WorldWideScience

Sample records for amber force field

  1. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field

    OpenAIRE

    Pabis, Anna; Geronimo, Inacrist; York, Darrin M.; Paneth, Piotr

    2014-01-01

    Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron–sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specif...

  2. VFFDT: A New Software for Preparing AMBER Force Field Parameters for Metal-Containing Molecular Systems.

    Science.gov (United States)

    Zheng, Suqing; Tang, Qing; He, Jian; Du, Shiyu; Xu, Shaofang; Wang, Chaojie; Xu, Yong; Lin, Fu

    2016-04-25

    Force fields are fundamental to molecular dynamics simulations. However, the incompleteness of force field parameters has been a long-standing problem, especially for metal-related systems. In our previous work, we adopted the Seminario method based on the Hessian matrix to systematically derive the zinc-related force field parameters for AMBER. In this work, in order to further simplify the whole protocol, we have implemented a user-friendly Visual Force Field Derivation Toolkit (VFFDT) to derive the force field parameters via simply clicking on the bond or angle in the 3D viewer, and we have further extended our previous program to support the Hessian matrix output from a variety of quantum mechanics (QM) packages, including Gaussian 03/09, ORCA 3.0, QChem, GAMESS-US, and MOPAC 2009/2012. In this toolkit, a universal VFFDT XYZ file format containing the raw Hessian matrix is available for all of the QM packages, and an instant force field parametrization protocol based on a semiempirical quantum mechanics (SQM) method is introduced. The new function that can automatically obtain the relevant parameters for zinc, copper, iron, etc., which can be exported in AMBER Frcmod format, has been added. Furthermore, our VFFDT program can read and write files in AMBER Prepc, AMBER Frcmod, and AMBER Mol2 format and can also be used to customize, view, copy, and paste the force field parameters in the context of the 3D viewer, which provides utilities complementary to ANTECHAMBER, MCPB, and MCPB.py in the AmberTools. PMID:26998926

  3. Molecular Dynamics Simulations of CO2 Molecules in ZIF-11 Using Refined AMBER Force Field

    Directory of Open Access Journals (Sweden)

    W. Wongsinlatam

    2013-01-01

    Full Text Available Nonbonding parameters of AMBER force field have been refined based on ab initio binding energies of CO2–[C7H5N2]− complexes. The energy and geometry scaling factors are obtained to be 1.2 and 0.9 for ε and σ parameters, respectively. Molecular dynamics simulations of CO2 molecules in rigid framework ZIF-11, have then been performed using original AMBER parameters (SIM I and refined parameters (SIM II, respectively. The site-site radial distribution functions and the molecular distribution plots simulations indicate that all hydrogen atoms are favored binding site of CO2 molecules. One slight but notable difference is that CO2 molecules are mostly located around and closer to hydrogen atom of imidazolate ring in SIM II than those found in SIM I. The Zn-Zn and Zn-N RDFs in free flexible framework simulation (SIM III show validity of adapting AMBER bonding parameters. Due to the limitations of computing resources and times in this study, the results of flexible framework simulation using refined nonbonding AMBER parameters (SIM IV are not much different from those obtained in SIM II.

  4. Polarizable Mean-Field Model of Water for Biological Simulations with Amber and Charmm force fields

    CERN Document Server

    Leontyev, Igor

    2015-01-01

    Although a great number of computational models of water are available today, the majority of current biological simulations are done with simple models, such as TIP3P and SPC, developed almost thirty years ago and only slightly modified since then. The reason is that the non-polarizable force fields that are mostly used to describe proteins and other biological molecules are incompatible with more sophisticated modern polarizable models of water. The issue is electronic polarizability: in liquid state, in protein, and in vacuum the water molecule is polarized differently, and therefore has different properties; thus the only way to describe all these different media with the same model is to use a polarizable water model. However, to be compatible with the force field of the rest of the system, e.g. a protein, the latter should be polarizable as well. Here we describe a novel model of water that is in effect polarizable, and yet compatible with the standard non-polarizable force fields such as AMBER, CHARMM,...

  5. A Validation Study of the General Amber Force Field Applied to Energetic Molecular Crystals

    Science.gov (United States)

    Bergh, Magnus; Caleman, Carl

    2016-01-01

    Molecula dynamics is a well-established tool to computationally study molecules. However, to reach predictive capability at the level required for applied research and design, extensive validation of the available force fields is pertinent. Here we present a study of density, isothermal compressibility and coefficients of thermal expansion of four energetic materials (FOX-7, RDX, CL-20 and HMX) based on molecular dynamics simulations with the General Amber Force Field (GAFF), and compare the results to experimental measurements from the literature. Furthermore, we quantify the accuracy of the calculated properties through hydrocode simulation of a typical impact scenario. We find that molecular dynamics simulations with generic and computationally efficient force fields may be used to understand and estimate important physical properties of nitramine-like energetic materials.

  6. Empirical corrections to the Amber RNA force field with Target Metadynamics

    CERN Document Server

    Gil-Ley, Alejandro; Bussi, Giovanni

    2016-01-01

    The computational study of conformational transitions in nucleic acids still faces many challenges. For example, in the case of single stranded RNA tetranucleotides, agreement between simulations and experiments is not satisfactory due to inaccuracies in the force fields commonly used in molecular dynamics simulations. We here use experimental data collected from high-resolution X-ray structures to attempt an improvement of the latest version of the AMBER force field. A modified metadynamics algorithm is used to calculate correcting potentials designed to enforce experimental distributions of backbone torsion angles. Replica-exchange simulations of tetranucleotides including these correcting potentials show significantly better agreement with independent solution experiments for the oligonucleotides containing pyrimidine bases. Although the proposed corrections do not seem to be portable to generic RNA systems, the simulations revealed the importance of the alpha and beta backbone angles on the modulation of ...

  7. Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields.

    Science.gov (United States)

    Smith, Micholas Dean; Rao, J Srinivasa; Segelken, Elizabeth; Cruz, Luis

    2015-12-28

    In this work we examine the dynamics of an intrinsically disordered protein fragment of the amyloid β, the Aβ21-30, under seven commonly used molecular dynamics force fields (OPLS-AA, CHARMM27-CMAP, AMBER99, AMBER99SB, AMBER99SB-ILDN, AMBER03, and GROMOS53A6), and three water models (TIP3P, TIP4P, and SPC/E). We find that the tested force fields and water models have little effect on the measures of radii of gyration and solvent accessible surface area (SASA); however, secondary structure measures and intrapeptide hydrogen-bonding are significantly modified, with AMBER (99, 99SB, 99SB-ILDN, and 03) and CHARMM22/27 force-fields readily increasing helical content and the variety of intrapeptide hydrogen bonds. On the basis of a comparison between the population of helical and β structures found in experiments, our data suggest that force fields that suppress the formation of helical structure might be a better choice to model the Aβ21-30 peptide. PMID:26629886

  8. Molecular Modeling of Bifunctional Chelate Peptide Conjugates. 1. Copper and Indium Parameters for the AMBER Force Field

    DEFF Research Database (Denmark)

    Reichert, David E.; Norrby, Per-Ola; Welch, Michael J.

    2001-01-01

    In this work we describe the development of parameters for In(III) and Cu(II) for the AMBER* force field as found in the modeling package MacroModel. These parameters were developed using automated procedures from a combination of crystallographic structures and ab initio calculations. The new...

  9. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    Science.gov (United States)

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development. PMID:26579910

  10. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model.

    Science.gov (United States)

    Debiec, Karl T; Cerutti, David S; Baker, Lewis R; Gronenborn, Angela M; Case, David A; Chong, Lillian T

    2016-08-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides-all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  11. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA.

    Science.gov (United States)

    Zgarbová, Marie; Šponer, Jiří; Otyepka, Michal; Cheatham, Thomas E; Galindo-Murillo, Rodrigo; Jurečka, Petr

    2015-12-01

    Z-DNA duplexes are a particularly complicated test case for current force fields. We performed a set of explicit solvent molecular dynamics (MD) simulations with various AMBER force field parametrizations including our recent refinements of the ε/ζ and glycosidic torsions. None of these force fields described the ZI/ZII and other backbone substates correctly, and all of them underpredicted the population of the important ZI substate. We show that this underprediction can be attributed to an inaccurate potential for the sugar-phosphate backbone torsion angle β. We suggest a refinement of this potential, β(OL1), which was derived using our recently introduced methodology that includes conformation-dependent solvation effects. The new potential significantly increases the stability of the dominant ZI backbone substate and improves the overall description of the Z-DNA backbone. It also has a positive (albeit small) impact on another important DNA form, the antiparallel guanine quadruplex (G-DNA), and improves the description of the canonical B-DNA backbone by increasing the population of BII backbone substates, providing a better agreement with experiment. We recommend using β(OL1) in combination with our previously introduced corrections, εζ(OL1) and χ(OL4), (the combination being named OL15) as a possible alternative to the current β torsion potential for more accurate modeling of nucleic acids.

  12. Improved Parameterization of Amine-Carboxyate and Amine-Phosphate Interactions for Molecular Dynamics Simulations Using the CHARMM and AMBER Force Fields

    CERN Document Server

    Yoo, Jejoong

    2015-01-01

    Over the past decades, molecular dynamics (MD) simulations of biomolecules have become a mainstream biophysics technique. As the length and time scales amenable to the MD method increase, shortcomings of the empirical force fields---which have been developed and validated using relatively short simulations of small molecules---become apparent. One common artifact is aggregation of water-soluble biomolecules driven by artificially strong charge--charge interactions. Here, we report a systematic refinement of Lennard-Jones parameters (NBFIX) describing amine--carboxylate and amine--phosphate interactions, which brings MD simulations of basic peptide-mediated nucleic acids assemblies and lipid bilayer membranes in better agreement with experiment. As our refinement neither affects the existing parameterization of bonded interaction nor does it alter the solvation free energies, it improves realism of an MD simulation without introducing additional artifacts.

  13. Interplay of LNA and 2'-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results.

    Science.gov (United States)

    Yildirim, Ilyas; Kierzek, Elzbieta; Kierzek, Ryszard; Schatz, George C

    2014-12-11

    When used in nucleic acid duplexes, locked nucleic acid (LNA) and 2'-O-methyl RNA residues enhance the duplex stabilities, and this makes it possible to create much better RNA aptamers to target specific molecules in cells. Thus, LNA and 2'-O-methyl RNA residues are finding increasingly widespread use in RNA-based therapeutics. Herein, we utilize molecular dynamics (MD) simulations and UV melting experiments to investigate the structural and thermodynamic properties of 13 nucleic acid duplexes, including full DNA, RNA, LNA, and 2'-O-methyl RNA duplexes as well as hybrid systems such as LNA:RNA, 2'-O-methyl RNA:RNA, LNA/2'-O-methyl RNA:RNA, and RNA/2'-O-methyl RNA:RNA duplexes. The MD simulations are based on a version of the Amber force field revised specifically for RNA and LNA residues. Our results indicate that LNA and 2'-O-methyl RNA residues have two different hybridization mechanisms when included in hybrid duplexes with RNA wherein the former underwinds while the latter overwinds the duplexes. These computational predictions are supported by X-ray structures of LNA and 2'-O-methyl RNA duplexes that were recently presented by different groups, and there is also good agreement with the measured thermal stabilities of the duplexes. We find out that the "underwinding" phenomenon seen in LNA and LNA:RNA hybrid duplexes happens due to expansion of the major groove widths (Mgw) of the duplexes that is associated with decrease in the slide and twist values in base-pair steps. In contrast, 2'-O-methyl RNA residues in RNA duplexes slightly overwind the duplexes while the backbone is forced to stay in C3'-endo. Moreover, base-pair stacking in the LNA and LNA:RNA hybrid systems is gradually reduced with the inclusion of LNA residues in the duplexes while no such effect is seen in the 2'-O-methyl RNA systems. Our results show how competition between base stacking and structural rigidity in these RNA hybrid systems influences structures and stabilities. Even though both

  14. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates

    OpenAIRE

    Kirschner, Karl N.; Yongye, Austin B.; Tschampel, Sarah M.; GONZÁLEZ-OUTEIRIÑO, JORGE; DANIELS, CHARLISA R.; Foley, B. Lachele; Woods, Robert J.

    2008-01-01

    A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present wo...

  15. The Adaptive Buffered Force QM/MM method in the CP2K and AMBER software packages

    CERN Document Server

    Mones, Letif; Götz, Andreas W; Laino, Teodoro; Walker, Ross C; Leimkuhler, Ben; Csányi, Gábor; Bernstein, Noam

    2014-01-01

    The implementation and validation of the adaptive buffered force QM/MM method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM-MM interface errors by discarding forces near the boundary according to the buffered force-mixing approach. New adaptive thermostats, needed by force-mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl-phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the adaptive buffered-force QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reprod...

  16. Polarizable force fields.

    Science.gov (United States)

    Antila, Hanne S; Salonen, Emppu

    2013-01-01

    This chapter provides an overview of the most common methods for including an explicit description of electronic polarization in molecular mechanics force fields: the induced point dipole, shell, and fluctuating charge models. The importance of including polarization effects in biomolecular simulations is discussed, and some of the most important achievements in the development of polarizable biomolecular force fields to date are highlighted.

  17. Force field dependence of riboswitch dynamics.

    Science.gov (United States)

    Hanke, Christian A; Gohlke, Holger

    2015-01-01

    Riboswitches are noncoding regulatory elements that control gene expression in response to the presence of metabolites, which bind to the aptamer domain. Metabolite binding appears to occur through a combination of conformational selection and induced fit mechanism. This demands to characterize the structural dynamics of the apo state of aptamer domains. In principle, molecular dynamics (MD) simulations can give insights at the atomistic level into the dynamics of the aptamer domain. However, it is unclear to what extent contemporary force fields can bias such insights. Here, we show that the Amber force field ff99 yields the best agreement with detailed experimental observations on differences in the structural dynamics of wild type and mutant aptamer domains of the guanine-sensing riboswitch (Gsw), including a pronounced influence of Mg2+. In contrast, applying ff99 with parmbsc0 and parmχOL modifications (denoted ff10) results in strongly damped motions and overly stable tertiary loop-loop interactions. These results are based on 58 MD simulations with an aggregate simulation time>11 μs, careful modeling of Mg2+ ions, and thorough statistical testing. Our results suggest that the moderate stabilization of the χ-anti region in ff10 can have an unwanted damping effect on functionally relevant structural dynamics of marginally stable RNA systems. This suggestion is supported by crystal structure analyses of Gsw aptamer domains that reveal χ torsions with high-anti values in the most mobile regions. We expect that future RNA force field development will benefit from considering marginally stable RNA systems and optimization toward good representations of dynamics in addition to structural characteristics. PMID:25726465

  18. Force-field parameters for beryllium complexes in amorphous layers.

    Science.gov (United States)

    Emelyanova, Svetlana; Chashchikhin, Vladimir; Bagaturyants, Alexander

    2016-09-01

    Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data. Graphical Abstract Beryllium complexes in amorphous layersᅟ. PMID:27550375

  19. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld

    1999-01-01

    -anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field......Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x...

  20. GLYCAM06: a generalizable biomolecular force field. Carbohydrates.

    Science.gov (United States)

    Kirschner, Karl N; Yongye, Austin B; Tschampel, Sarah M; González-Outeiriño, Jorge; Daniels, Charlisa R; Foley, B Lachele; Woods, Robert J

    2008-03-01

    A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies. PMID:17849372

  1. Accounting for electronic polarization in nonpolarizable force fields

    CERN Document Server

    Leontyev, Igor

    2015-01-01

    The issues of electronic polarizability in molecular dynamics simulations are discussed. We argue that the charges of ionized groups in proteins, and charges of ions in conventional non-polarizable force fields such as CHARMM, AMBER, GROMOS, etc should be scaled by a factor about 0.7. Our model explains why a neglect of electronic solvation energy, which typically amounts to about a half of total solvation energy, in non-polarizable simulations with un-scaled charges can produce a correct result; however, the correct solvation energy of ions does not guarantee the correctness of ion-ion pair interactions in many non-polarizable simulations. The inclusion of electronic screening for charged moieties is shown to result in significant changes in protein dynamics and can give rise to new qualitative results compared with the traditional non-polarizable force field simulations. The model also explains the striking difference between the value of water dipole $\\mu$~3D reported in recent ab initio and experimental s...

  2. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc.

  3. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. PMID:26537332

  4. Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations.

    Science.gov (United States)

    Perez, Alberto; MacCallum, Justin L; Brini, Emiliano; Simmerling, Carlos; Dill, Ken A

    2015-10-13

    Force fields, such as Amber's ff12SB, can be fairly accurate models of the physical forces in proteins and other biomolecules. When coupled with accurate solvation models, force fields are able to bring insight into the conformational preferences, transitions, pathways, and free energies for these biomolecules. When computational speed/cost matters, implicit solvent is often used but at the cost of accuracy. We present an empirical grid-like correction term, in the spirit of cMAPs, to the combination of the ff12SB protein force field and the GBneck2 implicit-solvent model. Ff12SB-cMAP is parametrized on experimental helicity data. We provide validation on a set of peptides and proteins. Ff12SB-cMAP successfully improves the secondary structure biases observed in ff12SB + Gbneck2. Ff12SB-cMAP can be downloaded ( https://github.com/laufercenter/Amap.git ) and used within the Amber package. It can improve the agreement of force fields + implicit solvent with experiments. PMID:26574266

  5. Secondary Structure of Rat and Human Amylin across Force Fields.

    Directory of Open Access Journals (Sweden)

    Kyle Quynn Hoffmann

    Full Text Available The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient

  6. Secondary Structure of Rat and Human Amylin across Force Fields.

    Science.gov (United States)

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi-Cheng; de Pablo, Juan J

    2015-01-01

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable

  7. Atomistic insight into orthoborate-based ionic liquids: force field development and evaluation.

    Science.gov (United States)

    Wang, Yong-Lei; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N; Laaksonen, Aatto

    2014-07-24

    We have developed an all-atomistic force field for a new class of halogen-free chelated orthoborate-phosphonium ionic liquids. The force field is based on an AMBER framework with determination of force field parameters for phosphorus and boron atoms, as well as refinement of several available parameters. The bond and angle force constants were adjusted to fit vibration frequency data derived from both experimental measurements and ab initio calculations. The force field parameters for several dihedral angles were obtained by fitting torsion energy profiles deduced from ab initio calculations. To validate the proposed force field parameters, atomistic simulations were performed for 12 ionic liquids consisting of tetraalkylphosphonium cations and chelated orthoborate anions. The predicted densities for neat ionic liquids and the [P6,6,6,14][BOB] sample, with a water content of approximately 2.3-2.5 wt %, are in excellent agreement with available experimental data. The potential energy components of 12 ionic liquids were discussed in detail. The radial distribution functions and spatial distribution functions were analyzed and visualized to probe the microscopic ionic structures of these ionic liquids. There are mainly four high-probability regions of chelated orthoborate anions distributed around tetraalkylphosphonium cations in the first solvation shell, and such probability distribution functions are strongly influenced by the size of anions. PMID:25020237

  8. Kolmogorov scaling from random force fields

    OpenAIRE

    Jensen, Mogens H.; Sneppen, Kim; Angheluta, Luiza

    2008-01-01

    We show that the classical Kolmogorov and Richardson scaling laws in fully developed turbulence are consistent with a random Gaussian force field. Numerical simulations of a shell model approximation to the Navier-Stokes equations suggest that the fluctuations in the force (acceleration) field are scale independent throughout the inertial regime. We conjecture that Lagrangian statistics of the relative velocity in a turbulent flow is determined by the typical force field, whereas the multisca...

  9. Kolmogorov scaling from random force fields

    CERN Document Server

    Jensen, Mogens H; Angheluta, Luiza; 10.1209/0295-5075/84/10011

    2009-01-01

    We show that the classical Kolmogorov and Richardson scaling laws in fully developed turbulence are consistent with a random Gaussian force field. Numerical simulations of a shell model approximation to the Navier-Stokes equations suggest that the fluctuations in the force (acceleration) field are scale independent throughout the inertial regime. We conjecture that Lagrangian statistics of the relative velocity in a turbulent flow is determined by the typical force field, whereas the multiscaling is associated to extreme events in the force field fluctuations.

  10. Polarizable Force Field with a σ-Hole for Liquid and Aqueous Bromomethane.

    Science.gov (United States)

    Adluri, Archita N S; Murphy, Jennifer N; Tozer, Tiffany; Rowley, Christopher N

    2015-10-22

    Bromomethane (CH3Br) is an acutely toxic environmental pollutant that contributes to ozone depletion. Molecular simulation could be a valuable tool for studying its partitioning and transport in the environment if an accurate molecular model was available. The generalized Amber force field (GAFF), OPLS (optimized potentials for liquid simulations) force field, and CHARMM general force field (CGenFF) were tested for their ability to model the physical properties of liquid bromomethane. The OPLS force field was in fairly good agreement with experiment, while CGenFF and GAFF were significantly in error. The Br Lennard-Jones parameters of the GAFF and CGenFF models were reparameterized, but their radial distribution functions still have significant deviations from those calculated by ab initio molecular dynamics (AIMD). A Drude polarizable force field for bromomethane was parametrized with an off-center positively charged site to represent the C-Br σ-hole. This model is in good agreement with the bulk physical properties and the AIMD RDFs. The modest solubility of bromomethane was reproduced by this model, with dispersion interactions being the dominant water-solute interaction. The water-solute electrostatic interactions are a smaller factor in solubility. This model predicts bromomethane to have a 13 kJ mol(-1) surface excess potential at the water-vapor interface. PMID:26419599

  11. Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields.

    Science.gov (United States)

    Yoo, Jejoong; Wilson, James; Aksimentiev, Aleksei

    2016-10-01

    Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016. PMID:27144470

  12. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters...

  13. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola

    2003-01-01

    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  14. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  15. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Fluitt, Aaron M. [Univ. of Chicago, IL (United States); de Pablo, Juan J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  16. Common Force Field Thermodynamics of Cholesterol

    OpenAIRE

    Francesco Giangreco; Eiji Yamamoto; Yoshinori Hirano; Milan Hodoscek; Volker Knecht; Matteo di Giosia; Matteo Calvaresi; Francesco Zerbetto; Kenji Yasuoka; Tetsu Narumi; Masato Yasui; Siegfried Höfinger

    2013-01-01

    Four different force fields are examined for dynamic characteristics using cholesterol as a case study. The extent to which various types of internal degrees of freedom become thermodynamically relevant is evaluated by means of principal component analysis. More complex degrees of freedom (angle bending, dihedral rotations) show a trend towards force field independence. Moreover, charge assignments for membrane-embedded compounds are revealed to be critical with s...

  17. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    Science.gov (United States)

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments. PMID:22247593

  18. Three-Dimensional Force Field Spectroscopy

    Science.gov (United States)

    Schwarz, Alexander; Hölscher, Hendrik; Langkat, S. M.; Wiesendanger, R.

    2003-12-01

    A method is presented that utilizes the frequency modulation technique in ultra-high vacuum to measure the tip-sample force field in all three dimensions with atomic resolution. It is based on a systematic procedure to record frequency shift versus distance curves. After their conversion into the tip-surface potential landscape the complete force field in all three dimensions can be calculated. Experimental results obtained in the non-contact regime on NiO(001) with an iron-coated silicon tip are presented to demonstrate that interatomic vertical and lateral forces can be determined and assigned to specific sites within the surface unit cell.

  19. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  20. Valence force field analysis of tetracyanoethylene

    Science.gov (United States)

    Michaelian, K. H.; Rieckhoff, K. E.; Voigt, E. M.

    1982-09-01

    A valence force field calculation for the out-of-plane modes of tetracyanoethylene is reported, which makes possible a straightforward assignment of the low-frequency vibrations, including several in-plane modes which previously could not be assigned with certainty. The present set of assignments is consistent with observed vibrational spectra, both for uncomplexed and for complexed tetracyanoethylene, and, for the planar vibrations, is supported by recently published force constant calculations.

  1. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins.

    Science.gov (United States)

    Mera-Adasme, Raúl; Sadeghian, Keyarash; Sundholm, Dage; Ochsenfeld, Christian

    2014-11-20

    Classical force-field parameters of the metal site of metalloproteins usually comprise only the partial charges of the involved atoms, as well as the bond-stretching and bending parameters of the metal-ligand interactions. Although for certain metal ligands such as histidine residues, the torsional motions at the metal site play an important role for the dynamics of the protein, no such terms have been considered to be crucial in the parametrization of the force fields, and they have therefore been omitted in the parametrization. In this work, we have optimized AMBER-compatible force-field parameters for the reduced state of the metal site of copper, zinc superoxide dismutase (SOD1) and assessed the effect of including torsional parameters for the histidine-metal interactions in molecular dynamics simulations. On the basis of the obtained results, we recommend that torsion parameters of the metal site are included when processes at the metal site are investigated or when free-energy calculations are performed. As the torsion parameters mainly affect the structure of the metal site, other kinds of structural studies can be performed without considering the torsional parameters of the metal site.

  2. A Database of Force-Field Parameters, Dynamics, and Properties of Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Giuliano Malloci

    2015-08-01

    Full Text Available We present an on-line database of all-atom force-field parameters and molecular properties of compounds with antimicrobial activity (mostly antibiotics and some beta-lactamase inhibitors. For each compound, we provide the General Amber Force Field parameters for the major species at physiological pH, together with an analysis of properties of interest as extracted from µs-long molecular dynamics simulations in explicit water solution. The properties include number and population of structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intraand inter-molecular H-bonds, as well as structural and dynamical properties of solvent molecules within first and second solvation shells. In addition, the database contains several key molecular parameters, such as energy of the frontier molecular orbitals, vibrational properties, rotational constants, atomic partial charges and electric dipole moment, computed by Density Functional Theory. The present database (to our knowledge the first extensive one including dynamical properties is part of a wider project aiming to build-up a database containing structural, physico-chemical and dynamical properties of medicinal compounds using different force-field parameters with increasing level of complexity and reliability. The database is freely accessible at http://www.dsf.unica.it/translocation/db/.

  3. Where Does Amber Come from?

    Science.gov (United States)

    Booth, Bibi

    2005-01-01

    Amber is the fossilized resin of now-extinct trees, primarily ancient conifers but also some flowering tropical trees. An aromatic, soft, sticky substance, resin in extinct trees probably served the same purposes as resin in modern trees: to protect the plant by sealing cuts and by excluding bacteria, fungi, and insects.

  4. Amber : Een revolutie in Radar

    NARCIS (Netherlands)

    Huizing, A.G.

    2011-01-01

    Eind dit jaar verwachtTNO versie 4.0 op te leveren van zijn betaalbare digitale multibeamradar Amber. Het systeem is oorcpronkelijk ontwikkeld voor kleine toestellen die vliegen zonder hulp van de verkeersleiding. lnmiddels kijken de TN0'ers naar veel meer toepassingen, van havenbewaking tot zorg op

  5. Provenance studies of amber by PIXE

    International Nuclear Information System (INIS)

    Analyses by Infrared Spectroscopy and 13 C Nuclear Magnetic Resonance are suitable to determine the paleobotanic source of amber, but cannot differentiate between beds of the same paleobotanic source. Particle Induced X-ray Emission (PIXE) using an external set-up is presented as a new and non-destructive semiquantitative method for provenance studies of amber. PIXE analysis is focused at inorganic contents of amber, considering that the composition of microscopic inclusions depends on the sedimentation environment and it can be used to determine similarities and differences between amber samples and correlate them with amber beds. Results of analyses on amber samples from several world regions and a group of archaeological samples from Chiapas, Mexico, are presented. Amber from different regions have specific inorganic elemental contents; archaeological samples can be associated with beds, even if they have the same paleobotanic origin. (Author)

  6. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions.

    Science.gov (United States)

    Chang, Le; Ishikawa, Takeshi; Kuwata, Kazuo; Takada, Shoji

    2013-05-30

    Accurate computational estimate of the protein-ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein-ligand simulations, we use a protein-specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO-RESP method to two proteins, dodecin, and lysozyme, we found that protein-specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO-RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities. PMID:23420697

  7. Management of change through force field analysis.

    Science.gov (United States)

    Baulcomb, Jean Sandra

    2003-07-01

    Today's NHS is rapidly changing, placing more emphasis on the managerial responsibilities of ward managers. Managing change is seen as being skilled at creating, acquiring and transferring knowledge to reflect new knowledge and insights. Defining core concepts is often difficult and requires the drawing on models/theories of change for guidance. Guidance from Lewin's (1951) force field analysis demonstrates the complexities of the change process and how driving and resisting forces were incorporated within the planning and implementation phases. Findings outline the benefits of a small scale change for staff, patients and the organization when successfully used to introduce a change of shift pattern within a progressively busy haematology day unit, in order to meet service demands without additional funding. Conclusions have been drawn in relation to the process and recommendations for practice made to further enhance care delivery within the unit. PMID:12801382

  8. Transferable force field for alcohols and polyalcohols.

    Science.gov (United States)

    Ferrando, Nicolas; Lachet, Véronique; Teuler, Jean-Marie; Boutin, Anne

    2009-04-30

    A new force field has been developed for alcohol and polyalcohol molecules. Based on the anisotropic united-atom force field AUA4 developed for hydrocarbons, it only introduces one new anisotropic united atom corresponding to the hydroxyl group OH. In the case of polyalcohols and complex molecules, the calculation of the intramolecular electrostatic energy is revisited. These interactions are calculated between charges belonging to the different local dipoles of the molecule, one dipole being defined as a group of consecutive charges globally neutral. This new method allows avoiding the use of empirical scaling parameters commonly introduced to calculate 1-4 electrostatic interactions. The transferability of the proposed potential is demonstrated through the simulation of a wide variety of alcohol families: primary alcohols (methanol, ethanol, propan-1-ol, hexan-1-ol, octan-1-ol), secondary alcohols (propan-2-ol), tertiary alcohols (2-methylpropan-2-ol), phenol, and diols (1,2-ethanediol, 1,3-propanediol, 1,5-pentanediol). Monte Carlo simulations carried out in the Gibbs ensemble lead to a good agreement between calculated and experimental data for the thermodynamic properties along the liquid/vapor saturation curve, for the critical point coordinates and for the liquid structure at room temperature. Additional simulations were performed on the methanol + n-butane system showing the capability of the proposed potential to reproduce the azeotropic behavior of such mixtures with a good agreement. PMID:19344171

  9. The molecular composition of ambers

    Science.gov (United States)

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.

    1988-01-01

    Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.

  10. Assessment of Some Density Functional Theory Methods and Force Field Models in Describing Various Interaction Modes of Benzene Dimer

    Institute of Scientific and Technical Information of China (English)

    Yu-wei Zhou; Igor Ying Zhang; Jian-ming Wu; An-an Wu; Xin Xu

    2011-01-01

    Benzene dimer (bz2) is the simplest prototype of the π-π interactions.Such interactions are ubiquitous in diverse areas of science and molecular engineering.In the present work,we have made assessment on some modern density functional methods including B97-D,BLYP-D3,M06-2X,XYG3,and force field models including CHARMM,AMBER,MM3,AMOEBA on six important interaction modes of bz2.Our results not only highlight the usefulness of these cost-effective methods,which can be used as economic substitutes of the expensive CCSD(T) for complex real-world systems,but also indicate their weakness in the description of the π-π interactions,which points to the future direction for further improvements.

  11. Stability of Nonlinear Force-Free Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    胡友秋

    2001-01-01

    Based on the magnetohydrodynamic energy principle, it is proved that Gold-Hoyle's nonlinear force-free magnetic field is unstable. This disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Kriiger that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue associated with the domain of interest.

  12. The identity of Romanian amber (rumanite) with Baltic amber (succinite).

    Energy Technology Data Exchange (ETDEWEB)

    Stout, E. C.; Beck, C. W.; Anderson, K. B.; Chemistry; Vassar Coll.

    2000-11-01

    Romanian amber (rumanite) has been considered to be a separate species of fossil resin for more than a century. While earlier investigators held it to be very similar to succinite (Baltic amber), modern scholars have assigned it a distinctly different botanical origin. We have found that almost all of the constituents of the ether-soluble fractions of 13 specimens of authentic rumanite identified by gas chromatography-mass spectrometry have previously been reported in the soluble fraction of succinite, including succinic acid and its monoterpene esters. Additionally and significantly, the soluble fraction of rumanite contains a number defunctionalized compounds that do not preexist in succinite, but that are produced by pyrolysis of whole succinite or of its insoluble polymeric fraction. Simultaneous methylation pyrolysis-gas chromatography-mass spectrometry of the polymeric fraction of seven of the rumanite specimens yielded further copious amounts of dimethyl succinate, a number of diterpene resin acid methyl esters, and additional defunctionalized compounds known to be pyrolysis products of succinite. The evidence shows conclusively that the botanical origin of rumanite is not distinct from that of succinite. Rather, rumanite is a succinite that has suffered partial thermal degradation in the course of the folding of the Oligocene Kliwa sandstone formation in which it is most commonly found.

  13. Force-Field Analysis: Incorporating Critical Thinking in Goal Setting.

    Science.gov (United States)

    Hustedde, Ron; Score, Michael

    1995-01-01

    Force field analysis encourages members to examine the probability of reaching agreed-upon goals. It can help groups avoid working toward goals that are unlikely to be reached. In every situation are three forces: forces that encourage maintenance of the status quo or change; driving or helping forces that push toward change; and restraining…

  14. The Energetics of Motivated Cognition: A Force-Field Analysis

    Science.gov (United States)

    Kruglanski, Arie W.; Belanger, Jocelyn J.; Chen, Xiaoyan; Kopetz, Catalina; Pierro, Antonio; Mannetti, Lucia

    2012-01-01

    A force-field theory of motivated cognition is presented and applied to a broad variety of phenomena in social judgment and self-regulation. Purposeful cognitive activity is assumed to be propelled by a "driving force" and opposed by a "restraining force". "Potential" driving force represents the maximal amount of energy an individual is prepared…

  15. The critical role of force-fields in property prediction

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Welsh, William J.; Rasmussen, Kjeld;

    1999-01-01

    of conformational energydifferences and interaction energies vary significantly from one force-field to another. As a test for the reliability of the non-bonded interactions, vapor-liquid equilibrium (VLE) data have been calculated for a small number of systems using three different force-fields. The force...

  16. The Introduction of Fields in Relation to Force

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2012-01-01

    The introduction of force at age 14-16 years is considered, starting with elementary student experiments using magnetic force fields. The meaningless use of terms such as "action" and "reaction", or "agent" and "receiver" is discussed. (Contains 6 figures.)

  17. Implementation of project Safe in Amber. Verification study for SFR 1 SAR-08

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Gavin; Herben, Martin; Lloyd, Pam; Rose, Danny; Smith, Chris; Barraclough, Ian (Enviros Consulting Ltd (GB))

    2008-03-15

    This report documents an exercise in which AMBER has been used to represent the models used in Project SAFE, a safety assessment undertaken on SFR 1. (AMBER is a flexible, graphical-user-interface based tool that allows users to build their own dynamic compartmental models to represent the migration, degradation and fate of contaminants in an environmental system. AMBER allows the user to assess routine, accidental and long-term contaminant release.) AMBER has been used to undertake assessment calculations on all of the disposal system, including all disposal tunnels and the Silo, the geosphere and several biosphere modules. The near-field conceptual models were implemented with minimal changes to the approach undertaken previously in Project SAFE. Model complexity varied significantly between individual disposal facilities increasing significantly from the BLA to the BTF and BMA tunnels and Silo. Radionuclide transport through the fractured granite geosphere was approximated using a compartment model approach in AMBER. Several biosphere models were implemented in AMBER including reasonable biosphere development, which considered the evolution of the Forsmark area from coastal to lacustrine to agricultural environments in response to land uplift. Parameters were sampled from distributions and simulations were run for 1,000 realisations. In undertaking the comparison of AMBER with the various codes and calculation tools used in Project SAFE it was necessary to undertake a detailed analysis of the modelling approach previously adopted, with particular focus given to the near-field models. As a result some discrepancies in the implementation of the models and documentation were noted. The exercise demonstrates that AMBER is fully capable of representing the features of the SFR 1 disposal system in a safety assessment suitable for SAR-08

  18. Technology for melting amber chips to produce a solid block

    Science.gov (United States)

    Vikhareva, A. S.; Melnikov, A. G.; Utyev, O. M.

    2016-04-01

    This research is relevant, because the bulk of the mined amber comes in amber chips. Therefore, we have decided to review the current ways of melting amber chips to develop the most technologically efficient algorithm and to use it further for producing decorative items. The purpose of the work is to perfect the technology of obtaining whole-piece amber from amber chips and to explore the usability of the obtained material in decorative items and jewelry.

  19. NEW POSSIBILITY FOR THE USE OF PLASMA DISCHARGES TO IDENTIFY AMBER AND CHANGES IN AMBER STRUCTURE

    Directory of Open Access Journals (Sweden)

    Sebastian Gnapowski

    2012-12-01

    Full Text Available Pulsed power discharge applied in air to the amber surface was found to cause improvement in its appearance and color changes such as to red, a color not natural to amber but attractive for jewelry. Needle and plate electrodes were used during experiments. Pulsed power discharges in air particularly turned amber red at the edges and around the needle electrode. Discharges in water did not change amber structure because discharge occurring on the surface does not cross the amber structure. Discharges in silicone oil had a different effect, with most discharge passing through the amber structure, causing fine cracks. Unfortunately, the absence of a consistent amber structure causes difficulty in selecting the correct discharge (shock wave power. Using new technology, we have changed the appearance a very old material-amber (about 40 – 60 million years old – to make it more attractive for customers; this technology is also useful for detecting artificial amber (costume jewellery without causing damage to the product.

  20. Optical characterization of amber from Chiapas, Mexico

    Science.gov (United States)

    López-Morales, Guadalupe; Espinosa-Luna, Rafael; Frausto-Reyes, Claudio

    2013-09-01

    An optical characterization of amber samples from México, the Baltic Sea and fake samples is presented, with the aim of discriminate between genuine and fake samples. We sought to identify the physical variables that could serve as the basis for the development of a device whose operation was able to discriminate between samples of genuine and fake amber. The optical refractive index was determined by Spectroscopic Ellipsometry, Abbe refractometry, and by the Brewster angle. The Raman spectra and the fluorescence optical responses were also determined. The results obtained indicate that the refractive index is not a robust variable that can differentiate between genuine amber and a fake sample. On the other hand, the Raman spectra and the fluorescence responses provide information that allows discriminating between both types of samples. For this reason, we used the results obtained by fluorescence as a basis for the design and construction of a prototype simple, reliable, portable, and affordable for authentication of the Mexican amber.

  1. Transferability of different classical force fields for right and left handed α-helices constructed from enantiomeric amino acids.

    Science.gov (United States)

    Biswas, Santu; Sarkar, Sujit; Pandey, Prithvi Raj; Roy, Sudip

    2016-02-21

    Amino acids can form d and l enantiomers, of which the l enantiomer is abundant in nature. The naturally occurring l enantiomer has a greater preference for a right handed helical conformation, and the d enantiomer for a left handed helical conformation. The other conformations, that is, left handed helical conformations of the l enantiomers and right handed helical conformations of the d enantiomers, are not common. The energetic differences between left and right handed alpha helical peptide chains constructed from enantiomeric amino acids are investigated using quantum chemical calculations (using the M06/6-311g(d,p) level of theory). Further, the performances of commonly used biomolecular force fields (OPLS/AA, CHARMM27/CMAP and AMBER) to represent the different helical conformations (left and right handed) constructed from enantiomeric (D and L) amino acids are evaluated. 5- and 10-mer chains from d and l enantiomers of alanine, leucine, lysine, and glutamic acid, in right and left handed helical conformations, are considered in the study. Thus, in total, 32 α-helical polypeptides (4 amino acids × 4 conformations of 5-mer and 10-mer) are studied. Conclusions, with regards to the performance of the force fields, are derived keeping the quantum optimized geometry as the benchmark, and on the basis of phi and psi angle calculations, hydrogen bond analysis, and different long range helical order parameters. PMID:26863595

  2. Manufacturing of amber particles suitable for composite fibre melt spinning

    Directory of Open Access Journals (Sweden)

    Ļašenko Inga Ļ

    2016-04-01

    Full Text Available Polyamide fibre containing amber particles was fabricated. The amber particles were obtained by grinding technology using planetary ball-mills. Scanning electron microscopy and granulometry testing were used to characterise the structure and the size of prepared amber particles. Fourier transform infrared spectroscopy was used to analyse the chemical structure of the amber particles. The amber particles were characterised with average size up to 3 μm. The chemical composition of amber before and after the grinding remained unchanged. The amber particles were melt-extruded using polyamide 6 as the matrix. Melt spinning processing was used to fabricate polyamide-amber filaments. Pre-oriented yarns and fully drawn yarns were obtained after hotdrawing experiments. Reported experimental findings of amber composite fibre could be important for textile applications.

  3. The influences of wall Lorentz force and field Lorentz force on the cylinder drag reduction

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Bao-Chun Fan; Zhi-Hna Chen; Yan-Ling Li

    2011-01-01

    In this paper,the effects of Lorentz force on drag reduction for a circular cylinder have been studied experimentally and numerically.Based on its effects on drag reduction,the Lorentz force is found to be classified into two parts:one acts directly on the cylinder,named as the wall Lorentz force,and the other called the field Lorentz force acts on the fluid inside the boundary layer.The wall Lorentz force leads to the generation of a thrust,whereas the field Lorentz force results in drag increase.Since the former dominates the drag variation,the drag would reduce accordingly and even turn into negative (thrust) with the application of Lorentz force.

  4. Force-free magnetic fields solutions, topology and applications

    CERN Document Server

    Marsh, Gerald E

    1996-01-01

    After an introductory chapter concerned with the history of force-free magnetic fields, and the relation of such fields to hydrodynamics and astrophysics, the book examines the limits imposed by the virial theorem for finite force-free configurations. Various techniques are then used to find solutions to the field equations. The fact that the field lines corresponding to these solutions have the common feature of being "twisted", and may be knotted, motivates a discussion of field line topology and the concept of helicity. The topics of field topology, helicity, and magnetic energy in multiply

  5. Lateral Chirality-sorting Optical Spin Forces in Evanescent Fields

    CERN Document Server

    Hayat, Amaury; Capasso, Federico

    2014-01-01

    The unusual transverse component of the spin angular momentum of evanescent waves gives rise to lateral forces on chiral particles, which have the surprising property of acting in a direction in which there is neither a field gradient nor wave propagation. The direction of these forces is opposite for particles with opposite helicities, such that they may be useful for optically-induced enantiomer separation with a single beam, and the reliance on an evanescent field makes them a natural choice for sorting within an integrated optical circuit. The magnitude of these forces substantially exceeds those of the recently predicted sideways optical forces acting on non-chiral objects in evanescent fields and on chiral objects in propagating fields near a surface, such that they may more readily offer an experimental confirmation of lateral optical forces.

  6. Ponderomotive Force in the Presence of Electric Fields

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  7. The interoperability force in the ERP field

    OpenAIRE

    Boza Garcia, Andres; Cuenca, L.; Poler Escoto, Raúl; Michaelides, Zenon

    2015-01-01

    Enterprise resource planning (ERP) systems participate in interoperability projects and this participation sometimes leads to new proposals for the ERP field. The aim of this paper is to identify the role that interoperability plays in the evolution of ERP systems. To go about this, ERP systems have been first identified within interoperability frameworks. Second, the initiatives in the ERP field driven by interoperability requirements have been identified from two perspectives: technological...

  8. Carnivorous leaves from Baltic amber.

    Science.gov (United States)

    Sadowski, Eva-Maria; Seyfullah, Leyla J; Sadowski, Friederike; Fleischmann, Andreas; Behling, Hermann; Schmidt, Alexander R

    2015-01-01

    The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants. PMID:25453067

  9. Adhesion Force Measurements of Polymer Particles by Detachment Field Method

    Institute of Scientific and Technical Information of China (English)

    Masashi Nagayama; Nobuyasu Sakurai; Tatsuaki Wada; Manabu Takeuchi

    2004-01-01

    The adhesion force distributions of polymer particles to aluminum substrates were measured by the detachment field method. Polymer particles with conducting surface treatment were used for the measurements.Further the conventional detachment field method was modified to be applicable to the adhesion force measurements of a single particle. The adhesion force of the polymer particles increased with an increase in relative humidity. The surface roughness of the substrate influenced the adhesion forces of particles significantly. The influence of the CF4 plasma treatment of the polymer particles and thin layer coating of the substrate surface on the adhesion forces of the polymer particles was also studied, and factors affecting adhesion forces of polymer particles are discussed.

  10. The interoperability force in the ERP field

    Science.gov (United States)

    Boza, Andrés; Cuenca, Llanos; Poler, Raúl; Michaelides, Zenon

    2015-04-01

    Enterprise resource planning (ERP) systems participate in interoperability projects and this participation sometimes leads to new proposals for the ERP field. The aim of this paper is to identify the role that interoperability plays in the evolution of ERP systems. To go about this, ERP systems have been first identified within interoperability frameworks. Second, the initiatives in the ERP field driven by interoperability requirements have been identified from two perspectives: technological and business. The ERP field is evolving from classical ERP as information system integrators to a new generation of fully interoperable ERP. Interoperability is changing the way of running business, and ERP systems are changing to adapt to the current stream of interoperability.

  11. DRF90 : a polarizable force field

    NARCIS (Netherlands)

    Swart, M.; van Duijnen, P. Th.

    2006-01-01

    The direct reaction field (DRF) approach has proven to be a useful tool to investigate the influence of solvents on the quantum/classical behaviour of solute molecules. In this paper, we report the latest extension of this DRF approach, which consists of the gradient of the completely classical ener

  12. Mapping Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces

    CERN Document Server

    Huang, Fei; Mardy, Zahra; Burdett, Jonathan; Wickramasinghe, H Kumar

    2014-01-01

    We demonstrate the application of Atomic Force Microscopy (AFM) based optical force microscopy to map the optical near-fields with nanometer resolution, limited only by the AFM probe geometry. We map the electric field distributions of tightly focused laser beams with different polarizations and show that the experimentally measured data agrees well with the theoretical predictions from a dipole-dipole interaction model, thereby validating our approach. We further validate the proposed technique by evaluating the optical electric field scattered by a spherical nanoparticle by measuring the optical forces between the nanoparticle and gold coated AFM probe. The technique allows for wavelength independent, background free, thermal noise limited mechanical imaging of optical phenomenon with sensitivity limited by AFM performance. Optical forces due to both electric and magnetic dipole-dipole interactions can be measured using this technique.

  13. Force-field compensation in a manual tracking task.

    Directory of Open Access Journals (Sweden)

    Valentina Squeri

    Full Text Available This study addresses force/movement control in a dynamic "hybrid" task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%, which is a function of the implicit accuracy of the tracking task.

  14. Tailor-made force fields for crystal-structure prediction.

    Science.gov (United States)

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  15. Tailor-made force fields for crystal-structure prediction.

    Science.gov (United States)

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  16. Toroidal linear force-free magnetic fields with axial symmetry

    Science.gov (United States)

    Vandas, M.; Romashets, E.

    2016-01-01

    Aims: Interplanetary magnetic flux ropes are often described as linear force-free fields. To account for their curvature, toroidal configurations must be used. The aim is to find an analytic description of a linear force-free magnetic field of the toroidal geometry in which the cross section of flux ropes can be controlled. Methods: The solution is found as a superposition of fields given by linear force-free cylinders tangential to a generating toroid. The cylindrical field is expressed in a series of terms that are not all cylindrically symmetric. Results: We found the general form of a toroidal linear force-free magnetic field. The field is azimuthally symmetric with respect to the torus axis. It depends on a set of coefficients that enables controlling the flux rope shape (cross section) to some extent. By varying the coefficients, flux ropes with circular and elliptic cross sections were constructed. Numerical comparison suggests that the simple analytic formula for calculating the helicity in toroidal flux ropes of the circular cross section can be used for flux ropes with elliptic cross sections if the minor radius in the formula is set to the geometric mean of the semi-axes of the elliptic cross section.

  17. An implicit divalent counterion force field for RNA molecular dynamics

    Science.gov (United States)

    Henke, Paul S.; Mak, Chi H.

    2016-03-01

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg2+ screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grained models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.

  18. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  19. A New Force-Matched Reactive Force Field for Bulk Water Under Extreme Thermodynamic Conditions

    Science.gov (United States)

    Fried, Laurence; Koziol, Lucas

    2015-06-01

    A many-body classical force field is presented for water under dissociative thermodynamic conditions. The force field is optimized by force-matching to ab initio molecular dynamics (AIMD) simulations calculated with Density Functional Theory (DFT). The force field contains short-ranged central and many-body over-coordination terms, and long-range Ewald electrostatics. It is optimized and tested on water at density 1.5 g/mL and 2000 K, which is approximately 10% dissociated according to DFT. Molecular dynamics simulations closely reproduce DFT radial distribution functions, as well as the distribution of wat and dissociation products. The calculated atomic self-diffusion constants appear about 50% lower than in DFT, although precise comparison is impossible due to the short timescale accessible to AIMD (about 20 ps). The force field is also compared to ReaxFF using the CHO parameter set of Chenowith et al. ReaxFF structural and dynamical properties are in overall fair agreement with DFT, although ReaxFF water is not dissociative at these conditions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Birkeland Currents: A Force-Free Field-Aligned Model

    Directory of Open Access Journals (Sweden)

    Scott D. E.

    2015-04-01

    Full Text Available The fundamental vector calculus definition of a force-free, field-aligned current in space is expanded in cylindrical coordinates to directly obtain the Bessel partial differential equation that specifies the magnetic field created by such a current. This result is often called the Lundquist solution. A simple but detailed derivation is included here. The physical properties of the resulting intricate magnetic field structure are described. The cause of its characteristic counter-rotation and counter-flows are identified. The describ- ing equations are put into state-variable form and a step-wise approximation is applied. This solution reveals the primary effect of the force-free parameter, , as being a scale factor of radial distance. We show that: 1 both the axial and azimuthal magnetic and current density components cyclically reverse their directions with radial distance from the central axis of the current; 2 the magnetic field extends farther from the central axis within a force-free field than it would if produced by a current in a long straight conductor. The total magnetic field magnitude and current density are shown to vary inversely as the square root of r . For large r , outside the plasma, the azimuthal magnetic field is shown to vary as 1 = r . These results are shown to be consistent with laboratory and astronomical observations.

  1. Mitigated-force carriage for high magnetic field environments

    Science.gov (United States)

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  2. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  3. Force-Field Analysis: A Functional Management System

    Science.gov (United States)

    Sanders, Stanley G.

    1977-01-01

    Force field analysis combines the advantages of the basic organization, objectivity, and science of systems theory and systems methods, with a simplicity and clarity that allows its mastery by policy-makers and administrators who are not specialists in engineering, data processing, or programming. (Author/IRT)

  4. Martini Coarse-Grained Force Field : Extension to Carbohydrates

    NARCIS (Netherlands)

    Lopez, Cesar A.; Rzepiela, Andrzej J.; de Vries, Alex H.; Dijkhuizen, Lubbert; Huenenberger, Philippe H.; Marrink, Siewert J.; Hünenberger, Philippe H.

    2009-01-01

    We present an extension of the Martini coarse-grained force field to carbohydrates. The parametrization follows the same philosophy as was used previously for lipids and proteins, focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar phases. The car

  5. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain.

  6. Average Lorentz self-force from electric field lines

    International Nuclear Information System (INIS)

    We generalize the derivation of electromagnetic fields of a charged particle moving with a constant acceleration Singal (2011 Am. J. Phys. 79 1036) to a variable acceleration (piecewise constants) over a small finite time interval using Coulomb's law, relativistic transformations of electromagnetic fields and Thomson's construction Thomson (1904 Electricity and Matter (New York: Charles Scribners) ch 3). We derive the average Lorentz self-force for a charged particle in arbitrary non-relativistic motion via averaging the fields at retarded time. (paper)

  7. Automatic molecular structure perception for the universal force field.

    Science.gov (United States)

    Artemova, Svetlana; Jaillet, Léonard; Redon, Stephane

    2016-05-15

    The Universal Force Field (UFF) is a classical force field applicable to almost all atom types of the periodic table. Such a flexibility makes this force field a potential good candidate for simulations involving a large spectrum of systems and, indeed, UFF has been applied to various families of molecules. Unfortunately, initializing UFF, that is, performing molecular structure perception to determine which parameters should be used to compute the UFF energy and forces, appears to be a difficult problem. Although many perception methods exist, they mostly focus on organic molecules, and are thus not well-adapted to the diversity of systems potentially considered with UFF. In this article, we propose an automatic perception method for initializing UFF that includes the identification of the system's connectivity, the assignment of bond orders as well as UFF atom types. This perception scheme is proposed as a self-contained UFF implementation integrated in a new module for the SAMSON software platform for computational nanoscience (http://www.samson-connect.net). We validate both the automatic perception method and the UFF implementation on a series of benchmarks. PMID:26927616

  8. Force-Field Compensation in a Manual Tracking Task

    OpenAIRE

    Valentina Squeri; Lorenzo Masia; Maura Casadio; Pietro Morasso; Elena Vergaro

    2010-01-01

    This study addresses force/movement control in a dynamic "hybrid" task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudina...

  9. Sodium Chloride, NaCl/{\\epsilon} : New Force Field

    OpenAIRE

    Fuentes-Azcatl, Raul; Barbosa, Marcia C.

    2015-01-01

    A new computational model for Sodium Chloride, the NaCl/{\\epsilon}, is proposed. The Force Fields employed here for the description of the NaCl is based on a set of radial particle-particle pair potentials involving Lennard-Jones (LJ) and Coulombic forces. The parameterization is obtained fitting the density of the crystal and the density and the dielectric constant of the mixture of salt with water at diluted solution. Our model shows good agreement with the experimental values for the densi...

  10. Penis morphology in a Burmese amber harvestman

    Science.gov (United States)

    Dunlop, Jason A.; Selden, Paul A.; Giribet, Gonzalo

    2016-02-01

    A unique specimen of the fossil harvestman Halitherses grimaldii Giribet and Dunlop, 2005 (Arachnida: Opiliones) from the Cretaceous (ca. 99 Ma) Burmese amber of Myanmar reveals a fully extended penis. This is the first record of a male copulatory organ of this nature preserved in amber and is of special importance due to the age of the deposit. The penis has a slender, distally flattened truncus, a spatulate heart-shaped glans and a short distal stylus, twisted at the tip. In living harvestmen, the penis yields crucial characters for their systematics. Male genital morphology in H. grimaldii appears to be unique among the wider Dyspnoi clade to which this fossil belongs. The large eyes in the fossil differ markedly from other members of the subfamily Ortholasmatinae to which H. grimaldii was originally referred. Based on recent data, it has been argued that large eyes may be plesiomorphic for Palpatores (i.e. the suborders Eupnoi and Dyspnoi), potentially rendering this character plesiomorphic for the fossil too. Thus, the unique structure of the penis seen here, and the probable lack of diaphanous teeth, present in all other extant non-acropsopilionid Dyspnoi, suggest that H. grimaldii represents a new, extinct family of large-eyed dyspnoid harvestmen, Halithersidae fam. nov.; a higher taxon in amber diagnosed here on both somatic and genital characters.

  11. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...... of this variation is due to changes in the enzyme structure at distances more than 5 Å from the active site. There are significant differences between the results obtained by pure quantum methods and those from mixed quantum and molecular mechanics methods....

  12. Correlated continuous-time random walks in external force fields

    Science.gov (United States)

    Magdziarz, Marcin; Metzler, Ralf; Szczotka, Wladyslaw; Zebrowski, Piotr

    2012-05-01

    We study the anomalous diffusion of a particle in an external force field whose motion is governed by nonrenewal continuous time random walks with correlated waiting times. In this model the current waiting time Ti is equal to the previous waiting time Ti-1 plus a small increment. Based on the associated coupled Langevin equations the force field is systematically introduced. We show that in a confining potential the relaxation dynamics follows power-law or stretched exponential pattern, depending on the model parameters. The process obeys a generalized Einstein-Stokes-Smoluchowski relation and observes the second Einstein relation. The stationary solution is of Boltzmann-Gibbs form. The case of an harmonic potential is discussed in some detail. We also show that the process exhibits aging and ergodicity breaking.

  13. A Maximum-Likelihood Approach to Force-Field Calibration.

    Science.gov (United States)

    Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam

    2015-09-28

    A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2

  14. Electromagnetic Forces and Fields in a Rotating Reference Frame

    OpenAIRE

    Arendt, Jr., P. N.

    1998-01-01

    Maxwell's equations and the equations governing charged particle dynamics are presented for a rotating coordinate system with the global time coordinate of an observer on the rotational axis. Special care is taken in defining the relevant entities in these equations. Ambiguities in the definitions of the electromagnetic fields are pointed out, and in fact are shown to be essential in such a system of coordinates. The Lorentz force is found to have an extra term in this frame, which has its or...

  15. Nonequilibrium Atom-Dielectric Forces Mediated by a Quantum Field

    OpenAIRE

    Behunin, Ryan Orson; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-grainin...

  16. Development of Force Field Parameters for Molecular Simulation of Polylactide

    OpenAIRE

    McAliley, James H.; Bruce, David A.

    2011-01-01

    Polylactide is a biodegradable polymer that is widely used for biomedical applications, and it is a replacement for some petroleum based polymers in applications that range from packaging to carpeting. Efforts to characterize and further enhance polylactide based systems using molecular simulations have to this point been hindered by the lack of accurate atomistic models for the polymer. Thus, we present force field parameters specifically suited for molecular modeling of PLA. The model, whic...

  17. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  18. Simulation of the thermodynamics of folding and unfolding of the Trp-cage mini-protein TC5b using different combinations of force fields and solvation models

    Institute of Scientific and Technical Information of China (English)

    ZHANG; John; ZengHui

    2010-01-01

    Molecular dynamics simulations based on AMBER force fields(ff96 and ff03) and generalized Born models(igb1 and igb5) have been carried out in order to study folding/unfolding of the Trp-cage mini-protein TC5b.The thermodynamic properties of TC5b were found to be sensitive to the specific version of the solvation model and force field employed.When the ff96/igb5 combination was used,the predicted melting temperature from unfolding simulations was in good agreement with the experimental value of 315 K,but the folding simulation did not converge.The most stable thermodynamic profile in both folding and unfolding simulations was obtained when the ff03/igb5 combination was employed,and the predicted melting temperature was about 345 K,showing over-stabilization of the protein.Simulations using the igb1 version in combination with ff96 or ff03 were difficult to converge within the simulation time limit(50 ns).

  19. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  20. Weber's gravitational force as static weak field approximation

    Science.gov (United States)

    Tiandho, Yuant

    2016-02-01

    Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.

  1. Active contour model based on force field analysis

    Institute of Scientific and Technical Information of China (English)

    HOU Zhi-qiang; HAN Chong-zhao

    2006-01-01

    The traditional snake initial contour should be close to the true boundary of an object of interest in an image;otherwise,an incorrect result will be obtained.Next,active contours have difficulties progressing into boundary concavities.Moreover,the traditional snake as well as almost all of its improved methods can be easily obtained from the local minimum because snake models are nonconvex.An active contour model based on force field analysis (FFA),namely,FFA snake model,is presented in this paper.Based on analyzing force distribution rules of the distance potential force field,a standard is introduced here to distinguish the false one from contour points.The result is not considered as the final solution when the snake energy is minimal.Furthermore,estimation and calculation should be made according to the established standard;only then can the result be considered final.Thus,the snake is prevented from running into the local minimum.The simulation results show that the FFA snake model has a large capture range and can move a snake into the boundary concavities,and that it is able to obtain the object of interest's contour precisely.Compared with the gradient vector flow snake,this new model has a low computational cost.

  2. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  3. Sodium Chloride, NaCl/ϵ: New Force Field.

    Science.gov (United States)

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C

    2016-03-10

    A new computational model for sodium chloride, the NaCl/ϵ, is proposed. The force field employed for the description of the NaCl is based on a set of radial particle-particle pair potentials involving Lennard-Jones (LJ) and Coulombic forces. The parametrization is obtained by fitting the density of the crystal and the density and the dielectric constant of the mixture of the salt with water at a diluted solution. Our model shows good agreement with the experimental values for the density and for the surface tension of the pure system, and for the density, the viscosity, the diffusion, and the dielectric constant for the mixture with water at various molal concentrations. The NaCl/ϵ together with the water TIP4P/ϵ models provide a good approximation for studying electrolyte solutions. PMID:26890321

  4. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  5. New taxa of Tanyderidae (Diptera) from Eocene Baltic amber.

    Science.gov (United States)

    Krzeminski, Wiesław; Krzeminska, Ewa; Kania, Iwona; Ross, Andrew J

    2013-01-01

    Macrochile hornei sp. nov. from Baltic amber (Upper Eocene) is described and illustrated. Podemacrochile gen. nov. is described with Podemacrochile baltica (Podenas, 1997) as type species. A key to the genera and species of Tanyderidae known from Baltic amber is presented. PMID:24583815

  6. AMBER: Uma linguagem para o desenvolvimento de sistemas distribuidos

    NARCIS (Netherlands)

    Ferreira Pires, L.; Guareis de Farias, C.R.; Farines, J.M.; Westphall, C.

    2001-01-01

    This paper presents the architectural model AMBER for the design of distributed systems developed at the University of Twente. This model allows the specification of distributed systems in terms of structures of functional entities and their corresponding behaviour. AMBER was originally developed to

  7. OHANA, the AMBER/VLTI Snapshot Survey

    CERN Document Server

    Rivinius, Th; Demers, Z; Quirrenbach, A

    2016-01-01

    We report on the OHANA interferometric snapshot survey, carried out by the VLTI group at the Paranal observatory. It makes use of observing time not useful for any other scheduled scientific or technical tasks in the sense of a backup programme, to characterize the mass-loss for early-type stars. The survey employs the combination of AMBER's high spectral and spatial resolution. The spatially unresolved central object provides a reference frame for the fringe properties observed in the light of the continuum.

  8. On the use of quartic force fields in variational calculations

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.

    2013-06-01

    Quartic force fields (QFFs) have been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this letter we discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine (-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system to 5 cm-1 or better compared to experiment. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods.

  9. Vibrational Spectra of the Azabenzenes Revisited: Anharmonic Force Fields

    CERN Document Server

    Boese, A D; Martin, Jan M.L.

    2003-01-01

    Anharmonic force fields and vibrational spectra of the azabenzene series (pyridine, pyridazine, pyrimidine, pyrazine, s-triazine, 1,2,3-triazine, 1,2,4-triazine and s-tetrazine) and benzene are obtained using density functional theory (DFT) with the B97-1 exchange-correlation functional and a triple-zeta plus double polarization (TZ2P) basis set. Overall, the fundamental frequencies computed by second-order rovibrational perturbation theory are in excellent agreement with experiment. The resolution of the presently calculated anharmonic spectra is such that they represent an extremely useful tool for the assignment and interpretation of the experimental spectra, especially where resonances are involved.

  10. The Dependence of Amyloid‐β Dynamics on Protein Force Fields and Water Models

    DEFF Research Database (Denmark)

    Somavarapu, Arun Kumar; Kepp, Kasper Planeta

    2015-01-01

    We studied the dynamics of Aβ40, involved in Alzheimer's disease, by using 21 methods combined from Amber03, Amber99sb‐ILDN, Charmm27, Charmm22*, OPLS‐2001, OPLS‐2006, OPLS‐2008, Gromos96‐43a1, Gromos96‐53a6, Gromos96‐54a7, and the water models SPC, TIP3P, TIP4P. Major differences in the structural...... ensembles were systematized: Amber03, Charmm27, and Gromos96‐54a7 stabilize the helices; Gromos96‐43a1 and Gromos53a6 favor the β‐strands (with Charmm22* and Amber99sb‐ILDN in between), and OPLS produces unstructured ensembles. The accuracy of the NMR chemical shifts was in the order: Charmm22*>Amber99sb...... circular dichroism data, providing a model for the real Aβ monomer ensemble. Also, the polar water model TIP3P significantly favored helix and compact conformations....

  11. Inertia as a zero-point-field Lorentz force

    International Nuclear Information System (INIS)

    Under the hypothesis that ordinary matter is ultimately made of subelementary constitutive primary charged entities or ''partons'' bound in the manner of traditional elementary Planck oscillators (a time-honored classical technique), it is shown that a heretofore uninvestigated Lorentz force (specifically, the magnetic component of the Lorentz force) arises in any accelerated reference frame from the interaction of the partons with the vacuum electromagnetic zero-point field (ZPF). Partons, though asymptotically free at the highest frequencies, are endowed with a sufficiently large ''bare mass'' to allow interactions with the ZPF at very high frequencies up to the Planck frequencies. This Lorentz force, though originating at the subelementary parton level, appears to produce an opposition to the acceleration of material objects at a macroscopic level having the correct characteristics to account for the property of inertia. We thus propose the interpretation that inertia is an electromagnetic resistance arising from the known spectral distortion of the ZPF in accelerated frames. The proposed concept also suggests a physically rigorous version of Mach's principle. Moreover, some preliminary independent corroboration is suggested for ideas proposed by Sakharov (Dokl. Akad. Nauk SSSR 177, 70 (1968) [Sov. Phys. Dokl. 12, 1040 (1968)]) and further explored by one of us [H. E. Puthoff, Phys. Rev. A 39, 2333 (1989)] concerning a ZPF-based model of Newtonian gravity, and for the equivalence of inertial and gravitational mass as dictated by the principle of equivalence

  12. Spatial Confinement of Ultrasonic Force Fields in Microfluidic Channels

    DEFF Research Database (Denmark)

    Manneberg, O; Hagsäter, Melker; Svennebring, J;

    2009-01-01

    of the microfluidic channel. The channel segments are remotely actuated by the use of frequency-specific external transducers with refracting wedges placed on top of the chips. The force field in each channel segment is characterized by the use of micrometer-resolution particle image velocimetry ( micro...... adjacent. fields. The goal is to define design strategies for implementing several spatially separated ultrasonic manipulation functions in series for use in advanced particle or cell handling and processing applications. One such proof-of-concept application is demonstrated, where. flow......-through-mode operation of a chip with. flow splitting elements is used for two-dimensional pre-alignment and addressable merging of particle tracks....

  13. Unified Field Theory and Force Formulas of Interactions

    Science.gov (United States)

    Ma, Tian; Wang, Shouhong

    2013-04-01

    The main objective of this talk is to drive a unified field model coupling four interactions, based on the principle of interaction dynamics (PID) and the principle of representation invariance (PID). Intuitively, PID takes the variation of the action functional under energy-momentum conservation constraint. PRI requires that physical laws be independent of representations of the gauge groups. One important outcome of this unified field model is a natural duality between the interacting fields (g, A, W^a, S^k), corresponding to graviton, photon, intermediate vector bosons W^± and Z and gluons, and the adjoint bosonic fields (φ,, ^aw, ^ks). This duality predicts two Higgs particles of similar mass with one due to weak interaction and the other due to strong interaction. PID and PRI can be applied directly to individual interactions, leading to 1) modified Einstein equations, giving rise to a unified theory for dark matter and dark energy, 2) three levels of strong interaction potentials for quark, nucleon/hadron, and atom respectively, and 3) a weak interaction potential. These potential/force formulas offer a clear mechanism for both quark confinement and asymptotic freedom.

  14. A new united atom force field for adsorption of alkenes in zeolites

    NARCIS (Netherlands)

    B. Liu; B. Smit; F. Rey; S. Valencia; S. Calero

    2008-01-01

    A new united atom force field was developed that accurately describes the adsorption properties of linear alkenes in zeolites. The force field was specifically designed for use in the inhomogeneous system and therefore a truncated and shifted potential was used. With the determined force field, we p

  15. Electromagnetic Forces and Fields in a Rotating Reference Frame

    CERN Document Server

    Arendt, P N

    1998-01-01

    Maxwell's equations and the equations governing charged particle dynamics are presented for a rotating coordinate system with the global time coordinate of an observer on the rotational axis. Special care is taken in defining the relevant entities in these equations. Ambiguities in the definitions of the electromagnetic fields are pointed out, and in fact are shown to be essential in such a system of coordinates. The Lorentz force is found to have an extra term in this frame, which has its origins in relativistic mass. A related term in the energy equation, which allows inertia to be gained even during strict corotation, suggests ways existing pulsar magnetosphere models may be modified to match observed `braking indices' more closely.

  16. The Bonding Forces In Liquid Metals And Ultrasonic Field Action

    International Nuclear Information System (INIS)

    The understanding of the liquid metals properties is still imperfect. Assuming that the liquids are isotropic and show some elasticity properties, there are no physical reasons for rejecting the applicability of the fundamental ideas of the Debye theory to the description of the properties of liquid state. The approach is intended to relate the temperature Debye to the intensity of bonding forces between neighboring atoms and, in turn, to correlate this with the high power ultrasonic field action.In order to highlight the effect of the ultrasonic wave on the Debye temperature values, the experiments were carried out under similar conditions both with and without sonication. The relationship between the Debye temperature for both liquid and solid state is ΘDsolid / ΘDliquid = 0.85

  17. New arrangements in force in the field of transport

    CERN Multimedia

    Tom Wegelius

    2006-01-01

    Please take note of the following information concerning new arrangements in force in the field of transport: China: Regulations applying to wooden packaging materials as of 1st January 2006 As scheduled, China introduced standard ISPM No. 15 on 1st January 2006. This was officially confirmed in a letter from the Federal Minister for Consumer Protection, Food and Agriculture. Henceforth, China will apply the same conditions to the importation of wooden packaging materials as various other countries, including the United States, Mexico and Brazil. This means that items shipped to China in wooden packaging will no longer need to be accompanied by a certificate relating to the protection of plant species or other phytosanitary documents (such as heat treatment certificates). However, a guarantee that the wooden packaging complies with standard ISPM No. 15 will be required. Phase II of US regulations concerning wooden packaging material Phase II of regulations concerning the importation of wooden packaging ma...

  18. Matter waves from quantum sources in a force field

    CERN Document Server

    Kramer, T; Kleber, M; Kramer, Tobias; Bracher, Christian; Kleber, Manfred

    2002-01-01

    Localized scattering phenomena may result in the formation of stationary matter waves originating from a compact region in physical space. Mathematically, such waves are advantageously expressed in terms of quantum sources that are introduced into the Schr\\"odinger equation. The source formalism yields direct access to the scattering wave function, particle distribution, and total current. As an example, we study emission from three-dimensional Gaussian sources into a homogeneous force field. This model describes the behaviour of an atom laser supplied by an ideal Bose-Einstein condensate under the influence of gravity. We predict a strong dependence of the beam profile on the condensate size and the presence of interference phenomena recently observed in photodetachment experiments.

  19. Magnetic-Field Generation by Randomly Forced Shearing Waves

    CERN Document Server

    Schekochihin, A A; Kleeorin, N; Lesur, G; Mallet, A; McWilliams, J C; Rogachevskii, I; Yousef, T A

    2008-01-01

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of Rm << Re << 1. This is a minimal proof-of-concept calculation aiming to put the shear dynamo, a new effect recently reported in a number of numerical experiments, on a firm physical and analytical footing. Numerically observed scalings of the wavenumber and growth rate of the fastest growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo may be a generic property of shear flows -- with ubiquitous relevance to astrophysical systems.

  20. Tetracycline-Regulated Suppression of Amber Codons in Mammalian Cells

    OpenAIRE

    Park, Ho-Jin; RajBhandary, Uttam L.

    1998-01-01

    As an approach to inducible suppression of nonsense mutations in mammalian cells, we described recently an amber suppression system in mammalian cells dependent on coexpression of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) along with the E. coli glutamine-inserting amber suppressor tRNA. Here, we report on tetracycline-regulated expression of the E. coli GlnRS gene and, thereby, tetracycline-regulated suppression of amber codons in mammalian HeLa and COS-1 cells. The E. coli GlnRS co...

  1. Magnetic Energy of Force-Free Fields with Detached Field Lines

    Institute of Scientific and Technical Information of China (English)

    Guo-Qiang Li; You-Qiu Hu

    2003-01-01

    Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasmaβ (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energylarger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.

  2. Mammalian hairs in Early Cretaceous amber

    Science.gov (United States)

    Vullo, Romain; Girard, Vincent; Azar, Dany; Néraudeau, Didier

    2010-07-01

    Two mammalian hairs have been found in association with an empty puparium in a ˜100-million-year-old amber (Early Cretaceous) from France. Although hair is known to be an ancestral, ubiquitous feature in the crown Mammalia, the structure of Mesozoic hair has never been described. In contrast to fur and hair of some Jurassic and Cretaceous mammals preserved as carbonized filaments, the exceptional preservation of the fossils described here allows for the study of the cuticular structure. Results show the oldest direct evidence of hair with a modern scale pattern. This discovery implies that the morphology of hair cuticula may have remained unchanged throughout most of mammalian evolution. The association of these hairs with a possible fly puparium provides paleoecological information and indicates peculiar taphonomic conditions.

  3. ForceFit: a code to fit classical force fields to ab-initio potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Neil Jon [Los Alamos National Laboratory; Waldher, Benjamin [WSU; Kuta, Jadwiga [WSU; Clark, Aurora [WSU; Clark, Aurora E [NON LANL

    2009-01-01

    The ForceFit program package has been developed for fitting classical force field parameters based upon a force matching algorithm to quantum mechanical gradients of configurations that span the potential energy surface of the system. The program, which runs under Unix and is written in C++, is an easy to use, nonproprietary platform that enables gradient fitting of a wide variety of functional force field forms to quantum mechanical information obtained from an array of common electronic structure codes. All aspects of the fitting process are run from a graphical user interface, from the parsing of quantum mechanical data, assembling of a potential energy surface database, setting the force field and variables to be optimized, choosing a molecular mechanics code for comparison to the reference data, and finally, the initiation of a least squares minimization algorithm. Furthermore, the code is based on a modular templated code design that enables the facile addition of new functionality to the program.

  4. Lorentz force electrical impedance tomography using magnetic field measurements

    Science.gov (United States)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  5. Lorentz force electrical impedance tomography using magnetic field measurements.

    Science.gov (United States)

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  6. Network representation of electromagnetic fields and forces using generalized bond graphs

    NARCIS (Netherlands)

    Nijen Twilhaar, G.D.

    1985-01-01

    We show that it is possible to describe electromagnetic (E-M) fields with a generalized network representation (generalized bond graphs). E-M fields inmoving matter, forces due to E-M fields (Lorentz force, ets.) and field transformations are included in the network description. The relations of the

  7. An asterid flower from neotropical mid-Tertiary amber.

    Science.gov (United States)

    Poinar, George O; Struwe, Lena

    2016-01-01

    Fossils preserved in amber may provide significant palaeoevolutionary and biogeographical data regarding the evolution of life on Earth(1). Although amber is particularly noted for its detailed preservation of arthropods, the same degree of preservation can be found for vascular plant remains(2). Mid-Tertiary Dominican amber is a rich source for such fossils, and representatives of several angiosperm families have been described. However, no fossilized examples of the large asterid plant clade have yet been reported. Here we describe the first fossil neotropical flowers found in amber from a representative of the asterids. The asterids are one of the largest lineages of flowering plants, containing groups such as the sunflower, potato, coffee and mint families, totalling over 80,000 species(3). The new fossils are only known as flowers, more precisely corollas with stamens and styles. We here describe them as a new species, Strychnos electri sp. nov, in the plant family Loganiaceae (Gentianales). PMID:27249345

  8. First AMBER/VLTI observations of hot massive stars

    CERN Document Server

    Petrov, R; Chesneau, O; Weigelt, G; Bonneau, D; Stee, P; Kraus, S; Mourard, D; Meilland, A; Malbet, F; Lisi, F; Kern, P; Beckmann, U; Lagarde, S; Gennari, S; Lecoarer, E; Driebe, T; Accardo, M; Robbe-Dubois, S; Ohnaka, K; Busoni, S; Roussel, A; Zins, G; Behrend, J; Ferruzi, D; Bresson, Y; Duvert, G; Nussbaum, E; Marconi, A; Feautrier, P; Dugu'e, M; Chelli, A; Tatulli, E; Heininger, M; Delboulbé, A; Bonhomme, S; Schertl, D; Testi, L; Mathias, P; Monin, J L; Gluck, L; Hofmann, Karl Heinrich; Salinari, P; Puget, P; Clausse, J M; Fraix-Burnet, D; Foy, R; Isella, A; Stee, Ph.; Driebe, Th.; Feautrier, Ph.; Mathias, Ph.

    2005-01-01

    AMBER is the first near infrared focal instrument of the VLTI. It combines three telescopes and produces spectrally resolved interferometric measures. This paper discusses some preliminary results of the first scientific observations of AMBER with three Unit Telescopes at medium (1500) and high (12000) spectral resolution. We derive a first set of constraints on the structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum and the LBV Eta Carinae.

  9. International Acquisitons in Multinacionals: Under a Force Field

    Directory of Open Access Journals (Sweden)

    Américo da Costa Ramos Filho

    2010-12-01

    Full Text Available The purpose of this essay is to debate the performance of multinational companies concerning the management alternatives of their foreign unities, especially the ones derived from acquisitions, with consequences on the interaction between the headquarters and its subsidiaries or colligates and the managerial learning and knowledge associated to this process. First the problematic of internationalized companies by foreign direct investments – FDI’s, mainly by acquisitions and strategic alliances, is discussed. The intensity of the assimilation and interchange of values and practices within organizations in interacting process is stressed, including a set of typologies derived from the existing related literature. After this, a more specific approach about intra and interorganization aspects of the multinationals is performed, related to strategies, competences and roles of headquarters and subsidiaries, as well as their impact on the knowledge flux and its derived learning modes, evolving a established typologies set. The next step is to discuss two visions about the opposition between the universal and the particular in international management, with global and contextual aspects: a convergence-divergence opposition, like a force field, impacting on the knowledge transfer. Finally, some concluding comments are made, emphasizing, for the purpose of contribution, another type of multinationals typology relating the convergence-divergence duality to the organizational and national levels, as well the positioning of the companies in the resulted matrix.

  10. Central universal force field to explain solar orbital radial acceleration and other universal phenomena

    OpenAIRE

    Barghout, Kamal

    2007-01-01

    I investigate a repulsive central universal force field on the behavior of celestial objects. I show its negative tidal effect on the solar orbits as experienced by Pioneer spacecrafts. I explain several cosmological effects in light of this force.

  11. Forced Field Extrapolation of the Magnetic Structure of the Hα fibrils in the Solar Chromosphere

    Science.gov (United States)

    Xiaoshuai, Zhu; Huaning, Wang; Zhanle, Du; Han, He

    2016-07-01

    We present a careful assessment of forced field extrapolation using the Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetogram. We use several metrics to check the convergence property. The extrapolated field lines below 3600 km appear to be aligned with most of the Hα fibrils observed by the New Vacuum Solar Telescope. In the region where magnetic energy is far larger than potential energy, the field lines computed by forced field extrapolation are still consistent with the patterns of Hα fibrils while the nonlinear force-free field results show a large misalignment. The horizontal average of the lorentz force ratio shows that the forced region where the force-free assumption fails can reach heights of 1400–1800 km. The non-force-free state of the chromosphere is also confirmed based on recent radiation magnetohydrodynamics simulations.

  12. Forced field extrapolation of the magnetic structure of the Halpha fibrils in solar chromosphere

    CERN Document Server

    Zhu, Xiaoshuai; Du, Zhanle; He, Han

    2016-01-01

    We present a careful assess of the forced field extrapolation using Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) magnetogram. The convergence property is checked by several metrics. The extrapolated field lines below 3600km appear to be aligned with most Halpha fibrils observed by New Vacuum Solar Telescope (NVST). In the region where magnetic energy far larger than potential energy, field lines computed by forced field extrapolation still consistent with the patterns of Halpha fibrils while non-linear force free field (NLFFF) results show large misalignment. The horizontal average of lorentz force ratio shows the forced region where force-free assumption is failed can reach the height of $1400-1800km$. The non-force-free state of the chromosphere is also confirmed by recent radiation magnetohydrodynamics (MHD) simulation.

  13. The Properties of Light Pressure Force with High Order in Laser Fields

    Institute of Scientific and Technical Information of China (English)

    陈险峰; 方建兴; 朱士群

    2002-01-01

    In this paper, the light pressure force in low and high intensity laser fields is derived. The exact numerical results of forces Fn∥(n=0,1,2,3,4,5,6…) through the matrix continued fraction method are presented. At low intensity field (G=1), the spatially averaged force F0∥ gives a cooling effect at the negative detuning. At high intensity (G=64), the effects of the forces with higher order (n≥2) appear and the contributes of the forces with odd or even order are opposite. It is great different from no high order force at low intensity.

  14. Magnetic Fields in the Solar Photosphere are not Force-free

    Science.gov (United States)

    Labonte, B. J.

    2002-12-01

    Coronal magnetic fields are often inferred from the extrapolation of photospheric magnetic observations. The assumptions that the fields are potential or force-free are not correct in the photosphere. The magnitude of the forces and the sheet currents they drive are determined from observations of the magnetic field vector made with the Imaging Vector Magnetograph at Mees Solar Observatory.

  15. Power counting for nuclear forces in chiral effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  16. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke

    2013-07-01

    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  17. Scalar self-force on a static particle in Schwarzschild using the massive field approach

    OpenAIRE

    Rosenthal, Eran

    2004-01-01

    We use the recently developed massive field approach to calculate the scalar self-force on a static particle in a Schwarzschild spacetime. In this approach the scalar self-force is obtained from the difference between the (massless) scalar field, and an auxiliary massive scalar field combined with a certain limiting process. By applying this approach to a static particle in Schwarzschild we show that the scalar self-force vanishes in this case. This result conforms with a previous analysis by...

  18. An enigmatic spiny harvestman from Baltic amber

    Directory of Open Access Journals (Sweden)

    J. A. Dunlop

    2012-08-01

    Full Text Available A new harvestman (Arachnida: Opiliones from Baltic amber (Palaeogene: Eocene; ca. 44–49 Ma is described as Piankhi steineri n. gen., n. sp. This enigmatic fossil expresses long, slender pedipalps without a tarsal claw, which is characteristic for the suborder Dyspnoi. The chelicerae are notably enlarged and the dorsal body surface is formed from a carapace with a separate prosomatic tergite (metapeltidium, plus a large opisthosomal scute (or scutum parvum. However these characters, combined with the distinctly spiny limbs and further rows of spines across the fossil's opisthosoma, have no parallel among the modern dyspnoid harvestmen that we are aware of. The fossil resolves features reminiscent of modern members of the dyspnoid families Ceratolasmatidae, Nipponopsalididae, Ischyropsalididae and Sabaconidae, but does not show unequivocal apomorphies of any one particular family. We must entertain the possibility that this is an extinct body plan from the Eocene of north-central Europe, and we tentatively refer the fossil to a new genus in an unresolved position among the Ischyropsalidoidea (Dyspnoi. An amorphous triangular structure behind the anal region is assumed to be faecal matter, rather than part of the original anatomy. doi:10.1002/mmng.201200007

  19. Distinct haptic cues do not reduce interference when learning to reach in multiple force fields.

    Directory of Open Access Journals (Sweden)

    Nicholas Cothros

    Full Text Available BACKGROUND: Previous studies of learning to adapt reaching movements in the presence of novel forces show that learning multiple force fields is prone to interference. Recently it has been suggested that force field learning may reflect learning to manipulate a novel object. Within this theoretical framework, interference in force field learning may be the result of static tactile or haptic cues associated with grasp, which fail to indicate changing dynamic conditions. The idea that different haptic cues (e.g. those associated with different grasped objects signal motor requirements and promote the learning and retention of multiple motor skills has previously been unexplored in the context of force field learning. METHODOLOGY/PRINCIPLE FINDINGS: The present study tested the possibility that interference can be reduced when two different force fields are associated with differently shaped objects grasped in the hand. Human subjects were instructed to guide a cursor to targets while grasping a robotic manipulandum, which applied two opposing velocity-dependent curl fields to the hand. For one group of subjects the manipulandum was fitted with two different handles, one for each force field. No attenuation in interference was observed in these subjects relative to controls who used the same handle for both force fields. CONCLUSIONS/SIGNIFICANCE: These results suggest that in the context of the present learning paradigm, haptic cues on their own are not sufficient to reduce interference and promote learning multiple force fields.

  20. Identification of rumanite (Romanian amber) as thermally altered succinite (Baltic amber)

    Science.gov (United States)

    Stout, E. C.; Beck, C. W.; Anderson, K. B.

    Romanian amber (rumanite) has been considered to be a separate species of fossil resin for more than a century. While earlier investigators held it to be very similar to succinite (Baltic amber), modern scholars have assigned it a distinctly different botanical origin. We have found that almost all of the constituents of the ether-soluble fractions of 13 specimens of authentic rumanite identified by gas chromatography-mass spectrometry have previously been reported in the soluble fraction of succinite, including succinic acid and its monoterpene esters. Additionally and significantly, the soluble fraction of rumanite contains a number defunctionalized compounds that do not preexist in succinite, but that are produced by pyrolysis of whole succinite or of its insoluble polymeric fraction. Simultaneous methylation pyrolysis-gas chromatography-mass spectrometry of the polymeric fraction of seven of the rumanite specimens yielded further copious amounts of dimethyl succinate, a number of diterpene resin acid methyl esters, and additional defunctionalized compounds known to be pyrolysis products of succinite. The evidence shows conclusively that the botanical origin of rumanite is not distinct from that of succinite. Rather, rumanite is a succinite that has suffered partial thermal degradation in the course of the folding of the Oligocene Kliwa sandstone formation in which it is most commonly found.

  1. Impact Amber, Popcorn, and Pathology: The Biology of Impact Melt Breccias and Implications for Astrobiology

    Science.gov (United States)

    Harris, R. S.; Schultz, P. H.

    2007-03-01

    We present evidence that superheated impact melts can trap and preserve both floral and faunal remains forming "impact amber." We discuss terrestrial occurrences of impact amber and the strategy it suggests in searching for evidence of past life on other

  2. Quantum field theory of the Casimir force for graphene

    Science.gov (United States)

    Klimchitskaya, G. L.

    2016-01-01

    We present theoretical description of the Casimir interaction in graphene systems which is based on the Lifshitz theory of dispersion forces and the formalism of the polarization tensor in (2+1)-dimensional space-time. The representation for the polarization tensor of graphene allowing the analytic continuation to the whole plane of complex frequencies is given. This representation is used to obtain simple asymptotic expressions for the reflection coefficients at all Matsubara frequencies and to investigate the origin of large thermal effect in the Casimir force for graphene. The developed theory is shown to be in a good agreement with the experimental data on measuring the gradient of the Casimir force between a Au-coated sphere and a graphene-coated substrate. The possibility to observe the thermal effect for graphene due to a minor modification of the already existing experimental setup is demonstrated.

  3. First Psocodean (Psocodea,Empheriidae) from the Cretaceous Amber of New Jersey

    Institute of Scientific and Technical Information of China (English)

    Dany AZAR; André NEL; Julian F.PETRULEVI(C)IUS

    2010-01-01

    Representatives of the extinct psocid family Empheriidae are known from Eocene Baltic amber,Lowermost Eocene French amber (Oise),and Lower Cretaceous Spanish amber (Alava).We report herein the first discovery of an empheriid psocid from the Cretaceous amber of New Jersey as Jerseyempheria grimaldii gen.et sp.nov.The fossil is figured and described.The new species is distinguished from related taxa.A discussion and checklist of Empheriidae are provided.

  4. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?

    NARCIS (Netherlands)

    Villa, Alessandra; Fan, Hao; Wassenaar, Tsjerk; Mark, Alan E.

    2007-01-01

    The sensitivity of molecular dynamics simulations to variations in the force field has been examined in relation to a set of 36 structures corresponding to 31 proteins simulated by using different versions of the GROMOS force field. The three parameter sets used (43a1, 53a5, and 53a6) differ signifi

  5. Force Field Analysis: A Bridge Between Diagnostic Data and Operational Prescriptions.

    Science.gov (United States)

    Wiener, William K.

    The technique of force field analysis represents a method for bridging the gap between diagnostic data and learning prescriptions and objectives. Through the use of this technique the teacher is able to delineate the strengths and weaknesses of the individual and to generate strategies for meeting specific objectives. A force field refers to a…

  6. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field

    NARCIS (Netherlands)

    García-Pérez, E.; Serra-Crespo,P.; Hamad, S.; Kapteijn, F.; Gascon, J.

    2014-01-01

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations o

  7. Forces in a 3D magnetic field of conducting current contours

    Directory of Open Access Journals (Sweden)

    Stancheva Rumena

    2008-01-01

    Full Text Available The present paper deals with 3D magnetic field analysis of conducting current contours. The magnetic field and forces were calculated analytically and by FEM applying the Comsol Multiphysics package. Forces were calculated by the Maxwell stress tensor and by volume force density. Numerical results for real and ideal contours with the same linear dimensions are discussed. Comparison between analytical and numerical data shows satisfactory agreement.

  8. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids

    OpenAIRE

    Tessier, Matthew B; DeMarco, Mari L.; Yongye, Austin B.; Woods, Robert J.

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a c...

  9. Instrumental aspects of high-field force-detected electron spin resonance

    OpenAIRE

    Cruickshank, Paul Alexander Sawchuk

    2003-01-01

    Magnetic resonance force microscopy (MRFM) is a new measurement technique combining scanning probe microscopy (SPM) and MR spectroscopy, offering the potential of high resolution chemical specific imaging. MRFM is based on the principle of force detection of magnetic resonance (FDMR) in which the magnetisation of a sample in a magnetic field is coupled to an atomic force microscopy cantilever via a field gradient. Magnetic resonance is used to modulate the sample magnetisation ...

  10. Optical configuration and analysis of the AMBER/VLTI instrument

    CERN Document Server

    Robbe-Dubois, S; Petrov, R G; Lisi, F; Beckmann, U; Antonelli, P; Bresson, Y; Martinot-Lagarde, G; Roussel, A; Salinari, P; Vannier, M; Chelli, A; Dugué, M; Duvert, G; Gennari, S; Gluck, L; Kern, P; LeCoarer, E; Malbet, F; Millour, F; Perraut, K; Puget, P; Rantakyro, F; Tatulli, E; Weigelt, G; Zins, G

    2008-01-01

    This paper describes the design goals and engineering efforts that led to the realization of AMBER (Astronomical Multi BEam combineR) and to the achievement of its present performance. On the basis of the general instrumental concept, AMBER was decomposed into modules whose functions and detailed characteristics are given. Emphasis is put on the spatial filtering system, a key element of the instrument. We established a budget for transmission and contrast degradation through the different modules, and made the detailed optical design. The latter confirmed the overall performance of the instrument and defined the exact implementation of the AMBER optics. The performance was assessed with laboratory measurements and commissionings at the VLTI, in terms of spectral coverage and resolution, instrumental contrast higher than 0.80, minimum magnitude of 11 in K, absolute visibility accuracy of 1%, and differential phase stability of 1E-3 rad over one minute.

  11. IOT Overview: Calibrations of the VLTI Instruments (MIDI and AMBER)

    Science.gov (United States)

    Morel, S.; Rantakyrö, F.; Rivinius, T.; Stefl, S.; Hummel, C.; Brillant, S.; Schöller, M.; Percheron, I.; Wittkowski, M.; Richichi, A.; Ballester, P.

    We present here a short review of the calibration processes that are currently applied to the instruments AMBER and MIDI of the VLTI (Very Large Telescope Interferometer) at Paranal. We first introduce the general principles to calibrate the raw data (the "visibilities") that have been measured by long-baseline optical interferometry. Then, we focus on the specific case of the scientific operation of the VLTI instruments. We explain the criteria that have been used to select calibrator stars for the observations with the VLTI instruments, as well as the routine internal calibration techniques. Among these techniques, the "P2VM" (Pixel-to-Visibility Matrix) in the case of AMBER is explained. Also, the daily monitoring of AMBER and MIDI, that has recently been implemented, is shortly introduced.

  12. Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory

    Science.gov (United States)

    McDaniel, Jesse G.; Schmidt, J. R.

    2016-05-01

    Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.

  13. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Viet, Man [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France); Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2015-07-14

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  14. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    International Nuclear Information System (INIS)

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water

  15. Amber Trust on ostmas Tallinna Külmhoone emafirmat / Liis Kängsepp

    Index Scriptorium Estoniae

    Kängsepp, Liis, 1981-

    2005-01-01

    Skandinaavia-USA investeerimisfond Amber Trust loodab enne aasta lõppu allkirjastada Tallinna Külmhoone emafirma Kauno Pieno Centras ostulepingu. Diagramm: Tallinna Külmhoone majandusnäitajad. Vt. samas: Amber Trust tahab investeerida üle 2 miljardi krooni; Amber laiendas tegevust Vetteli kaudu Soome

  16. Chemotaxonomical aspects of lower Cretaceous amber from Reconcavo Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo; Azevedo, Debora A., E-mail: ricardopereira@iq.ufrj.b, E-mail: debora@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica; Carvalho, Ismar S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias; Fernandes, Antonio Carlos S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Museu Nacional. Dept. de Geologia e Paleontologia

    2011-07-01

    The chemical composition of Lower Cretaceous amber samples from Reconcavo Basin (Salvador, Bahia) was performed by GC-MS to characterize possible botanical sources. The compounds identified were hydrocarbonic and polar diterpenoids, such as abietane, dehydroabietane, tetrahydroretene, dehydroabietol, dehydroabietic acid, ferruginol and sugiol. Other diterpenoid classes were not detected as well as triterpenoids. The composition of the extracts and chemosystematic data allows relating the samples to conifers of Podocarpaceae or Cheirolepidiaceae families due to detection of ferruginol, a specific biomarker to these families. The data concerning Cretaceous amber in the Reconcavo Basin provided information concerning the presence of a resinous flora in the Maracangalha Formation sediments during the Lower Cretaceous. (author)

  17. Generation of mechanical force by grafted polyelectrolytes in an electric field

    Science.gov (United States)

    Brilliantov, N. V.; Budkov, Yu. A.; Seidel, C.

    2016-03-01

    We study theoretically and by means of molecular dynamics (MD) simulations the generation of mechanical force by grafted polyelectrolytes in an external electric field, which favors its adsorption on the grafting plane. The force arises in deformable bodies linked to the free end of the chain. Varying the field, one controls the length of the nonadsorbed part of the chain and hence the deformation of the target body, i.e., the arising force too. We consider target bodies with a linear force-deformation relation and with a Hertzian one. While the first relation models a coiled Gaussian chain, the second one describes the force response of a squeezed colloidal particle. The theoretical dependences of generated force and compression of the target body on an applied field agree very well with the results of MD simulations. The analyzed phenomenon may play an important role in future nanomachinery, e.g., it may be used to design nanovices to fix nanosized objects.

  18. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    Directory of Open Access Journals (Sweden)

    Christian eStockinger

    2014-04-01

    Full Text Available Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA. The control groups were not exposed to force field B (AA. To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0%, 10%, 20%, 30%, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects’ motor performance decreased and subjects’ ability to accurately predict the force field – and therefore internal model formation – was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance.

  19. GEOFLOW: simulation of convection in a spherical shell under central force field

    Directory of Open Access Journals (Sweden)

    P. Beltrame

    2006-01-01

    Full Text Available Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth's force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework's, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field.

  20. Casimir force for a scalar field in a single brane world

    International Nuclear Information System (INIS)

    Vacuum force is an interesting low energy test for brane worlds due to its dependence on field's modes and its role in submillimeter gravity experiments. In this contribution we obtain the scalar field vacuum force between two parallel plates lying in the brane of a Randall-Sundrum scenario extended by p compact dimensions (RSII-p). We obtain the force using the Green's function technique and we compare our results with the ones obtained by using the zeta function regularization method. As a result we obtain agreement in the expression for the force independently of the method used, thus we solve a previous discrepancy between the two approaches.

  1. Evolution of hypersurfaces by the mean curvature minus an external force field

    Institute of Scientific and Technical Information of China (English)

    Yan-nan LIU; Huai-yu JIAN

    2007-01-01

    In this paper, we study the evolution of hypersurface moving by the mean curvature minus an external force field. It is shown that the flow will blow up in a finite time if the mean curvature of the initial surface is larger than some constant depending on the boundness of derivatives of the external force field. For a linear force, we prove that the convexity of the hypersurface is preserved during the evolution and the flow has a unique smooth solution in any finite time and expands to infinity as the time tends to infinity if the initial curvature is smaller than the slope of the force.

  2. 琥珀酸酐生产新工艺探讨%The Study of New Technology of Producing Amber Anhydride

    Institute of Scientific and Technical Information of China (English)

    吕杨

    2012-01-01

    It introduced the properties of Amber Anhydride and widely used in every field.Introducing the major technology of producing Amber Anhydride.Reviewing new tecnology of producing Amber Anhydride and comparing the major technology with new technology to explaining the superiority of new technology.%介绍了琥珀酸酐的性质及在各个领域的广泛用途,介绍了目前国内琥珀酸酐的主要生产工艺技术方案,综述了琥珀酸酐生产新技术,并对目前国内琥珀酸酐的主要生产工艺和琥珀酸酐生产新工艺进行了比较,突出了新工艺的优势。

  3. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)

    2015-11-14

    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  4. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Science.gov (United States)

    Kelley, Anne Myers

    2016-06-01

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ˜2.8 and ˜5.2 nm (˜410 and ˜2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active "longitudinal optical" phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  5. A test on reactive force fields for the study of silica dimerization reactions

    International Nuclear Information System (INIS)

    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method

  6. Comparisons of experiment with cellulose models based on electronic structure and empirical force field theories

    Science.gov (United States)

    Studies of cellobiose conformations with HF/6-31G* and B3LYP/6-31+G*quantum theory [1] gave a reference for studies with the much faster empirical methods such as MM3, MM4, CHARMM and AMBER. The quantum studies also enable a substantial reduction in the number of exo-cyclic group orientations that...

  7. Structural changes in amber due to uranium mineralization.

    Science.gov (United States)

    Havelcová, Martina; Machovič, Vladimír; Mizera, Jiří; Sýkorová, Ivana; René, Miloš; Borecká, Lenka; Lapčák, Ladislav; Bičáková, Olga; Janeček, Oldřich; Dvořák, Zdeněk

    2016-07-01

    The presence of uranium, with a bulk mass fraction of about 1.5 wt% and radiolytic alterations are a feature of Cenomanian amber from Křižany, at the northeastern edge of the North Bohemian Cretaceous uranium ore district. Pores and microcracks in the amber were filled with a mineral admixture, mainly in the form of Zr-Y-REE enriched uraninite. As a result of radiolytic alterations due to the presence of uranium, structural changes were observed in the Křižany amber in comparison with a reference amber from Nové Strašecí in central Bohemia; this was of similar age and botanical origin but did not contain elevated levels of uranium. Structural changes involved an increase in aromaticity due to dehydroaromatization of aliphatic cyclic hydrocarbons, loss of oxygen functional groups, an increase in the degree of polymerization, crosslinking of CC bonds, formation of a three-dimensional hydrocarbon network in the bulk organic matrix, and carbonization of the organic matrix around the uraninite infill. PMID:27085038

  8. Bird's nest fungi (Nidulariales: Nidulariaceae) in Baltic and Dominican amber.

    Science.gov (United States)

    Poinar, George

    2014-03-01

    Nidula baltica sp. nov. and Cyathus dominicanus sp. nov. are described from Cenozoic Baltic and Dominican amber. These are the first fossil members of the Family Nidulariaceae and show that the basic characteristics of this group were already established some 40-50 million years ago. PMID:24607356

  9. Force field analysis: a model for promoting adolescents' involvement in their own health care.

    Science.gov (United States)

    MacDuffie, Heather; DePoy, Elizabeth

    2004-07-01

    This article advances a three-step model for engaging adolescents in shaping their own health care supports and services through systems and social change that rely on principles of force field analysis. Consistent with health promotion values and trends for evidence-based practice, force field analysis provides a systematic and multilevel approach to problem assessment, resolution, and social change that is particularly appropriate for adolescents. The article reviews relevant literature, proposes the model, and concludes with a comparative illustration and critical analysis of the use of force field analysis to promote adolescent health. PMID:15228786

  10. Numerical derivation of forces on particles and agglomerates in a resonant acoustic field

    Science.gov (United States)

    Knoop, Claas; Fritsching, Udo

    2013-10-01

    Particles and agglomerates are investigated in gaseous acoustic flow fields. Acoustic fields exert forces on solid objects, which can influence the shape of the exposed bodies, even to the point of breakage of the structures. Motivated by experimentally observed breakage of agglomerates in an acoustic levitator (f = 20 kHz), a numerical study is presented that derives the acoustic forces on a complex model agglomerate from the pressure and velocity fields of a resonant standing ultrasound wave, calculated by computational fluid dynamics (CFD). It is distinguished between the drag and lift/lateral forces on the overall agglomerate and on the different primary particles of the model.

  11. Systematic Assessment of the Effects of an All-Atom Force Field and the Implicit Solvent Model on the Refinement of NMR Structures with Subsets of Distance Restraints

    International Nuclear Information System (INIS)

    Employment of a time consuming, sophisticated calculation using the all-atom force field and generalized-Born implicit solvent model (GBIS) for refinement of NMR structures has become practical through advances in computational methods and capacities. GBIS refinement improves the qualities of the resulting NMR structures with reduced computational times. However, the contribution of GBIS to NMR structures has not been sufficiently studied in a quantitative way. In this paper, we report the effects of GBIS on the refined NMR structures of ubiquitin (UBQ) and GB1 with subsets of distance restraints derived from experimental data. Random omission prepared a series of distance restraints 0.05, 0.1, 0.3, 0.5, and 0.7 times smaller. For each number, we produced five different restraints for statistical analysis. We then recalculated the NMR structures using CYANA software, followed by GBIS refinements using the AMBER package. GBIS improved both the precision and accuracy of all the structures, but to varied levels. The degrees of improvement were significant when the input restraints were insufficient. In particular, GBIS enabled GB1 to form an accurate structure even with distance restraints of 5%, revealing that the root-mean-square deviation was less than 1 A from the X-ray backbone structure. We also showed that the efficiency of searching the conformational space was more important for finding accurate structures with the calculation of UBQ with 5% distance restraints than the number of conformations generated. Our data will provide a meaningful guideline to judge and compare the structural improvements by GBIS

  12. Vertical Lorentz Force and Cross-Field Currents in the Photospheric Magnetic Fields of Solar Active Regions

    Science.gov (United States)

    Georgoulis, Manolis K.; LaBonte, Barry J.

    2004-11-01

    We demonstrate that the vertical Lorentz force and a corresponding lower limit of the cross-field electric current density can be calculated from vector magnetograms of solar active regions obtained at a single height in the solar atmosphere, provided that the vertical gradient of the magnetic field strength is known at this height. We use a predicted vertical magnetic field gradient derived from a previous analysis. By testing various force-free solutions, we find that the numerical accuracy of our method is satisfactory. Applying the method to active region photospheric vector magnetograms, we find vertical Lorentz forces ranging from several hundredths to a few tenths of the typical photospheric gravitational force, and typical cross-field current densities up to several times 10 mA m-2. The typical vertical current density is found to be 2-3 times smaller, on the order of 10-15 mA m-2. These differences are above the associated uncertainties. The values of the cross-field currents decrease in an averaged vector magnetogram, but the ratio of the cross-field to the vertical current density increases, also above the uncertainties. We conclude that the photospheric active region magnetic fields are not force-free, contrary to the conjectures of some recent studies.

  13. Valence force field analysis on nitrogen in silicon

    Science.gov (United States)

    Harada, H.; Ohkubo, I.; Mikayama, T.; Yamanaka, Y.; Inoue, N.

    2001-12-01

    Nitrogen doping attracts attention because it reduces void defects drastically. But the mechanism has not been clarified yet. Various configurations of nitrogen have been proposed by using the first principles calculation but there is no description how the stress plays a role in determining these nitrogen configurations. We reveal normal vibration modes corresponding to well-known infrared absorption peaks at 766 and 963 cm -1 of nitrogen split interstitial (N-N) and derive force constants for bond stretching and bond bending. Local strain energy near nitrogen is calculated for the optimized structures of N-N, nitrogen-vacancy complex, substitutional N and interstitial N. As a result, it is found that in structures of N-N and N 2-V 2 with filled electron orbitals, strain energy plays an important role in the determination of the stable structure.

  14. Additional force field in cooling process of cellular Al alloy

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Mingjun(郑明军); HE; Deping(何德坪); DAI; Ge(戴戈)

    2002-01-01

    The foaming process of Al alloy is similar to that of Al, but there is a solid-liquid state zone in the solidification process of cellular Al alloy which does not exist in the case of Al. In the unidirectional solidification of cellular Al alloy, the proportion of the solid phase gradually reduces from the solid front to the liquid front. This will introduce a force and result in a serious quick shrinkage. By the mathematic and physical mode, the solidification of the cellular Al alloy is studied. The data measured by experiment are close to the result calculated by the mode. This kind of shrinkage can be solved by suitable cooling method in appropriate growth stage. The compressive strength of the cellular Al alloy made by this way is 40% higher than that of cellular Al.

  15. Microscopic mean field approximation and beyond with the Gogny force

    International Nuclear Information System (INIS)

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations have been performed with the D1S Gogny force. A brief review on the main results obtained in this approach is presented. After a reminder on the method and on the first results concerning giant resonances in deformed Mg and Si isotopes, the multipole responses up to octupole in the deformed and heavy nucleus 238U are discussed. In order to analyse soft dipole modes in exotic nuclei, the dipole responses have been studied in Ne isotopes and in N=16 isotopes, for which results are presented. In these nuclei, the QRPA results on the low lying 2+ states are compared to the 5-Dimensional Collective Hamiltonian (5DCH) ones. Results on dipole mode are in good agreement with experimental data. For spherical nuclei, the QRPA formalism completes the 5DCH predictions including the same effective interaction

  16. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik

    2016-01-01

    , the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip....

  17. Forced magnetic reconnection and field penetration of an externally applied rotating helical magnetic field in the TEXTOR tokamak.

    Science.gov (United States)

    Kikuchi, Y; de Bock, M F M; Finken, K H; Jakubowski, M; Jaspers, R; Koslowski, H R; Kraemer-Flecken, A; Lehnen, M; Liang, Y; Matsunaga, G; Reiser, D; Wolf, R C; Zimmermann, O

    2006-08-25

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization. PMID:17026312

  18. New approaches for molecular conformer force field analysis in combination with ab initio results

    Science.gov (United States)

    Kuramshina, G. M.; Pentin, Yu. A.; Yagola, A. G.

    1999-10-01

    Ab initio and DFT results on harmonic force constants for trans- and gauche-conformers of CH 3CH 2CH 2Cl, CF 3CH 2CH 2Cl and CCl 3CH 2CH 2Cl are used for formulating constraints in molecular force field models described compounds with hindered internal rotation around the C-C bond.

  19. Entrapment Bias of Arthropods in Miocene Amber Revealed by Trapping Experiments in a Tropical Forest in Chiapas, Mexico

    OpenAIRE

    Solórzano Kraemer, Mónica M.; Kraemer, Atahualpa S.; Stebner, Frauke; Bickel, Daniel J.; Rust, Jes

    2015-01-01

    All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measu...

  20. A new force field including charge directionality for TMAO in aqueous solution

    Science.gov (United States)

    Usui, Kota; Nagata, Yuki; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2016-08-01

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (OTMAO) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around OTMAO to mimic the OTMAO lone pairs and we migrate the negative charge on the OTMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  1. The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO

    Science.gov (United States)

    Muller, Holger S. P.; Sorensen, G.; Birk, Manfred; Friedl, Randy R.

    1997-01-01

    The ground state rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used in a calculation of the quartic force field together with data from infrared studies.

  2. A robust force field based method for calculating conformational energies of charged drug-like molecules

    DEFF Research Database (Denmark)

    Pøhlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen;

    2012-01-01

    molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force-field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic...

  3. Strong gravitational force induced by static electromagnetic fields

    OpenAIRE

    Ivanov, B. V.

    2004-01-01

    It is argued that static electric or magnetic fields induce Weyl-Majumdar-Papapetrou solutions for the metric of spacetime. Their gravitational acceleration includes a term many orders of magnitude stronger than usual perturbative terms. It gives rise to a number of effects, which can be detected experimentally. Four electrostatic and four magnetostatic examples of physical set-ups with simple symmetries are proposed. The different ways in which mass sources enter and complicate the pure elec...

  4. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants

    Directory of Open Access Journals (Sweden)

    James P. Ewen

    2016-08-01

    Full Text Available For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i accurately predict important properties of long-chain, linear molecules; and (ii reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP, allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-tom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are

  5. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    OpenAIRE

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of ...

  6. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    OpenAIRE

    Dongshi Guan; Zhi Hong Hang; Zsolt Marcet; Hui Liu; I. I. Kravchenko; Chan, C. T.; Chan, H. B.; Penger Tong

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optic...

  7. Time averaged total force on a dipolar sphere in an electromagnetic field

    OpenAIRE

    Chaumet, P. C.; M. Nieto-Vesperinas

    2003-01-01

    We establish the time averaged total force on a subwavelength sized particle in a time harmonic varying field. Our analysis is not restrictive about the spatial dependence of the incident field. We discuss the addition of the radiative reaction term in the polarizability in order to correctly deal with the scattering force. As a consequence and illustration, we assess the degree of accuracy of several polarizability models previously established.

  8. Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme

    OpenAIRE

    Buck, Matthias; Bouguet-Bonnet, Sabine; Pastor, Richard W.; MacKerell, Alexander D.

    2005-01-01

    The recently developed CMAP correction to the CHARMM22 force field (C22) is evaluated from 25 ns molecular dynamics simulations on hen lysozyme. Substantial deviations from experimental backbone root mean-square fluctuations and N-H NMR order parameters obtained in the C22 trajectories (especially in the loops) are eliminated by the CMAP correction. Thus, the C22/CMAP force field yields improved dynamical and structural properties of proteins in molecular dynamics simulations.

  9. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    Science.gov (United States)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  10. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    Science.gov (United States)

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  11. The Self-Force Problem: Local Behaviour of the Detweiler-Whiting Singular Field

    CERN Document Server

    Heffernan, Anna

    2014-01-01

    The growing reality of gravitational wave astronomy is giving age-old problems a new lease of life; one such problem is that of the self-force. A charged or massive particle moving in a curved background space-time produces a field that affects its motion, pushing it off its expected geodesic. This self-field gives rise to a so-called self-force acting on the particle. In modelling this motion, the self-force approach uses a perturbative expansion in the mass ratio. One of the most interesting sources of gravitational waves are extreme mass ratio inspirals - systems perfectly suited to self-force modelling. One of the key problems within the self-force model is the divergence of the field at the particle. To resolve this, the field is split into a singular component and a smooth regular field. This regular-singular split, introduced by Detweiler and Whiting, is used in most modern self-force calculations. In this thesis, we derive high-order expansions of the Detweiler-Whiting singular field, and use these to...

  12. Asymptotic analysis of force-free magnetic fields of cylindrical symmetry

    Science.gov (United States)

    Sturrock, P. A.; Antiochos, S. K.; Roumeliotis, G.

    1995-01-01

    It is known from computer calculations that if a force-free magnetic-field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution, and, in the process, the energy of the field increases progressively. Analysis of a simple model of force-free fields of cylindrical symmetry leads to simple asymptotic expressions for the extent and energy of such a configuration. The analysis is carried through for both spherical and planar source surfaces. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  13. Scalar field self-force effects on a particle orbiting a Reissner-Nordstrom black hole

    CERN Document Server

    Bini, Donato; Geralico, Andrea

    2016-01-01

    Scalar field self-force effects on a scalar charge orbiting a Reissner-Nordstr\\"om black hole are investigated. The scalar wave equation is solved analytically in a post-Newtonian framework, and the solution is used to compute the self-field as well as the components of the self-force at the particle's location up to 7.5 post-Newtonian order. The energy fluxes radiated to infinity and down the hole are also evaluated. Comparison with previous numerical results in the Schwarzschild case shows a good agreement in both strong-field and weak-field regimes.

  14. On the Force-Freeness of the Photospheric Sunspot Magnetic Fields as Observed from Hinode (SOT/SP)

    CERN Document Server

    Tiwari, Sanjiv Kumar

    2011-01-01

    A magnetic field is force-free if there is no interaction between the magnetic field and plasma in surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. Computation of various magnetic parameters such as magnetic energy, gradient of twist of sunspot fields and any kind of extrapolations, heavily hinge on the force-free approximation of the photospheric sunspot magnetic fields. Thus it is important to inspect the force-freeness of sunspot fields. The force-freeness of sunspot magnetic fields has been examined earlier by some researchers ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. We use several such vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter aboard the Hinode. Both necessary and sufficient conditions for force-freeness are examined by checking global and local nature of magnetic forces ...

  15. Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy.

    Science.gov (United States)

    Braun, D-A; Weiner, D; Such, B; Fuchs, H; Schirmeisen, A

    2009-07-01

    Submolecular features of epitaxially grown 3,4,9,10-perylenetetra-carboxylic-dianhydride (PTCDA) on Cu(111) are resolved in non-contact atomic force microscopy topography scans in ultrahigh vacuum. While molecules in the first layer above the Cu substrate are depicted as featureless ovals, the second layer molecules show an intramolecular structure with a height corrugation of up to 40 pm. Force field spectroscopy experiments with submolecular resolution show that the tip-molecule forces differ significantly on the first and second layer molecules. Possible contributions to these force differences from mechanical deformations of the molecules as well as the internal charge density distribution are discussed. PMID:19509447

  16. Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D-A; Weiner, D; Fuchs, H; Schirmeisen, A [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Strasse 10, 48149 Muenster (Germany); Such, B [Marian Smoluchowski Institute of Physics, Jagiellonian University Krakow (Poland)], E-mail: dbraun@uni-muenster.de

    2009-07-01

    Submolecular features of epitaxially grown 3,4,9,10-perylenetetra-carboxylic-dianhydride (PTCDA) on Cu(111) are resolved in non-contact atomic force microscopy topography scans in ultrahigh vacuum. While molecules in the first layer above the Cu substrate are depicted as featureless ovals, the second layer molecules show an intramolecular structure with a height corrugation of up to 40 pm. Force field spectroscopy experiments with submolecular resolution show that the tip-molecule forces differ significantly on the first and second layer molecules. Possible contributions to these force differences from mechanical deformations of the molecules as well as the internal charge density distribution are discussed.

  17. Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy

    International Nuclear Information System (INIS)

    Submolecular features of epitaxially grown 3,4,9,10-perylenetetra-carboxylic-dianhydride (PTCDA) on Cu(111) are resolved in non-contact atomic force microscopy topography scans in ultrahigh vacuum. While molecules in the first layer above the Cu substrate are depicted as featureless ovals, the second layer molecules show an intramolecular structure with a height corrugation of up to 40 pm. Force field spectroscopy experiments with submolecular resolution show that the tip-molecule forces differ significantly on the first and second layer molecules. Possible contributions to these force differences from mechanical deformations of the molecules as well as the internal charge density distribution are discussed.

  18. A transferable ab-initio based force field for aqueous ions

    CERN Document Server

    Tazi, Sami; Rotenberg, Benjamin; Turq, Pierre; Vuilleumier, Rodolphe; Salanne, Mathieu; 10.1063/1.3692965

    2012-01-01

    We present a new polarizable force field for aqueous ions (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+ and Cl-) derived from condensed phase ab-initio calculations. We use Maximally Localized Wannier Functions together with a generalized force and dipole-matching procedure to determine the whole set of parameters. Experimental data is then used only for validation purposes and a good agreement is obtained for structural, dynamic and thermodynamic properties. The same procedure applied to crystalline phases allows to parametrize the interaction between cations and the chloride anion. Finally, we illustrate the good transferability of the force field to other thermodynamic conditions by investigating concentrated solutions.

  19. Investigation of Multiscale Non-equilibrium Flow Dynamics Under External Force Field

    CERN Document Server

    Xiao, Tianbai

    2016-01-01

    The multiple scale non-equilibrium gaseous flow behavior under external force field is investigated. Both theoretical analysis based on the kinetic model equation and numerical study are presented to demonstrate the dynamic effect of external force on the flow evolution, especially on the non-equilibrium heat flux. The current numerical experiment is based on the well-balanced unified gas-kinetic scheme (UGKS), which presents accurate solutions in the whole flow regime from the continuum Navier-Stokes solution to the transition and free molecular ones. The heat conduction in the non-equilibrium regime due to the external forcing term is quantitatively investigated. In the lid-driven cavity flow study, due to the external force field the density distribution inside cavity gets stratified and a multiscale non-equilibrium flow transport appears in a single gas dynamic system. With the increment of external forcing term, the flow topological structure changes dramatically, and the temperature gradient, shearing s...

  20. Fractal growth in the presence of a surface force field

    Science.gov (United States)

    Carlier, F.; Brion, E.; Akulin, V. M.

    2012-05-01

    We numerically simulate the dynamics of atomic clusters aggregation deposited on a surface interacting with the growing island. We make use of the well-known DLA model but replace the underlying diffusion equation by the Smoluchowski equation which results in a drifted DLA model and anisotropic jump probabilities. The shape of the structures resulting from their aggregation-limited random walk is affected by the presence of a Laplacian potential due to, for instance, the surface stress field. We characterize the morphologies we obtain by their Hausdorff fractal dimension as well as the so-called external fractal dimension. We compare our results to previously published experimental results for antimony and silver clusters deposited onto graphite surface.

  1. Review of the El Soplao Amber Outcrop,Early Cretaceous of Cantabria,Spain

    Institute of Scientific and Technical Information of China (English)

    María NAJARRO; Francisco VELASCO; Fernando TORNOS; Véronique DAVIERO-GOMEZ; Bernard GOMEZ; Xavier DELCL(O)S; Enrique PE(N)ALVER; Ricardo P(E)REZ-DE LA FUENTE; Jaime ORTEGA-BLANCO; Cesar MENOR-SALV(A)N; Eduardo BARR(O)N; Carmen SORIANO; Idoia ROSALES; Rafael L(O)PEZ DEL VALLE

    2010-01-01

    El Soplao outcrop,an Early Cretaceous amber deposit recently discovered in northern Spain(Cantabria),has been shown to be the largest site of amber with arthropod inclusions that has been found in Spain so far.Relevant data provided herein for biogeochemistry of the amber,palynology,taphonomy and arthropod bioinclusious complement those previously published.This set of data suggests at least two botanical sources for the amber of El Soplao deposit.The first(type A amber)strongly supports a source related to Cheirolepidiaceae,and the second(type B amber)shows non-specific conifer biomarkers.Comparison of molecular composition of type A amber with Frenelopsis leaves(Cheicolepidiaceae)strongly suggests a biochemical affinity and a common botanical origin.A preliminary palynologlcal study indicates a regional high taxonomical diversity,mainly of pteridophyte spores and gymnosperm pollen grains.According to the preliminary palynological data,the region was inhabited by conifer forests adapted to a dry season under a subtropical climate.The abundant charcoalified wood associated with the amber in the same beds is evidence of paleofires that most likely promoted both the resin production and an intensive erosion of the litter,and subsequent great accumulation of amber plus plant cuticles.In addition,for the first time in the fossil record,charcoalified plant fibers as bioinclusious in amber are reported.Other relevant taphonomic data are the exceptional presence of serpulids and bryozoans on the surfaces of some amber pieces indicating both a long exposure on marine or brackish-water and a mixed assemblage of amber.Lastly,new findings of insect bioinclusions,some of them uncommon in the fossil record or showing remarkable adaptations,are reported.In conclusion,a documented scenario for the origin of the El Soplao amber outcrop is provided.

  2. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    Science.gov (United States)

    Müller, Julian; Hartke, Bernd

    2016-08-01

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach. PMID:27415976

  3. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy

    Science.gov (United States)

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-07-01

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results.

  4. A binary engine fuelling HD87643' s complex circumstellar environment, using AMBER/VLTI

    CERN Document Server

    Millour, Florentin; Borges-Fernandes, Marcelo; Meilland, Anthony; Mars, Gilbert; Benoist, C; Thiébaut, E; Stee, Philippe; Hofmann, K -H; Baron, Fabien; Young, John R; Bendjoya, Philippe; Carciofi, A C; De Souza, Armando Domiciano; Driebe, Thomas; Jankov, Slobodan; Kervella, Pierre; Petrov, R G; Robbe-Dubois, Sylvie; Vakili, Farrokh; Waters, L B F M; Weigelt, Gerd

    2009-01-01

    Context. The star HD 87643, exhibiting the ?B[e] phenomenon?, has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended re?ection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands, Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presen...

  5. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields. PMID:27083705

  6. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2016-08-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  8. Mummified precocial bird wings in mid-Cretaceous Burmese amber.

    Science.gov (United States)

    Xing, Lida; McKellar, Ryan C; Wang, Min; Bai, Ming; O'Connor, Jingmai K; Benton, Michael J; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G; Li, Gang; Zhang, Weiwei; Xu, Xing

    2016-01-01

    Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans. PMID:27352215

  9. Solid state 13C NMR analysis of Brazilian cretaceous ambers

    International Nuclear Information System (INIS)

    13C cross polarization with magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of Δ8(17) and Δ12(13) unsaturations, were obtained by 13C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  10. Modeling of Centrifugal Force Field and the Effect on Filling and Solidification in Centrifugal Casting

    Science.gov (United States)

    Sheng, Wenbin; Ma, Chunxue; Gu, Wanli

    2011-06-01

    Based on the steady flow in a tube, a mathematical model has been established for the consideration of centrifuging force field by combining the equations of continuity, conservation of momentum and general energy. Effects of centrifugal field on the filling and solidification are modeled by two accessional terms: centrifugal force and Chorios force. In addition, the transfer of heat by convection is considered to achieve a coupling calculation of velocity field and temperature field. The solution of pressure item is avoided by introducing the stream function ψ(x,y) and the eddy function ξ(x,y). Corresponding difference formats for the simultaneous equations of centrifugal filling, the accessional terms and the solidifying latent heat have been established by the finite difference technique. Furthermore, the centrifugal filling and solidification processes in a horizontal tube are summarized to interpret the mechanism by which internal defects are formed in centrifugal castings.

  11. Gravitational self-force in non-vacuum spacetimes: an effective field theory derivation

    CERN Document Server

    Zimmerman, Peter

    2015-01-01

    In this paper we investigate the motion of small compact objects in non-vacuum spacetimes using methods from effective field theory in curved spacetime. Although a vacuum formulation is sufficient in many astrophysical contexts, there are applications such as the role of the self-force in enforcing cosmic-censorship in the context of the overcharging problem, which necessitate an extension into the non-vacuum regime. The defining feature of the self-force problem in non-vacuum spacetimes is the coupling between gravitational and non-gravitational field perturbations. The formulation of the self-force problem for non-vacuum spacetimes was recently provided in simultaneous papers by Zimmerman and Poisson [1] and Linz, Friedmann, Wiseman [2]. Here we distinguish ourselves by working with the effective action rather than the field equations. The formalism utilizes the multi-index notation developed by Zimmerman and Poisson [1] to accommodate the coupling between the different fields. Using dimensional regularizat...

  12. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber

    Directory of Open Access Journals (Sweden)

    Alonso Jesús

    2009-02-01

    Full Text Available Abstract Background Microfossils are not only useful for elucidating biological macro- and microevolution but also the biogeochemical history of our planet. Pyritization is the most important and extensive mode of preservation of animals and especially of plants. Entrapping in amber, a fossilized resin, is considered an alternative mode of biological preservation. For the first time, the internal organization of 114-million-year-old microfossils entrapped in Lower Cretaceous amber is described and analyzed, using adapted scanning electron microscopy in backscattered electron mode in association with energy dispersive X-ray spectroscopy microanalysis. Double fossilization of several protists included in diverse taxonomical groups and some vegetal debris is described and analyzed. Results In protists without an exoskeleton or shell (ciliates, naked amoebae, flagellates, determinate structures, including the nuclei, surface envelopes (cortex or cytoplasmic membrane and hyaloplasm are the main sites of pyritization. In protists with a biomineralized skeleton (diatoms, silicon was replaced by pyrite. Permineralization was the main mode of pyritization. Framboidal, subhedral and microcrystalline are the predominant pyrite textures detected in the cells. Abundant pyritized vegetal debris have also been found inside the amber nuggets and the surrounding sediments. This vegetal debris usually contained numerous pyrite framboids and very densely packed polycrystalline pyrite formations infilled with different elements of the secondary xylem. Conclusion Embedding in amber and pyritization are not always alternative modes of biological preservation during geological times, but double fossilization is possible under certain environmental conditions. Pyritization in protists shows a quite different pattern with regard to plants, due to the different composition and cellular architecture in these microorganisms and organisms. Anaerobic sulphate

  13. AMBER : a near infrared focal instrument for the VLTI

    OpenAIRE

    Petrov, R. G.; Malbet, F.; Richichi, A.; Hofmann, K.H.; Mourard, Denis; Agabi, Karim; Antonelli, P.; Aristidi, Eric; Baffa, Carlo; Beckmann, Udo; Berio, Philippe; Bresson, Yves; Cassaing, Frederic; Chelli, Alain; Dreiss, Albrecht

    2001-01-01

    AMBER is the General User near-infrared focal instrument of the Very Large Telescope interferometer. Its specifications are based on three key programs on Young Stellar Objects, Active Galactic Nuclei central regions, masses and spectra of hot Extra Solar Planets. It has an imaging capacity because it combines up to three beams and very high accuracy measurement are expected from the spatial filtering of beams by single mode fibers and the comparison of measurements made simultaneously in dif...

  14. Seeking carotenoid pigments in amber-preserved fossil feathers

    Science.gov (United States)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  15. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force.

  16. The rate of separation of magnetic lines of force in a random magnetic field.

    Science.gov (United States)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  17. Forced magnetic reconnection and field penetration of an externally applied rotating helical magnetic field in the TEXTOR tokamak

    OpenAIRE

    Kikuchi, Y; de Bock, M. F. M.; Reiser, D.; Wolf, R C; Finken, K. H.; Jakubowski, M W.; R. Jaspers; Koslowski, H. R.; Krämer-Flecken, A; Lehnen, M.; Liang, Y.; Matsunaga, G.

    2006-01-01

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fl...

  18. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    International Nuclear Information System (INIS)

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation (gradient)2P = (gradient) · (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating (gradient)P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models

  19. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sorin Zaharia; C.Z. Cheng

    2002-06-18

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation {del}{sup 2}P = {del} {center_dot} (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating {del}P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models.

  20. Development of AMOEBA force field for 1,3-dimethylimidazolium based ionic liquids.

    Science.gov (United States)

    Starovoytov, Oleg N; Torabifard, Hedieh; Cisneros, G Andrés

    2014-06-26

    The development of AMOEBA (a multipolar polarizable force field) for imidazolium based ionic liquids is presented. Our parametrization method follows the AMOEBA procedure and introduces the use of QM intermolecular total interactions as well as QM energy decomposition analysis (EDA) to fit individual interaction energy components. The distributed multipoles for the cation and anions have been derived using both the Gaussian distributed multipole analysis (GDMA) and Gaussian electrostatic model-distributed multipole (GEM-DM) methods.1 The intermolecular interactions of a 1,3-dimethylimidazolium [dmim(+)] cation with various anions, including fluoride [F(-)], chloride [Cl(-)], nitrate [NO(3)(-)], and tetraflorouborate [BF(4)(-)], were studied using quantum chemistry calculations at the MP2/6-311G(d,p) level of theory. Energy decomposition analysis was performed for each pair using the restricted variational space decomposition approach (RVS) at the HF/6-311G(d,p) level. The new force field was validated by running a series of molecular dynamic (MD) simulations and by analyzing thermodynamic and structural properties of these systems. A number of thermodynamic properties obtained from MD simulations were compared with available experimental data. The ionic liquid structure reproduced using the AMOEBA force field is also compared with the data from neutron diffraction experiment and other MD simulations. Employing GEM-DM force fields resulted in a good agreement on liquid densities ρ, enthalpies of vaporization ΔH(vap), and diffusion coefficients D(±) in comparison with conventional force fields. PMID:24901255

  1. Ionic force field optimization based on single-ion and ion-pair solvation properties

    CERN Document Server

    Fyta, Maria; Dzubiella, Joachim; Vrbka, Lubos; Netz, Roland R

    2009-01-01

    Molecular dynamics simulations of ionic solutions depend sensitively on the force fields employed for the ions. To resolve the fine differences between ions of the same valence and roughly similar size and in particular to correctly describe ion-specific effects, it is clear that accurate force fields are necessary. In the past, optimization strategies for ionic force fields either considered single-ion properties (such as the solvation free energy at infinite dilution or the ion-water structure) or ion-pair properties (in the form of ion-ion distribution functions). In this paper we investigate strategies to optimize ionic force fields based on single-ion and ion-pair properties simultaneously. To that end, we simulate five different salt solutions, namely CsCl, KCl, NaI, KF, and CsI, at finite ion concentration. The force fields of these ions are systematically varied under the constraint that the single-ion solvation free energy matches the experimental value, which reduces the two-dimensional $\\{\\sigma,\\e...

  2. Magnetic Helicity of Self-Similar Axisymmetric Force-free Fields

    CERN Document Server

    Zhang, Mei; Low, Boon Chye

    2012-01-01

    In this paper we continue our theoretical studies on addressing what are the possible consequences of magnetic helicity accumulation in the solar corona. Our previous studies suggest that coronal mass ejections (CMEs) are natural products of coronal evolution as a consequence of magnetic helicity accumulation and the triggering of CMEs by surface processes such as flux emergence also have their origin in magnetic helicity accumulation. Here we use the same mathematical approach to study the magnetic helicity of axisymmetric power-law force-free fields, but focus on a family whose surface flux distributions are defined by self-similar force-free fields. The semi-analytical solutions of the axisymmetric self-similar force-free fields enable us to discuss the properties of force-free fields possessing a huge amount of accumulated magnetic helicity. Our study suggests that there may be an absolute upper bound on the total magnetic helicity of all bipolar axisymmetric force-free fields. And with the increase of ac...

  3. A long-lived coronal X-ray arcade. [force-free magnetic field analysis

    Science.gov (United States)

    Mcguire, J. P.; Tandberg-Hanssen, E.; Krall, K. R.; Wu, S. T.; Smith, J. B., Jr.; Speich, D. M.

    1977-01-01

    A large, long-lived, soft X-ray emitting arch system observed during a Skylab mission is analyzed. The supposition is that these arches owe their stability to the stable coronal magnetic-field configuration. A global constant alpha force-free magnetic field analysis, is used to describe the arches which stayed in the same approximate position for several solar rotations. A marked resemblance is noted between the theoretical magnetic field configuration and the observed X-ray emmitting feature.

  4. Relationship between the magnetic field distribution and attractive force of single domain YBCO bulk under different field cooling processes

    Institute of Scientific and Technical Information of China (English)

    Yang Wan-Min; Zhou Lian; Feng Yong; Zhang Ping-Xiang; R. Nicolsky

    2004-01-01

    The levitation forces under different field cooling states were measured at 77K by changing the field cooling distance 0Zfc between a YBCO bulk and a permanent magnet. It is found that the relationship between the absolute maximum attractive force (Fmaf) and the corresponding gap distance (Zmaf) to Fmaf can be well described by exponential laws as a function of Zfc, which allow us to predict these values according to Zfc. It is also found that the distance between the Z0fa (gap distance corresponding to the zero force) and Zmaf in the ascending process is a constant value, which is closely related to the constant reduction factor of the axial component of flux density along the axial line of the magnet if Zmaf - Z0fa is a constant value. These results are very interesting for fundamental research and helpful in practical designing and applications.

  5. The Fast Multipole Method and Point Dipole Moment Polarizable Force Fields

    OpenAIRE

    Coles, Jonathan P.; Masella, Michel

    2014-01-01

    We present an implementation of the fast multipole method for computing coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected $O(N)$ scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embed...

  6. Experimental studies of protozoan response to intense magnetic fields and forces

    Science.gov (United States)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general

  7. Development of a True Transition State Force Field from Quantum Mechanical Calculations.

    Science.gov (United States)

    Madarász, Ádám; Berta, Dénes; Paton, Robert S

    2016-04-12

    Transition state force fields (TSFF) treated the TS structure as an artificial minimum on the potential energy surface in the past decades. The necessary parameters were developed either manually or by the Quantum-to-molecular mechanics method (Q2MM). In contrast with these approaches, here we propose to model the TS structures as genuine saddle points at the molecular mechanics level. Different methods were tested on small model systems of general chemical reactions such as protonation, nucleophilic attack, and substitution, and the new procedure led to more accurate models than the Q2MM-type parametrization. To demonstrate the practicality of our approach, transferrable parameters have been developed for Mo-catalyzed olefin metathesis using quantum mechanical properties as reference data. Based on the proposed strategy, any force field can be extended with true transition state force field (TTSFF) parameters, and they can be readily applied in several molecular mechanics programs as well. PMID:26925858

  8. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-01

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc.

  9. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics.

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T; Henriksen, Niel M; Gilson, Michael K

    2015-08-13

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by nonoptimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery.

  10. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  11. Controlling dispersion forces between small particles with artificially created random light fields

    CERN Document Server

    Bruegger, Georges; Scheffold, Frank; Saenz, Juan Jose

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with "optical tweezers" as well as to induce significant "optical binding" forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light induced interactions open a path towards...

  12. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  13. Materials Bound by Non-Chemical Forces: External Fields and the Quantum Vacuum

    CERN Document Server

    Swain, John; Srivastava, Yogendra

    2014-01-01

    We discuss materials which owe their stability to external fields. These include: 1) external electric or magnetic fields, and 2) quantum vacuum fluctuations in these fields induced by suitable boundary conditions (the Casimir effect). Instances of the first case include the floating water bridge and ferrofluids in magnetic fields. An example of the second case is taken from biology where the Casimir effect provides an explanation of the formation of stacked aggregations or "rouleaux" by negatively charged red blood cells. We show how the interplay between electrical and Casimir forces can be used to drive self-assembly of nano-structured materials, and could be generalized both as a probe of Casimir forces and as a means of manufacturing nanoscale structures. Interestingly, all the cases discussed involve the generation of the somewhat exotic negative pressures. We note that very little is known about the phase diagrams of most materials in the presence of external fields other than those represented by the ...

  14. The acoustic force density acting on inhomogeneous fluids in acoustic fields

    CERN Document Server

    Karlsen, Jonas T; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  15. One-dimensional classical diffusion in a random force field with weakly concentrated absorbers

    OpenAIRE

    Texier, Christophe; Hagendorf, Christian

    2009-01-01

    A one-dimensional model of classical diffusion in a random force field with a weak concentration $\\rho$ of absorbers is studied. The force field is taken as a Gaussian white noise with $\\mean{\\phi(x)}=0$ and $\\mean{\\phi(x)\\phi(x')}=g \\delta(x-x')$. Our analysis relies on the relation between the Fokker-Planck operator and a quantum Hamiltonian in which absorption leads to breaking of supersymmetry. Using a Lifshits argument, it is shown that the average return probability is a power law $\\sme...

  16. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration

    DEFF Research Database (Denmark)

    Maciejewski, A.; Pasenkiewicz-Gierula, M.; Cramariuc, O.;

    2014-01-01

    We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model...... validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule...

  17. Multi-scale analysis of the electromagnetic self-force in a weak gravitational field

    OpenAIRE

    Pound, Adam; Poisson, Eric

    2007-01-01

    We examine the motion of a charged particle in a weak gravitational field. In addition to the Newtonian gravity exerted by a large central body, the particle is subjected to an electromagnetic self-force that contains both a conservative piece and a radiation-reaction piece. This toy problem shares many of the features of the strong-field gravitational self-force problem, and it is sufficiently simple that it can be solved exactly with numerical methods, and approximately with analytical meth...

  18. Prediction of adsorption of small molecules in porous materials based on ab initio force field method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.

  19. Non-mean-field effects in systems with long-range forces in competition.

    Science.gov (United States)

    Bachelard, R; Staniscia, F

    2012-11-01

    We investigate the canonical equilibrium of systems with long-range forces in competition. These forces create a modulation in the interaction potential and modulated phases appear at the system scale. The structure of these phases differentiate this system from monotonic potentials, where only the mean-field and disordered phases exist. With increasing temperature, the system switches from one ordered phase to another through a first-order phase transition. Both mean-field and modulated phases may be stable, even at zero temperature, and the long-range nature of the interaction will lead to metastability characterized by extremely long time scales.

  20. A Fluid Dynamics Approach for the Computation of Non-linear Force-Free Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Jing-Qun Li; Jing-Xiu Wang; Feng-Si Wei

    2003-01-01

    Inspired by the analogy between the magnetic field and velocity fieldof incompressible fluid flow, we propose a fluid dynamics approach for comput-ing nonlinear force-free magnetic fields. This method has the advantage that thedivergence-free condition is automatically satisfied, which is a sticky issue for manyother algorithms, and we can take advantage of modern high resolution algorithmsto process the force-free magnetic field. Several tests have been made based on thewell-known analytic solution proposed by Low & Lou. The numerical results arein satisfactory agreement with the analytic ones. It is suggested that the newlyproposed method is promising in extrapolating the active region or the whole sunmagnetic fields in the solar atmosphere based on the observed vector magnetic fieldon the photosphere.

  1. Motion in classical field theories and the foundations of the self-force problem

    CERN Document Server

    Harte, Abraham I

    2014-01-01

    This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally ...

  2. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    Science.gov (United States)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  3. Influence of an external magnetic field on forced turbulence in a swirling flow of liquid metal

    CERN Document Server

    Gallet, Basile; Mordant, Nicolas

    2009-01-01

    We report an experimental investigation on the influence of an external magnetic field on forced 3D turbulence of liquid gallium in a closed vessel. We observe an exponential damping of the turbulent velocity fluctuations as a function of the interaction parameter N (ratio of Lorentz force over inertial terms of the Navier-Stokes equation). The flow structures develop some anisotropy but do not become bidimensional. From a dynamical viewpoint, the damping first occurs homogeneously over the whole spectrum of frequencies. For larger values of N, a very strong additional damping occurs at the highest frequencies. However, the injected mechanical power remains independent of the applied magnetic field. The simultaneous measurement of induced magnetic field and electrical potential differences shows a very weak correlation between magnetic field and velocity fluctuations. The observed reduction of the fluctuations is in agreement with a previously proposed mechanism for the saturation of turbulent dynamos and wit...

  4. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    The Halbach cylinder is a construction of permanent magnets used in applications such as nuclear magnetic resonance apparatus, accelerator magnets and magnetic cooling devices. In this paper the analytical expression for the magnetic vector potential, magnetic flux density and magnetic field for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer $p$. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero except for the case where $p$ for the inner magnet is one minus $p$ for the outer magnet. Also the force is shown never to be balancing. The torque is shown to be zero unless the inner magnet $p$ is equal to minus the outer magnet $p$. Thus there can never be a force and a torque in the same system.

  5. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs com...... the CHARMM36 FF with minor modifications. Compatibility between our parameters and CHARMM36 parameters is preserved. (C) 2014 Elsevier B.V. All rights reserved....

  6. Advances in damage control resuscitation and surgery: implications on the organization of future military field forces

    OpenAIRE

    Tien, Col Homer; Beckett, Maj Andrew; Garraway, LCol Naisan; Talbot, LCol Max; Pannell, Capt Dylan; Alabbasi, Thamer

    2015-01-01

    Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influ...

  7. Mean--field electrodynamics: Critical analysis of various analytical approaches to the mean electromotive force

    OpenAIRE

    Raedler, Karl-Heinz; Rheinhardt, Matthias

    2006-01-01

    There are various analytical approaches to the mean electromotive force $\\cal E =$ crucial in mean--field electrodynamics, with $\\vec{u}$ and $\\vec{b}$ being velocity and magnetic field fluctuations. In most cases the traditional approach, restricted to the second--order correlation approximation, has been used. Its validity is only guaranteed for a range of conditions, which is narrow in view of many applications, e.g., in astrophysics. With the intention to have a wi...

  8. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    OpenAIRE

    Huangqiu Zhu; Hui Li

    2015-01-01

    Bearingless permanent magnet synchronous motors (BPMSMs), with all advantages of permanent magnet motors (PMSMs) and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis ...

  9. IR and py/GC/MS examination of amber relics excavated from 6th century royal tomb in Korean Peninsula

    Science.gov (United States)

    Park, Jongseo; Yun, Eunyoung; Kang, Hyungtae; Ahn, Jooyoung; Kim, Gyuho

    2016-08-01

    Relics of amber were excavated from King Muryeong's tomb constructed in the 6th century on the Korean peninsula. To estimate the provenance, FTIR (Fourier transform infrared spectroscopy) and py/GC/MS (pyrolysis/gas chromatography/mass spectrometry) analysis were utilized. The reference Baltic amber sample was also analyzed with the same method for comparison. The relics were confirmed to be amber from the FTIR analysis where an absorption band near 1150 cm- 1, characteristic one in Baltic amber, was also observed. In py/GC/MS analysis, pyrolyzed products like butanedioic acid and dehydroabietic acid, known constituents of amber, were observed. In addition, D-fenchyl alcohol, camphor, borneol and butanedioic acid, typical constituents of Baltic amber, were observed in some samples. From this, it appears that some of relics were made from Baltic amber and that Baltic amber was transported to the Korean peninsula in the time of tomb construction.

  10. Changes in tibiofemoral contact forces during running in response to in-field gait retraining.

    Science.gov (United States)

    Willy, Richard W; Meardon, Stacey A; Schmidt, André; Blaylock, Nathan R; Hadding, Scott A; Willson, John D

    2016-09-01

    We evaluated the efficacy of an in-field gait retraining programme using mobile biofeedback to reduce cumulative and peak tibiofemoral loads during running. Thirty runners were randomised to either a retraining group or control group. Retrainers were asked to increase their step rate by 7.5% over preferred in response to real-time feedback provided by a wrist mounted running computer for 8 routine in-field runs. An inverse dynamics driven musculoskeletal model estimated total and medial tibiofemoral joint compartment contact forces. Peak and impulse per step total tibiofemoral contact forces were immediately reduced by 7.6% and 10.6%, respectively (P mind, cumulative tibiofemoral contact forces did not change due to the estimated increase in number of steps to run 1 km. PMID:26679058

  11. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies

    CERN Document Server

    Kührová, Petra; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2016-01-01

    The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that ...

  12. APT a next generation QM-based reactive force field model

    Science.gov (United States)

    Rappé, A. K.; Bormann-Rochotte, L. M.; Wiser, D. C.; Hart, J. R.; Pietsch, M. A.; Casewit, C. J.; Skiff, W. M.

    Modelling reactivity at the nanoscale is a major computational challenge. Both reactive force field and combined QM-MM methodologies have been and are being developed to study reactivity at this boundary between molecules and the solid state. There have been more than 1500 publications since the mid-1990s, on combined QM-MM methodologies. Limitations in current models include the distortional characteristics of force field potential terms, the smooth transit from one potential surface to another, rather than surface hopping, and the blending of electrostatics between QM and MM portions of a QM-MM model. Functional forms, potential surface coupling terms, and parameterization strategies for the Approximate Pair Theory (APT), a next generation reactive force field model, are described. The APT model has been developed to correct a number of limitations in current reactive force field models as well as providing a foundation for a next generation QM-MM model. Chemical bonding concepts are used to develop fully dissociative bond stretch, bend, torsion, and inversion valence terms. Quantum mechanics also provides functional forms for potential surface coupling terms that permit a general description of reactivity from hydrogen bonding, through non-classical carbocations and cracking, to olefin polymerization, oxidation, and metathesis. Van der Waals, electrostatic, and metallic bonding models also derive from quantum mechanical resonance. Finally, Pauli Principle-based orthogonality provides a way to electrostatically couple the QM and MM portions of a QM-MM model that will support arbitrarily large basis sets.

  13. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case

    DEFF Research Database (Denmark)

    Rossi, G.; Monticelli, L.; Puisto, S. R.;

    2011-01-01

    in the parameterization. We refine the MARTINI procedure by including one additional target property related to the structure of the polymer, namely the radius of gyration. The force-field optimization is mainly based on experimental data. We test our procedure on polystyrene, a standard benchmark for coarse-grained (CG...

  14. Toward a Broadly Applicable Force Field for d(6)-Piano Stool Complexes.

    Science.gov (United States)

    Schmid, Maurus H; Ward, Thomas R; Meuwly, Markus

    2013-05-14

    Three-legged piano stool complexes are prototypical organometallic complexes relevant to a wide range of chemically relevant questions. Force field parametrization of transition-metal complexes is difficult and underdeveloped, and metal-specific force fields and software are required. Here we report our efforts to derive parameters for the conventional CHARMM and the Valbond-CHARMM force fields for d(6)-piano stool complexes. In Valbond-CHARMM, the usual angular term is replaced with hybrid orbital strength functions. These functions describe the energy not only of distorted bond angles around the minimum but also at very large distortions. Structure optimizations led to a good agreement between the calculated force field and the X-ray structures. They were comparable to RMSDs obtained between X-ray and DFT structures. In addition, and contrary to treating the systems with DFT, molecular dynamics simulations on the multiple nanosecond time scale are possible and allow to compute meaningful structural and energetic observables. Explicit solvent simulations of the complexes in methanol and water allow to determine the solvent distribution around the complexes. The parametrization presented here will be a useful starting point for dynamics investigations of catalysts in structurally more demanding environments. PMID:26583724

  15. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  16. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth

    Science.gov (United States)

    Veto, B.

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  17. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    NARCIS (Netherlands)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.

    2014-01-01

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heterona

  18. Atomic Radii in Molecules for Use in a Polarizable Force Field

    NARCIS (Netherlands)

    Swart, Marcel; Van Duijnen, Piet Th

    2011-01-01

    We report here the results for an ab initio approach to obtain the parameters needed for molecular simulations using a polarizable force field. These parameters consist of the atomic charges, polarizabilities, and radii. The former two are readily obtained using methods reported previously (van Duij

  19. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units.

    Science.gov (United States)

    Lindert, Steffen; Bucher, Denis; Eastman, Peter; Pande, Vijay; McCammon, J Andrew

    2013-11-12

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling.

  20. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates.

    Science.gov (United States)

    Sibaev, M; Crittenden, D L

    2016-06-01

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm(-1) in fundamental frequencies, on average, across a sizable test set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.

  1. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates.

    Science.gov (United States)

    Sibaev, M; Crittenden, D L

    2016-06-01

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm(-1) in fundamental frequencies, on average, across a sizable test set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/. PMID:27276945

  2. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  3. New Approaches and Solutions of Nonlinear Force-Free Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song

    2006-01-01

    Some new approaches for nonlinear force-free magnetic field are presented and new exact solutions are found analytically. Examples are given and some implications of results to astrophysical solar plasmas as well as tokamak or/and spheromak plasmas are discussed.PACS numbers: 52.30.Cv, 52.55.-s, 95.30.Qd

  4. A New Species Of Globicornis (Hadrotoma (Coleoptera, Dermestidae, Megatominae From Baltic Amber

    Directory of Open Access Journals (Sweden)

    Háva J.

    2015-08-01

    Full Text Available The species Globicornis (Hadrotoma ingelehmannae sp. n. from Baltic amber is described, illustrated and compared with all known amber species of Globicornis Latreille, 1829. New species differs by the shape of antennae and black setation on dorsal and ventral surfaces.

  5. A gilled mushroom, Gerontomyces lepidotus gen. et sp. nov. (Basidiomycota: Agaricales), in Baltic amber.

    Science.gov (United States)

    Poinar, George

    2016-09-01

    A densely scaled small mushroom in Baltic amber is described as Gerontomyces lepidotus gen. et sp. nov. and is characterized by a convex pileus 1.0 mm in diameter, distant to subdistant lamellae with smooth margins and a centrally inserted cylindrical, solid stipe. Its taxonomic placement is uncertain. This is the first mushroom described from Baltic amber. PMID:27567715

  6. Blue ghosts: a new method for isolating amber mutants defective in essential genes of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S; Brickman, E R; Beckwith, J

    1981-01-01

    We describe a technique which permits an easy screening for amber mutants defective in essential genes of Escherichia coli. Using this approach, we have isolated three amber mutants defective in the rho gene. An extension of the technique allows the detection of ochre mutants and transposon inser...

  7. New Records Of The Dipteran Genera Triphleba (Phoridae And Prosphyracephala (Diopsidae In Rovno And Baltic Ambers

    Directory of Open Access Journals (Sweden)

    Perkovsky E. E.

    2015-06-01

    Full Text Available Dipteran insects constitute 51 % among arthropods of the Rovno Amber. There are 99 species and 23 genera of the Diptera described from the Rovno Amber; however, to date only 32 species are shared with the Baltic Amber fauna, including two species that are treated in this paper. Triphleba schulmanae Brown, 2003 (Phoridae, originally described from the Baltic Amber, is recorded in the Rovno Amber for the first time and its amended description is supplied. Genus Prosphyracephala Hennig, 1965 (Diopsidae, earlier known from the Baltic and Saxonian ambers, the Upper Eocene of Ruby River (Montana, USA and the Lower Oligocene of Céreste (France, is recorded in the Rovno Amber for the first time. Prosphyracephala aff. succini (Loew, 1873 is the first diopsid record from Ukraine. A second specimen of Prosphyracephala kerneggeri Kotrba, 2009 is found in the Baltic amber; the complete wing venation is described for the first time for this species. Vast majority of the Old World Diopsidae are strictly thermophilous. In fact, all of them but the five species of brevicornis group of Sphyracephala Say (three Palearctic and two Nearctic ones frequent tropic and the warmest subtropic areas, however the thermophilous Diopsidae are known in the New World neither in past nor in contemporary fauna.

  8. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author)

  9. The Effect of Electric Fields In A Classic Introductory Physics Treatment of Eddy Current Forces

    CERN Document Server

    Salzman, P J; Lea, S M; Burke, John Robert; Lea, Susan M.

    2001-01-01

    A simple model of eddy currents in which current is computed solely from magnetic forces acting on electrons proves accessible to introductory students and gives a good qualitative account of eddy current forces. However, this model cannot be complete; it ignores the electric fields that drive current outside regions of significant magnetic field. In this paper we show how to extend the model to obtain a boundary value problem for current density. Solution of this problem in polar coordinates shows that the electric field significantly affects the quantitative results and presents an exercise suitable for upper division students. We apply elliptic cylindrical coordinates to generalize the result and offer an exercise useful for teaching graduate students how to use non-standard coordinate systems.

  10. ON THE FORCE-FREE NATURE OF PHOTOSPHERIC SUNSPOT MAGNETIC FIELDS AS OBSERVED FROM HINODE (SOT/SP)

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv Kumar, E-mail: tiwari@mps.mpg.de [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313 001 (India)

    2012-01-01

    A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter {alpha}), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that

  11. Forces on liquid lithium modules in a tokamak blanket due to the pulsed poloidal magnetic field

    International Nuclear Information System (INIS)

    This paper treats cylindrical modules filled with liquid lithium in the presence of a steady toroidal magnetic field and a time-dependent poloidal field. Solutions for liquid lithium flows and formulas for the forces on the modules are presented for both axial and transverse poloidal fields. Numerical examples are presented for the design in the ORNL/Westinghouse Tokamak Blanket Study. The initial analysis ignores the ends of the modules and treats infinitely long pipes, but the effects of the ends are also treated. Calculations and conclusions based on the solutions for infinitely long pipes are not significantly altered by end effects

  12. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2010-01-01

    The Halbach cylinder is a construction of permanent magnets used in applications such as nuclear magnetic resonance apparatus, accelerator magnets and magnetic cooling devices. In this paper the analytical expression for the magnetic vector potential, magnetic flux density and magnetic field...... for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...

  13. Ginzburg-Landau Vortex and Mean Curvature Flow with External Force Field

    Institute of Scientific and Technical Information of China (English)

    Huai Yu JIAN; Yan Nan LIU

    2006-01-01

    This paper is devoted to the study of the vortex dynamics of the Cauchy problem for a parabolic Ginzburg-Landau system which simulates inhomogeneous type Ⅱ superconducting materials and three-dimensional superconducting thin films having variable thickness. We will prove that the vortex of the problem is moved by a codimension k mean curvature flow with external force field.Besides, we will show that the mean curvature flow depends strongly on the external force, having completely different phenomena from the usual mean curvature flow.

  14. Casimir force between two parallel semiconductor slabs: Magnetic field effects in the Voigt geometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, R.; Palomino-Ovando, M. [Facultad de Ciencias Fisico-Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Martinez, G.; Hernandez, P.H.; Cocoletzi, Gregorio H. [Instituto de Fisica, Universidad Autonoma de Puebla, Puebla (Mexico)

    2009-06-15

    We investigate the Casimir force F between two parallel semiconductor slabs taking into account magnetoplasmon effects. For our calculations we consider an external magnetic field applied in the Voigt geometry. Studies are carried out using the formula of F, which is written in terms of the reflectivities of the incident electromagnetic (EM) waves onto the surfaces of the semiconductor slabs, in the vacuum gap between slabs. Results show that the Casimir force depends strongly on the slab thickness as well as on the magnetic-field strength (or equivalently on the cyclotron frequency). At a constant cyclotron frequency and for small slab thickness F/F{sub 0} (F{sub 0} is the ideal force) displays a dip at small separation distances L between slabs. F/F{sub 0} increases with L up to saturation as the slab thickness increases. The curve with the strongest value of F/F{sub 0} corresponds to the semi-infinite medium geometry. For a constant slab thickness and small cyclotron frequency, F/F{sub 0} as a function of L shows a monotonic increase as L increases, and eventually reaches saturation. At high cyclotron frequency F/F{sub 0} displays a dip. The curve of F/F{sub 0} with no applied external field corresponds to the one with the strongest Casimir force. Therefore, magnetoplasmon effects, with an applied magnetic field in the Voigt geometry may inhibit the Casimir force. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.

    Science.gov (United States)

    Rzepiela, Andrzej J; Louhivuori, Martti; Peter, Christine; Marrink, Siewert J

    2011-06-14

    Hybrid simulations, in which part of the system is represented at atomic resolution and the remaining part at a reduced, coarse-grained, level offer a powerful way to combine the accuracy associated with the atomistic force fields to the sampling speed obtained with coarse-grained (CG) potentials. In this work we introduce a straightforward scheme to perform hybrid simulations, making use of virtual sites to couple the two levels of resolution. With the help of these virtual sites interactions between molecules at different levels of resolution, i.e. between CG and atomistic molecules, are treated the same way as the pure CG-CG interactions. To test our method, we combine the Gromos atomistic force field with a number of coarse-grained potentials, obtained through several approaches that are designed to obtain CG potentials based on an existing atomistic model, namely iterative Boltzmann inversion, force matching, and a potential of mean force subtraction procedure (SB). We also explore the use of the MARTINI force field for the CG potential. A simple system, consisting of atomistic butane molecules dissolved in CG butane, is used to study the performance of our hybrid scheme. Based on the potentials of mean force for atomistic butane in CG solvent, and the properties of 1:1 mixtures of atomistic and CG butane which should exhibit ideal mixing behavior, we conclude that the MARTINI and SB potentials are particularly suited to be combined with the atomistic force field. The MARTINI potential is subsequently used to perform hybrid simulations of atomistic dialanine peptides in both CG butane and water. Compared to a fully atomistic description of the system, the hybrid description gives similar results provided that the dielectric screening of water is accounted for. Within the field of biomolecules, our method appears ideally suited to study e.g. protein-ligand binding, where the active site and ligand are modeled in atomistic detail and the rest of the protein

  16. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    Science.gov (United States)

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  17. A coarse-grain force field for RDX: Density dependent and energy conserving

    Science.gov (United States)

    Moore, Joshua D.; Barnes, Brian C.; Izvekov, Sergei; Lísal, Martin; Sellers, Michael S.; Taylor, DeCarlos E.; Brennan, John K.

    2016-03-01

    We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions.

  18. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    Science.gov (United States)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-07-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core-shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field.

  19. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  20. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, A; Mirzaee, I; Purmahmod, N [Faculty of Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Anvari, A [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: ab.abdoli@gmail.com

    2008-09-07

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s{sup -1} at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A{sub b} and D{sub c}, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  1. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    Science.gov (United States)

    Abdoli, A.; Mirzaee, I.; Anvari, A.; Purmahmod, N.

    2008-09-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s-1 at a post-stall angle of attack of 23°. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, Ab and Dc, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  2. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  3. Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dawei; LI Yongtang; FU Jianhua; ZHENG Quangang

    2009-01-01

    Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that:the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable;in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process;the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.

  4. Analysis of the forces acting on the saltating particles in the coupled wind-sand-electricity fields

    Institute of Scientific and Technical Information of China (English)

    WU JianJun; YAN GuangHu

    2009-01-01

    Based on the theoretical model describing the saltation of sand particles in the coupled wind-sand-electricity fields, the numerical simulations of the forces acting on saltating particles, such as the aerodynamic drag force, Magnus effect, Saffman force and electrostatic force, are analyzed in com-parison to the gravity force of the particles in the steady windblown sand movement. Furthermore, the laws of the above forces vary with the friction velocity, the diameter of the sand particle, the initial an-gular velocity and the lift-off velocity are discussed.

  5. Analysis of the forces acting on the saltating particles in the coupled wind-sand-electricity fields

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the theoretical model describing the saltation of sand particles in the coupled wind-sand- electricity fields, the numerical simulations of the forces acting on saltating particles, such as the aerodynamic drag force, Magnus effect, Saffman force and electrostatic force, are analyzed in com- parison to the gravity force of the particles in the steady windblown sand movement. Furthermore, the laws of the above forces vary with the friction velocity, the diameter of the sand particle, the initial an- gular velocity and the lift-off velocity are discussed.

  6. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2015-12-31

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  7. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    International Nuclear Information System (INIS)

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities

  8. On combining Thole's induced point dipole model with fixed charge distributions in molecular mechanics force fields.

    Science.gov (United States)

    Antila, Hanne S; Salonen, Emppu

    2015-04-15

    The Thole induced point dipole model is combined with three different point charge fitting methods, Merz-Kollman (MK), charges from electrostatic potentials using a grid (CHELPG), and restrained electrostatic potential (RESP), and two multipole algorithms, distributed multipole analysis (DMA) and Gaussian multipole model (GMM), which can be used to describe the electrostatic potential (ESP) around molecules in molecular mechanics force fields. This is done to study how the different methods perform when intramolecular polarizability contributions are self-consistently removed from the fitting done in the force field parametrization. It is demonstrated that the polarizable versions of the partial charge models provide a good compromise between accuracy and computational efficiency in describing the ESP of small organic molecules undergoing conformational changes. For the point charge models, the inclusion of polarizability reduced the the average root mean square error of ESP over the test set by 4-10%.

  9. Simulations of room temperature ionic liquids: From polarizable to coarse-grained force fields

    CERN Document Server

    Salanne, Mathieu

    2015-01-01

    Room temperature ionic liquids (RTILs) are solvent with unusual properties, which are difficult to characterize experimentally because of their intrinsic complexity (large number of atoms, strong Coulomb interactions). Molecular simulations have therefore been essential in our understanding of these systems. Depending on the target property and on the necessity to account for fine details of the molecular structure of the ions, a large range of simulation techniques are available. Here I focus on classical molecular dynamics, in which the level of complexity of the simulation, and therefore the computational cost, mostly depends on the force field. Depending on the representation of the ions, these are either classified as all-atom or coarse-grained. In addition, all-atom force fields may account for polarization effects if necessary. The most widely used methods for RTILs are described together with their main achievements and limitations.

  10. Concurrent parametrization against static and kinetic information leads to more robust coarse-grained force fields

    CERN Document Server

    Rudzinski, Joseph F

    2016-01-01

    The parametrization of coarse-grained (CG) simulation models for molecular systems often aims at reproducing static properties alone. The reduced molecular friction of the CG representation usually results in faster, albeit inconsistent, dynamics. In this work, we rely on Markov state models to simultaneously characterize the static and kinetic properties of two CG peptide force fields---one top-down and one bottom-up. Instead of a rigorous evolution of CG dynamics (e.g., using a generalized Langevin equation), we attempt to improve the description of kinetics by simply altering the existing CG models, which employ standard Langevin dynamics. By varying masses and relevant force-field parameters, we can improve the timescale separation of the slow kinetic processes, achieve a more consistent ratio of mean-first-passage times between metastable states, and refine the relative free-energies between these states. Importantly, we show that the incorporation of kinetic information into a structure-based parametriz...

  11. A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field

    OpenAIRE

    吉田, 欣二郎; 松田, 茂雄; 松本, 洋和

    2000-01-01

    High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...

  12. Protein simulations combining an all-atom force field with a Go term

    International Nuclear Information System (INIS)

    Using a variant of parallel tempering, we study the changes in sampling within a simulation, when the all-atom model is coupled to a Go-like potential. We find that the native structure is not the lowest-energy configuration in the all-atom force field. Adding a Go term deforms the energy landscape in such a way that the native configuration becomes the global minimum but does not lead to faster thermalization

  13. Electromagnetomotive force fields in noninertial reference frames and accelerated superconducting quantum interferometers

    OpenAIRE

    Fischer, Uwe R.; Haeussler, Christoph; Oppenlaender, Joerg; Schopohl, Nils

    2001-01-01

    We discuss the prospects of detecting with high precision the force fields related to noninertiality in superconducting circuits. Special emphasis is laid on the perfectly conducting and perfect diamagnetism analogues of the Tolman-Stewart respectively Barnett effects. The influence of acceleration and rotation on the electrodynamics of superconducting interferometers is explicitly described. In particular, we show how motion induced changes of the oscillation frequency of the local Josephson...

  14. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    OpenAIRE

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2014-01-01

    The Halbach cylinder is a construction of permanent magnets used in applications such as nuclear magnetic resonance apparatus, accelerator magnets and magnetic cooling devices. In this paper the analytical expression for the magnetic vector potential, magnetic flux density and magnetic field for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer $p$. For a number of applications the force and torque between two concent...

  15. Flow Field of Metallic Fluid Acted by Electromagnetic and Centrifugal Force

    Institute of Scientific and Technical Information of China (English)

    QIU Yi-qing; LUO Zong-an; JIA Guang-lin; LIU Xiang-hua; WANG Guo-dong

    2004-01-01

    According to the principle of electromagnetism and hydrodynamics, a mathematical model of flow field for metallic fluid acted by electromagnetic and centrifugal forces was established. The calculation results showed that the relative velocity between metallic fluid layers rises and the absolute rotational velocity of metallic fluid falls with the increase of magnetic induction intensity. The increase of centrifugal revolution hardly affects the relative velocity between metallic fluid layers, but can enhance the absolute rotational velocity of metallic fluid.

  16. The Chiral Anomaly, Dirac and Weyl Semimetals, and Force-Free Magnetic Fields

    OpenAIRE

    Marsh, Gerald E.

    2016-01-01

    The chiral anomaly is a purely quantum mechanical phenomenon that has a long history dating back to the late 1960s. Surprisingly, it has recently made a macroscopic appearance in condensed matter physics. A brief introduction to the relevant features of this anomaly is given and it is shown that its appearance in condensed matter systems must involve force-free magnetic fields, which may help explain the long current relaxation times in Dirac and Weyl semimetals.

  17. Limitations of force-free magnetic field extrapolations: revisiting basic assumptions

    OpenAIRE

    Peter, H; Warnecke, J.; Chitta, L. P.; Cameron, R. H.

    2015-01-01

    Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of e...

  18. A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf.

    Science.gov (United States)

    Raabe, Gabriele; Maginn, Edward J

    2010-08-12

    The European Union (EU) legislation 2006/40/EC bans from January 2011 the cooperative marketing of new car types that use refrigerants in their heating, ventilation, and air conditioning (HVAC) systems with global warming potentials (GWP) higher than 150. Thus, the phase-out of the presently used tetrafluoroethane refrigerant R134a necessitates the adoption of alternative refrigerants. Fluoropropenes such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) are currently regarded as promising low GWP refrigerants, but the lack of experimental data on their thermophysical properties hampers independent studies on their performance in HVAC systems or in other technical applications. In principle, molecular modeling can be used to predict the relevant properties of refrigerants, but adequate intermolecular potential functions ("force fields") are lacking for fluoropropenes. Thus, we developed a transferable force field for fluoropropenes composed of CF(3)-, -CF=, -CH=, CF(2)=, and CH(2)= groups and applied the force field to study 3,3,3 trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). We performed Gibbs ensemble simulations on these three fluoropropenes to compute the vapor pressure, saturated densities, and heats of vaporization. In addition, molecular dynamics simulations were conducted to provide predictions for the density, thermal expansivity, isobaric heat capacity, and transport properties of liquid HFO-1234yf in the temperature range from 263.15 to 310 K and pressures up to 2 MPa. Agreement between simulation results and experimental data and/or correlations (when available) was good, thereby validating the predictive ability of the force field. PMID:20684636

  19. Modified Valence Force Field Approach for Phonon Dispersion: from Zinc-Blende Bulk to Nanowires

    OpenAIRE

    Paul, Abhijeet; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    The correct estimation of the thermal properties of ultra-scaled CMOS and thermoelectric semiconductor devices demands for accurate phonon modeling in such structures. This work provides a detailed description of the modified valence force field (MVFF) method to obtain the phonon dispersion in zinc-blende semiconductors. The model is extended from bulk to nanowires after incorpo- rating proper boundary conditions. The computational de- mands by the phonon calculation increase rapidly as the w...

  20. Polarizable water model for the coarse-grained MARTINI force field.

    Directory of Open Access Journals (Sweden)

    Semen O Yesylevskyy

    2010-06-01

    Full Text Available Coarse-grained (CG simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models.

  1. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c2 in both potential and total energies. (author)

  2. Dielectrophoretic forces and potentials induced on pairs of cells in an electric field.

    Science.gov (United States)

    Foster, K R; Sowers, A E

    1995-09-01

    A combined numerical/experimental study is reported of the membrane potentials and dielectrophoretically induced forces between cells, membrane pressures, and velocity of attraction of cells under the influence of an electric field. This study was designed to explore electrical and mechanical effects produced by a field on cells in close proximity or undergoing electrically induced fusion. Laplace's equation for pairs of membrane-covered spheres in close proximity was solved numerically by the boundary element method, and the electrically induced forces on the cells and between cells were obtained by evaluating the Maxwell stress tensor. The velocity of approach of erythrocyte ghosts or fused ghosts in a 60-Hz field of 6 V/mm was measured experimentally, and the data were interpreted by using Batchelor's theory for hydrodynamic interaction of hard spheres. The numerical results show clearly the origin of the dielectrophoretic pressures and forces in fused and unfused cells and the effects of a nearby cell on the induced membrane potentials. The experimental results agree well with predictions based on the simple electrical model of the cell. The analysis shows the strong effect of hydrodynamic interactions between the cells in determining their velocity of approach. PMID:8519978

  3. Steady Thermal Field Simulation of Forced Air-cooled Column-type Air-core Reactor

    Institute of Scientific and Technical Information of China (English)

    DENG Qiu; LI Zhenbiao; YIN Xiaogen; YUAN Zhao

    2013-01-01

    Modeling the steady thermal field of the column-type air-core reactor,and further analyzing its distribution regularity,will help optimizing reactor design as well as improving its quality.The operation mechanism and inner insulation structure of a novel current limiting column-type air-core reactor is introduced in this paper.The finite element model of five encapsulation forced air-cooled column type air-core reactor is constructed using Fluent.Most importantly,this paper present a new method that,the steady thermal field of reactor working under forced air-cooled condition is simulated without arbitrarily defining the convection heat transfer coefficient for the initial condition; The result of the thermal field distribution shows that,the maximum steady temperature rise of forced air-cooled columntype air-core reactor happens approximately 5% to its top.The law of temperature distribution indicates:In the 1/3part of the reactor to its bottom,the temperature will rise rapidly to the increasing of height,yet the gradient rate is gradually decreasing; In the 5 % part of the reactor to its top,the temperature will drop rapidly to the increasing of height; In the part between,the temperature will rise slowly to the increasing of height.The conclusion draws that more thermal withstand capacity should be considered at the 5 % part of the reactor to its top to achieve optimal design solution.

  4. Evaluating Parametrization Protocols for Hydration Free Energy Calculations with the AMOEBA Polarizable Force Field.

    Science.gov (United States)

    Bradshaw, Richard T; Essex, Jonathan W

    2016-08-01

    Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent SAMPL4 challenge evaluated the AMOEBA polarizable force field in this regard but showed substantially worse results than those using the fixed-point-charge GAFF model. Starting with a set of automatically generated AMOEBA parameters for the SAMPL4 data set, we evaluate the cumulative effects of a series of incremental improvements in parametrization protocol, including both solute and solvent model changes. Ultimately, the optimized AMOEBA parameters give a set of results that are not statistically significantly different from those of GAFF in terms of signed and unsigned error metrics. This allows us to propose a number of guidelines for new molecule parameter derivation with AMOEBA, which we expect to have benefits for a range of biomolecular simulation applications such as protein-ligand binding studies.

  5. Simplified TiO2 force fields for studies of its interaction with biomolecules

    Science.gov (United States)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  6. Nonlinear Force-Free Magnetic Field Modeling of AR 10953: A Critical Assessment

    Science.gov (United States)

    De Rosa, Marc L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; Amari, T.; Canou, A.; McTiernan, J. M.; Régnier, S.; Thalmann, J. K.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M. C. M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.

    2009-05-01

    Nonlinear force-free field (NLFFF) modeling seeks to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have failed to arrive at consistent solutions when applied to (thus far, two) cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not available). One issue is that NLFFF models require consistent, force-free vector magnetic boundary data, and vector magnetogram data sampling the photosphere do not satisfy this requirement. Consequently, several problems have arisen that are believed to affect such modeling efforts. We use AR 10953 to illustrate these problems, namely: (1) some of the far-reaching, current-carrying connections are exterior to the observational field of view, (2) the solution algorithms do not (yet) incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is needed to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.

  7. Test and Evaluation of ff99IDPs Force Field for Intrinsically Disordered Proteins.

    Science.gov (United States)

    Ye, Wei; Ji, Dingjue; Wang, Wei; Luo, Ray; Chen, Hai-Feng

    2015-05-26

    Over 40% of eukaryotic proteomic sequences have been predicted to be intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) and confirmed to be associated with many diseases. However, widely used force fields cannot well reproduce the conformers of IDPs. Previously the ff99IDPs force field was released to simulate IDPs with CMAP energy corrections for the eight disorder-promoting residues. In order to further confirm the performance of ff99IDPs, three representative IDP systems (arginine-rich HIV-1 Rev, aspartic proteinase inhibitor IA3, and α-synuclein) were used to test and evaluate the simulation results. The results show that for free disordered proteins, the chemical shifts from the ff99IDPs simulations are in quantitative agreement with those from reported NMR measurements and better than those from ff99SBildn. Thus, ff99IDPs can sample more clusters of disordered conformers than ff99SBildn. For structural proteins, both ff99IDPs and ff99SBildn can well reproduce the conformations. In general, ff99IDPs can successfully be used to simulate the conformations of IDPs and IDRs in both bound and free states. However, relative errors could still be found at the boundaries of ordered residues scattered in long disorder-promoting sequences. Therefore, polarizable force fields might be one of the possible ways to further improve the performance on IDPs. PMID:25919886

  8. Bis(terpyridine)-based surface template structures on graphite: a force field and DFT study.

    Science.gov (United States)

    Künzel, Daniela; Markert, Thomas; Gross, Axel; Benoit, David M

    2009-10-21

    Host-guest networks formed by ordered organic layers are promising candidates for applications in molecular storage and quantum computing. We have studied 2-dimensionally ordered surface template structures of bis(terpyridine)-derived molecules (BTPs) on graphite using force field and DFT methods and compared the results to recent experimental observations. In order to determine the force field best suited for surface calculations, bond lengths and angles, torsional potentials, adsorption and stacking energies of smaller aromatic molecules were calculated with different force fields (Compass, UFF, Dreiding and CVFF). Density functional perturbation theory calculations were used to study the intermolecular interactions between 3,3'-BTP molecules. Structural properties, adsorption energies and rotational barriers of the 3,3'-BTP surface structure and its host-guest systems with phthalocyanine (PcH(2)) or excess 3,3'-BTP as guest molecules have been addressed. In addition, STM images of oligopyridine and phthalocyanine molecules were simulated based on periodic and local density functional theory calculations.

  9. Opto-mechanical probe for combining atomic force microscopy and optical near-field surface analysis

    OpenAIRE

    Hoorn, van der, T.; Chavan, D.C.; B. Tiribilli; Margheri, G.; Mank, A.J.G.; Ariese, F.; Iannuzzi, D.

    2014-01-01

    We have developed a new easy-to-use probe that can be used to combine atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). We show that, using this device, the evanescent field, obtained by total internal reflection conditions in a prism, can be visualized by approaching the surface with the scanning tip. Furthermore, we were able to obtain simultaneous AFM and SNOM images of a standard test grating in air and in liquid. The lateral resolution in AFM and SNOM mode ...

  10. Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces

    CERN Document Server

    Perez-Garcia, M Angeles; Polls, A

    2009-01-01

    Landau's Fermi Liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi Liquid parameters, the effect of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.

  11. The aquatic and semiaquatic biota in Miocene amber from the Campo LA Granja mine (Chiapas, Mexico): Paleoenvironmental implications

    Science.gov (United States)

    Serrano-Sánchez, María de Lourdes; Hegna, Thomas A.; Schaaf, Peter; Pérez, Liseth; Centeno-García, Elena; Vega, Francisco J.

    2015-10-01

    Amber from the Campo La Granja mine in Chiapas, Mexico, is distinct from other sources of amber in Chiapas. Campo La Granja amber has distinct layers created by successive flows of resin with thin layers of sand on most surfaces. Aquatic and semi-aquatic arthropods are commonly found. Together these pieces of evidence suggest an estuarine environment similar to modern mangrove communities. The aquatic crustaceans are the most intriguing aspect of the biota. A large number of ostracods have been found in the amber-many with their carapaces open, suggesting that they were alive and submerged in water at the time of entombment. The only known examples of brachyuran crabs preserved in amber are found in the Campo La Granja amber. Amphipods, copepods, isopods, and tanaids are also members of the crustacean fauna preserved in amber.

  12. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  13. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico.

    Directory of Open Access Journals (Sweden)

    Mónica M Solórzano Kraemer

    Full Text Available All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non-extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree-inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America.

  14. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  15. Torque-consistent 3D force balance and optimization of non-resonant fields in tokamaks

    Science.gov (United States)

    Park, Jong-Kyu

    2015-11-01

    A non-axisymmetric magnetic perturbation in tokamaks breaks the toroidal symmetry and produces toroidal torque, which is well known as neoclassical toroidal viscosity (NTV) effects. Although NTV torque is second order, it is the first-order change in the pressure anisotropy that drives currents associated with local torques and thereby modifies the field penetration in force balance. The force operator becomes non-Hermitian, but can be directly solved using parallel, toroidal, and radial force balance, leading to a modified Euler-Lagrange equation. The general perturbed equilibrium code (GPEC), which has been successfully developed to solve the modified Euler-Lagrange equation, gives the torque-consistent 3D force balance as well as self-consistent NTV torque. The self-shielding of the torque becomes apparent in the solutions in high β, which was implied in recent MARS-K applications. Furthermore, the full response matrix including the torque in GPEC provides a new and systematic way of optimizing torque and non-resonant fields. Recently the optimization of 3D fields for torque has been actively studied using the stellarator optimizing tools, but the efficiency and accuracy can be greatly improved by directly incorporating the torque response matrix. There are salient features uncovered by response with the torque, as the response can become invisible in amplitudes but only significant in toroidal phase shift. A perturbation in backward helicity is an example, in which NTV can be induced substantially but quietly without measurable response in amplitudes. A number of other GPEC applications will also be discussed, including the multi-mode responses in high- β tokamak plasmas and the new non-axisymmetric control coil (NCC) design in NSTX-U. This work was supported by DOE Contract DE-AC02-09CH11466.

  16. The Contribution of Electric Force to Sintering Ⅱ.Natures of the Applied Electric Field for Driving lonic Diffusion

    Institute of Scientific and Technical Information of China (English)

    SHIShang-zhao

    1994-01-01

    Through discussion on the acting forces of the applied electric field on the ionic system,it was shown that a periordical field with both even and odd components is to be applied.The suitable wavelengty,the extent of the field intensity and electric potential and the application of the selected field were suggested.

  17. Unified Field Equations Coupling Four Forces and Principle of Interaction Dynamics

    CERN Document Server

    Ma, Tian

    2012-01-01

    The main objective of this article is to postulate a principle of interaction dynamics (PID) and to derive unified field equations coupling all four forces. PID is a least action principle subject to div$_A$-free constraints for the variational element with $A$ being gauge fields. The unified field equations of the coupled interactions of four forces are then uniquely derived based on 1) the Einstein principle of general relativity (or Lorentz invariance) and the principle of equivalence, 2) the principle of gauge invariance, and 3) the PID. The unified model gives rise to a complete new mechanism for spontaneously breaking gauge-symmetries and for energy and mass generation, which provides similar outcomes as the Higgs mechanism. For the electromagnetic and weak interactions alone, we derive a totally different electroweak theory, producing the three vector bosons $W^\\pm$ and $Z$, as well as three Higgs bosons--two charged and one neutral. One important outcome of the unified field equations is a natural dua...

  18. Intraplate Stress Field in Brazil Using Focal Mechanisms: Regional and Local Patterns: Examples of Regional Forces Controlling the Stress Field

    Science.gov (United States)

    Dias, F. L.; Assumpcao, M.

    2014-12-01

    The knowledge of stress field is fundamental not only to understand driving forces and plate deformation but also in the study of intraplate seismicity. In Brazil, the stress field has been determined mainly using focal mechanisms and a breakout data and in-situ measurements. However, the stress field still is poorly known in Brazil. We show a recent compilation of focal mechanism determined in Brazil (Fig 1). The focal mechanisms of some recent earthquakes (magnitude lower than 5 mb) were studied using waveform modeling. We stacked the record of several teleseismic stations (> 30°) with a good signal/noise ratio and we grouped then according to distance and azimuth. With the focal mechanisms available in literature and those obtained in this work, we were able to identify some patterns: the central region shows compressional pattern (E-W SHmax), which is predicted by regional theoretical models ( Coblentz & Richardson, 1996 and the TD0 model of Lithgow & Bertelloni, 2004). This compression is mainly due to the interaction of tectonic plate forces. Meanwhile in the Amazon region, we find an indication of SHMax oriented in the SE-NW direction, probably caused by the Caribbean plate interaction (Meijer, 1995) and Amazon Fan, we have flexural stresses caused by sedimentary load with is in agreement with local theoretical models (Watts et al., 2009) . In northern coastal region, the compression rotates following the coastline, which indicates an important local component related to spreading effects at the continental/oceanic transition (Assumpção, 1998). We determine the focal mechanism of several events in Brazil using different techniques according to the available data. The major difficulty is to determine focal mechanism of low magnitudes events (< 5.0 mb) using distant or few seismograph stations. We find examples of stress perturbations induced by local effects (e.g. flexure and continental spreading). The results of this work should be useful for future

  19. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2015-05-01

    Full Text Available Bearingless permanent magnet synchronous motors (BPMSMs, with all advantages of permanent magnet motors (PMSMs and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis method, the operation principle is analyzed theoretically, and the necessary conditions to produce a stable radial suspension force are confirmed. In addition, mathematical models of the torque and radial suspension force are established which is verified by the finite element analysis (FEA software ANSYS. Finally, an experimental prototype of a 2-4 poles surface-mounted BPMSM is tested with the customized control strategy. The simulation and experimental results have shown that the motor has good rotation and suspension performance, and validated the accuracy of the proposed analysis method and the feasibility of the control strategy.

  20. Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration

    CERN Document Server

    Hinterbichler, Kurt

    2010-01-01

    We present a novel screening mechanism that allows a scalar field to mediate a long range ~Mpc force of gravitational strength in the cosmos while satisfying local tests of gravity. The mechanism hinges on local symmetry restoration in the presence of matter. In regions of sufficiently high matter density, the field is drawn towards \\phi = 0 where its coupling to matter vanishes and the \\phi->-\\phi symmetry is restored. In regions of low density, however, the symmetry is spontaneously broken, and the field couples to matter with gravitational strength. We predict deviations from general relativity in the solar system that are within reach of next-generation experiments, as well as astrophysically observable violations of the equivalence principle. The model can be distinguished experimentally from Brans-Dicke gravity, chameleon theories and brane-world modifications of gravity.

  1. Acoustics forces on a solid sphere in focused sound fields and their use for acoustical traps

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller; Kristensen, Søren H.;

    2009-01-01

    as the medium for the propagation of the acoustic waves. The objective of the work to be presented has been to study the extent to which it is possible to use focused sound fields for the manipulation of a rigid sphere in air. The possibility of developing acoustical tweezers has been the main motivation...... of the work. A theoretical investigation based on the boundary element method (BEM) is first described, where the acoustical forces on a rigid sphere are analyzed. It is assumed that the focused sound field is generated by means of a piezoelectric transducer with a shape of a section of a sphere, which...... of the solid in the sound field, and the wave frequency. The use of the BEM allows the study in both the Rayleigh regime (the diameter of the sphere is much smaller than the wavelength) and the Mie regimen (the diameter is larger than or close to the wavelength). The obtained theoretical results...

  2. The Fast Multipole Method and Point Dipole Moment Polarizable Force Fields

    CERN Document Server

    Coles, Jonathan P

    2014-01-01

    We present a momentum conserving implementation of the fast multipole method for computing coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected $O(N)$ scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using both a standard integrator and a multiple time step one. Our tests show the applicability of FMM combined with state-of-the-art chemical models in molecular dynamical systems.

  3. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  4. Second Law Violations by Means of a Stratification of Temperature Due to Force Fields

    Science.gov (United States)

    Trupp, Andreas

    2002-11-01

    In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.

  5. Trial-by-Trial Adaptation of Movements during Mental Practice under Force Field

    Directory of Open Access Journals (Sweden)

    Muhammad Nabeel Anwar

    2013-01-01

    Full Text Available Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.

  6. The fast multipole method and point dipole moment polarizable force fields

    Science.gov (United States)

    Coles, Jonathan P.; Masella, Michel

    2015-01-01

    We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.

  7. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    Science.gov (United States)

    Lantada, Andres Diaz; Bris, Carlos González; Morgado, Pilar Lafont; Maudes, Jesús Sanz

    2012-01-01

    Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient's dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system's operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials. PMID:23112669

  8. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    Directory of Open Access Journals (Sweden)

    Jesús Sanz Maudes

    2012-08-01

    Full Text Available Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID technology (NFC. The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient’s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system’s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.

  9. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory.

    Science.gov (United States)

    Wang, Hao; Yang, Weitao

    2016-06-14

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniform external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics' force fields and nontransferable molecule-specific atomic polarizabilities. PMID:27305996

  10. Advances in damage control resuscitation and surgery: implications on the organization of future military field forces.

    Science.gov (United States)

    Tien, Homer; Beckett, Andrew; Garraway, Naisan; Talbot, Max; Pannell, Dylan; Alabbasi, Thamer

    2015-06-01

    Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influence of medical factors on operational decisions is therefore leading to an increasing requirement for multinational medical solutions. Nations must agree on the common standards that govern the care of the wounded. These standards will always need to take into account increased public expectations regarding the quality of care. The purpose of this article is to both review North Atlantic Treaty Organization (NATO) policies that govern multinational medical missions and to discuss how recent scientific advances in prehospital battlefield care, damage control resuscitation and damage control surgery may inform how countries within NATO choose to organize and deploy their field forces in the future. PMID:26100784

  11. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization.

  12. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. PMID:22670645

  13. Application of a force field algorithm for creating strongly correlated multiscale sphere packings

    Science.gov (United States)

    Zauner, Thomas

    2016-05-01

    This work presents a protocol driven force field algorithm, used to create multiscale correlated dense sphere packings. It was developed as part of a tool chain for the reconstruction of realistic multiscale porous rock samples. It overcomes limitations of Monte-Carlo or deposition based approaches, that are quite common in this field and were used previously. The new algorithm can create large, low porosity sphere packings with radius distributions covering two decades. Highly correlated structures that model pore clogging and sedimentation can be generated. To achieve this, an adequate force field and proper termination strategies are necessary. By changing the algorithm parameters in a controlled way during the simulation, a complex protocol driven process can be established. The implementation of the algorithm targets large parallel computer platforms to perform simulations with more than 10 million spheres. This article includes an application of the algorithm used to generate a highly polydisperse sphere packing with roughly 106 spheres and radii from 1 to 100 μm. The continuum description of this packing is discretized at resolutions from 0.25 to 1 μm and investigated using geometric and statistical characterizations and results from Lattice-Boltzmann flow simulations. These resolution dependent results affirm that reliable, predictive calculations for multiscale porous microstructures depend on the availability of large realistic continuum models. To obtain such models the algorithm presented herein can be used as a starting point.

  14. Application of a force field algorithm for creating strongly correlated multiscale sphere packings

    Science.gov (United States)

    Zauner, Thomas

    2016-05-01

    This work presents a protocol driven force field algorithm, used to create multiscale correlated dense sphere packings. It was developed as part of a tool chain for the reconstruction of realistic multiscale porous rock samples. It overcomes limitations of Monte-Carlo or deposition based approaches, that are quite common in this field and were used previously. The new algorithm can create large, low porosity sphere packings with radius distributions covering two decades. Highly correlated structures that model pore clogging and sedimentation can be generated. To achieve this, an adequate force field and proper termination strategies are necessary. By changing the algorithm parameters in a controlled way during the simulation, a complex protocol driven process can be established. The implementation of the algorithm targets large parallel computer platforms to perform simulations with more than 10 million spheres. This article includes an application of the algorithm used to generate a highly polydisperse sphere packing with roughly 106 spheres and radii from 1 to  100 μm. The continuum description of this packing is discretized at resolutions from 0.25 to  1 μm and investigated using geometric and statistical characterizations and results from Lattice-Boltzmann flow simulations. These resolution dependent results affirm that reliable, predictive calculations for multiscale porous microstructures depend on the availability of large realistic continuum models. To obtain such models the algorithm presented herein can be used as a starting point.

  15. High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields

    CERN Document Server

    Pisanty, Emilio; Galloway, Benjamin R; Durfee, Charles G; Kapteyn, Henry C; Murnane, Margaret M; Ivanov, Misha

    2016-01-01

    The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and the parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation, elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond t...

  16. Nonlinear Force-Free Magnetic Field Modeling of the Solar Corona: A Critical Assessment

    Science.gov (United States)

    De Rosa, M. L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; McTiernan, J. M.; Régnier, S.; Thalmann, J.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.

    2008-12-01

    Nonlinear force-free field (NLFFF) modeling promises to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have so far failed to arrive at consistent solutions when applied to cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not been available). It is our view that the lack of robust results indicates an endemic problem with the NLFFF modeling process, and that this process will likely continue to fail until (1) more of the far-reaching, current-carrying connections are within the observational field of view, (2) the solution algorithms incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is found to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.

  17. Band structure and optical properties of amber studied by first principles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Zhi-Fan, E-mail: raozhifan@163.com [Analysis and Testing Center of Yunnan, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Rong-Feng [Analysis and Testing Center of Yunnan, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-03-01

    The band structure and density of states of amber is studied by the first principles calculation based on density of functional theory. The complex structure of amber has 214 atoms and the band gap is 5.0 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The optical properties' results show that the reflectivity is low, and the refractive index is 1.65 in visible light range. The highest absorption coefficient peak is at 172 nm and another higher peak is at 136 nm. These convince that the amber would have a pretty sheen and that amber is a good and suitable crystal for jewelry and ornaments.

  18. 13C Solid State Nuclear Magnetic Resonance and µ-Raman Spectroscopic Characterization of Sicilian Amber.

    Science.gov (United States)

    Barone, Germana; Capitani, Donatella; Mazzoleni, Paolo; Proietti, Noemi; Raneri, Simona; Longobardo, Ugo; Di Tullio, Valeria

    2016-08-01

    (13)C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and µ-Raman spectroscopy were applied to characterize Sicilian amber samples. The main goal of this work was to supply a complete study of simetite, highlighting discriminating criteria useful to distinguish Sicilian amber from fossil resins from other regions and laying the foundations for building a spectroscopic database of Sicilian amber. With this aim, a private collection of unrefined simetite samples and fossil resins from the Baltic region and Dominican Republic was analyzed. Overall, the obtained spectra permitted simetite to be distinguished from the other resins. In addition, principal component analysis (PCA) was applied to the spectroscopic data, allowing the clustering of simetite samples with respect to the Baltic and Dominican samples and to group the simetite samples in two sets, depending on their maturity. Finally, the analysis of loadings allowed for a better understanding of the spectral features that mainly influenced the discriminating characteristics of the investigated ambers.

  19. Analysis of PM Magnetization Field Effects on the Unbalanced Magnetic Forces due to Rotor Eccentricity in BLDC Motors

    Directory of Open Access Journals (Sweden)

    S. Mahdiuon-Rad

    2013-08-01

    Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.

  20. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  1. Radiation forces to electrons in laser fields explained as scattering for ponderomotive momentum transfers

    International Nuclear Information System (INIS)

    The ponderomotive momentum exchange in laser interaction with electrons is derived using a scattering model. This explains how the momentum is exchanged globally when an electron is emitted radially from a laser beam while the axial exchange of momentum is coupled with the momentum of the electromagnetic energy transferred from the laser field to the electron in the form of kinetic energy. Special attention is given to the forces acting on electrons in a laser beam and expelling the electrons laterally from the beam. 14 refs

  2. Using Lewin's force field analysis in implementing a nursing information system.

    Science.gov (United States)

    Bozak, Marilynn G

    2003-01-01

    Change is a regular occurrence in the healthcare environment. The computerization of nursing systems is one aspect of the changes taking place in the information revolution. As a result, nurses have widely varying attitudes toward computers and change in the workplace. To transition the nursing team effectively from one system to another, the nurse informaticist must be aware of the factors that encourage and those that impede the change. Strategies must be developed to assist nurses in moving forward with the transition. This article presents a theoretical discussion of how Lewin's Force Field Analysis Model could be applied in the practice setting to implement a nursing information system successfully. PMID:12802948

  3. Power in practice : a force field approach to power in natural resource management

    OpenAIRE

    Nuijten, M.C.M.

    2005-01-01

    Abstract: This article argues that in development studies, power is one of the most important, but at the same time most badly theorized topics. In most of the literature a `property-notion¿ of power is used assuming that people or groups have more or less fixed interests and levels of power. In this article a force field approach towards power is proposed that conceives of power as `relational¿ and the result of the working of multiple, intertwined institutions. Examples from agrarian commun...

  4. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    Science.gov (United States)

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  5. Computer simulations of interferometric imaging with the VLT interferometer and its AMBER instrument

    OpenAIRE

    Przygodda, F.; Bloecker, T.; Hofmann, K.-H; Weigelt, G.

    2001-01-01

    We present computer simulations of interferometric imaging with the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and the Astronomical MultiBEam Recombiner (AMBER) phase-closure instrument. These simulations include both the astrophysical modelling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon ...

  6. Force Field Analysis Suggests a Lowering of Diffusion Barriers in Atomic Manipulation Due to Presence of STM Tip

    Science.gov (United States)

    Emmrich, Matthias; Schneiderbauer, Maximilian; Huber, Ferdinand; Weymouth, Alfred J.; Okabayashi, Norio; Giessibl, Franz J.

    2015-04-01

    We study the physics of atomic manipulation of CO on a Cu(111) surface by combined scanning tunneling microscopy and atomic force microscopy at liquid helium temperatures. In atomic manipulation, an adsorbed atom or molecule is arranged on the surface using the interaction of the adsorbate with substrate and tip. While previous experiments are consistent with a linear superposition model of tip and substrate forces, we find that the force threshold depends on the force field of the tip. Here, we use carbon monoxide front atom identification (COFI) to characterize the tip's force field. Tips that show COFI profiles with an attractive center can manipulate CO in any direction while tips with a repulsive center can only manipulate in certain directions. The force thresholds are independent of bias voltage in a range from 1 to 10 mV and independent of temperature in a range of 4.5 to 7.5 K.

  7. Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip.

    Science.gov (United States)

    Emmrich, Matthias; Schneiderbauer, Maximilian; Huber, Ferdinand; Weymouth, Alfred J; Okabayashi, Norio; Giessibl, Franz J

    2015-04-10

    We study the physics of atomic manipulation of CO on a Cu(111) surface by combined scanning tunneling microscopy and atomic force microscopy at liquid helium temperatures. In atomic manipulation, an adsorbed atom or molecule is arranged on the surface using the interaction of the adsorbate with substrate and tip. While previous experiments are consistent with a linear superposition model of tip and substrate forces, we find that the force threshold depends on the force field of the tip. Here, we use carbon monoxide front atom identification (COFI) to characterize the tip's force field. Tips that show COFI profiles with an attractive center can manipulate CO in any direction while tips with a repulsive center can only manipulate in certain directions. The force thresholds are independent of bias voltage in a range from 1 to 10 mV and independent of temperature in a range of 4.5 to 7.5 K. PMID:25910137

  8. Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations.

    Science.gov (United States)

    Koch, Markus; Lunde, Lars-Kristian; Ernst, Michael; Knardahl, Stein; Veiersted, Kaj Bo

    2016-03-01

    This study aimed to test the validity and reliability of pressure-measurement insoles (medilogic® insoles) when measuring vertical ground reaction forces in field situations. Various weights were applied to and removed from the insoles in static mechanical tests. The force values measured simultaneously by the insoles and force plates were compared for 15 subjects simulating work activities. Reliability testing during the static mechanical tests yielded an average interclass correlation coefficient of 0.998. Static loads led to a creeping pattern of the output force signal. An individual load response could be observed for each insole. The average root mean square error between the insoles and force plates ranged from 6.6% to 17.7% in standing, walking, lifting and catching trials and was 142.3% in kneeling trials. The results show that the use of insoles may be an acceptable method for measuring vertical ground reaction forces in field studies, except for kneeling positions.

  9. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Science.gov (United States)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  10. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Weiwei Qi

    2014-01-01

    Full Text Available The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy.

  11. Terpenoid compositions and botanical origins of Late Cretaceous and Miocene amber from China.

    Directory of Open Access Journals (Sweden)

    Gongle Shi

    Full Text Available The terpenoid compositions of the Late Cretaceous Xixia amber from Central China and the middle Miocene Zhangpu amber from Southeast China were analyzed by gas chromatography-mass spectrometry (GC-MS to elucidate their botanical origins. The Xixia amber is characterized by sesquiterpenoids, abietane and phyllocladane type diterpenoids, but lacks phenolic abietanes and labdane derivatives. The molecular compositions indicate that the Xixia amber is most likely contributed by the conifer family Araucariaceae, which is today distributed primarily in the Southern Hemisphere, but widely occurred in the Northern Hemisphere during the Mesozoic according to paleobotanical evidence. The middle Miocene Zhangpu amber is characterized by amyrin and amyrone-based triterpenoids and cadalene-based sesquiterpenoids. It is considered derived from the tropical angiosperm family Dipterocarpaceae based on these compounds and the co-occurring fossil winged fruits of the family in Zhangpu. This provides new evidence for the occurrence of a dipterocarp forest in the middle Miocene of Southeast China. It is the first detailed biomarker study for amber from East Asia.

  12. Game theory model of traffic participants within amber time at signalized intersection.

    Science.gov (United States)

    Qi, Weiwei; Wen, Huiying; Fu, Chuanyun; Song, Mo

    2014-01-01

    The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy. PMID:25580108

  13. Structure and Stability of Magnetic Fields in Solar Active Region12192 Based on Nonlinear Force-Free Field Modeling

    CERN Document Server

    Inoue, S; Kusano, K

    2016-01-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region(AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains multiple-flux-tube system, {\\it e.g.}, a large flux tube, both of whose footpoints are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the later are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the oth...

  14. Mold Filling Behavior of Melts with Different Viscosity under Centrifugal Force Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Recently proposed mathematical model for mold filling processes under centrifugal force field conditions and the computer codes were first tested through the sample simulation of gravity mold filling process for a benchmark plate-casting, which were compared with quoted experimental observations. The model and the developed computer program were then applied to the numerical simulation of centrifugal field mold filling processes for a thin-section casting with a titanium alloy melt of assumed viscosity of 1.2 and 12.0 mm2/s, respectively. The computation result comparison shows that the flow behaviors of the filling melts are basically similar to each other although the less viscous melt tends to fill into the thin section casting cavity faster.

  15. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: A Chiral Macroscopic Force between Liquid of Butyl Alcohol and Copper Block

    Science.gov (United States)

    Hu, Yong-Hong; Liu, Zhong-Zhu

    2008-11-01

    A non-zero macroscopic chirality-dependent force between a copper block and a vessel of homochiral molecules (butyl alcohol) is calculated quantitatively with the central field approximation. The magnitude of the force is estimated with the published limits of the scalar and pseudo-scalar coupling constants.

  16. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    Directory of Open Access Journals (Sweden)

    John Ojur Dennis

    2015-07-01

    Full Text Available Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance. In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  17. Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields

    CERN Document Server

    Van Vleet, Mary J; Stone, Anthony J; Schmidt, J R

    2016-01-01

    Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones (${A}/{r^{12}}$) or Born-Mayer ($A\\exp(-Br)$) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional for...

  18. Pairwise energies for polypeptide coarse-grained models derived from atomic force fields

    Science.gov (United States)

    Betancourt, Marcos R.; Omovie, Sheyore J.

    2009-05-01

    The energy parametrization of geometrically simplified versions of polypeptides, better known as polypeptide or protein coarse-grained models, is obtained from molecular dynamics and statistical methods. Residue pairwise interactions are derived by performing atomic-level simulations in explicit water for all 210 pairs of amino acids, where the amino acids are modified to closer match their structure and charges in polypeptides. Radial density functions are computed from equilibrium simulations for each pair of residues, from which statistical energies are extracted using the Boltzmann inversion method. The resulting models are compared to similar potentials obtained by knowledge based methods and to hydrophobic scales, resulting in significant similarities in spite of the model simplicity. However, it was found that glutamine, asparagine, lysine, and arginine are more attractive to other residues than anticipated, in part, due to their amphiphilic nature. In addition, equally charged residues appear more repulsive than expected. Difficulties in the calculation of knowledge based potentials and hydrophobicity scale for these cases, as well as sensitivity of the force field to polarization effects are suspected to cause this discrepancy. It is also shown that the coarse-grained model can identify native structures in decoy databases nearly as well as more elaborate knowledge based methods, in spite of its resolution limitations. In a test conducted with several proteins and corresponding decoys, the coarse-grained potential was able to identify the native state structure but not the original atomic force field.

  19. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  20. General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution.

    Science.gov (United States)

    Wildman, Jack; Repiščák, Peter; Paterson, Martin J; Galbraith, Ian

    2016-08-01

    We describe a general scheme to obtain force-field parameters for classical molecular dynamics simulations of conjugated polymers. We identify a computationally inexpensive methodology for calculation of accurate intermonomer dihedral potentials and partial charges. Our findings indicate that the use of a two-step methodology of geometry optimization and single-point energy calculations using DFT methods produces potentials which compare favorably to high level theory calculation. We also report the effects of varying the conjugated backbone length and alkyl side-chain lengths on the dihedral profiles and partial charge distributions and determine the existence of converged lengths above which convergence is achieved in the force-field parameter sets. We thus determine which calculations are required for accurate parametrization and the scope of a given parameter set for variations to a given molecule. We perform simulations of long oligomers of dioctylfluorene and hexylthiophene in explicit solvent and find peristence lengths and end-length distributions consistent with experimental values. PMID:27397762

  1. Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field

    Directory of Open Access Journals (Sweden)

    S. Adams

    2010-12-01

    Full Text Available Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach or by molecular dynamics (MD simulations. For a wide range of Lithium oxides we could thus model ion transport revealing significant differences to an earlier geometric approach. Our novel BV-based force-field has also been applied to investigate a range of mixed conductors, focusing on cathode materials for lithium ion battery (LIB applications to promote a systematic design of LIB cathodes that combine high energy density with high power density. To demonstrate the versatility of the new BV-based force-field it is applied in exploring various strategies to enhance the power performance of safe low cost LIB materials (LiFePO4, LiVPO4F, LiFeSO4F, etc..

  2. Nonlinear gravitational self-force. I. Field outside a small body

    CERN Document Server

    Pound, Adam

    2012-01-01

    A small extended body moving through an external spacetime $g_{\\alpha\\beta}$ creates a metric perturbation $h_{\\alpha\\beta}$, which forces the body away from geodesic motion in $g_{\\alpha\\beta}$. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances $r$ from a representative worldline. Given only a specification of the body's multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buf...

  3. Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

    Directory of Open Access Journals (Sweden)

    Laura Cecilia Bichara

    2011-01-01

    Full Text Available We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT method with the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cm−1 together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM for the dimer were carried out to study the charge transference interactions of the compound.

  4. Limitations of force-free magnetic field extrapolations: revisiting basic assumptions

    CERN Document Server

    Peter, H; Chitta, L P; Cameron, R H

    2015-01-01

    Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma-beta is negligible. Despite the widespread use of this assumption observations, models, and theoretical considerations show that beta is of the order of a few percent to more than 10%, and thus not small. We investigate what consequences this has for the reliability of extrapolation results. We use basic concepts starting with the force and the energy balance to infer relations between plasma-beta and free magnetic energy, to study the direction of currents in the corona with respect to the magnetic field, and to estimate the errors in the free magnetic energy by neglecting effects of the plasma (beta<<1). A comparison with a 3D MHD model supports our basic considerations. If plasma-beta is of the order of the relative free energy (the ratio of the free magnetic energy to the total...

  5. Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development

    CERN Document Server

    Verstraelen, Toon; Heidar-Zadeh, Farnaz; Vanduyfhuys, Louis; Van Speybroeck, Veronique; Waroquier, Michel; Ayers, Paul W

    2016-01-01

    Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate "pro-density" is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g. obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-sca...

  6. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    Science.gov (United States)

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme. PMID:27057643

  7. Methodology of Parameterization of Molecular Mechanics Force Field From Quantum Chemistry Calculations using Genetic Algorithm: A case study of methanol

    CERN Document Server

    Li, Ying; Chan, Maria K Y; Sankaranarayanan, Subramanian; Rouxb, Benoît

    2016-01-01

    In molecular dynamics (MD) simulation, force field determines the capability of an individual model in capturing physical and chemistry properties. The method for generating proper parameters of the force field form is the key component for computational research in chemistry, biochemistry, and condensed-phase physics. Our study showed that the feasibility to predict experimental condensed phase properties (i.e., density and heat of vaporization) of methanol through problem specific force field from only quantum chemistry information. To acquire the satisfying parameter sets of the force field, the genetic algorithm (GA) is the main optimization method. For electrostatic potential energy, we optimized both the electrostatic parameters of methanol using the GA method, which leads to low deviations of between the quantum mechanics (QM) calculations and the GA optimized parameters. We optimized the van der Waals (vdW) parameters both using GA and guided GA methods by calibrating interaction energy of various met...

  8. Directional Dependence of Hydrogen Bonds: a Density-based Energy Decomposition Analysis and Its Implications on Force Field Development

    OpenAIRE

    Lu, Zhenyu; Zhou, Nengjie; Wu, Qin; Zhang, Yingkai

    2011-01-01

    One well-known shortcoming of widely-used biomolecular force fields is the description of the directional dependence of hydrogen bonding (HB). Here we aim to better understand the origin of this difficulty and thus provide some guidance for further force field development. Our theoretical approaches center on a novel density-based energy decomposition analysis (DEDA) method [J. Chem. Phys., 131, 164112 (2009)], in which the frozen density energy is variationally determined through constrained...

  9. Prediction of SAMPL3 Host-Guest Binding Affinities: Evaluating the Accuracy of Generalized Force-Fields

    OpenAIRE

    Muddana, Hari S.; Gilson, Michael K.

    2012-01-01

    We used the second-generation mining minima method (M2) to compute the binding affinities of the novel host-guest complexes in the SAMPL3 blind prediction challenge. The predictions were in poor agreement with experiment, and we conjectured that much of the error might derive from the force field, CHARMm with Vcharge charges. Repeating the calculations with other generalized force-fields led to no significant improvement, and we observed that the predicted affinities were highly sensitive to ...

  10. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    Science.gov (United States)

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  11. Temporal and spatial relationship of flare signatures and the force-free coronal magnetic field

    CERN Document Server

    Thalmann, Julia K; Su, Yang

    2016-01-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2 August 2011 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths, in order to pin down the intersection of previously reconnected flaring loops at the lower solar atmosphere. These locations are used to calculate field lines from 3D nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. With this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet's lower tip during an on-disk observed flare, as a few kilometers per second. Comparison to pos...

  12. On finding fields and self-force in a gauge appropriate to separable wave equations

    CERN Document Server

    Keidl, T S; Wiseman, A G; Friedman, John L.; Keidl, Tobias S.; Wiseman, Alan G.

    2006-01-01

    Gravitational waves from the inspiral of a stellar-size black hole to a supermassive black hole can be accurately approximated by a point particle moving in a Kerr background. This paper presents progress on finding the electromagnetic and gravitational field of a point particle in a black-hole spacetime and on computing the self-force in a ``radiation gauge.'' The gauge is chosen to allow one to compute the perturbed metric from a gauge-invariant component $\\psi_0$ (or $\\psi_4$) of the Weyl tensor and follows earlier work by Chrzanowski, and Cohen and Kegeles (we correct an minor, but propagating, error in the Cohen-Kegeles formalism). The electromagnetic field tensor and vector potential of a static point charge and the perturbed gravitational field of a static point mass in a Schwarzschild geometry are found, surprisingly, to have closed-form expressions. The gravitational field of a static point charge in the Schwarzschild background must have a strut, but $\\psi_0$ and $\\psi_4$ are smooth except at the pa...

  13. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Science.gov (United States)

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  14. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    Science.gov (United States)

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  15. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Agustín Leobardo Herrera-May

    2016-08-01

    Full Text Available Microelectromechanical systems (MEMS resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases.

  16. Temporal and Spatial Relationship of Flare Signatures and the Force-free Coronal Magnetic Field

    Science.gov (United States)

    Thalmann, J. K.; Veronig, A.; Su, Y.

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  17. Investigation of Force-Freeness of Solar Emerging Magnetic Field via Application of the Virial Theorem to MHD Simulations

    OpenAIRE

    Kang, Jihye; Magara, Tetsuya

    2014-01-01

    Force-freeness of a solar magnetic field is a key to reconstructing invisible coronal magnetic structure of an emerging flux region on the Sun where active phenomena such as flares and coronal mass ejections frequently occur. We have performed magnetohydrodynamic (MHD) simulations which are adjusted to investigate force-freeness of an emerging magnetic field by using the virial theorem. Our focus is on how the force-free range of an emerging flux region develops and how it depends on the twis...

  18. Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling

    Science.gov (United States)

    Reynolds, Scott D.; Coblentz, David D.; Hillis, Richard R.

    2002-07-01

    The tectonic forces controlling the present-day regional intraplate stress field in continental Australia have been evaluated through a finite element analysis of the intraplate stresses in the Indo-Australian plate (IAP). Constraint for the modeling is provided by an observed regional stress field based on observations in 12 stress provinces. A weighted ``basis set'' method has been employed to provide an efficient means to evaluate a very large number of tectonic force combinations and to make a quantitative assessment of the fit between the observed and predicted stress fields. Our modeling results indicate that the major features of the regional stress field in continental Australia can be explained in terms of a geologically plausible array of tectonic forces. While the results continue to substantiate that modeling of the Australian intraplate stress field is inherently nonunique, we are nevertheless able to draw a number of fundamental conclusions about the tectonic settings along the principal plate boundary segments including the following: (1) The Himalayan and New Guinea boundaries exert a compressional force on the IAP. (2) Fitting the stress field in the Bowen Basin requires compressional boundary forces along the Solomon and New Hebrides subduction zones directed toward the interior of the IAP. (3) East-west compression in eastern Australia requires a small compressional force along the Tonga-Kermadec subduction zone. (4) Fitting the stress field in southeastern Australia requires compressional forces along the New Zealand, Puysegur Trench, and Macquarie Ridge boundary segments. (5) Significant tensional slab-pull forces exist only along the Java subduction zone.

  19. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Science.gov (United States)

    Zhang, Longcai; Wang, Suyu; Wang, Jiasu; Zheng, Jun

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  20. STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S. [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen Germany (Germany); Hayashi, K.; Kusano, K., E-mail: inoue@mps.mpg.de [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-20

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  1. Investigation of Force-Freeness of Solar Emerging Magnetic Field via Application of the Virial Theorem to MHD Simulations

    CERN Document Server

    Kang, Jihye

    2014-01-01

    Force-freeness of a solar magnetic field is a key to reconstructing invisible coronal magnetic structure of an emerging flux region on the Sun where active phenomena such as flares and coronal mass ejections frequently occur. We have performed magnetohydrodynamic (MHD) simulations which are adjusted to investigate force-freeness of an emerging magnetic field by using the virial theorem. Our focus is on how the force-free range of an emerging flux region develops and how it depends on the twist of a pre-emerged magnetic field. As an emerging flux region evolves, the upper limit of the force-free range continuously increases while the lower limit is asymptotically reduced to the order of a photospheric pressure scale height above the solar surface. As the twist becomes small the lower limit increases and then seems to be saturated. We also discuss the applicability of the virial theorem to an evolving magnetic structure on the Sun.

  2. Vibrational mode assignment of finite temperature infrared spectra using the AMOEBA polarizable force field.

    Science.gov (United States)

    Thaunay, Florian; Dognon, Jean-Pierre; Ohanessian, Gilles; Clavaguéra, Carine

    2015-10-21

    The calculation of infrared spectra by molecular dynamics simulations based on the AMOEBA polarizable force field has recently been demonstrated [Semrouni et al., J. Chem. Theory Comput., 2014, 10, 3190]. While this approach allows access to temperature and anharmonicity effects, band assignment requires additional tools, which we describe in this paper. The Driven Molecular Dynamics approach, originally developed by Bowman, Kaledin et al. [Bowman et al. J. Chem. Phys., 2003, 119, 646, Kaledin et al. J. Chem. Phys., 2004, 121, 5646] has been adapted and associated with AMOEBA. Its advantages and limitations are described. The IR spectrum of the Ac-Phe-Ala-NH2 model peptide is analyzed in detail. In addition to differentiation of conformations by reproducing frequency shifts due to non-covalent interactions, DMD allows visualizing the temperature-dependent vibrational modes.

  3. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.;

    2004-01-01

    of the (gg, gt and tg) rotamers of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol. respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error...

  4. Digital control of force microscope cantilevers using a field programmable gate array

    CERN Document Server

    Jacky, Jonathan P; Ettus, Matthew; Sidles, John A

    2008-01-01

    This report describes a cantilever controller for magnetic resonance force microscopy (MRFM) based on a field programmable gate array (FPGA), along with the hardware and software used to integrate the controller into an experiment. The controller is assembled from a low-cost commercially available software defined radio (SDR) device and libraries of open-source software. The controller includes a digital filter comprising two cascaded second-order sections ("biquads"), which together can implement transfer functions for optimal cantilever controllers. An appendix in this report shows how to calculate filter coefficients for an optimal controller from measured cantilever characteristics. The controller also includes an input multiplexer and adder used in calibration protocols. Filter coefficients and multiplexer settings can be set and adjusted by control software while an experiment is running. The input is sampled at 64 MHz; the sampling frequency in the filters can be divided down under software control to ...

  5. Transformation of the dihedral corrective map for D-amino residues using the CHARMM force field

    Science.gov (United States)

    Turpin, Eleanor R.; Hirst, Jonathan D.

    2012-08-01

    Molecular dynamics simulations in explicit solvent were performed on two peptides and two proteins containing D-amino residues, using three implementations of the CHARMM22 all-atom force field: (a) with the standard CMAP corrective term, (b) neglecting the correction entirely and (c) using a transformation of the CMAP grid (φ, ψ) → (-φ, -ψ) for the D-amino residues. The transformed map led to sampling of conformations which are closest to the X-ray crystallographic structures for D-amino residues and the standard CMAP correction destabilises D-amino secondary structure. Thus, the transformation of the CMAP term is needed to simulate proteins and peptides containing D-amino residues correctly.

  6. Force-Field Derivation and Atomistic Simulation of HMX/Graphite Interface and Polycrystal Systems

    Institute of Scientific and Technical Information of China (English)

    龙瑶; 刘永刚; 聂福德; 陈军

    2012-01-01

    Interface is the key issue to understand the performance of composite materials. In this work, we study the interface between octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and graphite, try to find out its contribution to mixture explosives. The work starts from the force-field derivation. We get ab initio based pair potentials across the interface, and then use them to study the interface structural and mechanical properties. A series of large scale molecular dynamics simulations are performed. The structure evolution, energy variation and elastic/plastic transformation of interface and polycrystal systems are calculated. The desensitizing mechanism of graphite to HMX is discussed.

  7. Immersion mode ice nucleation measurements with the new Portable Immersion Mode Cooling chAmber (PIMCA)

    Science.gov (United States)

    Kohn, Monika; Lohmann, Ulrike; Welti, André; Kanji, Zamin A.

    2016-05-01

    The new Portable Immersion Mode Cooling chAmber (PIMCA) has been developed for online immersion freezing of single-immersed aerosol particles. PIMCA is a vertical extension of the established Portable Ice Nucleation Chamber (PINC). PIMCA immerses aerosol particles into cloud droplets before they enter PINC. Immersion freezing experiments on cloud droplets with a radius of 5-7 μm at a prescribed supercooled temperature (T) and water saturation can be conducted, while other ice nucleation mechanisms (deposition, condensation, and contact mode) are excluded. Validation experiments on reference aerosol (kaolinite, ammonium sulfate, and ammonium nitrate) showed good agreement with theory and literature. The PIMCA-PINC setup was tested in the field during the Zurich AMBient Immersion freezing Study (ZAMBIS) in spring 2014 in Zurich, Switzerland. Significant concentrations of submicron ambient aerosol triggering immersion freezing at T > 236 K were rare. The mean frozen cloud droplet number concentration was estimated to be 7.22·105 L-1 for T ice nucleating particle (INP) concentration based on measured total aerosol larger than 0.5 μm and the parameterization by DeMott et al. (2010) at T = 238 K is INPD10=54 ± 39 L-1. This is a lower limit as supermicron particles were not sampled with PIMCA-PINC during ZAMBIS.

  8. A Study of Unsteady Rotating Hydromagnetic Free and Forced Convection in a Channel Subject to Forced Oscillation under an Oblique Magnetic Field

    OpenAIRE

    Ghosh, S. K.; . Dr. O. Anwar Beg; NARAHARI, M.

    2013-01-01

    A theoretical analysis is presented for transient, fully-developed magnetohydrodynamic free and forced convection flow of a viscous, incompressible, Newtonian fluid in a rotating horizontal parallel-plate channel subjected to a uniform strength, static, oblique magnetic field acting at an angle  to the positive direction of the axis of rotation. A constant pressure gradient is imposed along the longitudinal axis of the channel. Magnetic Reynolds number is sufficiently small to negate the eff...

  9. Deuterium isotopic exchangeability of resin and amber at low thermal stress under hydrous conditions

    Science.gov (United States)

    Gonzalez, G.; Tappert, R.; Wolfe, A. P.; Muehlenbachs, K.

    2012-04-01

    Hydrous deuterium-exchange experiments have shown that a significant fraction of the original D/H composition of bulk kerogens, bitumens and expelled oils may participate in isotopic exchange reactions during burial diagenesis. However, it is unknown to what extent plant-derived secondary metabolites, namely resins and their fossil counterpart amber, exchange hydrogen isotopes following their biosynthesis. This situation hinders the application of resin D/H measurements in paleoenvironmental reconstruction. Here, we assess explicitly hydrogen exchange in resins and ambers using a series of immersion experiments in deuterated (D-enriched) waters over a period of several months at several temperatures. We are especially interested in assessing whether significant H-isotopic exchange occurs between resins and meteoric waters during early thermal maturation and polymerization. At 90°C, equivalent to ~3km of burial in most diagenetic regimes, modern conifer and angiosperm resins have an average post-metabolic H exchange of 4.6%, compared to only 1.1% for mature, polymerized ambers. At 55°C the degree of exchange is considerably lower: 1.9% for resins and 0.6% for ambers. These results indicate that most D/H isotopic exchange occurs prior to polymerization reactions, thereby confirming that D/H measurements from amber constitute a potentially sensitive proxy for environmental change.

  10. Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber

    Science.gov (United States)

    Dunlop, Jason A.; Kontschán, Jenő; Zwanzig, Michael

    2013-04-01

    Fossil mesostigmatid mites are extremely rare. Inclusions assignable to the tortoise mites (Mesostigmata, Uropodina) are described here for the first time from Eocene (ca. 44-49 Ma) Baltic amber. This is the oldest record of Uropodina and documents the first unequivocal amber examples potentially assignable to the extant genus Uroobovella Berlese, 1903 (Uropodoidea: Urodinychidae). Further mites in the same amber pieces are tentatively assigned to Microgynioidea (Microgyniina) and Ascidae (Gamasina), both potentially representing the oldest records of their respective superfamily and family groups. This new material also preserves behavioural ecology in the form of phoretic deutonymphs attached to their carriers via a characteristic anal pedicel. These deutonymphs in amber are intimately associated with longhorn beetles (Coleoptera: Cerambycidae), probably belonging to the extinct species Nothorhina granulicollis Zang, 1905. Modern uropodines have been recorded phoretic on species belonging to several beetle families, including records of living Uroobovella spp. occurring on longhorn beetles. Through these amber inclusions, a uropodine-cerambycid association can now be dated back to at least the Eocene.

  11. Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields

    CERN Document Server

    Bukusoglu, Ibrahim; Kiraz, Alper; Kurt, Adnan

    2007-01-01

    Using optical tweezers and a haptic device, microspheres having diameters ranging from 3 to 4 um (floating in a fluid solution) are manipulated in order to form patterns of coupled optical microresonators by assembling the spheres via chemical binding. For this purpose, biotin-coated microspheres trapped by a laser beam are steered and chemically attached to an immobilized streptavidin-coated sphere (i.e. anchor sphere) one by one using an XYZ piezo scanner controlled by a haptic device. The positions of all spheres in the scene are detected using a CCD camera and a collision-free path for each manipulated sphere is generated using the potential field approach. The forces acting on the manipulated particle due to the viscosity of the fluid and the artificial potential field are scaled and displayed to the user through the haptic device for better guidance and control during steering. In addition, a virtual fixture is implemented such that the desired angle of approach and strength are achieved during the bind...

  12. Acoustic Radiation Force on a Finite-Sized Particle due to an Acoustic Field in a Viscous Compressible Fluid

    Science.gov (United States)

    Annamalai, Subramanian; Parmar, Manoj; Balachandar, S.

    2013-11-01

    Particles when subjected to acoustic waves experience a time-averaged second-order force known as the acoustic radiation force, which is of prime importance in the fields of microfluidics and acoustic levitation. Here, the acoustic radiation force on a rigid spherical particle in a viscous compressible medium due to progressive and standing waves is considered. The relevant length scales include: particle radius (a), acoustic wavelength (λ) and viscous penetration depth (δ). While a / λ and a / δ are arbitrary, δ acoustic radiation force. Subsequently, the monopole and dipole strengths are represented in terms of the particle surface and volume averages of the incoming velocity. This generalization allows one to evaluate the radiation force for an incoming wave of any functional form. However acoustic streaming effects are neglected.

  13. The watt-balance operation: magnetic force and induced electric potential on a conductor in a magnetic field

    OpenAIRE

    Sasso, C. P.; Massa, E; Mana, G.

    2012-01-01

    In a watt balance experiment, separate measurements of magnetic force and induced electric potential in a conductor in a magnetic field allow for a virtual comparison between mechanical and electrical powers, which leads to and an accurate measurement of the Planck constant. In this paper, the macroscopic equations for the magnetic force and the induced electric potential are re-examined from a microscopic point of view and the corrective terms due to a non-uniform density of the conduction e...

  14. Trace contraband detection field-test by the south Texas specialized crimes and narcotics task force.

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, David W.; Shannon, Gary W.

    2006-04-01

    This report describes the collaboration between the South Texas Specialized Crimes and Narcotics Task Force (STSCNTF) and Sandia National Laboratories (SNL) in a field test that provided prototype hand-held trace detection technology for use in counter-drug operations. The National Institute of Justice (NIJ)/National Law Enforcement and Corrections Technology Center (NLECTC)/Border Research and Technology Center (BRTC) was contacted by STSCNTF for assistance in obtaining cutting-edge technology. The BRTC created a pilot project for Sandia National Laboratories (SNL) and the STSCNTF for the use of SNLs Hound, a hand-held sample collection and preconcentration system that, when combined with a commercial chemical detector, can be used for the trace detection of illicit drugs and explosives. The STSCNTF operates in an area of high narcotics trafficking where methods of concealment make the detection of narcotics challenging. Sandia National Laboratories (SNL) Contraband Detection Department personnel provided the Hound system hardware and operational training. The Hound system combines the GE VaporTracer2, a hand-held commercial chemical detector, with an SNL-developed sample collection and preconcentration system. The South Texas Task force reported a variety of successes, including identification of a major shipment of methamphetamines, the discovery of hidden compartments in vehicles that contained illegal drugs and currency used in drug deals, and the identification of a suspect in a nightclub shooting. The main advantage of the hand-held trace detection unit is its ability to quickly identify the type of chemical (drugs or explosives) without a long lag time for laboratory analysis, which is the most common analysis method for current law enforcement procedures.

  15. A force field evaluation tool for telephone service in ambulatory health care.

    Science.gov (United States)

    da Silva, V L; Steinberg, B

    1991-10-01

    The tool presented here is useful in analyzing the constraints and capabilities of a health care telephone service. It also provides a systematic method for assessing systems problems. As part of our analysis, we recommended that the manager implement the following steps. First, the manager determines whether the driving force on the unit is continuity of care by an individual provider or consistency of response. This focus directly affects how the unit's telephone service can be best organized (i.e., decentralized or centralized) and clarifies the factors most needed for success. For example, to function effectively and efficiently, a centralized phone service needs strong provider-endorsed protocols. Second, the manager should carefully examine neutral constraint factors to determine methods to transform these constraints into capabilities, such as planning for extra staff or office hours (or both) during influenza season. Planning for extra hours or staff depends largely on whether budget and resource planning is done in advance and whether value is placed on customer access and satisfaction during peak demand periods. The manager must next determine whether the service delivery format (centralized or decentralized) is consistent with the force field analysis findings. If the findings are not consistent, can the analysis present a compelling argument for using the opposite approach? Finally, the manager must create a plan of action for minimizing the constraints revealed and maximizing existing capabilities to achieve the overall goal of excellent phone service. The process of analysis and creating a plan of action is an excellent opportunity to involve staff, providers, and administrators in efforts to achieve better health care telephone service for all customers. PMID:10112997

  16. Trace Contraband Detection Field-Test by the South Texas Specialized Crimes and Narcotics Task Force

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Contraband Detection Dept.; Shannon, Gary W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Contraband Detection Dept.

    2006-04-01

    This report describes the collaboration between the South Texas Specialized Crimes and Narcotics Task Force (STSCNTF) and Sandia National Laboratories (SNL) in a field test that provided prototype hand-held trace detection technology for use in counter-drug operations. The National Institute of Justice (NIJ)/National Law Enforcement and Corrections Technology Center (NLECTC)/Border Research and Technology Center (BRTC) was contacted by STSCNTF for assistance in obtaining cutting-edge technology. The BRTC created a pilot project for Sandia National Laboratories (SNL) and the STSCNTF for the use of SNL’s Hound, a hand-held sample collection and preconcentration system that, when combined with a commercial chemical detector, can be used for the trace detection of illicit drugs and explosives. The STSCNTF operates in an area of high narcotics trafficking where methods of concealment make the detection of narcotics challenging. Sandia National Laboratories’ (SNL) Contraband Detection Department personnel provided the Hound system hardware and operational training. The Hound system combines the GE VaporTracer2, a hand-held commercial chemical detector, with an SNL-developed sample collection and preconcentration system. The South Texas Task force reported a variety of successes, including identification of a major shipment of methamphetamines, the discovery of hidden compartments in vehicles that contained illegal drugs and currency used in drug deals, and the identification of a suspect in a nightclub shooting. The main advantage of the hand-held trace detection unit is its ability to quickly identify the type of chemical (drugs or explosives) without a long lag time for laboratory analysis, which is the most common analysis method for current law enforcement procedures.

  17. Coordinated AMBER and MIDI observations of the Mira variable RR Aql

    CERN Document Server

    Karovicova, Iva; Boboltz, David A; Scholz, Michael

    2008-01-01

    We have used near- and mid-infrared interferometry to investigate the pulsating atmosphere and the circumstellar environment of the Mira variable RR Aql. Observations were taken with the VLTI/AMBER (near infrared) and the VLTI/MIDI (mid infrared) instruments. We have obtained a total of 15 MIDI epochs between Apr 9, 2004 and Jul 28, 2007 covering 4 pulsation cycles and one AMBER epoch on Sep 9, 2006 at phase 2.82. This work is also part of an ongoing project of joint VLTI and VLBA observations to study the connection between stellar pulsation and the mass loss process. Here we present a comparison of the AMBER visibility data to a simple uniform disk model as well as to predictions by recent self-excited dynamic model atmospheres. The best fitting photospheric angular diameter of the model atmosphere at phase 2.82 is 9.9 +/- 2.4 mas.

  18. The mean electro-motive force, current- and cross-helicity under the influence of rotation, magnetic field and shear

    CERN Document Server

    Pipin, V V

    2006-01-01

    The expressions for the mean electromotive force (MEMF) is derived for the case of the stratified magnetohydrodynamical turbulence that is subjected to the influence of rotation, large-scale magnetic field (LSMF) and shear. The derivations were made in the framework of mean-field magnetohydrodynamics. The effect of turbulent flows and fluctuating magnetic fields on the evolution of the large-scale fields is computed within the so-called "minimal tau-approximation" (MTA). The influence of the large-scale fields such as rotation, LSMF and uniform shear (differential rotation) on the different parts of the MEMF (such as $\\alpha$ - effect, turbulent diffusion, turbulent transport and etc.) is explicitly defined via factors describing the efficiency of rotational and LSMF's influence on the turbulent flows. Whenever it possible we make comparison with results obtained earlier within the second order correlation approximation (SOCA). In computing the mean electro-motive force we take into account the influence of t...

  19. Classical force field for hydrofluorocarbon molecular simulations. Application to the study of gas solubility in poly(vinylidene fluoride).

    Science.gov (United States)

    Lachet, V; Teuler, J-M; Rousseau, B

    2015-01-01

    A classical all-atoms force field for molecular simulations of hydrofluorocarbons (HFCs) has been developed. Lennard-Jones force centers plus point charges are used to represent dispersion-repulsion and electrostatic interactions. Parametrization of this force field has been performed iteratively using three target properties of pentafluorobutane: the quantum energy of an isolated molecule, the dielectric constant in the liquid phase, and the compressed liquid density. The accuracy and transferability of this new force field has been demonstrated through the simulation of different thermophysical properties of several fluorinated compounds, showing significant improvements compared to existing models. This new force field has been applied to study solubilities of several gases in poly(vinylidene fluoride) (PVDF) above the melting temperature of this polymer. The solubility of CH4, CO2, H2S, H2, N2, O2, and H2O at infinite dilution has been computed using test particle insertions in the course of a NpT hybrid Monte Carlo simulation. For CH4, CO2, and their mixtures, some calculations beyond the Henry regime have also been performed using hybrid Monte Carlo simulations in the osmotic ensemble, allowing both swelling and solubility determination. An ideal mixing behavior is observed, with identical solubility coefficients in the mixtures and in pure gas systems.

  20. Accurate AB Initio Calculation of Anharmonic Force Fields and Spectroscopic Constants of Small Polyatomic Molecules

    Science.gov (United States)

    Martin, Jan M. L.

    The quartic force fields of a number of small polyatomic molecules (specifically, rm H _2O, NH_2, NH_3, CH_4, BH_3, BeH_2, H_2CO, N_2O, CO_2, CS_2, OCS, H_2S, FNO, ClNO, and H_2CS) have been computed ab initio using large basis sets and augmented coupled cluster methods. It has been established throughout that harmonic and fundamental frequencies can consistently be reproduced to within about 10 cm^{ -1} of experimental using spdf basis sets, except in such inherently problematic cases as the umbrella motion in NH_3; such problems are solved by recomputing the harmonic frequencies with an spdf g basis set. Coupled cluster frequencies using small basis sets of spd quality agree surprisingly well with experiment (mean absolute error of 26 cm^ {-1}), but bond distances are generally seriously overestimated. Using spdf basis sets, they are consistently overestimated by 0.002 and 0.006-7 A for single and multiple bonds, respectively; for spdf g basis sets this drops to 0.001 and 0.003-4 A, respectively. Geometries and harmonic frequencies for highly polar fluorine compounds such as HF and FNO are qualitatively wrong unless special anion functions are added to the fluorine basis set. Anharmonicity, rovibrational coupling, and centrifugal distortion constants are consistently predicted well; the anharmonic portions of the computed force fields are probably more reliable than their experimental counterparts in many cases. Remaining errors in the computed geometries and harmonic frequencies are shown to be almost entirely due to a combination of core correlation and residual deficiencies in the electron correlation treatment. A 3-term correction for remaining basis set incompleteness to computed total atomization energies is proposed by the author, and is shown to result in mean absolute errors of as little as 0.5 kcal/mol for spdf g basis sets. Example applications on rm HCO^+, HOC^+, B_2C, BCN, and BNC testify to the predictive power of the methods used in this work.

  1. Molecular Dynamics Simulation of Cross-Linked Epoxy Polymers: the Effect of Force Field on the Estimation of Properties

    Directory of Open Access Journals (Sweden)

    B. Arab

    2013-03-01

    Full Text Available In this paper, the molecular dynamics method was used to calculate the physical and mechanical properties of the cross-linked epoxy polymer composed of diglycidyl ether of bisphenol-A (DGEBA as resin and diethylenetriamine (DETA as curing agent. Calculation of the properties was performed using the constant-strain (static approach. A series of independent simulations were carried out based on four widely used force fields; COMPASS, PCFF, UFF and Dreiding. Proper comparisons between the results and also with experimental observations were made to find the most suitable force field for molecular dynamics simulation of polymer materials.

  2. Optical Force on Two-level Atoms by Few-cycle Pulsed Gaussian Laser field beyond the Rotating Wave Approximation

    OpenAIRE

    Kumar, Parvendra; Sarma, Amarendra K.

    2011-01-01

    We report a study on light force on a beam of neutral two-level atoms superimposed upon a few-cycle pulsed Gaussian laser field under both resonant and off-resonant condition. The phenomena of focusing, defocusing and steering of the neutral atoms in the laser field is analysed by solving the optical Bloch equation beyond the rotating wave approximation and the force equation self-consistently .We find that two-level atoms in an atomic beam could be focused and defocused for large, positively...

  3. Ancient Ephemeroptera-Collembola symbiosis fossilized in amber predicts contemporary phoretic associations.

    Directory of Open Access Journals (Sweden)

    David Penney

    Full Text Available X-ray computed tomography is used to identify a unique example of fossilized phoresy in 16 million-year-old Miocene Dominican amber involving a springtail being transported by a mayfly. It represents the first evidence (fossil or extant of phoresy in adult Ephemeroptera and only the second record in Collembola (the first is also preserved in amber. This is the first record of Collembola using winged insects for dispersal. This fossil predicts the occurrence of similar behaviour in living springtails and helps explain the global distribution of Collembola today.

  4. Ancient Ephemeroptera-Collembola symbiosis fossilized in amber predicts contemporary phoretic associations.

    Science.gov (United States)

    Penney, David; McNeil, Andrew; Green, David I; Bradley, Robert S; Jepson, James E; Withers, Philip J; Preziosi, Richard F

    2012-01-01

    X-ray computed tomography is used to identify a unique example of fossilized phoresy in 16 million-year-old Miocene Dominican amber involving a springtail being transported by a mayfly. It represents the first evidence (fossil or extant) of phoresy in adult Ephemeroptera and only the second record in Collembola (the first is also preserved in amber). This is the first record of Collembola using winged insects for dispersal. This fossil predicts the occurrence of similar behaviour in living springtails and helps explain the global distribution of Collembola today. PMID:23082186

  5. Direct constraint on the distance of Gamma2 Velorum from AMBER/VLTI observations.

    OpenAIRE

    Millour, F.; G. Petrov, R.; Chesneau, O.; Bonneau, D.; Dessart, L.; Béchet, Clémentine; Tallon-Bosc, Isabelle; Tallon, Michel; Thiébaut, Éric; Thiébaut, Eric; Vakili, F.; Malbet, F.; Mourard, D.; Zins, G.; Roussel, A.

    2007-01-01

    In this work, we present the first AMBER observations, of the Wolf-Rayet and O (WR+O) star binary system y2 Velorum. The AMBER instrument was used with the telescopes UT2, UT3, and UT4 on baselines ranging from 46m to 85m. It delivered spectrally dispersed visibilities, as well as differential and closure phases, with a resolution R = 1500 in the spectral band 1.95-2.17 micron. We interpret these data in the context of a binary system with unresolved components, neglecting in a first approxim...

  6. A New Species of Dactylolabis (Eobothrophorus) from Baltic Amber (Diptera:Limoniidae)

    Institute of Scientific and Technical Information of China (English)

    Wies(l)aw KRZEMINSKI; Iwona KANIA; Ewa KRZEMINSKA

    2010-01-01

    A new species,Dactylolabis (Eobothrophorus) hoffeinsorum sp.nov.from the Baltic amber is described,based on one male.The distinctive characters are the shape of the discal cell in the wing and the shape of the process on tergite Ⅸ.The description of Dactylolabis (Eobothrophorus) lauryni Podenas,2003 is amended,based on an additional specimen.With the new species added herein,the number of species of this subgenus totals four.The wing venation,antennae,and tergai processes of all four species of the subgenus described from the Baltic amber are compared.

  7. First Record of Anisoptera (Insecta: Odonata) from mid-Cretaceous Burmese Amber.

    Science.gov (United States)

    Schädel, Mario; Bechly, Günter

    2016-01-01

    The fossil dragonfly Burmalindenia imperfecta gen. et sp. nov. is described from mid-Cretaceous Burmese amber as the first record of the odonate suborder Anisoptera for this locality and one of the few records from amber in general. The inclusion comprises two fragments of the two hind wings of a dragonfly. The fossil can be attributed to a new genus and species of the family Gomphidae, presumably in the subfamily Lindeniinae, and features a strange teratological phenomenon in its wing venation. PMID:27394756

  8. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  9. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization

    Energy Technology Data Exchange (ETDEWEB)

    Mazack, Michael J. M., E-mail: mazack@mazack.org [Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455-0431 (United States); Gao, Jiali, E-mail: gao@jialigao.org [Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455-0431 (United States); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun, Jilin Province 130028 (China)

    2014-05-28

    The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.

  10. Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules

    International Nuclear Information System (INIS)

    This paper reports (a) improved values for low-lying vibration intervals of H+3, H2D+, D2H+, and D+3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H+3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H+3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H+3, H2D+, D2H+, and D+3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm-1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm-1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H2D+

  11. Enniatin B and valinomycin as ion carriers: an empirical force field analysis.

    Science.gov (United States)

    Lifson, S; Felder, C E; Shanzer, A

    1984-12-01

    The alkali-ion binding properties of two natural depsipeptide ion carriers, enniatin B (EnB) and valinomycin (VM), are examined and compared by the empirical force field method. While VM has been shown to bind preferentially K+, Rb+, and Cs+ over Na+ in most solvents, EnB is considerably less specific. We find that EnB forms two kinds of complexes, internal and external. In internal complexes, the ion binds to all six carbonyl oxygens, while in external ones, only three oxygens, preferentially those of the D-hydroxy-isovaleryl residues, are bound. The size of the internal cavity is best suited for Na+, while K+ and Rb+ squeeze in asymmetrically by distorting the molecule, and Cs+ not at all. External binding is much less specific. Since internal complexes possess much higher strain energies than external ones, the latter may be at least as stable as the former, even in fairly non-polar solvents. VM is calculated to bind only internally, and with much less strain energy than EnB. The size of its internal cavity is well suited for binding the ions K+, Rb+, and Cs+, but is too big for Na+. The difference between the binding energies of Na+ and K+ is much smaller than that between the corresponding hydration enthalpies, thus explaining the binding preference for the latter ion. PMID:6400917

  12. A fully ab initio quartic force field of spectroscopic quality for $SO_3$

    CERN Document Server

    Martin, J M L

    1999-01-01

    The quartic force field of SO$_3$ was computed fully ab initio using coupled cluster (CCSD(T)) methods and basis sets of up to $spdfgh$ quality. The effect of inner-shell correlation was taken into account. The addition of tight $d$ functions is found to be essential for accurate geometries and harmonic frequencies. The equilibrium geometry and vibrational fundamentals are reproduced to within 0.0003 Å and (on average) 1.15 cm^{-1}, respectively. We recommend the following revised values for the harmonic frequencies: $\\omega_1 = 1082.7, \\omega_2 = 502.6, \\omega_3 = 1415.4, \\omega_4 = 534.0 cm^{-1}$. In addition, we have shown that the addition of inner polarization functions to second-row elements is highly desirable even with more approximate methods like B3LYP, and greatly improves the quality of computed geometries and harmonic frequencies of second-row compounds at negligible extra computational cost. For larger such molecules, the B3LYP/VTZ+1 level of theory should be a very good compromise between accu...

  13. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  14. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  15. Current helicity and electromotive force of magnetoconvection influenced by helical background fields

    CERN Document Server

    Ruediger, Guenther

    2016-01-01

    Motivated by the empirical finding that the known hemispheric rules for the current helicity at the solar surface are not strict, the excitation of small-scale current helicity by the influence of a large-scale helical magnetic background fields on nonrotating magnetoconvection is demonstrated. It is shown within a quasilinear analytic theory of driven turbulence and by nonlinear simulations of magnetoconvection that the resulting small-scale current helicity has the same sign as the large-scale current helicity while the ratio of both pseudo-scalars is of the order of the magnetic Reynolds number of the convection. The same models do not provide finite values of the small-scale kinetic helicity. On the other hand, a turbulence-induced electromotive force is produced including the diamagnetic pumping term as well as the eddy diffusivity but no alpha effect. It is thus argued that the relations by Pouquet & Patterson (1978) and Keinigs (1983) for the simultaneous existence of small-scale current helicity a...

  16. Ab initio parameterization of YFF1, a universal force field for drug-design applications.

    Science.gov (United States)

    Yakovenko, Olexandr Ya; Li, Yvonne Y; Oliferenko, Alexander A; Vashchenko, Ganna M; Bdzhola, Volodymyr G; Jones, Steven J M

    2012-02-01

    The YFF1 is a new universal molecular mechanic force field designed for drug discovery purposes. The electrostatic part of YFF1 has already been parameterized to reproduce ab initio calculated dipole and quadrupole moments. Now we report a parameterization of the van der Waals interactions (vdW) for the same atom types that were previously defined. The 6-12 Lennard-Jones potential terms were parameterized against homodimerization energies calculated at the MP2/6-31 G level of theory. The Boys-Bernardi counterpoise correction was employed to account for the basis-set superposition error. As a source of structural information we used about 2,400 neutral compounds from the ZINC2007 database. About 6,600 homodimeric configurations were generated from this dataset. A special "closure" procedure was designed to accelerate the parameters fitting. As a result, dimerization energies of small organic compounds are reproduced with an average unsigned error of 1.1 kcal mol(-1). Although the primary goal of this work was to parameterize nonbonded interactions, bonded parameters were also derived, by fitting to PM6 semiempirically optimized geometries of approximately 20,000 compounds. PMID:21562826

  17. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  18. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai, E-mail: zhlcai2000@163.co [College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307 (China); Wang Suyu; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2009-07-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  19. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  20. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    Science.gov (United States)

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  1. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins.

    Science.gov (United States)

    Santos-Martins, Diogo; Forli, Stefano; Ramos, Maria João; Olson, Arthur J

    2014-08-25

    Zinc is present in a wide variety of proteins and is important in the metabolism of most organisms. Zinc metalloenzymes are therapeutically relevant targets in diseases such as cancer, heart disease, bacterial infection, and Alzheimer's disease. In most cases a drug molecule targeting such enzymes establishes an interaction that coordinates with the zinc ion. Thus, accurate prediction of the interaction of ligands with zinc is an important aspect of computational docking and virtual screening against zinc containing proteins. We have extended the AutoDock force field to include a specialized potential describing the interactions of zinc-coordinating ligands. This potential describes both the energetic and geometric components of the interaction. The new force field, named AutoDock4Zn, was calibrated on a data set of 292 crystal complexes containing zinc. Redocking experiments show that the force field provides significant improvement in performance in both free energy of binding estimation as well as in root-mean-square deviation from the crystal structure pose. The new force field has been implemented in AutoDock without modification to the source code.

  2. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R.

    2013-04-01

    Thirteen of the most common aqueous NaCl solution force fields based on the SPC/E water solvent are examined with respect to their prediction at ambient conditions of the concentration dependence of the total electrolyte chemical potential and the solution density. We also calculate the salt solubility and the chemical potential and density of the NaCl crystalline solid. We obtain the solution chemical potential in a computationally efficient manner using our recently developed Osmotic Ensemble Monte Carlo method [F. Moučka, M. Lísal, and W. R. Smith, J. Phys. Chem. B 116, 5468 (2012), 10.1021/jp301447z]. We find that the results of the force fields considered are scattered over a wide range of values, and none is capable of producing quantitatively accurate results over the entire concentration range, with only two of them deemed to be acceptable. Our results indicate that several force fields exhibit precipitation at concentrations below the experimental solubility limit, thus limiting their usefulness. This has important implications, both in general and for their use in biomolecular simulations carried out in the presence of counter-ions. We conclude that either different parameter fitting techniques taking high-concentration properties into account must be used when determining force field model parameters, or that the class of models considered here is intrinsically incapable of the task and more sophisticated mathematical forms must be used.

  3. Molecular dynamic study of Shock wave response of bulk amorphous polyvinyl chloride: effect of chain length and force field

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2015-06-01

    Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.

  4. Decay Characteristics of Levitation Force of YBCO Bulk Exposed to AC Magnetic Field above NdFeB Guideway

    Science.gov (United States)

    Liu, Minxian; Lu, Yiyun; Wang, Suyu; Ma, Guangtong

    2011-04-01

    The superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the nonuniformity of the magnetic field along the movement direction above the NdFeB guideway is inevitable due to the assembly error and inhomogeneity of the material property of the NdFeB magnet. So it is required to study the characteristics of levitation force of the bulks affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we will study the characteristics of the levitation force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet is used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experimental results, it has found that the levitation force is decreasing with the application of the AC external magnetic field, and the decay increasing with the amplitude of the applied magnetic field and is almost independent of the frequency.

  5. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson's disease.

    Science.gov (United States)

    Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L

    2013-06-14

    Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. PMID:23454540

  6. Tethyan collision forces and the stress field of the Eurasian plate

    NARCIS (Netherlands)

    Warners-Ruckstuhl, K.N.; Govers, R.; Wortel, R.

    2013-01-01

    Resistive forces along convergent plate boundaries have a major impact on surface deformation, most visibly at collisional plate boundaries. Although quantification of these forces is key to understanding the evolution and present state of mountain belts, they remain highly uncertain due to the comp

  7. The trans-HOCO radical: Quartic force fields, vibrational frequencies, and spectroscopic constants

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Francisco, Joseph S.; Crawford, T. Daniel; Lee, Timothy J.

    2011-10-01

    In the search for a full mechanism creating CO2 from OH + CO, it has been suggested that creation of the hydroxyformyl or HOCO radical may be a necessary step. This reaction and its transient intermediate may also be responsible for the regeneration of CO2 in such high quantities in the atmosphere of Mars. Past spectroscopic observations of this radical have been limited and a full gas phase set of the fundamental vibrational frequencies of the HOCO radical has not been reported. Using established, highly accurate quantum chemical coupled cluster techniques and quartic force fields, we are able to compute all six fundamental vibrational frequencies and other spectroscopic constants for trans-HOCO in the gas phase. These methods have yielded rotational constants that are within 0.01 cm-1 for A0 and 10-4 cm-1 for B0 and C0 compared with experiment as well as fundamental vibrational frequencies within 4 cm-1 of the known gas phase experimental ν1 and ν2 modes. Such results lead us to conclude that our prediction of the other four fundamental modes of trans-HOCO are also quite reliable for comparison to future experimental observation, though the discrepancy for the torsional mode may be larger since it is fairly anharmonic. With the upcoming European Space Agency/NASA ExoMars Trace Gas Orbiter, these data may help to establish whether HOCO is present in the Martian sky and what role it may play in the retention of a CO2-rich atmosphere. Furthermore, these data may also help to clear up questions built around the fundamental chemical process of how exactly the OH + CO reaction progresses.

  8. A Glycam-Based Force Field for Simulations of Lipopolysaccharide Membranes: Parametrization and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Karl N.; Lins, Roberto D.; Maass, Astrid; Soares, Thereza A.

    2012-11-13

    Lipopolysaccharides (LPS) comprise the outermost layer of the Gram-negative bacteria cell envelope. Packed onto a lipid layer, the outer membrane displays remarkable physical-chemical differences compared to cell membranes. The carbohydrate-rich region confers a membrane asymmetry that underlies many biological processes such as endotoxicity, antibiotic resistance, and cell adhesion. Furthermore, unlike membrane proteins from other sources, integral outer-membrane proteins do not consist of transmembrane α helices; instead they consist of antiparallel β-barrels, which highlights the importance of the LPS membrane as a medium. In this work, we present an extension of the GLYCAM06 force field that has been specifically developed for LPS membranes using our Wolf2Pack program. This new set of parameters for lipopolysaccharide molecules expands the GLYCAM06 repertoire of monosaccharides to include phosphorylated N- and O-acetylglucosamine, 3-deoxy-D-manno-oct-2- ulosonic acid, L-glycero-D-manno-heptose and its O-carbamoylated variant, and N-alanine-D-galactosamine. A total of 1 µs of molecular dynamics simulations of the rough LPS membrane of Pseudomonas aeruginosa PA01 is used to showcase the added parameter set. The equilibration of the LPS membrane is shown to be signi!cantly slower compared to phospholipid membranes, on the order of 500 ns. It is further shown that water molecules penetrate the hydrocarbon region up to the terminal methyl groups, much deeper than commonly observed for phospholipid bilayers, and in agreement with neutron diffraction measurements. A comparison of simulated structural, dynamical, and electrostatic properties against corresponding experimentally available data shows that the present parameter set reproduces well the overall structure and the permeability of LPS membranes in the liquid-crystalline phase.

  9. An ionic force-field study of monomers, dimers and higher polymers in pentafluoride vapors

    Energy Technology Data Exchange (ETDEWEB)

    Cicek Onem, Z. [Department of Physics, Istanbul University, Istanbul (Turkey); Akdeniz, Z. [Department of Physics, Istanbul University, Istanbul (Turkey); Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa (Italy)], E-mail: zakdeniz@istanbul.edu.tr; Tosi, M.P. [Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa (Italy)], E-mail: tosim@sns.it

    2008-08-01

    Pentafluoride compounds such as NbF{sub 5} and TaF{sub 5} have been reported in the literature to admit various states of polymerization coexisting with monomers in their vapor phase, in relative concentrations that vary with temperature and pressure. We construct a microscopic interionic force-field model for the molecular monomer of these compounds (including VF{sub 5}, SbF{sub 5} and MoF{sub 5} in addition to NbF{sub 5} and TaF{sub 5}), the stable form of the monomer being in the shape of a D{sub 3h} trigonal bipyramid in all cases. The model emulates chemical bonds by allowing for electrical and short-range overlap polarizabilities of the fluorines, and is used to evaluate the structure and the stability of (MF{sub 5}){sub n} molecules with n running from 2 to 6. The dimer is formed by two distorted edge-sharing octahedral, while the trimer and the higher polymers can form rings of distorted corner-sharing octahedra. A chain-like configuration is also found for the trimer of NbF{sub 5}, which consists of a seven-fold coordinated Nb bonded to two distorted octahedra via edge sharing. Comparison of calculated vibrational frequencies and bond lengths with experimental data is made whenever possible. We find that there is a small net gain of energy in the formation of a dimer, while otherwise the static energy of the n-mer is very close to that of n separated monomers. High sensitivity of the state of molecular aggregation to the thermodynamic conditions of the vapor is clearly indicated by our calculations.

  10. Realistic sampling of amino acid geometries for a multipolar polarizable force field.

    Science.gov (United States)

    Hughes, Timothy J; Cardamone, Salvatore; Popelier, Paul L A

    2015-09-15

    The Quantum Chemical Topological Force Field (QCTFF) uses the machine learning method kriging to map atomic multipole moments to the coordinates of all atoms in the molecular system. It is important that kriging operates on relevant and realistic training sets of molecular geometries. Therefore, we sampled single amino acid geometries directly from protein crystal structures stored in the Protein Databank (PDB). This sampling enhances the conformational realism (in terms of dihedral angles) of the training geometries. However, these geometries can be fraught with inaccurate bond lengths and valence angles due to artefacts of the refinement process of the X-ray diffraction patterns, combined with experimentally invisible hydrogen atoms. This is why we developed a hybrid PDB/nonstationary normal modes (NM) sampling approach called PDB/NM. This method is superior over standard NM sampling, which captures only geometries optimized from the stationary points of single amino acids in the gas phase. Indeed, PDB/NM combines the sampling of relevant dihedral angles with chemically correct local geometries. Geometries sampled using PDB/NM were used to build kriging models for alanine and lysine, and their prediction accuracy was compared to models built from geometries sampled from three other sampling approaches. Bond length variation, as opposed to variation in dihedral angles, puts pressure on prediction accuracy, potentially lowering it. Hence, the larger coverage of dihedral angles of the PDB/NM method does not deteriorate the predictive accuracy of kriging models, compared to the NM sampling around local energetic minima used so far in the development of QCTFF.

  11. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  12. [Atomic force field FFsol for calculation of molecular interactions of in water environment].

    Science.gov (United States)

    Pereiaslavets, L B; Finkel'shtein, A V

    2010-01-01

    Detailed calculations of protein interactions with explicitly considered water takes enormous computer time. The calculation becomes faster if water is considered implicitly (as a continuous media rather than as molecules); however, these calculations are much less precise, unless one uses an additional (and also volumes) computation of the solvent-accessible areas of protein atoms. The aim of our study was to obtain parameters for non-bonded atom-atom interactions for the case when water surrounding is considered implicitly and the solvent-accessible areas are not computed. Since the "in-vacuum" interactions of atoms are obtained from experimental structures of crystals and enthalpies of their sublimation, the "in-water" interactions of atoms must be corrected using solvation free energies of molecules, which can be obtained from the Henry constants. Taken 58 structures of molecular crystals and thermodynamic data on their sublimation and solubility, we obtained parameters for "in-water" attraction and repulsion of atoms typical of protein structures (H, C, N, O, S) in various covalently-bonded states, as well as parameters for electrostatic interactions. All necessary for calculations parameters of covalent interactions have been taken from the ENCAD force field, and partial charges of all atoms of separate molecules of a crystal have been obtained from quantum-mechanical calculations. The sought parameters of the "in-water" van der Waals and electrostatic interactions were optimized so as to achieve the best description of equilibrium crystal structures and their sublimation and solvation at the room temperature. With the optimized parameters, the average error in calculation of the effective cohesion energy of molecules in crystals was less than 10% both in the "in-vacuum" and "in-water" cases. PMID:20586195

  13. ASSESMENT OF FACTORS AFFECTING THE PRODUCTIVITY OF AMBER CHARKHA AND ERGONOMIC EVALUATION OF WORKERS

    Directory of Open Access Journals (Sweden)

    G. V. THAKRE

    2011-11-01

    Full Text Available Increasing demands of the cotton fabrics, now a day has made it necessary to increase the production of cotton fabrics. To increase the production it is necessary to study the factors affecting the performance of the women workers working on Amber charkha. Most of the Amber charkha in rural areas are hand operated (i.e. they runwith the help of human energy input. There are various medical, technical and environmental factors which affect the productivity of women workers working on Amber charkha. This paper discusses some of those factors which are responsible for this. The various factors that are affecting the productivity are health factors,sitting posture, working environment, raw material properties, and man machine system. Each of these factors plays an important role in the overall performance of the women workers. Analysis is carried out by comparing the actual readings with the standard norms available in the literature. The detailed project work is carried out to study the different factors affecting the productivity of Amber charkha. The basic necessity of this study is to provide comfortable sitting arrangement and good working environment which would help the workers for achieving better productivity with work satisfaction.

  14. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber

    Science.gov (United States)

    Vršanský, Peter; Bechly, Günter

    2015-04-01

    We describe a new extinct lineage Manipulatoridae (new family) of cockroaches from the Upper Cretaceous (Cenomanian) amber of Myanmar. Manipulator modificaputis gen. et sp. n. is a morphologically unique extinct cockroach that represents the first (of a total of 29 known worldwide) cockroach family reported exclusively from the Myanmar amber. This family represents an early side branch of the stem group of Mantodea (most probably a sister group of Eadiidae within Blattaria/Corydioidea) because it has some synapomorphies with the Mantodea (including the stem group and Eadiidae). This family also retains symplesiomorphies that exclude a position in the crown group, and furthermore has unique autapomorphies that exclude a position as a direct ancestor of Mantodea. The unique adaptations such as strongly elongated extremities and freely movable head on a long neck suggest that these animals were pursuit predators. Five additional specimens (including two immatures) reported from the Myanmar amber suggest that this group was relatively rare but belonged to the indigenous and autochthonous inhabitants of the ancient amber forest of the Myanmar region.

  15. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals

    Energy Technology Data Exchange (ETDEWEB)

    Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A.

    1986-01-01

    Cyclic terpenoids present in the solvent extractable material of fossil woods, ambers and brown coals have been analyzed. The sample series chosen consisted of wood remains preserved in Holocene in Jurassic sediments and a set of ambers from the Philippines (copalite), Israel, Canada and Dominican Republic. The brown coals selected were from the Fortuna Garsdorf Mine and Miocene formations on Fiji. The fossil wood extracts contained dominant diterpenoid or sesquiterpenoid skeletons, and aromatized species were present at high concentrations, with a major amount of two-ring aromatic compounds. Tricyclic diterpenoids were the predominant compounds in the ambers. The brown coal extracts were composed of major amounts of one- and two-ring aromatized terpenoids, with a greater proportion of triterpenoid derivatives than in the case of the woods and ambers. This was especially noticeable for the German coal, where the triterpenoids were predominant. Open C-ring aromatized structures were also present in this coal. Steroid compounds were not detectable, but some hopanes were found as minor components in the German brown coal. An overview of the skeletal structure classes identified in each sample, as well as the general mass spectrometric characteristics of the unknown compounds are included in the present paper. It can be concluded from these structural distributions that aromatization is the main process for the transformation of terrestrial cyclic terpenoids during diagenesis, constituting a general pathway for all terpenoids.

  16. A New Thorny Lacewing (Insecta:Neuroptera:Rhachiberothidae) from the Early Cretaceous Amber of Lebanon

    Institute of Scientific and Technical Information of China (English)

    Julian F.PETRULEVI(C)IUS; Dany AZAR; André NEL

    2010-01-01

    A new genus and species of Rhachiberothidae,Raptorapax terribilissima gen.et sp.nov.from the Cretaceous amber of Lebanon is described.The new genus is assigned to the subfamily Paraberothinae.The new material confirms the great diversity of the group in the Cretaceous age and its decrease in diversity in recent times.

  17. Validation of Force Fields of Rubber through Glass-Transition Temperature Calculation by Microsecond Atomic-Scale Molecular Dynamics Simulation.

    Science.gov (United States)

    Sharma, Pragati; Roy, Sudip; Karimi-Varzaneh, Hossein Ali

    2016-02-25

    Microsecond atomic-scale molecular dynamics simulation has been employed to calculate the glass-transition temperature (Tg) of cis- and trans-1,4-polybutadiene (PB) and 1,4-polyisoprene (PI). Both all-atomistic and united-atom models have been simulated using force fields, already available in literature. The accuracy of these decade old force fields has been tested by comparing calculated glass-transition temperatures to the corresponding experimental values. Tg depicts the phase transition in elastomers and substantially affects various physical properties of polymers, and hence the reproducibility of Tg becomes very crucial from a thermodynamic point of view. Such validation using Tg also evaluates the ability of these force fields to be used for advanced materials like rubber nanocomposites, where Tg is greatly affected by the presence of fillers. We have calculated Tg for a total of eight systems, featuring all-atom and united-atom models of cis- and trans-PI and -PB, which are the major constituents of natural and synthetic rubber. Tuning and refinement of the force fields has also been done using quantum-chemical calculations to obtain desirable density and Tg. Thus, a set of properly validated force fields, capable of reproducing various macroscopic properties of rubber, has been provided. A novel polymer equilibration protocol, involving potential energy convergence as the equilibration criterion, has been proposed. We demonstrate that not only macroscopic polymer properties like density, thermal expansion coefficient, and Tg but also local structural characteristics like end-to-end distance (R) and radius of gyration (Rg) and mechanical properties like bulk modulus have also been equilibrated using our strategy. Complete decay of end-to-end vector autocorrelation function with time also supports proper equilibration using our strategy. PMID:26836395

  18. High-sensitivity piezoelectric tube sensor for shear-force detection in scanning near-field optical microscopy

    Science.gov (United States)

    Lindfors, K.; Kapulainen, M.; Ryytty, P.; Kaivola, M.

    2004-11-01

    An easy-to-implement non-optical shear-force detection setup for tip-sample distance regulation in scanning near-field optical microscopy is demonstrated. The detection method is based on attaching the near-field probe to a piezoelectric tube resulting in excellent mechanical contact between tip and detector. The main advantages of the method are good signal-to-background contrast and thus potential for high sensitivity. The method is demonstrated by obtaining approach curves of silicon surfaces. The suitability for optical experiments is further shown by measuring the near-field intensity distribution of the emission of a semiconductor laser.

  19. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: a bottom-up approach.

    Science.gov (United States)

    Trément, Sébastien; Schnell, Benoît; Petitjean, Laurent; Couty, Marc; Rousseau, Bernard

    2014-04-01

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems. PMID:24712786

  20. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    Energy Technology Data Exchange (ETDEWEB)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France); Schnell, Benoît; Petitjean, Laurent; Couty, Marc [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.

  1. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications.

    Science.gov (United States)

    Lemkul, Justin A; Huang, Jing; Roux, Benoît; MacKerell, Alexander D

    2016-05-11

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena.

  2. Optical and mechanical detection of near-field light by atomic force microscopy using a piezoelectric cantilever

    Science.gov (United States)

    Satoh, Nobuo; Kobayashi, Kei; Watanabe, Shunji; Fujii, Toru; Matsushige, Kazumi; Yamada, Hirofumi

    2016-08-01

    In this study, we developed an atomic force microscopy (AFM) system with scanning near-field optical microscopy (SNOM) using a microfabricated force-sensing cantilever with a lead zirconate titanate (PZT) thin film. Both optical and mechanical detection techniques were adopted in SNOM to detect scattered light induced by the interaction of the PZT cantilever tip apex and evanescent light, and SNOM images were obtained for each detection scheme. The mechanical detection technique did allow for a clear observation of the light scattered from the PZT cantilever without the interference observed by the optical detection technique, which used an objective lens, a pinhole, and a photomultiplier tube.

  3. Application of the linear/exponential hybrid force field scaling scheme to the bond length alternation modes of polyacetylene

    Science.gov (United States)

    Yang, Shujiang; Kertesz, Miklos

    2006-12-01

    The two bond length alternation related backbone carbon-carbon stretching Raman active normal modes of polyacetylene are notoriously difficulty to predict theoretically. We apply our new linear/exponential scaled quantum mechanical force field scheme to tackle this problem by exponentially adjusting the decay of the coupling force constants between backbone stretchings based on their distance which extends over many neighbors. With transferable scaling parameters optimized by least squares fitting to the experimental vibrational frequencies of short oligoenes, the scaled frequencies of trans-polyacetylene and its isotopic analogs agree very well with experiments. The linear/exponential scaling scheme is also applicable to the cis-polyacetylene case.

  4. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides

    Science.gov (United States)

    Tran, Thanh Thuy; Nguyen, Phuong H.; Derreumaux, Philippe

    2016-05-01

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  5. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Science.gov (United States)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  6. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  7. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Hamilton, E-mail: hcarter3@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Pate, Stephen, E-mail: pate@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Goedecke, George, E-mail: ggoedeck@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-02-14

    Highlights: ► AC magnetic field strength required for levitation is independent of frequency. ► RMS magnetic field strength is in good agreement with DC magnetic field strength. ► Dependence of YBCO levitation force on AC magnetic field frequency is investigated. -- Abstract: The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  8. High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER

    CERN Document Server

    Ohnaka, Keiichi; Schertl, Dieter; Weigelt, Gerd; Baffa, Carlo; Chelli, Alain; Petrov, Romain; Robbe-Dubois, Sylvie

    2013-01-01

    We present high spectral resolution aperture-synthesis imaging of the red supergiant Antares (alpha Sco) in individual CO first overtone lines with VLTI/AMBER. The reconstructed images reveal that the star appears differently in the blue wing, line center, and red wing and shows an asymmetrically extended component. The appearance of the star within the CO lines changes drastically within one year, implying a significant change in the velocity field in the atmosphere. Our modeling suggests an outer atmosphere (MOLsphere) extending to 1.2--1.4 stellar radii with CO column densities of (0.5--1)x10^{20} cm^{-2} and a temperature of ~2000 K. While the velocity field in 2009 is characterized by strong upwelling motions at 20--30 km/s, it changed to strong downdrafts in 2010. On the other hand, the AMBER data in the continuum show only a slight deviation from limb-darkened disks and only marginal time variations. We derive a limb-darkened disk diameter of 37.38+/-0.06 mas and a power-law-type limb-darkening paramet...

  9. Guiding-centre transformation of the radiation-reaction force in a non-uniform magnetic field

    Science.gov (United States)

    Hirvijoki, E.; Decker, J.; Brizard, A. J.; Embréus, O.

    2015-10-01

    > In this paper, we present the guiding-centre transformation of the radiation-reaction force of a classical point charge travelling in a non-uniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field non-uniformity length scale, so that the guiding-centre Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation-reaction force is obtained with the Poisson-bracket formalism originally introduced by Brizard (Phys. Plasmas, vol. 11, 2004, 4429-4438), where it was used to eliminate the fast gyromotion from the Fokker-Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-centre radiation-reaction force include tracing of charged particle orbits in complex magnetic fields as well as the kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g. for runaway-electron dynamics in tokamaks.

  10. Resonance Raman spectrum of the allyl-d5 radical and the force field analysis of the allyl radical

    Science.gov (United States)

    Liu, Xianming; Getty, James D.; Kelly, Peter B.

    1993-08-01

    Resonance Raman spectra of the allyl-d5 radical have been obtained with excitation between 247 and 223 nm. Analysis of the spectra yields the first observation of fundamental frequencies, nu4, nu5, and nu7 and overtone frequencies 2nu9, 2nu10, and 2nu12. The new vibrational data are combined with previously observed frequencies of allyl-h5 and allyl-d5 radical to produce the force field analysis for the allyl radical. This study suggests reassignment of several previously observed infrared (IR) bands. Experimental frequencies and assignments for allyl-h5 and allyl-d5 are compared with results from ab initio calculations. Force constants obtained in the present work are compared with the force constants of other sp2 hybridization molecules such as benzene, allene, and ethylene.

  11. Analytical solutions for the electric field and dielectrophoretic force in a dielectrophoretic focusing electrode structure

    OpenAIRE

    Sun, Tao; Green, Nicolas G; Morgan, Hywel

    2008-01-01

    The analysis of the movement of particles in a nonuniform field requires accurate knowledge of theelectric field distribution. In this letter, the Schwarz–Christoffel mapping method is used to analytically solve the electric field distribution in a dielectrophoretic focusing electrode structure.The analytical result for the electric field distribution is validated by comparison with numericalsimulations using the finite element method. The electric field solution is used to calculate the diel...

  12. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Guha T

    2014-03-01

    Full Text Available Atomic Force Microscope (AFM was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM, the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting biological samples. He wondered why the surfaces be always imaged with a current but not with a force. He thought if small forces of interactions between a probe tip atoms and specimen surface atoms could be detected and amplified then imaging of biological specimen would be possible at a very high resolution. AFM working Principle: AFM is a Scanning Probe Microscopy (SPM by which imaging is realized by interaction of a probe with sample surface without any beam (light, electron and lens system. The probe is attached to a soft and sensitive cantilever and either specimen is scanned by probe or specimen scans itself under a stationary probe. Probe’s spring constant must be small and the deflection must be measurable along with high resonance frequency. The most commonly associated force with AFM is called Vander Waals force. Three modes of working are contact mode, non contact mode and tapping mode. In contact zone, the probe tip attached with cantilever is held less than a few A˚ from the sample surface and the inter-atomic force between the atoms of probe tip and sample surface is repulsive. In non-contact zone, the probe tip is held at a distance of 100s of A˚ from the sample surface and the inter-atomic force here is long range Vander Waals interaction and is attractive in nature. AFM is also called Scanning Force Microscope because the force of interaction between probe tip atoms and surface atoms is amplified to generate a signal voltage which modulates video

  13. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2014-04-11

    This study aims to clarify the mechanisms by which unsteady hydrodynamic forces act on the hand of a swimmer during a crawl stroke. Measurements were performed for a hand attached to a robotic arm with five degrees of freedom independently controlled by a computer. The computer was programmed so the hand and arm mimicked a human performing the stroke. We directly measured forces on the hand and pressure distributions around it at 200 Hz; flow fields underwater near the hand were obtained via 2D particle image velocimetry (PIV). The data revealed two mechanisms that generate unsteady forces during a crawl stroke. One is the unsteady lift force generated when hand movement changes direction during the stroke, leading to vortex shedding and bound vortex created around it. This bound vortex circulation results in a lift that contributes to the thrust. The other occurs when the hand moves linearly with a large angle of attack, creating a Kármán vortex street. This street alternatively sheds clockwise and counterclockwise vortices, resulting in a quasi-steady drag contributing to the thrust. We presume that professional swimmers benefit from both mechanisms. Further studies are necessary in which 3D flow fields are measured using a 3D PIV system and a human swimmer.

  14. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field

    DEFF Research Database (Denmark)

    Monti, Susanna; Corozzi, Alessandro; Fristrup, Peter;

    2013-01-01

    In order to describe possible reaction mechanisms involving amino acids, and the evolution of the protonation state of amino acid side chains in solution, a reactive force field (ReaxFF-based description) for peptide and protein simulations has been developed as an expansion of the previously...... reported glycine parameters. This expansion consists of adding to the training set more than five hundred molecular systems, including all the amino acids and some short peptide structures, which have been investigated by means of quantum mechanical calculations. The performance of this ReaxFF protein...... force field on a relatively short time scale (500 ps) is validated by comparison with classical non-reactive simulations and experimental data of well characterized test cases, comprising capped amino acids, peptides, and small proteins, and reaction mechanisms connected to the pharmaceutical sector...

  15. Bayesian field theoretic reconstruction of bond potential and bond mobility in single molecule force spectroscopy

    CERN Document Server

    Chang, Joshua C; Chou, Tom

    2015-01-01

    Quantifying the forces between and within macromolecules is a necessary first step in understanding the mechanics of molecular structure, protein folding, and enzyme function and performance. In such macromolecular settings, dynamic single-molecule force spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work applied, and trajectories of displacements, have been used to reconstruct bond potentials. Such approaches often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or large amounts of trajectory data. Parametric approaches typically fail at inferring complex-shaped bond potentials with multiple minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise from spatially inhomogeneous coupling to...

  16. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer......-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices...

  17. HE FIELD TEST RESULTS OF GEOMETRIC-FORCE METHOD FOR TRACK STATE ESTIMATION

    Directory of Open Access Journals (Sweden)

    V. S. Kossov

    2013-08-01

    Full Text Available Purpose. Study the possibility of using geometrically-force method to determine sections of high risk of derailment in railway stations at empty wagons movement. In the test program track diagnosing subject to longitudinal forces in the freight train effecting empty wagons is provided. Methodology. To this effect empty mineral wagon and thermal cistern were equipped with strain-gauge wheel sets, strain-gauge automatic coupler and other instruments, set in the freight train weighing 4500 t. Findings. In the course of this work it was ascertained that the geometric-force ethod gives possibility to receive additional information about the track condition from the position of empty cars stability against derailment. It is shown that some sections of high risk of derailment pieces of line does not discarded by traditional ways, based on an assessment of the geometric parameters of the way. Those track sections are identified by this method, which can not be evaluated by technical means, used currently on track measurement cars. Pieces of line with low parameters on empty cars stability against derailment are individual and they are determined not only by the sizes of deviations, but their form, a combination of different types of roughness, profile and defective elements of the permanent way. Originality. Geometric-force method should be considered as complementary to the existing technology assessment of the way on the geometrical parameters; its implementation will allow revealing the track section, dangerous for the motion of empty wagons. Practical value. For the geometrically-force method realization of assessment of the way in the railway network of JSC «Russian Railways» it is proposed on the basis of the accumulated statistics and experimental data in accordance with wagons tests with a high center of gravity to develop specialized software for wagons through gauges to assess ways bygeometrically-force method that excludes the use in

  18. Molecular Dynamics Simulation of Cross-Linked Epoxy Polymers: the Effect of Force Field on the Estimation of Properties

    OpenAIRE

    B. Arab; A. Shokuhfar

    2013-01-01

    In this paper, the molecular dynamics method was used to calculate the physical and mechanical properties of the cross-linked epoxy polymer composed of diglycidyl ether of bisphenol-A (DGEBA) as resin and diethylenetriamine (DETA) as curing agent. Calculation of the properties was performed using the constant-strain (static) approach. A series of independent simulations were carried out based on four widely used force fields; COMPASS, PCFF, UFF and Dreiding. Proper comparisons between the res...

  19. Vibrational Analysis of Brucite Surfaces and the Development of an Improved Force Field for Molecular Simulation of Interfaces

    OpenAIRE

    Zeitler, Todd R.; Greathouse, Jeffery A.; Gale, Julian D.; Cygan, Randall T.

    2014-01-01

    We introduce a nonbonded three-body harmonic potential energy term for Mg–O–H interactions for improved edge surface stability in molecular simulations. The new potential term is compatible with the Clayff force field and is applied here to brucite, a layered magnesium hydroxide mineral. Comparisons of normal mode frequencies from classical and density functional theory calculations are used to verify a suitable spring constant (k parameter) for the Mg–O–H bending motion. Vibrational analysis...

  20. [Analysis of the use of field medical units in the armies of NATO and Russian Armed Forces].

    Science.gov (United States)

    Korniushko, I G; Iakovlev, S V; Murashev, I V; Sidorov, V A; Medvedev, V R; Matveev, A G

    2011-12-01

    An analysis of medical services of NATO and the Medical Service of the Armed Forces of the Russian Federation of modern technology deployment stages of medical evacuation (tents, inflatable structures, shelters, containers, medical armored vehicles, cars, etc.) is presented. Examples of their usage in isolated employment, usage in the group as a mobile medical stations and field hospitals in various conditions, the prospects and directions of development of technical means deployment of medical service are given.

  1. Photoageing of Baltic amber-influence of daylight radiation behind window glass on surface colour and chemistry

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2011-01-01

    in colour and chemical properties. Prism-shaped samples, obtained from a large amber piece, were exposed to different microclimatic conditions, subjected to accelerated photoageing and analysed by spectrocolorimetry, infrared spectroscopy and Raman spectroscopy. The experiments provided results about...

  2. Simulating GTP:Mg and GDP:Mg with a simple force field: a structural and thermodynamic analysis.

    Science.gov (United States)

    Simonson, Thomas; Satpati, Priyadarshi

    2013-04-01

    Di- and tri-phosphate nucleotides are essential cofactors for many proteins, usually in an Mg(2+) -bound form. Proteins like GTPases often detect the difference between NDP and NTP and respond by changing conformations. To study such complexes, simple, fixed charge force fields have been used, which allow long simulations and precise free energy calculations. The preference for NTP or NDP binding depends on many factors, including ligand structure and Mg(2+) coordination and the changes they undergo upon binding. Here, we use a simple force field to examine two Mg(2+) coordination modes for the unbound GDP and GTP: direct, or "Inner Sphere" (IS) coordination by one or more phosphate oxygens and indirect, "Outer Sphere" (OS) coordination involving one or more bridging waters. We compare GTP: and GDP:Mg binding with OS and IS coordination; combining the results with experimental data then indicates that GTP prefers the latter. We also examine different kinds of IS coordination and their sensitivity to a key force field parameter: the optimal Mg:oxygen van der Waals distance Rmin . Increasing Rmin improves the Mg:oxygen distances, the GTP: and GDP:Mg binding affinities, and the fraction of GTP:Mg with β + γ phosphate coordination, but does not improve or change the GTP/GDP affinity difference, which remains much larger than experiment. It has no effect on the free energy of GDP binding to a GTPase.

  3. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Science.gov (United States)

    MacDermaid, Christopher M.; Kashyap, Hemant K.; DeVane, Russell H.; Shinoda, Wataru; Klauda, Jeffery B.; Klein, Michael L.; Fiorin, Giacomo

    2015-12-01

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  4. Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations.

    Science.gov (United States)

    Yu, Wenbo; He, Xibing; Vanommeslaeghe, Kenno; MacKerell, Alexander D

    2012-12-01

    Presented is an extension of the CHARMM General Force Field (CGenFF) to enable the modeling of sulfonyl-containing compounds. Model compounds containing chemical moieties such as sulfone, sulfonamide, sulfonate, and sulfamate were used as the basis for the parameter optimization. Targeting high-level quantum mechanical and experimental crystal data, the new parameters were optimized in a hierarchical fashion designed to maintain compatibility with the remainder of the CHARMM additive force field. The optimized parameters satisfactorily reproduced equilibrium geometries, vibrational frequencies, interactions with water, gas phase dipole moments, and dihedral potential energy scans. Validation involved both crystalline and liquid phase calculations showing the newly developed parameters to satisfactorily reproduce experimental unit cell geometries, crystal intramolecular geometries, and pure solvent densities. The force field was subsequently applied to study conformational preference of a sulfonamide based peptide system. Good agreement with experimental IR/NMR data further validated the newly developed CGenFF parameters as a tool to investigate the dynamic behavior of sulfonyl groups in a biological environment. CGenFF now covers sulfonyl group containing moieties allowing for modeling and simulation of sulfonyl-containing compounds in the context of biomolecular systems including compounds of medicinal interest. PMID:22821581

  5. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Energy Technology Data Exchange (ETDEWEB)

    MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-28

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  6. Shear Force Detection Using Single-Tine Oscillating Tuning Fork for Scanning Near-Field Optical Microscopy

    Institute of Scientific and Technical Information of China (English)

    谭晓靖; 孙家林; 刘晟; 郭继华; 孙红三

    2003-01-01

    We propose a new method to detect near-field by using a single-tine oscillating tuning fork with mechanically asymmetric excitation that exhibits the sensitivity and stability better than that by using a double-tine oscillating one. Comparison of shear forces for the two methods demonstrate that the single-tine oscillating tuning fork provides a simpler and more sensitive method for near-field measurements. A theoretical analysis is presented for explanation to the greater sensitivity. The method is demonstrated by imaging a sparse-packed layer of micro-spheres in size of 200 nm.

  7. Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    XIE Zi-Li; HAN Ping; SHI Yi; ZHENG You-Dou; ZHANG Rong; LIU Bin; XIU Xiang-Qian; SU Hui; LI Yi; HUA Xue-Mei; ZHAO Hong; CHEN Peng

    2011-01-01

    @@ Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW) structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001) oriented (c-face) sapphire substrate, which consists of an approximately 2-Etm-thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer.The surface morphology of the MQW structures is observed by an atomic force microscope(AFM), which indicates the presence of islands of several tens of nanometers in height on the surface.The high resolution x-ray diffraction(XRD)θ/2θ scan is carried out on the symmetric(0002) of the InGaN/GaN MQW structures.At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region.Besides the 364 nm GaN band edge emission, two main emissions of blue and amber light from these MQWs are found, which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs.

  8. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    Science.gov (United States)

    Karlsen, Jonas T.; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a , but it assumes the particle to be small in comparison to the acoustic wavelength λ . This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  9. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    CERN Document Server

    Karlsen, Jonas Tobias

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Our analysis places no restrictions on the length scales of the viscous and thermal boundary layer thicknesses $\\delta_\\mathrm{s}$ and $\\delta_\\mathrm{t}$ relative to the particle radius $a$, but it assumes the particle to be small in comparison to the acoustic wavelength $\\lambda$. This is the limit relevant to scattering of sound and ultrasound waves from micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical parti...

  10. Experiments on the effects of global force balance and local reconnection physics on magnetic reconnection with a guide field

    Science.gov (United States)

    Fox, W.; Sciortino, F.; Yoo, J.; Jara-Almonte, J.; Na, B.; Ji, H.; Yamada, M.

    2015-11-01

    In many plasma environments ranging from astrophysics to fusion, magnetic reconnection occurs with a finite guide field ranging from a fraction to many times the upstream reconnecting component. Theory and simulation yields a range of predictions of scaling of the rate of reconnection with guide field. Recent experiments on the Magnetic Reconnection Experiment observed a systematic decrease in reconnection rates with increasing guide field. Here we present a new set of experimental results on MRX with a controlled applied guide magnetic field ranging from 0 to approximately 3 times the upstream reconnection field, where we observe both global and local processes which affect the reconnection rate in the guide field regime. First, we observe and quantify the effects of global force balance, in particular global back pressure due to pileup of magnetic field in the downstream, which decreases the outflow of plasma from the current sheet and hence the reconnection rate. Second, we study the role of electron pressure in the generalized Ohm's law in the guide field regime and its role in setting the reconnection rate.

  11. Solid state {sup 13}C NMR analysis of Brazilian cretaceous ambers

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo; Azevedo, Debora A., E-mail: ricardopereira@iq.ufrj.b, E-mail: debora@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Lab. de Geoquimica Organica Molecular e Ambiental; San Gil, Rosane A.S. [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Lab. de RMN de Solidos; Carvalho, Ismar S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Fernandes, Antonio Carlos S. [Museu Nacional (MN/UFRJ), RJ (Brazil). Dept. de Geologia e Paleontologia

    2011-07-01

    {sup 13}C cross polarization with magic angle spinning nuclear magnetic resonance ({sup 13}C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of {Delta}{sup 8(17)} and {Delta}{sup 12(13)} unsaturations, were obtained by {sup 13}C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  12. Amino acid racemization in amber-entombed insects: implications for DNA preservation

    Science.gov (United States)

    Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.

    1994-01-01

    DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from 10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.

  13. Analytic cubic and quartic force fields using density-functional theory.

    Science.gov (United States)

    Ringholm, Magnus; Jonsson, Dan; Bast, Radovan; Gao, Bin; Thorvaldsen, Andreas J; Ekström, Ulf; Helgaker, Trygve; Ruud, Kenneth

    2014-01-21

    We present the first analytic implementation of cubic and quartic force constants at the level of Kohn-Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange-correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree-Fock results. The Hartree-Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants. PMID:25669359

  14. A Study of Unsteady Rotating Hydromagnetic Free and Forced Convection in a Channel Subject to Forced Oscillation under an Oblique Magnetic Field

    Directory of Open Access Journals (Sweden)

    S.K Ghosh

    2013-01-01

    Full Text Available A theoretical analysis is presented for transient, fully-developed magnetohydrodynamic free and forced convection flow of a viscous, incompressible, Newtonian fluid in a rotating horizontal parallel-plate channel subjected to a uniform strength, static, oblique magnetic field acting at an angle  to the positive direction of the axis of rotation. A constant pressure gradient is imposed along the longitudinal axis of the channel. Magnetic Reynolds number is sufficiently small to negate the effects of magnetic induction. The channel plates are electrically non-conducting. The conservation equations are formulated in an (x,y,z coordinate system and normalized using appropriate transformations. The resulting non-dimensional coupled ordinary differential equations for primary and secondary velocity components and transformed boundary conditions are found to be reciprocal of the Ekman number ( 2 K =1/Ek, non-dimensional pressure gradient parameter (Px, Hartmann number ( 2 M , Grashof number (Gr, magnetic field inclination ( and oscillation frequency (. Complex variables are employed to solve the two-point boundary value problem. A steady state resonance of the velocity field is identified for  4 4 4 1/ 2 16 2 1   K M Sin  . Furthermore the solutions indicate that the condition  1/2 1 4 4 4 cos 16 2   T K M Sin  signifies an oscillatory turbulent dynamo mechanism. A critical Grashof number (Grcx is also evaluated for which primary flow reversal arises at the upper channel plate. A similar criterion for Grashof number (Grcy is established for the onset of secondary flow reversal at the upper plate. A detailed assessment of the influence of the control parameters on primary and secondary velocity evolution in the channel is also conducted. The model finds applications in MHD (Magneto Hydro Dynamic energy generators and also magnetic materials processing systems.

  15. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    OpenAIRE

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Our analysis places no restrictions on the length scales of the viscous and thermal boundary layer thicknesses $\\delta_\\mathrm{s}$ and $\\delta_\\mathrm{t}$ relative to the particle radius $a$, but it assumes the particle to be small in comparison to the acoustic wavelength $...

  16. New fossil bee flies (Diptera : Bombylioidea) in the Lowermost Eocene amber of the Paris Basin

    OpenAIRE

    A. Nel; Ploëg, G. de

    2004-01-01

    A new genus and two new species of bee flies are described from the Lowermost Eocene amber of the Paris basin: Paradolichomyia eocenica n. gen, n. sp. (Bombyliidae: Toxophorinae) and Proplatypygus matilei n. sp. (Mythicomyiidae). Paradolichomyia eocenica n. gen, n. sp. represents the oldest fossil record of Bombyliidae. It is closely related to the two modern genera Dolichomyia WIEDEMANN 1830 and Zaclava HULL 1973 (Toxophorinae: Systropodini). This discovery suggests that the present Gondwana...

  17. The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae)

    Science.gov (United States)

    Cai, Chen-Yang; Huang, Di-Ying

    2014-10-01

    The staphylinid subfamily Micropeplinae includes small strongly sclerotized beetles with truncate elytra leaving the most part of abdomen exposed. Fossil micropeplines are rare and confined to Cenozoic representatives of extant genera. Here, we describe the oldest micropepline, Protopeplus cretaceus gen. and sp. n., from the Upper Cretaceous Burmese amber. Fluorescence microscope and confocal laser scanning microscopy (CLSM) were both used to reveal diagnostic features of Micropeplinae and some primitive traits that place Protopeplus very basally within Micropeplinae.

  18. A new genus of alderflies (Megaloptera: Sialidae) in Upper Cretaceous Burmese amber

    OpenAIRE

    Huang, Diying; Azar, Dany; Michael S. Engel; Cai, Chenyang; Garrouste, Romain; Nel, André

    2016-01-01

    International audience A new genus and species of Mesozoic alderfly is described as Haplosialodes liui gen. et sp. nov., and from an adult male preserved in Cretaceous Burmese amber. The new genus is closely related to the genera Haplosialis Navás (Recent fauna of Madagascar), Indosialis Lestage (Recent fauna of Southeast Asia), and Eosialis Nel et al. (Eocene of France), suggesting a possible Early Cretaceous age for the clade that comprises these groups.

  19. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals

    Science.gov (United States)

    Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.-G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A.

    1986-01-01

    Cyclic terpenoids present in the solvent extractable material of fossil woods, ambers and brown coals have been analyzed. The sample series chosen consisted of wood remains preserved in Holocene to Jurassic sediments and a set of of ambers from the Philippines (copalite), Israel, Canada and Dominican Republic. The brown coals selected were from the Fortuna Garsdorf Mine and Miocene formations on Fiji. The fossil wood extracts contained dominant diterpenoid or sesquiterpenoid skeletons, and aromatized species were present at high concentrations, with a major amount of two-ring aromatic compounds. Tricyclic diterpenoids were the predominant compounds in the ambers. Aromatized derivatives were the major components, consisting of one or two aromatic ring species with the abietane and occasionally pimarane skeletons. The saturated structures were comprised primarily of the abietane and pimarane skeletons having from three to five carbon (C1, C2, etc.) substituents. Kaurane and phyllocladane isomers were present in only minor amounts. Bicyclic sesquiterpenoids as saturated and partial or fully aromatized forms were also common in these samples, but only traces of sesterterpenoids and triterpenoid derivatives were found. The brown coal extracts were composed of major amounts of one- and two-ring aromatized terpenoids, with a greater proportion of triterpenoid derivatives than in the case of the woods and ambers. This was especially noticeable for the German coal, where the triterpenoids were predominant. Open C-ring aromatized structures were also present in this coal. Steroid compounds were not detectable, but some hopanes were found as minor components in the German brown coal. An overview of the skeletal structure classes identified in each sample, as well as the general mass spectrometric characteristics of the unknown compounds are included in the present paper. It can be concluded from these structural distributions that aromatization is the main process for the

  20. Nonlinear force-free and potential field models of active-region and global coronal fields during the Whole Heliospheric Interval

    CERN Document Server

    Petrie, Gordon; Amari, Tahar

    2010-01-01

    Between 2008/3/24 and 2008/4/2, the three active regions NOAA active regions 10987, 10988 and 10989 were observed daily by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) while they traversed the solar disk. We use these measurements and the nonlinear force-free magnetic field code XTRAPOL to reconstruct the coronal magnetic field for each active region and compare model field lines with images from the Solar Terrestrial RElations Observatory (STEREO) and Hinode X-ray Telescope (XRT) telescopes. Synoptic maps made from continuous, round-the-clock Global Oscillations Network Group (GONG) magnetograms provide information on the global photospheric field and potential-field source-surface models based on these maps describe the global coronal field during the Whole Heliospheric Interval (WHI) and its neighboring rotations. Features of the modeled global field, such as the coronal holes and streamer belt locations, are discussed in comparison with extreme ultra-v...

  1. Effect of the magnetic field direction on forced convection heat transfer enhancements in ferrofluids

    Science.gov (United States)

    Cherief, Wahid; Avenas, Yvan; Ferrouillat, Sébastien; Kedous-Lebouc, Afef; Jossic, Laurent; Berard, Jean; Petit, Mickael

    2015-07-01

    Applying a magnetic field on a ferrofluid flow induces a large increase of the convective heat transfer coefficient. In this paper, the thermal-hydraulic behaviors of two commercial ferrofluids are compared. The variations of both the pressure drop and the heat transfer coefficient due to the magnetic field are measured in the following conditions: square duct, laminar flow and uniform wall heat flux. The square section with two insulated walls allows for the characterization of the effect of the magnetic field direction. The experimental results show that the heat transfer is better enhanced when the magnetic field is perpendicular to the heat flux. In the best case, the local heat transfer coefficient increase is about 75%. On the contrary, another experimental setup shows no enhancement of thermal conductivity when the magnetic field is perpendicular to the heat flux. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014) - Elected submissions", edited by Adel Razek

  2. The anamorphic genus Monotosporella (Ascomycota) from Eocene amber and from modern Agathis resin.

    Science.gov (United States)

    Sadowski, Eva-Maria; Beimforde, Christina; Gube, Matthias; Rikkinen, Jouko; Singh, Hukam; Seyfullah, Leyla J; Heinrichs, Jochen; Nascimbene, Paul C; Reitner, Joachim; Schmidt, Alexander R

    2012-10-01

    The anamorphic fungal genus Monotosporella (Ascomycota, Sordariomycetes) has been reco-vered from a piece of Early Eocene Indian amber, as well as from the surface of extant resin flows in New Caledonia. The fossil fungus was obtained from the Tarkeshwar Lignite Mine of Gujarat State, western India, and was part of the biota of an early tropical angiosperm rainforest. The amber inclusion represents the second fossil record of Sordariomycetes, as well as the first fossil of its particular order (either Savoryellales or Chaetosphaeriales). The fossil fungus is distinguished from extant representatives by possessing both short conidiophores and small two-septate pyriform conidia, and is described as Monotosporella doerfeltii sp. nov. Inside the amber, the anamorph is attached to its substrate, which is likely the degraded thallus of a cladoniform lichen. The extant New Caledonian species is assigned to Monotosporella setosa. It was found growing on semi-solidified resin flows of Agathis ovata (Araucariaceae), and is the first record of Monotosporella from modern resin substrates. PMID:23063189

  3. Ontogeny and adolescent alcohol exposure in Wistar rats: open field conflict, light/dark box and forced swim test.

    Science.gov (United States)

    Desikan, Anita; Wills, Derek N; Ehlers, Cindy L

    2014-07-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. Studies in animal models have demonstrated that alcohol exposure during adolescence can cause a modification in some aspects of behavioral development, causing the "adolescent phenotype" to be retained into adulthood. However, the "adolescent phenotype" has not been studied for a number of behavioral tests. The objective of the present study was to investigate the ontogeny of behaviors over adolescence/young adulthood in the light/dark box, open field conflict and forced swim test in male Wistar rats. These data were compared to previously published data from rats that received intermittent alcohol vapor exposure during adolescence (AIE) to test whether they retained the "adolescent phenotype" in these behavioral tests. Three age groups of rats were tested (post-natal day (PD) 34-42; PD55-63; PD69-77). In the light/dark box test, younger rats escaped the light box faster than older adults, whereas AIE rats returned to the light box faster and exhibited more rears in the light than controls. In the open field conflict test, both younger and AIE rats had shorter times to first enter the center, spent more time in the center of the field, were closer to the food, and consumed more food than controls. In the forced swim test no clear developmental pattern emerged. The results of the light/dark box and the forced swim test do not support the hypothesis that adolescent ethanol vapor exposure can "lock-in" all adolescent phenotypes. However, data from the open field conflict test suggest that the adolescent and the AIE rats both engaged in more "disinhibited" and food motivated behaviors. These data suggest that, in some behavioral tests, AIE may result in a similar form of behavioral disinhibition to what is seen in adolescence.

  4. Force acting on a dielectric particle in a concentration gradient by ionic concentration polarization under an externally applied DC electric field.

    Science.gov (United States)

    Kang, Kwan Hyoung; Li, Dongqing

    2005-06-15

    There is a concentration-polarization (CP) force acting on a particle submerged in an electrolyte solution with a concentration (conductivity) gradient under an externally applied DC electric field. This force originates from the two mechanisms: (i) gradient of electrohydrodynamic pressure around the particle developed by the Coulombic force acting on induced free charges by the concentration polarization, and (ii) dielectric force due to nonuniform electric field induced by the conductivity gradient. A perturbation analysis is performed for the electric field, the concentration field, and the hydrodynamic field, under the assumptions of creeping flow and small concentration gradient. The leading order component of this force acting on a dielectric spherical particle is obtained by integrating the Maxwell and the hydrodynamic stress tensors. The analytical results are validated by comparing the surface pressure and the skin friction to those of a numerical analysis. The CP force is proportional to square of the applied electric field, effective for electrically neutral particles, and always directs towards the region of higher ionic concentration. The magnitude of the CP force is compared to that of the electrophoretic and the conventional dielectrophoretic forces. PMID:15897097

  5. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments

    Science.gov (United States)

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-01-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs. PMID:21609950

  6. A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy

    CERN Document Server

    Wagenaar, J J T; Donkersloot, R J; Marsman, F; de Wit, M; Bossoni, L; Oosterkamp, T H

    2016-01-01

    We present an innovative method for magnetic resonance force microscopy (MRFM) with ultra-low dissipation, by using the higher modes of the mechanical detector as radio frequency (rf) source. This method allows MRFM on samples without the need to be close to an rf source. Furthermore, since rf sources require currents that give dissipation, our method enables nuclear magnetic resonance experiments at ultra-low temperatures. Removing the need for an on-chip rf source is an important step towards a MRFM which can be widely used in condensed matter physics.

  7. Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation

    OpenAIRE

    Dai, Shibin; Li, Bo; Lu, Jianfeng

    2016-01-01

    We study a phase-field variational model for the solvaiton of charged molecules with an implicit solvent. The solvation free-energy functional of all phase fields consists of the surface energy, solute excluded volume and solute-solvent van der Waals dispersion energy, and electrostatic free energy. The surface energy is defined by the van der Waals--Cahn--Hilliard functional with squared gradient and a double-well potential. The electrostatic part of free energy is defined through the electr...

  8. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.

    Science.gov (United States)

    Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique

    2015-05-15

    QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc.

  9. Prevalence of permanent threshold shifts in the United States Air Force hearing conservation program by career field, 2005-2011.

    Science.gov (United States)

    Lloyd Soderlund, Laurel; McKenna, Elizabeth A; Tastad, Katie; Paul, Marika

    2016-01-01

    The purpose of this study was to describe changes in hearing, using the permanent threshold shift metric, among United States Air Force servicemembers, including active duty, Reserve and Air National Guard components, for demographics, job categories, and career fields. In the United States Air Force, only servicemembers who are occupationally exposed routinely to hazardous noise are monitored. Audiogram records and demographic variables were analyzed for servicemembers from 2005-2011 using data from the Department of Defense system that captures occupational hearing tests worldwide. Results suggest that occupational hearing loss was larger in males than females, in officers than enlisted populations, and in Reserve and Air National Guard than in active duty. Compared to similar civilian career fields, active duty has lower prevalence rates for occupational hearing loss overall, although Reserve and Air National Guard prevalence rates were more similar to the civilian reported rates. The proportion of personnel with permanent threshold shifts varied between 4.6-16.7% within active duty career fields, which includes 76% of the population for study timeframe. Permanent threshold shift was larger in small job categories, and in jobs that are not considered exposed to hazardous noise routinely which is comparative with results from civilian data analysis of occupational hearing loss. Further investigation into testing practices for Air Force specific groups, use of the system for nonoccupational hearing testing, and challenges to follow-up compliance is warranted. Increased surveillance procedures for occupational hearing loss are needed to address concerns on the prevalence of servicemember hearing loss, the role of recreational and lifestyle factors to contribute the high reported hearing loss prevalence of veterans compared to nonveterans. PMID:26720128

  10. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    Science.gov (United States)

    Liu, Minxian; Wang, Yan

    2012-01-01

    In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  11. The SPASIBA Force Field for Studying Iron-Tannins Interactions : Application to Fe3+ /Fe2+ Catechol Complexe

    OpenAIRE

    Vergoten, G; P. Lagant; D. Yapo-Kicho

    2007-01-01

    The SPASIBA force field parameters have been obtained for Fe3+/Fe2+-Oxygen interactions occuring between non-heminic iron and hydroxyl groups of polyphenols found in tannins. These parameters were derived from normal modes analyses based on quantum chemical calculations using the Density Functional Theory (DFT). Four models involving complexation of iron with water ([Fe(H2O)6]3+, [Fe(H2O)6]2+) and with cathechol molecules ([Fe(cat)2(H2O)2]−1, [Fe(cat)2(H2O)2]−2) were studied using the Density...

  12. Mechanism of fiber assembly; treatment of Aβ-peptide aggregation with a coarse-grained united-residue force field

    OpenAIRE

    Rojas, Ana; Liwo, Adam; Browne, Dana; Scheraga, Harold A.

    2010-01-01

    The mechanism of growth of fibrils of the β-amyloid peptide (Aβ) was studied by means of a physics-based coarse-grained united-residue (UNRES) model and molecular dynamics (MD) simulations. To identify the mechanism of monomer addition to an Aβ1–40 fibril, an unstructured monomer was placed at a 20 Å distance from a fibril template, and allowed to interact freely with it. The monomer was not biased towards the fibril conformation, by either the force field or the MD algorithm. By using a coar...

  13. Application of the nuclear field theory to monopole interactions which include all the vertices of a general force

    International Nuclear Information System (INIS)

    The field treatment is applied to the monopole pairing and monopole particle-hole interactions in a two-level model. All the vertices of realistic interactions appear, and the problems treated here have most of the complexities of real nuclei. Yet, the model remains sufficiently simple, so that a close comparison with the results of a (conventional) treatment in which only the fermion degrees of freedom are considered is possible. The applicability to actual physical situations appears to be feasible, both for schematic or realistic forces. The advantage of including the exchange components of the interaction in the construction of the phonon is discussed. (Auth.)

  14. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.

    Science.gov (United States)

    Mannfors, Berit; Palmo, Kim; Krimm, Samuel

    2008-12-11

    Our ab initio transformed spectroscopically determined force field (SDFF) methodology emphasizes, in addition to accurate structure and energy performance, comparable prediction of vibrational properties in order to improve reproduction of interaction forces. It is now applied to the determination of a molecular mechanics (MM) force field for the water monomer and dimer as an initial step in developing a more physically based treatment of the hydrogen bonding that not only underlies condensed-phase water but also must be important in molecular-level protein-water interactions. Essential electrical components of the SDFF for monomer water are found to be the following: an off-plane charge distribution, this distribution consisting of four off-atom charge sites in traditional lone pair (LP) but also in inverted lone pair (ILP) positions; allowance for a diffuse size to these off-atom sites; and the incorporation of charge fluxes (i.e., the change in charge with change in internal coordinate). Parametrization of such an LP/ILP model together with the SDFF analytically transformed valence force field results in essentially exact agreement with ab initio (in this case MP2/6-31++G(d,p)) structure, electrical, and vibrational properties. Although we demonstrate that the properties of this monomer electrical model together with its van der Waals and polarization interactions are transferable to the dimer, this is not sufficient in reproducing comparable dimer properties, most notably the huge increase in infrared intensity of a donor OH stretch mode. This deficiency, which can be eliminated by a large dipole-derivative-determined change in the effective charge flux of the donor hydrogen-bonded OH bond, is not accounted for by the charge flux change in this bond due to the induction effects of the acceptor electric field alone, and can only be fully removed by an added bond flux associated with the extent of overlap of the wave functions of the two molecules. We show that

  15. Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy.

    Science.gov (United States)

    Gu, Yaxu; Jie, Wanqi; Li, Linglong; Xu, Yadong; Yang, Yaodong; Ren, Jie; Zha, Gangqiang; Wang, Tao; Xu, Lingyan; He, Yihui; Xi, Shouzhi

    2016-09-01

    To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed. PMID:27376976

  16. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Liu Minxian, E-mail: liukey_sjtu@263.net [School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Wang Yan [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2012-01-15

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  17. Schwarzschild black hole embedded in a dust field: scattering of particles and drag force effects

    Science.gov (United States)

    Bini, Donato; Geralico, Andrea

    2016-06-01

    A ‘temporal analogue’ of the standard Poynting–Robertson effect is analyzed as induced by a dust of particles (instead of a gas of photons) surrounding a Schwarzschild black hole. Test particles inside this cloud undergo acceleration effects due to the presence of a friction force, so that the fate of their evolution can be completely different from the corresponding geodesic motion. Typical situations are discussed of hyperbolic motion of particles scattered by the black hole in the presence of a dust filling the whole spacetime region outside the horizon as well as particles which free fall radially crossing a corona located at a certain distance from the horizon. The existence of equilibrium orbits may prevent particles from either falling into the hole or escaping to infinity.

  18. Generalization of force-field adaptation in proprioceptively-deafferented subjects.

    Science.gov (United States)

    Lefumat, Hannah Z; Miall, R Chris; Cole, Jonathan D; Bringoux, Lionel; Bourdin, Christophe; Vercher, Jean-Louis; Sarlegna, Fabrice R

    2016-03-11

    Humans have the remarkable ability to adapt their motor behaviour to changes in body properties and/or environmental conditions, based on sensory feedback such as vision and proprioception. The role of proprioception has been highlighted for the adaptation to new upper-limb dynamics, which is known to generalize to the opposite, non-adapted limb in healthy individuals. Such interlimb transfer seems to depend on sensory feedback, and the present study assessed whether the chronic loss of proprioception precludes interlimb transfer of dynamic adaptation by testing two well-characterized proprioceptively-deafferented subjects. These had to reach toward visual targets with vision of the limb. For both deafferented subjects, we observed adaptation of the dominant arm to Coriolis forces and after-effects on non-dominant arm movements in different movement directions, thus indicating interlimb transfer. Overall, our findings show that motor learning can generalize across limbs and movement directions despite the loss of proprioceptive afferents.

  19. Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field.

    Science.gov (United States)

    Gloppe, A; Verlot, P; Dupont-Ferrier, E; Siria, A; Poncharal, P; Bachelier, G; Vincent, P; Arcizet, O

    2014-11-01

    Optomechanics, which explores the fundamental coupling between light and mechanical motion, has made important advances in manipulating macroscopic mechanical oscillators down to the quantum level. However, dynamical effects related to the vectorial nature of the optomechanical interaction remain to be investigated. Here we study a nanowire with subwavelength dimensions coupled strongly to a tightly focused beam of light, enabling an ultrasensitive readout of the nanoresonator dynamics. We determine experimentally the vectorial structure of the optomechanical interaction and demonstrate that a bidimensional dynamical backaction governs the nanowire dynamics. Moreover, the spatial topology of the optomechanical interaction is responsible for novel canonical signatures of strong coupling between mechanical modes, which leads to a topological instability that underlies the non-conservative nature of the optomechanical interaction. These results have a universal character and illustrate the increased sensitivity of nanomechanical devices towards spatially varying interactions, opening fundamental perspectives in nanomechanics, optomechanics, ultrasensitive scanning force microscopy and nano-optics.

  20. The Role of Ascent-Forced Convection in Orographic Precipitation: Results from the DOMEX Field Campaign

    Science.gov (United States)

    Minder, J. R.; Smith, R. B.; Nugent, A. D.; Kirshbaum, D. J.

    2011-12-01

    Shallow convection is a pervasive feature of orographic precipitation, but its detailed role remains poorly understood. The mountainous Caribbean island of Dominica is a natural laboratory for isolating the role of shallow convection in orographic rainfall. It lies in a region of persistent easterly trade wind flow, and receives much of its rainfall from shallow convection that is forced mechanically by ascent of easterly flow over the Dominican terrain. The Dominica Experiment (DOMEX) has focused on convective orographic precipitation over the island from 2007-2011. The first phase of the project developed a climatology of rainfall and theories to explain the observed enhancement over the terrain. The second phase of the project (Apr-May 2011) has provided a detailed view of 20 individual rainfall events with data from: surface gauges, time-lapse photography, operational radar scans, a mountaintop weather station, and both in situ and remote observations from the University of Wyoming King Air research aircraft. Focusing on ascent--forced convection during DOMEX has revealed a number of the key processes that control the rainfall. Upwind of the island, clouds and water vapor anomalies exist that appear to play a crucial role in seeding the convection over the terrain and determining its vigor. Over the windward slopes the air is readily lifted with little flow deflection. Strong convective cells rapidly develop to produce large rainfall rates. Over the lee slopes of the terrain there is an abrupt transition to a deep and turbulent plunging flow that quickly eliminates convective clouds, but allows for the spillover of rainfall. The air that passes over the island is transformed such that low-levels are dried, warmed and decelerated, and the downwind wake becomes less hospitable to trade wind cumuli.