WorldWideScience

Sample records for ambient air particles

  1. Correlation of Air Quality Data to Ultrafine Particles (UFP Concentration and Size Distribution in Ambient Air

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2010-07-01

    Full Text Available This study monitored ultrafine particles (UFP concurrent with environmental air quality data, investigating whether already existing instrumentation used by environmental authorities can provide reference values for estimating UFP concentrations. Of particular interest was the relation of UFP to PM10 (particulate matter and nitrogen oxides (NOx, NO2 in ambient air. Existing PM measurement methods alone did not correspond exactly enough with the actual particle number, but we observed a link between NOx and NO2 to UFP concentration. The combined data could act as proxy-indicator for authorities in estimating particle number concentrations, but cannot replace UFP monitoring.

  2. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    Science.gov (United States)

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  3. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  4. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  5. Proposed Pathophysiologic Framework to Explain Some Excess Cardiovascular Death Associated with Ambient Air Particle Pollution: Insights for Public Health Translation

    Science.gov (United States)

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regularory en...

  6. Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhiqiang [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Liao Ru' e [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li Huiru, E-mail: huiruli@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Mo Ligui [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zeng Xiangying; Sheng Guoying; Fu Jiamo [State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-10-15

    In present study, atmospheric particles from Shanghai, the biggest city and the most important industrial base in China, were analyzed for polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DP). Concentrations of {Sigma}{sub 20}PBDEs and DP both exhibited the changing trend of industrial area > urban areas. Jiading District had the highest levels of particulate PBDEs and DP with values of 744 {+-} 152 pg/m{sup 3} and 5.48 {+-} 1.28 pg/m{sup 3}, respectively. Compared with similar data in other areas of the world, PBDEs in Shanghai were at medium pollution level, while DP was at lower level, which reflected their different production and use in Shanghai. The results from multiple linear regression analysis suggested that deca-BDE mixture was the most important contributor of particulate PBDEs in Shanghai. The fractions of anti-DP showed no significant differences to those of the technical mixtures (p > 0.05), which suggested that no obviously stereoselective process occurred in ambient air around Shanghai. - Highlights: > Atmospheric PBDEs of Shanghai were at moderate levels and dominated by BDE-209. > Particulate DP was low even Shanghai is not far from the DP manufacturing factory. > DP showed no obviously stereoselective process in air particles from Shanghai. > Significant positive correlation was found between particulate PBDEs and PBDD/Fs. - The moderate PBDEs levels with deca-BDE being the most important contributor and low DP levels in ambient air around Shanghai reflected their different usage in this area.

  7. Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China

    International Nuclear Information System (INIS)

    Yu Zhiqiang; Liao Ru'e; Li Huiru; Mo Ligui; Zeng Xiangying; Sheng Guoying; Fu Jiamo

    2011-01-01

    In present study, atmospheric particles from Shanghai, the biggest city and the most important industrial base in China, were analyzed for polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DP). Concentrations of Σ 20 PBDEs and DP both exhibited the changing trend of industrial area > urban areas. Jiading District had the highest levels of particulate PBDEs and DP with values of 744 ± 152 pg/m 3 and 5.48 ± 1.28 pg/m 3 , respectively. Compared with similar data in other areas of the world, PBDEs in Shanghai were at medium pollution level, while DP was at lower level, which reflected their different production and use in Shanghai. The results from multiple linear regression analysis suggested that deca-BDE mixture was the most important contributor of particulate PBDEs in Shanghai. The fractions of anti-DP showed no significant differences to those of the technical mixtures (p > 0.05), which suggested that no obviously stereoselective process occurred in ambient air around Shanghai. - Highlights: → Atmospheric PBDEs of Shanghai were at moderate levels and dominated by BDE-209. → Particulate DP was low even Shanghai is not far from the DP manufacturing factory. → DP showed no obviously stereoselective process in air particles from Shanghai. → Significant positive correlation was found between particulate PBDEs and PBDD/Fs. - The moderate PBDEs levels with deca-BDE being the most important contributor and low DP levels in ambient air around Shanghai reflected their different usage in this area.

  8. Measurement of Ambient Air Particle (TSP, PM10, PM2,5) Around Candidate Location of PLTN Semenanjung Lemahabang

    International Nuclear Information System (INIS)

    AgusGindo S; Budi Hari H

    2008-01-01

    Measurement analysis of ambient air particle (TSP, PM 10 , PM 2,5 ) around location candidate of PLTN (Power Station of Nuclear Energy) Semenanjung Lemahabang has been carried out. The measurement was conducted in May 2007 with a purpose to providing information about concentration of ambient air particle (TSP, PM 10 , PM 2,5 ) and diameter distribution of its air particle. The measurement was conducted in three locations i.e. 1). Balong village 2). Bayuran 3). Bondo. Concentration of TSP, PM 10 , and PM 2,5 per 24 hours in all measured locations in area candidate of PLTN exceed quality standard of national ambient air is specified by government. All measurement locations for the TSP, PM 10 , and PM 2,5 was include category of ISPU (Standard Index of Air Pollution) moderate. (author)

  9. Particle-bound Dechlorane Plus and polybrominated diphenyl ethers in ambient air around Shanghai, China.

    Science.gov (United States)

    Yu, Zhiqiang; Liao, Ru'e; Li, Huiru; Mo, Ligui; Zeng, Xiangying; Sheng, Guoying; Fu, Jiamo

    2011-10-01

    In present study, atmospheric particles from Shanghai, the biggest city and the most important industrial base in China, were analyzed for polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DP). Concentrations of ∑(20)PBDEs and DP both exhibited the changing trend of industrial area > urban areas. Jiading District had the highest levels of particulate PBDEs and DP with values of 744 ± 152 pg/m(3) and 5.48 ± 1.28 pg/m(3), respectively. Compared with similar data in other areas of the world, PBDEs in Shanghai were at medium pollution level, while DP was at lower level, which reflected their different production and use in Shanghai. The results from multiple linear regression analysis suggested that deca-BDE mixture was the most important contributor of particulate PBDEs in Shanghai. The fractions of anti-DP showed no significant differences to those of the technical mixtures (p > 0.05), which suggested that no obviously stereoselective process occurred in ambient air around Shanghai. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Nanomaterials vs Ambient Ultrafine Particles

    DEFF Research Database (Denmark)

    Stone, Vicki; Miller, Mark R.; Clift, Martin J. D.

    2017-01-01

    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology ...

  11. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China

    International Nuclear Information System (INIS)

    Xie, R.K.; Seip, H.M.; Leinum, J.R.; Winje, T.; Xiao, J.S.

    2005-01-01

    PM 10 samples were collected during 5 days in Guiyang, China in July 2003. A total of about 2300 particles was analyzed by an automated Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS). Hierarchical cluster analysis (HCA) was used to identify different particle types that occurred in the aerosol. Seventeen particle types were identified and presented in the order of decreasing number abundance as: silicomanganese slag, soil and fly ash, coal burning, silicomanganese, quartz, syngenite, S-bearing iron, calcium rich, gypsum, sphalerite, dolomite, iron, alloy, lead sulfate, zinc rich, sulfur-rich particles and aluminum manufacturing dust. The majority of the particles in the studied size range are of anthropogenic origin, especially from metallurgical industry. The study illustrates the complexity of particle pollution in air of an industrial Chinese city and the results should be useful in planning mitigation measures

  12. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress-Induced DNA Damage

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter

    2007-01-01

    mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. DESIGN. Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking...... exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. METHODS: The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were...

  13. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles

    Directory of Open Access Journals (Sweden)

    Pengcheng Song

    2017-01-01

    Full Text Available The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation.

  14. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    International Nuclear Information System (INIS)

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-01-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described

  15. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring

    Science.gov (United States)

    Crilley, Leigh R.; Shaw, Marvin; Pound, Ryan; Kramer, Louisa J.; Price, Robin; Young, Stuart; Lewis, Alastair C.; Pope, Francis D.

    2018-02-01

    A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.

  16. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  17. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  18. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS): REVIEW

    Science.gov (United States)

    Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambi...

  19. Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas

    Energy Technology Data Exchange (ETDEWEB)

    Rehwagen, Martina; Mueller, Andrea; Herbarth, Olf [UFZ-Centre for Environmental Research Leipzig-Halle, Department of Human Exposure Research and Epidemiology, Permoserstr. 15, D 04318 Leipzig (Germany); Massolo, Laura; Ronco, Alicia [CIMA Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 8 Calle 47 y 115, 1900 La Plata (Argentina)

    2005-09-15

    This study takes into consideration an analysis of the chemical polycyclic aromatic hydrocarbon (PAH) profile and its distribution in inhalable and respirable particulate matter in urban and industrial areas in La Plata, Argentina, and Leipzig, Germany. Representative samples from three locations in La Plata (industrial, traffic influenced and control area) and two locations in Leipzig (traffic influenced and control area) were obtained in summer and winter. The sampling of particulate matter was carried out with high volume collectors using cascade impactors to separate six size fractions. PAHs were extracted with hexane through a solid-liquid equilibrium extraction and analysed by HPLC/UV/fluorescence detection. The results showed a PAH seasonal behaviour in both regions, with lower contents in summer and higher ones in winter. Highest concentrations of total PAHs were found in the industrial area in La Plata. The size distribution of particles demonstrates the greater relevance of smaller particles. More than 50% of PAHs were associated with particles of less than 0.49 {mu}m. Moreover, this particle size fraction was associated with traffic, whereas other sources of combustion were related also to particles between 0.49 and 0.95 {mu}m. Considering the ratio of benzo(ghi)perylene (BgP)/benzo(a)pyrene (BaP) as an indicator for traffic influence, it was observed that La Plata City was more affected than Leipzig by the same proportion in summer and in winter. The BgP/InP (indeno(123-cd)pyrene) ratio was lower in winter than in summer in both places and indicates the presence of domestic combustion sources. It is important to point out the significance of using fingerprint compound ratios to identify possible sources of pollution with PAHs bound to particles.

  20. 76 FR 6056 - Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air...

    Science.gov (United States)

    2011-02-03

    ... Planning Texas. Section, EPA Region 6, 1445 Ross Avenue, Dallas, TX 75202, (214) 665-7242. Monica Morales... monitored air quality data for 2006-2008 indicating a violation of the NAAQS (2006-2008 design value of 48... NAAQS, with a 2007-2009 design value of 40 [micro]g/m\\3\\. In October of 2009, EPA notified the Governor...

  1. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  2. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies

    International Nuclear Information System (INIS)

    Becker, Susanne; Mundandhara, Sailaja; Devlin, Robert B.; Madden, Michael

    2005-01-01

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endpoints of inflammation, and oxidant stress. Separation of Chapel Hill PM 10 into fine and coarse size particles revealed that the main proinflammatory response (TNF, IL-6, COX-2) in AM was driven by material present in the coarse PM, containing 90-95% of the stimulatory material in PM10. The particles did not affect expression of hemoxygenase-1 (HO-1), a sensitive marker of oxidant stress. Primary cultures of normal human bronchial epithelial cells (NHBE) also responded to the coarse fraction with higher levels of IL-8 and COX-2, than induced by fine or ultrafine PM. All size PM induced oxidant stress in NHBE, while fine PM induced the highest levels of HO-1 expression. The production of cytokines in AM by both coarse and fine particles was blocked by the toll like receptor 4 (TLR4) antagonist E5531 involved in the recognition of LPS and Gram negative bacteria. The NHBE were found to recognize coarse and fine PM through TLR2, a receptor with preference for recognition of Gram positive bacteria. Compared to ambient PM, diesel PM induced only a minimal cytokine response in both AM and NHBE. Instead, diesel suppressed LPS-induced TNF and IL-8 release in AM. Both coarse and fine ambient air PM were also found to inhibit LPS-induced TNF release while silica, volcanic ash or carbon black had no inhibitory effect. Diesel particles did not affect cytokine mRNA induction nor protein accumulation but interfered with the release of cytokine from the cells. Ambient coarse and fine PM, on the other hand, inhibited both mRNA induction and protein production. Exposure to coarse and fine PM decreased the expression of TLR4 in the macrophages. Particle-induced decrease in TLR4 and hyporesponsiveness to LPS

  3. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    Science.gov (United States)

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  4. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  5. Different immunomodulatory effects associated with sub-micrometer particles in ambient air from rural, urban and industrial areas

    International Nuclear Information System (INIS)

    Wichmann, Gunnar; Franck, Ulrich; Herbarth, Olf; Rehwagen, Martina; Dietz, Andreas; Massolo, Laura; Ronco, Alicia; Mueller, Andrea

    2009-01-01

    Immunomodulatory effects of chemicals adsorbed to particles with aerodynamic diameter below 0.49 μm (PM 0.5 ) collected in winter 2001 at three sampling points (industrial area [LPIn], traffic-influenced urban area [LPCi], and control area [LPCo]) of La Plata, Argentina, were investigated. The sampling of particulate matter was carried out with high-volume collectors using cascade impactors. PM 0.5 -adsorbed compounds were hexane-extracted by accelerated solvent extraction. For immunological investigations, human peripheral blood lymphocytes were activated by phytohemagglutinin and exposed to dimethyl-sulfoxide dilutions of PM 0.5 -extracts for 24 h. Vitality/proliferation was quantified using MTT, released interferon-γ (IFN-γ) and interleukin-4 (IL-4) by ELISA. Cytokine production but not vitality/proliferation was significantly suppressed by all of the highest extract concentrations. Generally, suppression of IFN-γ by PM 0.5 -extracts was stronger than those of IL-4. Based on administered mass of PM 0.5 , all extracts suppressed IFN-γ production nearly uniform. Contrary, LPCi-extracts exerted maximum IFN-γ suppression based either on air volume or regarding PM 0.5 -adsorbed PAH. Also the ranking of PM 0.5 -associated effects on IL-4 production differs in dependence of the chosen reference points, either mass or [μg/ml] or air volume [m 3 /ml] related dust quantities in cell culture. Based on the corresponding air volume, LPCi-extracts inhibited IL-4 production to the maximum extend, whereas suppression of IL-4 was comparable based on concentrations. This indicates that not only the disparate PM 0.5 -masses in air cause varying impacts, but also that disparities in PM 0.5 -adsorbed chemicals provoke different effects on immune responses and shifts in the regulatory balance that might have implications for allergy and cancer development

  6. Tire tread wear particles in ambient air--a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole.

    Science.gov (United States)

    Avagyan, Rozanna; Sadiktsis, Ioannis; Bergvall, Christoffer; Westerholm, Roger

    2014-10-01

    Urban particulate matter (PM), asphalt, and tire samples were investigated for their content of benzothiazole and benzothiazole derivates. The purpose of this study was to examine whether wear particles, i.e., tire tread wear or road surface wear, could contribute to atmospheric concentrations of benzothiazole derivatives. Airborne particulate matter (PM10) sampled at a busy street in Stockholm, Sweden, contained on average 17 pg/m(3) benzothiazole and 64 pg/m(3) 2-mercaptobenzothiazole, and the total suspended particulate-associated benzothiazole and 2-mercaptobenzothiazole concentrations were 199 and 591 pg/m(3), respectively. This indicates that tire tread wear may be a major source of these benzothiazoles to urban air PM in Stockholm. Furthermore, 2-mercaptobenzothiazole was determined in urban air particulates for the first time in this study, and its presence in inhalable PM10 implies that the human exposure to this biocide is underestimated. This calls for a revision of the risk assessments of 2-mercaptobenzothiazole exposure to humans which currently is limited to occupational exposure.

  7. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    International Nuclear Information System (INIS)

    Charpak, G; Benaben, P; Breuil, P; Peskov, V

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10 4 ). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  8. Ambient air pollution and thrombosis.

    Science.gov (United States)

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  9. Pulmonary responses in current smokers and ex-smokers following a two hour exposure at rest to clean air and fine ambient air particles.

    Science.gov (United States)

    BACKGROUND: Increased susceptibility of smokers to ambient PM may potentially promote development of COPD and accelerate already present disease. OBJECTIVES: To characterize the acute and subacute lung function response and inflammatory effects of controlled chamber exposure t...

  10. Status of ambient air quality at Barauni

    International Nuclear Information System (INIS)

    Kannan, G.K.

    1993-01-01

    Due to industrialization, Barauni has become a well developed industrial estate to be considered as industrial hub of Bihar. Contemporary to the industrial growth, the environmental quality also gradually deteriorated. Hence a need was felt to know the status of ambient air quality for proper planning of the future growth of industries. The ambient air quality was monitored at 16 stations in and around Barauni industrial estate during 3 major seasons for the period of one year. The results are discussed as to the status of the ambient air quality and suggestion have also been made for improvement. (author). 5 refs., 2 figs., 7 tabs

  11. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  12. Ambient air contamination: Characterization and detection techniques

    Science.gov (United States)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  13. Redox Toxicology of Ambient Air Pollution

    Science.gov (United States)

    Ambient air pollution is a leading global cause of morbidity and mortality. Millions of Americans live in areas in which levels of tropospheric ozone exceed air quality standards, while exposure to particulate matter (PM2.5) alone results in 3.2 million excess deaths annually wor...

  14. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode and/or with gas amplification

    CERN Document Server

    Charpak, Georges; Breuil, P; Peskov, Vladimir

    2008-01-01

    Ionization chambers working in ambient air in current detection mode are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and cetera. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification. . To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of 1. The second type alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 10E4). A detailed comparison between these two detectors is given as well as comparison with the commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible ap...

  15. Some measurements of ambient air pollution

    International Nuclear Information System (INIS)

    Memon, H.R.; Memon, A.A.; Behan, M.Y.

    1999-01-01

    Ambient air pollution arising from different sources in Karachi and its surroundings has been studied. The urban centres like Karachi are mostly confronted with eye-irritation, reduce visibility, heart-diseases, nervous disorder, smog and other unpleasant experiences. In this paper quantitative estimations of some air-pollutants such as sulphur dioxide, carbon monoxide, oxides of nitrogen, chlorine and particular matters are presented with their hazardous effects. The remedial measures for the control of major air emissions are also discussed. (author)

  16. Setting priorities for ambient air quality objectives

    International Nuclear Information System (INIS)

    2004-10-01

    Alberta has ambient air quality objectives in place for several pollutants, toxic substances and other air quality parameters. A process is in place to determine if additional air quality objectives are required or if existing objectives should be changed. In order to identify the highest priority substances that may require an ambient air quality objective to protect ecosystems and public health, a rigorous, transparent and cost effective priority setting methodology is required. This study reviewed, analyzed and assessed successful priority setting techniques used by other jurisdictions. It proposed an approach for setting ambient air quality objective priorities that integrates the concerns of stakeholders with Alberta Environment requirements. A literature and expert review were used to examine existing priority-setting techniques used by other jurisdictions. An analysis process was developed to identify the strengths and weaknesses of various techniques and their ability to take into account the complete pathway between chemical emissions and damage to human health or the environment. The key strengths and weaknesses of each technique were identified. Based on the analysis, the most promising technique was the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Several considerations for using TRACI to help set priorities for ambient air quality objectives were also presented. 26 refs, 8 tabs., 4 appendices

  17. Ambient air pollution and low birth weight

    DEFF Research Database (Denmark)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy

    2017-01-01

    (TLBW, restriction (IUGR), and suggest that some subgroups of pregnant women who are smoking, of low or high body-mass index (BMI), low socioeconomic status (SES) or asthma are more vulnerable towards...... on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite...... direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women...

  18. Ambient Air Pollution and Morbidity in Chinese.

    Science.gov (United States)

    Hu, Li-Wen; Lawrence, Wayne R; Liu, Yimin; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Dong, Guang-Hui

    2017-01-01

    The rapid economic growth in China is coupled with a severe ambient air pollution, which poses a huge threat to human health and the sustainable development of social economy. The rapid urbanization and industrialization over the last three decades have placed China as one of countries with the greatest disease burden in world. Notably, the prevalence rate of chronic noncommunicable diseases (CND), including respiratory diseases, CVD, and stroke, in 2010 reaches 16.9%. The continuous growth of the incidence of CND urgent needs for effective regulatory action for health protection. This study aims to evaluate the impact of rapid urbanization on status of ambient air pollution and associated adverse health effects on the incidence and the burden of CND and risk assessment. Our findings would be greatly significant in the prediction of the risk of ambient air pollution on CND and for evidence-based policy making and risk management in China.

  19. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  20. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  1. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Science.gov (United States)

    2012-05-21

    ... and 81 Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards; Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications...-9668-2] RIN 2060-AP37 Air Quality Designations for the 2008 Ozone National Ambient Air Quality...

  2. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    Science.gov (United States)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  3. Ambient air quality trends in Alberta

    International Nuclear Information System (INIS)

    2007-01-01

    This document provided an overview of ambient air pollutant trends in Alberta. The report discussed the following pollutants having effect on human and environmental health: carbon monoxide (CO), hydrogen sulphide (H2 S ), nitrogen dioxide (NO 2 ), sulphur dioxide (SO 2 ), ozone (O 3 ), fine particulate matter (PM 2 .5), benzene, and benzopyrene. Each of these pollutants was described. The report provided data on annual average concentration trends and annual 99th percentile concentration as an indicator of peak concentrations. A map illustrating air quality monitoring stations in 2006 was also provided. The findings revealed that mean annual CO levels were the lowest they have been since 1990; hydrogen sulphide concentrations have fluctuated in time since 1990; most Edmonton and Calgary area stations showed significant decreasing trends in annual average NO 2 levels since 1990; and higher SO 2 concentrations have been found in the industrial areas of Alberta, such as the Redwater and Scotford oil sands locations. tabs., figs

  4. 77 FR 12482 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES: This... FR 66964) and codified at 40 CFR 50.16, ``National primary and secondary ambient air quality...

  5. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1985-01-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous 85 Kr air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where 85 Kr was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State-of-the-art 85 Dr sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of 85 Kr

  6. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1984-10-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous krypton-85 air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where krypton-85 was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State of the art krypton-85 sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of krypton-85. 3 references, 3 figures, 1 table

  7. Ambient air pollution as a risk factor for lung cancer

    Directory of Open Access Journals (Sweden)

    COHEN AARON J

    1997-01-01

    Full Text Available Epidemiologic studies over the last 40 years have observed that general ambient air pollution, chiefly due to the by- products of the incomplete combustion of fossil fuels, is associated with small relative increases in lung cancer. The evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30-50% increases in the risk of lung cancer in relation to approximately a doubling of respirable particle exposure. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the US continue to be exposed to pollutant mixtures containing known or suspected carcinogens. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the US, based largely on the results of animal experimentation, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution in the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer related to air pollution.

  8. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    Science.gov (United States)

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicityAbstractMutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  9. Ambient particulate matter air pollution and cardiopulmonary diseases.

    Science.gov (United States)

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Health Effects of Ambient Air Pollution in Developing Countries

    OpenAIRE

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-01-01

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality...

  11. 75 FR 81126 - Revisions to Lead Ambient Air Monitoring Requirements

    Science.gov (United States)

    2010-12-27

    ... tons per year of lead is necessary to provide sufficient information about airborne lead levels near... Revisions to Lead Ambient Air Monitoring Requirements AGENCY: Environmental Protection Agency (EPA). ACTION...) that revised the primary and secondary National Ambient Air Quality Standards (NAAQS) for lead and...

  12. Cleaning air pollutants for newborns in China: a national risk assessment on low birth weight caused by ambient fine particles during 2013-2015

    Science.gov (United States)

    Xue, T.; Zheng, Y.; Zhang, Q.

    2016-12-01

    With the ending of one-child policy since 2015, the number of newborns are expected to increase in China, where people are surviving from pool air quality. Air pollutants, especially PM2.5 have been confirmed as a top risk factor to cause birth defects including low birth weight (LBW). Motivated by the increasing demands of the newborns for cleaner air in China, we conducted the first national risk assessment study on LBW cases caused by PM2.5. We combined county-level PM2.5 concentrations in 2013-2015 and demographic data (including population counts, birth rates and etc.), province-level baseline incidences of LBW and multiple reference safety concentrations (0 μg/m3, WHO air quality guidelines and interim targets) to estimate the number of PM2.5-associated LBW in 31 provinces. The uncertainty was quantified using Monte Carlo simulations. Based on our results, in 2013 among 334,781 (95% CI: 313,024-344,568) cases of LBW, 122,684 (95% CI: 53,153-173,846, account for 37% of the total LBW) were attributed to PM2.5, when assuming the reference safety concentration as 0 μg/m3; while 53,917 (95% CI: 22,851-82,195, account for 16% of the total LBW) cases of LBW could have been protected, if the air quality met WHO WHO interim target-3, 35 μg/m3. Among 31 provinces, PM2.5-associated LBW were mostly distributed in Hebei (12.99%, 95% CI: 12.42%-17.30%), Henan (9.75%, 95% CI: 9.11%-13.50%) and Guangdong (8.60%, 95% CI: 6.98%-9.42%). During 2013 to 2015, air quality in China was reported to be improved by implement of emission-reduction policies. Similarly, we found significantly decreasing trends of infants weighted concentrations of PM2.5 in most heavily polluted areas, which protected 12,201 (95% CI: 4,749-20,503) and 24,637 (95% CI: 9,619-39,821) PM2.5-associated LBW in 2014 and 2015, account for 3.64% (95% CI: 1.46%-6.21%) and 7.36% (95% CI: 2.93%-12.07%) of that in 2013, respectively. The uncertainty of this study was mainly contributed by that in epidemiology

  13. 77 FR 12524 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... Indiana State Implementation Plan (SIP) for lead (Pb) under the Clean Air Act (CAA). This submittal incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES...

  14. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... the Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the Clean Air Act. On April 8, 2009, and...

  15. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  16. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-11-22

    ... Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This rule establishes air quality designations for most areas in the United States for the 2008 lead (Pb) National Ambient Air Quality Standards...

  17. Health Effects of Ambient Air Pollution in Developing Countries.

    Science.gov (United States)

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-09-12

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.

  18. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  19. Electric scooters : Batteries in the battle against ambient air pollution?

    NARCIS (Netherlands)

    van Boven, Job FM; An, Pham Le; Kirenga, Bruce J; Chavannes, Niels H.

    2017-01-01

    Ambient air pollution is a major global health threat, responsible for an estimated loss of 103 million disability-adjusted life-years in 2015,1,2 and a main contributor to numerous health problems, such as cardiovascular and respiratory diseases.3,4 Within the traffic domain of air pollution, cars,

  20. Unrestricted release measurements with ambient air ionization monitors

    International Nuclear Information System (INIS)

    MacArthur, D.; Gunn, R.; Dockray, T.; Luff, C.

    1999-01-01

    Radiation monitoring systems based on the long-range alpha detection (LRAD) technique, such as the BNFL Instruments IonSens trademark, provide a single contamination measurement for an entire object rather than the more familiar individual readings for smaller surface areas. The LRAD technique relies on the ionization of ambient air molecules by alpha particles, and the subsequent detection of these ions, rather than direct detection of the alpha particles themselves. A single monitor can detect all of the ions produced over a large object and report a total contamination level for the entire surface of that object. However, both the unrestricted release limits specified in USDOE Order 5400.5 (and similar documents in other countries), and the definitions of radioactive waste categories, are stated in terms of contamination per area. Thus, conversion is required between the total effective contamination as measured by the LRAD-based detector and the allowable release limits. In addition, since the release limits were not written assuming an averaging detector system, the method chosen to average the assumed contamination over the object can have a significant impact on the effective sensitivity of the detector

  1. Hazardous air pollutant handbook: measurements, properties, and fate in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, C.W. (ed.); Gordon, S.M.; Kelly, T.J.; Holdren, M.W.; Mukund, R. [Battelle, Columbus, OH (United States)

    2002-07-01

    Focussing on the 188 hazardous air pollutants (HAPs) identified in the Title III of the US Clean Air Act Amendments, this work reviews the methods used to identify, measure, and locate the presence of toxics in ambient air. After a classification and characterization of the HAPs, the current status of ambient measurement methods are surveyed and categorized according to applicable, likely, and potential methods. The results of studies of ambient air concentrations of the HAPs are presented. Methods used to study atmospheric transformations of toxic air pollutants are reviewed and the concept of atmospheric lifetimes of HAPs is discussed.

  2. Ambient air quality observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Both Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. In recognition of the effects that this will have on the environment, Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere, while Syncrude plans to develop additional ambient air quality, sulphur deposition and biomonitoring programs. This report discussed the ambient air quality monitoring that was undertaken in the Fort McMurray-Fort McKay airshed. Twelve continuous ambient air quality stations and 76 passive monitoring stations are maintained in the region. Environment Canada maintains eight precipitation monitoring stations in northern Alberta and Saskatchewan. Source characterization, ambient air quality and meteorology observations, air quality monitoring, and air quality data from continuous sulphur dioxide, hydrogen sulphide, nitrogen oxides, ozone, carbon monoxide, hydrocarbon, acid rain and particulates analyzers were reviewed. The documentation of all computer files used for the analysis of the air quality data is discussed in the Appendix. 47 refs., 39 tabs., 53 figs

  3. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    Science.gov (United States)

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  4. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  5. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  6. Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain.

    Science.gov (United States)

    Mazaheri, Mandana; Reche, Cristina; Rivas, Ioar; Crilley, Leigh R; Álvarez-Pedrerol, Mar; Viana, Mar; Tobias, Aurelio; Alastuey, Andrés; Sunyer, Jordi; Querol, Xavier; Morawska, Lidia

    2016-03-01

    Ambient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona. PNC modes were analysed with respect to ambient temperature, land use and urban characteristics, combined with the measured elemental carbon concentrations, NOx (Brisbane) and NO2 (Barcelona). The trends and modes of the quantified weekday average daily cycles of ambient PNC exhibited significant differences between the two cities. PNC increases were observed during traffic rush hours in both cases. However, the mid-day peak was dominant in Brisbane schools and had the highest contribution to total PNC for both indoors and outdoors. In Barcelona, the contribution from traffic was highest for ambient PNC, while the mid-day peak had a slightly higher contribution for indoor concentrations. Analysis of the relationships between PNC and land use characteristics in Barcelona schools showed a moderate correlation with the percentage of road network area and an anti-correlation with the percentage of green area. No statistically significant correlations were found for Brisbane. Overall, despite many similarities between the two cities, school-based exposure patterns were different. The main source of ambient PNC at schools was shown to be traffic in Barcelona and mid-day new particle formation in Brisbane. The mid-day PNC peak in Brisbane could have been driven by the combined effect of background and meteorological conditions, as well as other local/distant sources. The results have implications for urban development

  7. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2013-04-03

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...

  8. Ambient air quality in Lower Town Quebec

    International Nuclear Information System (INIS)

    Sebez, S.

    2007-01-01

    A municipal waste incinerator near Lower Town Quebec has been identified as a major source of air pollution, notably emissions of dioxins, furans, nitrogen oxides (NOx), volatile organic matter (VOC) and polycyclic aromatic hydrocarbons (PAH). Combustion fumes contain gases such as carbon monoxide (CO), carbon dioxide (CO 2 ) and sulphur dioxide (SO 2 ), as well as dusts, fly ash and particulate matter that is easily airborne. The risks associated with poor air quality have been evaluated along with the effects of pollutants on young children, pregnant women, senior citizens and those with cardiac problems. Some studies have reported that exposure to NOx may cause lung cancer and certain VOCs can irritate the respiratory tract system. Air quality tests have also revealed the presence of mercury. In combination, all these pollutants create smog. The concrete actions that have been taken to address smog issues were discussed. The distance between the incinerator and different residential areas within Lower Town Quebec have been measured along with air quality. Health risks were found to be higher in areas closer to the incinerator. Major modifications have been recommended in order to reduce pollution emissions from the incinerator. These include modernizing the equipment, installing proper scrubbers, and to ultimately the close the incinerator if it continues to underperform. refs., tabs., figs

  9. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    Science.gov (United States)

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured

  10. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    Science.gov (United States)

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. ORGANOCHLORINE PESTICIDES IN THE AMBIENT AIR OF MEXICO

    Science.gov (United States)

    Recent and past use of organochlorine pesticides (OCPs) in Mexico has resulted in concentrations in ambient air that are 1-2 orders of magnitude above levels in the Great Lakes region. Atmospheric transport from Mexico and Central America may be contributing significant amounts ...

  12. Three Mile Island ambient-air-temperature sensor measurements

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1983-01-01

    Data from the ambient-air-temperature sensors in Three Mile Island-Unit 2 (TMI-2) reactor containment building are analyzed. The data were for the period of the hydrogen burn that was part of the TMI-2 accident. From the temperature data, limits are placed on the duration of the hydrogen burn

  13. Ambient air sampling of organic pollutants and heavy metals within the EU/93/AIR/22 PHARE Project

    International Nuclear Information System (INIS)

    Kocan, A.

    1997-01-01

    Within the framework of the project the concentrations of eight heavy metals, vapour mercury, seven polychlorinated dibenzo-p-dioxin's, ten polychlordibenzofuran congeners, eighteen polychlorinated biphenyls, two chlorinated pesticides (hexachlorobenzene, p,p'-DDE and p,p'-DDT), fourteen polycyclic aromatic hydrocarbons, forty-two volatile organic compounds, total suspended particles were analysed. The morphology characterization of collected airborne particles and bioassays aimed at the evaluation of the mutagenic potency of pollutants present in collected air were also performed. Ambient air heavy metals were caught on cellulose filters using the same type of the sampler used for semi-volatile compounds sampling and analysed by atomic spectrometry. Vapour mercury was trapped on gold sand packed in a tube through which about 280 L of ambient air during 24 hours were drawn. On-site analysis was performed by an atomic fluorescence analyzer. Inhalable air particles, i.e particles less than 10 μm in diameter were collected by a sampler equipped with a cascade impactor fractionating into five size fractions involving respirable (<3 μm) fractions. The morphology and composition of the respirable fractions was investigated by scanning electron microscopy and X-ray microanalysis

  14. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  15. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    Science.gov (United States)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  16. Ambient air pollution and pregnancy-induced hypertensive disorders

    DEFF Research Database (Denmark)

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy

    2014-01-01

    to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December.......5), carbon monoxide (CO), ozone (O3), proximity to major roads, and traffic density met our inclusion criteria. Most studies reported that air pollution increased risk for pregnancy-induced hypertensive disorders. There was significant heterogeneity in meta-analysis, which included 16 studies reporting...... on gestational hypertension and preeclampsia as separate or combined outcomes; there was less heterogeneity in findings of the 10 studies reporting solely on preeclampsia. Meta-analyses showed increased risks of hypertensive disorders in pregnancy for all pollutants except CO. Random-effect meta...

  17. Ambient air pollution associated to domestic wood burning heating systems

    International Nuclear Information System (INIS)

    Friboulet, I.; Durif, M.; Malherbe, L.

    2009-01-01

    Main publications are considering effects of wood burning appliances on indoor air quality, which is a major issue in some countries. But impacts on ambient air, close environment and human exposure are rather poorly characterised so far. Besides, woods burning for domestic purpose may develop in the next years while promoting bio fuels. The aim of the ongoing study is to assess in which conditions associated air pollution and population exposure could be significant, this poster shows preliminary results of the impact of a village of 98 houses equipped with a wood burning heating system. (N.C.)

  18. Ambient air quality predictions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents dispersion modelling predictions for SO 2 , NOx, CO, HC and particulate matter (PM), which complement regional monitoring observations. The air quality simulation models provide a scientific means of relating industrial emissions to changes in ambient air quality. The four models applied to the emission sources in the region were: (1) SCREEN3, (2) ISC3BE, (3) ADEPT2, and (4) the box model. Model predictions were compared to air quality guidelines. It was concluded that the largest SO 2 concentrations were associated with intermittent flaring, and with the Suncor Powerhouse whose emissions are continuous. 45 refs., 36 tabs., 40 figs

  19. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    Science.gov (United States)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  20. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  1. Ambient Air Pollution and Biomarkers of Health Effect.

    Science.gov (United States)

    Yang, Di; Yang, Xuan; Deng, Furong; Guo, Xinbiao

    2017-01-01

    Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.

  2. Biomarkers of ambient air pollution and lung cancer

    DEFF Research Database (Denmark)

    Demetriou, Christiana A; Raaschou-Nielsen, Ole; Loft, Steffen

    2012-01-01

    The association between ambient air pollution exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution may cause lung cancer. Despite the prospective nature and consistent findings...... and progression from external exposure to tumour formation and some have also been suggested as risk predictors of future cancer, reinforcing causal reasoning. However, methodological issues such as confounding, publication bias and use of surrogate tissues instead of target tissues in studies on these markers...

  3. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  4. Ambient air monitoring for mercury around an industrial complex

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.

    1991-01-01

    Public and scientific interest in mercury in the environment has experienced an upsurge in the past few years, due in part to disclosures that fish in certain waters, which have apparently received no direct industrial discharges, were contaminated with mercury. Atmospheric releases of mercury from fossil fuel energy generators, waste incinerators and other industrial sources are suspected to be contributing to this problem. Such releases can be evaluated in a variety of ways, including stack sampling, material balance studies, soil/vegetation sampling and ambient air monitoring. Ambient air monitoring of mercury presents significant challenges because of the typically low concentrations (ng/m 3 ) encountered and numerous opportunities for sample contamination or analyte loss. There are presently no EPA-approved protocols for such sampling and analysis. Elemental mercury was used in large quantities at a nuclear weapons plant in Oak Ridge, Tennessee between 1950 and 1963 in a process similar to chloralkali production. Soil and water contamination with mercury were known to be present at the facility but outdoor ambient air contamination had not been investigated prior to the present study. In addition, one large building still contained original process equipment with mercury residuals. The objectives of this study were to establish a monitoring network for mercury which could be used (1) to demonstrate whether or not human health and the environment was being protected, and (2), to establish a decommissioning activities at the facility

  5. Health effects associated with exposure to ambient air pollution.

    Science.gov (United States)

    Samet, Jonathan; Krewski, Daniel

    2007-02-01

    The World Health Organization has identified ambient air pollution as a high public health priority, based on estimates of air pollution related death and disability-adjusted life years derived in its Global Burden of Disease initiative. The NERAM Colloquium Series on Health and Air Quality was initiated to strengthen the linkage between scientists, policymakers, and other stakeholders by reviewing the current state of science, identifying policy-relevant gaps and uncertainties in the scientific evidence, and proposing a path forward for research and policy to improve air quality and public health. The objective of this paper is to review the current state of science addressing the impacts of air pollution on human health. The paper is one of four background papers prepared for the 2003 NERAM/AirNet Conference on Strategies for Clean Air and Health, the third meeting in the international Colloquium Series. The review is based on the framework and findings of the U.S. National Research Committee (NRC) on Research Priorities for Airborne Particulate Matter and addresses key questions underlying air quality risk management policy decisions.

  6. Monitoring of total suspended air particulate in the ambient air of ...

    African Journals Online (AJOL)

    Monitoring of total suspended air particulate in the ambient air of welding, car painting and. V. C. IKAMAISE, I. B. OBIOH, I. E. OFOZIE, F. A. AKEREDOLU. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjpas.v7i4.16316.

  7. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2009-0443; FRL-9492-3] RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues of Tuesday, November 22, 2011...

  8. Monitoring the levels of toxic air pollutants in the ambient air of ...

    African Journals Online (AJOL)

    user

    The ambient air quality in Freetown, Sierra Leone was investigated for the first time for toxic air pollutants. ..... 215 Switzerland), in a water bath at temperature of 55°C and pressure of ..... scraps. Furthermore, the prolonged use of generators.

  9. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  10. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.

    Science.gov (United States)

    Harkema, Jack R; Keeler, Gerald; Wagner, James; Morishita, Masako; Timm, Edward; Hotchkiss, Jon; Marsik, Frank; Dvonch, Timothy; Kaminski, Norbert; Barr, Edward

    2004-08-01

    .5 from this local urban atmosphere. Rats in the inhalation studies were exposed for 1 day or for 4 or 5 consecutive days (10 hours/day) to either filtered air (controls) or concentrated ambient particles (CAPs) delivered by a Harvard ambient fine particle concentrator. Rats were killed 24 hours after the end of the exposure. Biochemical, morphometric, and molecular techniques were used to identify airway epithelial and inflammatory responses to CAPs. Lung lobes were also either intratracheally lavaged with saline to determine cellular composition and protein in bronchoalveolar lavage fluid (BALF) or removed for analysis by inductively coupled plasma-mass spectrometry (ICPMS) to detect retention of ambient PM2.5--derived trace elements. The Harvard concentrator effectively concentrated the fine ambient particles from this urban atmosphere (10-30 times) without significantly changing the major physicochemical features of the atmospheric particles. Daily CAPs mass concentrations during the 10-hour exposure period (0800-1800) in July ranged from 16 to 895 microg/m3 and in September ranged from 81 to 755 microg/m3. In general, chemical characteristics of ambient particles were conserved through the concentrator into the exposure chamber. Single or repeated exposures to CAPs did not cause adverse effects in the nasal or pulmonary airways of healthy F344 or BN rats. In addition, CAPs-related toxicity was not observed in F344 rats pretreated with bacterial endotoxin. Variable airway responses to CAPs exposure were observed in BN rats with preexisting allergic airway disease induced by OVA sensitization and challenge. Only OVA-challenged BN rats exposed to CAPs for 5 consecutive days in September 2000 had significant increases in airway mucosubstances and pulmonary inflammation compared to saline-challenged/air-exposed control rats. OVA-challenged BN rats that were repeatedly exposed to CAPs in July 2000 had only minor CAPs-related effects. In only the September 5-day exposure

  11. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Science.gov (United States)

    2013-08-05

    ... Air Quality Designations for the 2010 Sulfur Dioxide (SO[bdi2]) Primary National Ambient Air Quality... air quality designations for certain areas in the United States for the 2010 primary Sulfur Dioxide (SO 2 ) National Ambient Air Quality Standard (NAAQS). The EPA is issuing this rule to identify areas...

  12. Organochlorine pesticides in the ambient air of Chiapas, Mexico

    International Nuclear Information System (INIS)

    Alegria, Henry; Bidleman, Terry F.; Figueroa, Miguel Salvador

    2006-01-01

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use. - Elevated levels of several organochlorine pesticides were found in the ambient air of southern Mexico

  13. Ambient air monitoring to support HLW repository site characterization

    International Nuclear Information System (INIS)

    Fransioli, P.M.; Dixon, W.R.

    1993-01-01

    Site characterization at the Yucca Mountain site includes an ambient air quality and meteorological monitoring program to provide information for environmental and site characterization issues. The program is designed to provide data for four basic purposes: Atmospheric dispersion calculations to estimate impacts of possible airborne releases of radiological material; Engineering design and extreme weather event characterization; Local climate studies for environmental impact analyses and climate characterization; and, Air quality permits required for site characterization work. The program is compiling a database that will provide the basis for analyses and reporting related to the purposes of the program. Except for reporting particulate matter and limited meteorological data to the State of Nevada for an air quality permit condition, the data have yet to be formally analyzed and reported

  14. Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain.

    Science.gov (United States)

    Cirera, Lluís; Rodríguez, Miguel; Giménez, Joaquín; Jiménez, Enrique; Saez, Marc; Guillén, José-Jesús; Medrano, José; Martínez-Victoria, María-Aurelia; Ballester, Ferran; Moreno-Grau, Stella; Navarro, Carmen

    2009-03-01

    Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city's air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 microg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution. The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized

  15. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-01-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1h, diesel soot particles were found to be stable up to 470°C, but complete combustion occurred in a narrow temperature interval between about 480 and 510°C. After diesel soot combustion, minute quantities of 'ash' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  16. Ambient air pollution, climate change, and population health in China.

    Science.gov (United States)

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Characterization of ambient air pollution for stochastic health models

    Energy Technology Data Exchange (ETDEWEB)

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  18. Behavior and source characteristic of PCBS in urban ambient air of Yokohama, Japan

    International Nuclear Information System (INIS)

    Kim, Kyoung-Soo; Masunaga, Shigeki

    2005-01-01

    To understand the behavior and sources of polychlorinated biphenyls (PCBs) in ambient air, gaseous and particulate phase concentrations were measured at Yokohama City, Japan, during March 2002 and February 2003. The concentration of total PCB and TEQ ranged from 62 to 250 pg/m 3 and from 2 to 14 fgTEQ/m 3 , respectively. The gas-particle partition coefficient (K p ) was obtained as a function of temperature. The relationship between the partition coefficient and the sub-cooled liquid vapor pressure (P L ) was also established (coefficients of determination for log K p versus log P L plot were >0.76, except for three samples). As a result, the partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. Principal component analysis (PCA) was applied to the source identification of PCBs in ambient air. The concentrations of 122 congeners between tetra-CBs and deca-CB were used as input variables, and three PCs with eigenvalue more than 10 were obtained. The principal component 1 (PC 1) accounted for 43.4% of the total variance, and was interpreted as volatilization from PCB products and/or sites polluted by PCBs. The concentrations of PCB congeners were strongly related with PC 1 which showed high correlation with temperature. PC 2 accounted for 22.3%, and was interpreted as PCBs from incineration sources, while PC 3 accounted for 10.8%, but could not be interpreted. - The relationship between the gas-particle partition coefficient (K p ) and sub-cooled liquid vapor pressure was estimated using gaseous and particle phase concentration in ambient air, and was estimated source apportionment of PCBs

  19. The State of Ambient Air Quality of Jeddah, Saudi Arabia

    Science.gov (United States)

    Hussain, M. M.; Aburizaiza, O. S.; Khwaja, H. A.; Siddique, A.; Nayebare, S. R.; Zeb, J.; Blake, D. R.

    2014-12-01

    Ambient air pollution in major cities of Saudi Arabia is a substantial environmental and health concern. A study was undertaken to assess the air quality of Jeddah, Saudi Arabia by the analysis of respirable particulate matter (PM2.5), black carbon (BC), trace metals (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Cd, Sb, and Pb), and water-soluble ions (F-, Cl-, NO3-, SO42-, C2O42-, and NH42+). Sulfur and BC mass concentration ranged 0.99 - 7.39 μg/m3 and 0.70 - 3.09 μg/m3, respectively, while the PM2.5 mass concentration ranged 23 - 186 μg/m3. Maximum BC contribution to PM2.5 was 5.6%. Atmospheric PM2.5 concentrations were well above the 24 h WHO guideline of 20 μg/m3. Air Quality Index (AQI) indicates that there were 8% days of moderate air quality, 28% days of unhealthy air quality for sensitive groups, 55% days of unhealthy air quality, and 9% days of very unhealthy air quality during the study period. Sulfate SO42- dominated the identifiable components. The major contributors to PM2.5 were soil and crustal material; vehicle emissions (black carbon factor); and fuel oil combustion in industries (sulfur factor), according to the Positive Matrix Factorization (PMF). This study highlights the importance of focusing control strategies not only on reducing PM concentration, but also on the reduction of toxic components of the PM, to most effectively protect human health and the environment.

  20. Pure air-plasma bullets propagating inside microcapillaries and in ambient air

    KAUST Repository

    Lacoste, Deanna; Bourdon, Anne; Kuribara, Koichi; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2014-01-01

    This paper reports on the characterization of air-plasma bullets in microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets were produced by nanosecond repetitively pulsed discharges, applied in a dielectric barrier discharge configuration. The anode was a tungsten wire with a diameter of 50 μm, centered in the microcapillary, while the cathode was a silver ring, fixed on the outer surface of the fused silica tube. The effects of the applied voltage and the inner diameter of the microcapillary tube on the plasma behavior were investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity is only a function of the amplitude of the applied voltage. In ambient air, the propagation of air bullets with a velocity of about 1.25 ×105 m s-1 is observed.

  1. Pure air-plasma bullets propagating inside microcapillaries and in ambient air

    KAUST Repository

    Lacoste, Deanna

    2014-11-04

    This paper reports on the characterization of air-plasma bullets in microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets were produced by nanosecond repetitively pulsed discharges, applied in a dielectric barrier discharge configuration. The anode was a tungsten wire with a diameter of 50 μm, centered in the microcapillary, while the cathode was a silver ring, fixed on the outer surface of the fused silica tube. The effects of the applied voltage and the inner diameter of the microcapillary tube on the plasma behavior were investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity is only a function of the amplitude of the applied voltage. In ambient air, the propagation of air bullets with a velocity of about 1.25 ×105 m s-1 is observed.

  2. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  3. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1997-03-01

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  4. Study of temporal variation in ambient air quality during Diwali festival in India.

    Science.gov (United States)

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  5. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  6. Continuous air monitor for alpha-emitting aerosol particles

    International Nuclear Information System (INIS)

    McFarland, A.R.; Ortiz, C.A.; Rodgers, J.C.; Nelson, D.C.

    1991-01-01

    A new alpha continuous air monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of the interest. At the present time the authors have a prototype of the aerosol sampling system and they have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Wind tunnel tests show that ≥ 50% of 10 μm aerodynamic equivalent diameter (AED) particles penetrate the flow system from the ambient air to the collection filter when the flow rate is 57 L/min (2 cfm) and the wind speed is 1 m/s. The coefficient of variation of deposits of 10 μm AED aerosol particles on the collection filter is 7%. An inlet fractionator for removing high mobility background aerosol particles has been designed and successfully tested. The results show that it is possible to strip 95% of freshly formed radon daughters and 33% of partially aged radon daughters from the aerosol sample. This approach offers the opportunity to improve the signal-to-noise ratio in the alpha energy spectrum region of interest thereby enhancing the performance of background compensation algorithms

  7. Applications of particle induced X-ray emission analysis to ambient aerosol studies

    International Nuclear Information System (INIS)

    Lannefors, H.

    1982-01-01

    The characteristics of Particle Induced X-ray Emission (PIXE) analysis in conjunction with different ambient aerosol samplers have been studied. Correction factors have been calculated for homogeneous and inhomogeneous rural and urban aerosol samples. The Nuclepore two stage filter sampler provided the most useful combination of the resolution and particle size fractionation in urban, rural and remote environments. The PIXE-analysis technique in combination with different samplers was employed in aerosol composition studies in rural and remote environments. Particular emphasis was laid on studies of aerosol long range transport. Based on air mass trajectory analysis and aerosol composition measurements the foreign contribution in southern Sweden was estimated to be 70 - 80% for S and Pb but only 30 - 50% for V and Ni. The spatial and temporal extension of a long range transport episode was studied using high time resolution continuous filter samplers in a network in southern Sweden. The variation in the concentration levels of sulphur agreed well with changes in the air mass history. Arctic summer elemental concentration levels as measured during the Swedish YMER-80 icebreaker expedition were typically one order of magnitude lower than Arctic winter levels. The combination of chemical information, optical properties and size distribution data supports the hypothesis of long range transport of air pollution into the Arctic especially during the winter. This takes place during the winter season because the Polar front is further south making conditions for long range transport up to the Arctic more favourable. (Auth.)

  8. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines.

    Science.gov (United States)

    Clarke, R W; Coull, B; Reinisch, U; Catalano, P; Killingsworth, C R; Koutrakis, P; Kavouras, I; Murthy, G G; Lawrence, J; Lovett, E; Wolfson, J M; Verrier, R L; Godleski, J J

    2000-01-01

    Pulmonary inflammatory and hematologic responses of canines were studied after exposure to concentrated ambient particles (CAPs) using the Harvard ambient particle concentrator (HAPC). For pulmonary inflammatory studies, normal dogs were exposed in pairs to either CAPs or filtered air (paired studies) for 6 hr/day on 3 consecutive days. For hematologic studies, dogs were exposed for 6 hr/day for 3 consecutive days with one receiving CAPs while the other was simultaneously exposed to filtered air; crossover of exposure took place the following week (crossover studies). Physicochemical characterization of CAPs exposure samples included measurements of particle mass, size distribution, and composition. No statistical differences in biologic responses were found when all CAPs and all sham exposures were compared. However, the variability in biologic response was considerably higher with CAPs exposure. Subsequent exploratory graphical analyses and mixed linear regression analyses suggested associations between CAPs constituents and biologic responses. Factor analysis was applied to the compositional data from paired and crossover experiments to determine elements consistently associated with each other in CAPs samples. In paired experiments, four factors were identified; in crossover studies, a total of six factors were observed. Bronchoalveolar lavage (BAL) and hematologic data were regressed on the factor scores. Increased BAL neutrophil percentage, total peripheral white blood cell (WBC) counts, circulating neutrophils, and circulating lymphocytes were associated with increases in the aluminum/silicon factor. Increased circulating neutrophils and increased BAL macrophages were associated with the vanadium/nickel factor. Increased BAL neutrophils were associated with the bromine/lead factor when only the compositional data from the third day of CAPs exposure were used. Significant decreases in red blood cell counts and hemoglobin levels were correlated with the sulfur

  9. COMPARISON OF INDOOR AIR QUALITY IN RESTAURANT KITCHENS IN TEHRAN WITH AMBIENT AIR QUALITY

    Directory of Open Access Journals (Sweden)

    M. Ghasemkhani, F. Naseri

    2008-01-01

    Full Text Available The indoor air quality of 131 restaurant kitchens in Tehran was investigated from May to September 2006. Gas stoves use in restaurant kitchens is a major source of indoor combustion, product carbon monoxide and nitrogen dioxide. The study focused on one of the busy zones located in the southwest and central part of the city. Measurements were done for indoor and outdoor air pollutants, carbon monoxide and nitrogen dioxide; ambient temperature and relative humidity were also measured. Result indicated that the mean levels of CO and NO2 in restaurant kitchens were below the recommended limit of 25 and 3ppm, respectively. Correlations between indoor and outdoor air quality were performed consequently. Results of the mean ambient temperature and relative humidity were above the guideline. In this study the mean levels of CO and NO2 gas cooking in restaurant kitchens were found to be lower compared with the similar studies.

  10. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    International Nuclear Information System (INIS)

    Wang, Z.B.; Hong, M.H.; Lu, Y.F.; Wu, D.J.; Lan, B.; Chong, T.C.

    2003-01-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences

  11. Organochlorine pesticides in the ambient air of Chiapas, Mexico.

    Science.gov (United States)

    Alegria, Henry; Bidleman, Terry F; Figueroa, Miguel Salvador

    2006-04-01

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use.

  12. Limitations of ambient air quality standards in evaluating indoor environments

    International Nuclear Information System (INIS)

    Peterson, J.E.

    1992-01-01

    Analysis of the kinds of data used for the derivation of ambient air quality standards (AAQSs) for carbon monoxide and ozone shows that these values are based on the toxicology of the materials and thus are suitable for evaluating potential health effects of indoor environments, especially on the very young, the aged, and the infirm. A similar analysis shows that the AAQSs for suspended particulate matter, nitrogen dioxide, and sulfur dioxide are strictly empirical and that they should not be used for any but their first, intended purpose. The AAQSs for non-methane hydrocarbons are based on photochemical smog production, not injury of any kind, and have no utility for indoor environment evaluation

  13. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Science.gov (United States)

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  14. Landfills as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air

    Science.gov (United States)

    Weinberg, Ingo; Dreyer, Annekatrin; Ebinghaus, Ralf

    2011-02-01

    In order to investigate landfills as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two landfills (one active and one closed) and two reference sites using high volume air samplers. Contaminants were accumulated on glass fiber filters (particle phase) and PUF/XAD-2/PUF cartridges (gas phase), extracted by methyl-tert butyl ether/acetone (neutral PFCs), methanol (ionic PFCs) or hexane/acetone (PBDEs, musk fragrances), and detected by GC-MS (neutral PFCs, PBDEs, musk fragrances) or HPLC-MS/MS (ionic PFCs). Total concentrations ranged from 84 to 706 pg m -3 (volatile PFCs, gas phase), from fragrances, gas + particle phase) and from 1 to 11 pg m -3 (PBDEs, gas + particle phase). Observed sum concentrations of PFCs and synthetic musk fragrances and partly PBDE concentrations were elevated at landfill sites compared to corresponding reference sites. Concentrations determined at the active landfill were higher than those of the inactive landfill. Overall, landfills can be regarded as a source of synthetic musk fragrances, several PFCs and potentially of PBDEs to ambient air.

  15. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  16. The impact of ambient air pollution on the human blood metabolome.

    Science.gov (United States)

    Vlaanderen, J J; Janssen, N A; Hoek, G; Keski-Rahkonen, P; Barupal, D K; Cassee, F R; Gosens, I; Strak, M; Steenhof, M; Lan, Q; Brunekreef, B; Scalbert, A; Vermeulen, R C H

    2017-07-01

    Biological perturbations caused by air pollution might be reflected in the compounds present in blood originating from air pollutants and endogenous metabolites influenced by air pollution (defined here as part of the blood metabolome). We aimed to assess the perturbation of the blood metabolome in response to short term exposure to air pollution. We exposed 31 healthy volunteers to ambient air pollution for 5h. We measured exposure to particulate matter, particle number concentrations, absorbance, elemental/organic carbon, trace metals, secondary inorganic components, endotoxin content, gaseous pollutants, and particulate matter oxidative potential. We collected blood from the participants 2h before and 2 and 18h after exposure. We employed untargeted metabolite profiling to monitor 3873 metabolic features in 493 blood samples from these volunteers. We assessed lung function using spirometry and six acute phase proteins in peripheral blood. We assessed the association of the metabolic features with the measured air pollutants and with health markers that we previously observed to be associated with air pollution in this study. We observed 89 robust associations between air pollutants and metabolic features two hours after exposure and 118 robust associations 18h after exposure. Some of the metabolic features that were associated with air pollutants were also associated with acute health effects, especially changes in forced expiratory volume in 1s. We successfully identified tyrosine, guanosine, and hypoxanthine among the associated features. Bioinformatics approach Mummichog predicted enriched pathway activity in eight pathways, among which tyrosine metabolism. This study demonstrates for the first time the application of untargeted metabolite profiling to assess the impact of air pollution on the blood metabolome. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Wear Behavior of Selected Nuclear Grade Graphites at Room Temperature in Ambient Air Environment

    International Nuclear Information System (INIS)

    Kim, Eung-Seon; Park, Kwang-Seok; Kim, Yong-Wan

    2008-01-01

    In a very high temperature reactor (VHTR), graphite will be used not only for as a moderator and reflector but also as a major structural component due to its excellent neutronic, thermal and mechanical properties. In the VHTR, wear of graphite components is inevitable due to a neutron irradiation-induced dimensional change, thermal gradient, relative motions of graphite components and a shock load such as an earthquake. Large wear particles accumulated at the bottom of a reactor can influence the cooling of the lower part and small wear particles accumulated on the primary circuit and heat exchanger tube can make it difficult to inspect the equipment, and also decrease the heat exchange rate. In the present work, preliminary wear tests were performed at room temperature in ambient air environment to understand the basic wear characteristics of selected nuclear grade graphites for the VHTR

  18. Ambient air pollution, smog episodes and mortality in Jinan, China.

    Science.gov (United States)

    Zhang, Jun; Liu, Yao; Cui, Liang-Liang; Liu, Shou-Qin; Yin, Xi-Xiang; Li, Huai-Chen

    2017-09-11

    We aimed to assess the acute effects of ambient air pollution and weather conditions on mortality in the context of Chinese smog episodes. A total of 209,321 deaths were recorded in Jinan, a large city in eastern China, during 2011-15. The mean concentrations of daily particulate matter ≤10 μm (PM 10 ), fine particulate matter (PM 2.5 ), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) were 169 μg/m 3 , 100 μg/m 3 , 77 μg/m 3 , and 54 μg/m 3 , respectively. Increases of 10 μg/m 3 in PM 10 , PM 2.5 , SO 2 and NO 2 were associated with 1.11% (95% CI 0.96-1.26%), 0.71% (95% CI 0.60-0.82%), 1.69% (95% CI 1.56-1.83%), and 3.12% (95% CI 2.72-3.53%) increases in daily non-accidental mortality rates, respectively. Moreover, the risk estimates for these 4 pollutants were higher in association with respiratory and cardiovascular mortality. The effects of all the evaluated pollutants on mortality were greater in winter than in summer. Smog episodes were associated with a 5.87% (95% CI 0.16-11.58%) increase in the rate of overall mortality. This study highlights the effect of exposure to air pollution on the rate of mortality in China.

  19. Rainwater capacities for BTEX scavenging from ambient air

    Science.gov (United States)

    Šoštarić, A.; Stanišić Stojić, S.; Vuković, G.; Mijić, Z.; Stojić, A.; Gržetić, I.

    2017-11-01

    The contribution of atmospheric precipitation to volatile organic compound (VOC) removal from the atmosphere remains a matter of scientific debate. The aim of this study was to examine the potential of rainwater for benzene, toluene, ethylbenzene and xylene (BTEX) scavenging from ambient air. To that end, air and rainwater samples were collected simultaneously during several rain events that occurred over two distinct time periods in the summer and autumn of 2015. BTEX concentrations in the gaseous and aqueous phases were determined using proton transfer reaction mass spectrometry. The results reveal that the registered amounts of BTEX in rainwater samples were higher than those predicted by Henry's law. Additional analysis, including physico-chemical characterization and source apportionment, was performed and a possible mechanism underlying the BTEX adsorption to the aqueous phase was considered and discussed herein. Finally, regression multivariate methods (MVA) were successfully applied (with relative errors from 20%) to examine the functional dependency of BTEX enrichment factor on gaseous concentrations, physico-chemical properties of rainwater and meteorological parameters.

  20. Tritium concentration in ambient air around Kaiga Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Srinivas S Kamath

    2018-01-01

    Full Text Available Tritium (3H is one of the important long-lived radioisotopes in the gaseous effluent from nuclear power plants. In this article, we present the results of 3H monitoring in ambient air samples around the Kaiga Nuclear Power Plant, on the West Coast of India. Air samples were collected by moisture condensation method and the 3H concentration was determined by liquid scintillation spectrometry. The 3H concentration in the 2.3–15 km zone of the power plant varied in the range of <0.04–6.64 Bq m−3 with a median of 0.67 Bq m−3. The samples collected from the 2.3–5 km zone of the power plant exhibit marginally higher concentration when compared to the 5–10 km and 10–15 km zones, which is as expected. The values observed in the present study for Kaiga region are similar to those reported from other nuclear power plants, both within India and other parts of the world.

  1. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice.

    Science.gov (United States)

    Chen, Tian; Jia, Guang; Wei, Yongjie; Li, Jiucun

    2013-11-25

    Air pollution is associated with significant adverse health effects including increased cardiovascular morbidity and mortality. However research on the cardiovascular effect of "real-world" exposure to ambient particulate matter (PM) in susceptible animal model is very limited. In this study, we aimed to investigate the association between Beijing ambient particle exposure and the atherosclerosis development in the apolipoprotein E knockout mice (ApoE(-/-) mice). Two parallel exposure chambers were used for whole body exposure among ApoE knockout mice. One of the chambers was supplied with untreated ambient air (PM group) and the other chamber was treated with ambient air filtered by high-efficiency particulate air (HEPA) filter (FA group). Twenty mice were divided into two groups and exposed to ambient PM (n=10 for PM group) or filtered air (n=10 for FA group) for two months from January 18th to March 18th, 2010. During the exposure, the mass concentrations of PM2.5 and PM10 in the two chambers were continuously monitored. Additionally, a receptor source apportionment model of chemical mass balance using 19 organic tracers was applied to determine the contributions of sources on the PM2.5 in terms of natural gas, diesel vehicle, gasoline vehicle, coal burning, vegetable debris, biomass burning and cooking. At the end of the two-month exposure, biomarkers of oxidative stress, inflammation and lipid metabolism in bronchoalveolar lavage fluid (BAL) and blood samples were determined and the plaque area on the aortic endothelium was quantified. In the experiment, the concentrations of PM10 and PM2.5 in PM chamber were 99.45μg/m(3) and 61.0μg/m(3) respectively, while PM2.5 in FA chamber was 17.6μg/m(3). Source apportionment analysis by organic tracers showed that gasoline vehicle (39.9%) and coal burning (24.3%) emission were the two major sources contributing to the mass concentration of PM2.5 in Beijing. Among the ApoE knockout mice, the PM group were significantly

  2. Children's Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure?

    Science.gov (United States)

    Saenen, Nelly D; Bové, Hannelore; Steuwe, Christian; Roeffaers, Maarten B J; Provost, Eline B; Lefebvre, Wouter; Vanpoucke, Charlotte; Ameloot, Marcel; Nawrot, Tim S

    2017-10-01

    Ambient air pollution, including black carbon, entails a serious public health risk because of its carcinogenic potential and as climate pollutant. To date, an internal exposure marker for black carbon particles that have cleared from the systemic circulation into the urine does not exist. To develop and validate a novel method to measure black carbon particles in a label-free way in urine. We detected urinary carbon load in 289 children (aged 9-12 yr) using white-light generation under femtosecond pulsed laser illumination. Children's residential black carbon concentrations were estimated based on a high-resolution spatial temporal interpolation method. We were able to detect urinary black carbon in all children, with an overall average (SD) of 98.2 × 10 5 (29.8 × 10 5 ) particles/ml. The urinary black carbon load was positively associated with medium-term to chronic (1 mo or more) residential black carbon exposure: +5.33 × 10 5 particles/ml higher carbon load (95% confidence interval, 1.56 × 10 5 to 9.10 × 10 5 particles/ml) for an interquartile range increment in annual residential black carbon exposure. Consistently, children who lived closer to a major road (≤160 m) had higher urinary black carbon load (6.93 × 10 5 particles/ml; 95% confidence interval, 0.77 × 10 5 to 13.1 × 10 5 ). Urinary black carbon mirrors the accumulation of medium-term to chronic exposure to combustion-related air pollution. This specific biomarker reflects internal systemic black carbon particles cleared from the circulation into the urine, allowing investigators to unravel the complexity of particulate-related health effects.

  3. Ambient air pollution and low birth weight - are some women more vulnerable than others?

    NARCIS (Netherlands)

    Westergaard, Nadja; Gehring, Ulrike|info:eu-repo/dai/nl/304831344; Slama, Rémy; Pedersen, Marie

    BACKGROUND AND OBJECTIVES: Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term

  4. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-04-27

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9142-1] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air...

  5. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-10-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9476-7] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air...

  6. 75 FR 30022 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-05-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9156-1] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air...

  7. Ambient air pollution, traffic noise and adult asthma prevalence : A BioSHaRE approach

    NARCIS (Netherlands)

    Cai, Yutong; Zijlema, Wilma L.; Doiron, Dany; Blangiardo, Marta; Burton, Paul R.; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stephane; Morley, David W; Stolk, Ronald P.; Elliott, Paul; Hansell, Anna L.; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank). Residential exposures to ambient air pollution (particulate matter with

  8. Ambient air pollution and low birthweight: a European cohort study (ESCAPE)

    NARCIS (Netherlands)

    Pedersen, Marie; Giorgis-Allemand, Lise; Bernard, Claire; Aguilera, Inmaculada; Andersen, Anne-Marie Nybo; Ballester, Ferran; Beelen, Rob M. J.; Chatzi, Leda; Cirach, Marta; Danileviciute, Asta; Dedele, Audrius; Eijsden, Manon van; Estarlich, Marisa; Fernández-Somoano, Ana; Fernández, Mariana F.; Forastiere, Francesco; Gehring, Ulrike; Grazuleviciene, Regina; Gruzieva, Olena; Heude, Barbara; Hoek, Gerard; de Hoogh, Kees; van den Hooven, Edith H.; Håberg, Siri E.; Jaddoe, Vincent W. V.; Klümper, Claudia; Korek, Michal; Krämer, Ursula; Lerchundi, Aitana; Lepeule, Johanna; Nafstad, Per; Nystad, Wenche; Patelarou, Evridiki; Porta, Daniela; Postma, Dirkje; Raaschou-Nielsen, Ole; Rudnai, Peter; Sunyer, Jordi; Stephanou, Euripides; Sørensen, Mette; Thiering, Elisabeth; Tuffnell, Derek; Varró, Mihály J.; Vrijkotte, Tanja G. M.; Wijga, Alet; Wilhelm, Michael; Wright, John; Nieuwenhuijsen, Mark J.; Pershagen, Göran; Brunekreef, Bert; Kogevinas, Manolis; Slama, Rémy

    2013-01-01

    Background Ambient air pollution has been associated with restricted fetal growth, which is linked with adverse respiratory health in childhood. We assessed the effect of maternal exposure to low concentrations of ambient air pollution on birthweight. Methods We pooled data from 14 population-based

  9. Ambient air pollution and low birth weight - are some women more vulnerable than others?

    Science.gov (United States)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy; Pedersen, Marie

    2017-07-01

    Ambient air pollution is controllable, and it is one of the greatest environmental threats to human health. Studies conducted worldwide have provided evidence that maternal exposure to ambient air pollution during pregnancy enhances the risk of low birth weight at term (TLBW, air pollution. The aim of this commentary is to review the published literature on the association between ambient air pollution and TLBW regarding increased vulnerability for the above-mentioned subgroups. Although more than fifty epidemiological studies have examined the associations between ambient air pollution and TLBW to date, we only identified six studies that examined the potential effect modification of the association between ambient air pollution and TLBW by the above listed maternal risk factors. Two studies assessed effect modification caused by smoking on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women and no statistically significant effect modification was evident for the risk of TLBW associated with ambient air pollution. The current epidemiologic evidence is scarce, but suggests that pregnant women who are smoking, being underweight, overweight/obese or having lower SES are a vulnerable subpopulation when exposed to ambient air pollution, with and increased risk of having a child with TLBW. The limited evidence precludes for definitive conclusions and further studies are recommended. Copyright © 2017. Published

  10. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    Science.gov (United States)

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  11. Characterization and biological effect of Buenos Aires urban air particles on mice lungs

    International Nuclear Information System (INIS)

    Martin, Susana; Dawidowski, Laura; Mandalunis, Patricia; Cereceda-Balic, Francisco; Tasat, Deborah Ruth

    2007-01-01

    Exposure to increased levels of ambient air particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Its association with adverse health effects and the still unclear mechanisms of action are of concern worldwide. Our objective was to analyze air PM from downtown Buenos Aires (UAP-BA), and evaluate its biological impact on normal airways. We studied the inflammatory response to intranasal instillation of UAP-BA in a short-term-exposure mouse model. We analyzed UAP-BA morphology by scanning electron microscopy and characterized particle chemical composition by energy dispersive X-ray analysis and capillary gas chromatography. We evaluated lung changes by histomorphometry and histochemical methods. Regarding size, surface area and distribution, UAP-BA proved to be small spherical ultrafine particles: free, in clusters and associated to a matrix. The particles contained polycyclic aromatic hydrocarbons, polychlorinated biphenyls and almost no metal traces. Histologically, UAP-BA induced the recruitment of phagocytes, a reduction in air spaces, an increase in mucous PAS positive cells and weak incomplete elastic fiber network. Our results demonstrate that UAP-BA causes adverse biological effects on the respiratory tract generating inflammation that, in turn, may cause tissue injury or organ dysfunction and may contribute to the pathogenesis of lung diseases

  12. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  13. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route “Liczyrzepa” Mine in Kowary Adit

    Directory of Open Access Journals (Sweden)

    Wołoszczuk Katarzyna

    2018-01-01

    Full Text Available Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC, particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route “Liczyrzepa” Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS. The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS.

  14. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    Science.gov (United States)

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  15. Associations between ambient air pollution and daily mortality among persons with congestive heart failure

    International Nuclear Information System (INIS)

    Goldberg, Mark S.; Burnett, Richard T.; Valois, M.-F.; Flegel, Kenneth; Bailar III, John C.; Brook, Jeffrey; Vincent Renaud; Radon, Katja

    2003-01-01

    We conducted a mortality time series study to investigate the association between daily mortality for congestive heart failure (CHF), and dail concentrations of particles and gaseous pollutants in the ambient air o Montreal, Quebec, during the period 1984-1993. In addition, using data fro the universal Quebec Health Insurance Plan, we identified individuals ≥6 years of age who, one year before death, had a diagnosis of CHF. Fixed-sit air pollution monitors in Montreal provided daily mean levels of pollutants We regressed the logarithm of daily counts of mortality on the daily mean levels of each pollutant, after accounting for seasonal and subseasonal fluctuations in the mortality time series, non-Poisson dispersion, weather variables, and other gaseous and particle pollutants. Using cause of deat information, we did not find any associations between daily mortality for CH and any air pollutants. The analyses of CHF defined from the medical record showed positive associations with coefficient of haze, the extinction coefficient, SO 2 , and NO 2 . For example, the mean percent increase in dail mortality for an increase in the coefficient of haze across the interquartile range was 4.32% (95% CI: 0.95-7.80%) and for NO 2 it was 4.08% (95% CI 0.59-7.68%). These effects were generally higher in the warm season

  16. Setting ambient air quality standards for particulate matter

    International Nuclear Information System (INIS)

    McClellan, Roger O.

    2002-01-01

    Ambient air particulate matter (PM), unspecified as to chemical composition, is of concern because of its health effects. Air quality standards for PM have been established in many countries. The earliest standards were based on threshold models and use of a margin of safety. Initially, standards were based on the mass of total suspended material. In the 1980s a shift to a size-specific standard, PM 10 , began. PM 10 is the fraction of PM captured with 50% efficiency at 10 μm and greater efficiency at smaller sizes. In the late 1990s, standards were proposed for PM 2.5 , which is captured with 50% efficiency at 2.5 μm. The standards for PM are based almost exclusively on human epidemiological data, with laboratory animal and in vitro data used in a supporting role. During the 1990s, new statistical tools began to be used and demonstrated an association between increased PM and an increase in cardiorespiratory morbidity and mortality. The analyses are complicated by the effects of other pollutants such as ozone. Effects have been observed down to 10-20 μg of PM 10 per cubic meter, levels equal to or below background in many parts of the world. In many studies there has been no evidence of a threshold. In the absence of a threshold, a critical issue becomes how to determine how low is low enough? This paper reviews the current literature on PM health effects and suggests research avenues that may yield data which, combined with public policy considerations, may be able to address the issue of 'how low is low enough?'

  17. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  18. Aerosols from biomass combustion. Particle formation, relevance on air quality, and measures for particle reduction

    International Nuclear Information System (INIS)

    Nussbaumer, Thomas

    2005-01-01

    Biomass combustion is a relevant source of particle emissions. In Switzerland, wood combustion contributes with 2% to the energy supply but with more than 4% to Particulate Matter smaller 10 microns (PM 10) in the ambient air. In areas with high density of residential wood heating (e.g. in the south of Chile), wood particles are the dominant source of PM 10 resulting in heavy local smog situations. Since combustion particles are regarded as health relevant and since immission limit values on PM 10 are widely exceeded, measures for particle reduction from biomass combustion are of high priority. With respect to aerosols from biomass combustion, two sources of particles are distinguished: 1. an incomplete combustion can lead to soot and organic matter contained in the particles, 2. ash constituents in the fuel lead to the formation of inorganic fly ash particles mainly consisting of salts such as chlorides and oxides. The theory of aerosol formation from fuel constituents is described and two hypotheses to reduce inorganic particles from biomass combustion are proposed: 1. a reduced oxygen content in the solid fuel conversion zone (glow bed in a fixed bed combustion) is assumed to reduce the particle mass concentration due to three mechanisms: a) reduced oxidation of fuel constituents to compounds with higher volatility, b) reduced local temperature for solid fuel conversion, c) a reduced entrainmed of fuel constituents 2. a reduced total excess air can reduce the particle number due to enhanced coagulation. The proposed low-particle concept has been implemented for an automatic furnace for wood pellets in the size range from 100 kW to 500 kW. Furthermore, the furnace design was optimised to enable a part load operation without increased emissions of carbon monoxide (CO) and particles. In a 100 kW prototype furnace the low-particle conditions resulted in particle emissions between 6 mg/m n 3 to 11 mg/m n 3 at 13 vol.-% O2 and CO emissions below 70 mg/m n 3 in the

  19. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    Science.gov (United States)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  20. Assessing environmental inequalities in ambient air pollution across urban Australia.

    Science.gov (United States)

    Knibbs, Luke D; Barnett, Adrian G

    2015-04-01

    Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Penetrating particles in horizontal air showers

    International Nuclear Information System (INIS)

    Wohlenberg, J.; Boehm, E.

    1975-01-01

    Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de

  2. Programming of mouse obesity by maternal exposure to concentrated ambient fine particles.

    Science.gov (United States)

    Chen, Minjie; Wang, Xiaoke; Hu, Ziying; Zhou, Huifen; Xu, Yanyi; Qiu, Lianglin; Qin, Xiaobo; Zhang, Yuhao; Ying, Zhekang

    2017-06-23

    Many diseases including obesity may originate through alterations in the early-life environment that interrupts fetal development. Increasing evidence has shown that exposure to ambient fine particles (PM 2.5 ) is associated with abnormal fetal development. However, its long-term metabolic effects on offspring have not been systematically investigated. To determine if maternal exposure to PM 2.5 programs offspring obesity, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM 2.5 (CAP) during pre-conception, pregnancy, and lactation, and the developmental and metabolic responses of offspring were assessed. The growth trajectory of offspring revealed that maternal exposure to CAP significantly decreased offspring birth weight but increased body weight of adult male but not female offspring, and the latter was expressed as increased adiposity. These adult male offspring had increased food intake, but were sensitive to exogenous leptin. Their hypothalamic expression of Socs3 and Pomc, two target genes of leptin, was not changed, and the hypothalamic expression of NPY, an orexigenic peptide that is inhibited by leptin, was significantly increased. These decreases in central anorexigenic signaling were accompanied by reduced plasma leptin and its expression in adipose tissues, the primary source of circulating leptin. In contrast, maternal exposure did not significantly change any of these indexes in adult female offspring. Pyrosequencing demonstrated that the leptin promoter methylation of adipocytes was significantly increased in CAP-exposed male but not female offspring. Our data indicate that maternal exposure to ambient PM 2.5 programs obesity in male offspring probably through alterations in the methylation of the promoter region of the leptin gene.

  3. Wintertime hygroscopicity and volatility of ambient urban aerosol particles

    Science.gov (United States)

    Enroth, Joonas; Mikkilä, Jyri; Németh, Zoltán; Kulmala, Markku; Salma, Imre

    2018-04-01

    Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility-hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014-2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic

  4. Wintertime hygroscopicity and volatility of ambient urban aerosol particles

    Directory of Open Access Journals (Sweden)

    J. Enroth

    2018-04-01

    Full Text Available Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20, 50, 75, 110 and 145 nm were determined in situ by using a volatility–hygroscopicity tandem differential mobility analyser (VH-TDMA system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014–2015. The probability density function of the hygroscopic growth factor (HGF showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033 independently of the particle size and was assigned to nearly hydrophobic (NH particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196 with particle diameter, and it was attributed to less hygroscopic (LH particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV and volatile (V particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non

  5. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Science.gov (United States)

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2 NAAQS...

  6. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  7. Ambient Air Pollution and Adverse Pregnancy Outcomes in Wuhan, China.

    Science.gov (United States)

    Qian, Zhengmin; Zhang, Bin; Liang, Shengwen; Wang, Jing; Yang, Shaoping; Hu, Ke; Trevathan, Edwin; Yang, Rong; Li, Qijie; Flick, Louise H; Hu, Ronghua; Huang, Zhen; Zhang, Yimin; Hu, Shixiang; Wang, Jing; Shen, Longjiao; Lu, Yuan; Peng, Hui; Yu, Yuzhen; Yang, Li; Chen, Wei; Liu, Wenjin; Zhang, Wei

    2016-09-01

    Several recent studies have suggested that maternal exposures to air pollution and temperature extremes might contribute to low birth weight (LBW), preterm birth (PTB), and other outcomes that can adversely affect infant health. At the time the current study began, most other studies had been conducted in the United States or Europe. Dr. Zhengmin Qian proposed to extend work he had done on ambient particulate air pollution and daily mortality in Wuhan, China (Qian et al. 2010), as part of the HEIsponsored Public Health and Air Pollution in Asia program, to study adverse birth outcomes. Wuhan is the capital city of Hubei province, has a large population of about 6.4 million within the urban study area, experiences temperature extremes, and generally has higher air pollution levels than those observed in the United States and Europe, thus providing a good opportunity to explore questions about air pollution and health. Qian and colleagues planned a cohort and nested case–control design with four specific aims, examining whether increased exposures to air pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) during vulnerable pregnancy periods were associated with increased rates of PTB, LBW (air pollution and daily weather data for August 2010 to June 2013 from nine monitoring stations representing background air pollution sites in seven Wuhan inner-city districts. Only two of these stations provided PM2.5 data. For the cohort study, the investigators assigned exposures to mothers according to the daily mean concentrations from the monitor nearest the residential community in which the mother lived at the time of the birth. For the case–control study, they assigned exposures based on the inverse distance weighted average of daily mean concentrations from the three nearest monitors, for all but PM2.5 for which the method was not specified. They also collected data on various factors that might confound or modify the impact of the pollutants on the adverse outcomes

  8. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    Science.gov (United States)

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.

  9. Characterization of PM2.5 particles originating from a modern waste incineration plant by factor analysis of chemical data, mass and black carbon in ambient aerosol

    DEFF Research Database (Denmark)

    Aboh, J. K.; Henriksson, Dag; Laursen, Jens

    2006-01-01

    are subject to restrictions are well below the allowed limits as stated by Swedish and European standards. The aim of the present work is to study the particle pollutants with emphasis on PM2.5 in the ambient air and to identify the specific contribution from the new incineration plant. Many different sources...... contribute to PM2.5 in urban air. Thus, the general problem is to characterise and identify the particle pollution, which can be attributed to gases and/or particles emitted by the waste incineration plant. For this reason aerosol samples, PM2.5, were collected and analyzed for concentrations of twenty...

  10. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: a cohort study.

    Science.gov (United States)

    Weichenthal, Scott; Bai, Li; Hatzopoulou, Marianne; Van Ryswyk, Keith; Kwong, Jeffrey C; Jerrett, Michael; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Lu, Hong; Chen, Hong

    2017-06-19

    Little is known about the long-term health effects of ambient ultrafine particles (respiratory disease incidence. In this study, we examined the relationship between long-term exposure to ambient UFPs and the incidence of lung cancer, adult-onset asthma, and chronic obstructive pulmonary disease (COPD). Our study cohort included approximately 1.1 million adults who resided in Toronto, Canada and who were followed for disease incidence between 1996 and 2012. UFP exposures were assigned to residential locations using a land use regression model. Random-effect Cox proportional hazard models were used to estimate hazard ratios (HRs) describing the association between ambient UFPs and respiratory disease incidence adjusting for ambient fine particulate air pollution (PM 2.5 ), NO 2 , and other individual/neighbourhood-level covariates. In total, 74,543 incident cases of COPD, 87,141 cases of asthma, and 12,908 cases of lung cancer were observed during follow-up period. In single pollutant models, each interquartile increase in ambient UFPs was associated with incident COPD (HR = 1.06, 95% CI: 1.05, 1.09) but not asthma (HR = 1.00, 95% CI: 1.00, 1.01) or lung cancer (HR = 1.00, 95% CI: 0.97, 1.03). Additional adjustment for NO 2 attenuated the association between UFPs and COPD and the HR was no longer elevated (HR = 1.01, 95% CI: 0.98, 1.03). PM 2.5 and NO 2 were each associated with increased incidence of all three outcomes but risk estimates for lung cancer were sensitive to indirect adjustment for smoking and body mass index. In general, we did not observe clear evidence of positive associations between long-term exposure to ambient UFPs and respiratory disease incidence independent of other air pollutants. Further replication is required as few studies have evaluated these relationships.

  11. Seasonal variations of ambient air mercury species nearby an airport

    Science.gov (United States)

    Fang, Guor-Cheng; Tsai, Kai-Hsiang; Huang, Chao-Yang; Yang, Kuang-Pu Ou; Xiao, You-Fu; Huang, Wen-Chuan; Zhuang, Yuan-Jie

    2018-04-01

    This study focuses on the collection of ambient air mercury species (total gaseous mercury (TGM), reactive gaseous mercury (RGM), gaseous element mercury (GEM) and particulate bound mercury (PBM) pollutants at airport nearby sampling site during the year of Apr. 2016 to Mar. 2017 by using Four-stage gold amalgamation and denuder. The results indicated that the average TGM, RGM and GEM concentrations were 5.04 ± 2.43 ng/m3, 29.58 ± 80.54 pg/m3, 4.70 ± 2.63 ng/m3, respectively during the year of Apr. 2016 to Mar. 2017 (n = 49) period at this airport sampling site nearby. In addition, the results also indicated that the average PBM concentrations in TSP and PM2.5 were 0.35 ± 0.08 ng/m3 and 0.09 ± 0.03 ng/m3, respectively. And the average PBM in TSP concentrations order follows as summer > autumn > spring > winter, while the average PBM in PM2.5 concentrations order follows as spring > summer > winter > autumn. Moreover, the average TGM, RGM and GEM concentrations order follow as spring > summer > autumn > winter. Finally, the Asian continent has the highest average mercury species concentrations (TGM, RGM, GEM and PBM) when compared with the American and European continents, and the average mercury species concentrations (TGM, RGM, GEM and PBM) displayed declined trends for North America (United States and Canada) and Europe (Spain, Sweden and Southern Baltic) during the years of 2004-2014. Also noteworthy is that the average mercury species concentrations (TGM, RGM, GEM) displayed increasing trends in China and Taiwan during the years of 2008-2016. Japan and Korea are the only two exceptions. Those above two countries mercury species concentrations displayed decreasing trends during years of 2008-2015.

  12. Comprehensive particle characterization of modern gasoline and diesel passenger cars at low ambient temperatures

    Science.gov (United States)

    Mathis, Urs; Mohr, Martin; Forss, Anna-Maria

    Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dpefficiently than larger particles ( dp>0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.

  13. 75 FR 81477 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Amendments to Ambient...

    Science.gov (United States)

    2010-12-28

    ... Abatement of Air Pollution: 9VAC5 Chapter 30--Ambient Air Quality Standards incorporates the annual and 24... Commonwealth and takes prompt and appropriate measures to remedy the violations. Virginia's Voluntary... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference, Nitrogen...

  14. Association between ambient air pollution and proliferation of umbilical cord blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Novack, L., E-mail: novack@bgu.ac.il [Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Yitshak-Sade, M. [Clinical Research Center, Soroka University Medical Center, Beer-Sheva (Israel); Landau, D. [Division of Neonatology, University Medical Center, Beer-Sheva (Israel); Kloog, I. [Department of Geography, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Sarov, B. [Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Karakis, I. [Environmental Epidemiology Department, Ministry of Health, Jerusalem (Israel); Ashkelon Academic College, Ashkelon (Israel)

    2016-11-15

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012–March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM{sub 2.5} (particles<2.5 µm in diameter) and PM{sub 10} (particles<10 µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O{sub 3}) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM{sub 2.5} one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM{sub 2.5} levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM{sub 10} levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1 day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. - Highlights: • Ambient air pollutants were suggested to have an impact on cell proliferation (CP) of umbilical cord

  15. Association between ambient air pollution and proliferation of umbilical cord blood cells

    International Nuclear Information System (INIS)

    Novack, L.; Yitshak-Sade, M.; Landau, D.; Kloog, I.; Sarov, B.; Karakis, I.

    2016-01-01

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012–March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM 2.5 (particles<2.5 µm in diameter) and PM 10 (particles<10 µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O 3 ) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM 2.5 one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM 2.5 levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM 10 levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1 day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. - Highlights: • Ambient air pollutants were suggested to have an impact on cell proliferation (CP) of umbilical cord blood. • Ozone (O 3 ) and

  16. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  17. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2016-03-01

    Full Text Available An oxidation flow reactor (OFR is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected compared to daytime (average 0.9 µg m−3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production

  18. Concentration and Size Distribution of Particulate Matter in a Broiler House Ambient Air

    Directory of Open Access Journals (Sweden)

    Ismael Rodrigues Amador

    2016-07-01

    Full Text Available Atmospheric particulate matter (PM is an important constituent of ambient air. The determination of its concentration and size distribution in different environments is essential because of its ability to penetrate deeply into animal and human respiratory tract. In this study, air sampling was performed in a broiler house to estimate the concentration and size distribution of PM emitted along with its activities. Low-vol impactor (< 10 mm, cyclones (< 2.5 e < 1.0 mm, and Sioutas cascade impactor (> 2.5; 1.0 – 2.5; 0.50 – 1.0; 0.25 – 0.50; < 0.25 mm connected with membrane pumps were used. PM10 showed high concentration (209 - 533 mg m-3. PM2.5 and PM1.0 initially showed relatively low concentration (20.8 and 16.0 mg m-3 respectively with significantly increasing levels (412.9 and 344.8 mg m-3 respectively during the samplings. It was also possible to observe the contribution of fine particles. This was evidenced by the high correlation between PM2.5 and PM1.0 and by the profile of particle distribution in the Sioutas sampler. PM concentration levels are considered excessively high, with great potential to affect animal and human health. DOI: http://dx.doi.org/10.17807/orbital.v8i3.847 

  19. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].

    Science.gov (United States)

    Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X

    2018-02-10

    Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.

  20. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  1. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  2. Concentrations of persistent organic pollutants in ambient air in Durban, South Africa

    CSIR Research Space (South Africa)

    Batterman, S

    2007-01-01

    Full Text Available This paper reports on an extensive ambient air quality monitoring program in Durban (eThekwini Municipality), South Africa, on Africa’s southeast coast. Following a multi stakeholder process coordinated by the Municipality Metropolitan Health...

  3. Monitoring of viable airborne SARS virus in ambient air

    Science.gov (United States)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  4. Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex

    International Nuclear Information System (INIS)

    Faghihi-Zrandi, A.; Akhgar, M. R.

    2016-01-01

    Air pollutants including gases, vapors and particles, are emitted from different sources. Volatile organic compounds are the most important pollutants in the ambient air of industries. The present study was carried out to identify and measurement of volatile organic compounds in concentration unit of Sar-Cheshmeh Copper Complex. In this study, sampling of the volatile organic compounds was done by using activated charcoal tube. To identify and measure these compounds gas chromatography/mass spectroscopy were used. Thirteen volatile organic compounds were identified in the ambient air of concentration unit. Among these compounds, the mean value and maximum concentration of isopropyl alcohol and nonane were 255, 640 μg/m3 and 1577, 14400 μg/m3, respectively. By using SPSS software and independent sample t- test, showed that there were no significant difference between mean value concentration of isopropyl alcohol and nonane in the ambient air and TLV values of these compounds (isopropyl alcohol; 200 ppm and nonane; 200 ppm) (P >0.05).

  5. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Directory of Open Access Journals (Sweden)

    Chayut Pinichka

    Full Text Available Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs. We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand.We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA framework developed by the World Health Organization (WHO and the Global Burden of Disease study (GBD. We integrated geographical information systems (GIS-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR and concentration of air pollutants from the epidemiological literature.We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality

  6. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Science.gov (United States)

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong; Bundhamcharoen, Kanitta

    2017-01-01

    Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to

  7. An Evaluation of Uncertainty Associated to Analytical Measurements of Selected Polycyclic Aromatic Compounds in Ambient Air

    International Nuclear Information System (INIS)

    Barrado, A. I.; Garcia, S.; Perez, R. M.

    2013-01-01

    This paper presents an evaluation of uncertainty associated to analytical measurement of eighteen polycyclic aromatic compounds (PACs) in ambient air by liquid chromatography with fluorescence detection (HPLC/FD). The study was focused on analyses of PM 1 0, PM 2 .5 and gas phase fractions. Main analytical uncertainty was estimated for eleven polycyclic aromatic hydrocarbons (PAHs), four nitro polycyclic aromatic hydrocarbons (nitro-PAHs) and two hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) based on the analytical determination, reference material analysis and extraction step. Main contributions reached 15-30% and came from extraction process of real ambient samples, being those for nitro- PAHs the highest (20-30%). Range and mean concentration of PAC mass concentrations measured in gas phase and PM 1 0/PM 2 .5 particle fractions during a full year are also presented. Concentrations of OH-PAHs were about 2-4 orders of magnitude lower than their parent PAHs and comparable to those sparsely reported in literature. (Author)

  8. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Williams, C.H.; Eberhart, C.F.

    1992-01-01

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  9. Different relationships between personal exposure and ambient concentration by particle size.

    Science.gov (United States)

    Guak, Sooyoung; Lee, Kiyoung

    2018-04-06

    Ambient particulate matter (PM) concentrations at monitoring stations were often used as an indicator of population exposure to PM in epidemiological studies. The correlation between personal exposure and ambient concentrations of PM varied because of diverse time-activity patterns. The aim of this study was to determine the relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 with minimal impact of time-activity pattern on personal exposure. Performance of the MicroPEM, v3.2 was evaluated by collocation with central ambient air monitors for PM 10 and PM 2.5 . A field technician repeatedly conducted measurement of 24 h personal exposures to PM 10 and PM 2.5 with a fixed time-activity pattern of office worker over 26 days in Seoul, Korea. The relationship between the MicroPEM and the ambient air monitor showed good linearity. Personal exposure and ambient concentrations of PM 2.5 were highly correlated with a fixed time-activity pattern compared with PM 10 . The finding implied a high infiltration rate of PM 2.5 and low infiltration rate of PM 10 . The relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 was different for high level episodes. In the Asian dust episode, staying indoors could reduce personal exposure to PM 10 . However, personal exposure to PM 2.5 could not be reduced by staying indoors during the fine dust advisory episode.

  10. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    International Nuclear Information System (INIS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-01-01

    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  11. Particle dry-deposition experiment using ambient airborne soil

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1979-01-01

    Airborne solid concentrations were measured simultaneously at sampling towers upwind and 305-m downwind of a site. When the wind speed and wind direction were identical at each site, isokinetic air samplers on the sampling towers were automatically activated. The fraction of the airborne solid plume remaining after the 305-m fetch ranged from 0.53 to 1.07

  12. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  13. Overview of ambient air quality monitoring in South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2006-10-01

    Full Text Available Air quality data is currently collected, processed and archived by a number of independent institutes. No collaboration exists between these organisations and there is no provincial or national air quality data information system or archive...

  14. Ambient Air Conditions and Variation in Urban Trail Use

    OpenAIRE

    Holmes, Ann M.; Lindsey, Greg; Qiu, Chenchen

    2009-01-01

    This study examines the effect of air quality and administrative policies on use of urban trails in Indianapolis, IN. Attention is focused on two policy variables: (1) issuance of air pollution advisories and (2) the adoption of Daylight Savings Time. Results suggest that while trail use varies with air quality, current public advisories regarding air pollution may be of limited effectiveness in reducing trail users’ exposures to hazardous pollutants. In contrast, the adoption of Daylight Sav...

  15. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  16. Citizen participatory dioxin monitoring campaign by pine needles as biomonitor of ambient air dioxin pollution

    Energy Technology Data Exchange (ETDEWEB)

    Komichi, I.; Takatori, A. [Environmental Research Institute Inc., Tokyo (Japan); Aoyama, T. [Musashi Institute of Technology, Yokohama (Japan). Faculty of Environment and Informations; Vrzic, B. [Maxxam Analytics Inc. HRMS Laboratory, Waterloo, ON (Canada)

    2004-09-15

    The needle-type leaves of Japanese black pine trees (hereafter abbreviated as pine needles) have been used as an effective bio-monitor of ambient air pollution. Miyata Laboratory of Setsunan University has reported that the pine needles accumulate PCDDs and PCDFs (hereafter abbreviated as D/F) through photosynthesis and respiration during their lifetime. On the basis of this study, we have revealed the correlation between ambient air and pine needle concentrations to be estimated at or near 1:10 by analyzing long term continuous ambient dioxin monitoring data and that of pine needles sampled from the same area as ambient air in the Kanagawa Prefecture in 1999. Since then, the citizen groups of each local area all over Japan have started monitoring the ambient air dioxin concentration levels by using pine needles. Samples analyzed during these 5 years totaled more than 650 throughout Japan. The results of these citizen participatory environmental monitoring activities are the tremendous effects achieved in reducing the dioxin levels. This occurs through observation of the dioxin emission sources such as Municipal Solid Waste Incineration Plants as well as the Industrial Waste Incineration plants, which exist in numbers exceeding several thousands in Japan. This short paper will present the results of 56 municipalities of western Japan where ambient air dioxin levels have improved steadily against local averages during these 5 years.

  17. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project

    NARCIS (Netherlands)

    Pedersen, Marie; Andersen, Zorana J; Stafoggia, Massimo; Weinmayr, Gudrun; Galassi, Claudia; Sørensen, Mette; Eriksen, Kirsten T; Tjønneland, Anne; Loft, Steffen; Jaensch, Andrea; Nagel, Gabriele; Concin, Hans; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Sokhi, Ranjeet; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; Hoogh, Kees de; Wang, Meng; Beelen, Rob|info:eu-repo/dai/nl/30483100X; Vineis, Paolo; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Hoek, Gerard|info:eu-repo/dai/nl/069553475; Raaschou-Nielsen, Ole

    2017-01-01

    BACKGROUND: Tobacco smoke exposure increases the risk of cancer in the liver, but little is known about the possible risk associated with exposure to ambient air pollution. OBJECTIVES: We evaluated the association between residential exposure to air pollution and primary liver cancer incidence.

  18. Impact of ambient air pollution on obesity: a systematic review.

    Science.gov (United States)

    An, Ruopeng; Ji, Mengmeng; Yan, Hai; Guan, Chenghua

    2018-05-24

    Over 80% of the global populations living in urban areas are exposed to air quality levels that exceed the World Health Organization limits. Air pollution may lead to unhealthy body weight through metabolic dysfunction, chronic disease onset, and disruption of regular physical activity. A literature search was conducted in the PubMed and Web of Science for peer-reviewed articles published until September 2017 that assessed the relationship between air pollution and body weight status. A standardized data extraction form was used to collect methodological and outcome variables from each eligible study. Sixteen studies met the selection criteria and were included in the review. They were conducted in seven countries, including the US (n = 9), China (n = 2), Canada (n = 1), Italy (n = 1), The Netherlands (n = 1), Serbia (n = 1), and South Korea (n = 1). Half of them adopted a longitudinal study design, and the rest adopted a cross-sectional study design. Commonly examined air pollutants included PM, NO 2 , SO 2 , O 3 , and overall air quality index. Among a total of 66 reported associations between air pollution and body weight status, 29 (44%) found air pollution to be positively associated with body weight, 29 (44%) reported a null finding, and the remaining eight (12%) found air pollution to be negatively associated with body weight. The reported associations between air pollution and body weight status varied by sex, age group, and type of air pollutant. Three pathways hypothesized in the selected studies were through increased oxidative stress and adipose tissue inflammation, elevated risk for chronic comorbidities, and insufficient physical activity. Concurrent evidence regarding the impact of air pollution on body weight status remains mixed. Future studies should assess the impact of severe air pollution on obesity in developing countries, focus on a homogenous population subgroup, and elucidate the biomedical and psychosocial

  19. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    Science.gov (United States)

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  1. Ambient air conditions and variation in urban trail use.

    Science.gov (United States)

    Holmes, Ann M; Lindsey, Greg; Qiu, Chenchen

    2009-11-01

    This study examines the effect of air quality and administrative policies on use of urban trails in Indianapolis, IN. Attention is focused on two policy variables: (1) issuance of air pollution advisories and (2) the adoption of Daylight Savings Time. Results suggest that while trail use varies with air quality, current public advisories regarding air pollution may be of limited effectiveness in reducing trail users' exposures to hazardous pollutants. In contrast, the adoption of Daylight Savings Time was associated with a statistically significant increase in traffic levels.

  2. Mortality, hospital days and expenditures attributable to ambient air pollution from particulate matter in Israel.

    Science.gov (United States)

    Ginsberg, Gary M; Kaliner, Ehud; Grotto, Itamar

    2016-01-01

    Worldwide, ambient air pollution accounts for around 3.7 million deaths annually. Measuring the burden of disease is important not just for advocacy but also is a first step towards carrying out a full cost-utility analysis in order to prioritise technological interventions that are available to reduce air pollution (and subsequent morbidity and mortality) from industrial, power generating and vehicular sources. We calculated the average national exposure to particulate matter particles less than 2.5 μm (PM2.5) in diameter by weighting readings from 52 (non-roadside) monitoring stations by the population of the catchment area around the station. The PM2.5 exposure level was then multiplied by the gender and cause specific (Acute Lower Respiratory Infections, Asthma, Circulatory Diseases, Coronary Heart Failure, Chronic Obstructive Pulmonary Disease, Diabetes, Ischemic Heart Disease, Lung Cancer, Low Birth Weight, Respiratory Diseases and Stroke) relative risks and the national age, cause and gender specific mortality (and hospital utilisation which included neuro-degenerative disorders) rates to arrive at the estimated mortality and hospital days attributable to ambient PM2.5 pollution in Israel in 2015. We utilised a WHO spread-sheet model, which was expanded to include relative risks (based on more recent meta-analyses) of sub-sets of other diagnoses in two additional models. Mortality estimates from the three models were 1609, 1908 and 2253 respectively in addition to 184,000, 348,000 and 542,000 days hospitalisation in general hospitals. Total costs from PM2.5 pollution (including premature burial costs) amounted to $544 million, $1030 million and $1749 million respectively (or 0.18 %, 0.35 % and 0.59 % of GNP). Subject to the caveat that our estimates were based on a limited number of non-randomly sited stations exposure data. The mortality, morbidity and monetary burden of disease attributable to air pollution from particulate matter in Israel is of

  3. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    Energy Technology Data Exchange (ETDEWEB)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  4. The assessment of ambient air pollution pattern in Shah Alam ...

    African Journals Online (AJOL)

    This study implements the statistical analysis to establish the association between air pollution trends with the industrial activities in Shah Alam, Selangor. PCA used to identify most significant parameters contributing to air pollution and it sources of pollutions, whereas SPC used to determine the pattern and contribution ...

  5. Ambient air pollution triggers wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Loft, S; Ketzel, Matthias

    2008-01-01

    There is limited evidence for the role of air pollution in the development and triggering of wheezing symptoms in young children. A study was undertaken to examine the effect of exposure to air pollution on wheezing symptoms in children under the age of 3 years with genetic susceptibility to asthma....

  6. Ambient air quality monitoring during the H1N1 influence period in Pune (India).

    Science.gov (United States)

    Pathak, M; Deshpande, A; Mirashe, P K; Sorte, R B; Ojha, A

    2010-10-01

    Ambient air quality in an urban area is directly linked with activity level in the city including transport, business and industrial activities. Maharashtra Pollution Control Board (MPCB) has established an ambient air quality network in the city including state-of-the-art continuous air quality monitoring stations which indicate short duration air quality variations for criteria and non-criteria pollutants. The influence of H1N1 outbreak in Pune hitting its worst pandemic condition, led the civic authorities to implement stringent isolation measures including closure of schools, colleges, business malls, cinema halls, etc. Additionally, the fear of such a pandemic brought the city to a stand still. It was therefore necessary to assess the impacts of such activity level on ambient air quality in the city. It has been observed that such events have positive impacts on air quality of the city. There was a decrease in PM concentration almost to the tune of 30 to 40% if the impacts of precipitation, i.e. seasonal variations, are taken into account. Similarly, the non criteria pollutants too showed a marked but unusual decrease in their concentrations in this ever growing city. The influence of these in turn led to lowered concentrations of secondary pollutants, i.e. O3. Overall, the ambient air quality of Pune was found to be improved during the study period.

  7. Association between exposure to ambient air pollution and renal function in Korean adults.

    Science.gov (United States)

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p   0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  8. Assessment of ambient air quality in Chidambaram a south Indian town

    OpenAIRE

    P. Balashanmugam; A.R. Ramanathan; V. Nehrukumar

    2012-01-01

    Worldwide preliminary studies in large number are advocated to create data base, to identify potential cities / towns that warrant “continuous ambient air quality monitoring and control mechanism” and to evolve priorities for clean air target. The results reported pertain to an eight hour random preliminary air sampling exercise carried out at each of the eight select locations in Chidambaram, a southern semi urban settlement in India. Criteria pollutants SPM, CO, SO2 and NO2 measured are fou...

  9. New Council of State degree on ambient air quality is in the making

    International Nuclear Information System (INIS)

    Rahnasto, O.

    2000-01-01

    The Finnish Ministry of the Environment is currently preparing a new Council of State decree on ambient air quality to implement EC directive 1999/30/EC relating to limit values for SO 2 , NO 2 , particulate matter and lead in the ambient air, the EC directive 2000/69/EC relating to benzene and carbon monoxide in the ambient air, and regulations in EC directive 96/62/EC on ambient air quality assessment and management. The national legislation will come into force in July 2001. Current studies based on measurements and calculations show that the SO 2 concentrations in ambient air are generally low and clearly below the limit values. The same holds good for lead. However, the new limit values for NO 2 are exceeded in the largest towns, and the 2010 limit values for particulate matter presented in the guidelines are generally exceeded in small towns, too. The 2005 limit values for particulate matter are not so strict, and it is estimated that they will be exceeded especially in years when spring dust problems are serious. The limit values for CO may at times be exceeded in areas with heavy traffic. The limit values intended to protect the vegetation and the ecosystems are not exceeded in background areas to the implementation. As for benzene, it is assumed that the concentrations will generally be below the limit value in other parts of the world as well

  10. 76 FR 22665 - Release of Final Document Related to the Review of the National Ambient Air Quality Standards for...

    Science.gov (United States)

    2011-04-22

    ... criteria. The revised air quality criteria reflect advances in scientific knowledge on the effects of the... National Ambient Air Quality Standards, contains staff analyses of the scientific bases for alternative... Document Related to the Review of the National Ambient Air Quality Standards for Particulate Matter AGENCY...

  11. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... the data handling procedures for the reported data). 2.3Comparisons with the Primary and Secondary... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY...

  12. Ambient and household air pollution: complex triggers of disease

    Science.gov (United States)

    Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.

    2014-01-01

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855

  13. Ambient and household air pollution: complex triggers of disease.

    Science.gov (United States)

    Farmer, Stephen A; Nelin, Timothy D; Falvo, Michael J; Wold, Loren E

    2014-08-15

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.

  14. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    Science.gov (United States)

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  15. Cold Start Emissions of Spark-Ignition Engines at Low Ambient Temperatures as an Air Quality Risk

    Directory of Open Access Journals (Sweden)

    Bielaczyc Piotr

    2014-12-01

    Full Text Available SI engines are highly susceptible to excess emissions when started at low ambient temperatures. This phenomenon has multiple air quality and climate forcing implications. Direct injection petrol engines feature a markedly different fuelling strategy, and so their emissions behaviour is somewhat different from indirect injection petrol engines. The excess emissions of direct injection engines at low ambient temperatures should also differ. Additionally, the direct injection fuel delivery process leads to the formation of PM, and DISI engines should show greater PM emissions at low ambient temperatures. This study reports on laboratory experiments quantifying excess emissions of gaseous and solid pollutants over a legislative driving cycle following cold start at a low ambient temperature for both engine types. Over the legislative cycle for testing at -7°C (the UDC, emissions of HC, CO, NOx and CO2 were higher when tested at -7°C than at 24°C. Massive increases in emissions of HC and CO were observed, together with more modest increases in NOx and CO2 emissions. Results from the entire driving cycle showed excess emissions in both phases (though they were much larger for the UDC. The DISI vehicle showed lower increases in fuel consumption than the port injected vehicles, but greater increases in emission of HC and CO. DISI particle number emissions increased by around 50%; DISI particle mass by over 600%. The observed emissions deteriorations varied somewhat by engine type and from vehicle to vehicle. Excesses were greatest following start-up, but persisted, even after several hundred seconds’ driving. The temperature of the intake air appeared to have a limited but significant effect on emissions after the engine has been running for some time. All vehicles tested here comfortably met the relevant EU limits, providing further evidence that these limits are no longer challenging and need updating.

  16. Ambient Air Ammonia (NH3) Concentration in Two Solid Waste ...

    African Journals Online (AJOL)

    MBI

    2017-05-22

    May 22, 2017 ... and thereby adds significantly to the external costs related to air pollution in ... condensation nuclei and indirectly increase cloud life time (Myhre et al., 2009). ..... Cost Effective Strategy for Reducing. Atmospheric Particulate ...

  17. Ambient Air Pollution and Autism in Los Angeles County, California

    DEFF Research Database (Denmark)

    Becerra, Tracy Ann; Wilhelm, Michelle; Olsen, Jørn

    2013-01-01

    Background: The prevalence of Autistic Disorder (AD), a serious developmental condition, has risen dramatically over the past two decades but high-quality population-based research addressing etiology is limited. Objectives: We studied the influence of exposures to traffic-related air pollution d...... during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures....

  18. Monitoring ambient air for mutagenicity using the higher plant Tradescantia

    International Nuclear Information System (INIS)

    Schairer, L.A.; Sautkulis, R.C.; Tempel, N.R.

    1982-01-01

    The major emphasis for short-term bioassays has been placed on bacterial and mammalian cell lines. However, for increased perspective on the state-of-the-art of specific in vitro assays it is important to consider the environmental impact on whole organisms by reviewing the contributions made by in vivo assays. This paper will deal exclusively with somatic mutation in the Tradescantia stamen hair: describing the system briefly, demonstrating its relevance to environmental mutagen assessment and discussing its adaptation for in situ ambient atmosphere monitoring

  19. Quality assurance and quality control for Hydro-Quebec's ambient air monitoring networks

    International Nuclear Information System (INIS)

    Lambert, M.; Varfalvy, L.

    1993-01-01

    Hydro Quebec has three ambient air monitoring networks to determine the contribution of some of its thermal plants to ambient air quality. They are located in Becancour (gas turbines), Iles-de-la-Madeleine (diesel), and Tracy (conventional oil-fired). To ensure good quality results and consistency between networks, a quality assurance/quality control program was set up. A description is presented of the ambient air quality monitoring network and the quality assurance/quality control program. A guide has been created for use by the network operators, discussing objectives of the individual network, a complete description of each network, field operation for each model of instrument in use, treatment of data for each data logger in use, global considerations regarding quality assurance and control, and reports. A brief overview is presented of the guide's purpose and contents, focusing on the field operation section and the sulfur dioxide and nitrogen oxide monitors. 6 figs., 1 tab

  20. Environmentally Persistent Free Radical (EPFRs) - Ambient Air Particulates, Soils and Fate of Some Pollutants

    Science.gov (United States)

    Lomnicki, S. M.

    2017-12-01

    Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.

  1. Impact of National Ambient Air Quality Standards Nonattainment Designations on Particulate Pollution and Health.

    Science.gov (United States)

    Zigler, Corwin M; Choirat, Christine; Dominici, Francesca

    2018-03-01

    Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.

  2. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  3. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    Science.gov (United States)

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  4. Optical system for trapping particles in air.

    Science.gov (United States)

    Kampmann, R; Chall, A K; Kleindienst, R; Sinzinger, S

    2014-02-01

    An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface.

  5. An experimental technique for the direct measurement of N2O5 reactivity on ambient particles

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2009-06-01

    Full Text Available An experimental approach for the direct measurement of trace gas reactivity on ambient aerosol particles has been developed. The method utilizes a newly designed entrained aerosol flow reactor coupled to a custom-built chemical ionization mass spectrometer. The experimental method is described via application to the measurement of the N2O5 reaction probability, γ (N2O5. Laboratory investigations on well characterized aerosol particles show that measurements of γ (N2O5 observed with this technique are in agreement with previous observations, using conventional flow tube methods, to within ±20% at atmospherically relevant particle surface area concentrations (0–1000 μm2 cm−3. Uncertainty in the measured γ (N2O5 is discussed in the context of fluctuations in potential ambient biases (e.g., temperature, relative humidity and trace gas loadings. Under ambient operating conditions we estimate a single-point uncertainty in γ (N2O5 that ranges between ± (1.3×10-2 + 0.2×γ (N2O5, and ± (1.3×10-3 + 0.2×γ (N2O5 for particle surface area concentrations of 100 to 1000 μm2 cm−3, respectively. Examples from both laboratory investigations and field observations are included alongside discussion of future applications for the reactivity measurement and optimal deployment locations and conditions.

  6. Ambient Air Quality Monitoring in Metropolitan City of Lagos, Nigeria ...

    African Journals Online (AJOL)

    ... traffic intersection where they were both poor and very poor (D-E). The results suggest that strict and appropriate vehicle emission management, industrial air pollution control coupled with close burning management of wastes should be considered in the study area to reduce the risks associated with these pollutants.

  7. Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles

    Directory of Open Access Journals (Sweden)

    M. L. López

    2016-01-01

    Full Text Available This study reports measurements of deposition-mode ice-nucleating particle (INP concentrations at ground level during the period July–December 2014 in Córdoba, Argentina. Ambient air was sampled into a cloud chamber where the INP concentration was measured at a temperature of −25 °C and a 15 % supersaturation over ice. Measurements were performed on days with different thermodynamic conditions, including rainy days. The effect of the relative humidity at ground level (RHamb on the INP concentration was analyzed. The number of INPs activated varied from 1 L−1 at RHamb of 25 % to 30 L−1 at RHamb of 90 %. In general, a linear trend between the INP concentration and the RHamb was found, suggesting that this variability must be related to the effectiveness of the aerosols acting as INPs. From the backward trajectories analysis, it was found that the link between INP concentration and RHamb is independent of the origin of the air masses. The role of biological INPs and nucleation occurring in pores and cavities was discussed as a possible mechanism to explain the increase of the INP concentration during high ambient relative humidity events. This work provides valuable measurements of deposition-mode INP concentrations from the Southern Hemisphere where INP data are sparse so far.

  8. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    Science.gov (United States)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  9. Exposure to Ambient Air Pollution and Premature Rupture of Membranes.

    Science.gov (United States)

    Wallace, Maeve E; Grantz, Katherine L; Liu, Danping; Zhu, Yeyi; Kim, Sung Soo; Mendola, Pauline

    2016-06-15

    Premature rupture of membranes (PROM) is a major factor that predisposes women to preterm delivery. Results from previous studies have suggested that there are associations between exposure to air pollution and preterm birth, but evidence of a relationship with PROM is sparse. Modified Community Multiscale Air Quality models were used to estimate mean exposures to particulate matter less than 10 µm or less than 2.5 µm in aerodynamic diameter, nitrogen oxides, carbon monoxide, sulfur dioxide, and ozone among 223,375 singleton deliveries in the Air Quality and Reproductive Health Study (2002-2008). We used log-linear models with generalized estimating equations to estimate adjusted relative risks and 95% confidence intervals for PROM per each interquartile-range increase in pollutants across the whole pregnancy, on the day of delivery, and 5 hours before delivery. Whole-pregnancy exposures to carbon monoxide and sulfur dioxide were associated with an increased risk of PROM (for carbon monoxide, relative risk (RR) = 1.09, 95% confidence interval (CI): 1.04, 1.14; for sulfur dioxide, RR = 1.15, 95% CI: 1.06, 1.25) but not preterm PROM. Ozone exposure increased the risk of PROM on the day of delivery (RR = 1.06, 95% CI: 1.02, 1.09) and 1 day prior (RR = 1.04, 95% CI: 1.01, 1.07). In the 5 hours preceding delivery, there were 3%-7% increases in risk associated with exposure to ozone and particulate matter less than 2.5 µm in aerodynamic diameter and inverse associations with exposure to carbon monoxide and nitrogen oxides. Acute and long-term air pollutant exposures merit further study in relation to PROM. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. 77 FR 39205 - Public Hearings for Proposed Rules-National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2012-07-02

    ..., respectively, and to make corresponding revisions to the data handling conventions for PM and ambient air.... Environmental Protection Agency, Office of Air Quality Planning and Standards, Ariel Rios Building, 1200...

  11. Perspective for Future Research Direction About Health Impact of Ambient Air Pollution in China.

    Science.gov (United States)

    Dong, Guang-Hui

    2017-01-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. Although lots of works on the health impact of ambient air pollution have been done in China, the following recommendations for future research were identified in this chapter: (1) the synergistic effect of indoor air pollution with climate change; (2) develop new technologies to improve accurate assessment of air pollution exposure; (3) well-designed cohort study of sensitive populations including children, older people, and people with chronic health problems; (4) multi-omics technologies in the underlying mechanisms study; and (5) benefits evaluation of improvement of air quality. In conclusion, China is becoming a suitable study site, providing an ideal opportunity to evaluate the effects of environmental pollution, including air pollution, on human health, which might serve as an example for developing countries where health impacts of air pollution are as serious as in China.

  12. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data

  13. Thermogravimetric analysis of silicon carbide-silicon nitride fibers at ambient to 1000 C in air

    Science.gov (United States)

    Daniels, J. G.; Ledbetter, F. E., III; Clemons, J. M.; Penn, B. G.

    1984-01-01

    Thermogravimetric analysis of silicon carbide-silicon nitride fibers was carried out at ambient to 1000 C in air. The weight loss over this temperature range was negligible. In addition, the oxidative stability at high temperature for a short period of time was determined. Fibers heated at 1000 C in air for fifteen minutes showed negligible weight loss (i.e., less than 1 percent).

  14. Short term respiratory health effects of ambient air pollution: results of the APHEA project in Paris.

    OpenAIRE

    Dab, W; Medina, S; Quénel, P; Le Moullec, Y; Le Tertre, A; Thelot, B; Monteil, C; Lameloise, P; Pirard, P; Momas, I; Ferry, R; Festy, B

    1996-01-01

    STUDY OBJECTIVE: To quantify the short term respiratory health effects of ambient air pollution in the Paris area. DESIGN: Time series analysis of daily pollution levels using Poisson regression. SETTING: Paris, 1987-92. MEASUREMENTS AND MAIN RESULTS: Air pollution was monitored by measurement of black smoke (BS) (15 monitoring stations), sulphur dioxide (SO2), nitrogen dioxide (NO2), particulate matter less than 13 microns in diameter (PM13), and ozone (O3) (4 stations). Daily mortality and ...

  15. Ambient air quality monitoring at Universiti Tunku Abdul Rahman (UTAR) Kampar campus

    Science.gov (United States)

    Jie, Lim Jun; Xinxin, Guo; Ke, Wang

    2017-04-01

    Air Pollutant includes any substance in solid, liquid or gaseous form present in the atmosphere in concentrations which may tend to be injurious to all living creatures, property and environment. In this study, automatic continuous monitoring station was used to monitor concentration of carbon monoxide (CO), non-methane hydrocarbon (NMHC), and carbon dioxide (CO2) in the ambient air of Kampar Campus, Universiti Tunku Abdul Rahman. High-volume air sampler was also used to monitor the concentration of PM2.5 and the collected PM2.5 was further analysed for the heavy metal concentration such as Zinc (Zn), Cadmium (Cd), Copper (Cu), Arsenic (As), Aluminium (Al), and Lead (Pb) in PM2.5 using inductively coupled plasma-mass spectrometer (ICP-MS). The overall ambient air quality in the campus area is consider unhealthy as the non-methane hydrocarbon (NMHC) and carbon dioxide (CO2) average concentration obtained were far exceeding the recommended limit concentration set by United States Environmental Protection Agency (USEPA). Meteorological data was found that it does not show much relationship with the air quality data in this study. The concentration of Zn and Al were found the dominant heavy metal in the ambient air. The enrichment factor analysis also shows that the heavy metals contained in PM2.5 mainly origin from the natural source except for the Zn which it is highly contaminated by human activities.

  16. OZONE AMBIENT AIR QUALITY STANDARD HAS BENEFICIAL EFFECT ON PONDEROSA PINE IN CALIFORNIA

    Science.gov (United States)

    Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. However, to date there has not been a simple and objective method to determine if the standards and resultant control strategies have reduced O3 impacts on ...

  17. 76 FR 46083 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur

    Science.gov (United States)

    2011-08-01

    ... 2. Linking ANC to Deposition 3. Linking Deposition to Ambient Air Indicators 4. Aquatic... ANC Levels 2. ANC Levels Related to Effects on Aquatic Ecosystems 3. Consideration of Episodic Acidity 4. Consideration of Ecosystem Response Time 5. Prior Examples of Target ANC Levels 6. Consideration...

  18. Ambient air pollution, lung function, and airway responsiveness in asthmatic children

    NARCIS (Netherlands)

    Ierodiakonou, Despo; Zanobetti, Antonella; Coull, Brent A.; Melly, Steve; Postma, Dirkje S.; Boezen, H. Marike; Vonk, Judith M.; Williams, Paul V.; Shapiro, Gail G.; McKone, Edward F.; Hallstrand, Teal S.; Koenig, Jane Q.; Schildcrout, Jonathan S.; Lumley, Thomas; Fuhlbrigge, Anne N.; Koutrakis, Petros; Schwartz, Joel; Weiss, Scott T.; Gold, Diane R.

    BACKGROUND: Although ambient air pollution has been linked to reduced lung function in healthy children, longitudinal analyses of pollution effects in asthmatic patients are lacking. OBJECTIVE: We sought to investigate pollution effects in a longitudinal asthma study and effect modification by

  19. Galvanic detection of sulfur dioxide in ambient air at trace levels by anodic oxidation

    NARCIS (Netherlands)

    Lindqvist, F.

    1978-01-01

    A continuous method for the measurement of SO2 in ambient air at trace levels is described. The principle of detection is based on the anodic oxidation of SO2 in a galvanic cell. A differential measuring technique with a cell with two anodes and one cathode is used; background and noise current are

  20. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-03

    ... Research and Development on March 30, 2010. The analytical procedure of this method has been tested in... Protection Agency, Research Triangle Park, North Carolina 27711. Designation of this new equivalent method is... ENVIRONMENTAL PROTECTION AGENCY [FRL-9184-5] Office of Research and Development; Ambient Air...

  1. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-03-04

    ..., Research Triangle Park, North Carolina 27711. Designation of this new equivalent method is intended to... ENVIRONMENTAL PROTECTION AGENCY [FRL-9121-6] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental...

  2. 76 FR 15974 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-03-22

    ..., Research Triangle Park, North Carolina 27711. Designation of these new equivalent methods is intended to... ENVIRONMENTAL PROTECTION AGENCY [FRL-9285-2] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Four New Equivalent Methods AGENCY: Environmental...

  3. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-18

    ..., Research Triangle Park, North Carolina 27711. Designation of these new equivalent methods is intended to... ENVIRONMENTAL PROTECTION AGENCY [FRL-9190-5] Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Two New Equivalent Methods AGENCY: Environmental...

  4. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Science.gov (United States)

    2012-10-05

    ... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...

  5. Low-level NOx removal in ambient air by pulsed corona technology

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although removal of NOx by (pulsed) corona discharges has been thoroughly investigated for high concentrations of NOx in flue gas, removal of low levels in ambient air proves to be a difficult task. (Sub) ppm NOx levels exist in traffic tunnels due to accumulation of exhaust gases. The application

  6. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  7. Ambient Air Issue from New Jersey Department of Environmental Protection

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  8. Anthropogenic Vanadium emissions to air and ambient air concentrations in North-West Europe

    Directory of Open Access Journals (Sweden)

    Visschedijk A. H. J.

    2013-04-01

    Full Text Available An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were calculated bottom-up using energy use activity data and collected fuel and sector-specific emissions factors, taking into account various emission control measures. The NW European emissions were dominated by combustion of heavy fuel oil and petroleum cokes. Total emissions for 2005 amounted to 1569 tons/yr. The major sources are sea going ships (39%, petroleum refineries (35% and industry (19%. Emission is strongly concentrated at the densely populated cities with major sea ports. The location of sources at or near the major port cities was confirmed by observational data, as was the downward trend in emissions due to emission control, fuel switches in industry and fuel quality improvement. The results show the positive impact of lower sulphur fuels on other possible health relevant air pollutants such as particle bound Vanadium. The emission inventory can be expanded to the full European domain and can be used to for air quality modeling and particularly for the tracing of source contributions from certain types of fossil fuels (petroleum coke and residual fuel oil. Moreover, it will allow the monitoring of changes in fuel use over time.

  9. Ice nucleating particles in the Saharan Air Layer

    Directory of Open Access Journals (Sweden)

    Y. Boose

    2016-07-01

    Full Text Available This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL, the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l., in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC. Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L−1 in the deposition mode and up to 2500 std L−1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43–0.67 and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher

  10. 40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Interpretation of the National Ambient Air Quality Standards for Lead R Appendix R to Part 50 Protection of Environment ENVIRONMENTAL.... 50, App. R Appendix R to Part 50—Interpretation of the National Ambient Air Quality Standards for...

  11. The contribution of waste water treatment plants to PBDEs in ambient air

    International Nuclear Information System (INIS)

    Martellini, Tania; Jones, Kevin C.; Sweetman, Andy; Giannoni, Martina; Pieri, Francesca; Cincinelli, Alessandra

    2012-01-01

    Air samples were collected at different sites in and around two wastewater treatment plants (WWTPs) located in central Italy to determine the concentrations, compositional profiles and contribution to ambient levels of eight polybrominated diphenyl ethers (PBDEs). The investigated WWTPs were selected as they treat industrial wastewater produced by local textile industries along with municipal wastewater. PBDE concentrations within the WWTPs were higher than those measured at reference sites located 4 and 5 km away with BDE-209 dominating the BDE congener composition in all air samples in 2008. Ambient PBDE concentrations measured in and around the WWTPs and estimates of emissions from aeration tanks suggest that WWTPs are sources of PBDEs to ambient air. Principal component analysis and Pearson correlations confirmed this result. The effect of distance from the plant and wind direction on atmospheric concentrations was also investigated. Although the primary fate of PBDEs in WWTPs will be partitioning to sewage sludge, this study suggests that plants can provide a measurable source of these compounds to local ambient air. - Highlights: ► Levels and distribution profiles of PBDEs in the atmosphere surrounding two WWTPs. ► Airborne polybrominated diphenyl ethers in the surrounding area of two WWTPs in Italy. ► To investigate WWTPs as sources of PBDEs to the atmosphere. ► Samples collected downwind respect to the plant showed BDE-209 as dominant congener. ► The effect of distance and wind direction on atmospheric concentrations was also investigated. - Waste water treatment plants as sources of PBDEs to the ambient air.

  12. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    Science.gov (United States)

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  13. Effect of fireworks on ambient air quality in Malta

    Science.gov (United States)

    Camilleri, Renato; Vella, Alfred J.

    2010-11-01

    Religious festivals ( festas) in the densely populated Maltese archipelago (Central Mediterranean) are ubiquitous during summer when 86 of them are celebrated between June and October, each involving the burning of fireworks both in ground and aerial displays over a period of 3 days or longer per festival. We assessed the effect of fireworks on the air quality by comparing PM 10 and its content of Al, Ba, Cu, Sr and Sb which materials are used in pyrotechnic compositions. PM 10 was collected mainly from two sites, one in Malta (an urban background site) and the other in Gozo (a rural site) during July-August 2005 when 59 feasts were celebrated and September-October 2005 when only 11 feasts occurred. For both Malta and Gozo, PM 10 and metal concentration levels measured as weekly means were significantly higher during July-August compared to September-October and there exist strong correlations between PM 10 and total metal content. Additionally, for Malta dust, Al, Ba, Cu and Sr correlated strongly with each other and also with total concentration of all five metals. The same parameters measured in April 2006 in Malta were at levels similar to those found in the previous October. Ba and Sb in dust from the urban background site in Malta during July-August were at comparable or higher concentration than recently reported values in PM 10 from a heavily-trafficked London road and this suggests that these metals are locally not dominated by sources from roadside materials such as break liner wear but more likely by particulate waste from fireworks. Our findings point to the fact that festa firework displays contribute significantly and for a prolonged period every year to airborne dust in Malta where PM 10 is an intractable air quality concern. The presence in this dust of elevated levels of Ba and especially Sb, a possible carcinogen, is of concern to health.

  14. Temporal-Spatial Ambient Concentrator Estimator (T-SpACE): Hierarchical Bayesian Model Software Used to Estimate Ambient Concentrations of NAAQS Air Pollutants in Support of Health Studies

    Science.gov (United States)

    To fulfill its mission to protect human health and the environment, EPA has established National Ambient Air Quality Standards (NAAQS) on six selected air pollutants known as criteria pollutants: ozone (O3); carbon monoxide (CO); lead (Pb); nitrogen dioxide (NO2); sulfur dioxide ...

  15. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO 2 ), and nitrogen oxides (NO, NO 2 , and NO x ). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks

  16. Contamination of Ambient Air with Acinetobacter baumannii on Consecutive Inpatient Days.

    Science.gov (United States)

    Shimose, Luis A; Doi, Yohei; Bonomo, Robert A; De Pascale, Dennise; Viau, Roberto A; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Munoz-Price, L Silvia

    2015-07-01

    Acinetobacter-positive patients had their ambient air tested for up to 10 consecutive days. The air was Acinetobacter positive for an average of 21% of the days; the rate of contamination was higher among patients colonized in the rectum than in the airways (relative risk [RR], 2.35; P = 0.006). Of the 6 air/clinical isolate pairs available, 4 pairs were closely related according to rep-PCR results. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Ambient air pollution and congenital heart defects in Lanzhou, China

    Science.gov (United States)

    Jin, Lan; Qiu, Jie; Zhang, Yaqun; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Li, Min; Zhao, Nan; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Xu, Xiaoying; Huang, Huang; Liu, Qing; Bell, Michelle L.; Zhang, Yawei

    2015-07-01

    Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010-2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM10 (IQR = 71.2, 61.6, and 27.4 μg m-3, respectively)), and associations with NO2 during 2nd trimester and the entire pregnancy (OR 2nd trimester = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO2 (IQR = 13.4 and 10.9 μg m-3, respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM10 exposures in the 2nd trimester and the entire pregnancy, and SO2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects.

  18. Ambient air pollution and congenital heart defects in Lanzhou, China

    International Nuclear Information System (INIS)

    Jin, Lan; Bell, Michelle L; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Xu, Xiaoying; Liu, Qing; Zhang, Yaqun; Li, Min; Zhao, Nan; Huang, Huang; Zhang, Yawei

    2015-01-01

    Congenital heart defects are the most prevalent type of birth defects. The association of air pollution with congenital heart defects is not well understood. We investigated a cohort of 8969 singleton live births in Lanzhou, China during 2010–2012. Using inverse distance weighting, maternal exposures to particulate matter with diameters ≤10 μm (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) were estimated as a combination of monitoring station levels for time spent at home and in a work location. We used logistic regression to estimate the associations, adjusting for maternal age, education, income, BMI, disease, folic acid intake and therapeutic drug use, and smoking; season of conception, fuel used for cooking and temperature. We found significant positive associations of Patent Ductus Arteriosus (PDA) with PM 10 during the 1st trimester, 2nd trimester and the entire pregnancy (OR 1st trimester  = 3.96, 95% confidence interval (CI): 1.36, 11.53; OR 2nd trimester  = 3.59, 95% CI: 1.57, 8.22; OR entire pregnancy  = 2.09, 95% CI: 1.21, 3.62, per interquartile range (IQR) increment for PM 10 (IQR = 71.2, 61.6, and 27.4 μg m −3 , respectively)), and associations with NO 2 during 2nd trimester and the entire pregnancy (OR 2nd trimester  = 1.92, 95% CI: 1.11, 3.34; OR entire pregnancy  = 2.32, 95% Cl: 1.14, 4.71, per IQR increment for NO 2 (IQR = 13.4 and 10.9 μg m −3 , respectively)). The associations for congenital malformations of the great arteries and pooled cases showed consistent patterns. We also found positive associations for congenital malformations of cardiac septa with PM 10 exposures in the 2nd trimester and the entire pregnancy, and SO 2 exposures in the entire pregnancy. Results indicate a health burden from maternal exposures to air pollution, with increased risk of congenital heart defects. (letter)

  19. Energy saving potential of natural ventilation in China: The impact of ambient air pollution

    International Nuclear Information System (INIS)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Liu, Zhu; Freeman, Richard B.

    2016-01-01

    Highlights: • Natural ventilation potential is affected largely by ambient air pollution in China. • NV hours of 76 Chinese cities based on weather and ambient air quality are estimated. • Cooling energy savings and carbon reductions of 35 major Chinese cities are estimated. • 8–78% of the cooling energy usage can be potentially reduced by NV. • Our findings provide guidelines to improve energy policies in China. - Abstract: Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China’s serious air pollution issue especially in North China. 8–78% of the cooling energy consumption can be potentially reduced by natural

  20. Characterizing ultrafine particles and other air pollutants in and around school buses.

    Science.gov (United States)

    Zhu, Yifang; Zhang, Qunfang

    2014-03-01

    Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age, window position, driving speed, driving route, and operating conditions. Emissions from idling school buses increased the PNC close to the tailpipe by a factor of up to 26.0. Under some circumstances, tailpipe emissions of idling school buses increased the in-cabin PNC by factors ranging from 1.2 to 5.8 in the 10-30 nm particle size range. Retrofit systems significantly reduced the tailpipe emissions of idling school buses. With both DOC and CFS installed, PNC in tailpipe emissions dropped by 20

  1. Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS.

    Science.gov (United States)

    Baimatova, Nassiba; Kenessov, Bulat; Koziel, Jacek A; Carlsen, Lars; Bektassov, Marat; Demyanenko, Olga P

    2016-07-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) comprise one of the most ubiquitous and hazardous groups of ambient air pollutants of concern. Application of standard analytical methods for quantification of BTEX is limited by the complexity of sampling and sample preparation equipment, and budget requirements. Methods based on SPME represent simpler alternative, but still require complex calibration procedures. The objective of this research was to develop a simpler, low-budget, and accurate method for quantification of BTEX in ambient air based on SPME and GC-MS. Standard 20-mL headspace vials were used for field air sampling and calibration. To avoid challenges with obtaining and working with 'zero' air, slope factors of external standard calibration were determined using standard addition and inherently polluted lab air. For polydimethylsiloxane (PDMS) fiber, differences between the slope factors of calibration plots obtained using lab and outdoor air were below 14%. PDMS fiber provided higher precision during calibration while the use of Carboxen/PDMS fiber resulted in lower detection limits for benzene and toluene. To provide sufficient accuracy, the use of 20mL vials requires triplicate sampling and analysis. The method was successfully applied for analysis of 108 ambient air samples from Almaty, Kazakhstan. Average concentrations of benzene, toluene, ethylbenzene and o-xylene were 53, 57, 11 and 14µgm(-3), respectively. The developed method can be modified for further quantification of a wider range of volatile organic compounds in air. In addition, the new method is amenable to automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans

    Science.gov (United States)

    Chen, Zhanghua; Salam, Muhammad T.; Toledo-Corral, Claudia; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Wilson, John P.; Trigo, Enrique

    2016-01-01

    OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae. PMID:26868440

  3. Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels.

    Science.gov (United States)

    Yu, Hwa-Lung; Wang, Chih-Hsin

    2013-02-05

    Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.

  4. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Science.gov (United States)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  5. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2018-01-01

    Full Text Available Secondary organic aerosol (SOA formation from ambient air was studied using an oxidation flow reactor (OFR coupled to an aerosol mass spectrometer (AMS during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5 field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3 or weeks (OH of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m−3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  6. Applying policy and health effects of air pollution in South Korea: focus on ambient air quality standards

    Science.gov (United States)

    Ha, Jongsik

    2014-01-01

    Objectives South Korea’s air quality standards are insufficient in terms of establishing a procedure for their management. The current system lacks a proper decision-making process and prior evidence is not considered. The purpose of this study is to propose a measure for establishing atmospheric environmental standards in South Korea that will take into consideration the health of its residents. Methods In this paper, the National Ambient Air Quality Standards (NAAQS) of the US was examined in order to suggest ways, which consider health effects, to establish air quality standards in South Korea. Up-to-date research on the health effects of air pollution was then reviewed, and tools were proposed to utilize the key results. This was done in an effort to ensure the reliability of the standards with regard to public health. Results This study showed that scientific research on the health effects of air pollution and the methodology used in the research have contributed significantly to establishing air quality standards. However, as the standards are legally binding, the procedure should take into account the effects on other sectors. Realistically speaking, it is impossible to establish standards that protect an entire population from air pollution. Instead, it is necessary to find a balance between what should be done and what can be done. Conclusions Therefore, establishing air quality standards should be done as part of an evidence-based policy that identifies the health effects of air pollution and takes into consideration political, economic, and social contexts. PMID:25300297

  7. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China.

    Science.gov (United States)

    Yang, Shaoping; Tan, Yafei; Mei, Hui; Wang, Fang; Li, Na; Zhao, Jinzhu; Zhang, Yiming; Qian, Zhengmin; Chang, Jen Jen; Syberg, Kevin M; Peng, Anna; Mei, Hong; Zhang, Dan; Zhang, Yan; Xu, Shunqing; Li, Yuanyuan; Zheng, Tongzhang; Zhang, Bin

    2018-04-01

    Recent studies suggest that ambient air pollution exposure during pregnancy is associated with stillbirth occurrence. However, the results on the associations between ambient air pollutants and stillbirths are inconsistent and little is known about the gestational timing of sensitive periods for the effects of ambient air pollutants exposure on stillbirth. This study aimed to examine whether exposure to high levels of ambient air pollutants in a Chinese population is associated with an increased risk of stillbirth, and determine the gestational period when the fetus is most susceptible. We conducted a population-based cohort study in Wuhan, China, involving 95,354 births between June 10, 2011 and June 9, 2013. The exposure assessments were based on the daily mean concentrations of air pollutants obtained from the exposure monitor nearest to the pregnant women's residence. Logistic regression analyses were performed to determine the associations between stillbirths and exposure to each of the air pollutants at different pregnancy periods with adjustment for confounding factors. Stillbirth increased with a 10 μg/m 3 increase in particulate matter 2.5 (PM 2.5 ) in each stage of pregnancy, and a significant association between carbon monoxide (CO) exposure and stillbirth was found during the third trimester (adjusted odds ratio (aOR): 1.01, 95% confidence interval (CI): 1.00-1.01) and in the entire pregnancy (aOR: 1.18, 95% CI: 1.04-1.34). Furthermore, an increased risk of stillbirth in the third trimester was associated with a 10 μg/m 3 increase in PM 10 (aOR: 1.08, 95% CI: 1.04-1.11), nitrogen dioxide (NO 2 ) (aOR: 1.13, 95% CI: 1.07-1.21) and sulfur dioxide (SO 2 ) (aOR: 1.26, 95% CI: 1.16-1.35). However, no positive association was observed between ozone exposure and stillbirth. In the two-pollutant models, PM 2.5 and CO exposures were found to be consistently associated with stillbirth. Our study revealed that exposure to high levels of PM 2.5 , PM 10 , SO 2

  8. Socioeconomic disparities and sexual dimorphism in neurotoxic effects of ambient fine particles on youth IQ: A longitudinal analysis.

    Directory of Open Access Journals (Sweden)

    Pan Wang

    Full Text Available Mounting evidence indicates that early-life exposure to particulate air pollutants pose threats to children's cognitive development, but studies about the neurotoxic effects associated with exposures during adolescence remain unclear. We examined whether exposure to ambient fine particles (PM2.5 at residential locations affects intelligence quotient (IQ during pre-/early- adolescence (ages 9-11 and emerging adulthood (ages 18-20 in a demographically-diverse population (N = 1,360 residing in Southern California. Increased ambient PM2.5 levels were associated with decreased IQ scores. This association was more evident for Performance IQ (PIQ, but less for Verbal IQ, assessed by the Wechsler Abbreviated Scale of Intelligence. For each inter-quartile (7.73 μg/m3 increase in one-year PM2.5 preceding each assessment, the average PIQ score decreased by 3.08 points (95% confidence interval = [-6.04, -0.12] accounting for within-family/within-individual correlations, demographic characteristics, family socioeconomic status (SES, parents' cognitive abilities, neighborhood characteristics, and other spatial confounders. The adverse effect was 150% greater in low SES families and 89% stronger in males, compared to their counterparts. Better understanding of the social disparities and sexual dimorphism in the adverse PM2.5-IQ effects may help elucidate the underlying mechanisms and shed light on prevention strategies.

  9. Geometric effects in alpha particle detection from distributed air sources

    International Nuclear Information System (INIS)

    Gil, L.R.; Leitao, R.M.S.; Marques, A.; Rivera, A.

    1994-08-01

    Geometric effects associated to detection of alpha particles from distributed air sources, as it happens in Radon and Thoron measurements, are revisited. The volume outside which no alpha particle may reach the entrance window of the detector is defined and determined analytically for rectangular and cylindrical symmetry geometries. (author). 3 figs

  10. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    Science.gov (United States)

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  11. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2008-08-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006. Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC mixed with nitrate and sulfate, elemental carbon (EC, nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42% which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m. showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m. showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m., weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m., resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh

  12. Time-varying cycle average and daily variation in ambient air pollution and fecundability.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Buck Louis, Germaine M; Sherman, Seth; Mendola, Pauline

    2018-01-01

    Does ambient air pollution affect fecundability? While cycle-average air pollution exposure was not associated with fecundability, we observed some associations for acute exposure around ovulation and implantation with fecundability. Ambient air pollution exposure has been associated with adverse pregnancy outcomes and decrements in semen quality. The LIFE study (2005-2009), a prospective time-to-pregnancy study, enrolled 501 couples who were followed for up to one year of attempting pregnancy. Average air pollutant exposure was assessed for the menstrual cycle before and during the proliferative phase of each observed cycle (n = 500 couples; n = 2360 cycles) and daily acute exposure was assessed for sensitive windows of each observed cycle (n = 440 couples; n = 1897 cycles). Discrete-time survival analysis modeled the association between fecundability and an interquartile range increase in each pollutant, adjusting for co-pollutants, site, age, race/ethnicity, parity, body mass index, smoking, income and education. Cycle-average air pollutant exposure was not associated with fecundability. In acute models, fecundability was diminished with exposure to ozone the day before ovulation and nitrogen oxides 8 days post ovulation (fecundability odds ratio [FOR] 0.83, 95% confidence interval [CI]: 0.72, 0.96 and FOR 0.84, 95% CI: 0.71, 0.99, respectively). However, particulate matter ≤10 microns 6 days post ovulation was associated with greater fecundability (FOR 1.25, 95% CI: 1.01, 1.54). Although our study was unlikely to be biased due to confounding, misclassification of air pollution exposure and the moderate study size may have limited our ability to detect an association between ambient air pollution and fecundability. While no associations were observed for cycle-average ambient air pollution exposure, consistent with past research in the United States, exposure during critical windows of hormonal variability was associated with prospectively measured couple

  13. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults.

    Science.gov (United States)

    Chen, Jiu-Chiuan; Schwartz, Joel

    2009-03-01

    In vivo animal experiments demonstrate neurotoxicity of exposures to particulate matter (PM) and ozone, but only one small epidemiological study had linked ambient air pollution with central nervous system (CNS) functions in children. To examine the neurobehavioral effects associated with long-term exposure to ambient PM and ozone in adults. We conducted a secondary analysis of the Neurobehavioral Evaluation System-2 (NES2) data (including a simple reaction time test [SRTT] measuring motor response speed to a visual stimulus; a symbol-digit substitution test [SDST] for coding ability; and a serial-digit learning test [SDLT] for attention and short-term memory) from 1764 adult participants (aged 37.5+/-10.9 years) of the Third National Health and Nutrition Examination Survey in 1988-1991. Based on ambient PM(10) (PM with aerodynamic diameter SDLT, but not in SRTT. Each 10-ppb increase in annual ozone was associated with increased SDST and SDLT scores by 0.16 (95%CI: 0.01, 0.23) and 0.56 (95%CI: 0.07, 1.05), equivalent to 3.5 and 5.3 years of aging-related decline in cognitive performance. Our study provides the first epidemiological data supporting the adverse neurobehavioral effects of ambient air pollutants in adults.

  14. Contribution of road traffic to ambient fine particle concentrations (PM{sub 10}) in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Hueglin, Ch.; Devos, W.; Gehrig, R.; Hofer, P.; Kobler, J. [Swiss Federal Laboratoires for Materials Testing and Research, EMPA, Dubendorf (Switzerland); Stahel, W.A. [Seminar for Statistics, ETH Zurich (Switzerland); Baltensperger, U. [Paul Scherrer Institute, Villigen PSI (Switzerland); Monn, Ch. [Institute for Hygiene and Applied Physiology, ETH Zurich (Switzerland)

    2000-07-01

    A multivariate receptor model was applied to estimate the contribution of road traffic to ambient levels of fine particles (PM{sub 10}) at different locations in Switzerland. At two roadside sites with heavy local traffic, the road traffic was found to account for 46% and 64% of PM{sub 10}. At an urban background site, the estimated average road traffic contribution was 34%, whereas a slightly higher value was obtained at a suburban site (36%). This results are in good agreement with the findings of a recent study, where a conceptually different approach (dispersion modelling) was applied. (authors)

  15. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model.

    Science.gov (United States)

    Weichenthal, Scott; Van Ryswyk, Keith; Goldstein, Alon; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2016-01-01

    Exposure models are needed to evaluate the chronic health effects of ambient ultrafine particles (bus routes as well as variables for the number of on-street trees, parks, open space, and the length of bus routes within a 100 m buffer. There was no systematic difference between measured and predicted values when the model was evaluated in an external dataset, although the R(2) value decreased (R(2) = 50%). This model will be used to evaluate the chronic health effects of UFPs using population-based cohorts in the Toronto area. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Ambient air pollution and cancer in California Seventh-day Adventists.

    Science.gov (United States)

    Mills, P K; Abbey, D; Beeson, W L; Petersen, F

    1991-01-01

    Cancer incidence and mortality in a cohort of 6,000 Seventh-day Adventist nonsmokers who were residents of California were monitored for a 6-y period, and relationships with long-term ambient concentrations of total suspended particulates (TSPs) and ozone (O3) were studied. Ambient concentrations were expressed as mean concentrations and exceedance frequencies, which are the number of hours during which concentrations exceeded specified cutoffs (e.g., federal and California air quality standards). Risk of malignant neoplasms in females increased concurrently with exceedance frequencies for all TSP cutoffs, except the lowest, and these increased risks were highly statistically significant. An increased risk of respiratory cancers was associated with only one cutoff of O3, and this result was of borderline significance. These results are presented in the context of setting standards for these two air pollutants.

  17. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data.... Primary and Secondary Ambient Air Quality Standards for Ozone. 2.1 Data Reporting and Handling Conventions... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of...

  18. Assessing plant response to ambient ozone: growth of young apple trees in open-top chambers and corresponding ambient air plots

    International Nuclear Information System (INIS)

    Manning, W.J.; Cooley, D.R.; Tuttle, A.F.; Frenkel, M.A.; Bergweiler, C.J.

    2004-01-01

    Open-top chambers (OTCs) and corresponding ambient air plots (AA) were used to assess the impact of ambient ozone on growth of newly planted apple trees at the Montague Field research center in Amherst, MA. Two-year-old apple trees (Malus domestica Borkh 'Rogers Red McIntosh') were planted in the ground in circular plots. Four of the plots were enclosed with OTCs where incoming air was charcoal-filtered (CF); four were enclosed with OTCs where incoming air was not charcoal-filtered (NF) and four were not enclosed, allowing access to ambient air conditions (AA). Conditions in both CF and NF OTCs resulted in increased tree growth and changed incidence of disease and arthropod pests, compared to trees in AA. As a result, we were not able to use the OTC method to assess the impact of ambient ozone on growth of young apple trees in Amherst, MA. - Capsule: Conditions in charcoal-filtered and non-filtered open-top chambers affected apple tree growth equally and prevented assessment of ambient ozone effects

  19. Air pollution dry deposition: radioisotopes as particles and volatiles

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This study focuses on determining volcanic ash and ambient airborne solids concentrations at various sampling sites subsequent to the Mt. St. Helens' eruption in order to develop an experimental basis for models predicting removal of airborne particles and gases by dry deposition onto outdoor surfaces. In addition, deposition rates were determined using dual tracer techniques in the field and in a wind tunnel in the laboratory

  20. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Speciated mercury measurements in ambient air from 2009 to 2011 at a Central European rural background monitoring site

    Directory of Open Access Journals (Sweden)

    Weigelt A.

    2013-04-01

    Full Text Available Since January 2009 highly time-resolved mercury speciation measurements in ambient air are carried out at the Central European German EMEP monitoring station and measurement site of the German Federal Environment Agency “Waldhof“, providing the longest Central European dataset for mercury species. First statistical analyses do not indicate long term trends for the concentrations of gaseous elemental mercury (GEM and particle bound mercury (TPM. A potential increasing trend for reactive gaseous mercury (RGM will have to be verified in the coming years and should be regarded as indicative only at present. A seasonal cycle for TPM could be observed with higher concentrations during winter time. Furthermore a diurnal cycle for RGM is apparent with highest concentrations in the early afternoon.

  2. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  3. Personal exposures of preschool children to carbon monoxide: roles of ambient air quality and gas stoves

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Reponen, A.; Mukala, K.; Pasanen, P.; Tuomisto, J.; Jantunen, M.J. (National Public Health Institute, Kuopio (Finland). Division of Environmental Health)

    1994-12-01

    Personal 1 h mean CO exposures of preschool children in two day care centers (Toolo and Vallila) in Helsinki were measured with continuously recording personal exposure monitors. In Vallila, the median CO exposure of children from homes with gas stoves was 2.0 mgm[sup -3], and with electric stoves, 0.9 mgm[sup -3]. In Tooloo, the corresponding values were 1.9 and 1.0 mgm[sup -3], respectively. The national ambient air quality guidelines for CO in Finland were exceeded in a few percent of the exposure measurements. The results were compared to fixed-site ambient air monitoring data and related to the presence of town-gas fired stoves in the children's homes. The results show that fixed-site ambient air monitors are of little value in predicting personal exposures of children or even their relative differences between areas. They also show that town-gas fired stoves may have a profound effect on the CO exposures of the children. 8 refs., 4 figs., 3 tabs.

  4. Assessment of ambient air quality in Chidambaram a south Indian town

    Directory of Open Access Journals (Sweden)

    P. Balashanmugam

    2012-06-01

    Full Text Available Worldwide preliminary studies in large number are advocated to create data base, to identify potential cities / towns that warrant “continuous ambient air quality monitoring and control mechanism” and to evolve priorities for clean air target. The results reported pertain to an eight hour random preliminary air sampling exercise carried out at each of the eight select locations in Chidambaram, a southern semi urban settlement in India. Criteria pollutants SPM, CO, SO2 and NO2 measured are found to have either crossed or on the verge of crossing the limits, necessitating the immediate installation of a continuous monitoring and control mechanism. While transport related emissions are the major sources of air contamination, increasing civil construction activities also contribute to particulates. The exponential rise in volume of vehicles, disadvantageous traffic flow pattern, differing driving cycle pattern and human interceptions deserve due attention. It is concluded that Chidambaram town is a strong case for continuous monitoring of ambient air quality due to alarming and increasing level of pollutants.

  5. Indoor Air '93. Particles, microbes, radon

    International Nuclear Information System (INIS)

    Kalliokoski, P.; Jantunen, M.; Seppaenen, O.

    1993-01-01

    The conference was held in Helsinki, Finland, July 4-8, 1993. The proceedings of the conference were published in 6 volumes. The main topics of the volume 5 are: (1) particles, fibers and dust - their concentrations and sources in buildings, (2) Health effects of particles, (3) Need of asbestos replacement and encapsulation, (4) Seasonal and temporal variation of fungal and bacterial concentration, (5) The evaluation of microbial contamination of buildings, (6) New methods and comparison of different methods for microbial sampling and evaluation, (7) Microbes in building materials and HVAC-systems, (8) Prevention of microbial contamination in buildings, (9) Dealing with house dust mites, (10) Radon measurements and surveys in different countries, (11) The identification of homes with high radon levels, (12) The measurement methods and prediction of radon levels in buildings, and (13) Prevention of radon penetration from the soil

  6. Analysis of Air Particles Around Site Plan of Gold Mining, North Sumatera

    International Nuclear Information System (INIS)

    Gatot-Suhariyono; Erizal-Tanjung

    2004-01-01

    Analysis of air particles around site plan of gold mining, North Sumatra has been conducted. Air particles of TSP (Total Suspended Particulate), which has maximum diameter around 45 μm (PM 2.5 ) was sampled in four places using impactor cascade. The measurement results indicate that concentration of TSP and PM 10 /PM 2.5 were in site plan center of mining smaller than quality standard of ambient air (PP RI no. 41/1999), while the concentration in areas of around it was on the contrary. The concentration in areas of around the mining was not because of air particle from in site plan center of mining. Based on regulatory of BAPEDAL head no. Kep-107/BAPEDAL/11/1997, concentration of PM 10 /PM 2.5 and TSP in site plan center of mining is in moderate category, while in areas of around the mining are in unhealthy category. Unhealthy category affects decrease at view distance and happened dust defilement everywhere, while moderate category is only happened degradation of view distance. (author)

  7. Intraurban Spatiotemporal Variability of Ambient Air Pollutants across Metropolitan St. Louis

    Science.gov (United States)

    Du, Li

    Ambient air monitoring networks have been established in the United States since the 1970s to comply with the Clean Air Act. The monitoring networks are primarily used to determine compliance but also provide substantive support to air quality management and air quality research including studies on health effects of air pollutants. The Roxana Air Quality Study (RAQS) was conducted at the fenceline of a petroleum refinery in Roxana, Illinois. In addition to providing insights into air pollutant impacts from the refinery, these measurements increased the St. Louis area monitoring network density for gaseous air toxics and fine particulate matter (PM2.5) speciation and thus provided an opportunity to examine intraurban spatiotemporal variability for these air quality parameters. This dissertation focused on exploring and assessing aspects of ambient air pollutant spatiotemporal variability in the St. Louis area from three progressively expanded spatial scales using a suite of methods and metrics. RAQS data were used to characterize air quality conditions in the immediate vicinity of the petroleum refinery. For example, PM2.5 lanthanoids were used to track impacts from refinery fluidized bed catalytic cracker emissions. RAQS air toxics data were interpreted by comparing to network data from the Blair Street station in the City of St. Louis which is a National Air Toxics Trends Station. Species were classified as being spatially homogeneous (similar between sites) or heterogeneous (different between sites) and in the latter case these differences were interpreted using surface winds data. For PM 2.5 species, there were five concurrently operating sites in the St. Louis area - including the site in Roxana - which are either formally part of the national Chemical Speciation Network (CSN) or rigorously follow the CSN sampling and analytical protocols. This unusually large number of speciation sites for a region the size of St. Louis motivated a detailed examination of

  8. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    Science.gov (United States)

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  9. Surface charge accumulation of particles containing radionuclides in open air.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Multi-Gas analysis of ambient air using FTIR spectroscopy over Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Grutter, Michel [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2003-01-01

    A Fourier Transform Infrared (FTIR) spectrometer was used to analyze the composition of ambient air at a specific site in Mexico City metropolitan area. A continuous flow of air was passed through a multi-pass cell and the absorption spectra were collected over a period of two weeks. Quantitative analysis was performed by means of the classical-least square (CLS) method using synthetically generated spectra as references and calibration sources. Ambient levels of CO, CO{sup 2}, CH{sub 4} and N{sub 2}O are reported with a time resolution of five minutes for September 2001, showing interesting results in their diurnal patterns. Comments on the precision, detection limits and signal to noise of the instrument are included for the evaluation of this technique. Water concentrations were estimated and compared with those obtained with a relative humidity sensor. The technique of extractive FTIR for ambient trace gas monitoring was utilized in Mexico for the fist time and some potential applications are given. [Spanish] Se utilizo un espectrometro en el infrarrojo por transformadas de Fourier (FTIR) para analizar la composicion de aire ambiente en un sitio de la zona metropolitana de la Ciudad de Mexico. Para ello se introdujo un flujo constante de aire a una celda de gases de paso multiple y se colectaron los espectros durante un periodo de dos semanas. Para el analisis cuantitativo, se aplico el metodo clasico de minimos cuadrados (CLS) utilizando espectros sinteticos como referencias y fuentes de calibracion. Se observaron patrones interesantes en los niveles ambientales de CO, CO{sup 2}, CH{sub 4} y N{sub 2}O, los cuales son reportados con una resolucion temporal de cinco minutos para el mes de septiembre del 2001. En la evaluacion de esta tecnica se incluyen comentarios sobre la precision, los limites de deteccion, asi como de la relacion senal/ruido del instrumento. Se estimaron concentraciones de vapor de agua a traves de sus absorciones en el infrarrojo y se

  11. An Evaluation of Uncertainty Associated to Analytical Measurements of Selected Polycyclic Aromatic Compounds in Ambient Air; Estudio sobre las Incertidumbres Asociadas al Metodo de Determinacion de PAC's Seleccionados en Muestras de Aire Ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Barrado, A. I.; Garcia, S.; Perez, R. M.

    2013-06-01

    This paper presents an evaluation of uncertainty associated to analytical measurement of eighteen polycyclic aromatic compounds (PACs) in ambient air by liquid chromatography with fluorescence detection (HPLC/FD). The study was focused on analyses of PM{sub 1}0, PM{sub 2}.5 and gas phase fractions. Main analytical uncertainty was estimated for eleven polycyclic aromatic hydrocarbons (PAHs), four nitro polycyclic aromatic hydrocarbons (nitro-PAHs) and two hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) based on the analytical determination, reference material analysis and extraction step. Main contributions reached 15-30% and came from extraction process of real ambient samples, being those for nitro- PAHs the highest (20-30%). Range and mean concentration of PAC mass concentrations measured in gas phase and PM{sub 1}0/PM{sub 2}.5 particle fractions during a full year are also presented. Concentrations of OH-PAHs were about 2-4 orders of magnitude lower than their parent PAHs and comparable to those sparsely reported in literature. (Author) 7 refs.

  12. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    Science.gov (United States)

    Klett, James; Klett, Lynn

    2018-04-03

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambient air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.

  13. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China

    International Nuclear Information System (INIS)

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-01-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m 3 increase in the present-day PM 10 , PM 2.5 , SO 2 , NO 2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0–21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0–3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. - Highlights: • Few studies have evaluated the effects of air pollution and temperature on OHCDs in China. • The present-day concentrations of air pollution were associated with OHCDs. • The effect of high temperatures on OHCDs was more immediate than low temperatures. • No significant effects were found for in-hospital coronary deaths. - Ambient air pollution and temperature may trigger out-of-hospital coronary deaths but not in-hospital coronary deaths

  14. The burden of ischemic heart disease related to ambient air pollution exposure in a coastal city in South China.

    Science.gov (United States)

    Huang, Jing; Li, Guoxing; Qian, Xujun; Xu, Guozhang; Zhao, Yan; Huang, Jian; Liu, Qichen; He, Tianfeng; Guo, Xinbiao

    2018-07-01

    Air pollution is considered one of the most important risk factors for ischemic heart disease (IHD), which is a major public health concern. The disease burden of IHD has continued to rise in China in the past two decades. However, epidemiological studies examining the associations between air pollution and IHD have been scarce in China, and the only studies were conducted in severe air pollution areas, where air pollution levels seriously exceed the World Health Organization Air Quality Guidelines. Whether the influence of air pollution on IHD in areas with relatively low levels of air pollution differs from the influence of high pollution levels in heavily studied areas was unknown until now. Furthermore, the estimation of the disease burden of IHD related to air pollution has been very limited. We conducted a time-series study to estimate the short-term burden of ambient air pollution on IHD using the indicator of years of life lost (YLL), based on 10 322 IHD deaths from 2011 to 2015 in Ningbo, a coastal city in South China. The mean concentrations of fine particle (PM 2.5 ), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) were 49.58 μg/m 3 , 21.34 μg/m 3 and 43.41 μg/m 3 , respectively. A 10 μg/m 3 increase in PM 2.5 , SO 2 and NO 2 was associated with changes in YLL of 0.71 (95%CI: - 0.21,1.64), 3.31 (95%CI: 0.78, 5.84), and 2.27 (95%CI: 0.26, 4.28) years, respectively. Relatively stronger impacts were found for gaseous pollutants than PM 2.5 . A larger increase in YLL was found in the younger population than in the older population for NO 2 exposure. In addition, estimations of the effects of SO 2 and NO 2 on YLL were higher for males than females. SO 2 exposure was positively associated with YLL in widowed group. The findings highlighted the importance of stringent air pollution control, especially for gaseous pollutants. Furthermore, using the indicator of YLL, considering the occurrence of death at different ages, provided more

  15. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  16. Declining ambient air pollution and lung function improvement in Austrian children

    Science.gov (United States)

    Neuberger, Manfred; Moshammer, Hanns; Kundi, Michael

    Three thousand four hundred fifty-one Austrian elementary school children were examined (between 2 and 8 times) by spirometry by standardized methods, over a 5 yr period. The districts where they lived were grouped into those where NO 2 declined during this period (by at least 30 μg/m 3 measured as half year means) and those with less or no decline in ambient NO 2. In both groups of districts, SO 2 and TSP fell by similar amounts over this period. A continuous improvement of MEF25 (maximum exspiratory flow rate at 25% vital capacity) was found in districts with declining ambient NO 2. Populations did not differ in respect of anthropometric factors, passive smoking or socioeconomic status. A birth cohort from this study population which was followed up to age 18 confirmed the improved growth of MEF25 with decline in NO 2, while the improved growth of forced vital capacity was more related to decline in SO 2. This study provides the first evidence that improvements in the outdoor air quality during the 1980s are correlated with health benefits, and suggest that adverse effects on lung function related to ambient air pollution are reversible before adulthood. Improvement of small airway functions appeared to be more dependent on reductions of NO 2 than reduction in SO 2 and TSP.

  17. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    Science.gov (United States)

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  18. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Science.gov (United States)

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  19. The ambient air quality accounts for the Nova Scotia Genuine Progress Index

    International Nuclear Information System (INIS)

    Monette, A.; Colman, R.

    2004-01-01

    The Nova Scotia Genuine Progress Index (GPI) is a measure of sustainable development which provides a complete and accurate picture of our well-being as a society. The GPI assigns explicit values to environmental quality, population health, livelihood security, equity, free time, and educational attainment. The Nova Scotia GPI includes 22 social, economic and environmental components, including ambient air quality. This report investigates Nova Scotia's ambient air concentrations and emissions of carbon monoxide (CO), total particulate matter (PM), sulphur dioxide (SO 2 ), nitrogen oxides (NOx), and volatile organic compounds (VOC). The costs of damages caused by the these key air pollutants are also examined. Exposure to these pollutants results in negative impacts on human health, damage to materials, agricultural crops and changes in forest productivity. From 1979 to 1996, national ambient concentrations of each of these pollutants decreased significantly. However, the national average concentration of ground-level ozone increased by 34 per cent during the same time period. In Nova Scotia, concentrations of CO, PM and SO 2 have declined dramatically since 1979, but the trends for NO 2 and ground-level ozone do not show significant declines. On a per capita basis, SOx emissions from electric power generation in the province are more than 8 times the Canadian average. The province also had higher per capita emissions of CO, PM, SOx and VOCs than all reporting OECD countries. Electric power generation is the greatest source of fuel combustion emissions in the province, followed by industrial and transportation sources. This report also described some individual actions that can be taken to reduce air pollutant emissions. 174 refs., 37 tabs., 60 figs

  20. An enzymatic-fluorimetric method for monitoring of ethanol in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, M.; Voigt, G.; Klockow, D. [Institut fuer Spektrochemie und Angewandte Spektroskopie (ISAS), Dortmund (Germany); Tavares, T. [Instituto de Quimica, Universidade Federal da Bahia (UFBa), Rua Augusto Viana, s/n - Canela, 40110-010 Salvador/Bahia (Brazil)

    1999-05-01

    A method is described for the continuous monitoring of ethanol in ambient air. The system consists of a scrubber coil for enrichment of the analyte from air in an aqueous solution and a directly connected fluorescence detector. Because of using a reagent solution containing alcohol dehydrogenase (ADH) and nicotinamide adenine dinucleotide (NAD{sup +}) for absorption, ethanol can react directly with ADH and NAD{sup +} during air sampling, producing NADH, which can be measured by fluorescence detection. The influence of reagent concentrations, gas flow rate and scrubber solution flow rate on the performance of the instrument was tested. Possible ozone interferences can be avoided by placing a KI coated filter in front of the scrubber inlet. The response time of the system was found to be 2.3 min and the detection limit about 1 ppb{sub V}. The applicability of the developed method was demonstrated during a field campaign in Brazil. (orig.) With 7 figs., 35 refs.

  1. The relationships between ambient air pollutants and childhood asthma and eczema are modified by emotion and conduct problems.

    Science.gov (United States)

    Zhou, Cailiang; Baïz, Nour; Banerjee, Soutrik; Charpin, Denis André; Caillaud, Denis; de Blay, Fréderic; Raherison, Chantal; Lavaud, François; Annesi-Maesano, Isabella

    2013-12-01

    This study examined the hypothesis that emotion and conduct problems (ECPs) may modify the relationships between ambient air pollutants and childhood asthma and eczema. In the cross-sectional study, 4209 French schoolchildren (aged 10e12 years) were investigated between March 1999 and October 2000. Ambient air pollutants exposures were estimated with dispersion modeling. Health outcomes and ECPs were evaluated by validated questionnaires, completed by the parents. Marginal models were used to analyze the relationships of exposures to ambient air pollutants and/or ECPs to asthma phenotypes and current eczema, adjusting for potential confounders. In our population, interactions were found between ECPs and exposures to ambient air pollutants (benzene, carbon monoxide, nitrogen dioxide, nitrogen oxides, particulate matter with an aerodynamic diameter below 10 mm, volatile organic compounds) (P eczema (aOR, 2.21; 95% CI, 1.61e3.02). Children with ECPs had 1.17e1.51 times higher aORs for the associations between ambient air pollutants and asthma phenotypes and current eczema than those without ECPs. ECPs may modify the relationships between ambient air pollutants and childhood asthma and eczema. 2013 Elsevier Inc. All rights reserved.

  2. Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants – Analytical approach

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.

    2016-01-01

    Highlights: • An analytical method regulated the air flow rate in an air-cooled heat exchanger. • Performance of an ACHE in a propane cycle in an LNG plant was evaluated. • Summer inlet air temperature had higher impact on ACHE air flow rate requirement. - Abstract: An analytical method is presented to evaluate the air flow rate required in an air-cooled heat exchanger used in a propane pre-cooling cycle operating in an LNG (liquefied natural gas) plant. With variable ambient air inlet temperature, the air flow rate is to be increased or decreased so as to assure and maintain good performance of the operating air-cooled heat exchanger at the designed parameters and specifications. This analytical approach accounts for the variations in both heat load and ambient air inlet temperature. The ambient air inlet temperature is modeled analytically by simplified periodic relations. Thus, a complete analytical method is described so as to manage the problem of determining and accordingly regulate, either manually or automatically, the flow rate of air across the finned tubes of the air-cooled heat exchanger and thus, controls the process fluid outlet temperature required for the air-cooled heat exchangers for both cases of constant and varying heat loads and ambient air inlet temperatures. Numerical results are obtained showing the performance of the air-cooled heat exchanger of a propane cycle which cools both NG (natural gas) and MR (mixed refrigerant) streams in the LNG plant located at Damietta, Egypt. The inlet air temperature variation in the summer time has a considerable effect on the required air mass flow rate, while its influence becomes relatively less pronounced in winter.

  3. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with NO3/N2O5

    Science.gov (United States)

    Zimmermann, K.; Jariyasopit, N.; Simonich, S. L.; Atkinson, R.; Arey, J.

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (nitro-PAHs) have been shown to be mutagenic in bacterial and mammalian assays and are classified as probable human carcinogens. Semi-volatile PAHs partition between the gas and particulate phases, depending on their liquid-phase vapor pressures and ambient temperatures. These PAHs have been extensively measured in ambient particulate matter and can ultimately undergo long-range transport from source regions (e.g., China to the western USA) (1). During transport these particle-bound PAHs may undergo reaction with NO3/N2O5 to form nitro-PAH derivatives. Previous studies of heterogeneous nitration of PAHs have used particles composed of graphite, diesel soot, and wood smoke (2-4). This study investigates the heterogeneous formation of nitro-PAHs from ambient particle-bound PAHs from Beijing, China and sites located within the Los Angeles air basin. These ambient particle samples, along with filters coated with isotopically labeled PAHs, were exposed to a mix of NO2/NO3/N2O5 in a 7000 L Teflon chamber, with analysis focused on the heterogeneous formation of molecular weight 247 and 273 nitro-PAHs. The heterogeneous formation of certain nitro-PAHs (including1-nitropyrene and 1- and 2-nitrotriphenylene) was observed for some, but not all, ambient samples. Formation of nitro-PAHs typically formed through gas-phase reactions (2-nitrofluoranthene and 2-nitropyrene) was not observed. The effect of particle age and local photochemical conditions during sampling on the degree of nitration in environmental chamber reactions, as well as ambient implications, will be presented. 1. Primbs, T.; Simonich, S.; Schmedding, D.; Wilson, G.; Jaffe, D.; Takami, A.; Kato, S.; Hatakeyama, S.; Kajii, Y. Environ. Sci. Technol. 2007, 41, 3551-3558. 2. Esteve, W.; Budzinski, H.; Villenave, E. Atmospheric Environment 2004, 38, 6063-6072. 3. Nguyen, M.; Bedjanian, Y.; Guilloteau, A. Journal of Atmospheric Chemistry 2009, 62

  4. Characterization of ambient particles size in workplace of manufacturing physical fitness equipments

    Science.gov (United States)

    LIN, Chih-Chung; CHEN, Mei-Ru; CHANG, Sheng-Lang; LIAO, Wei-Heng; CHEN, Hsiu-Ling

    2014-01-01

    The manufacturing of fitness equipment involves several processes, including the cutting and punching of iron tubes followed by welding. Welding operations produce hazardous gases and particulate matter, which can enter the alveolar, resulting in adverse health effects. This study sought to verify the particle size distribution and exposure concentrations of atmospheric air samples in various work areas of a fitness equipment manufacturing industry. Observed particle concentrations are presented by area and in terms of relative magnitude: painting (15.58 mg/m3) > automatic welding (0.66 mg/m3) > manual welding (0.53 mg/m3) > punching (0.18 mg/m3) > cutting (0.16 mg/m3). The concentrations in each of the five work areas were Cinh>Cthor>Cresp. In all areas except the painting area, extra-fine particles produced by welding at high temperatures, and further those coagulated to form larger particles. This study observed bimodal distribution in the size of welding fume in the ranges of 0.7–1 µm and 15–21 µm. Meanwhile, the mass concentrations of particles with different sizes were not consistent across work areas. In the painting area, the mass concentration was higher in Chead>Cth>Calv, but in welding areas, it was found that Calv>Chead>Cth. Particles smaller than 1µm were primarily produced by welding. PMID:25327301

  5. Association between ambient air pollution and pregnancy rate in women who underwent IVF.

    Science.gov (United States)

    Choe, S A; Jun, Y B; Lee, W S; Yoon, T K; Kim, S Y

    2018-04-05

    Are the concentrations of five criteria air pollutants associated with probabilities of biochemical pregnancy loss and intrauterine pregnancy in women? Increased concentrations of ambient particulate matter (PM10), nitrogen dioxide (NO2), carbon monoxide (CO) during controlled ovarian stimulation (COS) and after embryo transfer were associated with a decreased probability of intrauterine pregnancy. Exposure to high ambient air pollution was suggested to be associated with low fertility and high early pregnancy loss in women. Using a retrospective cohort study design, we analysed 6621 cycles of 4581 patients who underwent one or more fresh IVF cycles at a fertility centre from January 2006 to December 2014, and lived in Seoul at the time of IVF treatment. To estimate patients' individual exposure to air pollution, we computed averages of hourly concentrations of five air pollutants including PM10, NO2, CO, sulphur dioxide (SO2) and ozone (O3) measured at 40 regulatory monitoring sites in Seoul for each of the four exposure periods: period 1 (start of COS to oocyte retrieval), period 2 (oocyte retrieval to embryo transfer), period 3 (embryo transfer to hCG test), and period 4 (start of COS to hCG test). Hazard ratios (HRs) from the time-varying Cox-proportional hazards model were used to estimate probabilities of biochemical pregnancy loss and intrauterine pregnancy for an interquartile range (IQR) increase in each air pollutant concentration during each period, after adjusting for individual characteristics. We tested the robustness of the result using generalised linear mixed model, accounting for within-woman correlation. Mean age of the women was 35 years. Average BMI was 20.9 kg/m2 and the study population underwent 1.4 IVF cycles on average. Cumulative pregnancy rate in multiple IVF cycles was 51.3% per person. Survival analysis showed that air pollution during periods 1 and 3 was generally associated with IVF outcomes. Increased NO2 (adjusted HR = 0.93, 95% CI

  6. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  7. Ambient air pollution exposure and the incidence of related health effects among racial/ethnic minorities

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Wernette, D.R.

    1997-02-01

    Differences among racial and ethnic groups in morbidity and mortality rates for diseases, including diseases with environmental causes, have been extensively documented. However, documenting the linkages between environmental contaminants, individual exposures, and disease incidence has been hindered by difficulties in measuring exposure for the population in general and for minority populations in particular. After briefly discussing research findings on associations of common air pollutants with disease incidence, the authors summarize recent studies of radial/ethnic subgroup differences in incidence of these diseases in the US. They then present evidence of both historic and current patterns of disproportionate minority group exposure to air pollution as measured by residence in areas where ambient air quality standards are violated. The current indications of disproportionate potential exposures of minority and low-income populations to air pollutants represent the continuation of a historical trend. The evidence of linkage between disproportionate exposure to air pollution of racial/ethnic minorities and low-income groups and their higher rates of some air pollution-related diseases is largely circumstantial. Differences in disease incidence and mortality rates among racial/ethnic groups are discussed for respiratory diseases, cancers, and lead poisoning. Pollutants of concern include CO, Pb, SO{sub 2}, O{sub 3}, and particulates.

  8. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  9. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution.

    Science.gov (United States)

    Kelly, Frank J; Fussell, Julia C

    2017-09-01

    Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.

    Science.gov (United States)

    Didas, Stephanie A; Kulkarni, Ambarish R; Sholl, David S; Jones, Christopher W

    2012-10-01

    A fundamental study on the adsorption properties of primary, secondary, and tertiary amine materials is used to evaluate what amine type(s) are best suited for ultradilute CO(2) capture applications. A series of comparable materials comprised of primary, secondary, or tertiary amines ligated to a mesoporous silica support via a propyl linker are used to systematically assess the role of amine type. Both CO(2) and water adsorption isotherms are presented for these materials in the range relevant to CO(2) capture from ambient air and it is demonstrated that primary amines are the best candidates for CO(2) capture from air. Primary amines possess both the highest amine efficiency for CO(2) adsorption as well as enhanced water affinity compared to other amine types or the bare silica support. The results suggest that the rational design of amine adsorbents for the extraction of CO(2) from ambient air should focus on adsorbents rich in primary amines. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    International Nuclear Information System (INIS)

    He, X.N.; Xie, Z.Q.; Gao, Y.; Hu, W.; Guo, L.B.; Jiang, L.; Lu, Y.F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  12. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    Science.gov (United States)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  13. Personal and ambient exposures to air toxics in Camden, New Jersey.

    Science.gov (United States)

    Lioy, Paul J; Fan, Zhihua; Zhang, Junfeng; Georgopoulos, Panos; Wang, Sheng-Wei; Ohman-Strickland, Pamela; Wu, Xiangmei; Zhu, Xianlei; Harrington, Jason; Tang, Xiaogang; Meng, Qingyu; Jung, Kyung Hwa; Kwon, Jaymin; Hernandez, Marta; Bonnano, Linda; Held, Joann; Neal, John

    2011-08-01

    Personal exposures and ambient concentrations of air toxics were characterized in a pollution "hot spot" and an urban reference site, both in Camden, New Jersey. The hot spot was the city's Waterfront South neighborhood; the reference site was a neighborhood, about 1 km to the east, around the intersection of Copewood and Davis streets. Using personal exposure measurements, residential ambient air measurements, statistical analyses, and exposure modeling, we examined the impact of local industrial and mobile pollution sources, particularly diesel trucks, on personal exposures and ambient concentrations in the two neighborhoods. Presented in the report are details of our study design, sample and data collection methods, data- and model-analysis approaches, and results and key findings of the study. In summary, 107 participants were recruited from nonsmoking households, including 54 from Waterfront South and 53 from the Copewood-Davis area. Personal air samples were collected for 24 hr and measured for 32 target compounds--11 volatile organic compounds (VOCs*), four aldehydes, 16 polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) with an aerodynamic diameter 0.6) was found between benzene and MTBE in both locations. These results suggest that automobile exhausts were the main contributors to benzene and MTBE air pollution in both neighborhoods. Formaldehyde and acetaldehyde concentrations were found to be high in both neighborhoods. Mean (+/- SD) concentrations of formaldehyde were 20.2 +/- 19.5 microg/m3 in Waterfront South and 24.8 +/- 20.8 microg/m3 in Copewood-Davis. A similar trend was observed for the two compounds during the saturation-sampling campaigns. The results indicate that mobile sources (i.e., diesel trucks) had a large impact on formaldehyde and acetaldehyde concentrations in both neighborhoods and that both are aldehyde hot spots. The study also showed that PM2.5, aldehydes, BTEX, and MTBE concentrations in both Waterfront South

  14. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    Science.gov (United States)

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  15. Effect of Nanoparticles and Environmental Particles on a Cocultures Model of the Air-Blood Barrier

    Directory of Open Access Journals (Sweden)

    Rossella Bengalli

    2013-01-01

    Full Text Available Exposure to engineered nanoparticles (NPs and to ambient particles (PM has increased significantly. During the last decades the application of nano-objects to daily-life goods and the emissions produced in highly urbanized cities have considerably augmented. As a consequence, the understanding of the possible effects of NPs and PM on human respiratory system and particularly on the air-blood barrier (ABB has become of primary interest. The crosstalk between lung epithelial cells and underlying endothelial cells is indeed essential in determining the effects of inhaled particles. Here we report the effects of metal oxides NPs (CuO and TiO2 and of PM on an in vitro model of the ABB constituted by the type II epithelial cell line (NCI-H441 and the endothelial one (HPMEC-ST1.6R. The results demonstrate that apical exposure of alveolar cells induces significant modulation of proinflammatory proteins also in endothelial cells.

  16. Ambient air emissions of polycyclic aromatic hydrocarbons and female breast cancer incidence in US.

    Science.gov (United States)

    Stults, William Parker; Wei, Yudan

    2018-05-05

    To examine ambient air pollutants, specifically polycyclic aromatic hydrocarbons (PAHs), as a factor in the geographic variation of breast cancer incidence seen in the US, we conducted an ecological study involving counties throughout the US to examine breast cancer incidence in relation to PAH emissions in ambient air. Age-adjusted incidence rates of female breast cancer from the surveillance, epidemiology, and end results (SEER) program of the US National Cancer Institute were collected and analyzed using SEER*Stat 8.3.2. PAH emissions data were obtained from the Environmental Protection Agency. Linear regression analysis was performed using SPSS 23 software for Windows to analyze the association between PAH emissions and breast cancer incidence, adjusting for potential confounders. Age-adjusted incidence rates of female breast cancer were found being significantly higher in more industrialized metropolitan SEER regions over the years of 1973-2013 as compared to less industrialized regions. After adjusting for sex, race, education, socioeconomic status, obesity, and smoking prevalence, PAH emission density was found to be significantly associated with female breast cancer incidence, with the adjusted β of 0.424 (95% CI 0.278, 0.570; p < 0.0001) for emissions from all sources and of 0.552 (95% CI 0.278, 0.826; p < 0.0001) for emissions from traffic source. This study suggests that PAH exposure from ambient air could play a role in the increased breast cancer risk among women living in urban areas of the US. Further research could provide insight into breast cancer etiology and prevention.

  17. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.

    Science.gov (United States)

    Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather

    2014-01-01

    In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.

  18. Hygienic assessment of ambient air quality and health risks to population of Krasnoyarsk region

    Directory of Open Access Journals (Sweden)

    D.V. Goryaev

    2016-06-01

    Full Text Available This study fulfills the hygienic assessment of ambient air quality in the populated areas of the Krasnoyarsk Region. It is shown that the total number of emission sources in the region is more than 23 600 units, what is higher than in previous years. Around 90.7 % out of them correspond to the set standards of permissible emissions. Air monitoring was carried by the establishments of Roshydromet, Rospotrebnadzor and by other organizations at 94 observation posts in eight urban districts and 2 municipal districts of the region. The status of the ambient air in a sequence of the populated areas of Krasnoyarsk region, namely in the cities Achinsk, Kansk, Krasnoyarsk, Lesosibirsk, Minusinsk, Norilsk, is characterized by the presence of certain pollutants, the level of which exceeds the hygienic standards. Prioritized pollutants are benzo(apyrene, suspended solids, nitrogen, and sulfur dioxide, formaldehyde and others. In the settlements the economic entities violate the legal requirements in the field of sanitary and epidemiological welfare of the population. The probability of the population’s health deterioration grows along with the growth of risk factors. The risks of respiratory diseases, immune system, blood and blood-forming organs and the additional mortality are assessed as unacceptable. Ensuring air quality of the urban residential areas and municipal districts of the Krasnoyarsk Territory requires the introducing the complex measures to improve it. The established levels of human health risk associated with exposure to polluted air are an additional criterion for selection of the priority objects when planning the implementation of risk-based model for supervisory activities in the field of sanitary and epidemiological welfare of the population.

  19. Ambient air pollution exposure and full-term birth weight in California

    Directory of Open Access Journals (Sweden)

    Sadd James L

    2010-07-01

    Full Text Available Abstract Background Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births. Methods We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth. Results 3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g per pphm ozone, -7.7 g (-7.9 g, -6.6 g per 10 μg/m3 particulate matter under 10 μm, -12.8 g (-14.3 g, -11.3 g per 10 μg/m3 particulate matter under 2.5 μm, and -9.3 g (-10.7 g, -7.9 g per 10 μg/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters. Conclusions This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether

  20. Análisis de metales en filtros de aire para monitoreo ambiental

    OpenAIRE

    Ballena Salvador, Luis Humberto; Ballena Salvador, Luis Humberto

    2012-01-01

    La mayoría de laboratorios de servicios de análisis para medio ambiente, realizan implementación y/o validación de métodos analíticos normalizados y no normalizados para matrices de aguas, suelos y aire. Al no existir métodos normalizados se hace la validación de un método nuevo, se realizan pruebas a nivel de laboratorio de límites de detección e incertidumbre de los analitos; y finalmente se hace una incertidumbre con parámetros de calidad interlaboratorios. Para el estudio de calidad de...

  1. Comparitive study of ambient air quality status for big cities of Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Shahid, M.A.K.; Mahmood, A.

    2010-01-01

    This study was undertaken to investigate the quality of air in Lahore and Faisalabad at selected sites. Total eight sampling stations were selected and all the sampling locations fall in different environmental backdrops such as residential, commercial, industrial and rural (control) areas. To study the quality of air, Suspended Particulate Matter (SPM), Nitrogen dioxide (NO/sub 2/) and Sulphur dioxide (SO/sub 2/) were selected In the present study, it was found that the SPM NO/sub 2/ and SO/sub 2/ levels in all the sampling locations are within the permissible limits. However, the raising levels indicated at Residential cum Industrial area (shopping complex along with banks) followed by pure industrial area. The source of these pollutants is primarily transport sector and secondly industries. The ambient air quality reported to be low except 2Kl reported as medium. Sociological survey was conducted to determine the health hazards and the diseases related to air pollution. The results were alarming and found to be compatible with Punjab Public Health and Engineering Department (PPHE). There fore it is suggested that air quality management demands. (author)

  2. Quantifying regional consumption-based health impacts attributable to ambient air pollution in China.

    Science.gov (United States)

    Zhang, Yanxia; Qu, Shen; Zhao, Jing; Zhu, Ge; Zhang, Yanxu; Lu, Xi; Sabel, Clive E; Wang, Haikun

    2018-03-01

    Serious air pollution has caused about one million premature deaths per year in China recently. Besides cross-border atmospheric transport of air pollution, trade also relocates pollution and related health impacts across China as a result of the spatial separation between consumption and production. This study proposes an approach for calculating the health impacts of emissions due to a region's consumption based on a multidisciplinary methodology coupling economic, atmospheric, and epidemiological models. These analyses were performed for China's Beijing and Hebei provinces. It was found that these provinces' consumption-based premature deaths attributable to ambient PM 2.5 were respectively 22,500 and 49,700, which were 23% higher and 37% lower than the numbers solely within their boundaries in 2007. The difference between the effects of trade and trade-related emissions on premature deaths attributable to air pollution in a region has also been clarified. The results illustrate the large and broad impact of domestic trade on regional air quality and the need for comprehensive consideration of supply chains in designing policy to mitigate the negative health impacts of air pollution across China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Energy and material balance of CO2 capture from ambient air.

    Science.gov (United States)

    Zeman, Frank

    2007-11-01

    Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.

  4. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  5. A Causal Inference Analysis of the Effect of Wildland Fire Smoke on Ambient Air Pollution Levels and Health Burden

    Science.gov (United States)

    Wildfire smoke is a major contributor to ambient air pollution levels. In this talk, we develop a spatio-temporal model to estimate the contribution of fire smoke to overall air pollution in different regions of the country. We combine numerical model output with observational da...

  6. Unexpected O and O3 production in the effluent of He/O2 microplasma jets emanating into ambient air

    International Nuclear Information System (INIS)

    Ellerweg, D; Von Keudell, A; Benedikt, J

    2012-01-01

    Microplasma jets are commonly used to treat samples in ambient air. The effect of admixing air into the effluent may severely affect the composition of the emerging species. Here, the effluent of a He/O 2 microplasma jet has been analyzed in a helium and in an air atmosphere by molecular beam mass spectrometry. First, the composition of the effluent in air was recorded as a function of the distance to determine how fast air admixes into the effluent. Then, the spatial distribution of atomic oxygen and ozone in the effluent was recorded in ambient air and compared with measurements in a helium atmosphere. Additionally, a fluid model of the gas flow with reaction kinetics of reactive oxygen species in the effluent was constructed. In ambient air, the O density declines only slightly faster with distance compared with a helium atmosphere. In contrast, the O 3 density in ambient air increases significantly faster with distance compared with a helium atmosphere. This unexpected behavior cannot be explained by simple recombination reactions of O atoms with O 2 molecules. A reaction scheme involving the reaction of plasma-produced excited O 2 * species of unknown identity with ground state O 2 molecules is proposed as a possible explanation for these observations. (paper)

  7. The range of ambient air pollution by effluents arising by coal combustion in different types of furnaces

    International Nuclear Information System (INIS)

    Konieczynski, J.; Pason, A.; Zelinski, J.

    1994-01-01

    The range of ambient air contamination caused by coal incineration in different furnace types was analysed. Application of the integrated emission coefficient enabled to determine domestic stoves as the main source of air pollutants in Gliwice. (Author). 7 refs, 2 tabs

  8. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section 50.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL...

  9. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns

    International Nuclear Information System (INIS)

    Whyatt, R.M.; Santella, R.M.; Jedrychowski, W.; Garte, S.J.; Bell, D.A.; Ottman, R.; Gladek-Yarborough, A.; Cosma, G.; Young, T.L.; Cooper, T.B.; Randall, M.C.; Manchester, D.K.; Perera, F.P.

    1998-01-01

    Industrialized regions in Poland are characterized by high ambient pollution, including polycyclic aromatic hydrocarbons (PAHs) from coal burning for industry and home heating. In experimental bioassays, certain PAHs are transplacental carcinogens and developmental toxicants. The amount of PAHs bound to DNA (PAH-DNA adducts) in maternal and umbilical white blood cells were measured in 70 mothers and newborns from Krakow, Poland. Modulation of adduct levels by genotypes previously linked to risk of lung cancer, specifically glutathione S-transferase M1(GSTM1) and cytochrome P4501A1 (CYP1A1). There was a dose-related increase in maternal and newborn adduct levels with ambient pollution at the women's place of residence among subjects who were not employed away from home (p less than or equal to 0.05). Maternal smoking (active and passive) significantly increased maternal (p less than or equal to 0.01) but not newborn adduct levels. Results indicate that PAH-induced DNA damage in mothers and newborns is increased by ambient air pollution

  10. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Germán, E-mail: santosg@unican.es; Fernández-Olmo, Ignacio

    2016-06-01

    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values – those to be compared with the limit/target values – fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models. - Highlights: • EU encourages modelling techniques over measurements for air quality assessment. • A methodology for minor pollutants assessment by statistical modelling is presented.

  11. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air

    International Nuclear Information System (INIS)

    Santos, Germán; Fernández-Olmo, Ignacio

    2016-01-01

    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values – those to be compared with the limit/target values – fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models. - Highlights: • EU encourages modelling techniques over measurements for air quality assessment. • A methodology for minor pollutants assessment by statistical modelling is presented.

  12. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Science.gov (United States)

    Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J.

    2010-11-01

    A headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS), 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS). Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m-2 s-1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  13. Biofilm Formation Derived from Ambient Air and the Characteristics of Apparatus

    International Nuclear Information System (INIS)

    Kanematsu, H; Kougo, H; Kuroda, D; Itho, H; Ogino, Y; Yamamoto, Y

    2013-01-01

    Biofilm is a kind of thin film on solidified matters, being derived from bacteria. Generally, planktonic bacteria float in aqueous environments, soil or air, most of which can be regarded as oligotrophic environments. Since they have to survive by instinct, they seek for nutrients that would exist on materials surfaces as organic matters. Therefore, bacteria attach materials surfaces reversibly. The attachment and detachment repeat for a while and finally, they attach on them irreversibly and the number of bacteria on them increases. At a threshold number, bacteria produce polymeric matters at the same time by quorum sensing mechanism and the biofilm produces on material surfaces. The biofilm produced in that way generally contains water (more than 80%), EPS (Exopolymeric Substance) and bacteria themselves. And they might bring about many industrial problems, fouling, corrosion etc. Therefore, it is very important for us to control and prevent the biofilm formation properly. However, it is generally very hard to produce biofilm experimentally and constantly in ambient atmosphere on labo scale. The authors invented an apparatus where biofilm could form on specimen's surfaces from house germs in the ambient air. In this experiment, we investigated the basic characteristics of the apparatus, reproducibility, the change of biofilm with experimental time, the quality change of water for biofilm formation and their significance for biofilm research.

  14. GIS-based assessment of cancer risk due to benzene in Tehran ambient air.

    Science.gov (United States)

    Atabi, Farideh; Mirzahosseini, Seyed Alireza Hajiseyed

    2013-10-01

    The present study aimed to assess the risk of cancer due to benzene in the ambient air of gas stations and traffic zones in the north of Tehran. The cancer risk was estimated using the population distribution data for benzene levels and the unit risk for benzene proposed by the United States Environmental Protection Agency (US EPA). Sixteen sampling locations were monitored, once every week, during 5 April 2010 to 25 March 2011. The results showed that the mean annual benzene concentration was 14.51±3.17 parts per billion (ppb) for traffic zones and 29.01±1.32 ppb for outside gas stations. The risk calculated was 1026×10(-6) for gas station 27 and 955×10(-6) for gas station 139. According to our results, the annual benzene level in Tehran ambient air is 2 to 20 times higher than the respective value specified in International Standard (1.56 ppb). Moreover, the results showed a notable increase of cancer risks, ranging from 10% to 56%, for the vicinity population close to the gas stations in comparison to the vicinity population in the traffic zones.

  15. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Directory of Open Access Journals (Sweden)

    N. Yassaa

    2010-11-01

    Full Text Available A headspace solid-phase microextraction (HS-SPME and gas chromatography/mass spectrometry (GC/MS system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS, 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS. Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m−2 s−1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  16. Modeling the effects of reformulated gasoline usages on ambient concentrations of ozone and five air toxics

    International Nuclear Information System (INIS)

    Ligocki, M.P.; Schulhof, R.R.; Jackson, R.E.; Jimenez, M.M.; Atkinson, D.

    1993-01-01

    The use of reformulated gasolines to reduce motor-vehicle-related hydrocarbon emissions has been mandated by the 1990 Clean Air Act Amendments for nine severely polluted urban areas. Using a version of the Urban Airshed Model that includes explicit representation of five motor-vehicle-related air toxics, the effects of reformulated gasoline usage on ambient ozone and toxics concentrations were simulated. Simulations were conducted for two urban areas. Baltimore-Washington and Houston, for the year 1995. Additional simulation were conducted for Baltimore-Washington including winter and 1999 scenarios. In the Baltimore-Washington areas, the 1995 Federal reformulated gasoline scenario produce reductions of 1.1 percent in simulated peak ozone and 2.7 percent in the areal extent of simulated ozone exceedances. Simulated ozone reductions were much smaller in Houston. In the reformulated gasoline simulations, secondary formulation of formaldehyde and acetaldehyde was reduced, and decreases in ambient benzene and polycyclic organic matter (POM) concentrations were simulated. Larger reductions in ozone and toxics concentrations were simulated for reformulated gasolines meeting California Phase II standards than for those meeting Federal standards. The effects of reductions in motor-vehicle-related nitrogen oxides (NO x ) emissions, alone and in combination with hydrocarbon reductions, were also examined

  17. Analysis of Volatile Organic Compounds in the Ambient Air of a Paper Mill- A Case Study

    Directory of Open Access Journals (Sweden)

    Xin Tong

    2015-11-01

    Full Text Available In this work, volatile organic compounds (VOCs in the ambient air of a secondary fiber paper mill were analyzed. For the sake of studying pollution comprehensively, four sites in the paper mill were analyzed and active sampling methods were used. Desorption was carried out with two solvents, carbon disulfide and dichloromethane. The compositions of VOCs were determined by gas chromatography-mass spectrometry (GC-MS method. The main identified substances in the four sites were as follows: (1 waste paper sorting room: alkanes, phenols, and esters; (2 papermaking workshop: benzene series, alkanes, ethers, and phenols; (3 vacuum pump outlet: benzene series and phenols; and (4 office area: benzene series and phenols. Two main toxic substances in VOCs, the benzene series and phenols, were detected in the ambient air of the paper mill. The benzene series existed in three places along the main process of the paper mill and even existed in the office area, which was far away from the production line. Additionally, phenols were detected in all sampling locations in the paper mill.

  18. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  19. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  20. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series for carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, and oxidants (Ox were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.

  1. The Cardiopulmonary Effects of Ambient Air Pollution and Mechanistic Pathways: A Comparative Hierarchical Pathway Analysis

    Science.gov (United States)

    Thomas, Duncan C.; Zhang, Junfeng; Kipen, Howard M.; Rich, David Q.; Zhu, Tong; Huang, Wei; Hu, Min; Wang, Guangfa; Wang, Yuedan; Zhu, Ping; Lu, Shou-En; Ohman-Strickland, Pamela; Diehl, Scott R.; Eckel, Sandrah P.

    2014-01-01

    Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001) and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005). These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours) and the hemostasis pathway responds gradually over a 2–3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system. PMID:25502951

  2. Ambient air pollution, traffic noise and adult asthma prevalence: a BioSHaRE approach.

    Science.gov (United States)

    Cai, Yutong; Zijlema, Wilma L; Doiron, Dany; Blangiardo, Marta; Burton, Paul R; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Elliott, Paul; Hansell, Anna L; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank).Residential exposures to ambient air pollution (particulate matter with aerodynamic diameter ≤10 µm (PM 10 ) and nitrogen dioxide (NO 2 )) were estimated by a pan-European Land Use Regression model for 2007. Traffic noise for 2009 was modelled at home addresses by adapting a standardised noise assessment framework (CNOSSOS-EU). A cross-sectional analysis of 646 731 participants aged ≥20 years was undertaken using DataSHIELD to pool data for individual-level analysis via a "compute to the data" approach. Multivariate logistic regression models were fitted to assess the effects of each exposure on lifetime and current asthma prevalence.PM 10 or NO 2 higher by 10 µg·m -3 was associated with 12.8% (95% CI 9.5-16.3%) and 1.9% (95% CI 1.1-2.8%) higher lifetime asthma prevalence, respectively, independent of confounders. Effects were larger in those aged ≥50 years, ever-smokers and less educated. Noise exposure was not significantly associated with asthma prevalence.This study suggests that long-term ambient PM 10 exposure is associated with asthma prevalence in western European adults. Traffic noise is not associated with asthma prevalence, but its potential to impact on asthma exacerbations needs further investigation. Copyright ©ERS 2017.

  3. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Science.gov (United States)

    Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.

    2018-01-01

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749

  4. The cardiopulmonary effects of ambient air pollution and mechanistic pathways: a comparative hierarchical pathway analysis.

    Directory of Open Access Journals (Sweden)

    Ananya Roy

    Full Text Available Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001 and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005. These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours and the hemostasis pathway responds gradually over a 2-3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system.

  5. CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS) DURING FALL SEASON IN WISTAR-KYOTO RATS

    Science.gov (United States)

    CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPs) DURING FALL SEASON IN WISTAR-KYOTO RATS.UP Kodavanti, MC Schladweiler, AD Ledbetter, LC Walsh, PS Gilmour, MI Gilmour, WP Watkinson, JP Nolan, JH Richards, D Andrews, DL Costa. US EPA...

  6. Theoretical calculation of solid particles deposition from the air

    Directory of Open Access Journals (Sweden)

    Bobro Milan

    2002-03-01

    Full Text Available This paper presents the calculation of harmful substance deposition (air pollution from the point source (Slanèo, et al., 2001 using equation (1. The point source shall be understood as e.g. chimneys of factory, heat plant, incinerator, boiler plant, local heating plant, etc.The theoretical calculation of concentration (1, or deposition (8 is based on the study of transfer and dispersion of pollution in air (Slanèo, et al., 2000a. The movement of pollution in air consists of a movement of the air itself and a relative movement of pollution particles and air, while the movement of harmful substance in the smoke trail is under the influence of turbulent diffusion, convection and gravitation. Molecular diffusion is not important in this process. When calculating concentrations (1 and deposition (8 of air pollution on a particular place near the source, it is assumed that the air speed is constant, the direction of wind does not change with the height and the source of air pollution is time-constant. The change in the wind speed with the height depends on the stability class of atmosphere (temperature gradient (Slanèo, et al., 2000a and it is calculated using equation (10.The theoretical calculation of concentration and or deposition of harmful substance from the point source (1 and (8 shall be applied if the harmful substance particles, which leave the source, have the same density (composition, shape (spherical and size.The experimental observations of dust deposition showed the significance of 0.1-20 µm particles. The application of equation (1 to calculate the concentration is conditioned, in addition to the recognition of source parameters and meteorological conditions, by the recognition of the particle sedimentation speed, which changes with the size of particle radius (2.For a practical calculation of deposition it is therefore necessary to know the differential distribution function f(r of particle radii, which can be made on the basis

  7. Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC

    International Nuclear Information System (INIS)

    Melaku, Samuel; Morris, Vernon; Raghavan, Dharmaraj; Hosten, Charles

    2008-01-01

    Atmospheric samples of precipitation and ambient air were collected at a single site in Washington, DC, for 7 months (for ambient air samples) and 1 year (for wet deposition samples) and analyzed for arsenic, cadmium, chromium and lead. The ranges of heavy metal concentrations for 6-day wet deposition samples collected over the 1-year period were 0.20-1.3 μg/l, 0.060-5.1 μg/l, 0.062-4.6 μg/l and 0.11-3.2 μg/l for arsenic, cadmium, chromium and lead, respectively, with a precision better than 5% for more than 95% of the measurements. The ranges of heavy metal concentrations for the 6-day ambient air samples were 0.800-15.7 ng/m 3 , 1.50-30.0 ng/m 3 , 16.8-112 ng/m 3 , and 2.90-137 ng/m 3 for arsenic, cadmium, chromium and lead, respectively, with a precision better than 10%. The spread in the heavy metal concentration over the observation period suggests a high seasonal variability for heavy metal content in both ambient air and wet deposition samples. - High seasonal variability of heavy metals were observed in both ambient air and wet deposition samples

  8. The use of passive samplers for monitoring polycyclic aromatic hydrocarbons in ambient air

    International Nuclear Information System (INIS)

    Jacob, J.; Grimmer, G.; Hildebrandt, A.

    1993-01-01

    In this study polycyclic aromatic hydrocarbon (PAH) concentrations of ambient air are compared to those present in leaves, spruce sprouts and in the corresponding soil used as passive samplers. Marked profile alterations were detected in various soil horizons with increasing relative concentrations of higher boiling and decreasing relative concentrations of lower boiling PAH with depth. There is no direct correlation between the absolute PAH masses found in air samples and those collected by passive samplers or detected in corresponding soil samples. Even the PAH profiles differ significantly: they can, however, be correlated by introducing PAH - and sampler-specific factors. The PAH profiles appear to indicate that coal combustion mostly contributes to the PAH air pollution in the FRG. The time course of the concentration of benzo(a)pyrene and benzo(e)pyrene during the past seven years as measured with spruce sprouts as biological passive sampler indicate a significant decrease of the PAH concentration (by a factor of two) in the FRG. First measurements in a clean air area of the Eastern part of the FRG exhibited up to ten times higher PAH concentrations than found in comparable areas of the western part of the country

  9. A Review of Epidemiological Research on Adverse Neurological Effects of Exposure to Ambient Air Pollution

    Science.gov (United States)

    Xu, Xiaohui; Ha, Sandie Uyen; Basnet, Rakshya

    2016-01-01

    There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology. PMID:27547751

  10. Ambient air quality at the wider area of an industrial mining facility at Stratoni, Chalkidiki, Greece.

    Science.gov (United States)

    Gaidajis, Georgios; Angelakoglou, Komninos; Gazea, Emmy

    2012-01-01

    To assess ambient air quality at the wider area of a mining-industrial facility in Chalkidiki, Greece, the particulate matter with an aerodynamic diameter of 10 μm (PM(10)) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn were monitored for a period of three years (2008-2010). Gravimetric air samplers were employed for the particulate matter sampling at three sampling stations located in the immediate vicinity of the industrial facility and at a neighbouring residential site. Monitoring data indicated that the 3-year median PM(10) concentrations were 23.3 μg/m(3) at the residential site close to the facility and 28.7 μg/m(3) at the site within the facility indicating a minimal influence from the industrial activities to the air quality of the neighbouring residential area. Both annual average and median PM(10) concentration levels were below the indicative European standards, whereas similar spatial and temporal variation was observed for the PM(10) constituents. The average Pb concentrations measured for the three sampling sites were 0.2, 0.146 and 0.174 μg/m(3) respectively, well below the indicative limit of 0.5 μg/m(3). The quantitative and qualitative comparison of PM(10) concentrations and its elemental constituent for the three sampling stations did not indicate any direct influence of the mining-industrial activities to the air quality of the Stratoni residential area.

  11. Ambient Air Pollution Monitoring Network Over Alexandria City And The Nile DELTA, Egypt

    International Nuclear Information System (INIS)

    El Raey, M.; Shalaby, E.; Guirguis, S.; Ghatass, Z.; Said, H.H.; Zahran, A.; Rashad, M.; Sivertsen, B.

    2007-01-01

    The Egyptian Environmental Affairs Agency (EEAA) has established a National Air Pollution Network for Egypt. A part of this network covers Alexandria and the Nile delta region and is being operated by the Institute of Graduate Studies and Research (IGSR), University of Alexandria. This paper presents a description of the network, the QA/QC program as well as results from automatic monitors and manually operated instruments . . Preliminary interpretations and implications of air pollution levels have also been discussed. The network monitors ambient air quality indicators including SO 2 , NO 2 , CO, O 3 and PM 10 . The sites for measurements were selected to represent industrial, traffic and domestic sources. Eight stations are established over Alexandria City and seven stations are distributed over Nile delta major cities Damanhur, Kafr EI-Dawwar, Kafr EI-Zayat, Mahala, Tanta, Damietta and Mansoura. The results represent the first long term air quality data for the southern Mediterranean region, which have been properly quality assured and quality controlled. The main results indicate that measured NO 2 concentrations have not exceeded the national air quality limit (AQL) values given for Egypt. The same occurred for SO 2 except at one site located in Kafr Elzayat in the Delta, where large emissions from brick factories impact the site. The 8-hour average CO concentrations were exceeded at a few occasions. PM 10 concentrations have been identified as the major air pollution problem. Concentrations exceeding 70 μm 3 (AQL) have been observed over many sites most of the time. It is suggested that a strong program for tree cultivation on the western desert may be essential for protection

  12. Ambient Air Pollution Exposure and Respiratory, Cardiovascular and Cerebrovascular Mortality in Cape Town, South Africa: 2001?2006

    OpenAIRE

    Wichmann, Janine; Voyi, Kuku

    2012-01-01

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM10, SO2 and NO2 levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001–2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM1...

  13. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  14. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    Science.gov (United States)

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-16

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring.

  15. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    Science.gov (United States)

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  16. A new time-series methodology for estimating relationships between elderly frailty, remaining life expectancy, and ambient air quality.

    Science.gov (United States)

    Murray, Christian J; Lipfert, Frederick W

    2012-01-01

    Many publications estimate short-term air pollution-mortality risks, but few estimate the associated changes in life-expectancies. We present a new methodology for analyzing time series of health effects, in which prior frailty is assumed to precede short-term elderly nontraumatic mortality. The model is based on a subpopulation of frail individuals whose entries and exits (deaths) are functions of daily and lagged environmental conditions: ambient temperature/season, airborne particles, and ozone. This frail susceptible population is unknown; its fluctuations cannot be observed but are estimated using maximum-likelihood methods with the Kalman filter. We used an existing 14-y set of daily data to illustrate the model and then tested the assumption of prior frailty with a new generalized model that estimates the portion of the daily death count allocated to nonfrail individuals. In this demonstration dataset, new entries into the high-risk pool are associated with lower ambient temperatures and higher concentrations of particulate matter and ozone. Accounting for these effects on antecedent frailty reduces this at-risk population, yielding frail life expectancies of 5-7 days. Associations between environmental factors and entries to the at-risk pool are about twice as strong as for mortality. Nonfrail elderly deaths are seen to make only small contributions. This new model predicts a small short-lived frail population-at-risk that is stable over a wide range of environmental conditions. The predicted effects of pollution on new entries and deaths are robust and consistent with conventional morbidity/mortality times-series studies. We recommend model verification using other suitable datasets.

  17. Annual report of the ambient air quality measurements in Austria 2000

    International Nuclear Information System (INIS)

    Spangl, W.; Schneider, J.

    2001-01-01

    This report presents the result of the ambient air quality measurements conducted according to the air quality act (Austrian Federal Law Gazette I 115/97) in Austria in 2000. This act defines ambient air quality limit values for sulphur dioxide, nitrogen dioxide, total suspended particulates (TSP), carbon monoxide, benzene, lead in air, deposition (total mass including lead and cadmium) and a target value for ozone. The report also comprises results of explorative measurements of PM10 and PM2,5. Only one exceedance of the limit value for sulphur dioxide (0,20 mg/m 3 as half hour mean value, not to be exceeded more than three times a day; 0,50 mg/m 3 as half hour mean value) was observed. The exceedance was caused by air pollution transport from Slovenia. The limit values for nitrogen dioxide and total suspended particulates were exceeded quite frequently in 2000. For nitrogen dioxide, mainly traffic stations were affected. Exceedances of the limit value (0,20 mg/m 3 as half hour mean value) were observed both during winter episodes with unfavourable conditions for dispersion, as well as in spring/summer at a heavily frequented road during episodes with high ozone levels, causing rapid oxidation of NO to NO 2 . Exceedances of the limit value for total suspended particulates (0,15 mg/m 3 as daily mean value) were predominately recorded in urban areas in the vicinity of heavily frequented streets, especially in southern alpine basins and valleys with unfavourable dispersion conditions. The highest pollution was recorded at a heavily frequented crossroad in Graz. For carbon monoxide (eight hour mean value of 10 mg/m 3 ), benzene ( 10 μg/m 3 as annual mean value) and lead (1 μg/m 3 , as annual mean value), no exceedances were recorded. The pollution levels of sulphur dioxide and carbon monoxide show a strong decrease during the last decade, whereas for nitrogen dioxide and particulate matter no clear trend can be identified. The target value of ozone is exceeded at

  18. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    Science.gov (United States)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  19. Impact of ambient air pollution on gestational age is modified by season in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Lincoln Doug

    2007-06-01

    Full Text Available Abstract Background The effect of individual pollutants and the period(s during pregnancy when pollutant levels are likely to have most impact on preterm birth is not clear. We evaluated the effect of prenatal exposure to six common urban air pollutants in the Sydney metropolitan area on preterm birth. Methods We obtained information on all births in metropolitan Sydney between January 1, 1998 and December 31, 2000. For each birth, exposure to each air pollutant was estimated for the first trimester, the three months preceding birth, the first month after the estimated date of conception and the month prior to delivery. Gestational age was analysed as a categorical variable in logistic regression models. Results There were 123 840 singleton births in Sydney in 1998–2000 and 4.9% were preterm. Preterm birth was significantly associated with maternal age, maternal smoking, male infant, indigenous status and first pregnancy. Air pollutant levels in the month and three months preceding birth had no significant effect on preterm birth after adjusting for maternal and infant covariates. Ozone levels in the first trimester of pregnancy and spring months of conception and sulphur dioxide were associated with increased risks for preterm births. Nitrogen dioxide was associated with a decreased risk of preterm births. Conclusion We found more protective than harmful associations between ambient air pollutants and preterm births with most associations non-significant. In view of these inconsistent associations, it is important to interpret the harmful effects with caution. If our results are confirmed by future studies then it will be imperative to reduce Sydney's already low air pollution levels even further.

  20. Effect of Ambient Air Pollution on Hospitalization for Heart Failure in 26 of China's Largest Cities.

    Science.gov (United States)

    Liu, Hui; Tian, Yaohua; Song, Jing; Cao, Yaying; Xiang, Xiao; Huang, Chao; Li, Man; Hu, Yonghua

    2018-03-01

    There is growing interest in the association between ambient air pollution and congestive heart failure (CHF), but research data from developing countries are very limited. The primary aim of this study was to examine the association between short-term exposure to air pollution and hospital admission for CHF in China. A time-stratified case-crossover study was conducted between 2014 and 2015 in 26 large Chinese cities among 105,501 CHF hospitalizations. Conditional logistic regression models were applied to estimate the percentage changes in CHF admissions in relation to per interquartile range increases in air pollutant concentrations. Air pollution was positively associated with CHF hospitalizations. An interquartile range increase in fine particulate, particulate matter less than 10 µm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone concentrations on the current day corresponded to 1.2% (95% confidence interval [CI] 0.5%, 1.8%), 1.3% (95% CI 0.5%, 2.0%), 1.0% (95% CI 0.2%, 1.7%), 1.6% (95% CI 0.6%, 2.5%), 1.2% (95% CI 0.5%, 1.9%), and 0.4% (95% CI -0.9%, 1.7%) increases in CHF admissions, respectively. In conclusion, our findings contribute to the limited scientific literature concerning the effects of air pollution on CHF risk for high-exposure settings typical in developing countries, which may have significant public health implications for prevention of CHF in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Evaluation of the causal framework used for setting national ambient air quality standards.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Sax, Sonja N; Bailey, Lisa A; Rhomberg, Lorenz R

    2013-11-01

    Abstract A scientifically sound assessment of the potential hazards associated with a substance requires a systematic, objective and transparent evaluation of the weight of evidence (WoE) for causality of health effects. We critically evaluated the current WoE framework for causal determination used in the United States Environmental Protection Agency's (EPA's) assessments of the scientific data on air pollutants for the National Ambient Air Quality Standards (NAAQS) review process, including its methods for literature searches; study selection, evaluation and integration; and causal judgments. The causal framework used in recent NAAQS evaluations has many valuable features, but it could be more explicit in some cases, and some features are missing that should be included in every WoE evaluation. Because of this, it has not always been applied consistently in evaluations of causality, leading to conclusions that are not always supported by the overall WoE, as we demonstrate using EPA's ozone Integrated Science Assessment as a case study. We propose additions to the NAAQS causal framework based on best practices gleaned from a previously conducted survey of available WoE frameworks. A revision of the NAAQS causal framework so that it more closely aligns with these best practices and the full and consistent application of the framework will improve future assessments of the potential health effects of criteria air pollutants by making the assessments more thorough, transparent, and scientifically sound.

  2. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  3. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  4. Detection of Coxiella burnetii in Ambient Air after a Large Q Fever Outbreak.

    Directory of Open Access Journals (Sweden)

    Myrna M T de Rooij

    Full Text Available One of the largest Q fever outbreaks ever occurred in the Netherlands from 2007-2010, with 25 fatalities among 4,026 notified cases. Airborne dispersion of Coxiella burnetii was suspected but not studied extensively at the time. We investigated temporal and spatial variation of Coxiella burnetii in ambient air at residential locations in the most affected area in the Netherlands (the South-East, in the year immediately following the outbreak. One-week average ambient particulate matter < 10 μm samples were collected at eight locations from March till September 2011. Presence of Coxiella burnetii DNA was determined by quantitative polymerase chain reaction. Associations with various spatial and temporal characteristics were analyzed by mixed logistic regression. Coxiella burnetii DNA was detected in 56 out of 202 samples (28%. Airborne Coxiella burnetii presence showed a clear seasonal pattern coinciding with goat kidding. The spatial variation was significantly associated with number of goats on the nearest goat farm weighted by the distance to the farm (OR per IQR: 1.89, CI: 1.31-2.76. We conclude that in the year after a large Q fever outbreak, temporal variation of airborne Coxiella burnetii is suggestive to be associated with goat kidding, and spatial variation with distance to and size of goat farms. Aerosol measurements show to have potential for source identification and attribution of an airborne pathogen, which may also be applicable in early stages of an outbreak.

  5. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    Science.gov (United States)

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  6. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project

    DEFF Research Database (Denmark)

    Pedersen, Marie; Andersen, Zorana J.; Stafoggia, Massimo

    2017-01-01

    . Methods: We obtained data from four cohorts with enrolment during 1985–2005 in Denmark, Austria and Italy. Exposure to nitrogen oxides (NO2 and NOX), particulate matter (PM) with diameter of less than 10 µm (PM10), less than 2.5 µm (PM2.5), between 2.5 and 10 µm (PM2.5–10) and PM2.5 absorbance (soot......-analyses to estimate summary hazard ratios (HRs) and 95% confidence intervals (CIs). Results: Out of 174,770 included participants, 279 liver cancer cases were diagnosed during a mean follow-up of 17 years. In each cohort, HRs above one were observed for all exposures with exception of PM2.5 absorbance and traffic...... in PM2.5. Conclusions: The results provide suggestive evidence that ambient air pollution may increase the risk of liver cancer. Confidence intervals for associations with NO2 and NOX were narrower than for the other exposures....

  7. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  8. Voltage and Thermally Driven Roll-to-Roll Organic Printed Transistor Made in Ambient Air Conditions

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    of the organic semiconductor poly3hexylthiophene and the dielectric material polyvinylphenol before the gate was applied by screen printing. All the processing was realized in ambient air on a PET flexible substrate. We explore the footprint and the practically accessible geometry of such devices with a special......Resume: Organic thin film transistors offer great potential for use in flexible electronics. Much of this potential lies in the solution processability of the organic polymers enabling both roll coating and printing on flexible substrates and thus greatly reducing the material and fabrication costs....... We present flexible organic power transistors prepared by fast (20 m min−1) roll-to-roll flexographic printing of the drain and source electrode structures, with an interspace below 50 um, directly on polyester foil[1]. The devices have top gate architecture and were completed by slotdie coating...

  9. Standard audit procedure for continuous emission monitors and ambient air monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The instruments were published in an operational policy manual in 2009. This policy aims to introduce standard audit criteria that can be used to determine if continuous emission monitors and ambient air monitoring devices are operating within acceptable parameters. Before delivering upscale points of the instrument to be audited, each one of the audit equipment used in the field is required to be at normal operating conditions. Before the beginning of the audit, each one of the meteorological and flow measurement equipment is required to be conditioned to current conditions. If the audit fails, the instrument will have to be audited quarterly. The establishment of specific procedures based on instrument manufacturer or certifying body operational standards is required in the case of non-continuous monitoring instruments presenting operational principles outside of the audit procedures listed in the document.

  10. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City

    Directory of Open Access Journals (Sweden)

    Qing CHANG

    2015-06-01

    Full Text Available In order to further explore the pollution characteristics of volatile organic compounds in ambient air in winter and spring in Shijiazhuang City, the pollution characteristics of 62 volatile organic compounds (VOCs, monthly and quarterly variation, the correlation between VOCs and PM2.5, and the main sources of VOCs are investigated by using EPA TO-15 method. It shows that 40 organic compounds of the 64 VOCs have been quantitatively determined in winter and spring in the city, which are mainly acetone, benzene, carbon tetrachloride, dichloromethane, toluene, ethyl acetate, etc.. In the no-quantitatively determined components, higher ethanol, butyl acetate, butane etc. are detected. The VOCs concentration has positive correlation with the PM2.5 concentration during haze days.

  11. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  12. Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility

    International Nuclear Information System (INIS)

    Eberhart, C.F.

    1998-01-01

    This paper describes the ambient air sampling program for collection, analysis, and reporting of radioactive air contaminants in and around Los Alamos National Laboratory (LANL). Particulate matter and water vapor are sampled continuously at more than 50 sites. These samples are collected every two weeks and then analyzed for tritium, and gross alpha, gross beta, and gamma ray radiation. The alpha, beta, and gamma measurements are used to detect unexpected radionuclide releases. Quarterly composites are analyzed for isotopes of uranium ( 234 U, 235 U, 238 U), plutonium ( 238 Pu, 239/249 Pu), and americium ( 241 Am). All of the data is stored in a relational database with hard copies as the official records. Data used to determine environmental concentrations are validated and verified before being used in any calculations. This evaluation demonstrates that the sampling and analysis process can detect tritium, uranium, plutonium, and americium at levels much less than one percent of the public dose limit of 10 millirems. The isotopic results also indicate that, except for tritium, off-site concentrations of radionuclides potentially released from LANL are similar to typical background measurements

  13. Modification of the effect of ambient air pollution on pediatric asthma emergency visits: susceptible subpopulations

    Science.gov (United States)

    Strickland, Matthew J; Klein, Mitchel; Flanders, W Dana; Chang, Howard H; Mulholland, James A; Tolbert, Paige E; Darrow, Lyndsey A

    2016-01-01

    Background Children may have differing susceptibility to ambient air pollution concentrations depending on various background characteristics of the children. Methods Using emergency department (ED) data linked with birth records from Atlanta, Georgia, we identified ED visits for asthma or wheeze among children aged 2–16 years from 1 January 2002 through 30 June 2010 (n=109,758). We stratified by preterm delivery, term low birth weight, maternal race, Medicaid status, maternal education, maternal smoking, delivery method, and history of a bronchiolitis ED visit. Population-weighted daily average concentrations were calculated for 1-hour maximum carbon monoxide and nitrogen dioxide; 8-hour maximum ozone; and 24-hour average particulate matter less than 10 microns in diameter, particulate matter less than 2.5 microns in diameter (PM2.5), and the PM2.5 components sulfate, nitrate, ammonium, elemental carbon, and organic carbon, using measurements from stationary monitors. Poisson time-series models were used to estimate rate ratios for associations between three-day moving average pollutant concentrations and daily ED visit counts and to investigate effect-measure modification by the stratification factors. Results Associations between pollutant concentrations and asthma exacerbations were larger among children born preterm and among children born to African American mothers. Stratification by race and preterm status together suggested that both factors affected susceptibility. The largest estimated effect size (for an interquartile-range increase in pollution) was observed for ozone among preterm births to African American mothers: rate ratio=1.138 (95% confidence interval=1.077–1.203). In contrast, the rate ration for the ozone association among full-term births to mothers of other races was 1.025 (0.970–1.083). Conclusions Results support the hypothesis that children vary in their susceptibility to ambient air pollutants. PMID:25192402

  14. Long-term exposure to ambient air pollution and mortality in a Chinese tuberculosis cohort.

    Science.gov (United States)

    Peng, Zhuoxin; Liu, Cong; Xu, Biao; Kan, Haidong; Wang, Weibing

    2017-02-15

    Evidence for the relationship between exposure to ambient air pollution and the mortality of tuberculosis (TB) patients is limited. We analyzed the association between long-term exposure to particulate matter mortality in a Chinese TB patients cohort from 2003 to 2013. Data from the Global Burden of Disease 2013 estimate were used to assess yearly average concentrations of PM 2.5 and ozone at the household addresses of participants. Cox regression was used to calculate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cause-specific mortality, controlling for demographic and other TB-related factors. There were 4444 eligible subjects, including 891 deaths, over a median follow-up of 2464days. Per an interquartile range increase (2.06μg/m 3 ), multivariable analysis indicated that exposure to PM 2.5 was significantly associated with overall mortality (aHR=1.30, 95% CI: 1.19, 1.42), mortality from TB (aHR=1.46, 95% CI: 1.15, 1.85), respiratory cancers (aHR=1.72, 95% CI: 1.36, 2.19), other respiratory diseases (aHR=1.19, 95% CI: 1.02, 1.38), and other cancers (aHR=1.76, 95% CI: 1.33, 2.32). Long-term exposure to PM 2.5 increases the risk of death from TB and other diseases among TB patients. It suggests that the control of ambient air pollution may help decreasing the mortality caused by TB. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    International Nuclear Information System (INIS)

    Totsuji, Hiroo

    2008-01-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  16. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    Science.gov (United States)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  17. Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts

    DEFF Research Database (Denmark)

    Pedersen, Marie; Stafoggia, Massimo; Weinmayr, Gudrun

    2016-01-01

    Background: Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. Objective: To evaluate the association between long-term exposure......) with diameter Pollution Effects project...... of information about lifetime exposure. Conclusions: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. Patient summary: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study...

  18. Multisite study of particle number concentrations in urban air.

    Science.gov (United States)

    Harrison, Roy M; Jones, Alan M

    2005-08-15

    Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of

  19. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    Science.gov (United States)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  20. Association between long-term exposure to ambient air pollution and diabetes mortality in the US.

    Science.gov (United States)

    Lim, Chris C; Hayes, Richard B; Ahn, Jiyoung; Shao, Yongzhao; Silverman, Debra T; Jones, Rena R; Garcia, Cynthia; Thurston, George D

    2018-05-17

    Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM 2.5 , NO 2 , and O 3 . Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. Diabetes mortality was significantly associated with increasing levels of both PM 2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m 3 ) and NO 2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. We found that long-term exposure to PM 2.5 and NO 2 , but not O 3 , is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Ambient Air Pollution and Hypertensive Disorders of Pregnancy: A Systematic Review and Meta-analysis

    Science.gov (United States)

    Hu, Hui; Ha, Sandie; Roth, Jeffrey; Kearney, Greg; Talbott, Evelyn O.; Xu, Xiaohui

    2014-01-01

    Hypertensive disorders of pregnancy (HDP, including gestational hypertension, preeclampsia, and eclampsia) have a substantial public health impact. Maternal exposure to high levels of air pollution may trigger HDP, but this association remains unclear. The objective of our report is to assess and quantify the association between maternal exposures to criteria air pollutants (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter ≤ 10, 2.5 μm) on HDP risk. PubMed, EMBASE, MEDLINE, Current Contents, Global Health, and Cochrane were searched (last search: September, 2013). After a detailed screening of 270 studies, 10 studies were extracted. We conducted meta-analyses if a pollutant in a specific exposure window was reported by at least four studies. Using fixed- and random-effects models, odds ratios (ORs) and 95% CIs were calculated for each pollutant with specific increment of concentration. Increases in risks of HDP (OR per 10 ppb = 1.16; 95% CI, 1.03-1.30) and preeclampsia (OR per 10 ppb = 1.10; 95% CI, 1.03-1.17) were observed to be associated with exposure to NO2 during the entire pregnancy, and significant associations between HDP and exposure to CO (OR per 1 ppm = 1.79; 95% CI, 1.31-2.45) and O3 (OR per 10 ppb = 1.09; 95% CI, 1.05-1.13) during the first trimester were also observed. Our review suggests an association between ambient air pollution and HDP risk. Although the ORs were relatively low, the population-attributable fractions were not negligible given the ubiquitous nature of air pollution. PMID:25242883

  2. Air quality and particles: impact on the environment and health. What to prescribe for tomorrow?

    International Nuclear Information System (INIS)

    Vaiss, Pierre; POISSON, Nathalie; Poulleau, Jean; Gondcaille, Catherine

    2009-09-01

    After having recalled that particles in the air are present under the form of liquid or solid matters and are characterized by their size, and that the term aerosol is generally used for a mix of air and particles in suspension, this publication proposes an overview of tools used to characterize particle pollutions, of the different impacts of particles on health, on the way ecosystems react with particle pollutions, on impacts of particles on building environment (outside and inside)

  3. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    Science.gov (United States)

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM 2.5 ) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM 2.5 , maximum hourly concentrations 21-103 μg m -3 , and mean concentrations between 7.7 and 13.2 μg m -3 . Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m -3 , and mean concentrations 6.7-11.7 μg m -3 . The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m -3 ) over the NAAQS 98th percentile for PM 2.5 (35 μg m -3 ). Pinehurst remained below the federal standards for PM 2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire

  4. Performance of wire-type Rn detectors operated with gas gain in ambient air in view of its possible application to early earthquake predictions

    CERN Document Server

    Charpak, Georges; Breuil, P; Nappi, E; Martinengo, P; Peskov, V

    2010-01-01

    We describe a detector of alpha particles based on wire type counters (single-wire and multiwire) operating in ambient air at high gas gains (100-1000). The main advantages of these detectors are: low cost, robustness and ability to operate in humid air. The minimum detectable activity achieved with the multiwire detector for an integration time of 1 min is 140 Bq per m3, which is comparable to that featured by commercial devices. Owing to such features the detector is suited for massive application, for example for continuous monitoring of Rn or Po contaminations or, as discussed in the paper, its use in a network of Rn counters in areas affected by earth-quakes in order to verify, on a solid statistical basis, the envisaged correlation between the sudden Rn appearance and a forthcoming earthquake.

  5. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Hang Qiu

    2018-03-01

    Full Text Available Evidence on the burden of chronic obstructive pulmonary disease (COPD morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM with aerodynamic diameter <10 μm (PM10 and <2.5 μm (PM2.5, nitrogen dioxide (NO2, sulfur dioxide (SO2, carbon monoxide (CO and ozone (O3 with risk of hospital admissions (HAs for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM2.5, PM10 and SO2 and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19% and 14.72% (95% CI: 10.38%, 19.06% of COPD HAs were attributable to PM2.5 and PM10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO2 on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  6. Low-level NOx removal in ambient air by pulsed corona technology

    International Nuclear Information System (INIS)

    Beckers, F J C M; Hoeben, W F L M; Pemen, A J M; Van Heesch, E J M

    2013-01-01

    Although removal of NO x by (pulsed) corona discharges has been thoroughly investigated for high concentrations of NO x in flue gas, removal of low levels in ambient air proves to be a difficult task. (Sub) ppm NO x levels exist in traffic tunnels due to accumulation of exhaust gases. The application of pulsed corona technology for purification of traffic tunnel air is studied during a series of lab and field experiments. An industrial pilot scale wire-cylinder type corona reactor has been utilized. Lab tests have been carried out using a diesel generator as NO x source. NO x conversion levels have been determined by applying two Recordum Airpointers (chemiluminescence-based detection). The detector appeared to be cross-sensitive for HNO 3 and high levels of O 3 . NO x removal rates of 60–80% were obtained for inlet levels of 2–10 ppm. The SIE value of 10 ppm NO x removal is 7 J l −1 . The corona discharges produce ppm level NO x at high energy densities. This intrinsic NO x production limits removal of inlet levels due to equilibrium between production and oxidation. (paper)

  7. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  8. The filamentous ascomycete Sordaria macrospora can survive in ambient air without carbonic anhydrases.

    Science.gov (United States)

    Lehneck, Ronny; Elleuche, Skander; Pöggeler, Stefanie

    2014-06-01

    The rapid interconversion of carbon dioxide and bicarbonate (hydrogen carbonate) is catalysed by metalloenzymes termed carbonic anhydrases (CAs). CAs have been identified in all three domains of life and can be divided into five evolutionarily unrelated classes (α, β, γ, δ and ζ) that do not share significant sequence similarities. The function of the mammalian, prokaryotic and plant α-CAs has been intensively studied but the function of CAs in filamentous ascomycetes is mostly unknown. The filamentous ascomycete Sordaria macrospora codes for four CAs, three of the β-class and one of the α-class. Here, we present a functional analysis of CAS4, the S. macrospora α-class CA. The CAS4 protein was post-translationally glycosylated and secreted. The knockout strain Δcas4 had a significantly reduced rate of ascospore germination. To determine the cas genes required for S. macrospora growth under ambient air conditions, we constructed double and triple mutations of the four cas genes in all possible combinations and a quadruple mutant. Vegetative growth rate of the quadruple mutant lacking all cas genes was drastically reduced compared to the wild type and invaded the agar under normal air conditions. Likewise the fruiting bodies were embedded in the agar and completely devoid of mature ascospores. © 2014 John Wiley & Sons Ltd.

  9. Long-term exposure to ambient air pollution and incidence of brain tumor

    DEFF Research Database (Denmark)

    Andersen, Zorana J.; Pedersen, Marie; Weinmayr, Gudrun

    2018-01-01

    .5 absorbance (Hazard Ratio and 95% Confidence Interval: 1.67; 0.89-3.14 per 10 -5/m 3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38-2.71 per 10 -5/m 3) and all other pollutants were lower for nonmalignant than for malignant brain tumors......Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods: In 12 cohorts from six European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated...... by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤ 2.5, ≤ 10, and 2.5-10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations...

  10. Real-time monitoring of BTEX in air via ambient-pressure MPI

    Science.gov (United States)

    Swenson, Orven F.; Carriere, Josef P.; Isensee, Harlan; Gillispie, Gregory D.; Cooper, William F.; Dvorak, Michael A.

    1998-05-01

    We have developed and begun to field test a very sensitive method for real-time measurements of single-ring aromatic hydrocarbons in ambient air. In this study, we focus on the efficient 1 + 1 resonance enhanced multiphoton ionization (REMPI) of the BTEX species in the narrow region between 266 and 267 nm. We particularly emphasize 266.7 nm, a wavelength at which both benzene and toluene exhibit a sharp absorbance feature and benzene and its alkylated derivatives all absorb. An optical parametric oscillator system generating 266.7 nm, a REMPI cell, and digital oscilloscope detector are mounted on a breadboard attached to a small cart. In the first field test, the cart was wheeled through the various rooms of a chemistry research complex. Leakage of fuel through the gas caps of cars and light trucks in a parking lot was the subject of the second field test. The same apparatus was also used for a study in which the performance of the REMPI detector and a conventional photoionization detector were compared as a BTEX mixture was eluted by gas chromatography. Among the potential applications of the methodology are on-site analysis of combustion and manufacturing processes, soil gas and water headspace monitoring, space cabin and building air quality, and fuel leak detection.

  11. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies

    OpenAIRE

    Eric Coker; Samuel Kizito

    2018-01-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the re...

  12. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    Science.gov (United States)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on

  13. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; hide

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  14. Low temperature and moisture swing sorption of CO2 from ambient air using a Na-based adsorbent

    NARCIS (Netherlands)

    Rodriguez Mosqueda, Rafael; Brem, Gerrit; Bramer, Eduard A.

    2017-01-01

    The continuous increase of the carbon dioxide concentration in the atmosphere is a recognized problem that will lead the humanity to catastrophic scenarios unless it is drastically reduced. One option to tackle this issue is to retrieve CO2 directly from ambient air, which has the advantage that it

  15. Assessment of suspended particulate matters and their heavy metal content in the ambient air of Mobarakeh city, Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Avazali Saririan Mobarakeh

    2014-01-01

    Conclusion: This study showed that ambient air of Mobarakeh city is polluted by TSP. The high concentration of Fe and Ni in this area may be attributed to the nearby industrial emissions. Therefore, in industrial areas, efforts should be taken to control the atmospheric pollution in order to protect humans from hazardous health effects of these potentially toxic pollutants.

  16. Chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA): laboratory and field based evaluation

    Science.gov (United States)

    Evaluation of the semi-continuous Monitor for Aerosols and Gases in Ambient Air (MARGA, Metrohm Applikon B.V.) was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measureme...

  17. Design Strategy for CO2 Adsorption from Ambient Air Using a Supported Amine Based Sorbent in a Fixed Bed Reactor

    NARCIS (Netherlands)

    Yu, Qian; Brilman, D. W.F.

    In this work, a fixed bed reactor is evaluated for CO2 capture from ambient air using an amine based ion exchange resin. Using adsorption experiments, the effect of superficial velocity and bed length on process economics is investigated. It is shown that the optimal conditions are found at an

  18. Valoracion economica ambiental de la calidad del aire por emisiones industriales en la ciudad de quevedo,ecuador

    OpenAIRE

    Espol; Cabrera Casillas, Elvis Antonio; Lozano Mendoza, Pedro Harrys

    2017-01-01

    El objetivo principal del estudio es realizar una valoracion economico ambiental por la mejora de la calidad del aire en quevedo, para esto se elaboro un escenario hipotètico utilizando el metodo de valoracion contingente en su formato dicotomico doble. Guayaquil CAMBIO CLIMATICO

  19. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  20. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    Science.gov (United States)

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Will the circle be unbroken: a history of the U.S. National Ambient Air Quality Standards.

    Science.gov (United States)

    Bachmann, John

    2007-06-01

    In celebration of the 100th anniversary of the Air & Waste Management Association, this review examines the history of air quality management (AQM) in the United States over the last century, with an emphasis on the ambient standards programs established by the landmark 1970 Clean Air Act (CAA) Amendments. The current CAA system is a hybrid of several distinct air pollution control philosophies, including the recursive or circular system driven by ambient standards. Although this evolving system has resulted in tremendous improvements in air quality, it has been far from perfect in terms of timeliness and effectiveness. The paper looks at several periods in the history of the U.S. program, including: (1) 1900-1970, spanning the early smoke abatement and smog control programs, the first federal involvement, and the development of a hybrid AQM approach in the 1970 CAA; (2) 1971-1976, when the first National Ambient Air Quality Standards (NAAQS) were set and implemented; (3) 1977-1993, a period of the first revisions to the standards, new CAA Amendments, delays in implementation and decision-making, and key science/policy/legislative developments that would alter both the focus and scale of air pollution programs and how they are implemented; and (4) 1993-2006, the second and third wave of NAAQS revisions and their implementation in the context of the 1990 CAA. This discussion examines where NAAQS have helped drive implementation programs and how improvements in both effects and air quality/control sciences influenced policy and legislation to enhance the effectiveness of the system over time. The review concludes with a look toward the future of AQM, emphasizing challenges and ways to meet them. The most significant of these is the need to make more efficient progress toward air quality goals, while adjusting the system to address the growing intersections between air quality management and climate change.

  2. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis.

    Science.gov (United States)

    An, Ruopeng; Zhang, Sheng; Ji, Mengmeng; Guan, Chenghua

    2018-03-01

    This study systematically reviewed literature regarding the impact of ambient air pollution on physical activity among children and adults. Keyword and reference search was conducted in PubMed and Web of Science to systematically identify articles meeting all of the following criteria - study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies, and case-control studies; subjects: adults; exposures: specific air pollutants and overall air quality; outcomes: physical activity and sedentary behaviour; article types: peer-reviewed publications; and language: articles written in English. Meta-analysis was performed to estimate the pooled effect size of ambient PM 2.5 air pollution on physical inactivity. Seven studies met the inclusion criteria. Among them, six were conducted in the United States, and one was conducted in the United Kingdom. Six adopted a cross-sectional study design, and one used a prospective cohort design. Six had a sample size larger than 10,000. Specific air pollutants assessed included PM 2.5 , PM 10 , O 3 , and NO x , whereas two studies focused on overall air quality. All studies found air pollution level to be negatively associated with physical activity and positively associated with leisure-time physical inactivity. Study participants, and particularly those with respiratory disease, self-reported a reduction in outdoor activities to mitigate the detrimental impact of air pollution. Meta-analysis revealed a one unit (μg/m 3 ) increase in ambient PM 2.5 concentration to be associated with an increase in the odds of physical inactivity by 1.1% (odds ratio = 1.011; 95% confidence interval = 1.001, 1.021; p-value air pollution discouraged physical activity. Current literature predominantly adopted a cross-sectional design and focused on the United States. Future studies are warranted to implement a longitudinal study design and evaluate the impact of air pollution on physical

  3. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

    Science.gov (United States)

    Cohen, Aaron J; Brauer, Michael; Burnett, Richard; Anderson, H Ross; Frostad, Joseph; Estep, Kara; Balakrishnan, Kalpana; Brunekreef, Bert; Dandona, Lalit; Dandona, Rakhi; Feigin, Valery; Freedman, Greg; Hubbell, Bryan; Jobling, Amelia; Kan, Haidong; Knibbs, Luke; Liu, Yang; Martin, Randall; Morawska, Lidia; Pope, C Arden; Shin, Hwashin; Straif, Kurt; Shaddick, Gavin; Thomas, Matthew; van Dingenen, Rita; van Donkelaar, Aaron; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H

    2017-05-13

    Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM 2·5 ) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure-response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure-response functions spanning the global range of exposure. Ambient PM 2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM 2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM 2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000-422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will

  4. Development and Application of an Oxidation Flow Reactor to Study Secondary Organic Aerosol Formation from Ambient Air

    Science.gov (United States)

    Palm, Brett Brian

    Secondary organic aerosols (SOA) in the atmosphere play an important role in air quality, human health, and climate. However, the sources, formation pathways, and fate of SOA are poorly constrained. In this dissertation, I present development and application of the oxidation flow reactor (OFR) technique for studying SOA formation from OH, O3, and NO3 oxidation of ambient air. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for this purpose. I first introduce the OFR concept, and discuss several advances I have made in performing and interpreting OFR experiments. This includes estimating oxidant exposures, modeling the fate of low-volatility gases in the OFR (wall loss, condensation, and oxidation), and comparing SOA yields of single precursors in the OFR with yields measured in environmental chambers. When these experimental details are carefully considered, SOA formation in an OFR can be more reliably compared with ambient SOA formation processes. I then present an overview of what OFR measurements have taught us about SOA formation in the atmosphere. I provide a comparison of SOA formation from OH, O3, and NO3 oxidation of ambient air in a wide variety of environments, from rural forests to urban air. In a rural forest, the SOA formation correlated with biogenic precursors (e.g., monoterpenes). In urban air, it correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). In mixed-source regions, the SOA formation did not correlate well with any single precursor, but could be predicted by multilinear regression from several precursors. Despite these correlations, the concentrations of speciated ambient VOCs could only explain approximately 10-50% of the total SOA formed from OH oxidation. In contrast, ambient VOCs could explain all of the SOA formation observed from O3 and NO3 oxidation. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic

  5. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies

    Science.gov (United States)

    Coker, Eric; Kizito, Samuel

    2018-01-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region. PMID:29494501

  6. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies.

    Science.gov (United States)

    Coker, Eric; Kizito, Samuel

    2018-03-01

    An important aspect of the new sustainable development goals (SDGs) is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region.

  7. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies

    Directory of Open Access Journals (Sweden)

    Eric Coker

    2018-03-01

    Full Text Available An important aspect of the new sustainable development goals (SDGs is a greater emphasis on reducing the health impacts from ambient air pollution in developing countries. Meanwhile, the burden of human disease attributable to ambient air pollution in sub-Saharan Africa is growing, yet estimates of its impact on the region are possibly underestimated due to a lack of air quality monitoring, a paucity of air pollution epidemiological studies, and important population vulnerabilities in the region. The lack of ambient air pollution epidemiologic data in sub-Saharan Africa is also an important global health disparity. Thousands of air pollution health effects studies have been conducted in Europe and North America, rather than in urban areas that have some of the highest measured air pollution levels in world, including urban areas in sub-Saharan Africa. In this paper, we provide a systematic and narrative review of the literature on ambient air pollution epidemiological studies that have been conducted in the region to date. Our review of the literature focuses on epidemiologic studies that measure air pollutants and relate air pollution measurements with various health outcomes. We highlight the gaps in ambient air pollution epidemiological studies conducted in different sub-regions of sub-Saharan Africa and provide methodological recommendations for future environmental epidemiology studies addressing ambient air pollution in the region.

  8. Measurements of gas and particle polycyclic aromatic hydrocarbons (PAHs) in air at urban, rural and near-roadway sites

    Science.gov (United States)

    Pratt, G. C.; Herbrandson, C.; Krause, M. J.; Schmitt, C.; Lippert, C. J.; McMahon, C. R.; Ellickson, K. M.

    2018-04-01

    We measured polycyclic aromatic hydrocarbons (PAHs) in gas and particle phases over two years using high volume samplers equipped with quartz fiber filters and XAD-4 at a rural site, an urban site, and a site adjacent to a heavily trafficked roadway. Overall results were generally as expected, in that concentrations increased from rural to urban to near-roadway sites, and PAHs with high vapor pressures (liquid subcooled, PoL) and low octanol-air partition coefficients (Koa) were mainly in the gas phase, while those with low PoL and high Koa were predominantly in the particle phase. Intermediate PAHs existed in both phases with the phase distribution following a seasonal pattern of higher gas phase concentrations in summer due to temperature effects. The overall pattern of phase distribution was consistent with PAH properties and ambient conditions and was similar at all three sites. The particle-bound fraction (ϕ) was well-described empirically by nonlinear regressions with log Koa and log PoL as predictors. Adsorption and absorption models underestimated the particle-bound fraction for most PAHs. The dual aerosol-air/soot-air model generally represented the gas-particle partitioning better than the other models across all PAHs, but there was a tendency to underestimate the range in the particle-bound fraction seen in measurements. There was a statistically insignificant tendency for higher PAHs in the particle phase at the near roadway site, and one piece of evidence that PAHs may be enriched on ultrafine particles at the near roadway site. Understanding the phase and particle size distributions of PAHs in highly polluted, high exposure microenvironments near traffic sources will help shed light on potential health effects.

  9. Reduced Ultrafine Particle Concentration in Urban Air: Changes in Nucleation and Anthropogenic Emissions.

    Science.gov (United States)

    Saha, Provat K; Robinson, Ellis S; Shah, Rishabh U; Zimmerman, Naomi; Apte, Joshua S; Robinson, Allen L; Presto, Albert A

    2018-06-19

    Nucleation is an important source of ambient ultrafine particles (UFP). We present observational evidence of the changes in the frequency and intensity of nucleation events in urban air by analyzing long-term particle size distribution measurements at an urban background site in Pittsburgh, Pennsylvania during 2001-2002 and 2016-2017. We find that both frequency and intensity of nucleation events have been reduced by 40-50% over the past 15 years, resulting in a 70% reduction in UFP concentrations from nucleation. On average, the particle growth rates are 30% slower than 15 years ago. We attribute these changes to dramatic reductions in SO 2 (more than 90%) and other pollutant concentrations. Overall, UFP concentrations in Pittsburgh have been reduced by ∼48% in the past 15 years, with a ∼70% reduction in nucleation, ∼27% in weekday local sources (e.g., weekday traffic), and 49% in the regional background. Our results highlight that a reduction in anthropogenic emissions can considerably reduce nucleation events and UFP concentrations in a polluted urban environment.

  10. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution : an analysis of data from the Global Burden of Diseases Study 2015

    NARCIS (Netherlands)

    Cohen, Aaron J; Brauer, Michael; Burnett, Richard; Anderson, H Ross; Frostad, Joseph; Estep, Kara; Balakrishnan, Kalpana; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Dandona, Lalit; Dandona, Rakhi; Feigin, Valery; Freedman, Greg; Hubbell, Bryan; Jobling, Amelia; Kan, Haidong; Knibbs, Luke; Liu, Yang|info:eu-repo/dai/nl/411298119; Martin, Randall; Morawska, Lidia; Pope, C Arden; Shin, Hwashin; Straif, Kurt; Shaddick, Gavin; Thomas, Matthew; van Dingenen, Rita; van Donkelaar, Aaron; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H

    BACKGROUND: Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country

  11. Proximity to traffic, ambient air pollution, and community noise in relation to incident rheumatoid arthritis.

    Science.gov (United States)

    De Roos, Anneclaire J; Koehoorn, Mieke; Tamburic, Lillian; Davies, Hugh W; Brauer, Michael

    2014-10-01

    The risk of rheumatoid arthritis (RA) has been associated with living near traffic; however, there is evidence suggesting that air pollution may not be responsible for this association. Noise, another traffic-generated exposure, has not been studied as a risk factor for RA. We investigated proximity to traffic, ambient air pollution, and community noise in relation to RA in the Vancouver and Victoria regions of British Columbia, Canada. Cases and controls were identified in a cohort of adults that was assembled using health insurance registration records. Incident RA cases from 1999 through 2002 were identified by diagnostic codes in combination with prescriptions and type of physician (e.g., rheumatologist). Controls were matched to RA cases by age and sex. Environmental exposures were assigned to each member of the study population by their residential postal code(s). We estimated relative risks using conditional logistic regression, with additional adjustment for median income at the postal code. RA incidence was increased with proximity to traffic, with an odds ratio (OR) of 1.37 (95% CI: 1.11, 1.68) for residence ≤ 50 m from a highway compared with residence > 150 m away. We found no association with traffic-related exposures such as PM2.5, nitrogen oxides, or noise. Ground-level ozone, which was highest in suburban areas, was associated with an increased risk of RA (OR = 1.26; 95% CI: 1.18, 1.36 per interquartile range increase). Our study confirms a previously observed association of RA risk with proximity to traffic and suggests that neither noise levels nor traffic-related air pollutants are responsible for this relationship. Additional investigation of neighborhood and individual correlates of residence near roadways may provide new insight into risk factors for RA.

  12. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China.

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    Full Text Available BACKGROUND: The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10, sulfur dioxide (SO(2 and nitrogen dioxide (NO(2] and mortality in Shenyang, China, using 12 years of data (1998-2009. Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m(3 in a year average concentration of PM(10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60 and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53, respectively. The corresponding figures of adjusted HR (95%CI for a 10 µg/m(3 increase in NO(2 was 2.46 (2.31 to 2.63 for cardiovascular mortality and 2.44 (2.27 to 2.62 for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. CONCLUSION/SIGNIFICANCE: Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.

  13. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Science.gov (United States)

    Teng, Bo; Zhang, Xuelei; Yi, Chunhui; Zhang, Yan; Ye, Shufeng; Wang, Yafang; Tong, Daniel Q.; Lu, Binfeng

    2017-01-01

    With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis) in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR) from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms), autumn (October, straw burning) and winter (November to April, coal burning). The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%), 4.9% (95% CI, 0.8%–9.2%), 8.5% (95% CI, −1.8%–19.8%) and 11.1% (95% CI, 5.8%–16.5%) for exposure to each 1-Standard Deviation (1-SD) increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs) of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4). The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations) and the prevalence of respiratory effects (allergic rhinitis) in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  14. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Directory of Open Access Journals (Sweden)

    Bo Teng

    2017-02-01

    Full Text Available With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms, autumn (October, straw burning and winter (November to April, coal burning. The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%, 4.9% (95% CI, 0.8%–9.2%, 8.5% (95% CI, −1.8%–19.8% and 11.1% (95% CI, 5.8%–16.5% for exposure to each 1-Standard Deviation (1-SD increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4. The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations and the prevalence of respiratory effects (allergic rhinitis in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  15. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  16. Association of ambient air quality with children`s lung function in urban and rural Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M.M.; Dubois, A.; Beckett, W.S. [Yale Univ. School of Medicine, New Haven, CT (United States); Asgari, M. [Shaheed Beheshti Univ., Tehran (Iran, Islamic Republic of); Gent, J. [John B. Pierce Lab., New Haven, CT (United States)

    1998-05-01

    During the summer of 1994, a cross-sectional epidemiological study, in which the pulmonary function of children in Tehran was compared with pulmonary function in children in a rural town in Iran, was conducted. Four hundred children aged 5--11 y were studied. Daytime ambient nitrogen dioxide, sulfur dioxide, and particulate matter were measured with portable devices, which were placed in the children`s neighborhoods on the days of study. Levels of these ambient substances were markedly higher in urban Tehran than in rural areas. Children`s parents were questioned about home environmental exposures (including heating source and environmental tobacco smoke) and the children`s respiratory symptoms. Pulmonary function was assessed, both by spirometry and peak expiratory flow meter. Forced expiratory volume in 1 s and forced vital capacity--as a percentage of predicted for age, sex and height--were significantly lower in urban children than in rural children. Both measurements evidenced significant reverse correlations with levels of sulfur dioxide, nitrogen dioxide, and particulate matter. Differences in spirometric lung function were not explained by nutritional status, as assessed by height and weight for age, or by home environmental exposures. Reported airway symptoms were higher among rural children, whereas reported physician diagnosis of bronchitis and asthma were higher among urban children. The association between higher pollutant concentrations and reduced pulmonary function in this urban-rural comparison suggests that there is an effect of urban air pollution on short-term lung function and/or lung growth and development during the preadolescent years.

  17. Ten years measuring PCDDs/PCDFs in ambient air in Catalonia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Lluis, G; Gomez, R; Guinart, X; Hernandez, I [Dept. de Medi Ambient de la Generalitat de Catalunya (Spain); Esteban, A; Caixach, J; Manich, A; Rivera, J [Mass Spectrometry Lab., Dept. of Ecotechnologies, IIQAB-CSIC (Spain)

    2004-09-15

    PCDDs and PCDFs can be formed as unwanted by-products in many anthropogenic processes and their presence in the atmosphere comes mainly from several industrial activities which include, for instance, a variety of thermal processes such as waste management plants, cement kiln plants, sintering plants and other diffuse sources. Furthermore, once released into the atmosphere, these toxicants can be transported far from their original sources and as a result their presence can be determined in remote areas. In this sense, great efforts have been made to increase the knowledge about these pollutants and stringent regulations aiming to protect public health have already been established. Monitoring programs play an important role in public and sanitary decisions. In particular, the presence and trend of this pollutants in the atmosphere have been subject of many environmental studies performed all over the world. In 1994, the Environmental Department (Departament de Medi Ambient) of the Catalonian Government (Generalitat de Catalunya) in collaboration with the Dioxin Laboratory /Mass Spectrometry Laboratory (Dept.of Ecotechnologies) of the Spanish Council for Scientific Research (CSIC) started a surveillance programme on PCDDs/PCDFs in ambient air. The aim of the study was to determine dioxin levels and to assess temporal trends of the atmospheric content of these pollutants in major industrial sites all over Catalonia. Moreover, samples from urban and rural areas as well as other supposedly non-affected sites were also considered. Furthermore, in accordance with the new regulatory framework, a comparison of two different sampling devices, TSP and PM10, has also been performed during the study.

  18. Developing a source-receptor methodology for the characterization of VOC sources in ambient air

    International Nuclear Information System (INIS)

    Borbon, A.; Badol, C.; Locoge, N.

    2005-01-01

    Since 2001, in France, a continuous monitoring of about thirty ozone precursor non-methane hydrocarbons (NMHC) is led in some urban areas. The automated system for NMHC monitoring consists of sub-ambient preconcentration on a cooled multi-sorbent trap followed by thermal desorption and bidimensional Gas Chromatography/Flame Ionisation Detection analysis.The great number of data collected and their exploitation should provide a qualitative and quantitative assessment of hydrocarbon sources. This should help in the definition of relevant strategies of emission regulation as stated by the European Directive relative to ozone in ambient air (2002/3/EC). The purpose of this work is to present the bases and the contributions of an original methodology known as source-receptor in the characterization of NMHC sources. It is a statistical and diagnostic approach, adaptable and transposable in all urban sites, which integrates the spatial and temporal dynamics of the emissions. The methods for source identification combine descriptive or more complex complementary approaches: 1) univariate approach through the analysis of NMHC time series and concentration roses, 2) bivariate approach through a Graphical Ratio Analysis and a characterization of scatterplot distributions of hydrocarbon pairs, 3) multivariate approach with Principal Component Analyses on various time basis. A linear regression model is finally developed to estimate the spatial and temporal source contributions. Apart from vehicle exhaust emissions, sources of interest are: combustion and fossil fuel-related activities, petrol and/or solvent evaporation, the double anthropogenic and biogenic origin of isoprene and other industrial activities depending on local parameters. (author)

  19. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    Science.gov (United States)

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  20. Study on the impact of industrial flue gases on the PCDD/Fs congener profile in ambient air.

    Science.gov (United States)

    Węgiel, Małgorzata; Chrząszcz, Ryszard; Maślanka, Anna; Grochowalski, Adam

    2014-11-01

    The aim of this study was to examine the impact of emissions from combustion processes from sinter, medical, waste and sewage waste incineration plants on the PCDD and PCDF congener profile in ambient air in Krakow (city in Poland). The subject matter of the study were air samples from the outskirts and the city center. It was found that in flue gases from industrial sources and in ambient air the share of PCDF congeners in relation to the total content of PCDD/Fs was higher than the share of PCDDs. However, in air samples collected in the city center, this relationship was reversed. The PCDD congener profiles in flue gases and in air samples are comparable. However, in the samples from the city centre, the share of OCDD is significantly higher and amounts to about 80%. The PCDF congener shares show higher spatial diversity, although in all the analyzed air samples, ODCF and 1,2,3,4,6,7,8 HpCDF dominated. Analyzing the share of congeners in regard to the sum of PCDDs/Fs a mutual resemblance of air from the suburbs, exhaust gases from the sinter ore and sewage sludge incinerator plant was observed. The study showed a similarity between the profile of congeners in air from the city centre and exhaust gases from the medical waste incinerator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China

    International Nuclear Information System (INIS)

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Rutherford, Shannon; Guo, Lingchuan; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; He, Zhihui; Xu, Yanjun; Ma, Wenjun

    2016-01-01

    Though significant associations between particulate matter (PM) air pollution and cardiovascular diseases have been widely reported, it remains unclear what characteristics, such as particle size and chemical constituents, may be responsible for the effects. A time-series model was applied to examine the cardiovascular effects of particle size (for the period of 2009–2011) and chemical constituents (2007–2010) in Guangzhou, we controlled for potential confounders in the model, such as time trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant associations of cardiovascular mortality with PM_1_0, PM_2_._5 and PM_1; the excess risk (ER) was 6.10% (95% CI: 1.76%, 10.64%), 6.11% (95% CI: 1.76%, 10.64%) and 6.48% (95% CI: 2.10%, 11.06%) for per IQR increase in PM_1_0, PM_2_._5 and PM_1 at moving averages for the current day and the previous 3 days (lag_0_3), respectively. We did not find significant effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. For PM_2_._5 constituents, we found that organic carbon, elemental carbon, sulfate, nitrate and ammonium were significantly associated with cardiovascular mortality, the corresponding ER for an IQR concentration increase at lag_0_3 was 1.13% (95% CI: 0.10%, 2.17%), 2.77% (95% CI: 0.72%, 4.86%), 2.21% (95% CI: 1.05%, 3.38%), 1.98% (95% CI: 0.54%, 3.44%), and 3.38% (95% CI: 1.56%, 5.23%), respectively. These results were robust to adjustment of other air pollutants and they remained consistent in various sensitivity analyses by changing model parameters. Our study suggests that PM_1 and constituents from combustion and secondary aerosols might be important characteristics of PM pollution associated with cardiovascular mortality in Guangzhou. - Highlights: • PM_1_0, PM_2_._5 and PM_1 were significantly associated with cardiovascular mortality. • We did not find significant cardiovascular effects of PM_2_._5_-_1_0 and PM_1_-_2_._5. • PM_1 might be most responsible for

  2. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.

    Science.gov (United States)

    Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-06-28

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

  3. Determination of sulfur dioxide in ambient air and in industrial stack using X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Sumitra, T.; Chankow, N.; Punnachaiya, S.; Laopaibul, R.

    1988-01-01

    Sulfur dioxide is a major air pollutant of concern. The gas has to be monitored both in ambient air and in industrial stacks. There are several methods of measuring sulfur dioxide. Standard methods adopted for Thailand are based on chemical methods. These are normally sensitive to light and temperature changes. Therefore a method of collecting air sample and determination of SO 2 by X-ray fluorescence technique was developed. Air sampling was done by an in-house low cost air sampler using automobile battery, dependency on a.c. source was thus avoided. The air pump has a flow rate between 0.2-1.5 liters/minute and draw about 0.6 A from a 12 V battery. SO 2 was collected on 37 mm filters impregnated with 5% sodium carbonate. This method could detect SO 2 from 10 μg up. The method has been checked by interlaboratory comparison. Field test has also been performed at some tobacco curing plants in Amphoe Sansai, Changwat Chiengmai, both in ambient air and in stacks. The results were found to be satisfactory and comparable with the standard methods

  4. Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China

    International Nuclear Information System (INIS)

    Ma, Yuxia; Zhao, Yuxin; Yang, Sixu; Zhou, Jianding; Xin, Jinyuan; Wang, Shigong; Yang, Dandan

    2017-01-01

    Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age <65 yrs and age ≥ 65 yrs) were also examined by single model and multiple-pollutant model. Three major pollutants (SO 2 , NO 2 and PM 10 ) had lag effects of 0–2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m 3 increase in PM 10 , SO 2 and NO 2 were 1.008 (0.997–1.020), 1.008(0.999–1.018) and 1.014(1.003–1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2. - Highlights: • Significant associations were found between air pollution and emergency admissions of cardiovascular diseases. • Air pollutants had lag effects on age and gender groups. • Stronger effects of air pollutants were observed for age ≥65 yrs and males. • More acute effects of air pollutants were found for age ≥65 yrs and females. - Air pollutants had significant lag effects on different age and gender groups. The effects were more pronounced in age ≥65 and males in Beijing, China.

  5. Important sources and chemical species of ambient fine particles related to adverse health effects

    Science.gov (United States)

    Heo, J.

    2017-12-01

    Although many epidemiological studies have reported that exposure to ambient fine particulate matter (PM2.5) has been linked to increases in mortality and mobidity health outcomes, the key question of which chemical species and sources of PM2.5 are most harmful to public health remains unanswered in the air pollution research area. This study was designed to address the key question with evaluating the risks of exposure to chemical species and source-specific PM2.5 mass on morbidity. Hourly measurements of PM2.5 mass and its major chemical species, including organic carbon, elemental carbon, ions, and trace elements, were observed from January 1 to December 31, 2013 at four of the PM2.5 supersites in urban environments in Korea and the reuslts were used in a positive matrix factorization to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emission, industry, oil combustion, soil, and aged sea salt, were identified and secondary inorganic aerosol factors (i.e. secondary sulfalte, and secondary nitrate) were the dominant sources contributing to 40% of the total PM2.5 mass in the study region. In order to evaluate the risks of exposure to chemical species and sources of PM2.5 on morbidity, emergency room visits for cardivascular disease and respiratory disease were considered. Hourly health outcomes were compared with hourly measurments of the PM2.5 chemical species and sources using a poission generalized linear model incorporating natural splines, as well as time-stratified case-crossover design. The PM2.5 mass and speveral chemical components, such as organic carbon, elemetal carbon, zinc, and potassium, were strongly associated with morbidity. Source-apporitionmened PM2.5 mass derived from biomass burning, and mobile sources, was significantly associated with cardiovascular and respiratory diseases. The findings represent that local combustion may be particularly important

  6. Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China.

    Science.gov (United States)

    An, R; Yu, H

    2018-03-19

    Poor air quality has become a national public health concern in China. This study examines the impact of ambient fine particulate matter (PM 2.5 ) air pollution on health behaviors among college students in Beijing, China. Prospective cohort study. Health surveys were repeatedly administered among 12,000 newly admitted students at Tsinghua University during 2012-2015 over their freshman year. Linear individual fixed-effect regressions were performed to estimate the impacts of ambient PM 2.5 concentration on health behaviors among survey participants, adjusting for various time-variant individual characteristics and environmental measures. Ambient PM 2.5 concentration was found to be negatively associated with time spent on walking, vigorous physical activity and sedentary behavior in the last week, but positively associated with time spent on nighttime/daytime sleep among survey participants. An increase in the ambient PM 2.5 concentration by one standard deviation (36.5 μg/m³) was associated with a reduction in weekly total minutes of walking by 7.3 (95% confidence interval [CI] = 5.3-9.4), a reduction in weekly total minutes of vigorous physical activity by 10.1 (95% CI = 8.5-11.7), a reduction in daily average hours of sedentary behavior by 0.06 (95% CI = 0.02-0.10) but an increase in daily average hours of nighttime/daytime sleep by 1.07 (95% CI = 1.04-1.11). Ambient PM 2.5 air pollution was inversely associated with physical activity level but positively associated with sleep duration among college students. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently called to reduce air pollution level in China's urban areas. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.

    Science.gov (United States)

    Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal

    2009-08-01

    Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.

  8. Annual report on the ambient air quality measurement in Austria 2004

    International Nuclear Information System (INIS)

    Spangl, W.; Nagl, C.; Schneider, J.

    2006-01-01

    A summary of the ambient air quality situation (measurements) conducted according to the Air Quality Act and the Ozone Act in Austria during 2004 is presented. The situation was assessed mainly in relation to Austrian limit and target values of sulfur dioxide, nitrogen oxides, particulate matter (this is measured using two different indicators: total suspended particulates (TSP) and PM10), carbon monoxide, benzene and lead. The PM10 limit value - 35 days with average concentrations above 50 μg/m 3 - was exceeded at 27 sites. The highest exceedances were measured at traffic related sites in large cities, in particular the city of Graz, in Vienna, at industrial sites (e.g. Linz). Main sources for primary particulate matter are road traffic, domestic heating (in particular wood burning), industrial emissions, construction activities and off-road sources. For nitrogen dioxide, the short term limit value was exceeded at few traffic related sites, mainly - but not only - in larger towns. The limit value for the protection of vegetation of 30 μg/m 3 NO x was exceeded at one site in Tyrol (Kramsach). Limit values for sulfur dioxide were exceeded at three sites. Neither the limit values for carbon monoxide, lead and benzene nor the alert thresholds for nitrogen dioxide or sulfur dioxide were exceeded in this year. Deposition of total particulates limit value was exceeded at a few sites, lead and cadmium in two industrial sites. Low ozone levels were measured at most monitoring sites, the information threshold of 180 μg/m 3 ozone as one hour mean was exceeded at 21 sites on all together 9 days and the alert threshold of 240 μg/m 3 as one hour mean was not exceeded. 45 figs., 57 tabs. (nevyjel)

  9. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  10. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    Science.gov (United States)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  11. Kinetics and mechanism of the oxidation of cerium in air at ambient temperature

    International Nuclear Information System (INIS)

    Wheeler, D.W.

    2016-01-01

    Highlights: • XRD and transverse sections suggest Ce_2O_3 forms on Ce before being overlaid by CeO_2. • XRD and oxide thickness measurements both indicate linear oxidation. • Extensive cracking on oxide surface which sustains continuing oxidation. • Electron microscopy has shown features indicative of nodular oxidation. • Oxide growth rate determined to be 0.1 μm day"−"1 under the conditions in this study. - Abstract: This paper describes a study of the oxidation of cerium in air at ambient temperature. Specimens were exposed for up to 60 days, during which they were analysed by X-ray diffraction (XRD) at regular intervals. Both XRD and oxide thickness measurements indicate linear oxidation over the duration of this study. Under the conditions employed in this study, the rate of oxide growth has been determined to be 0.1 μm day"−"1. The oxidation process appears to be assisted by extensive cracking in the oxide layer which acts as a non-protective film for the underlying metal.

  12. Time series analysis of ambient air concentrations in Alexandria and Nile delta region, Egypt

    International Nuclear Information System (INIS)

    EI Raev, M.; Shalaby, E.A.; Ghatass, Z.F.; Marey, H.S.

    2007-01-01

    Data collected from the Air Monitoring Network of Alexandria and Delta (EEAA/EIMP-program), were analyzed. Emphasis is given to indicator pollutants PM 10 , NO 2 , SO 2 , O 3 and CO. Two sites have been selected in Alexandria (IGSR and Shohada) and three sites in Delta region (Kafr Elzyat, Mansoura and Mahalla) for analysis of three years from 2000-2002. Box -Jenkins modeling has been used mainly for forecasting and assessing relative importance of various parameters or pollutants. Results showed that, the autoregressive (AR) order for all series ranged from 0-2 except NO 2 at Mansoura site. Also the moving average order ranged from 0-2 except CO at IGSR site. Nitrogen dioxide and Ozone at IGSR site have the same ARIMA model which is (0, 1, and 2). Cross correlation analysis has revealed important information on the dynamics, chemistry and interpretation of ambient pollution. Cross-correlation functions of SO 2 and PM 10 at IGSR sites suggest that, sulfur dioxide has been adsorbed on the surface of particulates which has an alkaline nature. This enhances the oxidation of sulfur dioxide to sulfate, which results in low levels of SO 2 in spite of the presence of sources

  13. Occurrence of currently used pesticides in ambient air of Centre Region (France)

    Science.gov (United States)

    Coscollà, Clara; Colin, Patrice; Yahyaoui, Abderrazak; Petrique, Olivier; Yusà, Vicent; Mellouki, Abdelwahid; Pastor, Agustin

    2010-10-01

    Ambient air samples were collected, from 2006 to 2008 at three rural and two urban sites in Centre Region (France) and analyzed for 56 currently used pesticides (CUPs), of which 41 were detected. The four CUPs most frequently detected were the herbicides trifluralin, acetochlor and pendimethalin and the fungicide chlorothalonil, which were found with frequencies ranging between 52 and 78%, and with average concentrations of 1.93, 1.32, 1.84 and 12.15 ng m -3, respectively. Among the detected pesticides, concentrations of eight fungicides (spiroxamine, fenpropimorph, cyprodinil, tolyfluanid, epoxiconazole, vinchlozolin, fluazinam, fludioxinil), two insecticides (propargite, ethoprophos), and one herbicide (oxyfluorfen) are, to our knowledge, reported for the first time in the literature. The majority of the CUPs showed a seasonal trend, with most of the detections and the highest concentrations occurring during the spring and early summer. The most important pesticides detected were related to arable crops and fruit orchards, the main cultures in this region, highlighting the fact that the main sources come from local applications. Minor differences were found in the profiles of pesticides within rural areas and between rural and urban areas.

  14. Phytotoxic risk assessment of ambient air pollution on agricultural crops in Selangor State, Malaysia

    International Nuclear Information System (INIS)

    Ishii, S.; Bell, J.N.B.; Marshall, F.M.

    2007-01-01

    The phytotoxic risk of ambient air pollution to local vegetation was assessed in Selangor State, Malaysia. The AOT40 value was calculated by means of the continuously monitored daily maximum concentration and the local diurnal pattern of O 3 . Together with minor risks associated with the levels of NO 2 and SO 2 , the study found that the monthly AOT40 values in these peri-urban sites were consistently over 1.0 ppm.h, which is well in exceedance of the given European critical level. Linking the O 3 level to actual agricultural crop production in Selangor State also indicated that the extent of yield losses could have ranged from 1.6 to 5.0% (by weight) in 2000. Despite a number of uncertainties, the study showed a simple but useful methodological framework for phytotoxic risk assessment with a limited data set, which could contribute to appropriate policy discussion and countermeasures in countries under similar conditions. - There is a large potential of phytotoxic risk on vegetation in Selangor State, Malaysia

  15. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  16. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  17. Personal carbon monoxide exposures of preschool children in Helsinki, Finland - comparison to ambient air concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Mukala, K.; Tittanen, P.; Jantunen, M.J. [KTL National Public Health Institute, Kuopio (Finland). Dept. of Environmental Health

    2001-07-01

    The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3-6yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6mgm{sup -3}) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3mgm{sup -3}).The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (-0.03 -- -0.12 to 0.13-0.16) with increasing averaging times from 1 to 8h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites. (author)

  18. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  19. EMRP JRP MetNH3: Towards a Consistent Metrological Infrastructure for Ammonia Measurements in Ambient Air

    Science.gov (United States)

    Leuenberger, Daiana; Balslev-Harder, David; Braban, Christine F.; Ebert, Volker; Ferracci, Valerio; Gieseking, Bjoern; Hieta, Tuomas; Martin, Nicholas A.; Pascale, Céline; Pogány, Andrea; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. In addition to its acidifying effect on natural waters and soils and to the additional nitrogen input to ecosystems, ammonia is an important precursor for secondary aerosol formation in the atmosphere. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation regarding certified reference material (CRM), applicable analytical methods, measurement uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. As shown in a key comparison in 2007, there are even discrepancies between reference materials provided by European National Metrology Institutes (NMIs) at amount fraction levels up to three orders of magnitude higher than ambient air levels. MetNH3 (Metrology for ammonia in ambient air), a three-year project that started in June 2014 in the framework of the European Metrology Research Programme (EMRP), aims to reduce the gap between requirements set by the European emission regulations and state-of-the-art of analytical methods and reference materials. The overarching objective of the JRP is to achieve metrological traceability for ammonia measurements in ambient air from primary certified reference material CRM and instrumental standards to the field level. This requires the successful completion of the three main goals, which have been assigned to three technical work packages: To develop improved reference gas mixtures by static and dynamic gravimetric generation methods Realisation and characterisation of traceable preparative calibration standards (in pressurised cylinders as well as mobile generators) of ammonia amount fractions similar to those in ambient air based on existing methods for other reactive analytes. The

  20. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air.

    Directory of Open Access Journals (Sweden)

    M Tanweer Khan

    Full Text Available The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precluded its clinical application in the treatment of patients with inflammatory bowel diseases. The present studies were therefore aimed at developing a strategy to keep F. prausnitzii alive at ambient air. Our previous research showed that F. prausnitzii can survive in moderately oxygenized environments like the gut mucosa by transfer of electrons to oxygen. For this purpose, the bacterium exploits extracellular antioxidants, such as riboflavin and cysteine, that are abundantly present in the gut. We therefore tested to what extent these antioxidants can sustain the viability of F. prausnitzii at ambient air. The present results show that cysteine can facilitate the survival of F. prausnitzii upon exposure to air, and that this effect is significantly enhanced the by addition of riboflavin and the cryoprotectant inulin. The highly oxygen-sensitive gut bacterium F. prausnitzii can be kept alive at ambient air for 24 h when formulated with the antioxidants cysteine and riboflavin plus the cryoprotectant inulin. Improved formulations were obtained by addition of the bulking agents corn starch and wheat bran. Our present findings pave the way towards the biomedical exploitation of F. prausnitzii in redox-based therapeutics for treatment of dysbiosis-related inflammatory disorders of the human gut.

  1. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2015-08-01

    Full Text Available This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory

  2. Chronic effects of ambient air pollution on respiratory morbidities among Chinese children: a cross-sectional study in Hong Kong.

    Science.gov (United States)

    Gao, Yang; Chan, Emily Yy; Li, Liping; Lau, Patrick Wc; Wong, Tze Wai

    2014-02-03

    The chronic health effects from exposure to ambient air pollution are still unclear. This study primarily aims to examine the relationship between long-term exposure to ambient air pollution and respiratory morbidities in Chinese children. A cross-sectional study was conducted among 2,203 school children aged 8-10 in three districts with different air pollution levels in Hong Kong. Annual means for ambient PM10, SO2, NO2 and O3 in each district were used to estimate participants' individual exposure. Two questionnaires were used to collect children's respiratory morbidities and other potential risk factors. Multivariable logistic regression was fitted to estimate the risks of air pollution for respiratory morbidities. Compared to those in the low-pollution district (LPD), girls in the high-pollution district (HPD) were at significantly higher risk for cough at night (ORadj. = 1.81, 95% CI: 1.71-2.78) and phlegm without colds (ORadj. = 3.84, 95% CI: 1.74-8.47). In addition, marginal significance was reached for elevated risks for asthma, wheezing symptoms, and phlegm without colds among boys in HPD (adjusted ORs: 1.71-2.82), as well as chronic cough among girls in HPD (ORadj. = 2.03, 95% CI: 0.88-4.70). Results have confirmed certain adverse effects on children's respiratory health from long-term exposure to ambient air pollution. PM10 may be the most relevant pollutant with adverse effects on wheezing and phlegm in boys. Both PM10 and NO2 may be contributing to cough and phlegm in girls.

  3. Acute effects of ambient air pollution on lower respiratory infections in Hanoi children: An eight-year time series study.

    Science.gov (United States)

    Nhung, Nguyen Thi Trang; Schindler, Christian; Dien, Tran Minh; Probst-Hensch, Nicole; Perez, Laura; Künzli, Nino

    2018-01-01

    Lower respiratory diseases are the most frequent causes of hospital admission in children worldwide, particularly in developing countries. Daily levels of air pollution are associated with lower respiratory diseases, as documented in many time-series studies. However, investigations in low-and-middle-income countries, such as Vietnam, remain sparse. This study investigated the short-term association of ambient air pollution with daily counts of hospital admissions due to pneumonia, bronchitis and asthma among children aged 0-17 in Hanoi, Vietnam. We explored the impact of age, gender and season on these associations. Daily ambient air pollution concentrations and hospital admission counts were extracted from electronic databases received from authorities in Hanoi for the years 2007-2014. The associations between outdoor air pollution levels and hospital admissions were estimated for time lags of zero up to seven days using Quasi-Poisson regression models, adjusted for seasonal variations, meteorological variables, holidays, influenza epidemics and day of week. All ambient air pollutants were positively associated with pneumonia hospitalizations. Significant associations were found for most pollutants except for ozone and sulfur dioxide in children aged 0-17. Increments of an interquartile range (21.9μg/m 3 ) in the 7-day-average level of NO 2 were associated with a 6.1% (95%CI 2.5% to 9.8%) increase in pneumonia hospitalizations. These associations remained stable in two-pollutant models. All pollutants other than CO were positively associated with hospitalizations for bronchitis and asthma. Associations were stronger in infants than in children aged 1-5. Strong associations between hospital admissions for lower respiratory infections and daily levels of air pollution confirm the need to adopt sustainable clean air policies in Vietnam to protect children's health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  5. Levels of ambient air pollution according to mode of transport: a systematic review.

    Science.gov (United States)

    Cepeda, Magda; Schoufour, Josje; Freak-Poli, Rosanne; Koolhaas, Chantal M; Dhana, Klodian; Bramer, Wichor M; Franco, Oscar H

    2017-01-01

    Controversy exists about the differences in air pollution exposure and inhalation dose between mode of transport. We aimed to review air pollution exposure and inhaled dose according to mode of transport and pollutant and their effect in terms of years of life expectancy (YLE). In this systematic review, we searched ten online databases from inception to April 13, 2016, without language or temporal restrictions, for cohort, cross-sectional, and experimental studies that compared exposure to carbon monoxide, black carbon, nitrogen dioxide, and fine and coarse particles in active commuters (pedestrian or cyclist) and commuters using motorised transport (car, motorcycle, bus, or massive motorised transport [MMT-ie, train, subway, or metro]). We excluded studies that measured air pollution exposure exclusively with biomarkers or on the basis of simulated data, reviews, comments, consensuses, editorials, guidelines, in-vitro studies, meta-analyses, ecological studies, and protocols. We extracted average exposure and commuting time per mode of transport and pollutant to calculate inhaled doses. We calculated exposure and inhaled dose ratios using active commuters as the reference and summarised them with medians and IQRs. We also calculated differences in YLE due to fine particle inhaled dose and physical activity. We identified 4037 studies, of which 39 were included in the systematic review. Overall, car commuters had higher exposure to all pollutants than did active commuters in 30 (71%) of 42 comparisons (median ratio 1·22 [IQR 0·90-1·76]), followed by those who commuted by bus in 57 (52%) of 109 (1·0 [0·79-1·41]), by motorcycle in 16 (50%) of 32 (0·99 [0·86-1·38]), by a car with controlled ventilation settings in 39 (45%) of 86 (0·95 [0·66-1·54]), and by MMT in 21 (38%) of 55 (0·67 [0·49-1·13]). Overall, active commuters had higher inhalation doses than did commuters using motorised transport (median ratio car with controlled ventilation settings 0

  6. NAA of organohalogens in air particles and precipitation in Shanghai

    International Nuclear Information System (INIS)

    Li Xinnian; Yu Tailiu; Guo Junpeng; Xiong Youyou; Luo Wenyun

    2006-01-01

    Organohalogens are ubiquitous pollutants which are especially controlled in many countries and their behaviors in environment become the hot topic in environment science. By the method of neutron activation analysis (NAA) combined with chemical separation, the extractable organohalogens (EOX) in environmental samples were determined. NAA is a nuclear analysis method, which has high sensibility and high precision. The detection limits were 50ng, 8ng, 3.5ng for Cl, Br, I, respectively. The principle is that when the sample was irradiated by thermal neutron, the energies and the intensities of γ ray of halogen nuclides ( 38 Cl, E γ =1642keV, t 1/2 =37.24min; 80 Br,E γ =617keV, t 1/2 =17.68min; 128 I, E γ =443keV, t 1/2 =24.99min)produced by nuclear reaction can be measured. Total content of halogens were analyzed and the organochlorines, organobromines and organoiodines in the samples were detected. In this paper, NAA and gas chromatography (GC) were used to determine organohalogens in air particles and precipitation samples in Jiading District, Shanghai, collected between December 2004 and August 2005. Extractable organohalogens (EOX), extractable persistent organohalogens (EPOX), organochlorine pesticides (OCPs) and polychlorinated diphenyls (PCBs) in atmosphere were analyzed. The effect of preference for absorbance of organohalogens in fine air particles has been found. The sources for organochlorines in atmospheres are miscellaneous, while organobromine unitary and its possible souce is PBDEs. The contamination levels of HCH and DDT that are forbidden from 1983 in our country are coming down every year, but still being affected by transfusing of pesticides. The migration of lower chloro-diphenyls and HCH in ecosphere is larger than higher chloro-diphenyls, DDT and its metabolites. This work is supported by Foundation of Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences (Grant No. K117). (authors)

  7. Development of Green Pavement for Reducing Oxides of Nitrogen (NOx in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Kania Dewi

    2016-05-01

    Full Text Available The transportation sector is the biggest contributor to air pollution in Indonesia, especially in metropolitan cities. Gases such as oxides of nitrogen (NOx are produced during the combustion of fossil fuels in the internal combustion of vehicle engines. Oxides of nitrogen such as nitric oxide (NO and nitrogen dioxide (NO2 are important air pollutants, because they cause significant harm to human health and play an important role in being precursors of other dangerous pollutants such as photochemical smog. One of the simple ways to reduce NOx concentrations is utilizing a catalytic process involving UV light and semiconductor particles such as TiO2. Illuminated TiO2 UV light is capable of producing an electron (e- and hole (h- pair, which initiates a chemical reaction that alters the NOx to become NO3- or NO2-. A field scale paving block reactor coated with TiO2 placed by the roadside was exposed to UV light using various exposure times. The results showed that the sample with a composition of 200 g/m2 TiO2 was capable of adsorbing NOx gas at an average rate of 0.0046 mg/m2/minute. Additional costs due to TiO2 coating for every square meter of paving are IDR 13,180.

  8. Risk assessment for nickel and nickel compounds in the ambient air from exposure by inhalation. Review of the European situation

    Energy Technology Data Exchange (ETDEWEB)

    Lepicard, S; Schneider, T [Centre d` Etude sur l` Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay-aux-Roses (France); Fritsch, P; Maximilien, R [Commissariat a l` Energie Atomique, Brussels (Belgium). Dept. des Sciences du Vivant; Deloraine, A [Centre Rhone-Alpes d` Epidemiologie et de Prevention Sanitaire (France)

    1997-12-01

    The objective of this report is to evaluate the risk associated with exposure to nickel in the ambient air, for the general public. The document is divided into three parts, comprising: A review of the regulatory context, a description of the physical and chemical characteristics of nickel and certain nickel compounds, a description of certain industrial processes involving nickel, and the characterization of human exposure (emissions, immissions, transport in the atmosphere); a risk assessment on the basis of human (occupational exposure) and animal data related to the presumed risk of lung cancer; an assessment of the risk associated with exposure to nickel in the ambient air for the general public. (R.P.) 55 refs.

  9. Characteristics of Ambient Black Carbon Mass and Size-Resolved Particle Number Concentrations during Corn Straw Open-Field Burning Episode Observations at a Rural Site in Southern Taiwan.

    Science.gov (United States)

    Cheng, Yu-Hsiang; Yang, Li-Sing

    2016-07-08

    Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.

  10. Cognitive impacts of ambient air pollution in the National Social Health and Aging Project (NSHAP) cohort.

    Science.gov (United States)

    Tallon, Lindsay A; Manjourides, Justin; Pun, Vivian C; Salhi, Carmel; Suh, Helen

    2017-07-01

    Pathways through which air pollution may impact cognitive function are poorly understood, particularly with regard to whether and how air pollution interacts with social and emotional factors to influence cognitive health. To examine the association between air pollutant exposures and cognitive outcomes among older adults participating in the National Social Life, Health, and Aging Project (NSHAP) cohort study. Measures of cognitive function, social connectedness, and physical and mental health were obtained for each NSHAP participant starting with Wave 1 of the study in 2005. Cognitive function was assessed using the Chicago Cognitive Function Measure (CCFM) for 3377 participants. Exposures to fine particles (PM 2.5 ) were estimated for each participant using GIS-based spatio-temporal models, and exposures to nitrogen dioxide (NO 2 ) were obtained from the nearest EPA monitors. In adjusted linear regression models, IQR increases in 1 to 7year PM 2.5 exposures were associated with a 0.22 (95% CI: -0.44, -0.01) to a 0.25 (95% CI: -0.43, -0.06) point decrease in CCFM scores, equivalent to aging 1.6years, while exposures to NO 2 were equivalent to aging 1.9years. The impacts of PM 2.5 on cognition were modified by stroke, anxiety, and stress, and were mediated by depression. The impacts of NO 2 were mediated by stress and effect modification by impaired activities of daily living for NO 2 was found. Exposures to long-term PM 2.5 and NO 2 were associated with decreased cognitive function in our cohort of older Americans, and individuals who experienced a stroke or elevated anxiety were more susceptible to the effects of PM 2.5 on cognition. Additionally, mediation results suggest that PM 2.5 may impact cognition through pathways related to mood disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    Science.gov (United States)

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  12. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Directory of Open Access Journals (Sweden)

    A. M. Ortega

    2016-06-01

    Full Text Available Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH  ∼  0.3 day SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope  ∼  −0.65. Oxidation state of carbon (OSc in reactor SOA increased steeply with age and remained elevated (OSC  ∼  2 at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background vs. photochemical age is similar to

  13. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  14. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants

    DEFF Research Database (Denmark)

    Möller, Lennart; Schuetzle, Dennis; Autrup, Herman

    1994-01-01

    of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification...... techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out...

  15. Comparison of emission inventory and ambient concentration ratios of CO, NMOG, and NOx in California South Coast Air Basin

    International Nuclear Information System (INIS)

    Fujita, E.M.; Croes, B.E.; Bennett, C.L.; Lawson, D.R.; Lurmann, F.W.; Main, H.H.

    1992-01-01

    In the present study, the author performed a top-down validation of the reactive organic gas and carbon monoxide emission inventories for California's South Coast Air Basin by comparing speciation profiles for nonmethane organic gases (NMOG) and ratios of CO/NO x and NMOG/NO x derived from early-morning (0700 to 0800) ambient measurements taken during the 1987 Southern California Air Quality Study with the corresponding ratios and speciation profiles derived from day-specific, hourly, gridded emission inventories. Twenty separate comparisons were considered for each ratio, each representing a different combination of season, emission category, and spatial and temporal averaging of emissions. It was determined that the most appropriate comparison in summer was ambient pollutant ratios with ratios derived from morning on-road motrovehicle emission inventories, and in the fall, ambient ratios with ratios derived from overnight on-road motor vehicle emission inventories with some contribution from overnight stationary-source NO x emission inventories. From these comparisons, the ambient CO/CO x and NMOG/NO x ratios are about 1.5 and 2 to 2.5 times higher, respectively, than the corresponding inventory ratios. On the assumption that inventories of NO x emissions are reasonably correct, these results indicate that on-road motor vehicle CO and NMOG emissions are significantly underestimated. Comparisons of measured CO, NMOG, and NO x concentrations and CO/NO x and NMOG/NO x ratios with air quality model predictions obtained by the California Air Resources Board show similar differences

  16. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    Science.gov (United States)

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  17. Automatic system for ecological monitoring of ambient air in the region of energy complex 'Maritsa-Iztok'

    International Nuclear Information System (INIS)

    Vasilev, V.; Videnova, I.; Nedyalkov, N.

    2000-01-01

    This report presents the automatic system for ecological monitoring of ambient air in the region of the energy complex 'Maritza-Iztok', developed by CCS-Bulgaria, Bulgarian Academy of Sciences, Institute of Control and System Research. The automatic station takes the concentration of nitric oxides, sulfuric dioxide and dust, as well as the meteorological indicators: temperature and humidity, atmospheric pressure, wind direction and speed, sun heat and radiation. The data appears on a information board and is kept in a database

  18. Long-term exposure to ambient air pollution (including PM1) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS).

    Science.gov (United States)

    Yang, Bo-Yi; Qian, Zhengmin Min; Li, Shanshan; Fan, Shujun; Chen, Gongbo; Syberg, Kevin M; Xian, Hong; Wang, Si-Quan; Ma, Huimin; Chen, Duo-Hong; Yang, Mo; Liu, Kang-Kang; Zeng, Xiao-Wen; Hu, Li-Wen; Guo, Yuming; Dong, Guang-Hui

    2018-07-01

    Little evidence exists about the effects of long-term exposure to ambient air pollution on metabolic syndrome (MetS). This study aimed to determine the association between long-term ambient air pollution and MetS in China. A total of 15,477 adults who participated in the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. MetS was defined based on the recommendation by the Joint Interim Societies. Exposure to air pollutants was assessed using data from monitoring stations and a spatial statistical model (including particles with diameters ≤ 1.0 µm (PM 1 ), ≤ 2.5 µm (PM 2.5 ), and ≤ 10 µm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and ozone (O 3 )). Two-level logistic regression analyses were utilized to assess the associations between air pollutants and MetS. The prevalence of MetS was 30.37%. The adjusted odds ratio of MetS per 10 µg/m 3 increase in PM 1 , PM 2.5 , PM 10 , SO 2 , NO 2 , and O 3 were 1.12 (95% CI = 1.00-1.24), 1.09 (95% CI = 1.00-1.18), 1.13 (95% CI = 1.08-1.19), 1.10 (95% CI = 1.02-1.18), 1.33 (95% CI = 1.12-1.57), and 1.10 (95% CI = 1.01-1.18), respectively. Stratified analyses indicated that the above associations were stronger in participants with the demographic variables of males, < 50 years of age, and higher income, as well as with the behavioral characteristics of smoking, drinking, and consuming sugar-sweetened soft drinks frequently. This study indicates that long-term exposure to ambient air pollutants may increase the risk of MetS, especially among males, the young to middle aged, those of low income, and those with unhealthy lifestyles. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Wang, Bin [Institute of Reproductive & Child Health, Peking University School of Public Health, Beijing (China); Huang, Jing [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Baccarelli, Andrea A. [Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Shima, Masayuki [Department of Public Health, Hyogo College of Medicine, Hyogo (Japan); Deng, Furong, E-mail: lotus321321@126.com [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Guo, Xinbiao, E-mail: guoxb@bjmu.edu.cn [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China)

    2016-08-01

    Background: Exposure to ambient air pollution has been associated with endothelial dysfunction as reflected by short-term alterations in circulating biomarkers, but the chemical constituents and pollution sources behind the association has been unclear. Methods: We investigated the associations between various ambient air pollutants including gases and 31 chemical constituents and seven sources of fine particles (PM{sub 2.5}) and biomarkers of endothelial function, including endothelin-1 (ET-1), E-selectin, soluble intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), based on 462 repeated measurements in a panel of 40 college students who were followed for three study periods before and after relocating from a suburban area to an urban area in Beijing, China in 2010–2011. Air pollution data were obtained from central air-monitoring stations. Linear mixed-effects models were used to estimate the changes in biomarkers associated with exposures. Results: Total PM{sub 2.5} mass showed few appreciable associations with examined biomarkers. However, several PM{sub 2.5} constituents and related sources showed significant associations with examined biomarkers. PM{sub 2.5} from dust/soil and several crustal and transition metals, including strontium, iron, titanium, cobalt and magnesium, were significantly associated with increases in ET-1 at 1-day average; manganese and potassium were significantly associated with increases in ICAM-1 at 2-day average; and PM{sub 2.5} from industry and metal cadmium were significantly associated with decreases in VCAM-1 at 1-day average. In addition, carbon monoxide was significantly associated with increasing ICAM-1 at 1-day and 2-day averages, whereas nitric oxide was significantly associated with decreasing ICAM-1 at 1-day and 3-day averages. Conclusions: Our results suggest that certain PM{sub 2.5} metal constituents were more closely associated with circulating biomarkers of endothelial function

  20. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    Science.gov (United States)

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air

  1. The association between low level exposures to ambient air pollution and term low birth weight: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Stieb David

    2006-02-01

    Full Text Available Abstract Background Studies in areas with relatively high levels of air pollution have found some positive associations between exposures to ambient levels of air pollution and several birth outcomes including low birth weight (LBW. The purpose of this study was to examine the association between LBW among term infants and ambient air pollution, by trimester of exposure, in a region of lower level exposures. Methods The relationship between LBW and ambient levels of particulate matter up to 10 um in diameter (PM10, sulfur dioxide (SO2 and ground-level ozone (O3 was evaluated using the Nova Scotia Atlee Perinatal Database and ambient air monitoring data from the Environment Canada National Air Pollution Surveillance Network and the Nova Scotia Department of Environment. The cohort consisted of live singleton births (≥37 weeks of gestation between January1,1988 and December31,2000. Maternal exposures to air pollution were assigned to women living within 25 km of a monitoring station at the time of birth. Air pollution was evaluated as a continuous and categorical variable (using quartile exposures for each trimester and relative risks were estimated from logistic regression, adjusted for confounding variables. Results There were 74,284 women with a term, singleton birth during the study period and with exposure data. In the analyses unadjusted for year of birth, first trimester exposures in the highest quartile for SO2 and PM10suggested an increased risk of delivering a LBW infant (relative risk = 1.36, 95% confidence interval = 1.04 to 1.78 for SO2 exposure and relative risk = 1.33, 95% confidence interval = 1.02 to 1.74 for PM10. After adjustment for birth year, the relative risks were attenuated somewhat and not statistically significant. A dose-response relationship for SO2 was noted with increasing levels of exposure. No statistically significant effects were noted for ozone. Conclusion Our results suggest that exposure during the first

  2. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    Directory of Open Access Journals (Sweden)

    J. A. Olorunmaiye

    2012-12-01

    Full Text Available One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150 THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in a room with the air-conditioner switched off and near an oven in a bakery. The electric power consumption of the refrigerator was measured using "Watts up?.net" Watt meter and the ambient temperature was measured using FLUKE temperature/humidity meter. The average hourly energy consumption of the refrigerator operating at mean ambient temperatures of 25.4°C, 30.7oC, 38.8°C were 93.844 Wh, 100.32 Wh and 105.08 Wh respectively. Some possible ways to reduce the increase in power consumption of refrigerators due to global warming include using compressors of higher efficiency and condensers of greater effectiveness.

  3. An experimental verification of the compensation of length change of line scales caused by ambient air pressure

    International Nuclear Information System (INIS)

    Takahashi, Akira; Miwa, Nobuharu

    2010-01-01

    Line scales are used as a working standard of length for the calibration of optical measuring instruments such as profile projectors, measuring microscopes and video measuring systems. The authors have developed a one-dimensional calibration system for line scales to obtain a lower uncertainty of measurement. The scale calibration system, named Standard Scale Calibrator SSC-05, employs a vacuum interferometer system for length measurement, a 633 nm iodine-stabilized He–Ne laser to calibrate the oscillating frequency of the interferometer laser light source and an Abbe's error compensation structure. To reduce the uncertainty of measurement, the uncertainty factors of the line scale and ambient conditions should not be neglected. Using the length calibration system, the expansion and contraction of a line scale due to changes in ambient air pressure were observed and the measured scale length was corrected into the length under standard atmospheric pressure, 1013.25 hPa. Utilizing a natural rapid change in the air pressure caused by a tropical storm (typhoon), we carried out an experiment on the length measurement of a 1000 mm long line scale made of glass ceramic with a low coefficient of thermal expansion. Using a compensation formula for the length change caused by changes in ambient air pressure, the length change of the 1000 mm long line scale was compensated with a standard deviation of less than 1 nm

  4. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China.

    Science.gov (United States)

    Ma, Yuxia; Zhao, Yuxin; Yang, Sixu; Zhou, Jianding; Xin, Jinyuan; Wang, Shigong; Yang, Dandan

    2017-11-01

    Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age pollutant model. Three major pollutants (SO 2 , NO 2 and PM 10 ) had lag effects of 0-2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m 3 increase in PM 10 , SO 2 and NO 2 were 1.008 (0.997-1.020), 1.008(0.999-1.018) and 1.014(1.003-1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ambient air pollution exposure and respiratory, cardiovascular and cerebrovascular mortality in Cape Town, South Africa: 2001–2006.

    Science.gov (United States)

    Wichmann, Janine; Voyi, Kuku

    2012-11-05

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM(10), SO(2) and NO(2) levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001-2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM(10) (12 mg/m3) and NO(2) (12 mg/m3) significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO(2) and SO(2) (8 mg/m3). In the warm period, PM(10) was significantly associated with RD and CVD mortality. NO(2) had significant associations with CBD, RD and CVD mortality, whilst SO(2) was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  7. Ambient carbon monoxide and daily mortality in three Chinese cities: the China Air Pollution and Health Effects Study (CAPES).

    Science.gov (United States)

    Chen, Renjie; Pan, Guowei; Zhang, Yanping; Xu, Qun; Zeng, Guang; Xu, Xiaohui; Chen, Bingheng; Kan, Haidong

    2011-11-01

    Ambient carbon monoxide (CO) is an air pollutant primarily generated by traffic. CO has been associated with increased mortality and morbidity in developed countries, but few studies have been conducted in Asian developing countries. In the China Air Pollution and Health Effects Study (CAPES), the short-term associations between ambient CO and daily mortality were examined in three Chinese cities: Shanghai, Anshan and Taiyuan. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trend of mortality, as well as other time-varying covariates. Effect estimates were obtained for each city and then for the cities combined. In both individual-city and combined analysis, significant associations of CO with both total non-accidental and cardiovascular mortality were observed. In the combined analysis, a 1 mg/m(3) increase of 2-day moving average concentrations of CO corresponded to 2.89% (95%CI: 1.68, 4.11) and 4.17% (95%CI: 2.66, 5.68) increase of total and cardiovascular mortality, respectively. CO was not significantly associated with respiratory mortality. Sensitivity analyses showed that our findings were generally insensitive to alternative model specifications. In conclusion, ambient CO was associated with increased risk of daily mortality in these three cities. Our findings suggest that the role of exposure to CO and other traffic-related air pollutants should be further investigated in China. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Ambient Air Pollution Exposure and Respiratory, Cardiovascular and Cerebrovascular Mortality in Cape Town, South Africa: 2001–2006

    Directory of Open Access Journals (Sweden)

    Kuku Voyi

    2012-11-01

    Full Text Available Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM10, SO2 and NO2 levels and daily respiratory (RD, cardiovascular (CVD and cerebrovascular (CBD mortality in Cape Town (2001–2006 was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR increase in PM10 (12 mg/m3 and NO2 (12 mg/m3 significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO2 and SO2 (8 mg/m3. In the warm period, PM10 was significantly associated with RD and CVD mortality. NO2 had significant associations with CBD, RD and CVD mortality, whilst SO2 was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  9. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes.

    Science.gov (United States)

    Melstrom, Paul; Koszowski, Bartosz; Thanner, Meridith Hill; Hoh, Eunha; King, Brian; Bunnell, Rebecca; McAfee, Tim

    2017-09-01

    Few studies have examined the extent of inhalation or dermal contact among bystanders following short-term, secondhand e-cigarette exposure. Measure PM2.5 (particles e-cigarette exposure. E-cigarettes were used ad libitum by three experienced users for 2 hours during two separate sessions (disposable e-cigarettes, then tank-style e-cigarettes, or "tanks") in a 1858 ft3 room. We recorded: uncorrected PM2.5 (using SidePak); UF (using P-Trak); air nicotine concentrations (using air samplers; SKC XAD-4 canisters); ambient air exchange rate (using an air capture hood). Wipe samples were taken by wiping 100 cm2 room surfaces pre- and post- both sessions, and clean cloth wipes were worn during the exposure and collected at the end. Uncorrected PM2.5 and UF were higher (p e-cigarette use can produce: elevated PM2.5; elevated UF; nicotine in the air; and accumulation of nicotine on surfaces and clothing. Short-term indoor e-cigarette use produced accumulation of nicotine on surfaces and clothing, which could lead to dermal exposure to nicotine. Short-term e-cigarette use produced elevated PM2.5 and ultrafine particles, which could lead to secondhand inhalation of these particles and any chemicals associated with them by bystanders. We measured significant differences in PM2.5 and ultrafine particles between disposable e-cigarettes and tank-style e-cigarettes, suggesting a difference in the exposure profiles of e-cigarette products. Published by Oxford University Press on behalf of Society for Research on Nicotine and Tobacco 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Ambient air pollution, lung function, and airway responsiveness in asthmatic children.

    Science.gov (United States)

    Ierodiakonou, Despo; Zanobetti, Antonella; Coull, Brent A; Melly, Steve; Postma, Dirkje S; Boezen, H Marike; Vonk, Judith M; Williams, Paul V; Shapiro, Gail G; McKone, Edward F; Hallstrand, Teal S; Koenig, Jane Q; Schildcrout, Jonathan S; Lumley, Thomas; Fuhlbrigge, Anne N; Koutrakis, Petros; Schwartz, Joel; Weiss, Scott T; Gold, Diane R

    2016-02-01

    Although ambient air pollution has been linked to reduced lung function in healthy children, longitudinal analyses of pollution effects in asthmatic patients are lacking. We sought to investigate pollution effects in a longitudinal asthma study and effect modification by controller medications. We examined associations of lung function and methacholine responsiveness (PC20) with ozone, carbon monoxide (CO), nitrogen dioxide, and sulfur dioxide concentrations in 1003 asthmatic children participating in a 4-year clinical trial. We further investigated whether budesonide and nedocromil modified pollution effects. Daily pollutant concentrations were linked to ZIP/postal code of residence. Linear mixed models tested associations of within-subject pollutant concentrations with FEV1 and forced vital capacity (FVC) percent predicted, FEV1/FVC ratio, and PC20, adjusting for seasonality and confounders. Same-day and 1-week average CO concentrations were negatively associated with postbronchodilator percent predicted FEV1 (change per interquartile range, -0.33 [95% CI, -0.49 to -0.16] and -0.41 [95% CI, -0.62 to -0.21], respectively) and FVC (-0.19 [95% CI, -0.25 to -0.07] and -0.25 [95% CI, -0.43 to -0.07], respectively). Longer-term 4-month CO averages were negatively associated with prebronchodilator percent predicted FEV1 and FVC (-0.36 [95% CI, -0.62 to -0.10] and -0.21 [95% CI, -0.42 to -0.01], respectively). Four-month averaged CO and ozone concentrations were negatively associated with FEV1/FVC ratio (P pollution adversely influences lung function and PC20 in asthmatic children. Treatment with controller medications might not protect but rather worsens the effects of CO on PC20. This clinical trial design evaluates modification of pollution effects by treatment without confounding by indication. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Ambient air pollution, lung function and airway responsiveness in children with asthma

    Science.gov (United States)

    Ierodiakonou, Despo; Zanobetti, Antonella; Coull, Brent A.; Melly, Steve; Postma, Dirkje S.; Boezen, H. Marike; Vonk, Judith M.; Williams, Paul V.; Shapiro, Gail G.; McKone, Edward F.; Hallstrand, Teal S.; Koenig, Jane Q.; Schildcrout, Jonathan S.; Lumley, Thomas; Fuhlbrigge, Anne N.; Koutrakis, Petros; Schwartz, Joel; Weiss, Scott T.; Gold, Diane R

    2016-01-01

    Background Although ambient air pollution has been linked to reduced lung function in healthy children, longitudinal analyses of pollution effects in asthma are lacking. Objective To investigate pollution effects in a longitudinal asthma study and effect modification by controller medications. Methods We examined associations of lung function and methacholine responsiveness (PC20) with ozone, carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels in 1,003 asthmatic children participating in a 4-year clinical trial. We further investigated whether budesonide and nedocromil modified pollution effects. Daily pollutant concentrations were linked to zip/postal code of residence. Linear mixed models tested associations of within-subject pollutant concentrations with FEV1 and FVC %predicted, FEV1/FVC and PC20, adjusting for seasonality and confounders. Results Same-day and 1-week average CO levels were negatively associated with post-bronchodilator %predicted FEV1 (change(95%CI) per IQR: −0.33(−0.49, −0.16), −0.41(−0.62, −0.21), respectively) and FVC (−0.19(−0.25, −0.07), −0.25(−0.43, −0.07)). Longer-term four-month averages of CO were negatively associated with prebronchodilator %predicted FEV1 and FVC (−0.36(−0.62, −0.10), −0.21(−0.42, −0.01)). Four-month averaged CO and ozone levels were negatively associated with FEV1/FVC (ppollution adversely influences lung function and PC20 in asthmatic children. Treatment with controller medications may not protect but worsens the CO effects on PC20. This clinical trial design evaluates modification of pollution effects by treatment without confounding by indication. PMID:26187234

  12. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Winands, G J J [Department of Electrical Engineering, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: e.m.v.veldhuizen@tue.nl, E-mail: ebert@cwi.nl

    2008-12-07

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v {approx} 10{sup 5} m s{sup -1}. For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10{sup 6} m s{sup -1}; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d{sup 2} mm{sup -1} ns{sup -1} for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  13. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    International Nuclear Information System (INIS)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U; Winands, G J J

    2008-01-01

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v ∼ 10 5 m s -1 . For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10 6 m s -1 ; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d 2 mm -1 ns -1 for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  14. Low-carbon energy policy and ambient air pollution in Shanghai, China: A health-based economic assessment

    International Nuclear Information System (INIS)

    Chen Changhong; Chen Bingheng; Wang Bingyan; Huang Cheng; Zhao Jing; Dai Yi; Kan Haidong

    2007-01-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM 10 -related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis

  15. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment.

    Science.gov (United States)

    Chen, Changhong; Chen, Bingheng; Wang, Bingyan; Huang, Cheng; Zhao, Jing; Dai, Yi; Kan, Haidong

    2007-02-01

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis.

  16. Association between Ambient Air Pollution and Hospital Emergency Admissions for Respiratory and Cardiovascular Diseases in Beijing: a Time Series Study.

    Science.gov (United States)

    Zhang, Ying; Wang, Shi Gong; Ma, Yu Xia; Shang, Ke Zheng; Cheng, Yi Fan; Li, Xu; Ning, Gui Cai; Zhao, Wen Jing; Li, Nai Rong

    2015-05-01

    To investigate the association between ambient air pollution and hospital emergency admissions in Beijing. In this study, a semi-parametric generalized additive model (GAM) was used to evaluate the specific influences of air pollutants (PM10, SO2, and NO2) on hospital emergency admissions with different lag structures from 2009 to 2011, the sex and age specific influences of air pollution and the modifying effect of seasons on air pollution to analyze the possible interaction. It was found that a 10 μg/m3 increase in concentration of PM10 at lag 03 day, SO2 and NO2 at lag 0 day were associated with an increase of 0.88%, 0.76%, and 1.82% respectively in overall emergency admissions. A 10 μg/m3 increase in concentration of PM10, SO2 and NO2 at lag 5 day were associated with an increase of 1.39%, 1.56%, and 1.18% respectively in cardiovascular disease emergency admissions. For lag 02, a 10 μg/m3 increase in concentration of PM10, SO2 and NO2 were associated with 1.72%, 1.34%, and 2.57% increases respectively in respiratory disease emergency admissions. This study further confirmed that short-term exposure to ambient air pollution was associated with increased risk of hospital emergency admissions in Beijing. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Growth Responses of Wheat (Triticum aestivumL. var. HD 2329 Exposed to Ambient Air Pollution under Varying Fertility Regimes

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2003-01-01

    Full Text Available The problem of urban air pollution has attracted special attention in India due to a tremendous increase in the urban population; motor vehicles vis a vis the extent of energy utilization. Field studies were conducted on wheat crops (Triticum aestivum L. var. HD 2329 by keeping the pot-grown plants in similar edaphic conditions at nine different sites in Allahabad City to quantify the effects of ambient air pollution levels on selected growth and yield parameters. Air quality monitoring was done at all the sites for gaseous pollutants viz. SO2, NO2, and O3. Various growth parameters (plant height, biomass, leaf area, NPP, etc. showed adverse effects at sites receiving higher pollution load. Reduction in test weight and harvest index was found to be directly correlated with the levels of pollutant concentrations. The study clearly showed the negative impact of air pollution on periurban agriculture.

  18. Ambient air pollution, adipokines, and glucose homeostasis: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Kloog, Itai; Schwartz, Joel D; Koutrakis, Petros; Coull, Brent A; Gold, Diane R; Meigs, James B; Fox, Caroline S; Mittleman, Murray A

    2018-02-01

    To examine associations of proximity to major roadways, sustained exposure to fine particulate matter (PM 2.5 ), and acute exposure to ambient air pollutants with adipokines and measures of glucose homeostasis among participants living in the northeastern United States. We included 5958 participants from the Framingham Offspring cohort examination cycle 7 (1998-2001) and 8 (2005-2008) and Third Generation cohort examination cycle 1 (2002-2005) and 2 (2008-2011), who did not have type 2 diabetes at the time of examination visit. We calculated 2003 annual average PM 2.5 at participants' home address, residential distance to the nearest major roadway, and daily PM 2.5 , black carbon (BC), sulfate, nitrogen oxides (NO x ), and ozone concentrations. We used linear mixed effects models for fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) which were measured up to twice, and used linear regression models for adiponectin, resistin, leptin, and hemoglobin A1c (HbA1c) which were measured only once, adjusting for demographics, socioeconomic position, lifestyle, time, and seasonality. The mean age was 51years and 55% were women. Participants who lived 64m (25th percentile) from a major roadway had 0.28% (95% CI: 0.05%, 0.51%) higher fasting plasma glucose than participants who lived 413m (75th percentile) away, and the association appeared to be driven by participants who lived within 50m from a major roadway. Higher exposures to 3- to 7-day moving averages of BC and NO x were associated with higher glucose whereas the associations for ozone were negative. The associations otherwise were generally null and did not differ by median age, sex, educational attainment, obesity status, or prediabetes status. Living closer to a major roadway or acute exposure to traffic-related air pollutants were associated with dysregulated glucose homeostasis but not with adipokines among participants from the Framingham Offspring and Third Generation

  19. Ambient air pollutant PM10 and risk of pregnancy-induced hypertension in urban China

    International Nuclear Information System (INIS)

    Huang, Xin; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Lv, Ling; Lin, Xiaojuan; Zhang, Chong; Zhang, Honghong; Xu, Ruifeng; Zhu, Daling; Zhang, Yaqun; Zhao, Nan

    2015-01-01

    Background: The relationship between air borne particulate matter ≤10 μm (PM 10 ) exposure and pregnancy-induced hypertension (PIH) is inconclusive. Few studies have been conducted, and fewer were conducted in areas with high levels of PM 10 . Methods: To examine the association between PM 10 and PIH by different exposure time windows during pregnancy, we analyzed data from a birth cohort study conducted in Lanzhou, China including 8 745 pregnant women with available information on air pollution during pregnancy. A total of 333 PIH cases (127 gestational hypertension (GH) and 206 preeclampsia (PE)) were identified. PM 10 daily average concentrations of each subject were calculated according to the distance between home/work addresses and monitor stations using an inverse-distance weighting approach. Results: Average PM 10 concentration over the duration of entire pregnancy was significantly associated with PIH (OR = 1.12, 95%CI: 1.02, 1.23 per 10 μg m −3 increase), PE (OR = 1.16, 95%CI: 1.03, 1.30 per 10 μg m −3 increase), late onset PE (OR = 1.17, 95% CI: 1.03, 1.32 per10 μg m −3 increase), and severe PE (OR = 1.25, 95% CI: 1.06, 1.48 per 10 μg m −3 increase). Average PM 10 during the first 12 gestational weeks was associated with the risk of GH (OR = 1.10, 95% CI: 1.00, 1.21 per 10 μg m −3 increase), and PM 10 exposure before 20 gestational weeks was associated with the risk of severe PE (OR = 1.14, 95% CI: 1.01, 1.30 per 10 μg m −3 increase). Conclusions: We found that high level exposure to ambient PM 10 during pregnancy was associated with an increased risk of PIH, GH and PE and that the strength of the association varied by timing of exposure during pregnancy. (letter)

  20. Control of respirable particles and radon progeny with portable air cleaners

    International Nuclear Information System (INIS)

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr -1 . Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr -1 . The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables

  1. Pilot study investigating ambient air toxics emissions near a Canadian kraft pulp and paper facility in Pictou County, Nova Scotia.

    Science.gov (United States)

    Hoffman, Emma; Guernsey, Judith R; Walker, Tony R; Kim, Jong Sung; Sherren, Kate; Andreou, Pantelis

    2017-09-01

    Air toxics are airborne pollutants known or suspected to cause cancer or other serious health effects, including certain volatile organic compounds (VOCs), prioritized by the US Environmental Protection Agency (EPA). While several EPA-designated air toxics are monitored at a subset of Canadian National Air Pollution Surveillance (NAPS) sites, Canada has no specific "air toxics" control priorities. Although pulp and paper (P&P) mills are major industrial emitters of air pollutants, few studies quantified the spectrum of air quality exposures. Moreover, most NAPS monitoring sites are in urban centers; in contrast, rural NAPS sites are sparse with few exposure risk records. The objective of this pilot study was to investigate prioritized air toxic ambient VOC concentrations using NAPS hourly emissions data from a rural Pictou, Nova Scotia Kraft P&P town to document concentration levels, and to determine whether these concentrations correlated with wind direction at the NAPS site (located southwest of the mill). Publicly accessible Environment and Climate Change Canada data (VOC concentrations [Granton NAPS ID: 31201] and local meteorological conditions [Caribou Point]) were examined using temporal (2006-2013) and spatial analytic methods. Results revealed several VOCs (1,3-butadiene, benzene, and carbon tetrachloride) routinely exceeded EPA air toxics-associated cancer risk thresholds. 1,3-Butadiene and tetrachloroethylene were significantly higher (p towns and contribute to poor health in nearby communities.

  2. Ambient air pollution as a risk factor for lung cancer La contaminación del aire como factor de riesgo de cáncer pulmonar

    Directory of Open Access Journals (Sweden)

    AARON J COHEN

    1997-07-01

    Full Text Available Epidemiologic studies over the last 40 years have observed that general ambient air pollution, chiefly due to the by- products of the incomplete combustion of fossil fuels, is associated with small relative increases in lung cancer. The evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30-50% increases in the risk of lung cancer in relation to approximately a doubling of respirable particle exposure. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the US continue to be exposed to pollutant mixtures containing known or suspected carcinogens. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the US, based largely on the results of animal experimentation, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution in