggest that atmospheric environmental conditions may contribute to the risk of COPD. Based on measured aerosol characteristics and atmospheric chemical reasoning, it is argued that ambient air in the high COPD regions may be especially irritating to the respiratory tract because of fine particles that contain the reaction products of acid air pollutants. In the southeast, sulfuric acid aerosol concentrations are high, apparently because of a sunny warm humid climate that favors rapid oxidation of sulfur dioxide as well as the region's proximity to large primary air pollution sources further north. Particulate sulfur is also associated with soil mineral constituents. In the western plains, concentrations of alkaline dust are high because of soil erosion during windy dry conditions. Acid air pollutants can be scavenged to mineral particle surfaces and form chemical reaction products that may include solubilized mineral aluminum. These may be inhaled and deposited in the respiratory tract so as to contribute to COPD mortality risk.

  17. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review

    International Nuclear Information System (INIS)

    Helsen, Lieve

    2005-01-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices. - Submicron arsenic fumes are difficult to control in conventional air pollution control devices

  18. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  19. Short‐term Changes in Ambient Particulate Matter and Risk of Stroke: A Systematic Review and Meta‐analysis

    Science.gov (United States)

    Wang, Yi; Eliot, Melissa N.; Wellenius, Gregory A.

    2014-01-01

    Background Stroke is a leading cause of death and long‐term disability in the United States. There is a well‐documented association between ambient particulate matter air pollution (PM) and cardiovascular disease morbidity and mortality. Given the pathophysiologic mechanisms of these effects, short‐term elevations in PM may also increase the risk of ischemic and/or hemorrhagic stroke morbidity and mortality, but the evidence has not been systematically reviewed. Methods and Results We provide a comprehensive review of all observational human studies (January 1966 to January 2014) on the association between short‐term changes in ambient PM levels and cerebrovascular events. We also performed meta‐analyses to evaluate the evidence for an association between each PM size fraction (PM2.5, PM10, PM2.5‐10) and each outcome (total cerebrovascular disease, ischemic stroke/transient ischemic attack, hemorrhagic stroke) separately for mortality and hospital admission. We used a random‐effects model to estimate the summary percent change in relative risk of the outcome per 10‐μg/m3 increase in PM. Conclusions We found that PM2.5 and PM10 are associated with a 1.4% (95% CI 0.9% to 1.9%) and 0.5% (95% CI 0.3% to 0.7%) higher total cerebrovascular disease mortality, respectively, with evidence of inconsistent, nonsignificant associations for hospital admission for total cerebrovascular disease or ischemic or hemorrhagic stroke. Current limited evidence does not suggest an association between PM2.5‐10 and cerebrovascular mortality or morbidity. We discuss the potential sources of variability in results across studies, highlight some observations, and identify gaps in literature and make recommendations for future studies. PMID:25103204

  20. Time-varying cycle average and daily variation in ambient air pollution and fecundability.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Buck Louis, Germaine M; Sherman, Seth; Mendola, Pauline

    2018-01-01

    Does ambient air pollution affect fecundability? While cycle-average air pollution exposure was not associated with fecundability, we observed some associations for acute exposure around ovulation and implantation with fecundability. Ambient air pollution exposure has been associated with adverse pregnancy outcomes and decrements in semen quality. The LIFE study (2005-2009), a prospective time-to-pregnancy study, enrolled 501 couples who were followed for up to one year of attempting pregnancy. Average air pollutant exposure was assessed for the menstrual cycle before and during the proliferative phase of each observed cycle (n = 500 couples; n = 2360 cycles) and daily acute exposure was assessed for sensitive windows of each observed cycle (n = 440 couples; n = 1897 cycles). Discrete-time survival analysis modeled the association between fecundability and an interquartile range increase in each pollutant, adjusting for co-pollutants, site, age, race/ethnicity, parity, body mass index, smoking, income and education. Cycle-average air pollutant exposure was not associated with fecundability. In acute models, fecundability was diminished with exposure to ozone the day before ovulation and nitrogen oxides 8 days post ovulation (fecundability odds ratio [FOR] 0.83, 95% confidence interval [CI]: 0.72, 0.96 and FOR 0.84, 95% CI: 0.71, 0.99, respectively). However, particulate matter ≤10 microns 6 days post ovulation was associated with greater fecundability (FOR 1.25, 95% CI: 1.01, 1.54). Although our study was unlikely to be biased due to confounding, misclassification of air pollution exposure and the moderate study size may have limited our ability to detect an association between ambient air pollution and fecundability. While no associations were observed for cycle-average ambient air pollution exposure, consistent with past research in the United States, exposure during critical windows of hormonal variability was associated with prospectively measured couple

  1. Ambient Air Pollution and Biomarkers of Health Effect.

    Science.gov (United States)

    Yang, Di; Yang, Xuan; Deng, Furong; Guo, Xinbiao

    2017-01-01

    Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.

  2. Annual report on the ambient air quality measurement in Austria 2004

    International Nuclear Information System (INIS)

    Spangl, W.; Nagl, C.; Schneider, J.

    2006-01-01

    A summary of the ambient air quality situation (measurements) conducted according to the Air Quality Act and the Ozone Act in Austria during 2004 is presented. The situation was assessed mainly in relation to Austrian limit and target values of sulfur dioxide, nitrogen oxides, particulate matter (this is measured using two different indicators: total suspended particulates (TSP) and PM10), carbon monoxide, benzene and lead. The PM10 limit value - 35 days with average concentrations above 50 μg/m 3 - was exceeded at 27 sites. The highest exceedances were measured at traffic related sites in large cities, in particular the city of Graz, in Vienna, at industrial sites (e.g. Linz). Main sources for primary particulate matter are road traffic, domestic heating (in particular wood burning), industrial emissions, construction activities and off-road sources. For nitrogen dioxide, the short term limit value was exceeded at few traffic related sites, mainly - but not only - in larger towns. The limit value for the protection of vegetation of 30 μg/m 3 NO x was exceeded at one site in Tyrol (Kramsach). Limit values for sulfur dioxide were exceeded at three sites. Neither the limit values for carbon monoxide, lead and benzene nor the alert thresholds for nitrogen dioxide or sulfur dioxide were exceeded in this year. Deposition of total particulates limit value was exceeded at a few sites, lead and cadmium in two industrial sites. Low ozone levels were measured at most monitoring sites, the information threshold of 180 μg/m 3 ozone as one hour mean was exceeded at 21 sites on all together 9 days and the alert threshold of 240 μg/m 3 as one hour mean was not exceeded. 45 figs., 57 tabs. (nevyjel)

  3. Study of temporal variation in ambient air quality during Diwali festival in India.

    Science.gov (United States)

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  4. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities

    International Nuclear Information System (INIS)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM_1_0) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM_1_0-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM_1_0-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM_1_0 concentration and green space per capita could best explain the heterogeneity in PM_1_0-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. - Highlights: • The heterogeneity was examined in PM_1_0-mortality associations among Chinese cities. • Temperature, PM_1_0 and green space could best explain the heterogeneity. • PM_1_0-mortality associations were predicted for 73 Chinese cities. - This study provides a practical way to assess exposure-response associations and evaluate the burden of mortality in areas with insufficient data.

  5. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities.

    Science.gov (United States)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A workplace air monitor for uranium particulate detection

    International Nuclear Information System (INIS)

    Sayers, J.E.; Monroe, F.E. Jr.; Smith, D.D.; Wallace, S.A.

    1990-01-01

    An air monitor has been developed at the Oak Ridge Y-12 Plant to sample the air in enriched uranium processing areas and to detect elevated particulate concentrations due to an upset condition. The monitor measures the alpha particle activity from material collected on 47-mm filter paper. Three energy windows are used to allow quantification of background activity from radon and thoron daughters and correction of their spillage into the uranium window. There is sufficient monitor memory to hold a history file of six days' activity from three sampling heads at 20-min status intervals. Alarm signals are activated if the absolute level of activity on a filter exceeds a predefined level, or if an excessively fast rate of buildup is occurring, which would cause the absolute level to be exceeded. This monitor was combined with an absolute particle counter and data were collected at a processing station where uranium dust is known to be present. The occurrence of high particle count activity in the 3.0-10.0-μ range was followed by increased alpha activity on the filter paper. This strong correlation has not been reported

  7. Traffic-related particulate air pollution exposure in urban areas

    Science.gov (United States)

    Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.

    In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.

  8. Source Contributions to Premature Mortality Due to Ambient Particulate Matter in China

    Science.gov (United States)

    Hu, J.; Huang, L.; Ying, Q.; Zhang, H.; Shi, Z.

    2016-12-01

    Outdoor air pollution is linked to various health effects. Globally it is estimated that ambient air pollution caused 3.3 million premature deaths in 2010. The health risk occurs predominantly in developing countries, particularly in Asia. China has been suffering serious air pollution in recent decades. The annual concentrations of ambient PM2.5 are more than five times higher than the WHO guideline value in many populous Chinese cities. Sustained exposure to high PM2.5 concentrations greatly threatens public health in this country. Recognizing the severity of the air pollution situation, the Chinese government has set a target in 2013 to reduce PM2.5 level by up to 25% in major metropolitan areas by 2017. It is urgently needed for China to assess premature mortality caused by outdoor air pollution, identify source contributions of the premature mortality, and evaluate responses of the premature mortality to air quality improvement, in order to design effective control plans and set priority for air pollution controls to better protect public health. In this study, we determined the spatial distribution of excess mortality (ΔMort) due to adult (> 30 years old) ischemic heart disease (IHD), cerebrovascular disease (CEV), chronic obstructive pulmonary disease (COPD) and lung cancer (LC) at 36-km horizontal resolution for 2013 from the predicted annual-average surface PM2.5 concentrations using an updated source-oriented Community Multiscale Air Quality (CMAQ) model along with an ensemble of four regional and global emission inventories. Observation data fusing was applied to provide additional correction of the biases in the PM2.5 concentration field from the ensemble. Source contributions to ΔMort were determined based on total ΔMort and fractional source contributions to PM2.5 mass concentrations. We estimated that ΔMort due to COPD, LC, IHD and CEV are 0.329, 0.148, 0.239 and 0.953 million in China, respectively, leading to a total ΔMort of 1.669 million

  9. Ambient air pollution exposure and the incidence of related health effects among racial/ethnic minorities

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Wernette, D.R.

    1997-02-01

    Differences among racial and ethnic groups in morbidity and mortality rates for diseases, including diseases with environmental causes, have been extensively documented. However, documenting the linkages between environmental contaminants, individual exposures, and disease incidence has been hindered by difficulties in measuring exposure for the population in general and for minority populations in particular. After briefly discussing research findings on associations of common air pollutants with disease incidence, the authors summarize recent studies of radial/ethnic subgroup differences in incidence of these diseases in the US. They then present evidence of both historic and current patterns of disproportionate minority group exposure to air pollution as measured by residence in areas where ambient air quality standards are violated. The current indications of disproportionate potential exposures of minority and low-income populations to air pollutants represent the continuation of a historical trend. The evidence of linkage between disproportionate exposure to air pollution of racial/ethnic minorities and low-income groups and their higher rates of some air pollution-related diseases is largely circumstantial. Differences in disease incidence and mortality rates among racial/ethnic groups are discussed for respiratory diseases, cancers, and lead poisoning. Pollutants of concern include CO, Pb, SO{sub 2}, O{sub 3}, and particulates.

  10. Fine particulate matter air pollution and cognitive function among older US adults.

    Science.gov (United States)

    Ailshire, Jennifer A; Crimmins, Eileen M

    2014-08-15

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large, nationally representative sample of US adults aged 50 years or older. We linked participant data with 2000 US Census tract data and 2004 census tract-level annual average PM2.5 concentrations. Older adults living in areas with higher PM2.5 concentrations had worse cognitive function (β = -0.26, 95% confidence interval: -0.47, -0.05) even after adjustment for community- and individual-level social and economic characteristics. Results suggest that the association is strongest for the episodic memory component of cognitive function. This study adds to a growing body of research highlighting the importance of air pollution to cognitive function in older adults. Improving air quality in large metropolitan areas, where much of the aging US population resides, may be an important mechanism for reducing age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Biomarkers of ambient air pollution and lung cancer

    DEFF Research Database (Denmark)

    Demetriou, Christiana A; Raaschou-Nielsen, Ole; Loft, Steffen

    2012-01-01

    The association between ambient air pollution exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution may cause lung cancer. Despite the prospective nature and consistent findings...... and progression from external exposure to tumour formation and some have also been suggested as risk predictors of future cancer, reinforcing causal reasoning. However, methodological issues such as confounding, publication bias and use of surrogate tissues instead of target tissues in studies on these markers...

  12. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  13. Ambient air monitoring for mercury around an industrial complex

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.

    1991-01-01

    Public and scientific interest in mercury in the environment has experienced an upsurge in the past few years, due in part to disclosures that fish in certain waters, which have apparently received no direct industrial discharges, were contaminated with mercury. Atmospheric releases of mercury from fossil fuel energy generators, waste incinerators and other industrial sources are suspected to be contributing to this problem. Such releases can be evaluated in a variety of ways, including stack sampling, material balance studies, soil/vegetation sampling and ambient air monitoring. Ambient air monitoring of mercury presents significant challenges because of the typically low concentrations (ng/m 3 ) encountered and numerous opportunities for sample contamination or analyte loss. There are presently no EPA-approved protocols for such sampling and analysis. Elemental mercury was used in large quantities at a nuclear weapons plant in Oak Ridge, Tennessee between 1950 and 1963 in a process similar to chloralkali production. Soil and water contamination with mercury were known to be present at the facility but outdoor ambient air contamination had not been investigated prior to the present study. In addition, one large building still contained original process equipment with mercury residuals. The objectives of this study were to establish a monitoring network for mercury which could be used (1) to demonstrate whether or not human health and the environment was being protected, and (2), to establish a decommissioning activities at the facility

  14. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease.

    Science.gov (United States)

    Langrish, Jeremy P; Li, Xi; Wang, Shengfeng; Lee, Matthew M Y; Barnes, Gareth D; Miller, Mark R; Cassee, Flemming R; Boon, Nicholas A; Donaldson, Ken; Li, Jing; Li, Liming; Mills, Nicholas L; Newby, David E; Jiang, Lixin

    2012-03-01

    Air pollution exposure increases cardiovascular morbidity and mortality and is a major global public health concern. We investigated the benefits of reducing personal exposure to urban air pollution in patients with coronary heart disease. In an open randomized crossover trial, 98 patients with coronary heart disease walked on a predefined route in central Beijing, China, under different conditions: once while using a highly efficient face mask, and once while not using the mask. Symptoms, exercise, personal air pollution exposure, blood pressure, heart rate, and 12-lead electrocardiography were monitored throughout the 24-hr study period. Ambient air pollutants were dominated by fine and ultrafine particulate matter (PM) that was present at high levels [74 μg/m³ for PM(2.5) (PM with aerodynamic diamater reduced maximal ST segment depression (-142 vs. -156 μV, p = 0.046) over the 24-hr period. When the face mask was used during the prescribed walk, mean arterial pressure was lower (93 ± 10 vs. 96 ± 10 mmHg, p = 0.025) and heart rate variability increased (high-frequency power: 54 vs. 40 msec², p = 0.005; high-frequency normalized power: 23.5 vs. 20.5 msec, p = 0.001; root mean square successive differences: 16.7 vs. 14.8 msec, p = 0.007). However, mask use did not appear to influence heart rate or energy expenditure. Reducing personal exposure to air pollution using a highly efficient face mask appeared to reduce symptoms and improve a range of cardiovascular health measures in patients with coronary heart disease. Such interventions to reduce personal exposure to PM air pollution have the potential to reduce the incidence of cardiovascular events in this highly susceptible population.

  15. The ambient air quality accounts for the Nova Scotia Genuine Progress Index

    International Nuclear Information System (INIS)

    Monette, A.; Colman, R.

    2004-01-01

    The Nova Scotia Genuine Progress Index (GPI) is a measure of sustainable development which provides a complete and accurate picture of our well-being as a society. The GPI assigns explicit values to environmental quality, population health, livelihood security, equity, free time, and educational attainment. The Nova Scotia GPI includes 22 social, economic and environmental components, including ambient air quality. This report investigates Nova Scotia's ambient air concentrations and emissions of carbon monoxide (CO), total particulate matter (PM), sulphur dioxide (SO 2 ), nitrogen oxides (NOx), and volatile organic compounds (VOC). The costs of damages caused by the these key air pollutants are also examined. Exposure to these pollutants results in negative impacts on human health, damage to materials, agricultural crops and changes in forest productivity. From 1979 to 1996, national ambient concentrations of each of these pollutants decreased significantly. However, the national average concentration of ground-level ozone increased by 34 per cent during the same time period. In Nova Scotia, concentrations of CO, PM and SO 2 have declined dramatically since 1979, but the trends for NO 2 and ground-level ozone do not show significant declines. On a per capita basis, SOx emissions from electric power generation in the province are more than 8 times the Canadian average. The province also had higher per capita emissions of CO, PM, SOx and VOCs than all reporting OECD countries. Electric power generation is the greatest source of fuel combustion emissions in the province, followed by industrial and transportation sources. This report also described some individual actions that can be taken to reduce air pollutant emissions. 174 refs., 37 tabs., 60 figs

  16. Association of Systemic Inflammation with Marked Changes in Particulate Air Pollution in Beijing in 2008

    Science.gov (United States)

    Xu, Xiaohua; Deng, Furong; Guo, Xinbiao; Lv, Peng; Zhong, Mianhua; Liu, Cuiqing; Wang, Aixia; Tzan, Kevin; Jiang, Silis Y.; Lippmann, Morton; Rajagopalan, Sanjay; Qu, Qingshan; Chen, Lung-Chi; Sun, Qinghua

    2012-01-01

    Many studies have linked ambient fine particulate matter (aerodynamic diameters less than 2.5 μm, PM2.5) air pollution to increased morbidity and mortality of cardiovascular diseases in the general population, but the biologic mechanisms of these associations are yet to be elucidated. In this study, we aimed to evaluate the relationship between daily variations in exposure to PM2.5 and inflammatory responses in mice during and for 2 months after the Beijing Olympic Games. Male C57BL/6 mice were exposed to Beijing PM2.5 or filtered air (FA) in 2008 during the 2 months of Beijing Olympic and Paralympic Games, and for 2 months after the end of the Games. During the Games, circulating monocyte chemoattractant protein 1 and interleukin 6 were increased significantly in the PM2.5 exposure group, when compared with the FA control group, although there were no significant inter-group differences in tumor necrosis factor α or interferon γ, or in macrophages, neutrophils or lymphocytes in the spleen or thymus between these 2 groups. However, macrophages were significantly increased in the lung and visceral fat with increasing PM2.5. After the Olympic Games, there were no significant PM2.5-associated differences for macrophages, neutrophils or lymphocytes in the thymus, but macrophages were significantly elevated in the lung, spleen, subcutaneous and visceral fat with increasing PM2.5, and the numbers of macrophages were even higher after than those during the Games. Moreover, the number of neutrophils was markedly higher in the spleen for the PM2.5-exposed- than the FA-group. These data suggest that short-term increases in exposure to ambient PM2.5 leads to increased systemic inflammatory responses, primarily macrophages and neutrophils in the lung, spleen, and visceral adipose tissue. Short-term air quality improvements were significantly associated with reduced overall inflammatory responses. PMID:22617750

  17. Intraurban Spatiotemporal Variability of Ambient Air Pollutants across Metropolitan St. Louis

    Science.gov (United States)

    Du, Li

    Ambient air monitoring networks have been established in the United States since the 1970s to comply with the Clean Air Act. The monitoring networks are primarily used to determine compliance but also provide substantive support to air quality management and air quality research including studies on health effects of air pollutants. The Roxana Air Quality Study (RAQS) was conducted at the fenceline of a petroleum refinery in Roxana, Illinois. In addition to providing insights into air pollutant impacts from the refinery, these measurements increased the St. Louis area monitoring network density for gaseous air toxics and fine particulate matter (PM2.5) speciation and thus provided an opportunity to examine intraurban spatiotemporal variability for these air quality parameters. This dissertation focused on exploring and assessing aspects of ambient air pollutant spatiotemporal variability in the St. Louis area from three progressively expanded spatial scales using a suite of methods and metrics. RAQS data were used to characterize air quality conditions in the immediate vicinity of the petroleum refinery. For example, PM2.5 lanthanoids were used to track impacts from refinery fluidized bed catalytic cracker emissions. RAQS air toxics data were interpreted by comparing to network data from the Blair Street station in the City of St. Louis which is a National Air Toxics Trends Station. Species were classified as being spatially homogeneous (similar between sites) or heterogeneous (different between sites) and in the latter case these differences were interpreted using surface winds data. For PM 2.5 species, there were five concurrently operating sites in the St. Louis area - including the site in Roxana - which are either formally part of the national Chemical Speciation Network (CSN) or rigorously follow the CSN sampling and analytical protocols. This unusually large number of speciation sites for a region the size of St. Louis motivated a detailed examination of

  18. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2009-0443; FRL-9492-3] RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues of Tuesday, November 22, 2011...

  19. Monitoring the levels of toxic air pollutants in the ambient air of ...

    African Journals Online (AJOL)

    user

    The ambient air quality in Freetown, Sierra Leone was investigated for the first time for toxic air pollutants. ..... 215 Switzerland), in a water bath at temperature of 55°C and pressure of ..... scraps. Furthermore, the prolonged use of generators.

  20. Comparitive study of ambient air quality status for big cities of Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Shahid, M.A.K.; Mahmood, A.

    2010-01-01

    This study was undertaken to investigate the quality of air in Lahore and Faisalabad at selected sites. Total eight sampling stations were selected and all the sampling locations fall in different environmental backdrops such as residential, commercial, industrial and rural (control) areas. To study the quality of air, Suspended Particulate Matter (SPM), Nitrogen dioxide (NO/sub 2/) and Sulphur dioxide (SO/sub 2/) were selected In the present study, it was found that the SPM NO/sub 2/ and SO/sub 2/ levels in all the sampling locations are within the permissible limits. However, the raising levels indicated at Residential cum Industrial area (shopping complex along with banks) followed by pure industrial area. The source of these pollutants is primarily transport sector and secondly industries. The ambient air quality reported to be low except 2Kl reported as medium. Sociological survey was conducted to determine the health hazards and the diseases related to air pollution. The results were alarming and found to be compatible with Punjab Public Health and Engineering Department (PPHE). There fore it is suggested that air quality management demands. (author)

  1. Effect of Ambient Air Pollution on Hospitalization for Heart Failure in 26 of China's Largest Cities.

    Science.gov (United States)

    Liu, Hui; Tian, Yaohua; Song, Jing; Cao, Yaying; Xiang, Xiao; Huang, Chao; Li, Man; Hu, Yonghua

    2018-03-01

    There is growing interest in the association between ambient air pollution and congestive heart failure (CHF), but research data from developing countries are very limited. The primary aim of this study was to examine the association between short-term exposure to air pollution and hospital admission for CHF in China. A time-stratified case-crossover study was conducted between 2014 and 2015 in 26 large Chinese cities among 105,501 CHF hospitalizations. Conditional logistic regression models were applied to estimate the percentage changes in CHF admissions in relation to per interquartile range increases in air pollutant concentrations. Air pollution was positively associated with CHF hospitalizations. An interquartile range increase in fine particulate, particulate matter less than 10 µm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone concentrations on the current day corresponded to 1.2% (95% confidence interval [CI] 0.5%, 1.8%), 1.3% (95% CI 0.5%, 2.0%), 1.0% (95% CI 0.2%, 1.7%), 1.6% (95% CI 0.6%, 2.5%), 1.2% (95% CI 0.5%, 1.9%), and 0.4% (95% CI -0.9%, 1.7%) increases in CHF admissions, respectively. In conclusion, our findings contribute to the limited scientific literature concerning the effects of air pollution on CHF risk for high-exposure settings typical in developing countries, which may have significant public health implications for prevention of CHF in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Science.gov (United States)

    2013-08-05

    ... Air Quality Designations for the 2010 Sulfur Dioxide (SO[bdi2]) Primary National Ambient Air Quality... air quality designations for certain areas in the United States for the 2010 primary Sulfur Dioxide (SO 2 ) National Ambient Air Quality Standard (NAAQS). The EPA is issuing this rule to identify areas...

  3. Organochlorine pesticides in the ambient air of Chiapas, Mexico

    International Nuclear Information System (INIS)

    Alegria, Henry; Bidleman, Terry F.; Figueroa, Miguel Salvador

    2006-01-01

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use. - Elevated levels of several organochlorine pesticides were found in the ambient air of southern Mexico

  4. Journey-time exposure to particulate air pollution

    Science.gov (United States)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, pcar exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  5. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    Science.gov (United States)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  6. Exposure to Ambient Air Pollution and Premature Rupture of Membranes.

    Science.gov (United States)

    Wallace, Maeve E; Grantz, Katherine L; Liu, Danping; Zhu, Yeyi; Kim, Sung Soo; Mendola, Pauline

    2016-06-15

    Premature rupture of membranes (PROM) is a major factor that predisposes women to preterm delivery. Results from previous studies have suggested that there are associations between exposure to air pollution and preterm birth, but evidence of a relationship with PROM is sparse. Modified Community Multiscale Air Quality models were used to estimate mean exposures to particulate matter less than 10 µm or less than 2.5 µm in aerodynamic diameter, nitrogen oxides, carbon monoxide, sulfur dioxide, and ozone among 223,375 singleton deliveries in the Air Quality and Reproductive Health Study (2002-2008). We used log-linear models with generalized estimating equations to estimate adjusted relative risks and 95% confidence intervals for PROM per each interquartile-range increase in pollutants across the whole pregnancy, on the day of delivery, and 5 hours before delivery. Whole-pregnancy exposures to carbon monoxide and sulfur dioxide were associated with an increased risk of PROM (for carbon monoxide, relative risk (RR) = 1.09, 95% confidence interval (CI): 1.04, 1.14; for sulfur dioxide, RR = 1.15, 95% CI: 1.06, 1.25) but not preterm PROM. Ozone exposure increased the risk of PROM on the day of delivery (RR = 1.06, 95% CI: 1.02, 1.09) and 1 day prior (RR = 1.04, 95% CI: 1.01, 1.07). In the 5 hours preceding delivery, there were 3%-7% increases in risk associated with exposure to ozone and particulate matter less than 2.5 µm in aerodynamic diameter and inverse associations with exposure to carbon monoxide and nitrogen oxides. Acute and long-term air pollutant exposures merit further study in relation to PROM. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project

    DEFF Research Database (Denmark)

    Pedersen, Marie; Andersen, Zorana J.; Stafoggia, Massimo

    2017-01-01

    . Methods: We obtained data from four cohorts with enrolment during 1985–2005 in Denmark, Austria and Italy. Exposure to nitrogen oxides (NO2 and NOX), particulate matter (PM) with diameter of less than 10 µm (PM10), less than 2.5 µm (PM2.5), between 2.5 and 10 µm (PM2.5–10) and PM2.5 absorbance (soot......-analyses to estimate summary hazard ratios (HRs) and 95% confidence intervals (CIs). Results: Out of 174,770 included participants, 279 liver cancer cases were diagnosed during a mean follow-up of 17 years. In each cohort, HRs above one were observed for all exposures with exception of PM2.5 absorbance and traffic...... in PM2.5. Conclusions: The results provide suggestive evidence that ambient air pollution may increase the risk of liver cancer. Confidence intervals for associations with NO2 and NOX were narrower than for the other exposures....

  8. Modification of the effect of ambient air pollution on pediatric asthma emergency visits: susceptible subpopulations

    Science.gov (United States)

    Strickland, Matthew J; Klein, Mitchel; Flanders, W Dana; Chang, Howard H; Mulholland, James A; Tolbert, Paige E; Darrow, Lyndsey A

    2016-01-01

    Background Children may have differing susceptibility to ambient air pollution concentrations depending on various background characteristics of the children. Methods Using emergency department (ED) data linked with birth records from Atlanta, Georgia, we identified ED visits for asthma or wheeze among children aged 2–16 years from 1 January 2002 through 30 June 2010 (n=109,758). We stratified by preterm delivery, term low birth weight, maternal race, Medicaid status, maternal education, maternal smoking, delivery method, and history of a bronchiolitis ED visit. Population-weighted daily average concentrations were calculated for 1-hour maximum carbon monoxide and nitrogen dioxide; 8-hour maximum ozone; and 24-hour average particulate matter less than 10 microns in diameter, particulate matter less than 2.5 microns in diameter (PM2.5), and the PM2.5 components sulfate, nitrate, ammonium, elemental carbon, and organic carbon, using measurements from stationary monitors. Poisson time-series models were used to estimate rate ratios for associations between three-day moving average pollutant concentrations and daily ED visit counts and to investigate effect-measure modification by the stratification factors. Results Associations between pollutant concentrations and asthma exacerbations were larger among children born preterm and among children born to African American mothers. Stratification by race and preterm status together suggested that both factors affected susceptibility. The largest estimated effect size (for an interquartile-range increase in pollution) was observed for ozone among preterm births to African American mothers: rate ratio=1.138 (95% confidence interval=1.077–1.203). In contrast, the rate ration for the ozone association among full-term births to mothers of other races was 1.025 (0.970–1.083). Conclusions Results support the hypothesis that children vary in their susceptibility to ambient air pollutants. PMID:25192402

  9. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    Science.gov (United States)

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  10. Ambient air pollution as a risk factor for lung cancer

    Directory of Open Access Journals (Sweden)

    COHEN AARON J

    1997-01-01

    Full Text Available Epidemiologic studies over the last 40 years have observed that general ambient air pollution, chiefly due to the by- products of the incomplete combustion of fossil fuels, is associated with small relative increases in lung cancer. The evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30-50% increases in the risk of lung cancer in relation to approximately a doubling of respirable particle exposure. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the US continue to be exposed to pollutant mixtures containing known or suspected carcinogens. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the US, based largely on the results of animal experimentation, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution in the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer related to air pollution.

  11. Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry

    Science.gov (United States)

    Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.

    2018-05-01

    Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.

  12. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Hang Qiu

    2018-03-01

    Full Text Available Evidence on the burden of chronic obstructive pulmonary disease (COPD morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM with aerodynamic diameter <10 μm (PM10 and <2.5 μm (PM2.5, nitrogen dioxide (NO2, sulfur dioxide (SO2, carbon monoxide (CO and ozone (O3 with risk of hospital admissions (HAs for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM2.5, PM10 and SO2 and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19% and 14.72% (95% CI: 10.38%, 19.06% of COPD HAs were attributable to PM2.5 and PM10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO2 on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  13. Ambient air pollution, climate change, and population health in China.

    Science.gov (United States)

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Pinheiro, T.; Freitas, M.C.; Alves, L.C.; Reis, M.; Bugalho de Almeida, A.; Moniz, D.; Monteiro, P.; Alvarez, E.

    2000-01-01

    Biological and environmental monitoring was carried out at a steel processing sector of a steel plant in Portugal. Approximately 70 workers were surveyed for their respiratory function and blood elemental contents as indicators for a long-term exposure. The characterisation of chemical elements in air at the workplace was also evaluated taking in account the separation of particles by their aerodynamic diameter. Two fractions were collected, a coarse fraction for particles below 10 μm and above 2 μm, and a fine fraction for particles below 2 μm. PIXE and INAA analytical techniques were used for the determination of blood and aerosol elemental concentrations. Up to 12 elements (Na, Cl, K, Ca, Fe, Cu, Zn, As, Se, Sb, Hg, and Pb) were determined in blood and so far, up to 18 elements for aerosols (e.g., Na, Al Si, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Cd, Sb, Hg, and Pb). The concentrations of the essential elements in blood (e.g., Fe, Zn and Se) were found to be altered relative to a reference Portuguese group constituted by non-exposed persons. Relative to the blood average elemental contents for As, Sb, Hg and Pb, the levels determined were below maximum permissible concentrations or reference values, except for Pb. Nevertheless, concentrations above maximum limit values were determined for some of the surveyed subjects. There are evidences that the levels of Se, Cu, and Sb in blood are influenced by exposure. Also, living habits (smoking and other activities) and pulmonary affections may modulate As, Pb and Zn concentrations in blood. For all the chemical elements identified in the particulate matter of the working atmosphere the limit values indicated in the Portuguese regulation were not exceeded, except for Fe. (author)

  15. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The Healthy Volunteer Natural Relocation study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaowei; Deng, Furong; Hao, Yu [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Shima, Masayuki [Department of Public Health, Hyogo College of Medicine, Hyogo (Japan); Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Guo, Xinbiao, E-mail: guoxb@bjmu.edu.cn [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China)

    2013-09-15

    Highlights: • Study subjects relocated between areas with different air pollution contents. • PM{sub 2.5} showed the most consistent inverse associations with pulmonary function. • Cu, Cd, As and Sn were consistently associated with reduced pulmonary function. • Carbonaceous fractions, SO{sub 4}{sup 2−} and Sb were also associated with pulmonary function. • Sources may include traffic, industry, coal burning, and long range transported dust. -- Abstract: The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM{sub 2.5}) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV{sub 1}) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV{sub 1} associated with various air pollutants and PM{sub 2.5} constituents. Four PM{sub 2.5} constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution.

  16. Transportation conformity particulate matter hot-spot air quality modeling.

    Science.gov (United States)

    2013-07-01

    In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...

  17. Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China.

    Science.gov (United States)

    Yu, Zhiqiang; Liao, Ru'e; Li, Huiru; Mo, Ligui; Zeng, Xiangying; Sheng, Guoying; Fu, Jiamo

    2011-10-01

    In present study, atmospheric particles from Shanghai, the biggest city and the most important industrial base in China, were analyzed for polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DP). Concentrations of ∑(20)PBDEs and DP both exhibited the changing trend of industrial area > urban areas. Jiading District had the highest levels of particulate PBDEs and DP with values of 744 ± 152 pg/m(3) and 5.48 ± 1.28 pg/m(3), respectively. Compared with similar data in other areas of the world, PBDEs in Shanghai were at medium pollution level, while DP was at lower level, which reflected their different production and use in Shanghai. The results from multiple linear regression analysis suggested that deca-BDE mixture was the most important contributor of particulate PBDEs in Shanghai. The fractions of anti-DP showed no significant differences to those of the technical mixtures (p > 0.05), which suggested that no obviously stereoselective process occurred in ambient air around Shanghai. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Ambient air pollution, traffic noise and adult asthma prevalence: a BioSHaRE approach.

    Science.gov (United States)

    Cai, Yutong; Zijlema, Wilma L; Doiron, Dany; Blangiardo, Marta; Burton, Paul R; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Elliott, Paul; Hansell, Anna L; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank).Residential exposures to ambient air pollution (particulate matter with aerodynamic diameter ≤10 µm (PM 10 ) and nitrogen dioxide (NO 2 )) were estimated by a pan-European Land Use Regression model for 2007. Traffic noise for 2009 was modelled at home addresses by adapting a standardised noise assessment framework (CNOSSOS-EU). A cross-sectional analysis of 646 731 participants aged ≥20 years was undertaken using DataSHIELD to pool data for individual-level analysis via a "compute to the data" approach. Multivariate logistic regression models were fitted to assess the effects of each exposure on lifetime and current asthma prevalence.PM 10 or NO 2 higher by 10 µg·m -3 was associated with 12.8% (95% CI 9.5-16.3%) and 1.9% (95% CI 1.1-2.8%) higher lifetime asthma prevalence, respectively, independent of confounders. Effects were larger in those aged ≥50 years, ever-smokers and less educated. Noise exposure was not significantly associated with asthma prevalence.This study suggests that long-term ambient PM 10 exposure is associated with asthma prevalence in western European adults. Traffic noise is not associated with asthma prevalence, but its potential to impact on asthma exacerbations needs further investigation. Copyright ©ERS 2017.

  19. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  20. Pure air-plasma bullets propagating inside microcapillaries and in ambient air

    KAUST Repository

    Lacoste, Deanna; Bourdon, Anne; Kuribara, Koichi; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2014-01-01

    This paper reports on the characterization of air-plasma bullets in microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets were produced by nanosecond repetitively pulsed discharges, applied in a dielectric barrier discharge configuration. The anode was a tungsten wire with a diameter of 50 μm, centered in the microcapillary, while the cathode was a silver ring, fixed on the outer surface of the fused silica tube. The effects of the applied voltage and the inner diameter of the microcapillary tube on the plasma behavior were investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity is only a function of the amplitude of the applied voltage. In ambient air, the propagation of air bullets with a velocity of about 1.25 ×105 m s-1 is observed.

  1. Pure air-plasma bullets propagating inside microcapillaries and in ambient air

    KAUST Repository

    Lacoste, Deanna

    2014-11-04

    This paper reports on the characterization of air-plasma bullets in microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets were produced by nanosecond repetitively pulsed discharges, applied in a dielectric barrier discharge configuration. The anode was a tungsten wire with a diameter of 50 μm, centered in the microcapillary, while the cathode was a silver ring, fixed on the outer surface of the fused silica tube. The effects of the applied voltage and the inner diameter of the microcapillary tube on the plasma behavior were investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity is only a function of the amplitude of the applied voltage. In ambient air, the propagation of air bullets with a velocity of about 1.25 ×105 m s-1 is observed.

  2. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China.

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    Full Text Available BACKGROUND: The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10, sulfur dioxide (SO(2 and nitrogen dioxide (NO(2] and mortality in Shenyang, China, using 12 years of data (1998-2009. Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m(3 in a year average concentration of PM(10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60 and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53, respectively. The corresponding figures of adjusted HR (95%CI for a 10 µg/m(3 increase in NO(2 was 2.46 (2.31 to 2.63 for cardiovascular mortality and 2.44 (2.27 to 2.62 for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. CONCLUSION/SIGNIFICANCE: Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.

  3. Association between ambient air pollution and pregnancy rate in women who underwent IVF.

    Science.gov (United States)

    Choe, S A; Jun, Y B; Lee, W S; Yoon, T K; Kim, S Y

    2018-04-05

    Are the concentrations of five criteria air pollutants associated with probabilities of biochemical pregnancy loss and intrauterine pregnancy in women? Increased concentrations of ambient particulate matter (PM10), nitrogen dioxide (NO2), carbon monoxide (CO) during controlled ovarian stimulation (COS) and after embryo transfer were associated with a decreased probability of intrauterine pregnancy. Exposure to high ambient air pollution was suggested to be associated with low fertility and high early pregnancy loss in women. Using a retrospective cohort study design, we analysed 6621 cycles of 4581 patients who underwent one or more fresh IVF cycles at a fertility centre from January 2006 to December 2014, and lived in Seoul at the time of IVF treatment. To estimate patients' individual exposure to air pollution, we computed averages of hourly concentrations of five air pollutants including PM10, NO2, CO, sulphur dioxide (SO2) and ozone (O3) measured at 40 regulatory monitoring sites in Seoul for each of the four exposure periods: period 1 (start of COS to oocyte retrieval), period 2 (oocyte retrieval to embryo transfer), period 3 (embryo transfer to hCG test), and period 4 (start of COS to hCG test). Hazard ratios (HRs) from the time-varying Cox-proportional hazards model were used to estimate probabilities of biochemical pregnancy loss and intrauterine pregnancy for an interquartile range (IQR) increase in each air pollutant concentration during each period, after adjusting for individual characteristics. We tested the robustness of the result using generalised linear mixed model, accounting for within-woman correlation. Mean age of the women was 35 years. Average BMI was 20.9 kg/m2 and the study population underwent 1.4 IVF cycles on average. Cumulative pregnancy rate in multiple IVF cycles was 51.3% per person. Survival analysis showed that air pollution during periods 1 and 3 was generally associated with IVF outcomes. Increased NO2 (adjusted HR = 0.93, 95% CI

  4. Association of ambient air quality with children`s lung function in urban and rural Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M.M.; Dubois, A.; Beckett, W.S. [Yale Univ. School of Medicine, New Haven, CT (United States); Asgari, M. [Shaheed Beheshti Univ., Tehran (Iran, Islamic Republic of); Gent, J. [John B. Pierce Lab., New Haven, CT (United States)

    1998-05-01

    During the summer of 1994, a cross-sectional epidemiological study, in which the pulmonary function of children in Tehran was compared with pulmonary function in children in a rural town in Iran, was conducted. Four hundred children aged 5--11 y were studied. Daytime ambient nitrogen dioxide, sulfur dioxide, and particulate matter were measured with portable devices, which were placed in the children`s neighborhoods on the days of study. Levels of these ambient substances were markedly higher in urban Tehran than in rural areas. Children`s parents were questioned about home environmental exposures (including heating source and environmental tobacco smoke) and the children`s respiratory symptoms. Pulmonary function was assessed, both by spirometry and peak expiratory flow meter. Forced expiratory volume in 1 s and forced vital capacity--as a percentage of predicted for age, sex and height--were significantly lower in urban children than in rural children. Both measurements evidenced significant reverse correlations with levels of sulfur dioxide, nitrogen dioxide, and particulate matter. Differences in spirometric lung function were not explained by nutritional status, as assessed by height and weight for age, or by home environmental exposures. Reported airway symptoms were higher among rural children, whereas reported physician diagnosis of bronchitis and asthma were higher among urban children. The association between higher pollutant concentrations and reduced pulmonary function in this urban-rural comparison suggests that there is an effect of urban air pollution on short-term lung function and/or lung growth and development during the preadolescent years.

  5. Detection of Coxiella burnetii in Ambient Air after a Large Q Fever Outbreak.

    Directory of Open Access Journals (Sweden)

    Myrna M T de Rooij

    Full Text Available One of the largest Q fever outbreaks ever occurred in the Netherlands from 2007-2010, with 25 fatalities among 4,026 notified cases. Airborne dispersion of Coxiella burnetii was suspected but not studied extensively at the time. We investigated temporal and spatial variation of Coxiella burnetii in ambient air at residential locations in the most affected area in the Netherlands (the South-East, in the year immediately following the outbreak. One-week average ambient particulate matter < 10 μm samples were collected at eight locations from March till September 2011. Presence of Coxiella burnetii DNA was determined by quantitative polymerase chain reaction. Associations with various spatial and temporal characteristics were analyzed by mixed logistic regression. Coxiella burnetii DNA was detected in 56 out of 202 samples (28%. Airborne Coxiella burnetii presence showed a clear seasonal pattern coinciding with goat kidding. The spatial variation was significantly associated with number of goats on the nearest goat farm weighted by the distance to the farm (OR per IQR: 1.89, CI: 1.31-2.76. We conclude that in the year after a large Q fever outbreak, temporal variation of airborne Coxiella burnetii is suggestive to be associated with goat kidding, and spatial variation with distance to and size of goat farms. Aerosol measurements show to have potential for source identification and attribution of an airborne pathogen, which may also be applicable in early stages of an outbreak.

  6. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  7. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  8. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    Science.gov (United States)

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-01-01

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM 10 ) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM 2.5 ) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  10. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  11. Gaseous and particulate air pollutants in the Northeastern Mediterranean Coast

    International Nuclear Information System (INIS)

    Soner Erduran, M.; Tuncel, Semra G.

    2001-01-01

    The concentrations of sulfur dioxide (SO 2 ), ammonia (NH 3 ) and particulate matter were measured for a 6-month period and the concentration of gas phase nitric acid (HNO 3 ) was measured for a 1-month period in the North-eastern Mediterranean atmosphere (Kuecuek Calticak, Antalya) using a 'filter pack' system that was developed and optimised in our laboratory. Among all the gas phase pollutants, HNO 3 had the lowest concentration (0.42 μg m -3 ) followed by ammonia. Most of the measured parameters showed variation in time depending on strengths of source regions and meteorological conditions. Nitric acid is found mostly in particulate form, but gas to particulate partitioning of SO 2 shows seasonal variation. Wind trajectory analyses indicate that the major contribution to the observed concentrations come mostly from Eastern Europe and Blacksea regions as well as the southern sector

  12. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  13. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China

    International Nuclear Information System (INIS)

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Rutherford, Shannon; Guo, Lingchuan; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; He, Zhihui; Xu, Yanjun; Ma, Wenjun

    2016-01-01

    Though significant associations between particulate matter (PM) air pollution and cardiovascular diseases have been widely reported, it remains unclear what characteristics, such as particle size and chemical constituents, may be responsible for the effects. A time-series model was applied to examine the cardiovascular effects of particle size (for the period of 2009–2011) and chemical constituents (2007–2010) in Guangzhou, we controlled for potential confounders in the model, such as time trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant associations of cardiovascular mortality with PM_1_0, PM_2_._5 and PM_1; the excess risk (ER) was 6.10% (95% CI: 1.76%, 10.64%), 6.11% (95% CI: 1.76%, 10.64%) and 6.48% (95% CI: 2.10%, 11.06%) for per IQR increase in PM_1_0, PM_2_._5 and PM_1 at moving averages for the current day and the previous 3 days (lag_0_3), respectively. We did not find significant effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. For PM_2_._5 constituents, we found that organic carbon, elemental carbon, sulfate, nitrate and ammonium were significantly associated with cardiovascular mortality, the corresponding ER for an IQR concentration increase at lag_0_3 was 1.13% (95% CI: 0.10%, 2.17%), 2.77% (95% CI: 0.72%, 4.86%), 2.21% (95% CI: 1.05%, 3.38%), 1.98% (95% CI: 0.54%, 3.44%), and 3.38% (95% CI: 1.56%, 5.23%), respectively. These results were robust to adjustment of other air pollutants and they remained consistent in various sensitivity analyses by changing model parameters. Our study suggests that PM_1 and constituents from combustion and secondary aerosols might be important characteristics of PM pollution associated with cardiovascular mortality in Guangzhou. - Highlights: • PM_1_0, PM_2_._5 and PM_1 were significantly associated with cardiovascular mortality. • We did not find significant cardiovascular effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. • PM_1 might be most responsible for

  14. Long term performance of particulate air-filter in an office environment

    DEFF Research Database (Denmark)

    Afshari, Alireza; Iqbal, Ahsan; Bergsøe, Niels Christian

    2015-01-01

    The present article is based on initial findings of an ongoing study. The objective of present study is to analyse the long term performance of an air particulate filter with and without ionizer. To study the performance of the air filters, a test rig was built in the Danish Building Research Ins...

  15. COMPARISON OF INDOOR AIR QUALITY IN RESTAURANT KITCHENS IN TEHRAN WITH AMBIENT AIR QUALITY

    Directory of Open Access Journals (Sweden)

    M. Ghasemkhani, F. Naseri

    2008-01-01

    Full Text Available The indoor air quality of 131 restaurant kitchens in Tehran was investigated from May to September 2006. Gas stoves use in restaurant kitchens is a major source of indoor combustion, product carbon monoxide and nitrogen dioxide. The study focused on one of the busy zones located in the southwest and central part of the city. Measurements were done for indoor and outdoor air pollutants, carbon monoxide and nitrogen dioxide; ambient temperature and relative humidity were also measured. Result indicated that the mean levels of CO and NO2 in restaurant kitchens were below the recommended limit of 25 and 3ppm, respectively. Correlations between indoor and outdoor air quality were performed consequently. Results of the mean ambient temperature and relative humidity were above the guideline. In this study the mean levels of CO and NO2 gas cooking in restaurant kitchens were found to be lower compared with the similar studies.

  16. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  17. Organochlorine pesticides in the ambient air of Chiapas, Mexico.

    Science.gov (United States)

    Alegria, Henry; Bidleman, Terry F; Figueroa, Miguel Salvador

    2006-04-01

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use.

  18. Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility

    International Nuclear Information System (INIS)

    Eberhart, C.F.

    1998-01-01

    This paper describes the ambient air sampling program for collection, analysis, and reporting of radioactive air contaminants in and around Los Alamos National Laboratory (LANL). Particulate matter and water vapor are sampled continuously at more than 50 sites. These samples are collected every two weeks and then analyzed for tritium, and gross alpha, gross beta, and gamma ray radiation. The alpha, beta, and gamma measurements are used to detect unexpected radionuclide releases. Quarterly composites are analyzed for isotopes of uranium ( 234 U, 235 U, 238 U), plutonium ( 238 Pu, 239/249 Pu), and americium ( 241 Am). All of the data is stored in a relational database with hard copies as the official records. Data used to determine environmental concentrations are validated and verified before being used in any calculations. This evaluation demonstrates that the sampling and analysis process can detect tritium, uranium, plutonium, and americium at levels much less than one percent of the public dose limit of 10 millirems. The isotopic results also indicate that, except for tritium, off-site concentrations of radionuclides potentially released from LANL are similar to typical background measurements

  19. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Li, Xiangyu; Huang, Shuqiong; Jiao, Anqi; Yang, Xuhao; Yun, Junfeng; Wang, Yuxin; Xue, Xiaowei; Chu, Yuanyuan; Liu, Feifei; Liu, Yisi; Ren, Meng

    2017-01-01

    An increasing number of studies have been conducted to determine a possible linkage between maternal exposure to ambient fine particulate matter and effects on the developing human fetus that can lead to adverse birth outcomes, but, the present results are not consistent. A total of 23 studies published before July 2016 were collected and analyzed and the mean value of reported exposure to fine particulate matter (PM 2.5 ) ranged from 1.82 to 22.11 We found a significantly increased risk of preterm birth with interquartile range increase in PM 2.5 exposure throughout pregnancy (odds ratio (OR) = 1.03; 95% conditional independence (CI): 1.01–1.05). The pooled OR for the association between PM 2.5 exposure, per interquartile range increment, and term low birth weight throughout pregnancy was 1.03 (95% CI: 1.02–1.03). The pooled ORs for the association between PM 2.5 exposure per 10 increment, and term low birth weight and preterm birth were 1.05 (95% CI: 0.98–1.12) and 1.02 (95% CI: 0.93–1.12), respectively throughout pregnancy. There is a significant heterogeneity in most meta-analyses, except for pooled OR per interquartile range increase for term low birth weight throughout pregnancy. We here show that maternal exposure to fine particulate air pollution increases the risk of preterm birth and term low birth weight. However, the effect of exposure time needs to be further explored. In the future, prospective cohort studies and personal exposure measurements needs to be more widely utilized to better characterize the relationship between ambient fine particulate exposure and adverse birth outcomes. - Highlights: • The results had shorter intervals indicate and smaller heterogeneity by using IQR increment increase as selected standard. • The manuscript included the latest research results and updated the previous systematic review and meta-analysis. - Meta-analysis of preterm birth and term low birth weight of PM 2.5

  20. Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure.

    Science.gov (United States)

    Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2017-02-01

    Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

  1. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution.

    Science.gov (United States)

    Ouyang, Yuhui; Xu, Zhaojun; Fan, Erzhong; Li, Ying; Miyake, Kunio; Xu, Xianyan; Zhang, Luo

    2018-04-20

    Particulate matter (PM) air pollution has been associated with an increase in the incidence of chronic allergic diseases; however, the mechanisms underlying the effect of exposure to natural ambient air pollution in chronic allergic diseases have not been fully elucidated. In the present study, we aimed to investigate the cellular responses induced by exposure to natural ambient air pollution, employing a mouse model of chronic allergy. The results indicated that exposure to ambient air pollution significantly increased the number of eosinophils in the nasal mucosa. The modulation of gene expression profile identified a set of regulated genes, and the Triggering Receptor Expressed on Myeloid cells1(TREM1) signaling canonical pathway was increased after exposure to ambient air pollution. In vitro, PM2.5 increased Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) and nuclear factor (NF)-κB signaling pathway activation in A549 and HEK293 cell cultures. These results suggest a novel mechanism by which, PM2.5 in ambient air pollution may stimulate the innate immune system through the PM2.5-Nod1-NF-κB axis in chronic allergic disease.

  2. Characterization and sources of air particulate matter at Kwabenya, near Accra, Ghana

    International Nuclear Information System (INIS)

    Aboh, I. J. K.

    2009-01-01

    Gravimetric, reflectometric and elemental analyses have been carried out on airborne particulate matter sampled in a semi-rural area of Kwabenya, near Accra-Ghana. The PM 10 aerosols were sampled using a Gent sampler, size segregating the aerosol into coarse (PM 10-2.5 ) and fine (PM 1.5 ) fractions. The data and derived information were generated from 216 days of sampling spanning a period of about 14 months, 28 th December 2005 to 12 th February 2007. The particulate matter (PM) at Kwabenya was dominated by the coarse particulates and showed low levels during the Rainy season and high levels during the Harmattan period. The levels measured during the 2006/07 Harmattan were very high. The mass concentration for the measuring period were in the following ranges; coarse (PM 10-2.5 ) fraction (0.16 - 1794.01 µg/m 3 ); PM 2.5 (fine) fraction (0.50 - 430.23 µg/m 3 ) and PM 10 (0.87 µg/m 3 to 2064.89 µg/m 3 ). Additional information about the ambient air was obtained through the subsequent determination of elemental concentration using energy dispersive x-ray fluorescence (EDXRF) analysis and black carbon (BC) concentration through the b lack smoke method . The elements identified and quantified with the Quantitative X-ray Analysis System (QXAS) package software were: AI, Si, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in the coarse fraction. The following elements were identified and quantified in the fine fraction: AI, Si, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr and Pb. Validation of the quantitative methods with the standard reference filter SRM2783 gave very good agreement (within ± 15%) for most elements analysed except for Ni (±43%)which was very close to the detection limit. The elemental concentrations in the two fractions vary from season to season. Using simple correlation analysis some elements correlate, the elemental correlations also vary from season to season, for example during the Harmattan S, CI, V, Br and Sr correlated very

  3. Year-long simulation of gaseous and particulate air pollutants in India

    Science.gov (United States)

    Kota, Sri Harsha; Guo, Hao; Myllyvirta, Lauri; Hu, Jianlin; Sahu, Shovan Kumar; Garaga, Rajyalakshmi; Ying, Qi; Gao, Aifang; Dahiya, Sunil; Wang, Yuan; Zhang, Hongliang

    2018-05-01

    Severe pollution events occur frequently in India but few studies have investigated the characteristics, sources, and control strategies for the whole country. A year-long simulation was carried out in India to provide detailed information of spatial and temporal distribution of gas species and particulate matter (PM). The concentrations of O3, NO2, SO2, CO, as well as PM2.5 and its components in 2015 were predicted using Weather Research Forecasting (WRF) and the Community Multiscale Air Quality (CMAQ) models. Model performance was validated against available observations from ground based national ambient air quality monitoring stations in major cities. Model performance of O3 does not always meet the criteria suggested by the US Environmental Protection Agency (EPA) but that of PM2.5 meets suggested criteria by previous studies. The performance of model was better on days with high O3 and PM2.5 levels. Concentrations of PM2.5, NO2, CO and SO2 were highest in the Indo-Gangetic region, including northern and eastern India. PM2.5 concentrations were higher during winter and lower during monsoon season. Winter nitrate concentrations were 160-230% higher than yearly average. In contrast, the fraction of sulfate in total PM2.5 was maximum in monsoon and least in winter, due to decrease in temperature and solar radiation intensity in winter. Except in southern India, where sulfate was the major component of PM2.5, primary organic aerosol (POA) fraction in PM2.5 was highest in all regions of the country. Fractions of secondary components were higher on bad days than on good days in these cities, indicating the importance of control of precursors for secondary pollutants in India.

  4. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  5. Long-term exposure to ambient air pollution and incidence of brain tumor

    DEFF Research Database (Denmark)

    Andersen, Zorana J.; Pedersen, Marie; Weinmayr, Gudrun

    2018-01-01

    .5 absorbance (Hazard Ratio and 95% Confidence Interval: 1.67; 0.89-3.14 per 10 -5/m 3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38-2.71 per 10 -5/m 3) and all other pollutants were lower for nonmalignant than for malignant brain tumors......Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods: In 12 cohorts from six European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated...... by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤ 2.5, ≤ 10, and 2.5-10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations...

  6. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles

    Directory of Open Access Journals (Sweden)

    Pengcheng Song

    2017-01-01

    Full Text Available The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation.

  7. Phase I aging assessment of nuclear air-treatment system high efficiency particulate air and adsorbers

    International Nuclear Information System (INIS)

    Winegardner, W.K.

    1996-01-01

    A phase I aging assessment of high efficiency particulate air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the US Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. Information was compiled concerning design features, failure experience, aging mechanisms, effects, and stressors, and monitoring methods. Over 1100 failures, or 12% of the filter installations, were reported as part of a US Department of energy survey. Investigators from other laboratories have suggested that aging could have contributed to over 80% of these failures. Several instances of impaired performance as the result of the premature aging of carbon were reported. Filter aging mechanisms range from those associated with particle loading to reactions that alter the properties of gaskets. Mechanisms that can lead to impaired adsorber performance include the loss of potentially available active sites as a result of the adsorption of moisture or pollutants. Stressors include heat, moisture, radiation, and airborne particles and contaminants. (orig.)

  8. Air immunogenicity in quito: activation of immune responses by particulate matter

    OpenAIRE

    Cevallos Bonilla, Victoria Maritza

    2016-01-01

    Urban development experienced around the world in recent years has resulted in the degradation of air quality caused by air pollutants, which are emitted mainly as a product of burning fossil fuels for transportation, in the generation of electricity, and in industrial processes. Exposure to air particulate matter (PM) affects human health, and has been linked to respiratory, cardiovascular and neurological diseases. The mechanisms underlying inflammation in these diverse diseases and to what...

  9. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10) and the risk of heart rhythm abnormalities and stroke.

    Science.gov (United States)

    Kowalska, Małgorzata; Kocot, Krzysztof

    2016-09-28

    Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5) on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm) has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old), obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health are necessary.

  10. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10 and the risk of heart rhythm abnormalities and stroke

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowalska

    2016-09-01

    Full Text Available Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5 on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old, obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health

  11. A study of physical and chemical forms of 7BE in air particulates of Damascus city

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Kharfan, K.; Hasan, M.

    1999-01-01

    Physical and chemical forms of 7B e in air particulates of Damascus city during 1997-1998 have been studied. Results have shown that 7B e is mainly attached to particulates having 0.95 μ diameters. In addition, a difference between 7B e concentrations in air particulates collected by TSP filters and PM10 filters has been observed. This difference could be used to evaluate the amount of 7B e due to air suspension. Moreover, results have also shown that the chemical forms of 7B e differ from one month to another according to weather conditions, 7B e was found to be in an exchangeable form in wet months and undissolved form in dry months. (author)

  12. Long-term exposure to ambient air pollution and mortality in a Chinese tuberculosis cohort.

    Science.gov (United States)

    Peng, Zhuoxin; Liu, Cong; Xu, Biao; Kan, Haidong; Wang, Weibing

    2017-02-15

    Evidence for the relationship between exposure to ambient air pollution and the mortality of tuberculosis (TB) patients is limited. We analyzed the association between long-term exposure to particulate matter mortality in a Chinese TB patients cohort from 2003 to 2013. Data from the Global Burden of Disease 2013 estimate were used to assess yearly average concentrations of PM 2.5 and ozone at the household addresses of participants. Cox regression was used to calculate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cause-specific mortality, controlling for demographic and other TB-related factors. There were 4444 eligible subjects, including 891 deaths, over a median follow-up of 2464days. Per an interquartile range increase (2.06μg/m 3 ), multivariable analysis indicated that exposure to PM 2.5 was significantly associated with overall mortality (aHR=1.30, 95% CI: 1.19, 1.42), mortality from TB (aHR=1.46, 95% CI: 1.15, 1.85), respiratory cancers (aHR=1.72, 95% CI: 1.36, 2.19), other respiratory diseases (aHR=1.19, 95% CI: 1.02, 1.38), and other cancers (aHR=1.76, 95% CI: 1.33, 2.32). Long-term exposure to PM 2.5 increases the risk of death from TB and other diseases among TB patients. It suggests that the control of ambient air pollution may help decreasing the mortality caused by TB. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rainwater capacities for BTEX scavenging from ambient air

    Science.gov (United States)

    Šoštarić, A.; Stanišić Stojić, S.; Vuković, G.; Mijić, Z.; Stojić, A.; Gržetić, I.

    2017-11-01

    The contribution of atmospheric precipitation to volatile organic compound (VOC) removal from the atmosphere remains a matter of scientific debate. The aim of this study was to examine the potential of rainwater for benzene, toluene, ethylbenzene and xylene (BTEX) scavenging from ambient air. To that end, air and rainwater samples were collected simultaneously during several rain events that occurred over two distinct time periods in the summer and autumn of 2015. BTEX concentrations in the gaseous and aqueous phases were determined using proton transfer reaction mass spectrometry. The results reveal that the registered amounts of BTEX in rainwater samples were higher than those predicted by Henry's law. Additional analysis, including physico-chemical characterization and source apportionment, was performed and a possible mechanism underlying the BTEX adsorption to the aqueous phase was considered and discussed herein. Finally, regression multivariate methods (MVA) were successfully applied (with relative errors from 20%) to examine the functional dependency of BTEX enrichment factor on gaseous concentrations, physico-chemical properties of rainwater and meteorological parameters.

  14. Tritium concentration in ambient air around Kaiga Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Srinivas S Kamath

    2018-01-01

    Full Text Available Tritium (3H is one of the important long-lived radioisotopes in the gaseous effluent from nuclear power plants. In this article, we present the results of 3H monitoring in ambient air samples around the Kaiga Nuclear Power Plant, on the West Coast of India. Air samples were collected by moisture condensation method and the 3H concentration was determined by liquid scintillation spectrometry. The 3H concentration in the 2.3–15 km zone of the power plant varied in the range of <0.04–6.64 Bq m−3 with a median of 0.67 Bq m−3. The samples collected from the 2.3–5 km zone of the power plant exhibit marginally higher concentration when compared to the 5–10 km and 10–15 km zones, which is as expected. The values observed in the present study for Kaiga region are similar to those reported from other nuclear power plants, both within India and other parts of the world.

  15. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Piniero, T.; Cerqueira Alves, L.; Reis, M.

    1998-01-01

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  16. Monitoring of viable airborne SARS virus in ambient air

    Science.gov (United States)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  17. Effect of fireworks on ambient air quality in Malta

    Science.gov (United States)

    Camilleri, Renato; Vella, Alfred J.

    2010-11-01

    Religious festivals ( festas) in the densely populated Maltese archipelago (Central Mediterranean) are ubiquitous during summer when 86 of them are celebrated between June and October, each involving the burning of fireworks both in ground and aerial displays over a period of 3 days or longer per festival. We assessed the effect of fireworks on the air quality by comparing PM 10 and its content of Al, Ba, Cu, Sr and Sb which materials are used in pyrotechnic compositions. PM 10 was collected mainly from two sites, one in Malta (an urban background site) and the other in Gozo (a rural site) during July-August 2005 when 59 feasts were celebrated and September-October 2005 when only 11 feasts occurred. For both Malta and Gozo, PM 10 and metal concentration levels measured as weekly means were significantly higher during July-August compared to September-October and there exist strong correlations between PM 10 and total metal content. Additionally, for Malta dust, Al, Ba, Cu and Sr correlated strongly with each other and also with total concentration of all five metals. The same parameters measured in April 2006 in Malta were at levels similar to those found in the previous October. Ba and Sb in dust from the urban background site in Malta during July-August were at comparable or higher concentration than recently reported values in PM 10 from a heavily-trafficked London road and this suggests that these metals are locally not dominated by sources from roadside materials such as break liner wear but more likely by particulate waste from fireworks. Our findings point to the fact that festa firework displays contribute significantly and for a prolonged period every year to airborne dust in Malta where PM 10 is an intractable air quality concern. The presence in this dust of elevated levels of Ba and especially Sb, a possible carcinogen, is of concern to health.

  18. Monitoring Gaseous and Particulate Air Pollutants near Major ...

    African Journals Online (AJOL)

    High traffic volume and traffic congestion on Nigerian roads have led to increase in the concentration of pollutants in the air t posing health risks for human population. This study investigates air quality due to vehicular emissions in some busy roads in Abeokuta metropolis, Nigeria. Air pollutants such as CO, CO2, NO, NO2, ...

  19. Ambient air pollution and low birth weight - are some women more vulnerable than others?

    NARCIS (Netherlands)

    Westergaard, Nadja; Gehring, Ulrike|info:eu-repo/dai/nl/304831344; Slama, Rémy; Pedersen, Marie

    BACKGROUND AND OBJECTIVES: Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term

  20. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-04-27

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9142-1] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air...

  1. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-10-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9476-7] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air...

  2. 75 FR 30022 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-05-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9156-1] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air...

  3. Ambient air pollution and low birthweight: a European cohort study (ESCAPE)

    NARCIS (Netherlands)

    Pedersen, Marie; Giorgis-Allemand, Lise; Bernard, Claire; Aguilera, Inmaculada; Andersen, Anne-Marie Nybo; Ballester, Ferran; Beelen, Rob M. J.; Chatzi, Leda; Cirach, Marta; Danileviciute, Asta; Dedele, Audrius; Eijsden, Manon van; Estarlich, Marisa; Fernández-Somoano, Ana; Fernández, Mariana F.; Forastiere, Francesco; Gehring, Ulrike; Grazuleviciene, Regina; Gruzieva, Olena; Heude, Barbara; Hoek, Gerard; de Hoogh, Kees; van den Hooven, Edith H.; Håberg, Siri E.; Jaddoe, Vincent W. V.; Klümper, Claudia; Korek, Michal; Krämer, Ursula; Lerchundi, Aitana; Lepeule, Johanna; Nafstad, Per; Nystad, Wenche; Patelarou, Evridiki; Porta, Daniela; Postma, Dirkje; Raaschou-Nielsen, Ole; Rudnai, Peter; Sunyer, Jordi; Stephanou, Euripides; Sørensen, Mette; Thiering, Elisabeth; Tuffnell, Derek; Varró, Mihály J.; Vrijkotte, Tanja G. M.; Wijga, Alet; Wilhelm, Michael; Wright, John; Nieuwenhuijsen, Mark J.; Pershagen, Göran; Brunekreef, Bert; Kogevinas, Manolis; Slama, Rémy

    2013-01-01

    Background Ambient air pollution has been associated with restricted fetal growth, which is linked with adverse respiratory health in childhood. We assessed the effect of maternal exposure to low concentrations of ambient air pollution on birthweight. Methods We pooled data from 14 population-based

  4. Ambient Air Pollution and Hypertensive Disorders of Pregnancy: A Systematic Review and Meta-analysis

    Science.gov (United States)

    Hu, Hui; Ha, Sandie; Roth, Jeffrey; Kearney, Greg; Talbott, Evelyn O.; Xu, Xiaohui

    2014-01-01

    Hypertensive disorders of pregnancy (HDP, including gestational hypertension, preeclampsia, and eclampsia) have a substantial public health impact. Maternal exposure to high levels of air pollution may trigger HDP, but this association remains unclear. The objective of our report is to assess and quantify the association between maternal exposures to criteria air pollutants (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter ≤ 10, 2.5 μm) on HDP risk. PubMed, EMBASE, MEDLINE, Current Contents, Global Health, and Cochrane were searched (last search: September, 2013). After a detailed screening of 270 studies, 10 studies were extracted. We conducted meta-analyses if a pollutant in a specific exposure window was reported by at least four studies. Using fixed- and random-effects models, odds ratios (ORs) and 95% CIs were calculated for each pollutant with specific increment of concentration. Increases in risks of HDP (OR per 10 ppb = 1.16; 95% CI, 1.03-1.30) and preeclampsia (OR per 10 ppb = 1.10; 95% CI, 1.03-1.17) were observed to be associated with exposure to NO2 during the entire pregnancy, and significant associations between HDP and exposure to CO (OR per 1 ppm = 1.79; 95% CI, 1.31-2.45) and O3 (OR per 10 ppb = 1.09; 95% CI, 1.05-1.13) during the first trimester were also observed. Our review suggests an association between ambient air pollution and HDP risk. Although the ORs were relatively low, the population-attributable fractions were not negligible given the ubiquitous nature of air pollution. PMID:25242883

  5. Elemental analysis of air particulate samples in Jakarta area by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yumiarti; Yusuf, M.; Mellawati, June; Menry, Yulizon; Surtipanti S

    1998-01-01

    Determination of elements in air particulate samples collected from Jakarta, especially from industrial area Pulo Gadung, also from residence, office, and recreation sites had been carried out. The samples collected periodically from August through December 1996. The elements were analyzed by X-ray fluorescence spectrometry method. Quantitative and qualitative analyses were done using QXAS AXIL (Quantitative X-ray Analysis System of x-ray Spectra by Iterative Least squares fitting) and QAES (Quantitative Analyses of Environmental Samples) package program. Results of the analyses showed that the content of heavy metal elements in air particulate samples from all areas studied were still below the maximum permissible concentration. (authors)

  6. Determination of trace elements by INAA in urban air particulate matter and transplanted lichens

    International Nuclear Information System (INIS)

    Bergamaschi, L.; Rizzio, E.; Profumo, A.; Gallorini, M.

    2005-01-01

    Lichens as biomonitors and neutron activation analysis as analytical technique have been employed to evaluate the trace element atmospheric pollution in the metropolitan area of the city of Pavia (Northern Italy). Transplanted lichens (Parmelia sulcata and Usnea gr. hirta) and air particulate matter have been monthly collected and analyzed during the winter 2001-2002. INAA and ET-AAS have been used for the determination of 28 elements in air particulate matter and 25 elements in lichens. Trace metals concentrations as well as the corresponding enrichment factors were evaluated and compared. (author)

  7. The application of x-ray fluorescence spectrometry for multielemental analysis of air particulate samples

    International Nuclear Information System (INIS)

    Mohamad Rashid Mohamad Yusoff

    1986-01-01

    The performance of XRF spectrometer as a tool for multielemental analysis of air pollution samples was discussed. The non-destructive couples with multielemental nature of the technique satisfactory sensitivity for most elements were the most important characteristics for its popularity as a method of analysis. Thus, the technique promises a significant reduction in cost and time of analysis. As a result, more extensive and revealing air particulates survey should be possible, with consequent improvements in the discovery and positive identification of particulate pollution sources. (author)

  8. Ambient air pollution and low birth weight - are some women more vulnerable than others?

    Science.gov (United States)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy; Pedersen, Marie

    2017-07-01

    Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term (TLBW, air pollution. The aim of this commentary is to review the published literature on the association between ambient air pollution and TLBW regarding increased vulnerability for the above-mentioned subgroups. Although more than fifty epidemiological studies have examined the associations between ambient air pollution and TLBW to date, we only identified six studies that examined the potential effect modification of the association between ambient air pollution and TLBW by the above listed maternal risk factors. Two studies assessed effect modification caused by smoking on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women and no statistically significant effect modification was evident for the risk of TLBW associated with ambient air pollution. The current epidemiologic evidence is scarce, but suggests that pregnant women who are smoking, being underweight, overweight/obese or having lower SES are a vulnerable subpopulation when exposed to ambient air pollution, with and increased risk of having a child with TLBW. The limited evidence precludes for definitive conclusions and further studies are recommended. Copyright © 2017. Published

  9. Association between ambient air pollution and proliferation of umbilical cord blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Novack, L., E-mail: novack@bgu.ac.il [Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Yitshak-Sade, M. [Clinical Research Center, Soroka University Medical Center, Beer-Sheva (Israel); Landau, D. [Division of Neonatology, University Medical Center, Beer-Sheva (Israel); Kloog, I. [Department of Geography, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Sarov, B. [Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Karakis, I. [Environmental Epidemiology Department, Ministry of Health, Jerusalem (Israel); Ashkelon Academic College, Ashkelon (Israel)

    2016-11-15

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012–March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM{sub 2.5} (particles<2.5 µm in diameter) and PM{sub 10} (particles<10 µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O{sub 3}) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM{sub 2.5} one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM{sub 2.5} levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM{sub 10} levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1 day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. - Highlights: • Ambient air pollutants were suggested to have an impact on cell proliferation (CP) of umbilical cord

  10. Association between ambient air pollution and proliferation of umbilical cord blood cells

    International Nuclear Information System (INIS)

    Novack, L.; Yitshak-Sade, M.; Landau, D.; Kloog, I.; Sarov, B.; Karakis, I.

    2016-01-01

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012–March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM 2.5 (particles<2.5 µm in diameter) and PM 10 (particles<10 µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O 3 ) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM 2.5 one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM 2.5 levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM 10 levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1 day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. - Highlights: • Ambient air pollutants were suggested to have an impact on cell proliferation (CP) of umbilical cord blood. • Ozone (O 3 ) and

  11. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    Science.gov (United States)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  12. Pollution level and distribution of PCDD/PCDF congeners between vapor phase and particulate phase in winter air of Dalian, China.

    Science.gov (United States)

    Wang, Wei; Qin, Songtao; Song, Yu; Xu, Qian; Ni, Yuwen; Chen, Jiping; Zhang, Xueping; Mu, Jim; Zhu, Xiuhua

    2011-06-01

    In December 2009, ambient air was sampled with active high-volume air samplers at two sites: on the roof of the No. l building of Dalian Jiaotong University and on the roof of the building of Dalian Meteorological Observatory. The concentrations and the congeners between vapor phase and particulate phase of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the air were measured. Sample analysis results showed that the concentrations of PCDD/Fs in particulate phase was higher than that in gaseous phase. The ratio of PCDD to PCDF in gaseous phase and particulate phase was lower than 0.4 in all samples. The total I-TEQ value in gaseous phase and particulate phase was 5.5 and 453.8 fg/m(3) at Dalian Jiaotong University, 16.6 and 462.1 fg/m(3) at Dalian Meteorological Observatory, respectively. The I-TEQ value of Dalian atmosphere was 5.5-462.1 fg/m(3) which was lower than international standard, the atmospheric quality in Dalian is better. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    Science.gov (United States)

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  14. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    Science.gov (United States)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  15. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    Science.gov (United States)

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  16. Personal and ambient exposures to air toxics in Camden, New Jersey.

    Science.gov (United States)

    Lioy, Paul J; Fan, Zhihua; Zhang, Junfeng; Georgopoulos, Panos; Wang, Sheng-Wei; Ohman-Strickland, Pamela; Wu, Xiangmei; Zhu, Xianlei; Harrington, Jason; Tang, Xiaogang; Meng, Qingyu; Jung, Kyung Hwa; Kwon, Jaymin; Hernandez, Marta; Bonnano, Linda; Held, Joann; Neal, John

    2011-08-01

    Personal exposures and ambient concentrations of air toxics were characterized in a pollution "hot spot" and an urban reference site, both in Camden, New Jersey. The hot spot was the city's Waterfront South neighborhood; the reference site was a neighborhood, about 1 km to the east, around the intersection of Copewood and Davis streets. Using personal exposure measurements, residential ambient air measurements, statistical analyses, and exposure modeling, we examined the impact of local industrial and mobile pollution sources, particularly diesel trucks, on personal exposures and ambient concentrations in the two neighborhoods. Presented in the report are details of our study design, sample and data collection methods, data- and model-analysis approaches, and results and key findings of the study. In summary, 107 participants were recruited from nonsmoking households, including 54 from Waterfront South and 53 from the Copewood-Davis area. Personal air samples were collected for 24 hr and measured for 32 target compounds--11 volatile organic compounds (VOCs*), four aldehydes, 16 polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) with an aerodynamic diameter 0.6) was found between benzene and MTBE in both locations. These results suggest that automobile exhausts were the main contributors to benzene and MTBE air pollution in both neighborhoods. Formaldehyde and acetaldehyde concentrations were found to be high in both neighborhoods. Mean (+/- SD) concentrations of formaldehyde were 20.2 +/- 19.5 microg/m3 in Waterfront South and 24.8 +/- 20.8 microg/m3 in Copewood-Davis. A similar trend was observed for the two compounds during the saturation-sampling campaigns. The results indicate that mobile sources (i.e., diesel trucks) had a large impact on formaldehyde and acetaldehyde concentrations in both neighborhoods and that both are aldehyde hot spots. The study also showed that PM2.5, aldehydes, BTEX, and MTBE concentrations in both Waterfront South

  17. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel D; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2017-09-01

    The objective of this study is to examine associations between short-term exposure to ambient air pollution and circulating biomarkers of systemic inflammation in participants from the Framingham Offspring and Third Generation cohorts in the greater Boston area. We included 3996 noncurrent smoking participants (mean age, 53.6 years; 54% women) who lived within 50 km from a central air pollution monitoring site in Boston, MA, and calculated the 1- to 7-day moving averages of fine particulate matter (diameterpollution was associated with higher levels of C-reactive protein, interleukin-6, and tumor necrosis factor receptor 2 but not fibrinogen or tumor necrosis factor α in individuals residing in the greater Boston area. © 2017 American Heart Association, Inc.

  18. Global and regional trends in particulate air pollution and attributable health burden over the past 50 years

    Science.gov (United States)

    Butt, E. W.; Turnock, S. T.; Rigby, R.; Reddington, C. L.; Yoshioka, M.; Johnson, J. S.; Regayre, L. A.; Pringle, K. J.; Mann, G. W.; Spracklen, D. V.

    2017-10-01

    Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry diameter of air quality has changed rapidly. Here we used the HadGEM3-UKCA coupled chemistry-climate model, integrated exposure-response relationships, demographic and background disease data to provide the first estimate of the changes in global and regional ambient PM2.5 concentrations and attributable health burdens over the period 1960 to 2009. Over this period, global mean population-weighted PM2.5 concentrations increased by 38%, dominated by increases in China and India. Global attributable deaths increased by 89% to 124% over the period 1960 to 2009, dominated by large increases in China and India. Population growth and ageing contributed mostly to the increases in attributable deaths in China and India, highlighting the importance of demographic trends. In contrast, decreasing PM2.5 concentrations and background disease dominated the reduction in attributable health burden in Europe and the United States. Our results shed light on how future projected trends in demographics and uncertainty in the exposure-response relationship may provide challenges for future air quality policy in Asia.

  19. An Automated Heart Rate Detection Platform in Wild-Type Zebrafish for Cardiotoxicity Screening of Fine Particulate Matter Air Pollution

    Science.gov (United States)

    Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...

  20. Particulate Air Pollution, Exceptional Aging, and Rates of Centenarians: A Nationwide Analysis of the United States, 1980-2010.

    Science.gov (United States)

    Baccarelli, Andrea A; Hales, Nick; Burnett, Richard T; Jerrett, Michael; Mix, Carter; Dockery, Douglas W; Pope, C Arden

    2016-11-01

    Exceptional aging, defined as reaching age 85 years, shows geographic inequalities that may depend on local environmental conditions. Links between particulate pollution-a well-recognized environmental risk factor-and exceptional aging have not been investigated. We conducted a nationwide analysis of ~28 million adults in 3,034 United States counties to determine whether local PM2.5 levels (particulate matter migration variables. On average, 2,295 and 71.4 per 10,000 of the 55- to 64- and 70- to 74-year-olds in 1980, respectively, remained in the 85- to 94- and 100- to 104-year-old population in 2010. An interquartile range (4.19 μg/m3) increase in PM2.5 was associated with 93.7 fewer 85- to 94-year-olds (p national standard. Exceptional aging was strongly associated with smoking, with an interquartile range (4.77%) increase in population who smoked associated with 181.9 fewer 85- to 94-year-olds (p income. Communities with the most exceptional aging have low ambient air pollution and low rates of smoking, poverty, and obesity. Improvements in these determinants may contribute to increasing exceptional aging. Citation: Baccarelli AA, Hales N, Burnett RT, Jerrett M, Mix C, Dockery DW, Pope CA III. 2016. Particulate air pollution, exceptional aging, and rates of centenarians: a nationwide analysis of the United States, 1980-2010. Environ Health Perspect 124:1744-1750; http://dx.doi.org/10.1289/EHP197.

  1. 78 FR 69361 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 84 [Docket No. CDC-2013-0017; NIOSH-250] Development of Inward Leakage Standards for Half-Mask Air- Purifying Particulate Respirators AGENCY: Centers... regarding the development of inward leakage performance standards for half-mask air- purifying particulate...

  2. Interaction between ozone and airborne particulate matter in office air

    DEFF Research Database (Denmark)

    Mølhave, Lars; Kjærgaard, Søren K.; Sigsgaard, Torben

    2005-01-01

    This study investigated the hypotheses that humans are affected by air pollution caused by ozone and house dust, that the effect of simultaneous exposure to ozone and dust in the air is larger than the effect of these two pollutants individually, and that the effects can be measured as release of...

  3. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  4. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    Science.gov (United States)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  5. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study.

    Science.gov (United States)

    Chen, Renjie; Zhang, Yuhao; Yang, Chunxue; Zhao, Zhuohui; Xu, Xiaohui; Kan, Haidong

    2013-04-01

    There have been no multicity studies on the acute effects of air pollution on stroke mortality in China. This study was undertaken to examine the associations between daily stroke mortality and outdoor air pollution (particulate matter air pollution with daily stroke mortality. Air pollution was associated with daily stroke mortality in 8 Chinese cities. In the combined analysis, an increase of 10 μg/m(3) of 2-day moving average concentrations of particulate matter air pollution and risk of stroke mortality. To our knowledge, this is the first multicity study in China, or even in other developing countries, to report the acute effect of air pollution on stroke mortality. Our results contribute to very limited data on the effect of air pollution on stroke for high-exposure settings typical in developing countries.

  6. Unrestricted release measurements with ambient air ionization monitors

    International Nuclear Information System (INIS)

    MacArthur, D.; Gunn, R.; Dockray, T.; Luff, C.

    1999-01-01

    Radiation monitoring systems based on the long-range alpha detection (LRAD) technique, such as the BNFL Instruments IonSens trademark, provide a single contamination measurement for an entire object rather than the more familiar individual readings for smaller surface areas. The LRAD technique relies on the ionization of ambient air molecules by alpha particles, and the subsequent detection of these ions, rather than direct detection of the alpha particles themselves. A single monitor can detect all of the ions produced over a large object and report a total contamination level for the entire surface of that object. However, both the unrestricted release limits specified in USDOE Order 5400.5 (and similar documents in other countries), and the definitions of radioactive waste categories, are stated in terms of contamination per area. Thus, conversion is required between the total effective contamination as measured by the LRAD-based detector and the allowable release limits. In addition, since the release limits were not written assuming an averaging detector system, the method chosen to average the assumed contamination over the object can have a significant impact on the effective sensitivity of the detector

  7. Assessing environmental inequalities in ambient air pollution across urban Australia.

    Science.gov (United States)

    Knibbs, Luke D; Barnett, Adrian G

    2015-04-01

    Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology

    International Nuclear Information System (INIS)

    Cakmak, Sabit; Dales, Robert; Kauri, Lisa Marie; Mahmud, Mamun; Van Ryswyk, Keith; Vanos, Jennifer; Liu, Ling; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Weichenthal, Scott

    2014-01-01

    Background: Studying the physiologic effects of components of fine particulate mass (PM 2.5 ) could contribute to a better understanding of the nature of toxicity of air pollution. Objectives: We examined the relation between acute changes in cardiovascular and respiratory function, and PM 2.5 -associated-metals. Methods: Using generalized linear mixed models, daily changes in ambient PM 2.5 -associated metals were compared to daily changes in physiologic measures in 59 healthy subjects who spent 5-days near a steel plant and 5-days on a college campus. Results: Interquartile increases in calcium, cadmium, lead, strontium, tin, vanadium and zinc were associated with statistically significant increases in heart rate of 1–3 beats per minute, increases of 1–3 mmHg in blood pressure and/or lung function decreases of up to 4% for total lung capacity. Conclusion: Metals contained in PM 2.5 were found to be associated with acute changes in cardiovascular and respiratory physiology. - Highlights: • We measured daily lung function, heart rate and blood pressure in 61 subjects. • Study sites were adjacent to a steel plant and on a college campus. • PM 2.5 -associated metal concentrations were measured daily at each site. • On days of higher metal concentrations, physiologic variables slightly deteriorated. • Some metal components may contribute to the toxicity of PM 2.5 . - Several PM 2.5 metals were associated with acute changes in cardiovascular or respiratory physiology. Given the evidence of source specificity, our study provides novel information

  9. Longitudinal Analysis of Particulate Air Pollutants and Adolescent Delinquent Behavior in Southern California.

    Science.gov (United States)

    Younan, Diana; Tuvblad, Catherine; Franklin, Meredith; Lurmann, Fred; Li, Lianfa; Wu, Jun; Berhane, Kiros; Baker, Laura A; Chen, Jiu-Chiuan

    2017-12-13

    Animal experiments and cross-sectional human studies have linked particulate matter (PM) with increased behavioral problems. We conducted a longitudinal study to examine whether the trajectories of delinquent behavior are affected by PM 2.5 (PM with aerodynamic diameter ≤ 2.5 μm) exposures before and during adolescence. We used the parent-reported Child Behavior Checklist at age 9-18 with repeated measures every ~2-3 years (up to 4 behavioral assessments) on 682 children from the Risk Factors for Antisocial Behavior Study conducted in a multi-ethnic cohort of twins born in 1990-1995. Based on prospectively-collected residential addresses and a spatiotemporal model of ambient air concentrations in Southern California, monthly PM 2.5 estimates were aggregated to represent long-term (1-, 2-, 3-year average) exposures preceding baseline and cumulative average exposure until the last assessment. Multilevel mixed-effects models were used to examine the association between PM 2.5 exposure and individual trajectories of delinquent behavior, adjusting for within-family/within-individual correlations and potential confounders. We also examined whether psychosocial factors modified this association. The results sμggest that PM 2.5 exposure at baseline and cumulative exposure during follow-up was significantly associated (p < 0.05) with increased delinquent behavior. The estimated effect sizes (per interquartile increase of PM 2.5 by 3.12-5.18 μg/m 3 ) were equivalent to the difference in delinquency scores between adolescents who are 3.5-4 years apart in age. The adverse effect was stronger in families with unfavorable parent-to-child relationships, increased parental stress or maternal depressive symptoms. Overall, these findings sμggest long-term PM 2.5 exposure may increase delinquent behavior of urban-dwelling adolescents, with the resulting neurotoxic effect aggravated by psychosocial adversities.

  10. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists.

    Science.gov (United States)

    Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L

    1991-08-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.

  11. Ambient air pollution and congenital heart defects in Lanzhou, China

    Science.gov (United States)

    Jin, Lan; Qiu, Jie; Zhang, Yaqun; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Li, Min; Zhao, Nan; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Xu, Xiaoying; Huang, Huang; Liu, Qing; Bell, Michelle L.; Zhang, Yawei

    2015-07-01

    Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010-2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM10 (IQR = 71.2, 61.6, and 27.4 μg m-3, respectively)), and associations with NO2 during 2nd trimester and the entire pregnancy (OR 2nd trimester = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO2 (IQR = 13.4 and 10.9 μg m-3, respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM10 exposures in the 2nd trimester and the entire pregnancy, and SO2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects.

  12. Ambient air pollution and congenital heart defects in Lanzhou, China

    International Nuclear Information System (INIS)

    Jin, Lan; Bell, Michelle L; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Xu, Xiaoying; Liu, Qing; Zhang, Yaqun; Li, Min; Zhao, Nan; Huang, Huang; Zhang, Yawei

    2015-01-01

    Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010–2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM 10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester  = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester  = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy  = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM 10 (IQR = 71.2, 61.6, and 27.4 μg m −3 , respectively)), and associations with NO 2 during 2nd trimester and the entire pregnancy (OR 2nd trimester  = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy  = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO 2 (IQR = 13.4 and 10.9 μg m −3 , respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM 10 exposures in the 2nd trimester and the entire pregnancy, and SO 2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects. (letter)

  13. Association between ambient air pollution and hospitalization for ischemic and hemorrhagic stroke in China: A multicity case-crossover study.

    Science.gov (United States)

    Liu, Hui; Tian, Yaohua; Xu, Yan; Huang, Zhe; Huang, Chao; Hu, Yonghua; Zhang, Jun

    2017-11-01

    There is growing interest in the association between ambient air pollution and stroke, but few studies have investigated the association in developing countries. The primary objective of this study was to examine the association between levels of ambient air pollutants and hospital admission for stroke in China. A time-stratified case-crossover analysis was conducted between 2014 and 2015 in 14 large Chinese cities among 200,958 ischemic stroke and 41,746 hemorrhagic stroke hospitalizations. We used conditional logistic regression to estimate the percentage changes in stroke admissions in relation to interquartile range increases in air pollutants. Air pollution was positively associated with ischemic stroke. A difference of an interquartile range of the 6-day average for particulate matter less than 10 μm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone corresponded to 0.7% (95% CI: 0%, 1.4%), 1.6% (95% CI: 1.0%, 2.3%), 2.6% (95% CI: 1.8%, 3.5%), 0.5% (95% CI: -0.2%, 1.1%), and 1.3% (95% CI: 0.3%, 2.3%) increases in ischemic stroke admissions, respectively. For hemorrhagic stroke, we observed the only significant association in relation to nitrogen dioxide on the current day (percentage change: 1.6%; 95% CI: 0.3%, 2.9%). Our findings contribute to the limited scientific literature concerning the effect of ambient air pollution on stroke in developing countries. Our findings may have significant public health implications for primary prevention of stroke in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. [Brigham Young University, Provo, UT (United States)

    2003-03-06

    A study was conducted to the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. Fine particulate and sulfur oxide-related pollution were found to be associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-{mu}g/m{sup 3} elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. It was concluded that long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality. 31 refs., 5 figs., 2 tabs.

  15. Standard specification for high efficiency particulate air filters. Revision No. 2

    International Nuclear Information System (INIS)

    Porter, F.E.

    1976-01-01

    This specification covers the requirements for four types and four sizes of high efficiency particulate air filters, assembled with or without separators and gaskets. Types include Fire Resistant and Moisture Resistant; Hydrogen Fluoride Fume (HF) Resistant; Fire Resistant and Moisture Resistant and Chemical Resistant; and Fire Resistant and Moisture Resistant, High Temperature and High Humidity

  16. EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE- MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

    Science.gov (United States)

    Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...

  17. Ambient air pollution and years of life lost in Ningbo, China

    Science.gov (United States)

    He, Tianfeng; Yang, Zuyao; Liu, Tao; Shen, Yueping; Fu, Xiaohong; Qian, Xujun; Zhang, Yuelun; Wang, Yong; Xu, Zhiwei; Zhu, Shankuan; Mao, Chen; Xu, Guozhang; Tang, Jinling

    2016-03-01

    To evaluate the burden of air pollution on years of life lost (YLL) in addition to mortality, we conducted a time series analysis based on the data on air pollution, meteorological conditions and 163,704 non-accidental deaths of Ningbo, China, 2009-2013. The mean concentrations of particulate matter with aerodynamic diameter population for both outcomes. These findings clarify the burden of air pollution on YLL and highlight the importance and urgency of air pollution control in China.

  18. Time series analysis of ambient air concentrations in Alexandria and Nile delta region, Egypt

    International Nuclear Information System (INIS)

    EI Raev, M.; Shalaby, E.A.; Ghatass, Z.F.; Marey, H.S.

    2007-01-01

    Data collected from the Air Monitoring Network of Alexandria and Delta (EEAA/EIMP-program), were analyzed. Emphasis is given to indicator pollutants PM 10 , NO 2 , SO 2 , O 3 and CO. Two sites have been selected in Alexandria (IGSR and Shohada) and three sites in Delta region (Kafr Elzyat, Mansoura and Mahalla) for analysis of three years from 2000-2002. Box -Jenkins modeling has been used mainly for forecasting and assessing relative importance of various parameters or pollutants. Results showed that, the autoregressive (AR) order for all series ranged from 0-2 except NO 2 at Mansoura site. Also the moving average order ranged from 0-2 except CO at IGSR site. Nitrogen dioxide and Ozone at IGSR site have the same ARIMA model which is (0, 1, and 2). Cross correlation analysis has revealed important information on the dynamics, chemistry and interpretation of ambient pollution. Cross-correlation functions of SO 2 and PM 10 at IGSR sites suggest that, sulfur dioxide has been adsorbed on the surface of particulates which has an alkaline nature. This enhances the oxidation of sulfur dioxide to sulfate, which results in low levels of SO 2 in spite of the presence of sources

  19. determination of elemental composition of air particulates and soils

    African Journals Online (AJOL)

    Mgina

    Department of Physics, Faculty of Science. University ... collecting airborne particles with an aerodynamic diameter of 2.5 μm. Energy ... have elevated concentrations compared to the background air levels. ... part of the total mass of street dust,.

  20. Particulate emission rates from light-duty vehicles in the South Coast Air Quality Management District

    International Nuclear Information System (INIS)

    Durbin, T.D.; Norbeck, J.M.; Smith, M.R.; Truex, T.J.

    1999-01-01

    This paper presents the results of a particulate emission rate study conducted on 129 light-duty gasoline and 19 light-duty diesel vehicles for the Coordinating Research Council's (CRC's) Project E-24-2. Total particulate emission rates for newer gasoline vehicles were low with modest increases with vehicle age and older technology. Average FTP particulate emission rates as a function of model year for gasoline vehicles were found to be 2.5 mg/mi for 1991 and newer models, 14.4 mg/mi for 1986--1990 models, 49.0 mg/mi for 1981--1985 models, and 33.8 mg/mi for 1980 and older models. High gaseous emitters were found to have approximately 5--10 times the particulate emission rates of normal emitters. The diesel vehicles had an average particulate emission rate of 561 mg/mi. It should be noted that the light-duty diesel vehicles were predominantly older, pre-1985 vehicles; the 1985 and newer diesel vehicles had substantially lower particulate emissions, i.e., less than 100 mg/mi. Emission inventory estimates in the South Coast Air Basin based on the fleet emission rates were higher than those obtained using the default values in EMFAC7G, due primarily to the contribution of high emitters

  1. Thia-arenes as source apportionment tracers for urban air particulate

    International Nuclear Information System (INIS)

    McCarry, B.E.; Allan, L.M.; Mehta, S.; Marvin, C.H.

    1995-01-01

    Over sixty respirable air particulate samples were selected from a large number of filters collected in Hamilton, Ontario, Canada. Depending on the wind direction these sites were either predominantly upwind or predominantly downwind of the industrial sources. The sixty filters were extracted and analyzed using GC-MS for a range of PAH and sulfur-containing PAH (thia-arenes). Various reference standards (coal tar, diesel exhaust, urban air particulate) and source samples (coke oven condensate) were analyzed as well. A set of air particulate samples collected in another city alongside a highway provided an urban vehicular air sample. Unique thia-arene profiles were noted in the reference and source samples which provided the basis for this source apportionment work; two main approaches were used: (1) analysis of alkylated derivatives of thia-arenes with a molecular mass of 184 amu and (2) analysis of 234 amu isomers. The diesel exhaust and urban vehicular samples gave identical profiles while the coal tar and coke oven samples also had identical profiles but in different respects. The air samples collected at samplers located upwind of the coke ovens showed thia-arene profiles which were similar to the profile observed with a diesel exhaust reference material. However, air samples collected downwind of the coke ovens were heavily loaded samples and resembled the coal tar coke and oven condensate samples

  2. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  3. Association of ambient air pollution with the prevalence and incidence of COPD

    NARCIS (Netherlands)

    Schikowski, Tamara; Adam, Martin; Marcon, Alessandro; Cai, Yutong; Vierkötter, Andrea; Carsin, Anne Elie; Jacquemin, Benedicte; Al Kanani, Zaina; Beelen, Rob; Birk, Matthias; Bridevaux, Pierre Olivier; Brunekreef, Bert; Burney, Peter; Cirach, Marta; Cyrys, Josef; De Hoogh, Kees; De Marco, Roberto; De Nazelle, Audrey; Declercq, Christophe; Forsberg, Bertil; Hardy, Rebecca; Heinrich, Joachim; Hoek, Gerard; Jarvis, Debbie; Keidel, Dirk; Kuh, Diane; Kuhlbusch, Thomas; Migliore, Enrica; Mosler, Gioia; Nieuwenhuijsen, Mark J.; Phuleria, Harish; Rochat, Thierry; Schindler, Christian; Villani, Simona; Tsai, Ming Yi; Zemp, Elisabeth; Hansell, Anna; Kauffmann, Francine; Sunyer, Jordi; Probst-Hensch, Nicole; Krämer, Ursula; Künzli, Nino

    2014-01-01

    The role of air pollution in chronic obstructive pulmonary disease (COPD) remains uncertain. The aim was to assess the impact of chronic exposure to air pollution on COPD in four cohorts using the standardised ESCAPE exposure estimates. Annual average particulate matter (PM), nitrogen oxides (NO x)

  4. The association between low level exposures to ambient air pollution and term low birth weight: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Stieb David

    2006-02-01

    Full Text Available Abstract Background Studies in areas with relatively high levels of air pollution have found some positive associations between exposures to ambient levels of air pollution and several birth outcomes including low birth weight (LBW. The purpose of this study was to examine the association between LBW among term infants and ambient air pollution, by trimester of exposure, in a region of lower level exposures. Methods The relationship between LBW and ambient levels of particulate matter up to 10 um in diameter (PM10, sulfur dioxide (SO2 and ground-level ozone (O3 was evaluated using the Nova Scotia Atlee Perinatal Database and ambient air monitoring data from the Environment Canada National Air Pollution Surveillance Network and the Nova Scotia Department of Environment. The cohort consisted of live singleton births (≥37 weeks of gestation between January1,1988 and December31,2000. Maternal exposures to air pollution were assigned to women living within 25 km of a monitoring station at the time of birth. Air pollution was evaluated as a continuous and categorical variable (using quartile exposures for each trimester and relative risks were estimated from logistic regression, adjusted for confounding variables. Results There were 74,284 women with a term, singleton birth during the study period and with exposure data. In the analyses unadjusted for year of birth, first trimester exposures in the highest quartile for SO2 and PM10suggested an increased risk of delivering a LBW infant (relative risk = 1.36, 95% confidence interval = 1.04 to 1.78 for SO2 exposure and relative risk = 1.33, 95% confidence interval = 1.02 to 1.74 for PM10. After adjustment for birth year, the relative risks were attenuated somewhat and not statistically significant. A dose-response relationship for SO2 was noted with increasing levels of exposure. No statistically significant effects were noted for ozone. Conclusion Our results suggest that exposure during the first

  5. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Science.gov (United States)

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2 NAAQS...

  6. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  7. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    Science.gov (United States)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on

  8. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; hide

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  9. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities : Results from time series data from the APHEA project

    NARCIS (Netherlands)

    Katsouyanni, K; Touloumi, G; Spix, C; Schwartz, J; Balducci, F; Medina, S; Rossi, G; Wojtyniak, B; Sunyer, J; Bacharova, L; Schouten, JP; Ponka, A; Anderson, HR

    1997-01-01

    Objectives: To carry out a prospective combined quantitative analysis of the associations between all cause mortality and ambient particulate matter and sulphur dioxide. . Design: Analysis of time series data on daily number of deaths from all causes and concentrations of sulphur dioxide and

  10. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  11. 75 FR 81477 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Amendments to Ambient...

    Science.gov (United States)

    2010-12-28

    ... Abatement of Air Pollution: 9VAC5 Chapter 30--Ambient Air Quality Standards incorporates the annual and 24... Commonwealth and takes prompt and appropriate measures to remedy the violations. Virginia's Voluntary... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference, Nitrogen...

  12. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  13. Children's Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure?

    Science.gov (United States)

    Saenen, Nelly D; Bové, Hannelore; Steuwe, Christian; Roeffaers, Maarten B J; Provost, Eline B; Lefebvre, Wouter; Vanpoucke, Charlotte; Ameloot, Marcel; Nawrot, Tim S

    2017-10-01

    Ambient air pollution, including black carbon, entails a serious public health risk because of its carcinogenic potential and as climate pollutant. To date, an internal exposure marker for black carbon particles that have cleared from the systemic circulation into the urine does not exist. To develop and validate a novel method to measure black carbon particles in a label-free way in urine. We detected urinary carbon load in 289 children (aged 9-12 yr) using white-light generation under femtosecond pulsed laser illumination. Children's residential black carbon concentrations were estimated based on a high-resolution spatial temporal interpolation method. We were able to detect urinary black carbon in all children, with an overall average (SD) of 98.2 × 10 5 (29.8 × 10 5 ) particles/ml. The urinary black carbon load was positively associated with medium-term to chronic (1 mo or more) residential black carbon exposure: +5.33 × 10 5 particles/ml higher carbon load (95% confidence interval, 1.56 × 10 5 to 9.10 × 10 5 particles/ml) for an interquartile range increment in annual residential black carbon exposure. Consistently, children who lived closer to a major road (≤160 m) had higher urinary black carbon load (6.93 × 10 5 particles/ml; 95% confidence interval, 0.77 × 10 5 to 13.1 × 10 5 ). Urinary black carbon mirrors the accumulation of medium-term to chronic exposure to combustion-related air pollution. This specific biomarker reflects internal systemic black carbon particles cleared from the circulation into the urine, allowing investigators to unravel the complexity of particulate-related health effects.

  14. Assessment of Ambient Air Quality and Air Quality Index in Golden Corridor of Gujarat, India: A Case Study of Dahej Port

    Directory of Open Access Journals (Sweden)

    Hiren B. Soni

    2018-01-01

    Full Text Available Clean air is the basic requirement of all living organisms. In recent times, due to population growth, urban sprawl, industrial development, and vehicular boom, the quality of air is deteriorating and being polluted. Pollutants of major public health concerns include particulate matter, carbon monoxide, ozone, nitrogen dioxide, and sulfur dioxide, which pose serious threats to human health and hygiene. In the present study, prime particulate pollutants (PM10, PM2.5, and gaseous pollutants (SO2, and NO2 were estimated at seven stations in and around Dahej Port, Gujarat, India. The obtained values of PM10, PM2.5, SO2, and NO2 in all the studied stations (seven ranged from 67.39 to 98.75, 29.57 to 45.79, 17.76 to 22.29 and 28.29 to 32.42 mg/m3, respectively. The level of PM10 at all sampling locations, and that of PM2.5 at Station A3 (Lakhigam were found little higher than prescribed permissible limits of CPCB standards, while SO2 and NO2levels were within the acceptable range. The Air Quality Index (AQI score was found to be ranged from 76.50 to 97.75, which is at satisfactory level as per CPCB standards. Further, precautionary measures and management strategies to minimize the effect of particulate as well as gaseous pollutants have also been suggested for achieving its ambient levels in and around Dahej Port, Gujarat, India.International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 28-41

  15. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Science.gov (United States)

    Teng, Bo; Zhang, Xuelei; Yi, Chunhui; Zhang, Yan; Ye, Shufeng; Wang, Yafang; Tong, Daniel Q.; Lu, Binfeng

    2017-01-01

    With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis) in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR) from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms), autumn (October, straw burning) and winter (November to April, coal burning). The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%), 4.9% (95% CI, 0.8%–9.2%), 8.5% (95% CI, −1.8%–19.8%) and 11.1% (95% CI, 5.8%–16.5%) for exposure to each 1-Standard Deviation (1-SD) increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs) of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4). The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations) and the prevalence of respiratory effects (allergic rhinitis) in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  16. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Directory of Open Access Journals (Sweden)

    Bo Teng

    2017-02-01

    Full Text Available With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms, autumn (October, straw burning and winter (November to April, coal burning. The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%, 4.9% (95% CI, 0.8%–9.2%, 8.5% (95% CI, −1.8%–19.8% and 11.1% (95% CI, 5.8%–16.5% for exposure to each 1-Standard Deviation (1-SD increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4. The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations and the prevalence of respiratory effects (allergic rhinitis in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  17. Ships, ports and particulate air pollution - an analysis of recent studies

    Directory of Open Access Journals (Sweden)

    Mueller Daniel

    2011-12-01

    Full Text Available Abstract The duration of use is usually significantly longer for marine vessels than for roadside vehicles. Therefore, these vessels are often powered by relatively old engines which may propagate air pollution. Also, the quality of fuel used for marine vessels is usually not comparable to the quality of fuels used in the automotive sector and therefore, port areas may exhibit a high degree of air pollution. In contrast to the multitude of studies that addressed outdoor air pollution due to road traffic, only little is known about ship-related air pollution. Therefore the present article aims to summarize recent studies that address air pollution, i.e. particulate matter exposure, due to marine vessels. It can be stated that the data in this area of research is still largely limited. Especially, knowledge on the different air pollutions in different sea areas is needed.

  18. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  19. Concentrations of persistent organic pollutants in ambient air in Durban, South Africa

    CSIR Research Space (South Africa)

    Batterman, S

    2007-01-01

    Full Text Available This paper reports on an extensive ambient air quality monitoring program in Durban (eThekwini Municipality), South Africa, on Africa’s southeast coast. Following a multi stakeholder process coordinated by the Municipality Metropolitan Health...

  20. A new technology for the reduction of particulate matter from diesel engines in ships

    NARCIS (Netherlands)

    Van Rens, G.L.M.A.

    2008-01-01

    In this thesis the focus is on the particulate matter reduction of ships, as ships contribute significantly to the particulate matter concentration in ambient air. Because the fuel of sea ships contains a lot of ash, the emitted particulate matter will also contain a lot of ash. In car and truck

  1. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Mohd Suhaimi Hamzah; Shamsiah Abd Rahman; Mohd Khalid Matori; Abd Khalik Wood

    2000-01-01

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  2. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis

    International Nuclear Information System (INIS)

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M.

    2017-01-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. - Highlights: • Air pollution represents a worldwide problem with impact on human health. • Particulate matter (PM) has a recognized carcinogenic potential in humans. • Lung cancer susceptibility depends on gene-environment interactions. • Epidemiological and experimental evidence links PM exposure to genomic instability. • PM and genomic instability are co-dependent factors during cancer continuum. - We summarize the association between particulate matter (a component of air pollution) and genomic instability as well as discuss how new strategies to study the impact of air pollution on genomic instability and lung-cancer development could improve our understanding of the lung-cancer genome.

  3. Viral Penetration of High Efficiency Particulate Air (HEPA) Filters (PREPRINT)

    Science.gov (United States)

    2009-09-01

    US Plastics, Lima , 155 Ohio). Each path runs through a test article and thence through one AGI-30 all-glass 156 impinger (Chemglass, Vineland, N.J...rotameter (Blue–White 400, Huntington Beach , California, or PMR1-159 101346, Cole–Parmer, Vernon Hills, Illinois). At the end of the sampling path...fibrous Filters." J. Air Pollution Control Assoc. 30 [4]: 501 377–381. 502 Leenders, G.J.M, A.C. Bolle, and J. Stadhouders. 1984. “A Study of the

  4. Viral Penetration of High Efficiency Particulate Air (HEPA) Filters

    Science.gov (United States)

    2007-02-01

    PVC tubing (Excelon® RNT,US Plastics, Lima , Ohio). Each path runs through a test article and thence through one AGI-30 all-glass impingers (Chemglass...a mechanical flow meter (Blue–White 400, Huntington Beach , California, or PMR1-101346, Cole– Parmer, Vernon Hills, Illinois). At the end of the...fibrous Filters." Air Pollution Control Association 30(4): 377-381. Leenders, G. J. M. and J. H. Stadhouders (1980s). "Effectiveness of HEPA

  5. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET)

    Science.gov (United States)

    Maluf, Mariangela; Czeresnia, Carlos Eduardo; Januário, Daniela Aparecida Nicolosi Foltran; Saldiva, Paulo Hilário Nascimento

    2010-01-01

    Purpose To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Methods Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q1: ≤30.48 µg/m3, Q2: 30.49–42.00 µg/m3, Q3: 42.01–56.72 µg/m3, and Q4: >56.72 µg/m3). Results Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q4 period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04–25.51) when compared to women exposed to Q1–3 periods. Conclusion Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed. PMID:20405197

  6. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Directory of Open Access Journals (Sweden)

    Chayut Pinichka

    Full Text Available Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs. We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand.We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA framework developed by the World Health Organization (WHO and the Global Burden of Disease study (GBD. We integrated geographical information systems (GIS-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR and concentration of air pollutants from the epidemiological literature.We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality

  7. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Science.gov (United States)

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong; Bundhamcharoen, Kanitta

    2017-01-01

    Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to

  8. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  9. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Williams, C.H.; Eberhart, C.F.

    1992-01-01

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  10. Particulate matter air pollution components and risk for lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O.; Beelen, Rob; Wang, M.

    2016-01-01

    geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models...... was statistically significant. In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 1.25; 95% CI, 1.01-1.53 per 5ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20ng/m(3)), PM10 S (1.58; 1.03-2.44 per 200ng/m(3)), PM10 Ni (1.......59; 1.12-2.26 per 2ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed...

  11. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    International Nuclear Information System (INIS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-01-01

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  12. Nitrogen oxides, ozone and heavy metals analysis of suspended particulate matter (spm) of air in Nairobi, Kenya

    International Nuclear Information System (INIS)

    Odhiambo, O.; Kinyua, A.M.; Gatebe, C.K.

    2001-01-01

    Motor vehicle emissions are a major source of air pollution in most urban centers. In Kenya, Nairobi city has the highest traffic density and is therefore a particular cause for concern due to the poor maintenance standards of most vehicles plus the use of leaded gasoline. This study was carried out to determine the levels of nitrogen oxides (nox), suspended particulate matter (PM10), ozone (O3) and heavy metals in the SPM collected from the ambient air of Nairobi city. Sampling was done once every week for a period of three months (February to April 2000). Hourly average concentrations of N0 2 , NO and O3 were measured simultaneously from 9.00 am to 5.00 p.m., at a roundabout connecting two main highways (University and Uhuru) in the city. PM10 was collected using Gent Stacked Filter Unit (SFU) air sampler on nuclepore filters (0.4 and 8.0 ?m pore size for fine and coarse filters respectively) which were weighed and analysed for trace elements by Energy Dispersive X-ray Fluorescent (EDXRF) technique. Nitrogen oxides were analysed with thermo electron's Chemiluminescent nox Model 14B analyser while ozone was by using DASIBI ozone monitor, Model 1003 AH. An automatic vehicle counter was used For determining the vehicle density at the sampling point. The findings of the study show that the values obtained for Pb, Mn, Fe, Br, Zn, Cu and Ca are within the Who guidelines. Lead concentrations ranged from 0.051 to 1.106?g/m3; Fe, 0.149 to 3.154?g/m3; Mn, 0.002 to 0.526?g/m3; Cu, lower limit of detection (LLD) to 0.15?g/m3; Br, LLD to 0.43?g/m3; Zn, LLD to 0.14 ?g/m3 and Ca 2.18 to 5.389?g/m3. Concentrations of NO 2 , NO and O3 were also within the 8-hour Who limits with levels ranging from 0.011-0.976 ppm for NO, 0.001-0.2628 ppm for NO 2 and LLD-0.1258 ppm for ozone. The O3 levels were slightly higher in the afternoons when solar intensity was high especially the days with cloud cover of less than 3 Oktas. PM10 levels were, however, above the Who guidelines for most of

  13. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  14. 78 FR 22501 - Designation of Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate

    Science.gov (United States)

    2013-04-16

    ... Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate AGENCY... designations for total suspended particulate within the State of Nevada because the designations are no longer necessary. These designations relate to the attainment or unclassifiable areas for total suspended...

  15. Study of particulates and heavy elements in air of some Syrian cities

    International Nuclear Information System (INIS)

    Othman, I.; Al-Oudat, M.; Al-Rayes, A. H.; Al- Kharfan, K.

    1999-11-01

    A study of air pollution in different sites of five Syrian cities (Damascus, Aleppo, Tartous, Homs, and Sweda) was carried out. The concentration of total suspended particulate (TSP), particulate less than 10 microns (PM 10) and less than 3 microns (PM 3) were measured using high volume air sampler (HVAS). Heavy element concentration, Pb, Cd, Zn, and Cu were also determined using anodic stripping voltametry. The result showed that TSP, PM 10 and PM 3 were higher than WHO standards in several times. Mean lead concentrations ranged between 0.58 and 2.96 μg/m 3 and 0.56 and 1.53 μg/m 3 in Damascus and Aleppo respectively, while in the other cities these concentrations were less than WHO standards (0.5 - 1 μg/m 3 ). (author)

  16. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang.

    Science.gov (United States)

    Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling

    2015-09-01

    Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure

    DEFF Research Database (Denmark)

    Winckelmans, Ellen; Nawrot, Tim S.; Tsamou, Maria

    2017-01-01

    validation cohort (n = 169, 55.6% women). Results: Overrepresentation analyses revealed significant pathways (p-value transport chain (ETC) for medium-term exposure in women. For men, medium-term PM10....... Conclusions: In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage....

  18. Cytokine release from alveolar macrophages exposed to ambient particulate matter: Heterogeneity in relation to size, city and season

    Directory of Open Access Journals (Sweden)

    Dybing Erik

    2005-08-01

    Full Text Available Abstract Background Several studies have demonstrated an association between exposure to ambient particulate matter (PM and respiratory and cardiovascular diseases. Inflammation seems to play an important role in the observed health effects. However, the predominant particle component(s that drives the inflammation is still not fully clarified. In this study representative coarse (2.5–10 μm and fine (0.1–2.5 μm particulate samples from a western, an eastern, a northern and a southern European city (Amsterdam, Lodz, Oslo and Rome were collected during three seasons (spring, summer and winter. All fractions were investigated with respect to cytokine-inducing potential in primary macrophages isolated from rat lung. The results were related to the physical and chemical parameters of the samples in order to disclose possible connections between inflammatory potential and specific characteristics of the particles. Results Compared on a gram-by gram basis, both site-specific and seasonal variations in the PM-induced cytokine responses were demonstrated. The samples collected in the eastern (Lodz and southern (Rome cities appeared to be the most potent. Seasonal variation was most obvious with the samples from Lodz, with the highest responses induced by the spring and summer samples. The site-specific or seasonal variation in cytokine release could not be attributed to variations in any of the chemical parameters. Coarse fractions from all cities were more potent to induce the inflammatory cytokines interleukin-6 and tumour necrosis factor-α than the corresponding fine fractions. Higher levels of specific elements such as iron and copper, some polycyclic aromatic hydrocarbons (PAHs and endotoxin/lipopolysaccaride seemed to be prevalent in the coarse fractions. However, variations in the content of these components did not reflect the variation in cytokine release induced by the different coarse fractions. Addition of polymyxin B did not affect

  19. The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in Raleigh, North Carolina

    Science.gov (United States)

    Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald

    2014-01-01

    Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890

  20. Overview of ambient air quality monitoring in South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2006-10-01

    Full Text Available Air quality data is currently collected, processed and archived by a number of independent institutes. No collaboration exists between these organisations and there is no provincial or national air quality data information system or archive...

  1. EXPOSURE TO PARTICULATE MATTER, VOLATILE ORGANIC COMPOUNDS, AND OTHER AIR POLLUTANTS INSIDE PATROL CARS

    Science.gov (United States)

    People driving in a vehicle might receive an enhanced dose of mobile source pollutants that are considered a potential risk for cardiovascular diseases. The exposure to components of air pollution in highway patrol vehicles, at an ambient, and a roadside location was determined d...

  2. Ambient Air Conditions and Variation in Urban Trail Use

    OpenAIRE

    Holmes, Ann M.; Lindsey, Greg; Qiu, Chenchen

    2009-01-01

    This study examines the effect of air quality and administrative policies on use of urban trails in Indianapolis, IN. Attention is focused on two policy variables: (1) issuance of air pollution advisories and (2) the adoption of Daylight Savings Time. Results suggest that while trail use varies with air quality, current public advisories regarding air pollution may be of limited effectiveness in reducing trail users’ exposures to hazardous pollutants. In contrast, the adoption of Daylight Sav...

  3. Air particulate pollution studies in Asian countries using nuclear analytical techniques

    International Nuclear Information System (INIS)

    Hien, P.D.

    1998-01-01

    Air particulate pollution is regarded as critical in Asian cities. The levels of suspended particulate matter in major Asian cities far exceed the WHO's guideline. Nuclear analytical techniques have been widely used in the studies of air particulate pollution to provide aerosol elemental compositions for the purpose of deriving the structure of emission sources. This paper presents some preliminary observations and findings based on publications in scientific literatures. Data on PM-10 levels and socio-economic indicators are used for searching a relationship between air quality and the level of development across Asia. An inverse linear relationship between PM-10 levels and logarithm of per capita GDP appears to exist, although there are large fluctuations of data caused by the very different climatic and geographical conditions of cities studied. Soil dust is generally a major, or even predominant aerosol source in Asian cities. Other common sources include vehicular emissions, coal and oil combustion, burning of refuse (in open) and biomass (including forest fires). The relevance and the trends of these sources in Asian context are discussed. Multivariate receptor modelling techniques applied in source characterization are illustrated through the cases of Lahore and Hochiminh City. Although having limitations in dealing with mixing and overlapping sources, receptor modelling based on principal component factor analysis has been proven to be uncomplicated and sufficiently reliable for characterising aerosol sources in urban areas. (author)

  4. Citizen participatory dioxin monitoring campaign by pine needles as biomonitor of ambient air dioxin pollution

    Energy Technology Data Exchange (ETDEWEB)

    Komichi, I.; Takatori, A. [Environmental Research Institute Inc., Tokyo (Japan); Aoyama, T. [Musashi Institute of Technology, Yokohama (Japan). Faculty of Environment and Informations; Vrzic, B. [Maxxam Analytics Inc. HRMS Laboratory, Waterloo, ON (Canada)

    2004-09-15

    The needle-type leaves of Japanese black pine trees (hereafter abbreviated as pine needles) have been used as an effective bio-monitor of ambient air pollution. Miyata Laboratory of Setsunan University has reported that the pine needles accumulate PCDDs and PCDFs (hereafter abbreviated as D/F) through photosynthesis and respiration during their lifetime. On the basis of this study, we have revealed the correlation between ambient air and pine needle concentrations to be estimated at or near 1:10 by analyzing long term continuous ambient dioxin monitoring data and that of pine needles sampled from the same area as ambient air in the Kanagawa Prefecture in 1999. Since then, the citizen groups of each local area all over Japan have started monitoring the ambient air dioxin concentration levels by using pine needles. Samples analyzed during these 5 years totaled more than 650 throughout Japan. The results of these citizen participatory environmental monitoring activities are the tremendous effects achieved in reducing the dioxin levels. This occurs through observation of the dioxin emission sources such as Municipal Solid Waste Incineration Plants as well as the Industrial Waste Incineration plants, which exist in numbers exceeding several thousands in Japan. This short paper will present the results of 56 municipalities of western Japan where ambient air dioxin levels have improved steadily against local averages during these 5 years.

  5. The Relationship Between Air Particulate Levels and Upper Respiratory Disease in Soldiers Deployed to Bosnia (1997-1998)

    National Research Council Canada - National Science Library

    Hastings, Deborah

    2001-01-01

    This study had three objectives: to determine if there is a relationship between air particulate levels and upper respiratory disease in soldiers deployed to Bosnia between 1997-98, to establish a method for linking environmental...

  6. Occurrence of benzothiazole, benzotriazole and benzenesulfonamide derivates in outdoor air particulate matter samples and human exposure assessment.

    Science.gov (United States)

    Maceira, Alba; Marcé, Rosa Maria; Borrull, Francesc

    2018-02-01

    Benzothiazole (BTHs), benzotriazole (BTRs) and benzenesulfonamide (BSAs) derivates are high production volume chemicals and they are used in several industrial and household applications, therefore it is expected their occurrence in various environments, especially water and air. In this study we developed a method based on gas chromatography-mass spectrometry (GC-MS) combined with pressurised liquid extraction (PLE) to simultaneously determine four BTR, five BTH and six BSA derivates in the particulate matter (PM 10 ) of outdoor air samples collected in quartz fibre filters (QFFs). To the best of our knowledge, this is the first time these compounds have been determined in open ambient environments. Under optimised conditions, method recoveries at the lower and upper concentration levels (0.8 and 4.2 ng m -3 ) ranged from 70 to 120%, except for 1-H-benzothiazole and 2-chlorobenzothiazole, which were about 50%. The repeatability of the method was usually below 20% (n = 3, %RSD) for both concentration levels. This method enables the contaminants to be detected at pg m -3 concentration levels. Several samples from two different sites influenced by local industries showed that BTRs, followed by BTHs, were the most detected compounds, whereas BSAs were hardly found. The most frequently determined compounds were 1-H-benzothiazole, 2-chlorobenzothiazole, 1-H-benzotriazole, 2-hydroxibenzothiazole, 5,6-dimethyl-1-H-benzotriazole and the isomers 4- and 5-methyl-1-H-benzotriazole. With the concentrations found, the human exposure assessment and health risk characterization via ambient inhalation were also evaluated taking into account different subpopulation groups classified by age for the two sampling points. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London.

    Directory of Open Access Journals (Sweden)

    Krystal J Godri

    Full Text Available As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP. Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OP(AA m(-3 and glutathione (OP(GSH m(-3 depletion, the highest OP per cubic metre of air was in the largest size fraction, PM(1.9-10.2. However, when expressed per unit mass of particles OP(AA µg(-1 showed no significant dependence upon particle size, while OP(GSH µg(-1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between

  8. Removal of particulate matter (PM10) by air scrubbers at livestock facilities: results of an on-farm monitoring program.

    NARCIS (Netherlands)

    Melse, R.W.; Hofschreuder, P.; Ogink, N.W.M.

    2012-01-01

    Air scrubbers are commonly used for removal of ammonia and odor from exhaust air of animal houses in the Netherlands. In addition, air scrubbers remove a part of the particulate matter. In this article, the results of an on-farm monitoring are presented in which PM10 removal was monitored at 24

  9. Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children

    International Nuclear Information System (INIS)

    Jalaludin, Bin B.; O'Toole, Brian I.; Leeder, Stephen R.

    2004-01-01

    We enrolled a cohort of primary school children with a history of wheeze (n=148) in an 11-month longitudinal study to examine the relationship between ambient air pollution and respiratory morbidity. We obtained daily air pollution (ozone, particulate matter less than 10 μm, and nitrogen dioxide), meteorological, and pollen data. One hundred twenty-five children remained in the final analysis. We used logistic regression models to determine associations between air pollution and respiratory symptoms, asthma medication use, and doctor visits for asthma. There were no associations between ambient ozone concentrations and respiratory symptoms, asthma medication use, and doctor visits for asthma. There was, however, an association between PM 10 concentrations and doctor visits for asthma (RR=1.11, 95% CI=1.04-1.19) and between NO 2 concentration and wet cough (RR=1.05, 95% CI=1.003-1.10) in single-pollutant models. The associations remained significant in multipollutant models. There was no consistent evidence that children with wheeze, positive histamine challenge, and doctor diagnosis of asthma reacted differently to air pollution from children with wheeze and doctor diagnosis of asthma and children with wheeze only. There were significant associations between PM 10 levels and doctor visits for asthma and an association between NO 2 levels and the prevalence of wet cough. We were, however, unable to demonstrate that current levels of ambient air pollution in western Sydney have a coherent range of adverse health effects on children with a history of wheezing

  10. Health impact assessment of ambient fine particulate matter exposure in impacts by different vehicle control measures in China

    Science.gov (United States)

    LI, S.; Wang, H.; Jiang, F.; Zhang, S.

    2017-12-01

    Road transportation is the one of the largest emission sources contributing to ambient PM2.5 pollution in China. Since the 1990s, China has adopted comprehensive control measures to mitigate vehicle emissions. However, the effects of these measures on reducing emissions, improving air quality and avoiding negative health impacts have not been systematically evaluated. In this study, we combine emissions inventory, air quality modeling, and IER model to evaluate the effect of various vehicle control measures on premature deaths attributable to ambient PM2.5 at a spatial resolution of 36 km × 36 km across China. Our results show that, comparing to no control scenarios, the total vehicular emissions with the actual vehicle emission controls implemented have reduced the emissions of NOX, HC, CO, PM2.5 by 57%, 69%, 75%, 71% respectively; and reduced the national annual mean PM2.5 concentration by 2.5ug/m³ across China by 2010. The number of avoidable deaths associated with reducing PM2.5 level is 150 thousands (95% Confidence interval: 66 thousand - 212 thousand). The geographic distribution of the absolute number of avoidable deaths presents a distinct regional feature and is particularly evident in several regions. The most influential areas are mainly concentrated in Beijing and its south part, which formed a large area of continuous high value. Our results have important policy implications on prioritizing vehicular emission control strategy in China.

  11. Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease

    Science.gov (United States)

    Chafe, Zoë A.; Brauer, Michael; Klimont, Zbigniew; Van Dingenen, Rita; Mehta, Sumi; Rao, Shilpa; Riahi, Keywan; Dentener, Frank

    2014-01-01

    Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5). Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. Methods: We used an energy supply–driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed. Citation: Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR. 2014. Household cooking with solid fuels contributes to

  12. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project

    NARCIS (Netherlands)

    Pedersen, Marie; Andersen, Zorana J; Stafoggia, Massimo; Weinmayr, Gudrun; Galassi, Claudia; Sørensen, Mette; Eriksen, Kirsten T; Tjønneland, Anne; Loft, Steffen; Jaensch, Andrea; Nagel, Gabriele; Concin, Hans; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Sokhi, Ranjeet; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; Hoogh, Kees de; Wang, Meng; Beelen, Rob|info:eu-repo/dai/nl/30483100X; Vineis, Paolo; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Hoek, Gerard|info:eu-repo/dai/nl/069553475; Raaschou-Nielsen, Ole

    2017-01-01

    BACKGROUND: Tobacco smoke exposure increases the risk of cancer in the liver, but little is known about the possible risk associated with exposure to ambient air pollution. OBJECTIVES: We evaluated the association between residential exposure to air pollution and primary liver cancer incidence.

  13. Impact of ambient air pollution on obesity: a systematic review.

    Science.gov (United States)

    An, Ruopeng; Ji, Mengmeng; Yan, Hai; Guan, Chenghua

    2018-05-24

    Over 80% of the global populations living in urban areas are exposed to air quality levels that exceed the World Health Organization limits. Air pollution may lead to unhealthy body weight through metabolic dysfunction, chronic disease onset, and disruption of regular physical activity. A literature search was conducted in the PubMed and Web of Science for peer-reviewed articles published until September 2017 that assessed the relationship between air pollution and body weight status. A standardized data extraction form was used to collect methodological and outcome variables from each eligible study. Sixteen studies met the selection criteria and were included in the review. They were conducted in seven countries, including the US (n = 9), China (n = 2), Canada (n = 1), Italy (n = 1), The Netherlands (n = 1), Serbia (n = 1), and South Korea (n = 1). Half of them adopted a longitudinal study design, and the rest adopted a cross-sectional study design. Commonly examined air pollutants included PM, NO 2 , SO 2 , O 3 , and overall air quality index. Among a total of 66 reported associations between air pollution and body weight status, 29 (44%) found air pollution to be positively associated with body weight, 29 (44%) reported a null finding, and the remaining eight (12%) found air pollution to be negatively associated with body weight. The reported associations between air pollution and body weight status varied by sex, age group, and type of air pollutant. Three pathways hypothesized in the selected studies were through increased oxidative stress and adipose tissue inflammation, elevated risk for chronic comorbidities, and insufficient physical activity. Concurrent evidence regarding the impact of air pollution on body weight status remains mixed. Future studies should assess the impact of severe air pollution on obesity in developing countries, focus on a homogenous population subgroup, and elucidate the biomedical and psychosocial

  14. Considering the effects of ambient particulate matter on the lung function of motorcycle taxi drivers in Bangkok, Thailand.

    Science.gov (United States)

    Arphorn, Sara; Ishimaru, Tomohiro; Hara, Kunio; Mahasandana, Suwisa

    2018-02-01

    The motorcycle taxi drivers of Bangkok have been heavily exposed to high concentrations of PM 10 (particulate matter with an aerodynamic diameter ≤10 μm), and the impact of this on their lungs has been neither documented nor studied. This study examines the association between exposure to PM 10 and lung function decline among motorcycle taxi drivers. A cross-sectional study was conducted in Bangkok between two groups: a subject group of motorcycle taxi drivers and control group of enclosed vehicle taxi drivers. The findings of the Thailand Pollution Control Department were used to estimate the annual ambient PM 10 concentration levels in the metropolis. Pulmonary functions of motorcycle taxi drivers and enclosed vehicle taxi drivers were measured and compared using the Mann-Whitney test. Multiple linear regression analysis was applied to estimate the effects of PM 10 exposure on the lung function of motorcycle taxi drivers. A total of 1283 motorcycle taxi drivers and 600 taxi drivers were investigated. The mean forced expiratory volume in 1 sec/forced vital capacity (FEV 1 /FVC) of the motorcycle taxi drivers was significantly lower than that of the taxi drivers (P Organization (WHO) vehicular emission standards should be recognized and eventually enforced.

  15. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    Science.gov (United States)

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ambient air conditions and variation in urban trail use.

    Science.gov (United States)

    Holmes, Ann M; Lindsey, Greg; Qiu, Chenchen

    2009-11-01

    This study examines the effect of air quality and administrative policies on use of urban trails in Indianapolis, IN. Attention is focused on two policy variables: (1) issuance of air pollution advisories and (2) the adoption of Daylight Savings Time. Results suggest that while trail use varies with air quality, current public advisories regarding air pollution may be of limited effectiveness in reducing trail users' exposures to hazardous pollutants. In contrast, the adoption of Daylight Savings Time was associated with a statistically significant increase in traffic levels.

  17. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    Energy Technology Data Exchange (ETDEWEB)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  18. The assessment of ambient air pollution pattern in Shah Alam ...

    African Journals Online (AJOL)

    This study implements the statistical analysis to establish the association between air pollution trends with the industrial activities in Shah Alam, Selangor. PCA used to identify most significant parameters contributing to air pollution and it sources of pollutions, whereas SPC used to determine the pattern and contribution ...

  19. Ambient air pollution triggers wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Loft, S; Ketzel, Matthias

    2008-01-01

    There is limited evidence for the role of air pollution in the development and triggering of wheezing symptoms in young children. A study was undertaken to examine the effect of exposure to air pollution on wheezing symptoms in children under the age of 3 years with genetic susceptibility to asthma....

  20. Ambient air quality monitoring during the H1N1 influence period in Pune (India).

    Science.gov (United States)

    Pathak, M; Deshpande, A; Mirashe, P K; Sorte, R B; Ojha, A

    2010-10-01

    Ambient air quality in an urban area is directly linked with activity level in the city including transport, business and industrial activities. Maharashtra Pollution Control Board (MPCB) has established an ambient air quality network in the city including state-of-the-art continuous air quality monitoring stations which indicate short duration air quality variations for criteria and non-criteria pollutants. The influence of H1N1 outbreak in Pune hitting its worst pandemic condition, led the civic authorities to implement stringent isolation measures including closure of schools, colleges, business malls, cinema halls, etc. Additionally, the fear of such a pandemic brought the city to a stand still. It was therefore necessary to assess the impacts of such activity level on ambient air quality in the city. It has been observed that such events have positive impacts on air quality of the city. There was a decrease in PM concentration almost to the tune of 30 to 40% if the impacts of precipitation, i.e. seasonal variations, are taken into account. Similarly, the non criteria pollutants too showed a marked but unusual decrease in their concentrations in this ever growing city. The influence of these in turn led to lowered concentrations of secondary pollutants, i.e. O3. Overall, the ambient air quality of Pune was found to be improved during the study period.

  1. Assessment of ambient air quality in Chidambaram a south Indian town

    OpenAIRE

    P. Balashanmugam; A.R. Ramanathan; V. Nehrukumar

    2012-01-01

    Worldwide preliminary studies in large number are advocated to create data base, to identify potential cities / towns that warrant “continuous ambient air quality monitoring and control mechanism” and to evolve priorities for clean air target. The results reported pertain to an eight hour random preliminary air sampling exercise carried out at each of the eight select locations in Chidambaram, a southern semi urban settlement in India. Criteria pollutants SPM, CO, SO2 and NO2 measured are fou...

  2. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... the data handling procedures for the reported data). 2.3Comparisons with the Primary and Secondary... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY...

  3. Speciation of 210Po and 210Pb in air particulates determined by sequential extraction

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Karfan, K.; Khalili, H.; Hassan, M.

    2006-01-01

    Speciation of 210 Po and 210 Pb in air particulates of two Syrian phosphate sites with different climate conditions has been studied. The sites are the mines and Tartous port at the Mediterranean Sea. Air filters were collected during September 2000 until February 2002 and extracted chemically using different selective fluids in an attempt to identify the different forms of these two radionuclides. The results have shown that the inorganic and insoluble 21 Po and 21 Pb (attached to silica and soluble in mineral acids) portion was found to be high in both sites and reached a maximum value of 94% and 77% in the mine site and Tartous port site, respectively. In addition, only 24% of 21 Pb in air particulates was found to be associated with organic materials probably produced from the incomplete burning of fuel vehicle and similar activities. Moreover, the 210 Po/ 21- Pb activity ratio in air particulates was higher than that in all samples at both sites and varied between 3.85 in November 2000 at Tartous port site and 20 in April 2001 at the mine area. These activity ratios were also higher than the natural levels. The 210 Po/ 210 Pb activity ratio was also determined in each portion resulting from the selective extraction and found to be higher than that in most samples. The sources of 210 Po excess in these portions are discussed. Soil suspension, which is common in the dry climate dominant in the area, sea water spray and heating of phosphate ores were considered; polonium is more volatile than the lead compounds at even moderate temperature. Furthermore, variations in the chemical forms of 210 Po and 210 Pb during the year were also investigated. However, the results of this study can also be utilized for dose assessment to phosphate industry workers

  4. Speciation of 210Po and 210Pb in air particulates determined by sequential extraction.

    Science.gov (United States)

    Al-Masri, M S; Al-Karfan, K; Khalili, H; Hassan, M

    2006-01-01

    Speciation of (210)Po and (210)Pb in air particulates of two Syrian phosphate sites with different climate conditions has been studied. The sites are the mines and Tartous port at the Mediterranean Sea. Air filters were collected during September 2000 until February 2002 and extracted chemically using different selective fluids in an attempt to identify the different forms of these two radionuclides. The results have shown that the inorganic and insoluble (210)Po and (210)Pb (attached to silica and soluble in mineral acids) portion was found to be high in both sites and reached a maximum value of 94% and 77% in the mine site and Tartous port site, respectively. In addition, only 24% of (210)Pb in air particulates was found to be associated with organic materials probably produced from the incomplete burning of fuel vehicle and similar activities. Moreover, the (210)Po/(210)Pb activity ratio in air particulates was higher than that in all samples at both sites and varied between 3.85 in November 2000 at Tartous port site and 20 in April 2001 at the mine area. These activity ratios were also higher than the natural levels. The (210)Po/(210)Pb activity ratio was also determined in each portion resulting from the selective extraction and found to be higher than that in most samples. The sources of (210)Po excess in these portions are discussed. Soil suspension, which is common in the dry climate dominant in the area, sea water spray and heating of phosphate ores were considered; polonium is more volatile than the lead compounds at even moderate temperature. Furthermore, variations in the chemical forms of (210)Po and (210)Pb during the year were also investigated. However, the results of this study can also be utilized for dose assessment to phosphate industry workers.

  5. Ambient and household air pollution: complex triggers of disease

    Science.gov (United States)

    Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.

    2014-01-01

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855

  6. Ambient and household air pollution: complex triggers of disease.

    Science.gov (United States)

    Farmer, Stephen A; Nelin, Timothy D; Falvo, Michael J; Wold, Loren E

    2014-08-15

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.

  7. Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women

    Science.gov (United States)

    James, Peter; Hart, Jaime E.; Laden, Francine

    2015-01-01

    Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775

  8. Neighborhood walkability and particulate air pollution in a nationwide cohort of women.

    Science.gov (United States)

    James, Peter; Hart, Jaime E; Laden, Francine

    2015-10-01

    Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Using data from the Nurses' Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) µg/m(3) higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary from region to region that allow for walkable neighborhoods with low levels of air pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nanomaterials vs Ambient Ultrafine Particles

    DEFF Research Database (Denmark)

    Stone, Vicki; Miller, Mark R.; Clift, Martin J. D.

    2017-01-01

    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology ...

  10. Ambient particulate pollution and the world-wide prevalence of asthma, rhinoconjunctivitis and eczema in children: Phase One of the International Study of Asthma and Allergies in Childhood (ISAAC).

    NARCIS (Netherlands)

    Anderson, H.R.; Ruggles, R.; Pandey, K.D.; Kapetanakis, V.; Brunekreef, B.; Lai, C.K.; Strachan, D.P.; Weiland, S.K.

    2010-01-01

    OBJECTIVES: To investigate the effect of ambient particulate matter on variation in childhood prevalence of asthma, rhinoconjunctivitis and eczema. METHODS: Prevalences of asthma, rhinoconjunctivitis and eczema obtained in Phase One of the International Study of Asthma and Allergies in Childhood

  11. Ambient Air Pollution and Autism in Los Angeles County, California

    DEFF Research Database (Denmark)

    Becerra, Tracy Ann; Wilhelm, Michelle; Olsen, Jørn

    2013-01-01

    Background: The prevalence of Autistic Disorder (AD), a serious developmental condition, has risen dramatically over the past two decades but high-quality population-based research addressing etiology is limited. Objectives: We studied the influence of exposures to traffic-related air pollution d...... during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures....

  12. Monitoring ambient air for mutagenicity using the higher plant Tradescantia

    International Nuclear Information System (INIS)

    Schairer, L.A.; Sautkulis, R.C.; Tempel, N.R.

    1982-01-01

    The major emphasis for short-term bioassays has been placed on bacterial and mammalian cell lines. However, for increased perspective on the state-of-the-art of specific in vitro assays it is important to consider the environmental impact on whole organisms by reviewing the contributions made by in vivo assays. This paper will deal exclusively with somatic mutation in the Tradescantia stamen hair: describing the system briefly, demonstrating its relevance to environmental mutagen assessment and discussing its adaptation for in situ ambient atmosphere monitoring

  13. Establishment of ambient air quality trends using historical monitoring data from Edmonton and Fort McKay, Alberta

    International Nuclear Information System (INIS)

    Faisal, K.; Gamal El-Din, M.

    2006-01-01

    Ambient air trends were assessed using data collected over an 8 year period from monitoring stations in Edmonton and Fort McKay, Alberta. In particular, the study evaluated the short term trends in the concentration of carbon monoxide (CO), nitrogen dioxide (NO 2 ), ozone (O 3 ), and particulate matter (PM 2.5 ) in Edmonton, as well as the NO 2 , O 3 , PM 2.5 , and total hydrocarbons in Fort McKay. In order to evaluate the ambient air trends, this study examined the changes in concentrations of these pollutants between the 50 - 90 percentiles of concentration distributions for a calendar year. These statistics were assumed to be linear over the period of study and fitted using simple linear regression. Hypothesis tests were performed to determine if the slopes of the best-fit lines were greater or less than zero. There was no indication of a statistically significant short-term trend for NO 2 and O 3 for the city of Edmonton. However, statistically pronounced decreasing trends were noted for CO and PM 2.5 . There was no indication of statistically significant trend for any of the pollutants examined at Fort McKay over the study period. It was cautioned that since the period of study over which trends were examined was short, the changes or lack of changes observed do not necessarily indicate long term trends. However, the results suggest that air quality has remained unchanged during the last 6 to 8 years, despite increased economic development in Edmonton and continued oil sands development in Fort McKay

  14. Ambient air pollution, adipokines, and glucose homeostasis: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Kloog, Itai; Schwartz, Joel D; Koutrakis, Petros; Coull, Brent A; Gold, Diane R; Meigs, James B; Fox, Caroline S; Mittleman, Murray A

    2018-02-01

    To examine associations of proximity to major roadways, sustained exposure to fine particulate matter (PM 2.5 ), and acute exposure to ambient air pollutants with adipokines and measures of glucose homeostasis among participants living in the northeastern United States. We included 5958 participants from the Framingham Offspring cohort examination cycle 7 (1998-2001) and 8 (2005-2008) and Third Generation cohort examination cycle 1 (2002-2005) and 2 (2008-2011), who did not have type 2 diabetes at the time of examination visit. We calculated 2003 annual average PM 2.5 at participants' home address, residential distance to the nearest major roadway, and daily PM 2.5 , black carbon (BC), sulfate, nitrogen oxides (NO x ), and ozone concentrations. We used linear mixed effects models for fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) which were measured up to twice, and used linear regression models for adiponectin, resistin, leptin, and hemoglobin A1c (HbA1c) which were measured only once, adjusting for demographics, socioeconomic position, lifestyle, time, and seasonality. The mean age was 51years and 55% were women. Participants who lived 64m (25th percentile) from a major roadway had 0.28% (95% CI: 0.05%, 0.51%) higher fasting plasma glucose than participants who lived 413m (75th percentile) away, and the association appeared to be driven by participants who lived within 50m from a major roadway. Higher exposures to 3- to 7-day moving averages of BC and NO x were associated with higher glucose whereas the associations for ozone were negative. The associations otherwise were generally null and did not differ by median age, sex, educational attainment, obesity status, or prediabetes status. Living closer to a major roadway or acute exposure to traffic-related air pollutants were associated with dysregulated glucose homeostasis but not with adipokines among participants from the Framingham Offspring and Third Generation

  15. Ambient air pollutant PM10 and risk of pregnancy-induced hypertension in urban China

    International Nuclear Information System (INIS)

    Huang, Xin; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Lv, Ling; Lin, Xiaojuan; Zhang, Chong; Zhang, Honghong; Xu, Ruifeng; Zhu, Daling; Zhang, Yaqun; Zhao, Nan

    2015-01-01

    Background: The relationship between air borne particulate matter ≤10 μm (PM 10 ) exposure and pregnancy-induced hypertension (PIH) is inconclusive. Few studies have been conducted, and fewer were conducted in areas with high levels of PM 10 . Methods: To examine the association between PM 10 and PIH by different exposure time windows during pregnancy, we analyzed data from a birth cohort study conducted in Lanzhou, China including 8 745 pregnant women with available information on air pollution during pregnancy. A total of 333 PIH cases (127 gestational hypertension (GH) and 206 preeclampsia (PE)) were identified. PM 10 daily average concentrations of each subject were calculated according to the distance between home/work addresses and monitor stations using an inverse-distance weighting approach. Results: Average PM 10 concentration over the duration of entire pregnancy was significantly associated with PIH (OR = 1.12, 95%CI: 1.02, 1.23 per 10 μg m −3 increase), PE (OR = 1.16, 95%CI: 1.03, 1.30 per 10 μg m −3 increase), late onset PE (OR = 1.17, 95% CI: 1.03, 1.32 per10 μg m −3 increase), and severe PE (OR = 1.25, 95% CI: 1.06, 1.48 per 10 μg m −3 increase). Average PM 10 during the first 12 gestational weeks was associated with the risk of GH (OR = 1.10, 95% CI: 1.00, 1.21 per 10 μg m −3 increase), and PM 10 exposure before 20 gestational weeks was associated with the risk of severe PE (OR = 1.14, 95% CI: 1.01, 1.30 per 10 μg m −3 increase). Conclusions: We found that high level exposure to ambient PM 10 during pregnancy was associated with an increased risk of PIH, GH and PE and that the strength of the association varied by timing of exposure during pregnancy. (letter)

  16. Quality assurance and quality control for Hydro-Quebec's ambient air monitoring networks

    International Nuclear Information System (INIS)

    Lambert, M.; Varfalvy, L.

    1993-01-01

    Hydro Quebec has three ambient air monitoring networks to determine the contribution of some of its thermal plants to ambient air quality. They are located in Becancour (gas turbines), Iles-de-la-Madeleine (diesel), and Tracy (conventional oil-fired). To ensure good quality results and consistency between networks, a quality assurance/quality control program was set up. A description is presented of the ambient air quality monitoring network and the quality assurance/quality control program. A guide has been created for use by the network operators, discussing objectives of the individual network, a complete description of each network, field operation for each model of instrument in use, treatment of data for each data logger in use, global considerations regarding quality assurance and control, and reports. A brief overview is presented of the guide's purpose and contents, focusing on the field operation section and the sulfur dioxide and nitrogen oxide monitors. 6 figs., 1 tab

  17. Impacts of rural worker migration on ambient air quality and health in China: From the perspective of upgrading residential energy consumption.

    Science.gov (United States)

    Shen, Huizhong; Chen, Yilin; Russell, Armistead G; Hu, Yongtao; Shen, Guofeng; Yu, Haofei; Henneman, Lucas R F; Ru, Muye; Huang, Ye; Zhong, Qirui; Chen, Yuanchen; Li, Yufei; Zou, Yufei; Zeng, Eddy Y; Fan, Ruifang; Tao, Shu

    2018-04-01

    In China, rural migrant workers (RMWs) are employed in urban workplaces but receive minimal resources and welfare. Their residential energy use mix (REM) and pollutant emission profiles are different from those of traditional urban (URs) and rural residents (RRs). Their migration towards urban areas plays an important role in shaping the magnitudes and spatial patterns of pollutant emissions, ambient PM 2.5 (fine particulate matter with a diameter smaller than 2.5 μm) concentrations, and associated health impacts in both urban and rural areas. Here we evaluate the impacts of RMW migration on REM pollutant emissions, ambient PM 2.5 , and subsequent premature deaths across China. At the national scale, RMW migration benefits ambient air quality because RMWs tend to transition to a cleaner REM upon arrival at urban areas-though not as clean as urban residents'. In 2010, RMW migration led to a decrease of 1.5 μg/m 3 in ambient PM 2.5 exposure concentrations (C ex ) averaged across China and a subsequent decrease of 12,200 (5700 to 16,300, as 90% confidence interval) in premature deaths from exposure to ambient PM 2.5 . Despite the overall health benefit, large-scale cross-province migration increased megacities' PM 2.5 levels by as much as 10 μg/m 3 due to massive RMW inflows. Model simulations show that upgrading within-city RMWs' REMs can effectively offset the RMW-induced PM 2.5 increase in megacities, and that policies that properly navigate migration directions may have potential for balancing the economic growth against ambient air quality deterioration. Our study indicates the urgency of considering air pollution impacts into migration-related policy formation in the context of rapid urbanization in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Adjuvant activity of ambient particulate matter of different sites, sizes, and seasons in a respiratory allergy mouse model

    International Nuclear Information System (INIS)

    Steerenberg, P.A.; Withagen, C.E.T.; Dalen, W.J. van; Dormans, J.A.M.A.; Cassee, F.R.; Heisterkamp, S.H.; Loveren, H. van

    2004-01-01

    In the framework of an EU project entitled, 'Respiratory Allergy and Inflammation due to Ambient Particles (RAIAP)', various ambient particulate matter samples were tested for their adjuvant potency in an animal allergy model to ovalbumin. Coarse (2.5-10 μm) and fine (0.15-2.5 μm) particles were collected during the spring, summer, and winter in Rome, Oslo, Lodz, and Amsterdam. Coarse and fine particles were also collected near a seaside location in the Netherlands, where prevailing winds are westerly. These latter particles served as a control, with a minimum contribution by traffic. Ottawa dust (EHC-93) was used as a standard reference sample. Immunoglobulins (IgE, IgG 1 , and IgG 2a ), histopathological changes in the lung, cytokines, and the number of cells and their differentiation in lung lavages were used as effect parameters to study the adjuvant potency of these particles. The particles (3 mg/ml) were mixed with ovalbumin (0.4 mg/ml) and intranasally administered during the sensitization or the challenge phase. Intranasal administration of ovalbumin only induced very little antibody response, but introduced a minor inflammatory response in the lung or BAL during the sensitization and challenge phase. On the contrary, after coexposure to EHC-93 and ovalbumin, a major increase was found in immunoglobulin levels specific for ovalbumin, and a major inflammatory response in lung and BAL was induced. Coexposure to ovalbumin with 4 out of 12 collected PM samples (3 mg/ml) resulted in an increase of mainly IgE and IgG 1 . The histopathological changes consisted of a small to severe peribronchial and perivascular inflammatory response, a hypertrophy of bronchiolar mucous cells and an increase in eosinophils and neutrophils in the BAL. Statistical evaluation of the above-mentioned parameters showed associations with PM x (coarse and fine), site, season, season x PM x , season x site and PM x x site. In addition, adjuvant activity of the PM x can be ranked as Lodz

  19. Spatiotemporal analysis for the effect of ambient particulate matter on cause-specific respiratory mortality in Beijing, China.

    Science.gov (United States)

    Wang, Xuying; Guo, Yuming; Li, Guoxing; Zhang, Yajuan; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan; Chen, Liangfu

    2016-06-01

    This study explored the association between particulate matter with an aerodynamic diameter of less than 10 μm (PM10) and the cause-specific respiratory mortality. We used the ordinary kriging method to estimate the spatial characteristics of ambient PM10 at 1-km × 1-km resolution across Beijing during 2008-2009 and subsequently fit the exposure-response relationship between the estimated PM10 and the mortality due to total respiratory disease, chronic lower respiratory disease, chronic obstructive pulmonary disease (COPD), and pneumonia at the street or township area levels using the generalized additive mixed model (GAMM). We also examined the effects of age, gender, and season in the stratified analysis. The effects of ambient PM10 on the cause-specific respiratory mortality were the strongest at lag0-5 except for pneumonia, and an inter-quantile range increase in PM10 was associated with an 8.04 % (95 % CI 4.00, 12.63) increase in mortality for total respiratory disease, a 6.63 % (95 % CI 1.65, 11.86) increase for chronic lower respiratory disease, and a 5.68 % (95 % CI 0.54, 11.09) increase for COPD, respectively. Higher risks due to the PM10 exposure were observed for females and elderly individuals. Seasonal stratification analysis showed that the effects of PM10 on mortality due to pneumonia were stronger during spring and autumn. While for COPD, the effect of PM10 in winter was statistically significant (15.54 %, 95 % CI 5.64, 26.35) and the greatest among the seasons. The GAMM model evaluated stronger associations between concentration of PM10. There were significant associations between PM10 and mortality due to respiratory disease at the street or township area levels. The GAMM model using high-resolution PM10 could better capture the association between PM10 and respiratory mortality. Gender, age, and season also acted as effect modifiers for the relationship between PM10 and respiratory mortality.

  20. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    Science.gov (United States)

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. The effect of composition, size, and solubility on acute pulmonary injury in rats following exposure to Mexico city ambient particulate matter samples.

    Science.gov (United States)

    Snow, Samantha J; De Vizcaya-Ruiz, Andrea; Osornio-Vargas, Alvaro; Thomas, Ronald F; Schladweiler, Mette C; McGee, John; Kodavanti, Urmila P

    2014-01-01

    Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.

  2. The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice.

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Huang

    Full Text Available Particulate matter (PM has been associated with increased pulmonary and cardiovascular mortality and morbidity. Additionally, PM is known to exacerbate asthma. However, whether ambient PM exposure contributes to the onset of asthma, especially in non-atopic children and adults, is less conclusive. The current study aimed to evaluate the effects of size-fractioned PM on lung immune responses in healthy BALB/c mice.We collected PM10, PM2.5, PM1 and PM0.1 samples from October 2012 to August 2013 in the Taipei Basin. These PM samples were representative of urban traffic pollution. The samples were extracted and sonicated in phosphate-buffered saline (PBS. Female BALB/c mice were exposed to the samples via intratracheal instillation at three different doses: 1.75 mg/kg (35 μg/per mouse, 5 mg/kg (100 μg/per mouse, and 12.5 mg/kg (250 μg/per mouse. The mice were exposed on days 0 and 7, and PBS alone was used as a control. Following the exposures, the expression profiles of inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF were assessed. Exposure to PM10 resulted in inflammatory responses, including the recruitment of neutrophils and the induction of T helper 1 (Th1 cell-related cytokine release, such as TNF-α and IFN-γ. Furthermore, an allergic immune response, including the recruitment of eosinophils and the up-regulation of T helper 2 (Th2 cell-related cytokine release, such as IL-5 and IL-13, was also observed in the BALF of mice exposed to PM10.Our study showed that exposure to PM alone caused mixed Th1/Th2 inflammatory responses in healthy mice. These findings support the hypothesis that PM may contribute to the onset of asthma.

  3. Identification and semi-quantification of biogenic organic nitrates in ambient particulate matters by UHPLC/ESI-MS

    Science.gov (United States)

    Li, Rui; Wang, Xinfeng; Gu, Rongrong; Lu, Chunying; Zhu, Fanping; Xue, Likun; Xie, Huijun; Du, Lin; Chen, Jianmin; Wang, Wenxing

    2018-03-01

    Particulate biogenic organic nitrates (PBONs) are important components of secondary organic aerosols and play an important role in the tropospheric atmosphere chemistry. However, the concentrations and the chemistry of PBONs remain poorly understood due to the lack of accurate measurement techniques on specific organic nitrates. In this study, ultra high performance liquid chromatography/electrospray mass spectrometry was applied in detection of individual PBONs in ambient atmosphere. Total five kinds of PBONs were identified in PM2.5 samples collected in urban Ji'nan in spring according to characteristic fragments of NO2, NO3, HNO3, CO2, and H2O, including monoterpene hydroxyl nitrate (MW = 215, MHN215), pinene keto nitrate (MW = 229, PKN229), limonene di-keto nitrate (MW = 247, LDKN247), oleic acid keto nitrate (MW = 359, OAKN359), and oleic acid hydroxyl nitrate (MW = 361, OAHN361). Among them, three kinds of PBONs originated from biogenic volatile organic compounds of pinene and limonene and two kinds of PBONs came from chemical conversion of oleic acid. The concentrations of these PBONs were roughly quantified with surrogate standards of (1R,2R,5R)-(+)-2-hydroxy-3-pinanone and ricinoleic acid. The average concentrations of MHN215, PKN229, LDKN247, OAKN359, and OAHN361 were 111.6 ± 23.0, 93.1 ± 49.6, 55.3 ± 7.4, 23.4 ± 14.5, 36.8 ± 18.3 ng m-3, respectively. The total concentration of these PBONs was 325.4 ± 116.7 ng m-3, contributing to 1.64 ± 0.34‰ of PM2.5.

  4. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  5. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.

    2008-01-01

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor(reg s ign) 3000) used at PNNL for self absorption effects. There were two methods used in the study, (1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and (2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended

  6. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  7. Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen.

    Science.gov (United States)

    Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R

    2010-01-01

    Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter pollutants on systemic IL-6 and fibrinogen. Effect modification by season was considered. We observed a positive association between IL-6 and O3 [0.31 SD per O3 interquartile range (IQR); 95% confidence interval (CI), 0.080.54] and between IL-6 and SO2 (0.25 SD per SO2 IQR; 95% CI, 0.060.43). We observed the strongest effects using 4-day moving averages. Responses to pollutants varied by season and tended to be higher in the summer, particularly for O3 and PM2.5. Fibrinogen was not associated with pollution. This study demonstrates a significant association between ambient pollutant levels and baseline levels of systemic IL-6. These findings have potential implications for controlled human exposure studies. Future research should consider whether ambient pollution exposure before chamber exposure modifies IL-6 response.

  8. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Directory of Open Access Journals (Sweden)

    Kristof Y Neven, MSc

    2018-04-01

    Full Text Available Summary: Background: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. Methods: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE birth cohort, which enrols pairs of mothers and neonates (singleton births only at the East-Limburg Hospital (Genk, Belgium. Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1. We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5, black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort. Findings: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001 and black carbon (r=0·33, p<0·0001, but not NO2

  9. PCDD, PCDF, and PCB contamination of air and inhalable particulate in Rome

    International Nuclear Information System (INIS)

    Turrio-Baldassarri, L.; Carere, A.; Di Domenico, A.; Fuselli, S.; Iacovella, N.; Rodriguez, F.

    1994-01-01

    The isomer specific determination of PCDD, PCDF and PCB was carried out on samples of air and inhalable particulate from Rome. Samples were taken daily for six months and pooled to yield two samples per month. Normal PCDD + PCDF concentrations expressed in TEQ ranged from 48 to 87 fg/m 3 , while total PCB ranged from 0.1 to 1.4 ng/m 3 . The 2, 3, 7, 8-substituted PCDD and PCDF congener pattern is shown together with the PCB congener pattern. (orig.)

  10. Application of a low energy x-ray spectrometer to analyses of suspended air particulate matter

    International Nuclear Information System (INIS)

    Giauque, R.D.; Garrett, R.B.; Goda, L.Y.; Jaklevic, J.M.; Malone, D.F.

    1975-01-01

    A semiconductor detector x-ray spectrometer has been constructed for the analysis of elements in air particulate specimens. The excitation radiation is provided, either directly or indirectly, using a low power (40 watts) Ag anode x-ray tube. Less than 100 ng for most of the elements in the range Mg → Zr, Pb are easily detected within two 1-minute counting intervals. A calibration technique for light element analysis and an experimental method which compensates for particle size effects are discussed. (auth)

  11. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    Energy Technology Data Exchange (ETDEWEB)

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  12. Chernobyl radioactivity and high altitude air-particulate monitoring at Islamabad

    International Nuclear Information System (INIS)

    Bhatti, M.S.; Ihsanullah; Shafiq, M.; Perveen, N.; Orfi, S.D.

    1987-11-01

    High altitude sampling of air particulates for radioactivity monitoring was conducted at Islamabad after the CHERNOBYL accident. Smears from aeroplanes flying at varying altitudes were collected and analysed for fresh fission products mainly gamma emitters e.g. Ru-103 and Cs-137 etc. The maximum radioactivity observed was of the order of 15Bq/sample for Ru-103 and 9Bq/sample for Cs-137 respectively. The study was purely qualitative in nature indicated the presence of fresh fission radioactivity at high altitudes over Islamabad. For quantitative measurements at high altitudes sophisticated instrumentation/procedure needs to be adopted. (author)

  13. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners.

    Science.gov (United States)

    Batterman, S; Du, L; Mentz, G; Mukherjee, B; Parker, E; Godwin, C; Chin, J-Y; O'Toole, A; Robins, T; Rowe, Z; Lewis, T

    2012-06-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84±27%, but dropped to 63±33% in subsequent seasons. In months when households were not visited, use averaged only 34±30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 μg/m3 and was often detected using ETS-specific tracers despite restrictions on smoking in the house as reported on questionnaires administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios, number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free-standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the filters are used. However, filter use was variable across the study population and declined over the study duration, and

  14. Biomass Burning Smoke Climatology of the United States: Implications for Particulate Matter Air Quality.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Jaffe, Daniel; Christopher, Sundar A; Goodrick, Scott

    2017-10-17

    We utilize the NOAA Hazard Mapping System smoke product for the period of 2005 to 2016 to develop climatology of smoke occurrence over the Continental United States (CONUS) region and to study the impact of wildland fires on particulate matter air quality at the surface. Our results indicate that smoke is most frequently found over the Great Plains and western states during the summer months. Other hotspots of smoke occurrence are found over state and national parks in the southeast during winter and spring, in the Gulf of Mexico southwards of the Texas and Louisiana coastline during spring season and along the Mississippi River Delta during the fall season. A substantial portion (20%) of the 24 h federal standard for particulate pollution exceedance events in the CONUS region occur when smoke is present. If the U.S. Environmental Protection Agency regulations continue to reduce anthropogenic emissions, wildland fire emissions will become the major contributor to particulate pollution and exceedance events. In this context, we show that HMS smoke product is a valuable tool for analysis of exceptional events caused by wildland fires and our results indicate that these tools can be valuable for policy and decision makers.

  15. Ambient Air Quality Monitoring in Metropolitan City of Lagos, Nigeria ...

    African Journals Online (AJOL)

    ... traffic intersection where they were both poor and very poor (D-E). The results suggest that strict and appropriate vehicle emission management, industrial air pollution control coupled with close burning management of wastes should be considered in the study area to reduce the risks associated with these pollutants.

  16. Ambient Air Pollution and Risk for Ischemic Stroke: A Short-Term Exposure Assessment in South China

    Directory of Open Access Journals (Sweden)

    Pi Guo

    2017-09-01

    Full Text Available Data on the association between air pollution and risk of ischemic stroke in China are still limited. This study aimed to investigate the association between short-term exposure to ambient air pollution and risk of ischemic strokes in Guangzhou, the most densely-populated city in south China, using a large-scale multicenter database of stroke hospital admissions. Daily counts of ischemic stroke admissions over the study years 2013–2015 were obtained from the Guangzhou Cardiovascular and Cerebrovascular Disease Event Surveillance System. Daily particulate matter <2.5 μm in diameter (PM2.5, sulfur dioxide (SO2, nitrogen dioxide (NO2, ozone (O3, and meteorological data were collected. The associations between air pollutants and hospital admissions for stroke were examined using relative risks (RRs and their corresponding 95% confidence intervals (CIs based on time-series Poisson regression models, adjusting for temperature, public holiday, day of week, and temporal trends in stroke. Ischemic stroke admissions increased from 27,532 to 35,279 through 2013 to 2015, increasing by 28.14%. Parameter estimates for NO2 exposure were robust regardless of the model used. The association between same-day NO2 (RR = 1.0509, 95% CI: 1.0353–1.0668 exposure and stroke risk was significant when accounting for other air pollutants, day of the week, public holidays, temperature, and temporal trends in stroke events. Overall, we observed a borderline significant association between NO2 exposure modeled as an averaged lag effect and ischemic stroke risk. This study provides data on air pollution exposures and stroke risk, and contributes to better planning of clinical services and emergency contingency response for stroke.

  17. Estimation of economic costs of particulate air pollution from road transport in China

    Science.gov (United States)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  18. Chronic obstructive pulmonary disease symptom effects of long-term cumulative exposure to ambient levels of total suspended particulates and sulfur dioxide in California Seventh-Day Adventist residents

    Energy Technology Data Exchange (ETDEWEB)

    Euler, G.L.; Abbey, D.E.; Magie, A.R.; Hodgkin, J.E.

    1987-07-01

    Risk of chronic obstructive pulmonary disease symptoms due to long-term exposure to ambient levels of total suspended particulates (TSP) and sulfur dioxide (SO/sub 2/) symptoms was ascertained using the National Heart, Lung, and Blood Institute (NHLBI) respiratory symptoms questionnaire on 7445 Seventh-Day Adventists. They were non-smokers, at least 25 yr of age, and had lived 11 yr or more in areas ranging from high to low photochemical air pollution in California. Participant cumulative exposures to each pollutant in excess of four thresholds were estimated using monthly residence zip code histories and interpolated dosages from state air monitoring stations. These pollutant thresholds were entered individually and in combination in multiple logistic regression analyses with eight covariables including passive smoking. Statistically significant associations with chronic symptoms were seen for: SO/sub 2/ exposure above 4 pphm (104 mcg/m3), (p = .03), relative risk 1.18 for 500 hr/yr of exposure; and for total suspended particulates (TSP) above 200 mcg/m3, (p less than .00001), relative risk of 1.22 for 750 hr/yr.

  19. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    Directory of Open Access Journals (Sweden)

    Wagner James G

    2012-07-01

    Full Text Available Abstract Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5 are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs or filtered air for 8 h (7:00 AM - 3:00 PM. Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3 and Grand Rapids (519 μg/m3. Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase, eosinophils (90%, and total protein (300% compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2

  20. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bibby, Richard K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, Craig [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-25

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevated Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al

  1. Physico-chemical characterisation of particulate heavy metals from municipal solid waste incinerator emissions and their contributions to ambient air quality. Case of Toulon MSWI (South of France); Caracterisation physico-chimique et tracage des emissions particulaires metalliques d'une usine d'incineration d'ordures menageres dans l'air ambiant. Exemple de l'UIOM de Toulon (Var, France)

    Energy Technology Data Exchange (ETDEWEB)

    Le Floch, M

    2004-07-15

    The aims of this study are the physico-chemical characterisation, the apportionment and the following of particulate heavy metals from MSWI emissions. Various methods (in situ data treatment, unmixing models and codes, UNMIX or CMB, sequential extractions and extended X-ray absorption fine structure (EXAFS) agree in the following: - identification of the MSWI source in two profiles (Zn - Ca and Ba - Cu - Fe - Zn - Pb - Ca); - estimation of its contribution of up to 25% of the total sources contribution; - showing the seasonal variability in term of profile and contribution of this source; - suggest the potential of emitted elements to enter the food chain; This EXAFS first approach on atmospheric particulate matter shows that zinc and lead are in an atomic environment with calcium, silicon and aluminum. In spite of disputable conclusions, isotopic lead ratios define a 'MSWI' end-member and confirm that the town-center of Toulon is outside the MSWI plume influence. (author)

  2. Association of ambient particulate matter with heart failure incidence and all-cause readmissions in Tasmania: an observational study.

    Science.gov (United States)

    Huynh, Quan L; Blizzard, Christopher Leigh; Marwick, Thomas H; Negishi, Kazuaki

    2018-05-10

    We sought to investigate the relationship between air quality and heart failure (HF) incidence and rehospitalisation to elucidate whether there is a threshold in this relationship and whether this relationship differs for HF incidence and rehospitalisation. This retrospective observational study was performed in an Australian state-wide setting, where air pollution is mainly associated with wood-burning for winter heating. Data included all 1246 patients with a first-ever HF hospitalisation and their 3011 subsequent all-cause readmissions during 2009-2012. Daily particulate matter <2.5 µm (PM 2.5 ), temperature, relative humidity and influenza infection were recorded. Poisson regression was used, with adjustment for time trend, public and school holiday and day of week. Tasmania has excellent air quality (median PM 2.5 =2.9 µg/m 3 (IQR: 1.8-6.0)). Greater HF incidences and readmissions occurred in winter than in other seasons (p<0.001). PM 2.5 was detrimentally associated with HF incidence (risk ratio (RR)=1.29 (1.15-1.42)) and weakly so with readmission (RR=1.07 (1.02-1.17)), with 1 day time lag. In multivariable analyses, PM 2.5 significantly predicted HF incidence (RR=1.12 (1.01-1.24)) but not readmission (RR=0.96 (0.89-1.04)). HF incidence was similarly low when PM <4 µg/m 3 and only started to rise when PM 2.5 ≥4 µg/m 3 . Stratified analyses showed that PM 2.5 was associated with readmissions among patients not taking beta-blockers but not among those taking beta-blockers (p interaction =0.011). PM 2.5 predicted HF incidence, independent of other environmental factors. A possible threshold of PM 2.5 =4 µg/m 3 is far below the daily Australian national standard of 25 µg/m 3 . Our data suggest that beta-blockers might play a role in preventing adverse association between air pollution and patients with HF. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial

  3. Short-term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection.

    Science.gov (United States)

    Horne, Benjamin D; Joy, Elizabeth A; Hofmann, Michelle G; Gesteland, Per H; Cannon, John B; Lefler, Jacob S; Blagev, Denitza P; Korgenski, E Kent; Torosyan, Natalie; Hansen, Grant I; Kartchner, David; Pope Iii, C Arden

    2018-04-13

    Nearly 60% of U.S. children live in counties with PM2.5 concentrations above air quality standards. Understanding the relationship between ambient air pollution exposure and health outcomes informs actions to reduce exposure and disease risk. To evaluate the association between ambient PM2.5 levels and healthcare encounters for acute lower respiratory infection (ALRI). Using an observational case-crossover design, subjects (N=146,397) were studied if they had an ALRI diagnosis and resided on Utah's Wasatch Front. PM2.5 air pollution concentrations were measured using community-based air quality monitors between 1999 and 2016. Odds ratios (OR) for ALRI healthcare encounters were calculated after stratification by ages 0-2, 3-17, and 18+ years. Approximately 77% (n=112,467) of subjects were 0-2 years of age. The odds of ALRI encounter for these young children increased within 1 week of elevated PM2.5 and peaked after 3 weeks with a cumulative 28-day OR= 1.15 per +10 μg/m3 (95% CI= 1.12, 1.19). ALRI encounters with diagnosed and laboratory-confirmed RSV and influenza increased following elevated ambient PM2.5 levels. Similar elevated odds for ALRI were also observed for older children, although the number of events and precision of estimates were much lower. In this large sample of urban/suburban patients, short-term exposure to elevated PM2.5 air pollution was associated with greater healthcare utilization for ALRI in both young children, older children, and adults. Further exploration is needed of causal interactions between PM2.5 and ALRI.

  4. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans.

    Science.gov (United States)

    Clemens, Tom; Turner, Steve; Dibben, Chris

    2017-10-01

    Maternal ambient air pollution exposure is associated with reduced birthweight. Few studies have examined the effect on growth in utero and none have examined the effect of exposure to particulates less than 2.5µm (PM 2.5 ) and possible effect modification by smoking status. Examine the effect of maternal exposure to ambient concentrations of PM 10 , PM 2.5 and nitrogen dioxide (NO 2 ) for in utero fetal growth, size at birth and effect modification by smoking status. Administratively acquired second and third trimester fetal measurements (bi-parietal diameter, femur length and abdominal circumference), birth outcomes (weight, crown heel length and occipito-frontal circumference) and maternal details were obtained from routine fetal ultrasound scans and maternity records (period 1994-2009). These were modelled against residential annual pollution concentrations (calendar year mean) adjusting for covariates and stratifying by smoking status. In the whole sample (n=13,775 pregnancies), exposure to PM 10 , PM 2.5 and NO 2 was associated with reductions in measurements at birth and biparietal diameter from late second trimester onwards. Among mothers who did not smoke at all during pregnancy (n=11,075), associations between biparietal diameter and pollution exposure remained significant but were insignificant among those who did smoke (n=2700). Femur length and abdominal circumference were not significantly associated with pollution exposure. Fetal growth is strongly associated with particulates exposure from later in second trimester onwards but the effect appears to be subsumed by smoking. Typical ambient exposures in this study were relatively low compared to other studies and given these results, it may be necessary to consider reducing recommended "safe" ambient air exposures. Copyright © 2017. Published by Elsevier Ltd.

  5. Perspective for Future Research Direction About Health Impact of Ambient Air Pollution in China.

    Science.gov (United States)

    Dong, Guang-Hui

    2017-01-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. Although lots of works on the health impact of ambient air pollution have been done in China, the following recommendations for future research were identified in this chapter: (1) the synergistic effect of indoor air pollution with climate change; (2) develop new technologies to improve accurate assessment of air pollution exposure; (3) well-designed cohort study of sensitive populations including children, older people, and people with chronic health problems; (4) multi-omics technologies in the underlying mechanisms study; and (5) benefits evaluation of improvement of air quality. In conclusion, China is becoming a suitable study site, providing an ideal opportunity to evaluate the effects of environmental pollution, including air pollution, on human health, which might serve as an example for developing countries where health impacts of air pollution are as serious as in China.

  6. Winter fine particulate air quality in Cranbrook, British Columbia, 1973 to 1999

    International Nuclear Information System (INIS)

    McDonald, L.E.

    2001-06-01

    Fine particulate levels in Cranbrook, BC, are analyzed and reported based on monitoring records which began in 1973. Prior to 1988 the sampler collected all particle sizes, but was subsequently replaced with a selective size inlet to capture only PM 1 0 particles or smaller. A mathematical relationship was produced and used to convert historical total suspended particulates measurements to PM 1 0. It was determined that only monitoring records obtained during the winter months could be reliably converted in this fashion; however, that was not a problem since the winter months happen to correspond to the highest levels of fine particulates. Results of the analysis showed increased levels of PM 1 0 from the early 1970s to the early 1980s; during this time average and maximum annual PM 1 0 levels in Cranbrook were higher than those in Los Angeles in 1999. Winter PM 1 0 levels began to fall through the late 1980s and early 1990s. The lowest average and maximum (18 microgram/cubic metre and 47 microgram/cubic metre, respectively) was recorded in the winter of 1996/1997. Worst conditions were recorded in 1980/1981 when 15 of 21 samples exceeded the current provincial PM 1 0 air quality objective of 50 microgram/cubic metre. In the five winters between 1994/1995 and 1998/1999 only three of 109 samples exceeded the provincial objective. There appears to be no correlation between known changes in industrial and mobile sources of pollutants and historical patterns of fine particulate air pollution in Cranbrook, BC. Observation and experience over three decades suggest that the major source of PM 1 0 in Cranbrook was combustion of wood for home heating. The most probable major cause of the improvements in winter air quality was identified as the gradual conversion from wood to natural gas fired appliances through the 1980s and the 1990s. The 115 per cent increase in the cost of natural gas in the last two years unfortunately, will again make wood an attractive alternative

  7. The State of Ambient Air Quality in Two Ugandan Cities : A Pilot Cross-Sectional Spatial Assessment

    NARCIS (Netherlands)

    Kirenga, Bruce J.; Meng, Qingyu; van Gemert, Frederik; Aanyu-Tukamuhebwa, Hellen; Chavannes, Niels; Katamba, Achilles; Obai, Gerald; van der Molen, Thys; Schwander, Stephan; Mohsenin, Vahid

    2015-01-01

    Air pollution is one of the leading global public health risks but its magnitude in many developing countries' cities is not known. We aimed to measure the concentration of particulate matter with aerodynamic diameter

  8. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data

  9. Thermogravimetric analysis of silicon carbide-silicon nitride fibers at ambient to 1000 C in air

    Science.gov (United States)

    Daniels, J. G.; Ledbetter, F. E., III; Clemons, J. M.; Penn, B. G.

    1984-01-01

    Thermogravimetric analysis of silicon carbide-silicon nitride fibers was carried out at ambient to 1000 C in air. The weight loss over this temperature range was negligible. In addition, the oxidative stability at high temperature for a short period of time was determined. Fibers heated at 1000 C in air for fifteen minutes showed negligible weight loss (i.e., less than 1 percent).

  10. Estimating particulate matter health impact related to the combustion of different fossil fuels

    OpenAIRE

    Kuenen , Jeroen; Gschwind , Benoît; Drebszok , Kamila M.; Stetter , Daniel; Kranenburg , Richard; Hendriks , Carlijn; Lefèvre , Mireille; Blanc , Isabelle; Wyrwa , Artur; Schaap , Martijn

    2013-01-01

    International audience; Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin...

  11. Particulate air pollution and impaired lung function [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Laura Paulin

    2016-02-01

    Full Text Available Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease.

  12. Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia

    International Nuclear Information System (INIS)

    Reddington, C L; Yoshioka, M; Arnold, S R; Spracklen, D V; Balasubramanian, R; Ridley, D; Toh, Y Y

    2014-01-01

    Smoke haze, caused by vegetation and peat fires in Southeast Asia, is of major concern because of its adverse impact on regional air quality. We apply two different methods (a chemical transport model and a Lagrangian atmospheric transport model) to identify the locations of fires contributing to the increased mass concentration of particulate matter with diameters less than 2.5 μm (PM 2.5 ) in Singapore over the period 2004–09. We find that fires in southern Sumatra account for the greatest percentage of the total fire enhancement to PM 2.5 concentrations in Singapore (42–62%), with fires in central Sumatra and Kalimantan contributing 21–35% and 14–15%, respectively. Furthermore, we find that fires in these regions also increase PM 2.5 concentrations in other major cities across Southeast Asia. Our results suggest that acting to reduce fires in southern and central Sumatra (specifically in the eastern parts of the provinces of Jambi, South Sumatra, Lampung and Riau) and southwest Kalimantan (the southern extent of the provinces of West, Central and South Kalimantan) would have the greatest benefit to particulate air quality in Singapore and more widely across Southeast Asia. (letter)

  13. Work place air particulate monitoring of automobile workshops for public health and safety

    International Nuclear Information System (INIS)

    Siddique, N.; Waheed, S.

    2013-01-01

    Twenty-eight pairs of coarse and fine air particulate samples were collected in front of an automotive workshop located at Tasmasipabad on Chaklala Road in Rawalpindi using a Gent sampler and polycarbonate filters. These samples were collected during the period; 7th to 27th of April 2009. The gravimetric data (PM 2.5 and PM 10 ) were obtained for these samples and were found to exceed the Pakistani standards. Black carbon (BC) was also determined using reflectance measurements and it was found that BC contributed significantly more to the fine mass than to the coarse fraction; i.e. ∼10 to ∼3 %, respectively. This is not surprising as soot is emitted by combustion processes and is usually found in the fine particulate mass. Using instrumental neutron activation analysis technique all 28 pairs of filters were analyzed for >30 elements. Major elements, in the coarse mass fraction, include Al, K, Fe, Sr, Na, and Zn implying soil as the major source while BC was found to be a higher contributor of PM 2.5 . An episode of high PM 2.5 was observed on the 18th of April 2009. Back trajectory analysis showed that the air mass originated from the Middle East where a dust storm was in progress over Iraq. (author)

  14. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry.

    Science.gov (United States)

    Zanoletti, A; Bilo, F; Depero, L E; Zappa, D; Bontempi, E

    2018-07-15

    This work presents a new porous material (SUNSPACE) designed for air particulate matter (PM) capture. It was developed in answer to the European Commission request of an innovative, affordable, and sustainable solution, based on design-driven material, to reduce the concentration of air particulate matter in urban areas. SUNSPACE material was developed from by-products and low-cost materials, such as silica fume and sodium alginate. Its capability to catch ultrafine PM was evaluated by different ad-hoc tests, considering diesel exhaust fumes and incense smoke PM. Despite the fact that procedures and materials can be designed for remediation, the high impact on the environment, for example in terms of natural resources consumption and emissions, are not usually considered. Instead, we believe that the technologies must be always evaluated in terms of material embodied energy (EE) and carbon footprint (CF). We define our approach to solve environment problems by a sustainable methodology "Azure Chemistry". For the SUNSPACE synthesis, the multi-criteria decision analysis was performed to select the best sustainable solution. The emissions and the energies involved in the synthesis of SUNSPACE material were evaluated with the Azure Chemistry approach, showing that this could be the best available technology to face the problem of capturing the PM in urban area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Ambient air quality monitoring at Universiti Tunku Abdul Rahman (UTAR) Kampar campus

    Science.gov (United States)

    Jie, Lim Jun; Xinxin, Guo; Ke, Wang

    2017-04-01

    Air Pollutant includes any substance in solid, liquid or gaseous form present in the atmosphere in concentrations which may tend to be injurious to all living creatures, property and environment. In this study, automatic continuous monitoring station was used to monitor concentration of carbon monoxide (CO), non-methane hydrocarbon (NMHC), and carbon dioxide (CO2) in the ambient air of Kampar Campus, Universiti Tunku Abdul Rahman. High-volume air sampler was also used to monitor the concentration of PM2.5 and the collected PM2.5 was further analysed for the heavy metal concentration such as Zinc (Zn), Cadmium (Cd), Copper (Cu), Arsenic (As), Aluminium (Al), and Lead (Pb) in PM2.5 using inductively coupled plasma-mass spectrometer (ICP-MS). The overall ambient air quality in the campus area is consider unhealthy as the non-methane hydrocarbon (NMHC) and carbon dioxide (CO2) average concentration obtained were far exceeding the recommended limit concentration set by United States Environmental Protection Agency (USEPA). Meteorological data was found that it does not show much relationship with the air quality data in this study. The concentration of Zn and Al were found the dominant heavy metal in the ambient air. The enrichment factor analysis also shows that the heavy metals contained in PM2.5 mainly origin from the natural source except for the Zn which it is highly contaminated by human activities.

  16. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  17. OZONE AMBIENT AIR QUALITY STANDARD HAS BENEFICIAL EFFECT ON PONDEROSA PINE IN CALIFORNIA

    Science.gov (United States)

    Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. However, to date there has not been a simple and objective method to determine if the standards and resultant control strategies have reduced O3 impacts on ...

  18. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    Science.gov (United States)

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  19. 76 FR 46083 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur

    Science.gov (United States)

    2011-08-01

    ... 2. Linking ANC to Deposition 3. Linking Deposition to Ambient Air Indicators 4. Aquatic... ANC Levels 2. ANC Levels Related to Effects on Aquatic Ecosystems 3. Consideration of Episodic Acidity 4. Consideration of Ecosystem Response Time 5. Prior Examples of Target ANC Levels 6. Consideration...

  20. Ambient air pollution, lung function, and airway responsiveness in asthmatic children

    NARCIS (Netherlands)

    Ierodiakonou, Despo; Zanobetti, Antonella; Coull, Brent A.; Melly, Steve; Postma, Dirkje S.; Boezen, H. Marike; Vonk, Judith M.; Williams, Paul V.; Shapiro, Gail G.; McKone, Edward F.; Hallstrand, Teal S.; Koenig, Jane Q.; Schildcrout, Jonathan S.; Lumley, Thomas; Fuhlbrigge, Anne N.; Koutrakis, Petros; Schwartz, Joel; Weiss, Scott T.; Gold, Diane R.

    BACKGROUND: Although ambient air pollution has been linked to reduced lung function in healthy children, longitudinal analyses of pollution effects in asthmatic patients are lacking. OBJECTIVE: We sought to investigate pollution effects in a longitudinal asthma study and effect modification by

  1. Galvanic detection of sulfur dioxide in ambient air at trace levels by anodic oxidation

    NARCIS (Netherlands)

    Lindqvist, F.

    1978-01-01

    A continuous method for the measurement of SO2 in ambient air at trace levels is described. The principle of detection is based on the anodic oxidation of SO2 in a galvanic cell. A differential measuring technique with a cell with two anodes and one cathode is used; background and noise current are

  2. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-03

    ... Research and Development on March 30, 2010. The analytical procedure of this method has been tested in... Protection Agency, Research Triangle Park, North Carolina 27711. Designation of this new equivalent method is... ENVIRONMENTAL PROTECTION AGENCY [FRL-9184-5] Office of Research and Development; Ambient Air...

  3. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-03-04

    ..., Research Triangle Park, North Carolina 27711. Designation of this new equivalent method is intended to... ENVIRONMENTAL PROTECTION AGENCY [FRL-9121-6] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental...

  4. 76 FR 15974 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-03-22

    ..., Research Triangle Park, North Carolina 27711. Designation of these new equivalent methods is intended to... ENVIRONMENTAL PROTECTION AGENCY [FRL-9285-2] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Four New Equivalent Methods AGENCY: Environmental...

  5. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-18

    ..., Research Triangle Park, North Carolina 27711. Designation of these new equivalent methods is intended to... ENVIRONMENTAL PROTECTION AGENCY [FRL-9190-5] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Two New Equivalent Methods AGENCY: Environmental...

  6. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Science.gov (United States)

    2012-10-05

    ... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...

  7. Low-level NOx removal in ambient air by pulsed corona technology

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although removal of NOx by (pulsed) corona discharges has been thoroughly investigated for high concentrations of NOx in flue gas, removal of low levels in ambient air proves to be a difficult task. (Sub) ppm NOx levels exist in traffic tunnels due to accumulation of exhaust gases. The application

  8. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  9. Ambient Air Issue from New Jersey Department of Environmental Protection

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  10. Meteorology drives ambient air quality in a valley: a case of Sukinda chromite mine, one among the ten most polluted areas in the world.

    Science.gov (United States)

    Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar

    2016-07-01

    The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.

  11. Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain.

    Science.gov (United States)

    Cirera, Lluís; Rodríguez, Miguel; Giménez, Joaquín; Jiménez, Enrique; Saez, Marc; Guillén, José-Jesús; Medrano, José; Martínez-Victoria, María-Aurelia; Ballester, Ferran; Moreno-Grau, Stella; Navarro, Carmen

    2009-03-01

    Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city's air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 microg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution. The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized

  12. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask.

    Science.gov (United States)

    Langrish, Jeremy P; Mills, Nicholas L; Chan, Julian Kk; Leseman, Daan Lac; Aitken, Robert J; Fokkens, Paul Hb; Cassee, Flemming R; Li, Jing; Donaldson, Ken; Newby, David E; Jiang, Lixin

    2009-03-13

    Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask. In an open-label cross-over randomised controlled trial, 15 healthy volunteers (median age 28 years) walked on a predefined city centre route in Beijing in the presence and absence of a highly efficient facemask. Personal exposure to ambient air pollution and exercise was assessed continuously using portable real-time monitors and global positional system tracking respectively. Cardiovascular effects were assessed by continuous 12-lead electrocardiographic and ambulatory blood pressure monitoring. Ambient exposure (PM2.5 86 +/- 61 vs 140 +/- 113 mug/m3; particle number 2.4 +/- 0.4 vs 2.3 +/- 0.4 x 104 particles/cm3), temperature (29 +/- 1 vs 28 +/- 3 degrees C) and relative humidity (63 +/- 10 vs 64 +/- 19%) were similar (P > 0.05 for all) on both study days. During the 2-hour city walk, systolic blood pressure was lower (114 +/- 10 vs 121 +/- 11 mmHg, P 0.05). Over the 24-hour period heart rate variability increased (SDNN 65.6 +/- 11.5 vs 61.2 +/- 11.4 ms, P pollution on blood pressure and heart rate variability. This simple intervention has the potential to protect susceptible individuals and prevent cardiovascular events in cities with high concentrations of ambient air pollution.

  13. 40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Interpretation of the National Ambient Air Quality Standards for Lead R Appendix R to Part 50 Protection of Environment ENVIRONMENTAL.... 50, App. R Appendix R to Part 50—Interpretation of the National Ambient Air Quality Standards for...

  14. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.

    Science.gov (United States)

    Chafe, Zoë A; Brauer, Michael; Klimont, Zbigniew; Van Dingenen, Rita; Mehta, Sumi; Rao, Shilpa; Riahi, Keywan; Dentener, Frank; Smith, Kirk R

    2014-12-01

    Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5). We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

  15. The contribution of waste water treatment plants to PBDEs in ambient air

    International Nuclear Information System (INIS)

    Martellini, Tania; Jones, Kevin C.; Sweetman, Andy; Giannoni, Martina; Pieri, Francesca; Cincinelli, Alessandra

    2012-01-01

    Air samples were collected at different sites in and around two wastewater treatment plants (WWTPs) located in central Italy to determine the concentrations, compositional profiles and contribution to ambient levels of eight polybrominated diphenyl ethers (PBDEs). The investigated WWTPs were selected as they treat industrial wastewater produced by local textile industries along with municipal wastewater. PBDE concentrations within the WWTPs were higher than those measured at reference sites located 4 and 5 km away with BDE-209 dominating the BDE congener composition in all air samples in 2008. Ambient PBDE concentrations measured in and around the WWTPs and estimates of emissions from aeration tanks suggest that WWTPs are sources of PBDEs to ambient air. Principal component analysis and Pearson correlations confirmed this result. The effect of distance from the plant and wind direction on atmospheric concentrations was also investigated. Although the primary fate of PBDEs in WWTPs will be partitioning to sewage sludge, this study suggests that plants can provide a measurable source of these compounds to local ambient air. - Highlights: ► Levels and distribution profiles of PBDEs in the atmosphere surrounding two WWTPs. ► Airborne polybrominated diphenyl ethers in the surrounding area of two WWTPs in Italy. ► To investigate WWTPs as sources of PBDEs to the atmosphere. ► Samples collected downwind respect to the plant showed BDE-209 as dominant congener. ► The effect of distance and wind direction on atmospheric concentrations was also investigated. - Waste water treatment plants as sources of PBDEs to the ambient air.

  16. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    Science.gov (United States)

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  17. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  18. Temporal-Spatial Ambient Concentrator Estimator (T-SpACE): Hierarchical Bayesian Model Software Used to Estimate Ambient Concentrations of NAAQS Air Pollutants in Support of Health Studies

    Science.gov (United States)

    To fulfill its mission to protect human health and the environment, EPA has established National Ambient Air Quality Standards (NAAQS) on six selected air pollutants known as criteria pollutants: ozone (O3); carbon monoxide (CO); lead (Pb); nitrogen dioxide (NO2); sulfur dioxide ...

  19. Contamination of Ambient Air with Acinetobacter baumannii on Consecutive Inpatient Days.

    Science.gov (United States)

    Shimose, Luis A; Doi, Yohei; Bonomo, Robert A; De Pascale, Dennise; Viau, Roberto A; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Munoz-Price, L Silvia

    2015-07-01

    Acinetobacter-positive patients had their ambient air tested for up to 10 consecutive days. The air was Acinetobacter positive for an average of 21% of the days; the rate of contamination was higher among patients colonized in the rectum than in the airways (relative risk [RR], 2.35; P = 0.006). Of the 6 air/clinical isolate pairs available, 4 pairs were closely related according to rep-PCR results. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Particulate matter air pollution may offset ozone damage to global crop production

    Science.gov (United States)

    Schiferl, Luke D.; Heald, Colette L.

    2018-04-01

    Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production varies by crop (+5.6, -3.7, and +4.5 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  1. Fine particulate matter air pollution and cognitive function among U.S. older adults.

    Science.gov (United States)

    Ailshire, Jennifer A; Clarke, Philippa

    2015-03-01

    There is growing interest in understanding how exposures in the residential environment relate to cognitive function in older adults. The goal of this study is to determine if neighborhood-level exposure to fine particulate matter air pollution (PM2.5) is associated with cognitive function in a diverse, national sample of older U.S. adults. We use cross-sectional data on non-Hispanic black and white men and women aged 55 and older from the 2001/2002 Americans' Changing Lives Study (N = 780). EPA air monitoring data were linked to respondents using census tract identifiers. Cognitive function was assessed with tests of working memory and orientation. Negative binomial regression models were used to examine the association between PM2.5 and the number of errors on the cognitive assessment. Older adults living in areas with high concentrations of PM2.5 had an error rate 1.5 times greater than those exposed to lower concentrations, net of individual and neighborhood-level demographic and socioeconomic characteristics. This study adds to a growing body of research demonstrating the importance of air pollution to cognitive function in older adults. Improvements to air quality may be an important mechanism for reducing age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Particulate matter air pollution may offset ozone damage to global crop production

    Directory of Open Access Journals (Sweden)

    L. D. Schiferl

    2018-04-01

    Full Text Available Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010 global net impact of air quality on crop production varies by crop (+5.6, −3.7, and +4.5 % for maize, wheat, and rice, respectively. Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  3. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  4. Energy saving potential of natural ventilation in China: The impact of ambient air pollution

    International Nuclear Information System (INIS)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Liu, Zhu; Freeman, Richard B.

    2016-01-01

    Highlights: • Natural ventilation potential is affected largely by ambient air pollution in China. • NV hours of 76 Chinese cities based on weather and ambient air quality are estimated. • Cooling energy savings and carbon reductions of 35 major Chinese cities are estimated. • 8–78% of the cooling energy usage can be potentially reduced by NV. • Our findings provide guidelines to improve energy policies in China. - Abstract: Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China’s serious air pollution issue especially in North China. 8–78% of the cooling energy consumption can be potentially reduced by natural

  5. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  6. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Bae [The Division of Cardiology, Kyung Hee University College of Medicine, 1 Hoegi-dong, Dongdaemun-Gu, Seoul (Korea, Republic of); Kim, Changsoo [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Choi, Eunmi [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Park, Sanghoon; Park, Hyelim; Pak, Hui-Nam; Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Shin, Dong Chun [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Hwang, Ki-Chul [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-02-15

    Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 μg/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 μg/ml for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 μmol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 μmol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 μmol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 μmol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 μg/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ► The ambient PM consistently prolonged repolarization. ► The ambient PM induced triggered activity and ventricular arrhythmia. ► These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ► The ambient PM can induce

  7. Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS.

    Science.gov (United States)

    Baimatova, Nassiba; Kenessov, Bulat; Koziel, Jacek A; Carlsen, Lars; Bektassov, Marat; Demyanenko, Olga P

    2016-07-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) comprise one of the most ubiquitous and hazardous groups of ambient air pollutants of concern. Application of standard analytical methods for quantification of BTEX is limited by the complexity of sampling and sample preparation equipment, and budget requirements. Methods based on SPME represent simpler alternative, but still require complex calibration procedures. The objective of this research was to develop a simpler, low-budget, and accurate method for quantification of BTEX in ambient air based on SPME and GC-MS. Standard 20-mL headspace vials were used for field air sampling and calibration. To avoid challenges with obtaining and working with 'zero' air, slope factors of external standard calibration were determined using standard addition and inherently polluted lab air. For polydimethylsiloxane (PDMS) fiber, differences between the slope factors of calibration plots obtained using lab and outdoor air were below 14%. PDMS fiber provided higher precision during calibration while the use of Carboxen/PDMS fiber resulted in lower detection limits for benzene and toluene. To provide sufficient accuracy, the use of 20mL vials requires triplicate sampling and analysis. The method was successfully applied for analysis of 108 ambient air samples from Almaty, Kazakhstan. Average concentrations of benzene, toluene, ethylbenzene and o-xylene were 53, 57, 11 and 14µgm(-3), respectively. The developed method can be modified for further quantification of a wider range of volatile organic compounds in air. In addition, the new method is amenable to automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans

    Science.gov (United States)

    Chen, Zhanghua; Salam, Muhammad T.; Toledo-Corral, Claudia; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Wilson, John P.; Trigo, Enrique

    2016-01-01

    OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae. PMID:26868440

  9. Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels.

    Science.gov (United States)

    Yu, Hwa-Lung; Wang, Chih-Hsin

    2013-02-05

    Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.

  10. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    International Nuclear Information System (INIS)

    Barnett, J.M.; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-01-01

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor(reg s ign) 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R 2 ) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify

  11. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Science.gov (United States)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  12. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2018-01-01

    Full Text Available Secondary organic aerosol (SOA formation from ambient air was studied using an oxidation flow reactor (OFR coupled to an aerosol mass spectrometer (AMS during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5 field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3 or weeks (OH of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m−3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  13. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project

    Science.gov (United States)

    Stafoggia, Massimo; Weinmayr, Gudrun; Pedersen, Marie; Galassi, Claudia; Jørgensen, Jeanette T.; Oudin, Anna; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Marit Aasvang, Gunn; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L.; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T.; Tjønneland, Anne; Peeters, Petra H.; Bueno-de-Mesquita, Bas; Plusquin, Michelle; Key, Timothy J.; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Fournier, Agnes; Boutron-Ruault, Marie-Christine; Baglietto, Laura; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2017-01-01

    Background: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. Objective: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. Methods: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts - Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse [1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04]. Conclusions: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742 PMID:29033383

  14. Progress of ambient air pollution and cardiovascular disease research in Asia.

    Science.gov (United States)

    Su, Ta-Chen; Chen, Szu-Ying; Chan, Chang-Chuan

    2011-01-01

    Asian countries are with d