Sample records for alzheimers disease brain

  1. Brain Imaging in Alzheimer Disease (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.


    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  2. Expression of Alzheimer's disease risk genes in ischemic brain degeneration. (United States)

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Januszewski, Sławomir; Kocki, Janusz; Bogucka-Kocka, Anna; Czuczwar, Stanisław J


    We review the Alzheimer-related expression of genes following brain ischemia as risk factors for late-onset of sporadic Alzheimer's disease and their role in Alzheimer's disease ischemia-reperfusion pathogenesis. More recent advances in understanding ischemic etiology of Alzheimer's disease have revealed dysregulation of Alzheimer-associated genes including amyloid protein precursor, β-secretase, presenilin 1 and 2, autophagy, mitophagy and apoptosis. We review the relationship between these genes dysregulated by brain ischemia and the cellular and neuropathological characteristics of Alzheimer's disease. Here we summarize the latest studies supporting the theory that Alzheimer-related genes play an important role in ischemic brain injury and that ischemia is a needful and leading supplier to the onset and progression of sporadic Alzheimer's disease. Although the exact molecular mechanisms of ischemic dependent neurodegenerative disease and neuronal susceptibility finally are unknown, a downregulated expression of neuronal defense genes like alfa-secretase in the ischemic brain makes the neurons less able to resist injury. The recent challenge is to find ways to raise the adaptive reserve of the brain to overcome such ischemic-associated deficits and support and/or promote neuronal survival. Understanding the mechanisms underlying the association of these genes with risk for Alzheimer's disease will provide the most meaningful targets for therapeutic development to date.

  3. Evidence for a membrane defect in Alzheimer disease brain (United States)

    Nitsch, R. M.; Blusztajn, J. K.; Pittas, A. G.; Slack, B. E.; Growdon, J. H.; Wurtman, R. J.


    To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease.

  4. Microprobe PIXE analysis and EDX analysis on the brain of patients with Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S. [Tokyo Univ. (Japan). Faculty of Medicine; Horino, Y.; Mokuno, Y.; Fujii, K.; Kakimi, S.; Mizutani, T.; Matsushima, H.; Ishikawa, A.


    To investigate the cause of Alzheimer`s disease (senile dementia of Alzheimer`s disease type), we examined aluminium (Al) in the brain (hippocampus) of patients with Alzheimer`s disease using heavy ion (5 MeV Si{sup 3+}) microprobe particle-induced X-ray emission (PIXE) analysis. Heavy ion microprobes (3 MeV Si{sup 2+}) have several times higher sensitivity for Al detection than 2 MeV proton microprobes. We also examined Al in the brain of these patients by energy dispersive X-ray spectroscopy (EDX). (1) Al was detected in the cell nuclei isolated from the brain of patients with Alzheimer`s disease using 5 MeV Si{sup 3+} microprobe PIXE analysis, and EDX analysis. (2) EDX analysis demonstrated high levels of Al in the nucleolus of nerve cells in frozen sections prepared from the brain of these patients. Our results support the theory that Alzheimer`s disease is caused by accumulation of Al in the nuclei of brain cells. (author)

  5. Early complement components in Alzheimer's disease brains. (United States)

    Veerhuis, R; Janssen, I; Hack, C E; Eikelenboom, P


    Activation products of the early complement components C1, C4 and C3 can be found colocalized with diffuse and fibrillar beta-amyloid (beta/A4) deposits in Alzheimer's disease (AD) brains. Immunohistochemically, C1-esterase inhibitor (C1-Inh) and the C1 subcomponents C1s and C1r can not, or only occasionally, be detected in plaques or in astrocytes. The present finding that C1q, C1s and C1-Inh mRNA are present in both AD and control brains suggests that the variable immunohistochemical staining results for C1r, C1s and C1-Inh are due to a rapid consumption, and that the inability to detect C1s, C1r or C1-Inh is probably due to the dissociation of C1s-C1-Inh and C1r-C1-Inh complexes from the activator-bound C1q into the fluid phase. Employing monoclonal antibodies specific for different forms of C1-Inh, no complexed C1-Inh could be found, whereas inactivated C1-Inh seems to be present in astrocytes surrounding beta/A4 plaques in AD brains. These findings, together with our finding (using reverse transcriptase-polymerase chain reaction) that C1-Inh is locally produced in the brain, suggest that in the brain complement activation at the C1 level is regulated by C1-Inh. Immunohistochemically, no evidence for the presence of the late complement components C5, C7 and C9, or of the membrane attack complex (MAC), was found in beta/A4 plaques. In contrast to the mRNA encoding the early components, that of the late complement components appears to be hardly detectable (C7) or absent (C9). Thus, without blood-brain-barrier impairment, the late complement components are probably present at too low a concentration to allow the formation of the MAC, which is generally believed to be responsible for at least some of the neurodegenerative effects observed in AD. Therefore, the present findings support the idea that in AD, complement does not function as an inflammatory mediator through MAC formation, but through the action of early component activation products.

  6. Therapeutic Noninvasive Brain Stimulation in Alzheimer's Disease. (United States)

    Gonsalvez, Irene; Baror, Roey; Fried, Peter; Santarnecchi, Emiliano; Pascual-Leone, Alvaro


    Alzheimer's disease (AD) is a looming public health crisis that currently lacks an effective treatment. Noninvasive Brain Stimulation (NBS), particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), offers a promising alternative approach to pharmacological interventions for an increasing number of neurological and psychiatric conditions. The aim of this review is summarize data from therapeutic trials of NBS in AD and other dementing illnesses. Despite the potential of NBS, there is limited theoretical framework and a lack of guidelines for its applications to AD. Several published clinical trials failed to report key parameters of the interventions thus limiting the utility of the study to assess efficacy and safety. Our review concludes with some suggestions for future studies aimed to advance research into NBS as a potential treatment for the symptoms and disabilities caused by AD and to enable comparison of results across trials. Ultimately, appropriately powered, and controlled, multi-site randomized clinical trials will be needed to evaluate the therapeutic potential of NBS in AD.

  7. Aluminium in brain tissue in familial Alzheimer's disease. (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher


    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease.

  8. Brain aging, Alzheimer's disease, and mitochondria


    Swerdlow, Russell H.


    The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the ...

  9. The rationale for deep brain stimulation in Alzheimer's disease. (United States)

    Mirzadeh, Zaman; Bari, Ausaf; Lozano, Andres M


    Alzheimer's disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer's disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer's disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer's disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials.

  10. Brain imaging of mild cognitive impairment and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Changhao Yin; Siou Li; Weina Zhao; Jiachun Feng


    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed.

  11. Neuroprotective Effect against Alzheimer's Disease of Porcine Brain Extract

    Directory of Open Access Journals (Sweden)

    Wipawee Thukham-Mee


    Full Text Available Problem statement: Despite the increasing importance of Alzheimer’s disease, no effective therapeutic strategy is available. Therefore, neuroprotective strategy is still required. Recent findings show that numerous substances possessing antioxidant can improve neurodegeneration and memory impairment. Based on the antioxidant effect and its reputation to serve as brain tonic in traditional folklore, we hypothesized that porcine brain extract could mitigate neurodegeneration and memory impairment. Therefore, this study was set up to determine the effect of porcine brain extract on memory impairment and neurodegeneration in animal models of Alzheimer’s disease. Approach: Male Wistar rats (180-220 g had been orally given porcine brain extract at doses of 0.5 and 2.5 mg kg-1 BW for a period of 4 weeks before and 1 week after the induction of cognitive deficit condition as those found in early phase of Alzheimer’s disease via the intraventricular injection of AF64A, a cholinotoxin. Rats were assessed the spatial memory using Morris water maze test. Then, they were determined neuron density in hippocampus using histological techniques. Moreover, the assessment of acetylcholinesterase (AChE activity and malondialdehyde (MDA level in hippocampus were also performed. Results: It was found that both doses of porcine brain extract could enhance memory, neuron and cholinergic neuron density in all subregions of hippocampus. In addition, the decreased AChE and MDA were also observed. Therefore, our results suggested that the possible underlying mechanism of the extract might occur partly via the decrease in oxidative stress marker, MDA and AChE. Conclusion: This study clearly demonstrates that porcine brain extract can protect against memory impairment and neurodegeneration in animal model of Alzheimer’s disease. Therefore, it should be serve as the potential food supplement or adjuvant therapy against Alzheimer’s disease and other age-related cognitive

  12. [Does acidosis in brain play a role in Alzheimer's disease?]. (United States)

    Pirchl, Michael; Humpel, Christian


    Alzheimer's disease is characterized by beta-amyloid plaques, tau pathology, cell death of cholinergic neurons, inflammatory processes and cerebrovascular damage. The reasons for the development of this chronic disease are not known yet. We hypothesize that chronic long lasting mild damage of the cerebrovascular brain capillaries cause hypoperfusion, acidosis and neurodegeneration, and induces a cell death cascade with beta-amyloid dysfunction and tau-pathology and inflammation. Vascular risk factors, such as hyperhomocysteinemia or hypercholesterolemia, may play a role in this process. The accumulation of chronic silent strokes may cause cognitive defects as seen in vascular dementia and Alzheimer's disease. This summary tries to link the different events, which occur in Alzheimer's disease, focusing on the cerebrovascular hypothesis.

  13. Lipidomics of human brain aging and Alzheimer's disease pathology. (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald


    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.

  14. Alzheimer Disease (United States)

    ... Emergency Room? What Happens in the Operating Room? Alzheimer Disease KidsHealth > For Kids > Alzheimer Disease A A A ... slow it down. When Someone You Love Has Alzheimer Disease You might feel sad or angry — or both — ...

  15. Alzheimer and vascular brain diseases: Focal and diffuse subforms

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Alois Alzheimer is best known for his description of the pre-senile neurodegenerative disease named after him. However, his previous interest in vascular brain diseases, underlying cognitive and behavioral changes, was very strong. Besides describing the Arteriosclerotic atrophy of the brain and the arteriosclerotic subtype of Senile dementia which he viewed as main forms of vascular brain diseases, he also identified and described a series of conditions he considered subforms. These may be divided, as suggested by the authors of the present paper, into 3 groups: gliosis and sclerosis, subcortical atrophies, and apoplectic. The subforms of the three groups present characteristic neuropathological features and clinical, cognitive and behavioral manifestations. These provide the basis, together with part of the main forms, for the contemporary condition known as Vascular Cognitive Impairment.

  16. Genetic control of human brain transcript expression in Alzheimer disease. (United States)

    Webster, Jennifer A; Gibbs, J Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L; Joshipura, Keta; Huentelman, Matthew J; Hu-Lince, Diane; Coon, Keith D; Craig, David W; Pearson, John V; Heward, Christopher B; Reiman, Eric M; Stephan, Dietrich; Hardy, John; Myers, Amanda J


    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.

  17. Genetics Home Reference: Alzheimer disease (United States)

    ... Me Understand Genetics Home Health Conditions Alzheimer disease Alzheimer disease Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Alzheimer disease is a degenerative disease of the brain ...

  18. Regional brain stiffness changes across the Alzheimer's disease spectrum. (United States)

    Murphy, Matthew C; Jones, David T; Jack, Clifford R; Glaser, Kevin J; Senjem, Matthew L; Manduca, Armando; Felmlee, Joel P; Carter, Rickey E; Ehman, Richard L; Huston, John


    Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology.

  19. Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls. (United States)

    Barnes, Josephine; Carmichael, Owen T; Leung, Kelvin K; Schwarz, Christopher; Ridgway, Gerard R; Bartlett, Jonathan W; Malone, Ian B; Schott, Jonathan M; Rossor, Martin N; Biessels, Geert Jan; DeCarli, Charlie; Fox, Nick C


    This study assessed relationships among white matter hyperintensities (WMH), cerebrospinal fluid (CSF), Alzheimer's disease (AD) pathology markers, and brain volume loss. Subjects included 197 controls, 331 individuals with mild cognitive impairment (MCI), and 146 individuals with AD with serial volumetric 1.5-T MRI. CSF Aβ1-42 (n = 351) and tau (n = 346) were measured. Brain volume change was quantified using the boundary shift integral (BSI). We assessed the association between baseline WMH volume and annualized BSI, adjusting for intracranial volume. We also performed multiple regression analyses in the CSF subset, assessing the relationships of WMH and Aβ1-42 and/or tau with BSI. WMH burden was positively associated with BSI in controls (p = 0.02) but not MCI or AD. In multivariable models, WMH (p = 0.003) and Aβ1-42 (p = 0.001) were independently associated with BSI in controls; in MCI Aβ1-42 (p brain atrophy in the context of AD pathology in pre-dementia stages.

  20. Clearance systems in the brain-implications for Alzheimer disease. (United States)

    Tarasoff-Conway, Jenna M; Carare, Roxana O; Osorio, Ricardo S; Glodzik, Lidia; Butler, Tracy; Fieremans, Els; Axel, Leon; Rusinek, Henry; Nicholson, Charles; Zlokovic, Berislav V; Frangione, Blas; Blennow, Kaj; Ménard, Joël; Zetterberg, Henrik; Wisniewski, Thomas; de Leon, Mony J


    Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.

  1. Loss of functional GABAA receptors in the Alzheimer diseased brain (United States)

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Miledi, Ricardo


    The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain. PMID:22691495

  2. Brain imaging of neurovascular dysfunction in Alzheimer's disease. (United States)

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V


    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  3. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe? (United States)


    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  4. Alois Alzheimer and vascular brain disease: Arteriosclerotic atrophy of the brain

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Alois Alzheimer is best known for his description of neurofibrillary changes in brain neurons of a demented patient, identifying a novel disease, soon named after him by Kraepelin. However, the range of his studies was broad, including vascular brain diseases, published between 1894 and 1902. Alzheimer described the clinical picture of Arteriosclerotic atrophy of the brain, differentiating it from other similar disorders. He stated that autopsy allowed pathological distinction between arteriosclerosis and syphilis, thereby achieving some of his objectives of segregating disorders and separating them from syphilis. His studies contributed greatly to establishing the key information on vascular brain diseases, predating the present state of knowledge on the issue, while providing early descriptions of what would be later regarded as the dimensional presentation of the now called "Vascular cognitive impairment", constituted by a spectrum that includes a stage of "Vascular cognitive impairment not dementia" and another of "Vascular dementia".

  5. Increased caveolin-1 expression in Alzheimer's disease brain. (United States)

    Gaudreault, Sophie B; Dea, Doris; Poirier, Judes


    Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.

  6. Brain Imaging of Nicotinic Receptors in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Jin Wu


    Full Text Available Neuronal nicotinic acetylcholine receptors (nAChRs are a family of ligand-gated ion channels which are widely distributed in the human brain. Several lines of evidence suggest that two major subtypes (α4β2 and α7 of nAChRs play an important role in the pathophysiology of Alzheimer's disease (AD. Postmortem studies demonstrated alterations in the density of these subtypes of nAChRs in the brain of patients with AD. Currently, nAChRs are one of the most attractive therapeutic targets for AD. Therefore, several researchers have made an effort to develop novel radioligands that can be used to study quantitatively the distribution of these two subtypes in the human brain with positron emission tomography (PET and single-photon emission computed tomography (SPECT. In this paper, we discuss the current topics on in vivo imaging of two subtypes of nAChRs in the brain of patients with AD.

  7. Coexistence of reactive plasticity and neurodegeneration in Alzheimer diseased brains. (United States)

    Guevara, J; Dilhuydy, H; Espinosa, B; Delacourte, A; Quirion, R; Mena, R; Joanette, Y; Zenteno, E; Robitaille, Y


    Alzheimer's disease (AD) is a pathological process characterized by neuron degeneration and, as recently suggested, brain plasticity. In this work, we compared the reactive plasticity in AD brains associated to O-glycosydically linked glycans, recognized by lectins from Amaranthus leucocarpus (ALL) and Macrobrachium rosenbergii (MRL), and the tau neuritic degeneration. The neuritic degenerative process was evaluated by the quantification of aggregated neuritic structures. Lesions were determined using antibodies against hyperphosphorylated-tau (AD2), amyloid-beta, and synaptophysin. In these conditions, we classified and quantified three pathological structures associated to the neuritic degenerative process: 1) Amyloid-beta deposits (AbetaDs), 2) Classic neuritic plaques (NPs), and 3) Dystrophic neurites clusters (DNCs) lacking amyloid-beta deposits. Reactive plasticity structures were constituted by meganeuritic clusters (MCs) and peri-neuronal sprouting in neurons of the CA4 region of the hippocampus, immunoreactive to synaptophysin (exclusively in AD brains) and GAP-43. Besides, MCs were associated to sialylated O-glycosydically linked glycans as determined by positive labeling with ALL and MRL. Considering that these lectins are specific for the synaptic sprouting process in AD, our results suggest the co-occurrence of of several areas of reactive plasticity and neuron degeneration in AD.

  8. Tau protein in normal and Alzheimer's disease brain: an update. (United States)

    Johnson, G V; Hartigan, J A


    Tau is a microtubule-associated protein that, in a hyperphosphorylated form, comprises the main component of the paired helical filaments and neurofibrillary tangles found in Alzheimer's Disease (AD) brain. It is therefore important to understand the normal functioning and processing of tau protein, and the abnormal posttranslational processing of tau in AD pathology. In 1996, Johnson and Jenkins reviewed the literature on the biochemistry, function, and phosphorylation of tau in normal and AD brain. Since that time, numerous publications have come out further elucidating the properties of tau. The present review updates the topics originally covered in the 1996 review, as well as presents a number of new topics. For example, mutations in the tau gene have been found in several non-AD, autosomal dominant neurodegenerative disorders that exhibit extensive neurofibrillary pathology. In addition, there is increasing evidence that tau may be involved in signal transduction, organelle transport, and cell growth, independent of its microtubule-binding functions. Taken together, the research reviewed here demonstrates that tau is a very complex protein with various functions that are intricately regulated. It is clear that more research is required to completely understand the functions and regulation of tau in normal and AD brain.

  9. Alzheimer's disease gene signature says: beware of brain viral infections

    Directory of Open Access Journals (Sweden)

    Ianni Manuela


    Full Text Available Abstract Background Recent findings from a genome wide association investigation in a large cohort of patients with Alzheimer's disease (AD and non demented controls (CTR showed that a limited set of genes was in a strong association (p > l0-5 with the disease. Presentation of the hypothesis In this report we suggest that the polymorphism association in 8 of these genes is consistent with a non conventional interpretation of AD etiology. Nectin-2 (NC-2, apolipoprotein E (APOE, glycoprotein carcinoembryonic antigen related cell adhesion molecule- 16 (CEACAM-16, B-cell lymphoma-3 (Bcl-3, translocase of outer mitochondrial membrane 40 homolog (T0MM-40, complement receptor-1 (CR-l, APOJ or clusterin and C-type lectin domain A family-16 member (CLEC-16A result in a genetic signature that might affect individual brain susceptibility to infection by herpes virus family during aging, leading to neuronal loss, inflammation and amyloid deposition. Implications of the hypothesis We hypothesized that such genetic trait may predispose to AD via complex and diverse mechanisms each contributing to an increase of individual susceptibility to brain viral infections

  10. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga


    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  11. Alzheimer's Disease (United States)

    ... to note that Alzheimer's disease is not a normal part of aging. What Is Alzheimer's Disease? Video length: 2 min 29 sec Click to watch this video The course of Alzheimer’s disease—which symptoms appear and how quickly changes occur—varies from person to person. The time ...

  12. A derangement of the brain wound healing process may cause some cases of Alzheimer's disease. (United States)

    Lehrer, Steven; Rheinstein, Peter H


    A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process.

  13. Neuroinflammation in the Aging Down Syndrome Brain; Lessons from Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Donna M. Wilcock


    Full Text Available Down syndrome (DS is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50–70% of DS patients showing dementia by 60–70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation in the DS brain and how the genetics of DS may alter this inflammatory response and change the course of disease in the DS brain. The goal of this review is to highlight our current understanding of inflammation in Alzheimer's disease and predict how inflammation may affect the pathology of the DS brain based on this information and the known genetic changes that occur due to triplication of chromosome 21.

  14. Neuroinflammation in the aging down syndrome brain; lessons from Alzheimer's disease. (United States)

    Wilcock, Donna M


    Down syndrome (DS) is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50-70% of DS patients showing dementia by 60-70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation in the DS brain and how the genetics of DS may alter this inflammatory response and change the course of disease in the DS brain. The goal of this review is to highlight our current understanding of inflammation in Alzheimer's disease and predict how inflammation may affect the pathology of the DS brain based on this information and the known genetic changes that occur due to triplication of chromosome 21.

  15. Evidence for enhanced aluminum concentration in brain tissue from Alzheimer's disease patients using PIXE (United States)

    Debray, M. E.; Kreiner, A. J.; Buhler, M.; Cardona, M. A.; Hojman, D.; Kesque, J. M.; Levinton, G.; Menéndez, J. J.; Naab, F.; Ozafrán, M. J.; Somacal, H.; Vázquez, M. E.; Grahmann, H.; Davidson, M.; Davidson, J.; Levin, M. E.; Mangone, C. A.; Caccuri, R. L.; Tokuda, A.; Eurnekian, A. A.; González, D.; López, C.; Roses, O. E.


    The Particle Induced X-Ray Emission (PIXE) analytical technique with 16O ion beams (18 MeV) was applied to the study of elemental composition at different brain regions of patients with a confirmed post-mortem diagnosis of Alzheimer's disease and in samples from control subjects. The results obtained in the actual study show a clear correlation between occurrence of Alzheimer's disease and the presence and increased concentration of aluminum (Al).

  16. Mechanisms linking brain insulin resistance to Alzheimer's disease


    Maria Niures P.S. Matioli; Ricardo Nitrini


    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dy...

  17. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Benito Minjarez


    Full Text Available Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article “Identification of proteins that are differentially expressed in brains with Alzheimer’s disease using iTRAQ labeling and tandem mass spectrometry” (Minjarez et al., 2016 [1].

  18. Neuroinflammation in Alzheimer's disease

    NARCIS (Netherlands)

    Heneka, Michael T.; Carson, Monica J.; El Khoury, Joseph; Landreth, Gary E.; Brosseron, Frederic; Feinstein, Douglas L.; Jacobs, Andreas H.; Wyss-Coray, Tony; Vitorica, Javier; Ransohoff, Richard M.; Herrup, Karl; Frautschy, Sally A.; Finsen, Bente; Brown, Guy C.; Verkhratsky, Alexei; Yamanaka, Koji; Koistinaho, Jari; Latz, Eicke; Halle, Annett; Petzold, Gabor C.; Town, Terrence; Morgan, Dave; Shinohara, Mari L.; Perry, V. Hugh; Holmes, Clive; Bazan, Nicolas G.; Brooks, David J.; Hunot, Stephane; Joseph, Bertrand; Deigendesch, Nikolaus; Garaschuk, Olga; Boddeke, Erik; Dinarello, Charles A.; Breitner, John C.; Cole, Greg M.; Golenbock, Douglas T.; Kummer, Markus P.


    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigg

  19. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. (United States)

    van Assema, Daniëlle M E; Lubberink, Mark; Bauer, Martin; van der Flier, Wiesje M; Schuit, Robert C; Windhorst, Albert D; Comans, Emile F I; Hoetjes, Nikie J; Tolboom, Nelleke; Langer, Oliver; Müller, Markus; Scheltens, Philip; Lammertsma, Adriaan A; van Berckel, Bart N M


    A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic

  20. Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI

    DEFF Research Database (Denmark)

    Erleben, Lene Lillemark; Sørensen, Lauge Emil Borch Laurs; Pai, Akshay Sadananda Uppinakudru;


    BACKGROUND:Alzheimer's disease (AD) is a progressive, incurable neurodegenerative disease and the most common type of dementia. It cannot be prevented, cured or drastically slowed, even though AD research has increased in the past 5-10 years. Instead of focusing on the brain volume or on the single...

  1. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease. (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz


    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  2. Coexistence of reactive plasticity and neurodegeneration in Alzheimer diseased brains


    J. Guevara; Dilhuydy, H.; Espinosa, B.; Delacourte, A; Quirion, R; Mena, R.; Joanette, Y.; Zenteno, E; Robitaille, Y


    Alzheimer’s disease (AD) is a pathological process characterized by neuron degeneration and, as recently suggested, brain plasticity. In this work, we compared the reactive plasticity in AD brains associated to O-glycosydically linked glycans, recognized by lectins from Amaranthus leucocarpus (ALL) and Macrobrachium rosenbergii (MRL), and the tau neuritic degeneration. The neuritic degenerative process was evaluated by the quantification of aggregated neuritic ...

  3. Neuroimaging and genetic risk for Alzheimer's disease and addiction-related degenerative brain disorders. (United States)

    Roussotte, Florence F; Daianu, Madelaine; Jahanshad, Neda; Leonardo, Cassandra D; Thompson, Paul M


    Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer's disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.

  4. Familial Alzheimer's disease: genetic analysis related to disease heterogeneity, Down syndrome and human brain evolution. (United States)

    Schapiro, M B; Rapoport, S I


    Etiologically heterogeneous subgroups of patients with Alzheimer's disease (AD) exist and need to be distinguished so as to better identify genetic causes of familial cases. Furthermore, the presence of AD neuropathology in Down syndrome (trisomy 21) subjects older than 35 years suggests that AD in some cases is caused by dysregulation of expression of genes on chromosome 21. Cerebral metabolic abnormalities in life, and the distribution of AD neuropathology in the post-mortem brain, indicate that AD involves the association neocortices and subcortical regions with which they evolved during evolution of the human brain. Accordingly, understanding the molecular basis of this evolution should elucidate the genetic basis of AD, whereas knowing the genetics of AD should be informative about the genomic changes which promoted brain evolution.

  5. Neuroinflammation in Alzheimer's disease

    DEFF Research Database (Denmark)

    Heneka, Michael T; Carson, Monica J; Khoury, Joseph El


    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia......, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded...... therapeutic or preventive strategies for Alzheimer's disease....

  6. Effect of Transcranial Brain Stimulation for the Treatment of Alzheimer Disease: A Review


    Raffaele Nardone; Jürgen Bergmann; Monica Christova; Francesca Caleri; Frediano Tezzon; Gunther Ladurner; Eugen Trinka; Stefan Golaszewski


    Available pharmacological treatments for Alzheimer disease (AD) have limited effectiveness, are expensive, and sometimes induce side effects. Therefore, alternative or complementary adjuvant therapeutic strategies have gained increasing attention. The development of novel noninvasive methods of brain stimulation has increased the interest in neuromodulatory techniques as potential therapeutic tool for cognitive rehabilitation in AD. In particular, repetitive transcranial magnetic stimulat...

  7. Microprobe PIXE analysis of aluminium in the brains of patients with Alzheimer's disease (United States)

    Yumoto, S.; Horino, Y.; Mokuno, Y.; Kakimi, S.; Fujii, K.


    To investigate the cause of Alzheimer's disease (senile dementia), we examined aluminium (Al) in the rat liver, and in the brains (hippocampus) of Alzheimer's disease patients using heavy ion (5 MeV Si 3+) microprobe and proton (2 MeV) microprobe PIXE analysis. Heavy ion microprobes (3 MeV Si 2+) have several time's higher sensitivity for Al detection than 2 MeV proton microprobes. (1) In the rat liver, Al was detected in the cell nuclei, where phosphorus (P) was most densely distributed. (2) We also demonstrated Al in the cell nuclei isolated from Alzheimer's disease brains using heavy ion (5 MeV Si 3+) microprobes. Al spectra were detected using 2 MeV proton microprobes in the isolated brain cell nuclei. Al could not be observed in areas where P was present in relatively small amounts, or was absent. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of Al in the nuclei of brain cells.

  8. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. (United States)

    Narayan, Pritika J; Lill, Claire; Faull, Richard; Curtis, Maurice A; Dragunow, Mike


    Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue. Changes in acetyl histone levels were proportional to changes in total histone levels. The increase in acetyl histone H3 and H4 was observed in Neuronal N immunopositive pyramidal neurons in Alzheimer's disease brain. Using immunolabelling, histone markers correlated significantly with the level of glial fibrillary acidic protein and HLA-DP, -DQ and -DR immunopositive cells and with the pathological hallmarks of Alzheimer's disease (hyperphosphorylated tau load and β-amyloid plaques). Given that histone acetylation changes were correlated with changes in total histone protein, it was important to evaluate if protein degradation pathways may be compromised in Alzheimer's disease. Consequently, significant positive correlations were also found between ubiquitin load and histone modifications. The relationship between histone acetylation and ubiquitin levels was further investigated in an in vitro model of SK-N-SH cells treated with the proteasome inhibitor Mg132 and the histone deacetylase inhibitor valproic acid. In this model, compromised protein degradation caused by Mg132 lead to elevated histone

  9. Neuroinflammation in the Aging Down Syndrome Brain; Lessons from Alzheimer's Disease


    Wilcock, Donna M.


    Down syndrome (DS) is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50–70% of DS patients showing dementia by 60–70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation ...

  10. Synchrotron FTIR microspectroscopy of Alzheimer's diseased brain tissue at the SRC beamline (United States)

    Bromberg, Pam S.; Gough, Kathleen M.; Ogg, Mandy; Del Bigio, M. R.; Julian, Robert


    Alzheimer's Disease is a neurodegenerative disorder marked by progressive cognitive decline. AD presents with many of the same clinical symptoms as senile dementia, but the diagnosis of AD must be confirmed by post-mortem examination of the morphological and histopathological features of the brain. The two classical lesions found in the cortical and hippocampal regions of the brain are the (beta) -amyloid- bearing neuritic plaques and the intraneuronal neurofibrillary tangles.

  11. Acidity and Acid-Sensing Ion Channels in the Normal and Alzheimer's Disease Brain. (United States)

    Gonzales, Eric B; Sumien, Nathalie


    Alzheimer's disease prevalence has reached epidemic proportion with very few treatment options, which are associated with a multitude of side effects. A potential avenue of research for new therapies are protons, and their associated receptor: acid-sensing ion channels (ASIC). Protons are often overlooked neurotransmitters, and proton-gated currents have been identified in the brain. Furthermore, ASICs have been determined to be crucial for proper brain function. While there is more work to be done, this review is intended to highlight protons as neurotransmitters and their role along with the role of ASICs within physiological functioning of the brain. We will also cover the pathophysiological associations between ASICs and modulators of ASICs. Finally, this review will sum up how the studies of protons, ASICs and their modulators may generate new therapeutic molecules for Alzheimer's disease and other neurodegenerative diseases.

  12. Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer's disease neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Robyn A Honea

    Full Text Available There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF, may impact aging and Alzheimer's Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs impact Alzheimer's Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer's Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154 who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met, rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459. We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108. No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850. We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD

  13. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases. (United States)

    Murray, Alison D; Staff, Roger T; McNeil, Christopher J; Salarirad, Sima; Ahearn, Trevor S; Mustafa, Nazahah; Whalley, Lawrence J


    The cognitive reserve hypothesis explains the disparity between clinical and pathological phenotypes and why, in two individuals with the same extent of neuropathology, one may be demented while the other remains cognitively intact. We examined the balance between brain magnetic resonance imaging measures of the two most common pathologies associated with brain ageing, cerebrovascular disease and Alzheimer's disease, and parameters of cerebral reserve in well-characterized participants born in 1936, for whom childhood intelligence is known. Brain magnetic resonance imaging was carried out at 1.5T using fluid attenuation inversion recovery and T(1)-weighted volumetric sequences in 249 participants. Cerebrovascular disease was quantified by measuring brain white matter hyperintensities on fluid attenuation inversion recovery images using Scheltens' scale and Alzheimer's disease was measured from volumetric data using FreeSurfer to extract whole brain volume and hippocampal volumes in turn. The effect of these measures of brain burden on life-long cognitive ageing from the age of 11 to 68 years was compared with the effect of educational attainment and occupational grade using structural equation modelling. Complete brain burden and reserve data were available in 224 participants. We found that educational attainment, but not occupation, has a measurable and positive effect, with a standardized regression weight of +0.23, on late life cognitive ability in people without cognitive impairment aged 68 years, allowing for the influence of childhood intelligence and the two most common subclinical brain pathological burdens in the ageing brain. In addition, we demonstrate that the magnitude of the contribution of education is greater than the negative impact of either neuropathological burden alone, with standardized regression weights of -0.14 for white matter hyperintensities and -0.20 for hippocampal atrophy. This study illustrates how education counteracts the

  14. Treatments for Alzheimer's Disease (United States)

    ... 3900 Find your chapter: search by state Home > Alzheimer's Disease > Treatments Overview What Is Dementia? What Is Alzheimer's? ... and move closer to a cure. Treatments for Alzheimer's disease Currently, there is no cure for Alzheimer's. But ...

  15. [Alzheimer and the discovery of Alzheimer's disease]. (United States)

    Zhagn, Lili; Li, Zhiping


    Alzheimer was born in Germany in 1864. In 1887, Alzheimer graduated with a medical doctor degree at the University of Würzburg. In 1888, Alzheimer began to work in the Community Hospital for Mental and Epileptic Patients in Frankfurt am Main for 14 years. During this time, Alzheimer published the six-volume Histologic and Histopathologic Studies of the Cerebral Cortex, with co-author Franz Nissl. In 1903, Alzheimer came to work in the Royal Psychiatric Clinic of the University of Munich. One year later, he published his postdoctoral paper of Histological Studies about the Differential Diagnosis of Progressive Paralysis in 1904. In 1912, Alzheimer was provided the chair of psychiatry at the University of Breslau. On the way to Breslau, Alzheimer got sick, and eventually died in 1915. In 1906, Alzheimer found numerous amyloid plaques and neurofibrillary tangles in the brain of a patient called Auguste under the microscope. In November of the same year, Alzheimer gave a lecture about Auguste's case at the 37(th) Conference of South-West German Psychiatrists in Tübingen, which received little attention. In 1910, Kraepelin mentioned "Alzheimer's disease" for the first time to name the disease of what Auguste got in the 8th edition of Handbook of Psychiatry. Therefore, Alzheimer achieved worldwide recognition.

  16. PIXE analysis of low concentration aluminum in brain tissues of an Alzheimer's disease patient (United States)

    Ishihara, R.; Hanaichi, T.; Takeuchi, T.; Ektessabi, A. M.


    An excess accumulation and presence of metal ions may significantly alter a brain cell's normal functions. There have been increasing efforts in recent years to measure and quantify the density and distribution of excessive accumulations of constituent elements (such as Fe, Zn, Cu, and Ca) in the brain, as well as the presence and distribution of contaminating elements (such as Al). This is particularly important in cases of neuropathological disorders such as Alzheimer's disease, Parkinson's disease and ALS. The aim of this paper was to measure the Al present in the temporal cortex of the brain of an Alzheimer's disease patient. The specimens were taken from an unfixed autopsy brain which has been preserved for a period of 4 years in the deep freezer at -80 °C. Proton Induced X-ray Emission Spectroscopy was used for the measurement of Al concentration in this brain tissue. A tandem accelerator with 2 MeV of energy was also used. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorbers were removed. The results show that the peak height depends on the measurement site. However, in certain cases an extremely high concentration of Al was observed in the PIXE spectra, with an intensity higher than those in the other major elements of the brain's matrix element. Samples from tissues affected by the same disease were analyzed using the EDX analyzer. The results are quantitatively in very good agreement with those of the PIXE analysis.

  17. Energy and the Alzheimer brain. (United States)

    Mamelak, Mortimer


    The high energy demands of the poorly myelinated long axon hippocampal and cortical neurons render these neurons selectively vulnerable to degeneration in Alzheimer's disease. However, pathology engages all of the major elements of the neurovascular unit of the mature Alzheimer brain, the neurons, glia and blood vessels. Neurons present with retrograde degeneration of the axodendritic tree, capillaries with string vessels and markedly reduced densities and glia with signs of inflammatory activation. The neurons, capillaries and astrocytes of the mature Alzheimer brain harbor structurally defective mitochondria. Clinically, reduced glucose utilization, decades before cognitive deterioration, betrays ongoing energy insufficiency. β-hydroxybutyrate and γ-hydroxybutyrate can both provide energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's disease demonstrate their ability to reverse the pathological changes in the Alzheimer brain and initial clinical trials reveal their ability to improve cognition and every day function. Supplying the brain with energy holds great promise for delaying the onset of Alzheimer's disease and slowing its progress.

  18. Useful Information on...Alzheimer's Disease. (United States)

    Cohen, Gene D.

    This brochure provides information on Alzheimer's disease by examining who gets Alzheimer's disease and what to expect when someone has Alzheimer's disease. Abnormal brain tissue findings are discussed and three clinical features of Alzheimer's disease are listed: dementia; insidious onset of symptoms; and exclusion of all other specific causes of…

  19. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease. (United States)

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E


    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease.

  20. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease. (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W


    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  1. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. (United States)

    Kurbatskaya, Ksenia; Phillips, Emma C; Croft, Cara L; Dentoni, Giacomo; Hughes, Martina M; Wade, Matthew A; Al-Sarraj, Safa; Troakes, Claire; O'Neill, Michael J; Perez-Nievas, Beatriz G; Hanger, Diane P; Noble, Wendy


    Alterations in calcium homeostasis are widely reported to contribute to synaptic degeneration and neuronal loss in Alzheimer's disease. Elevated cytosolic calcium concentrations lead to activation of the calcium-sensitive cysteine protease, calpain, which has a number of substrates known to be abnormally regulated in disease. Analysis of human brain has shown that calpain activity is elevated in AD compared to controls, and that calpain-mediated proteolysis regulates the activity of important disease-associated proteins including the tau kinases cyclin-dependent kinase 5 and glycogen kinase synthase-3. Here, we sought to investigate the likely temporal association between these changes during the development of sporadic AD using Braak staged post-mortem brain. Quantification of protein amounts in these tissues showed increased activity of calpain-1 from Braak stage III onwards in comparison to controls, extending previous findings that calpain-1 is upregulated at end-stage disease, and suggesting that activation of calcium-sensitive signalling pathways are sustained from early stages of disease development. Increases in calpain-1 activity were associated with elevated activity of the endogenous calpain inhibitor, calpastatin, itself a known calpain substrate. Activation of the tau kinases, glycogen-kinase synthase-3 and cyclin-dependent kinase 5 were also found to occur in Braak stage II-III brain, and these preceded global elevations in tau phosphorylation and the loss of post-synaptic markers. In addition, we identified transient increases in total amyloid precursor protein and pre-synaptic markers in Braak stage II-III brain, that were lost by end stage Alzheimer's disease, that may be indicative of endogenous compensatory responses to the initial stages of neurodegeneration. These findings provide insight into the molecular events that underpin the progression of Alzheimer's disease, and further highlight the rationale for investigating novel treatment

  2. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham


    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  3. Should Alzheimer's disease be equated with human brain ageing? A maladaptive interaction between brain evolution and senescence. (United States)

    Neill, David


    In this review Alzheimer's disease is seen as a maladaptive interaction between human brain evolution and senescence. It is predicted to occur in everyone although does not necessarily lead to dementia. The pathological process is initiated in relation to a senescence mediated functional down-regulation in the posteromedial cortex (Initiation Phase). This leads to a loss of glutamatergic excitatory input to layer II entorhinal cortex neurons. A human specific maladaptive neuroplastic response is initiated in these neurons leading to neuronal dysfunction, NFT formation and death. This leads to further loss of glutamatergic excitatory input and propagation of the maladaptive response along excitatory pathways linking evolutionary progressed vulnerable neurons (Propagation Phase). Eventually neurons are affected in many brain areas resulting in dementia. Possible therapeutic approaches include enhancing glutamatergic transmission. The theory may have implications with regards to how Alzheimer's disease is classified.

  4. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. (United States)

    Barrachina, Marta; Ferrer, Isidre


    DNA methylation occurs predominantly at cytosines that precede guanines in dinucleotide CpG sites; it is one of the most important mechanisms for epigenetic DNA regulation during normal development and for aberrant DNA in cancer. To determine the feasibility of DNA methylation studies in the postmortem human brain, we evaluated brain samples with variable postmortem artificially increased delays up to 48 hours. DNA methylation was analyzed in selected regions of MAPT, APP, and PSEN1 in the frontal cortex and hippocampus of controls (n=26) and those with Alzheimer disease at Stages I to II (n=17); Alzheimer disease at Stages III to IV (n=15); Alzheimer disease at Stages V to VI (n=12); argyrophilic grain disease (n=10); frontotemporal lobar degeneration linked to tau mutations (n=6); frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions (n=4); frontotemporal lobar degeneration with motor neuron disease (n=3); Pick disease (n=3); Parkinson disease (n=8); dementia with Lewy bodies, pure form (n=5); and dementia with Lewy bodies, common form (n=15). UCHL1 (ubiquitin carboxyl-terminal hydrolase 1 gene) was analyzed in the frontal cortex of controls and those with Parkinson disease and related synucleinopathies. DNA methylation sites were very reproducible in every case. No differences in the percentage of CpG methylation were found between control and disease samples or among the different pathological entities in any region analyzed. Because small changes in methylation of DNA promoters in vulnerable cells might have not been detected in total homogenates, however, these results should be interpreted with caution, particularly as they relate to chronic degenerative diseases in which small modifications may be sufficient to modulate disease progression.

  5. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease. (United States)

    Leskovjan, Andreana C; Kretlow, Ariane; Lanzirotti, Antonio; Barrea, Raul; Vogt, Stefan; Miller, Lisa M


    Elevated brain iron content, which has been observed in late-stage human Alzheimer's disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the cortex and hippocampus using X-ray fluorescence microscopy (XFM). We found that iron in the cortex was 34% higher than age-matched controls at an early stage, corresponding to the commencement of plaque formation. The elevated iron was not associated with the amyloid plaques. Interestingly, none of the metal ions were elevated in the amyloid plaques until the latest time point (56 weeks), where only the Zn content was significantly elevated by 38%. Since neuropathological changes in human Alzheimer's disease are presumed to occur years before the first cognitive symptoms appear, quantification of brain iron content could be a powerful marker for early diagnosis of Alzheimer's disease.

  6. Transcranial magnetic stimulation of degenerating brain: a comparison of normal aging, Alzheimer's, Parkinson's and Huntington's disease. (United States)

    Ljubisavljevic, M R; Ismail, F Y; Filipovic, S


    Although the brain's ability to change constantly in response to external and internal inputs is now well recognized the mechanisms behind it in normal aging and neurodegeneration are less well understood. To gain a better understanding, transcranial magnetic stimulation (TMS) has been used extensively to characterize non-invasively the cortical neurophysiology of the aging and degenerating brain. Furthermore, there has been a surge of studies examining whether repetitive TMS (rTMS) can be used to improve functional deficits in various conditions including normal aging, Alzheimer's and Parkinson's disease. The results of these studies in normal aging and neurodegeneration have emerged reasonably coherent in delineating the main pathology in spite of considerable technical limitations, omnipresent methodological variability, and extraordinary patient heterogeneity. Nevertheless, comparing and integrating what is known about TMS measurements of cortical excitability and plasticity in disorders that predominantly affect cortical brain structures with disorders that predominantly affect subcortical brain structures may provide better understanding of normal and abnormal brain aging fostering new. The present review provides a TMS perspective of changes in cortical neurophysiology and neurochemistry in normal aging and neurodegeneration by integrating what is revealed in individual TMS measurements of cortical excitability and plasticity in physiological aging, Alzheimer's, Parkinson's, and Huntington's, disease. The paper also reflects on current developments in utilizing TMS as a physiologic biomarker to discriminate physiologic aging from neurodegeneration and its potential as a method of therapeutic intervention.

  7. Brain-derived neurotrophic factor gene variants and Alzheimer disease: an association study in an Alzheimer disease Italian population. (United States)

    Boiocchi, Chiara; Maggioli, Elisa; Zorzetto, Michele; Sinforiani, Elena; Cereda, Cristina; Ricevuti, Giovanni; Cuccia, Mariaclara


    Brain-derived neurotrophic factor (BDNF) promotes neuronal survival during development and protects neurons from insults of various kinds. Changes in production of BDNF have been reported in differing neurodegenerative pathologies and, in particular, in Alzheimer disease (AD). We studied 200 AD patients and 408 healthy controls for BDNF Val66Met(G196A) polymorphism, 200AD and 384 healthy controls for BDNF 270 C/T polymorphism, and 200AD and 393 healthy controls for BDNF 11757 G/C polymorphism by restriction fragment length polymorphism (RFLP) and real-time PCR. Our results indicated that the 11757 G/C BDNF polymorphism was significantly associated with AD. A statistically significant increase of GG genotype frequency in AD versus healthy subjects (p=0.0331) was observed, whereas the CG genotype demonstrates a statistically significant decrease of frequency in AD patients versus controls (p=0.0194). We focused our attention on haplotype reconstruction: A statistically significant decrease of the TAC haplotype frequency in AD patients versus healthy controls group (p=0.005) and a statistically significant increase of the CAC haplotype frequency in patients versus control (p=0.019) was demonstrated. We then studied the haplotype frequencies dividing patients according to gender. A statistically significant increase of the CAC haplotype in the male AD group compared with male healthy controls (p=0.041) was found, whereas a statistically significant decrease of TAC haplotype frequency in AD females versus healthy females (p=0.005) and a statistically significant increase of CAC haplotype frequency in female patients versus healthy females (p=0.019) was noticed. We propose that these haplotypes could be a further effective marker for AD.

  8. The Alzheimer's Disease-Related Glucose Metabolic Brain Pattern

    NARCIS (Netherlands)

    Teune, Laura K.; Strijkert, Fijanne; Renken, Remco J.; Izaks, Gerbrand J.; de Vries, Jeroen J.; Segbers, Marcel; Roerdink, Jos B. T. M.; Dierckx, Rudi A. J. O.; Leenders, Klaus L.


    Purpose: [F-18] fluorodeoxyglucose (FDG) PET imaging of the brain can be used to assist in the differential diagnosis of dementia. Group differences in glucose uptake between patients with dementia and controls are well-known. However, a multivariate analysis technique called scaled subprofile model

  9. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain. (United States)

    Brady, D R; Mufson, E J


    The number and topographic distribution of immunocytochemically stained parvalbumin interneurons was determined in the hippocampal formation of control and Alzheimer's diseased brain. In control hippocampus, parvalbumin interneurons were aspiny and pleomorphic, with extensive dendritic arbors. In dentate gyrus, parvalbumin cells, as well as a dense plexus of fibers and puncta, were associated with the granule cell layer. A few cells also occupied the molecular layer. In strata oriens and pyramidale of CA1-CA3 subfields, parvalbumin neurons gave rise to dendrites that extended into adjacent strata. Densely stained puncta and beaded fibers occupied stratum pyramidale, with less dense staining in adjacent strata oriens and radiatum. Virtually no parvalbumin profiles were observed in stratum lacunosum-moleculare or the alveus. Numerous polymorphic parvalbumin neurons and a dense plexus of fibers and puncta characterized the deep layer of the subiculum and the lamina principalis externa of the presubiculum. In Alzheimer's diseased hippocampus, there was an approximate 60% decrease in the number of parvalbumin interneurons in the dentate gyrus/CA4 subfield (Pparvalbumin neurons did not statistically decline in subfields CA3, subiculum or presubiculum in Alzheimer's diseased brains relative to controls. Concurrent staining with Thioflavin-S histochemistry did not reveal degenerative changes within parvalbumin-stained profiles. These findings reveal that parvalbumin interneurons within specific hippocampal subfields are selectively vulnerable in Alzheimer's disease. This vulnerability may be related to their differential connectivity, e.g., those regions connectionally related to the cerebral cortex (dentate gyrus and CA1) are more vulnerable than those regions connectionally related to subcortical loci (subiculum and presubiculum).

  10. Patterns of regional brain hypometabolism associated with knowledge of semantic features and categories in alzheimer's disease

    DEFF Research Database (Denmark)

    Zahn, R.; Garrard, P.; Talazko, J.;


    The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse...... damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used...... and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas....

  11. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. (United States)

    Ledesma, Maria Dolores; Abad-Rodriguez, José; Galvan, Cristian; Biondi, Elisa; Navarro, Pilar; Delacourte, Andre; Dingwall, Colin; Dotti, Carlos G


    The serine protease plasmin can efficiently degrade amyloid peptide in vitro, and is found at low levels in the hippocampus of patients with Alzheimer's disease (AD). The cause of such paucity remains unknown. We show here that the levels of total brain plasminogen and plasminogen-binding molecules are normal in these brain samples, yet plasminogen membrane binding is greatly reduced. Biochemical analysis reveals that the membranes of these brains have a mild, still significant, cholesterol reduction compared to age-matched controls, and anomalous raft microdomains. This was reflected by the loss of raft-enriched proteins, including plasminogen-binding and -activating molecules. Using hippocampal neurons in culture, we demonstrate that removal of a similar amount of membrane cholesterol is sufficient to induce raft disorganization, leading to reduced plasminogen membrane binding and low plasmin activity. These results suggest that brain raft alterations may contribute to AD by rendering the plasminogen system inefficient.

  12. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert


    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  13. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ghribi Othman


    Full Text Available Abstract High levels of serum cholesterol and disruptions of the blood brain barrier (BBB have all been implicated as underlying mechanisms in the pathogenesis of Alzheimer's disease. Results from studies conducted in animals and humans suggest that caffeine might be protective against Alzheimer's disease but by poorly understood mechanisms. Using rabbits fed a cholesterol-enriched diet, we tested our hypothesis that chronic ingestion of caffeine protects against high cholesterol diet-induced disruptions of the BBB. New Zealand rabbits were fed a 2% cholesterol-enriched diet, and 3 mg caffeine was administered daily in drinking water for 12 weeks. Total cholesterol and caffeine concentrations from blood were measured. Olfactory bulbs (and for some studies hippocampus and cerebral cortex as well were evaluated for BBB leakage, BBB tight junction protein expression levels, activation of astrocytes, and microglia density using histological, immunostaining and immunoblotting techniques. We found that caffeine blocked high cholesterol diet-induced increases in extravasation of IgG and fibrinogen, increases in leakage of Evan's blue dye, decreases in levels of the tight junction proteins occludin and ZO-1, increases in astrocytes activation and microglia density where IgG extravasation was present. Chronic ingestion of caffeine protects against high cholesterol diet-induced increases in disruptions of the BBB, and caffeine and drugs similar to caffeine might be useful in the treatment of Alzheimer's disease.

  14. Neuroinflammation in Alzheimer's disease


    Heneka, MT; Carson, MJ; Khoury, JE; Landreth, GE; Brosseron, F.; Feinstein, Dl; Jacobs, AH; Wyss-Coray, T; Vitorica, J; Ransohoff, RM; Herrup, K; Frautschy, SA; Finsen, B.; Brown, GC; Verkhratsky, A.


    © 2015 Elsevier Ltd. Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that severa...

  15. Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers (United States)

    Matoug, S.; Abdel-Dayem, A.; Passi, K.; Gross, W.; Alqarni, M.


    Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and cognitive tests, often followed by a brain scan. Advanced medical imaging and pattern recognition techniques are good tools to create a learning database in the first step and to predict the class label of incoming data in order to assess the development of the disease, i.e., the conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease, which is the most critical brain disease for the senior population. Advanced medical imaging such as the volumetric MRI can detect changes in the size of brain regions due to the loss of the brain tissues. Measuring regions that atrophy during the progress of Alzheimer's disease can help neurologists in detecting and staging the disease. In the present investigation, we present a pseudo-automatic scheme that reads volumetric MRI, extracts the middle slices of the brain region, performs segmentation in order to detect the region of brain's ventricle, generates a feature vector that characterizes this region, creates an SQL database that contains the generated data, and finally classifies the images based on the extracted features. For our results, we have used the MRI data sets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

  16. Cerebrolysin in Alzheimer's disease. (United States)

    Antón Álvarez, X; Fuentes, Patricio


    Cerebrolysin is a neuropeptide preparation mimicking the action of endogenous neurotrophic factors. Positive effects of Cerebrolysin on β-amyloid- and tau-related pathologies, neuroinflammation, neurotrophic factors, oxidative stress, excitotoxicity, neurotransmission, brain metabolism, neuroplasticity, neuronal apoptosis and degeneration, neurogenesis and cognition were demonstrated in experimental conditions. These pleiotropic effects of Cerebrolysin on Alzheimer's disease-related pathogenic events are consistent with a neurotrophic-like mode of action, and seems to involve the activation of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 β intracellular signaling pathway. The clinical efficacy of Cerebrolysin in Alzheimer's disease was evaluated in several randomized, double-blind, clinical trials, showing consistent benefits on global clinical function and cognition, improvements in behavior at high doses, and minor effects on daily living activities in patients with mild to moderate Alzheimer's disease, as well as in subgroups of moderate to moderately severe patients. In addition, the clinical benefits of Cerebrolysin were largely maintained for several months after ending treatment, a finding that supports its discontinuous administration. Cerebrolysin was generally well tolerated and did not induce significant adverse events in Alzheimer's patients. Although long-term studies are needed, the data available suggest that Cerebrolysin is effective as monotherapy and constitutes a promising option for combined therapy in Alzheimer's disease.

  17. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains. (United States)

    Satoh, Jun-ichi


    MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate translational repression of multiple target mRNAs. The miRNAs in a whole cell regulate greater than 30% of all protein-coding genes. The vast majority of presently identified miRNAs are expressed in the brain in a spatially and temporally controlled manner. They play a key role in neuronal development, differentiation, and synaptic plasticity. However, at present, the pathological implications of deregulated miRNA expression in neurodegenerative diseases remain largely unknown. This review will briefly summarize recent studies that focus attention on aberrant miRNA expression in Alzheimer's disease brains.

  18. Properties of glutamate receptors of Alzheimer's disease brain transplanted to frog oocytes (United States)

    Bernareggi, Annalisa; Dueñas, Zulma; Reyes-Ruiz, Jorge Mauricio; Ruzzier, Fabio; Miledi, Ricardo


    It is known that Alzheimer's disease (AD) is a synaptic disease that involves various neurotransmitter systems, particularly those where synaptic transmission is mediated by acetylcholine or glutamate (Glu). Nevertheless, very little is known about the properties of neurotransmitter receptors of the AD human brain. We have shown previously that cell membranes, carrying neurotransmitter receptors from the human postmortem brain, can be transplanted to frog oocytes, and their receptors will still be functional. Taking advantage of this fact, we have now studied the properties of Glu receptors (GluRs) from the cerebral cortices of AD and non-AD brains and found that oocytes injected with AD membranes acquired GluRs that have essentially the same functional properties as those of oocytes injected with membranes from non-AD brains. However, the amplitudes of the currents elicited by Glu were always smaller in the oocytes injected with membranes from AD brains. Western blot analyses of the same membrane preparations used for the electrophysiological studies showed that AD membranes contained significantly fewer GluR2/3 subunit proteins. Furthermore, the corresponding mRNAs were also diminished in the AD brain. Therefore, the smaller amplitude of membrane currents elicited by Glu in oocytes injected with membranes from an AD brain is a consequence of a reduced number of GluRs in cell membranes transplanted from the AD brain. Thus, using the comparatively simple method of microtransplantation of receptors, it is now possible to determine the properties of neurotransmitter receptors of normal and diseased human brains. That knowledge may help to decipher the etiology of the diseases and also to develop new treatments. PMID:17301224

  19. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties. (United States)

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina


    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  20. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Christian Gaser

    Full Text Available Alzheimer's disease (AD, the most common form of dementia, shares many aspects of abnormal brain aging. We present a novel magnetic resonance imaging (MRI-based biomarker that predicts the individual progression of mild cognitive impairment (MCI to AD on the basis of pathological brain aging patterns. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated age is higher than the chronological age, a positive brain age gap estimation (BrainAGE score indicates accelerated atrophy and is considered a risk factor for conversion to AD. Here, the BrainAGE framework was applied to predict the individual brain ages of 195 subjects with MCI at baseline, of which a total of 133 developed AD during 36 months of follow-up (corresponding to a pre-test probability of 68%. The ability of the BrainAGE framework to correctly identify MCI-converters was compared with the performance of commonly used cognitive scales, hippocampus volume, and state-of-the-art biomarkers derived from cerebrospinal fluid (CSF. With accuracy rates of up to 81%, BrainAGE outperformed all cognitive scales and CSF biomarkers in predicting conversion of MCI to AD within 3 years of follow-up. Each additional year in the BrainAGE score was associated with a 10% greater risk of developing AD (hazard rate: 1.10 [CI: 1.07-1.13]. Furthermore, the post-test probability was increased to 90% when using baseline BrainAGE scores to predict conversion to AD. The presented framework allows an accurate prediction even with multicenter data. Its fast and fully automated nature facilitates the integration into the clinical workflow. It can be exploited as a tool for screening as well as for monitoring treatment options.

  1. A Systematic Investigation into Aging Related Genes in Brain and Their Relationship with Alzheimer's Disease. (United States)

    Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang


    Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer's Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer's Disease.

  2. Brain changes in Alzheimer's disease patients with implanted encapsulated cells releasing nerve growth factor. (United States)

    Ferreira, Daniel; Westman, Eric; Eyjolfsdottir, Helga; Almqvist, Per; Lind, Göran; Linderoth, Bengt; Seiger, Ake; Blennow, Kaj; Karami, Azadeh; Darreh-Shori, Taher; Wiberg, Maria; Simmons, Andrew; Wahlund, Lars-Olof; Wahlberg, Lars; Eriksdotter, Maria


    New therapies with disease-modifying effects are urgently needed for treating Alzheimer's disease (AD). Nerve growth factor (NGF) protein has demonstrated regenerative and neuroprotective effects on basal forebrain cholinergic neurons in animal studies. In addition, AD patients treated with NGF have previously shown improved cognition, EEG activity, nicotinic binding, and glucose metabolism. However, no study to date has analyzed brain atrophy in patients treated with NGF producing cells. In this study we present MRI results of the first clinical trial in patients with AD using encapsulated NGF biodelivery to the basal forebrain. Six AD patients received the treatment during twelve months. Patients were grouped as responders and non-responders according to their twelve-months change in MMSE. Normative values were created from 131 AD patients from ADNI, selecting 36 age- and MMSE-matched patients for interpreting the longitudinal changes in MMSE and brain atrophy. Results at baseline indicated that responders showed better clinical status and less pathological levels of cerebrospinal fluid (CSF) Aβ1-42. However, they showed more brain atrophy, and neuronal degeneration as evidenced by higher CSF levels of T-tau and neurofilaments. At follow-up, responders showed less brain shrinkage and better progression in the clinical variables and CSF biomarkers. Noteworthy, two responders showed less brain shrinkage than the normative ADNI group. These results together with previous evidence supports the idea that encapsulated biodelivery of NGF might have the potential to become a new treatment strategy for AD with both symptomatic and disease-modifying effects.

  3. Neuroinhibitory molecules in Alzheimer's disease. (United States)

    Larner, A J; Keynes, R J


    Aberrant neurite growth is one of the neuropathological signatures of the Alzheimer's disease brain, both around amyloid plaques and in the cortical neuropil. Disruption of neuroinhibitory or repulsive growth and guidance signals, as well as of neurotrophic or permissive signals, may contribute to this dystrophic growth. Hence, therapeutic efforts directed exclusively at restoring neurotrophic activity are unlikely to meet with success. The molecular species responsible for neuroinhibitory effects in the Alzheimer's disease brain are beginning to be elucidated.

  4. The Blood-Brain Barrier and Microvascular Water Exchange in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Valerie C. Anderson


    Full Text Available Alzheimer's disease (AD is the most common form of dementia in the elderly. Although traditionally considered a disease of neurofibrillary tangles and amyloid plaques, structural and functional changes in the microvessels may contribute directly to the pathogenesis of the disease. Since vascular dysfunction often precedes cognitive impairment, understanding the role of the blood-brain barrier (BBB in AD may be key to rational treatment of the disease. We propose that water regulation, a critical function of the BBB, is disturbed in AD and results in abnormal permeability and rates of water exchange across the vessel walls. In this paper, we describe some of the pathological events that may disturb microvascular water exchange in AD and examine the potential of a relatively new imaging technique, dynamic contrast-enhanced MRI, to quantify water exchange on a cellular level and thus serve as a probe of BBB integrity in AD.

  5. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning. (United States)

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta


    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning.

  6. Is Alzheimer's Disease Autoimmune Inflammation of the Brain That Can be Treated With Nasal Nonsteroidal Anti-Inflammatory Drugs? (United States)

    Lehrer, Steven; Rheinstein, Peter H


    The Alzheimer's Association recently reported that a woman's estimated lifetime risk of developing Alzheimer's at age 65 is 1 in 6, compared to nearly 1 in 11 for a man (ie, female to male ratio 1.8). Based on female to male ratio, Alzheimer's disease could well be an autoimmune disorder. Like Alzheimer's, multiple sclerosis, an autoimmune inflammation of the central nervous system, has a female to male ratio of 2.3. Also based on female to male ratio, Alzheimer's resembles the autoimmune inflammatory disease rheumatoid arthritis, which has a female to male ratio of 2.7. The reasons for the female preponderance in autoimmune disease are unclear, but nonsteroidal anti-inflammatory drugs (NSAIDs) are widely and successfully employed to treat autoimmune anti-inflammatory disease and dramatically relieve symptoms. Moreover, oral NSAIDs consistently reduce the risk of Alzheimer's disease, although they have been totally ineffective as a treatment in multiple failed clinical trials. A basis for this failure might well be that the brain dose after oral administration is too small and not sufficiently early in the pathogenesis of the disorder. But NSAID brain dose could be significantly increased by delivering the NSAIDs intranasally.

  7. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Melrose Joseph


    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astroglia from two different rat brain regions, cortex (region affected in AD and cerebellum (unaffected region, were treated with 0.2 mM of palmitic acid. The conditioned media were then transferred to the cortical neurons to study the possible effects on the two main, AD-associated protein abnormalities, viz. BACE1 upregulation and hyperphosphorylation of tau. The conditioned media from palmitic-acid treated cortical astroglia, but not the cerebellar astroglia, significantly elevated levels of phosphorylated tau and BACE1 in cortical neurons as compared to controls (47 ± 7% and 45 ± 4%, respectively. Conclusion The present data provide an experimental explanation for the region-specific damage observed in AD brain; higher fatty acid-metabolizing capacity of cortical astroglia as compared to cerebellar astroglia, may play a causal role in increasing vulnerability of cortex in AD, while sparing cerebellum.

  8. Disrupted small-world brain networks in moderate Alzheimer's disease: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Xiaohu Zhao

    Full Text Available The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD. However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI of carefully selected moderate AD patients and normal controls (NCs. Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients.

  9. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease. (United States)

    Cunnane, Stephen C; Schneider, Julie A; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare


    Alzheimer's disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g for brain). Differences in plasma fatty acid profiles between AD, mild cognitive impairment (MCI), and those with no cognitive impairment (NCI) were most apparent in the plasma free fatty acids (lower oleic acid isomers and omega-6 fatty acids in AD) and phospholipids (lower omega-3 fatty acids in AD). In brain, % DHA was lower only in phosphatidylserine of mid-frontal cortex and superior temporal cortex in AD compared to NCI (-14% and -12%, respectively; both p < 0.05). The only significant correlation between plasma and brain fatty acids was between % DHA in plasma total lipids and % DHA in phosphatidylethanolamine of the angular gyrus, but only in the NCI group (+0.77, p < 0.05). We conclude that AD is associated with altered plasma status of both DHA and other fatty acids unrelated to DHA, and that the lipid class-dependent nature of these differences reflects a combination of differences in intake and metabolism.

  10. Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease. (United States)

    Schweizer, Tom A; Ware, Jenna; Fischer, Corinne E; Craik, Fergus I M; Bialystok, Ellen


    Much of the research on delaying the onset of symptoms of Alzheimer's disease (AD) has focused on pharmacotherapy, but environmental factors have also been acknowledged to play a significant role. Bilingualism may be one factor contributing to 'cognitive reserve' (CR) and therefore to a delay in symptom onset. If bilingualism is protective, then the brains of bilinguals should show greater atrophy in relevant areas, since their enhanced CR enables them to function at a higher level than would be predicted from their level of disease. We analyzed a number of linear measurements of brain atrophy from the computed tomography (CT) scans of monolingual and bilingual patients diagnosed with probable AD who were matched on level of cognitive performance and years of education. Bilingual patients with AD exhibited substantially greater amounts of brain atrophy than monolingual patients in areas traditionally used to distinguish AD patients from healthy controls, specifically, the radial width of the temporal horn and the temporal horn ratio. Other measures of brain atrophy were comparable for the two groups. Bilingualism appears to contribute to increased CR, thereby delaying the onset of AD and requiring the presence of greater amounts of neuropathology before the disease is manifest.

  11. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. (United States)

    Wang, J; Dickson, D W; Trojanowski, J Q; Lee, V M


    The abundance and solubility of Abeta peptides are critical determinants of amyloidosis in Alzheimer's disease (AD). Hence, we compared levels of total soluble, insoluble, and total Abeta1-40 and Abeta1-42 in AD brains with those in age-matched normal and pathologic aging brains using a sandwich enzyme-linked immunosorbent assay (ELISA). Since the measurement of Abeta1-40 and Abeta1-42 depends critically on the specificity of the monoclonal antibodies used in the sandwich ELISA, we first demonstrated that each assay is specific for Abeta1-40 or Abeta1-42 and the levels of these peptides are not affected by the amyloid precursor protein in the brain extracts. Thus, this sandwich ELISA enabled us to show that the average levels of total cortical soluble and insoluble Abeta1-40 and Abeta1-42 were highest in AD, lowest in normal aging, and intermediate in pathologic aging. Remarkably, the average levels of insoluble Abeta1-40 were increased 20-fold while the average levels of insoluble Abeta1-42 were increased only 2-fold in the AD brains compared to pathologic aging brains. Further, the soluble pools of Abeta1-40 and Abeta1-42 were the largest fractions of total Abeta in the normal brain (i.e., 50 and 23%, respectively), but they were the smallest in the AD brain (i.e., 2.7 and 0.7%, respectively) and intermediate (i.e., 8 and 0.8%, respectively) in pathologic aging brains. Thus, our data suggest that pathologic aging is a transition state between normal aging and AD. More importantly, our findings imply that a progressive shift of brain Abeta1-40 and Abeta1-42 from soluble to insoluble pools and a profound increase in the levels of insoluble Abeta1-40 plays mechanistic roles in the onset and/or progression of AD.

  12. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment. (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E


    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease.

  13. Up-regulated production and activation of the complement system in Alzheimer's disease brain. (United States)

    Yasojima, K; Schwab, C; McGeer, E G; McGeer, P L


    We used reverse transcriptase-polymerase chain reaction and Western blotting techniques to measure the levels of complement mRNAs and their protein products in Alzheimer's disease (AD) brain compared with non-AD brain. mRNAs for C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9 were detected in the 11 regions of brain that were investigated. The mRNA levels were markedly up-regulated in affected areas of AD brain. In the entorhinal cortex, hippocampus, and midtemporal gyrus, which had dense accumulations of plaques and tangles, C1q mRNA was increased 11- to 80-fold over control levels, and C9 mRNA 10- to 27-fold. These levels were substantially higher than in the livers of the same cases. Western blot analysis of AD hippocampus established the presence of all of the native complement proteins as well as their activation products C4d, C3d, and the membrane attack complex. These data indicate that high levels of complement are being produced in affected areas of AD brain, that full activation of the classical complement pathway is continuously taking place, and that this activation may be contributing significantly to AD pathology.

  14. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice. (United States)

    Cao, Chuanhai; Cirrito, John R; Lin, Xiaoyang; Wang, Li; Wang, Lilly; Verges, Deborah K; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W; Holtzman, David M; Potter, Huntington


    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.

  15. Docosahexaenoic acid homeostasis, brain aging and Alzheimer's disease: Can we reconcile the evidence? (United States)

    Cunnane, Stephen C; Chouinard-Watkins, Raphael; Castellano, Christian A; Barberger-Gateau, Pascale


    A crossroads has been reached on research into docosahexaenoic acid (DHA) and Alzheimer's disease (AD). On the one hand, several prospective observational studies now clearly indicate a protective effect of higher fish and DHA intake against risk of AD. On the other hand, once AD is clinically evident, supplementation trials demonstrate essentially no benefit of DHA in AD. Despite apparently low DHA intake in AD, brain DHA levels are frequently the same as in controls, suggesting that low DHA intake results in low plasma DHA but does not necessarily reduce brain DHA in humans. Animal models involving dietary omega-3 fatty acid deficiency to deplete brain DHA may therefore not be appropriate in AD research. Studies in the healthy elderly suggest that DHA homeostasis changes during aging. Tracer methodology now permits estimation of DHA half-life in the human brain and whole body. Apolipoprotein E alleles have an important impact not only on AD but also on DHA homeostasis in humans. We therefore encourage further development of innovative approaches to the study of DHA metabolism and its role in human brain function. A better understanding of DHA metabolism in humans will hopefully help explain how higher habitual DHA intake protects against the risk of deteriorating cognition during aging and may eventually give rise to a breakthrough in the treatment of AD.

  16. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG (United States)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.


    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  17. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

    Directory of Open Access Journals (Sweden)

    Sarita S. Hardas


    Full Text Available Alzheimer disease (AD is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP and intracellular neurofibrillary tangles (NFTs. The major component of SP is amyloid β-peptide (Aβ, which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE. HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  18. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi


    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  19. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise. (United States)

    Tarumi, Takashi; Zhang, Rong


    Alzheimer disease (AD) and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  20. Alzheimer's Disease: Symptoms, Diagnosis and Treatment (United States)

    ... page please turn Javascript on. Feature: Alzheimer's Disease Symptoms, Diagnosis and Treatment Past Issues / Fall 2010 Table of Contents Symptoms Scientists believe that changes in the brain may ...

  1. Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease. (United States)

    Yumoto, Sakae; Kakimi, Shigeo; Ohsaki, Akihiro; Ishikawa, Akira


    Aluminum (Al) exposure has been reported to be a risk factor for Alzheimer's disease (senile dementia of Alzheimer type), although the role of Al in the etiology of Alzheimer's disease remains controversial. We examined the presence of Al in the Alzheimer's brain using energy-dispersive X-ray spectroscopy combined with transmission electron microscopy (TEM-EDX). TEM-EDX analysis allows simultaneous imaging of subcellular structures with high spatial resolution and analysis of small quantities of elements contained in the same subcellular structures. We identified senile plaques by observation using TEM and detected Al in amyloid fibers in the cores of senile plaques located in the hippocampus and the temporal lobe by EDX. Phosphorus and calcium were also present in the amyloid fibers. No Al could be detected in the extracellular space in senile plaques or in the cytoplasm of nerve cells. In this study, we demonstrated colocalization of Al and beta-amyloid (Abeta) peptides in amyloid fibers in the cores of senile plaques. The results support the following possibilities in the brains of patients with Alzheimer's disease: Al could be involved in the aggregation of Abeta peptides to form toxic fibrils; Al might induce Abeta peptides into the beta-sheet structure; and Al might facilitate iron-mediated oxidative reactions, which cause severe damage to brain tissues.

  2. Daicong solution effects on brain ultrastructure in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Qian Yue; Yuling Ding; Hongyan Wang; Shumei Zhao; Shengming Zhang; Hongjuan Wu; Yiguang Wang; Fengjie Li; Yuanyuan Yang; Juanjuan Liu


    BACKGROUND: Infusion of kainic acid into the basal nuclei induces neuronal excitotoxicity, degeneration, and necrosis, resulting in disturbed learning and memory functions.OBJECTIVE: To explore the effects of different doses of traditional Chinese medicine Daicong solution on brain ultrastructure in a rat model of Alzheimer's disease.DESIGN, TIME AND SETTING: The randomized, controlled, cellular morphology experiment was performed at the Shandong Provincial Key Laboratory of Molecular Immunology of Weifang Medical University, China from October 2006 to March 2007.MATERIALS: Fifty healthy, Sprague Dawley rats, aged 22-months, were used to establish rat models of Alzheimer's disease. The Morris water maze was prepared at the Pharmacometrics Key Laboratory of Weifang Medical University in Shandong Province of China. Traditional Chinese medicine Daicong solution (crude drug 1 g/mL), composed of radix ginseng, rehmannia dried rhizome, anemarrhenae and radix astragali, was produced by the Department of Pharmacy of Hospital Affiliated to Weifang Medical University. Kainic acid was provided by Professor Xiuyan Li from Weifang Medical University.METHODS: A total of 40 model rats were equally and randomly divided into four groups: dementia model, low-dose Daicong solution (5 g/kg/d), moderate-dose Daicong solution (10 g/kg/d), and high-dose Daicong solution (20 g/kg/d). An additional 10 healthy rats served as the normal control group. Rats in the dementia model and normal control groups received saline (10 mL/kg/d).MAIN OUTCOME MEASURES: Neural cell ultrastructure was observed utilizing electron microscopy after 1 month of respective treatments.RESULTS: Compared with the normal control group, electron density and the number of ribosomes were significantly reduced in neuronal cytoplasm, and many lipofuscin grains and vacuole-like changes were observed in mitochondria in the dementia model group. In addition, nuclear chromatin presented with different sizes of plaque

  3. Collagen XVIII: a novel heparan sulfate proteoglycan associated with vascular amyloid depositions and senile plaques in Alzheimer's disease brains.

    NARCIS (Netherlands)

    Horssen, J. van; Wilhelmus, M.M.M.; Heljasvaara, R.; Pihlajaniemi, T.; Wesseling, P.; Waal, R.M.W. de; Verbeek, M.M.


    Heparan sulfate proteoglycans (HSPGs) may play a role in the formation and persistence of senile plaques and neurofibrillary tangles in Alzheimer's disease brains. Recently, it has been demonstrated that the human extracellular matrix-associated molecule collagen XVIII is the first collagen carrying

  4. Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Seo

    Full Text Available The conceptual significance of understanding functional brain alterations and cognitive deficits associated with Alzheimer's disease (AD process has been widely established. However, the whole-brain functional networks of AD and its prodromal stage, mild cognitive impairment (MCI, are not well clarified yet. In this study, we compared the characteristics of the whole-brain functional networks among cognitively normal (CN, MCI, and AD individuals by applying graph theoretical analyses to [(18F] fluorodeoxyglucose positron emission tomography (FDG-PET data. Ninety-four CN elderly, 183 with MCI, and 216 with AD underwent clinical evaluation and FDG-PET scan. The overall small-world property as seen in the CN whole-brain network was preserved in MCI and AD. In contrast, individual parameters of the network were altered with the following patterns of changes: local clustering of networks was lower in both MCI and AD compared to CN, while path length was not different among the three groups. Then, MCI had a lower level of local clustering than AD. Subgroup analyses for AD also revealed that very mild AD had lower local clustering and shorter path length compared to mild AD. Regarding the local properties of the whole-brain networks, MCI and AD had significantly decreased normalized betweenness centrality in several hubs regionally associated with the default mode network compared to CN. Our results suggest that the functional integration in whole-brain network progressively declines due to the AD process. On the other hand, functional relatedness between neighboring brain regions may not gradually decrease, but be the most severely altered in MCI stage and gradually re-increase in clinical AD stages.

  5. Construction and Analysis of Weighted Brain Networks from SICE for the Study of Alzheimer's Disease (United States)

    Munilla, Jorge; Ortiz, Andrés; Górriz, Juan M.; Ramírez, Javier; Weiner, Michael W.


    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people, and current drugs, unfortunately, do not represent yet a cure but only slow down its progression. This is explained, at least in part, because the understanding of the neurodegenerative process is still incomplete, being sometimes mistaken, particularly at the first steps of the illness, with the natural aging process. A better identification of how the functional activity deteriorates is thus crucial to develop new and more effective treatments. Sparse inverse covariance estimates (SICE) have been recently employed for deriving functional connectivity patterns from Positron Emission Tomography (PET) of brains affected by Alzheimer's Disease. SICE, unlike the traditional covariance methods, allows to analyze the interdependencies between brain regions factoring out the influence of others. To analyze the effects of the illness, connectivity patterns of brains affected by AD are compared with those obtained for control groups. These comparisons are, however, carried out for binary (undirected and unweighted) adjacency matrices with the same number of arcs. Additionally, the effect of the number of subjects employed or the validity of the regularization parameter used to compute the SICE have been not hitherto analyzed. In this paper, we delve into the construction of connectivity patterns from PET using SICE. In particular, we describe the effect that the number of subjects employed has on the results and identify, based on the reconstruction error of linear regression systems, a range of valid values for the regularization parameter. The amount of arcs is also proved as a discriminant value, and we show that it is possible to pass from unweighted (binary) to weighted adjacency matrices, where the weight of a connection corresponding to the existence of a relationship between two brain areas can be correlated to the persistence of this relationship when computed for different

  6. Brain structure and function related to depression in Alzheimer's disease: contributions from neuroimaging research. (United States)

    Brommelhoff, Jessica A; Sultzer, David L


    The development of minimally invasive in vivo methods for imaging the brain has allowed for unprecedented advancement in our understanding of brain-behavior relationships. Structural, functional, and multimodal neuroimaging techniques have become more sophisticated in detecting structural and physiological abnormalities that may underlie various affective disorders and neurological illnesses such as depression in Alzheimer's disease (AD). In general, neuroimaging studies of depression in AD investigate whether depression is associated with damage to structures in specific neural networks involving frontal and subcortical structures or with functional disruption of cortical neural systems. This review provides an overview of how various imaging modalities have contributed to our understanding of the neurobiology of depression in AD. At present, the literature does not conclusively support any specific pathogenesis for depression, and it is not clear whether patients with AD and depression have histopathological and neurochemical characteristics that contribute to mood symptoms that are different from cognitively intact individuals with depression. Neuroimaging studies suggest that atrophy of temporal or frontal structures, white matter lesions in frontal lobe or subcortical systems, reduced activity in dorsolateral frontal cortex, or small vessel cerebrovascular disease may be associated with depression in AD. Conceptual, clinical, and methodological challenges in studying this relationship are discussed. Further work is needed to understand the specific brain structures, relevant white matter tracts, and interactions among them that are most important. This review concludes with potential directions for future research.

  7. 7 Warning Signs of Alzheimer's | Alzheimer's disease | NIH MedlinePlus the Magazine (United States)

    ... of this page please turn Javascript on. Feature: Alzheimer's Disease 7 Warning Signs of Alzheimer's Past Issues / Fall 2010 Table of Contents The ... Suncoast Gerontology Center, University of South Florida. How Alzheimer's Changes the Brain The only definite way to ...

  8. [Theoretic basis on the same therapeutic program for different degenerative brain diseases in terms of the Governor Vessel: Alzheimer's disease and Parkinson's disease]. (United States)

    Wu, Junyan; Wang, Jie; Zhang, Junlong


    Through the consultation of TCM ancient classical theory, the relationship of kidney essence, marrow and brain is analyzed. It is discovered that the degenerative brain diseases, represented by Alzheimer's disease (AD) and Parkinson's disease (PD) share the same etiological basis as "kidney essence deficiency and brain marrow emptiness" and have the mutual pathological outcomes as yang qi declining. The Governor Vessel gathers yang qi of the whole body and maintains the normal functional activity of zangfu organs in the human body through the storage, regulation and invigoration of yang qi. It is viewed that the theory of the Governor Vessel is applied to treat the different degenerative brain diseases, which provides the theoretic support and practice guide for the thought of TCM as the same therapeutic program for the different diseases. As a result, the degenerative brain diseases can be retarded and the approach is provided to the effective prevention and treatment of degenerative diseases in central nerve system:


    Institute of Scientific and Technical Information of China (English)

    ZHONG Jun; WU Wei-lie; Harry Goldsmith


    Objective To learn the effect of omemtum transposition to the brain of patients with Alzheimer's disease. Methods Ten consecutive patients, aged 58 - 81 years old, underwent graft of their elongated pedicled omentum onto their left frontal-temperal-parietal cerebral cortex. Those patients, who had more than five years of dementia with low mini mental-state examination (MMSE) scores of 2 -15, were diagnosed by a neurologist. All subjects underwent single photon evoked computer tomography (SPECT) pre- and post-operatively.SPECT results were analyzed semi-quantitatively by calculation of the left/right radioactivity counts symmetry index (Si). The patients were followed up to one year. The outcome was evaluated by the neurologist with a modified scale of activities of daily living (mADL) as well as the MMSE. Results Three months following the surgery,the Si of SPECT increased from ( 98. 7 ± 1.9) % to ( 103. 9 ± 2.3 ) % ( P = 0. 0307). The neurological and neuropsychological testing scores increased insignificantly during the follow-up period. By the one year, the MMSE score rose from 8. 7 ± 1.4 to 10. 7 ± 1.8 ( P > 0. 05 ), while the mADL from 13.3 ± 1.8 to 16. 9 ± 2. 0 ( P > 0. 05 ). One of the patients suffered a heart attack, two had epileptic episodes postoperatively. Conclusion We believe that omental transposition to the brain augments cerebral blood flow, which might be helpful to decelerate the processing of Alzheimer's disease. However, it is still a potentially risky procedure for the elderly.

  10. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... without Alzheimer's — a rate twice as high. Invest in a world without Alzheimer's. Donate Caregivers In 2016, ... COMMITMENT TO RESEARCH. Read More Alzheimer's Disease Facts in Each State The 2017 Alzheimer's Disease Facts and ...

  11. Cellular model studies of brain-mediated phototherapy on Alzheimer's disease (United States)

    Zhu, Ling; Liu, Timon Cheng-Yi; Hu, Bina; Li, Xiao-Yun; Wang, Yong-Qing


    Alzheimer's disease (AD) is now the most common neurodegenerative disease. Despite approval of several drugs for AD, the disease continues to rob millions of their memories and their lives. We have studied the cellular models of brain-mediated phototherapy on AD, and the studies will be reviewed in this paper. Genetic studies have shown that dysfunction of amyloid β-protein (Aβ) or tau is sufficient to cause AD. Aβ or Aβ induced redox stress induced neuron apoptosis might be as a cellular model of AD. We found red light at 640+/-15 nm from light emitting diode array (RLED640) might inhibit Aβ 25-35 induced PC12 cell apoptosis, which is mediated by cyclic adenosine monophosphate, and it might inhibit hydrogen peroxide (H2O2) induced differentiated PC12 cell (dPC12) apoptosis, which is mediated by tyrosine hydroxylase. There is rhythm dysfunction in AD. We found low intensity 810 nm laser irradiation might rehabilitate TNF-alpha induced inhibition of clock gen expression of NIH 3T3 fibroblasts. Our studies provide a foundation for photobiomodulation on brain to rehabilitate AD.

  12. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease. (United States)

    Mancini, Simona; Minniti, Stefania; Gregori, Maria; Sancini, Giulio; Cagnotto, Alfredo; Couraud, Pierre-Olivier; Ordóñez-Gutiérrez, Lara; Wandosell, Francisco; Salmona, Mario; Re, Francesca


    We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aβ in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aβ peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aβ oligomers (Aβo), but not of Aβ fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aβo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aβo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aβ level, suggesting that Aβ-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-β (Aβ) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease.

  13. Cholesterol and synaptic compensatory mechanisms in Alzheimer's disease mice brain during aging.

    NARCIS (Netherlands)

    Jansen, D.; Janssen, C.I.F.; Vanmierlo, T.; Dederen, P.J.; Rooij, D. van; Zinnhardt, B.; Nobelen, C.L.; Janssen, A.L.; Hafkemeijer, A.; Mutsaers, M.P.; Doedee, A.M.; Kuipers, A.A.; Broersen, L.M.; Mulder, M.; Kiliaan, A.J.


    Research into the development of Alzheimer's disease (AD) provides increasing evidence that vascular risk factors, including high serum cholesterol, might influence the progression of cognitive impairment and neural degeneration. In this study, we investigated the effects of high dietary cholesterol

  14. Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in Alzheimer's disease. (United States)

    Schrag, Matthew; Crofton, Andrew; Zabel, Matthew; Jiffry, Arshad; Kirsch, David; Dickson, April; Mao, Xiao Wen; Vinters, Harry V; Domaille, Dylan W; Chang, Christopher J; Kirsch, Wolff


    Cerebral amyloid angiopathy (CAA) is a vascular lesion associated with Alzheimer's disease (AD) present in up to 95% of AD patients and produces MRI-detectable microbleeds in many of these patients. It is possible that CAA-related microbleeding is a source of pathological iron in the AD brain. Because the homeostasis of copper, iron, and zinc are so intimately linked, we determined whether CAA contributes to changes in the brain levels of these metals. We obtained brain tissue from AD patients with severe CAA to compare to AD patients without evidence of vascular amyloid-β. Patients with severe CAA had significantly higher non-heme iron levels. Histologically, iron was deposited in the walls of large CAA-affected vessels. Zinc levels were significantly elevated in grey matter in both the CAA and non-CAA AD tissue, but no vascular staining was noted in CAA cases. Copper levels were decreased in both CAA and non-CAA AD tissues and copper was found to be prominently deposited on the vasculature in CAA. Together, these findings demonstrate that CAA is a significant variable affecting transition metals in AD.

  15. Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gabriella Testa


    Full Text Available Alzheimer's disease (AD is a gradually debilitating disease that leads to dementia. The molecular mechanisms underlying AD are still not clear, and at present no reliable biomarkers are available for the early diagnosis. In the last several years, together with oxidative stress and neuroinflammation, altered cholesterol metabolism in the brain has become increasingly implicated in AD progression. A significant body of evidence indicates that oxidized cholesterol, in the form of oxysterols, is one of the main triggers of AD. The oxysterols potentially most closely involved in the pathogenesis of AD are 24-hydroxycholesterol and 27-hydroxycholesterol, respectively deriving from cholesterol oxidation by the enzymes CYP46A1 and CYP27A1. However, the possible involvement of oxysterols resulting from cholesterol autooxidation, including 7-ketocholesterol and 7β-hydroxycholesterol, is now emerging. In a systematic analysis of oxysterols in post-mortem human AD brains, classified by the Braak staging system of neurofibrillary pathology, alongside the two oxysterols of enzymatic origin, a variety of oxysterols deriving from cholesterol autoxidation were identified; these included 7-ketocholesterol, 7α-hydroxycholesterol, 4β-hydroxycholesterol, 5α,6α-epoxycholesterol, and 5β,6β-epoxycholesterol. Their levels were quantified and compared across the disease stages. Some inflammatory mediators, and the proteolytic enzyme matrix metalloprotease-9, were also found to be enhanced in the brains, depending on disease progression. This highlights the pathogenic association between the trends of inflammatory molecules and oxysterol levels during the evolution of AD. Conversely, sirtuin 1, an enzyme that regulates several pathways involved in the anti-inflammatory response, was reduced markedly with the progression of AD, supporting the hypothesis that the loss of sirtuin 1 might play a key role in AD. Taken together, these results strongly support the

  16. A spectral graph regression model for learning brain connectivity of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Chenhui Hu

    Full Text Available Understanding network features of brain pathology is essential to reveal underpinnings of neurodegenerative diseases. In this paper, we introduce a novel graph regression model (GRM for learning structural brain connectivity of Alzheimer's disease (AD measured by amyloid-β deposits. The proposed GRM regards 11C-labeled Pittsburgh Compound-B (PiB positron emission tomography (PET imaging data as smooth signals defined on an unknown graph. This graph is then estimated through an optimization framework, which fits the graph to the data with an adjustable level of uniformity of the connection weights. Under the assumed data model, results based on simulated data illustrate that our approach can accurately reconstruct the underlying network, often with better reconstruction than those obtained by both sample correlation and ℓ1-regularized partial correlation estimation. Evaluations performed upon PiB-PET imaging data of 30 AD and 40 elderly normal control (NC subjects demonstrate that the connectivity patterns revealed by the GRM are easy to interpret and consistent with known pathology. Moreover, the hubs of the reconstructed networks match the cortical hubs given by functional MRI. The discriminative network features including both global connectivity measurements and degree statistics of specific nodes discovered from the AD and NC amyloid-beta networks provide new potential biomarkers for preclinical and clinical AD.

  17. Alzheimer disease (United States)

    ... AD) is not known. Research shows that certain changes in the brain lead to AD. You are more likely to develop AD if you: Are older. Developing AD is not a part of normal aging. Have a close relative, such as a brother, ...

  18. Toward a brain-computer interface for Alzheimer's disease patients by combining classical conditioning and brain state classification. (United States)

    Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha


    Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.

  19. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis. (United States)

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer


    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials.

  20. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy. (United States)

    Desai, Brinda S; Monahan, Angela J; Carvey, Paul M; Hendey, Bill


    The blood-brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.

  1. Physical activity, body mass index, and brain atrophy in Alzheimer's disease. (United States)

    Boyle, Christina P; Raji, Cyrus A; Erickson, Kirk I; Lopez, Oscar L; Becker, James T; Gach, H Michael; Longstreth, W T; Teverovskiy, Leonid; Kuller, Lewis H; Carmichael, Owen T; Thompson, Paul M


    The purpose of this study was to use a novel imaging biomarker to assess associations between physical activity (PA), body mass index (BMI), and brain structure in normal aging, mild cognitive impairment, and Alzheimer's dementia. We studied 963 participants (mean age: 74.1 ± 4.4 years) from the multisite Cardiovascular Health Study including healthy controls (n = 724), Alzheimer's dementia patients (n = 104), and people with mild cognitive impairment (n = 135). Volumetric brain images were processed using tensor-based morphometry to analyze regional brain volumes. We regressed the local brain tissue volume on reported PA and computed BMI, and performed conjunction analyses using both variables. Covariates included age, sex, and study site. PA was independently associated with greater whole brain and regional brain volumes and reduced ventricular dilation. People with higher BMI had lower whole brain and regional brain volumes. A PA-BMI conjunction analysis showed brain preservation with PA and volume loss with increased BMI in overlapping brain regions. In one of the largest voxel-based cross-sectional studies to date, PA and lower BMI may be beneficial to the brain across the spectrum of aging and neurodegeneration.

  2. Rapidly progressive Alzheimer disease. (United States)

    Schmidt, Christian; Wolff, Martin; Weitz, Michael; Bartlau, Thomas; Korth, Carsten; Zerr, Inga


    Different rates of progression have been observed among patients with Alzheimer disease. Risk factors that accelerate deterioration have been identified and some are being discussed, such as genetics, comorbidity, and the early appearance of Alzheimer disease motor signs. Progressive forms of Alzheimer disease have been reported with rapid cognitive decline and disease duration of only a few years. This short review aims to provide an overview of the current knowledge of rapidly progressive Alzheimer disease. Furthermore, we suggest that rapid, in this context, should be defined as a Mini-Mental State Examination score decrease of 6 points per year.

  3. Age-associated changes of brain copper, iron, and zinc in Alzheimer's disease and dementia with Lewy bodies. (United States)

    Graham, Stewart F; Nasaruddin, Muhammad Bin; Carey, Manus; Holscher, Christian; McGuinness, Bernadette; Kehoe, Patrick G; Love, Seth; Passmore, Peter; Elliott, Christopher T; Meharg, Andrew A; Green, Brian D


    Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p iron higher (10-16%; p iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.

  4. Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer's disease. (United States)

    Ewers, Michael; Schmitz, Susanne; Hansson, Oskar; Walsh, Cathal; Fitzpatrick, Annette; Bennett, David; Minthon, Lennart; Trojanowski, John Q; Shaw, Leslie M; Faluyi, Yetunde O; Vellas, Bruno; Dubois, Bruno; Blennow, Kaj; Buerger, Katharina; Teipel, Stefan J; Weiner, Michael; Hampel, Harald


    Weight changes are common in aging and Alzheimer's disease (AD) and postmortem findings suggest a relation between lower body mass index (BMI) and increased AD brain pathology. In the current multicenter study, we tested whether lower BMI is associated with higher core AD brain pathology as assessed by cerebrospinal fluid (CSF)-based biological markers of AD in 751 living subjects: 308 patients with AD, 296 subjects with amnestic mild cognitive impairment (MCI), and 147 elderly healthy controls (HC). Based upon a priori cutoff values on CSF concentration of total tau and beta-amyloid (Aβ(1-42)), subjects were binarized into a group with abnormal CSF biomarker signature (CSF+) and those without (CSF-). Results showed that BMI was significantly lower in the CSF+ when compared with the CSF- group (F = 27.7, df = 746, p < 0.001). There was no interaction between CSF signature and diagnosis or apolipoprotein E (ApoE) genotype. In conclusion, lower BMI is indicative of AD pathology as assessed with CSF-based biomarkers in demented and nondemented elderly subjects.

  5. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Giuseppe Astarita

    Full Text Available The molecular bases of Alzheimer's disease (AD remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37 compared to age-matched controls (N = 17. The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs and mead acid (20:3n-9 in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b, were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio ('desaturation index'--displayed a strong negative correlation with measures of cognition: the Mini Mental State Examination test (r = -0.80; P = 0.0001 and the Boston Naming test (r = -0.57; P = 0.0071. Our results reveal a previously unrecognized role for the lipogenic enzyme SCD in AD.

  6. Trail Making Test Part A and Brain Perfusion Imaging in Mild Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Aki Shindo


    Full Text Available Background/Aims: The Trail Making Test (TMT has long been used to investigate deficits in cognitive processing speed and executive function in humans. However, there are few studies that elucidate the neural substrates of the TMT. The aim of the present study was to identify the regional perfusion patterns of the brain associated with performance on the TMT part A (TMT-A in patients with Alzheimer's disease (AD. Methods: Eighteen AD patients with poor performance on the TMT-A and 36 age- and sex-matched AD patients with good performance were selected. All subjects underwent brain single photon emission computed tomography. Results: No significant differences between the good and poor performance groups were found with respect to years of education and revised Addenbrooke's Cognitive Examination scores. However, higher z-scores for hypoperfusion in the bilateral superior parietal lobule were observed in the group that scored poorly on the TMT-A compared with the good performance group. Conclusion: Our results suggest that functional activity of the bilateral superior parietal lobules is closely related to performance time on the TMT-A. Thus, the performance time on the TMT-A might be a promising index of dysfunction of the superior parietal area among mild AD patients.

  7. Glycosylation of microtubule-associated protein tau in Alzheimer's disease brain. (United States)

    Takahashi, M; Tsujioka, Y; Yamada, T; Tsuboi, Y; Okada, H; Yamamoto, T; Liposits, Z


    In the neurofibrillary pathology of Alzheimer's disease (AD), neurofibrillary tangles (NFTs) contain paired helical filaments (PHFs) as their major fibrous component. Abnormally hyperphosphorylated, microtubule-associated protein tau is the major protein subunit of PHFs. A recent in vitro study showed that PHF tangles from AD brains are highly glycosylated, whereas no glycan is detected in normal tau. Deglycosylation of PHF tangles converts them into bundles of straight filaments and restores their accessibility to microtubules. We showed that PHF tangles from AD brain tissue were associated with specific glycan molecules by double immunostaining with peroxidase and alkaline phosphatase labeling. Intracellular tangles and dystrophic neurites in a neuritic plaque with abnormally hyperphosphorylated tau, detected with the monoclonal antibodies AT-8 and anti-tau-2, were also positive with lectin Galanthus nivalis agglutinin (GNA) which recognizes both the N- and O-glycosidically linked saccharides. Colocalization was not seen in the extracellular tangles and amyloid deposition, suggesting that the glycosylation of tau might be associated with the early phase of insoluble NFT formation. Thus, although abnormal phosphorylation might promote aggregation of tau and inhibition of the assembly of microtubules, glycosylation mediated by a GNA-positive glycan appears to be responsible for the formation of the PHF structures in vivo.

  8. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  9. Ultrasound Delivery of an Anti-Aβ Therapeutic Agent to the Brain in a Mouse Model of Alzheimer's Disease (United States)

    Jordão, Jessica F.; Ayala-Grosso, Carlos A.; Chopra, Rajiv; McLaurin, JoAnne; Aubert, Isabelle; Hynynen, Kullervo


    Plaques composed of amyloid-beta (Aβ) peptides represent a pathological hallmark in the brain of patients with Alzheimer's disease. Aβ oligomers are considered cytotoxic and several therapeutic approaches focus on reducing Aβ load in the brain of Alzheimer's patients. The efficacy of most anti-Aβ agents is significantly limited because they do not cross the blood-brain-barrier. Innovative technologies capable of enhancing the permeability of the blood-brain barrier, thereby allowing entry of therapeutic agents into the brain, show great promise in circumventing this problem. The application of low-intensity focused ultrasound in the presence of an ultrasound contrast agent causes localized and transient permeability of the blood-brain barrier. We demonstrate the value of this technology for the delivery of anti-Aβ antibodies to the brain of TgCRND8 mice, a mouse model of Alzheimer's disease exhibiting Aβ plaques. BAM-10, an anti-Aβ antibody, was injected into the tail vein simultaneously with exposure to MRI-guided, low-intensity focused ultrasound (FUS) to one hemisphere of TgCNRD8 mice. Four hours after treatment, antibodies were detected at significant amounts only in the brain of mice receiving FUS in addition to BAM-10. This data provides a proof-of-concept that FUS allows anti-Aβ therapeutics to efficiently enter the brain and target Aβ plaques. Four days following a single treatment with BAM-10 and MRI-guided FUS, a significant decrease in the number of Aβ plaques on the side of the treated hemisphere was observed in TgCRND8 mice. In conclusion low-intensity, focused ultrasound is effective in delivering Aβ antibodies to the brain. This technology has the potential to enhance current anti-Aβ treatments by allowing increased exposure of amyloid plaques to treatment agents.

  10. Longitudinal Changes in Functional Brain Connectivity Predicts Conversion to Alzheimer's Disease. (United States)

    Serra, Laura; Cercignani, Mara; Mastropasqua, Chiara; Torso, Mario; Spanò, Barbara; Makovac, Elena; Viola, Vanda; Giulietti, Giovanni; Marra, Camillo; Caltagirone, Carlo; Bozzali, Marco


    This longitudinal study investigates the modifications in structure and function occurring to typical Alzheimer's disease (AD) brains over a 2-year follow-up, from pre-dementia stages of disease, with the aim of identifying biomarkers of prognostic value. Thirty-one patients with amnestic mild cognitive impairment were recruited and followed-up with clinical, neuropsychological, and MRI assessments. Patients were retrospectively classified as AD Converters or Non-Converters, and the data compared between groups. Cross-sectional MRI data at baseline, assessing volume and functional connectivity abnormalities, confirmed previous findings, showing a more severe pattern of regional grey matter atrophy and default-mode network disconnection in Converters than in Non-Converters. Longitudinally, Converters showed more grey matter atrophy in the frontotemporal areas, accompanied by increased connectivity in the precuneus. Discriminant analysis revealed that functional connectivity of the precuneus within the default mode network at baseline is the parameter able to correctly classify patients in Converters and Non-Converters with high sensitivity, specificity, and accuracy.

  11. Brain Region-Specific Monoaminergic Correlates of Neuropsychiatric Symptoms in Alzheimer's Disease

    NARCIS (Netherlands)

    Vermeiren, Yannick; Van Dam, Debby; Aerts, Tony; Engelborghs, Sebastiaan; De Deyn, Peter P.


    Neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) are present during the disease course of nearly all AD patients and consist of psychosis, agitation/aggression, and depression, among others. Given their detrimental consequences regarding life expectancy, cognition, and socio-economic cost

  12. Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways

    Directory of Open Access Journals (Sweden)

    Zilka Norbert


    Full Text Available Abstract Neurodegeneration, induced by misfolded tau protein, and neuroinflammation, driven by glial cells, represent the salient features of Alzheimer's disease (AD and related human tauopathies. While tau neurodegeneration significantly correlates with disease progression, brain inflammation seems to be an important factor in regulating the resistance or susceptibility to AD neurodegeneration. Previously, it has been shown that there is a reciprocal relationship between the local inflammatory response and neurofibrillary lesions. Numerous independent studies have reported that inflammatory responses may contribute to the development of tau pathology and thus accelerate the course of disease. It has been shown that various cytokines can significantly affect the functional and structural properties of intracellular tau. Notwithstanding, anti-inflammatory approaches have not unequivocally demonstrated that inhibition of the brain immune response can lead to reduction of neurofibrillary lesions. On the other hand, our recent data show that misfolded tau could represent a trigger for microglial activation, suggesting the dual role of misfolded tau in the Alzheimer's disease inflammatory cascade. On the basis of current knowledge, we can conclude that misfolded tau is located at the crossroad of the neurodegenerative and neuroinflammatory pathways. Thus disease-modified tau represents an important target for potential therapeutic strategies for patients with Alzheimer's disease.

  13. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer's disease (United States)

    Liao, Fan; Yoon, Hyejin; Kim, Jungsu


    Purpose of review APOE4 genotype is the strongest genetic risk factor for Alzheimer's disease. Prevailing evidence suggests that amyloid β plays a critical role in Alzheimer's disease. The objective of this article is to review the recent findings about the metabolism of apolipoprotein E (ApoE) and amyloid β and other possible mechanisms by which ApoE contributes to the pathogenesis of Alzheimer's disease. Recent findings ApoE isoforms have differential effects on amyloid β metabolism. Recent studies demonstrated that ApoE-interacting proteins, such as ATP-binding cassette A1 (ABCA1) and LDL receptor, may be promising therapeutic targets for Alzheimer's disease treatment. Activation of liver X receptor and retinoid X receptor pathway induces ABCA1 and other genes, leading to amyloid β clearance. Inhibition of the negative regulators of ABCA1, such as microRNA-33, also induces ABCA1 and decreases the levels of ApoE and amyloid β. In addition, genetic inactivation of an E3 ubiquitin ligase, myosin regulatory light chain interacting protein, increases LDL receptor levels and inhibits amyloid accumulation. Although amyloid β-dependent pathways have been extensively investigated, there have been several recent studies linking ApoE with vascular function, neuroinflammation, metabolism, synaptic plasticity, and transcriptional regulation. For example, ApoE was identified as a ligand for a microglial receptor, TREM2, and studies suggested that ApoE may affect the TREM2-mediated microglial phagocytosis. Summary Emerging data suggest that ApoE affects several amyloid β-independent pathways. These underexplored pathways may provide new insights into Alzheimer's disease pathogenesis. However, it will be important to determine to what extent each mechanism contributes to the pathogenesis of Alzheimer's disease. PMID:27922847

  14. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease. (United States)

    Kishimoto, Yasushi; Shishido, Hajime; Sawanishi, Mayumi; Toyota, Yasunori; Ueno, Masaki; Kubota, Takashi; Kirino, Yutaka; Tamiya, Takashi; Kawai, Nobuyuki


    This data article contains supporting information regarding the research article entitled "Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease" (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016) [1]. Triple-transgenic (3×Tg)-Alzheimer׳s disease (AD) model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI). Correspondingly, amyloid-β (Aβ) deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP) accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs) during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  15. Staging of Neurofibrillary Pathology in Alzheimer's Disease: A Study of the BrainNet Europe Consortium (United States)

    Alafuzoff, Irina; Arzberger, Thomas; Al-Sarraj, Safa; Bodi, Istvan; Bogdanovic, Nenad; Braak, Heiko; Bugiani, Orso; Del-Tredici, Kelly; Ferrer, Isidro; Gelpi, Ellen; Giaccone, Giorgio; Graeber, Manuel B; Ince, Paul; Kamphorst, Wouter; King, Andrew; Korkolopoulou, Penelope; Kovács, Gábor G; Larionov, Sergey; Meyronet, David; Monoranu, Camelia; Parchi, Piero; Patsouris, Efstratios; Roggendorf, Wolfgang; Seilhean, Danielle; Tagliavini, Fabrizio; Stadelmann, Christine; Streichenberger, Nathalie; Thal, Dietmar R; Wharton, Stephen B; Kretzschmar, Hans


    It has been recognized that molecular classifications will form the basis for neuropathological diagnostic work in the future. Consequently, in order to reach a diagnosis of Alzheimer's disease (AD), the presence of hyperphosphorylated tau (HP-tau) and β-amyloid protein in brain tissue must be unequivocal. In addition, the stepwise progression of pathology needs to be assessed. This paper deals exclusively with the regional assessment of AD-related HP-tau pathology. The objective was to provide straightforward instructions to aid in the assessment of AD-related immunohistochemically (IHC) detected HP-tau pathology and to test the concordance of assessments made by 25 independent evaluators. The assessment of progression in 7-µm-thick sections was based on assessment of IHC labeled HP-tau immunoreactive neuropil threads (NTs). Our results indicate that good agreement can be reached when the lesions are substantial, i.e., the lesions have reached isocortical structures (stage V–VI absolute agreement 91%), whereas when only mild subtle lesions were present the agreement was poorer (I–II absolute agreement 50%). Thus, in a research setting when the extent of lesions is mild, it is strongly recommended that the assessment of lesions should be carried out by at least two independent observers. PMID:18371174

  16. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease. (United States)

    Berchtold, Nicole C; Coleman, Paul D; Cribbs, David H; Rogers, Joseph; Gillen, Daniel L; Cotman, Carl W


    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer's disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20-99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD.

  17. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice. (United States)

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington


    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  18. Effect of transcranial brain stimulation for the treatment of Alzheimer disease: a review. (United States)

    Nardone, Raffaele; Bergmann, Jürgen; Christova, Monica; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Trinka, Eugen; Golaszewski, Stefan


    Available pharmacological treatments for Alzheimer disease (AD) have limited effectiveness, are expensive, and sometimes induce side effects. Therefore, alternative or complementary adjuvant therapeutic strategies have gained increasing attention. The development of novel noninvasive methods of brain stimulation has increased the interest in neuromodulatory techniques as potential therapeutic tool for cognitive rehabilitation in AD. In particular, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive approaches that induce prolonged functional changes in the cerebral cortex. Several studies have begun to therapeutically use rTMS or tDCS to improve cognitive performances in patients with AD. However, most of them induced short-duration beneficial effects and were not adequately powered to establish evidence for therapeutic efficacy. Therefore, TMS and tDCS approaches, seeking to enhance cognitive function, have to be considered still very preliminary. In future studies, multiple rTMS or tDCS sessions might also interact, and metaplasticity effects could affect the outcome.

  19. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease. (United States)

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D


    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.

  20. Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy. (United States)

    Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan


    Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

  1. Brain ERP components predict which individuals progress to Alzheimer's disease and which do not. (United States)

    Chapman, Robert M; McCrary, John W; Gardner, Margaret N; Sandoval, Tiffany C; Guillily, Maria D; Reilly, Lindsey A; DeGrush, Elizabeth


    Predicting which individuals will progress to Alzheimer's disease (AD) is important in both clinical and research settings. We used brain Event-Related Potentials (ERPs) obtained in a perceptual/cognitive paradigm with various processing demands to predict which individual Mild Cognitive Impairment (MCI) subjects will develop AD versus which will not. ERP components, including P3, memory "storage" component, and other earlier and later components, were identified and measured by Principal Components Analysis. When measured for particular task conditions, a weighted set of eight ERP component_conditions performed well in discriminant analysis at predicting later AD progression with good accuracy, sensitivity, and specificity. The predictions for most individuals (79%) had high posterior probabilities and were accurate (88%). This method, supported by a cross-validation where the prediction accuracy was 70-78%, features the posterior probability for each individual as a method of determining the likelihood of progression to AD. Empirically obtained prediction accuracies rose to 94% when the computed posterior probabilities for individuals were 0.90 or higher (which was found for 40% of our MCI sample).

  2. Alzheimer disease: An interactome of many diseases

    Directory of Open Access Journals (Sweden)

    Balaji S Rao


    Full Text Available Alzheimer Disease (AD is an outcome as well as source of many diseases. Alzheimer is linked with many other diseases like Diabetes type 2, cholesterolemia, hypertension and many more. But how each of these diseases affecting other is still unknown to scientific community. Signaling Pathways of one disease is interlinked with other disease. But to what extent healthy brain is affected when any signaling in human body is disturbed is the question that matters. There is a need of Pathway analysis, Protein-Protein interaction (PPI and the conserved interactome study in AD and linked diseases. It will be helpful in finding the potent drug or vaccine target in conscious manner. In the present research the Protein-Protein interaction of all the proteins involved in Alzheimer Disease is analyzed using ViSANT and osprey tools and pathway analysis further reveals the significant genes/proteins linking AD with other diseases.

  3. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise


    Takashi eTarumi; Rong eZhang


    Alzheimer disease (AD) and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vas...

  4. Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Elaheh Moradi


    Full Text Available Rey's Auditory Verbal Learning Test (RAVLT is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD, thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50 and RAVLT Percent Forgetting (R = 0.43 in a dataset consisting of 806 AD, mild cognitive impairment (MCI or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

  5. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. (United States)

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T


    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.

  6. Frequency-specific Alterations of Large-scale Functional Brain Networks in Patients with Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Qin; Ya-Peng Li; Shun Zhang; Ying Xiong; Lin-Ying Guo; Shi-Qi Yang; Yi-Hao Yao


    Background:Previous studies have indicated that the cognitive deficits in patients with Alzheimer's disease (AD) may be due to topological deteriorations of the brain network.However,whether the selection of a specific frequency band could impact the topological properties is still not clear.Our hypothesis is that the topological properties of AD patients are also frequency-specific.Methods:Resting state functional magnetic resonance imaging data from l0 right-handed moderate AD patients (mean age:64.3 years; mean mini mental state examination [MMSE]:18.0) and 10 age and gender-matched healthy controls (mean age:63.6 years; mean MMSE:28.2) were enrolled in this study.The global efficiency,the clustering coefficient (CC),the characteristic path length (CpL),and "small-world" property were calculated in a wide range of thresholds and averaged within each group,at three different frequency bands (0.01-0.06 Hz,0.06-0.11 Hz,and 0.11-0.25 Hz).Results:At lower-frequency bands (0.01-0.06 Hz,0.06-0.11 Hz),the global efficiency,the CC and the "small-world" properties of AD patients decreased compared to controls.While at higher-frequency bands (0.11-0.25 Hz),the CpL was much longer,and the "small-world" property was disrupted in AD,particularly at a higher threshold.The topological properties changed with different frequency bands,suggesting the existence of disrupted global and local functional organization associated with AD.Conclusions:This study demonstrates that the topological alterations of large-scale functional brain networks inAD patients are frequency dependent,thus providing fundamental support for optimal frequency selection in future related research.

  7. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health. (United States)

    Bentley, Paul; Driver, Jon; Dolan, Ray J


    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of effects of physostigmine on stimulus- and attention- related brain activations, plus between-group comparisons for these. Subjects viewed face or building stimuli while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed slower than controls in both tasks, while physostigmine benefited the patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in patients relative to controls, but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed physostigmine-induced enhancement of stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased stimulus and task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. The differences in brain activations between groups and treatments were not attributable merely to performance (reaction time) differences. Our results demonstrate


    NARCIS (Netherlands)



    The tissue concentrations of two related amino acid derivatives, N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) were determined in autopsy hippocampus, amygdala, cerebellar cortex and olfactory bulb of Alzheimer's disease patients and age-matched non-demented controls, using reverse-ph

  9. Brain Substrates of Learning and Retention in Mild Cognitive Impairment Diagnosis and Progression to Alzheimer's Disease (United States)

    Chang, Yu-Ling; Bondi, Mark W.; Fennema-Notestine, Christine; McEvoy, Linda K.; Hagler, Donald J., Jr.; Jacobson, Mark W.; Dale, Anders M.


    Understanding the underlying qualitative features of memory deficits in mild cognitive impairment (MCI) can provide critical information for early detection of Alzheimer's disease (AD). This study sought to investigate the utility of both learning and retention measures in (a) the diagnosis of MCI, (b) predicting progression to AD, and (c)…

  10. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe. (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T


    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  11. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer's disease. (United States)

    Zhang, Fang; Kang, Zhilong; Li, Wen; Xiao, Zhicheng; Zhou, Xinfu


    Alzheimer's disease (AD) is one of the most common causes of dementia in the elderly. It is characterized by extracellular deposition of the neurotoxic peptide, amyloid-beta (Aβ) peptide fibrils, and is accompanied by extensive loss of neurons in the brains of affected individuals. However, the pathogenesis of AD is not fully understood. The aim of this review is to discuss the possible role of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signalling in the development of AD, focusing on BDNF/TrkB signalling in the production of Aβ, tau hyperphosphorylation and cognition decline, and exploring new possibilities for AD intervention.

  12. The Importance of Adipokines in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Seyid Ahmet Ay


    Full Text Available Dementia and Alzheimers disease are characterized by disturbances in brain function and structure. Similarly, body mass index and obesity are associated with certain brain pathologies, including Alzheimers disease and dementia. In fact, there is mounting evidence linking metabolic dysfunction with dementia and Alzheimers disease. Major endocrine axes constitute links between brain and peripheral tissues, especially adipose tissue. Adipose tissue is metabolically very active and produces a variety of adipokines known to affect both peripheral and central nervous system processes. Experimental studies suggest that changes in adipokine function may contribute to the pathogenesis of Alzheimers disease. Herein, we review the adipokines leptin and adiponectin which are associated with morbidities related to obesity as well as dementia and Alzheimers disease. [Dis Mol Med 2015; 3(2.000: 22-28

  13. Calculating the Number of People with Alzheimer's Disease in any Country Using Saturated Mutation Models of Brain Cell Loss that also Predict Widespread Natural Immunity to the Disease

    Directory of Open Access Journals (Sweden)

    Ivan Kramer


    Full Text Available The series of mutations that cause brain cells to spontaneously and randomly die leading to Alzheimer's disease (AD is modelled. The prevalence of AD as a function of age in males and females is calculated from two very different mutation models of brain cell death. Once the prevalence functions are determined, the number of people with AD in any country or city can be estimated.

  14. Immunotherapy for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Weihua Wang; Liangfeng Fan; De'en Xu; Zhongmin Wen; Rong Yu; Quanhong Ma


    Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) plaques consisted primarily of aggregated Aβ proteins and neurofibrillary tangles formed by hyperphosphorylated tau protein.Both Aβ and hyperphosphorylated tau are toxic both in vivo and in vitro.Immunotherapy targeting Aβ seems to provide a promising approach to reduce the toxic species in the brain.However,there is little evidence from clinical trials so far indicating the efficacy of Aβ immunotherapy in cognitive improvement.Immunization with tau peptides or anti-tau antibodies could remove the tau aggregates and improve the cognitive function in preclinical study,which provides a novel strategy of AD therapy.In this article,we will summarize the immunotherapeutic strategies targeting either Aβ or tau.

  15. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. (United States)

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira


    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  16. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Mannu P


    Full Text Available Piero Mannu1, Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyPurpose: Behavioral and psychiatric symptoms of dementia (BPSD are common in Alzheimer's disease (AD and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC in patients who have had a poor response to pharmacological treatment.Patients and methods: Eight patients (five females and three males; mean [±standard deviation] age at study baseline: 69.9 ± 3.0 years diagnosed with AD according to the DSM-IV-TR criteria (mean onset age of AD: 65.4 ± 3.5 years were cognitively and psychometrically assessed with the Mini-Mental State Examination (MMSE, the Activity of Daily Living (ADL, the Instrumental Activity of Daily Living (IADL, and the Neuropsychiatric Inventory (NPI, prior to and after each of 2 REAC treatment cycles.Results: Scores on the MMSE and all subscales of the NPI (frequency, severity, and distress, the ADL, and the IADL were significantly improved following the initial REAC treatment. There was further significant improvement in all measurements (with a tendency for improvement in the IADL after the second REAC treatment cycle.Conclusion: The improvement of cognitive and behavioral/psychiatric functioning following REAC treatment suggests that this innovative approach may be an effective, safe, and tolerable alternative to pharmacological treatment of AD patients, especially in the area of BPSD. Elderly patients suffering from other types of dementia may also benefit from REAC treatment.Keywords: anxiety, depression, insomnia, behavioral and psychiatric symptoms of dementia (BPSD

  17. Alzheimer's Disease Facts and Figures (United States)

    ... Alzheimer's >> Home Text size: A A A 2017 Alzheimer's Disease Facts and Figures Download the Full Report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers In 2016, 15.9 million family ...

  18. Imaging the earliest stages of Alzheimer's disease. (United States)

    Wu, William; Small, Scott A


    Historical progress in medicine can be charted along the lines of technical innovations that have visualized the invisible. One hundred years ago, Alois Alzheimer exploited newly developed histological stains to visualize his eponymonous disease in dead tissue under the microscope. Now, as we are entering the second century of Alzheimer's disease research, technical innovation has endowed us with a range of in vivo imaging techniques that promise to visualize Alzheimer' disease in living people. The earliest stage of Alzheimer's disease is characterized by cell-sickness, not cell-death, and can occur before the deposition of amyloid plaques or neurofibrillary tangles. In principle, 'functional' imaging techniques might be able to detect this early stage of the disease, a stage that was invisible to Alzheimer himself. Here, we will first define the neurobiological meaning of 'function' and then review the different approaches that measure brain dysfunction in Alzheimer' disease.

  19. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method (United States)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing


    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  20. Stroke risk interacts with Alzheimer's disease biomarkers on brain aging outcomes. (United States)

    Hohman, Timothy J; Samuels, Lauren R; Liu, Dandan; Gifford, Katherine A; Mukherjee, Shubhabrata; Benson, Elleena M; Abel, Ty; Ruberg, Frederick L; Jefferson, Angela L


    Alzheimer's disease (AD) biomarkers and stroke risk factors independently predict cognitive impairment, likely through independent disease pathways. However, limited work has sought to describe the dynamic interplay between these important risk factors. This article evaluated the interaction between stroke risk and AD biomarkers on hippocampal volume and cognitive performance. We first evaluated the interaction between stroke risk factors and AD biomarkers using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 1202). We then extended our findings to an independent autopsy data set from the National Alzheimer's Coordinating Center (NACC, n = 1122) using measures of AD pathology. Stroke risk was quantified using the Framingham Stroke Risk Profile. In ADNI, stroke risk interacted with tau and amyloid levels in relation to baseline and longitudinal cognitive performance. Similarly, in NACC, stroke risk interacted with amyloid and tau positivity on cognitive performance. The effect of stroke risk factors on cognition was strongest in the absence of AD biomarkers or neuropathology, providing additional evidence that AD biomarkers and stroke risk factors relate to cognition through independent pathways.

  1. Differential effects of ischemic vascular disease and Alzheimer's disease on brain atrophy and cognition. (United States)

    Zheng, Ling; Vinters, Harry V; Mack, Wendy J; Weiner, Michael W; Chui, Helena C


    We previously reported that pathologic measures of arteriosclerosis (AS), cerebral infarction, and Alzheimer’s disease (AD) are independently correlated with cortical gray matter (CGM) atrophy measured by in vivo magnetic resonance imaging (MRI). Here, we use path analyses to model the associations between these three pathology measures and cognitive impairment, as mediated by CGM atrophy, after controlling for age and education. In this sample of 116 elderly persons followed longitudinally to autopsy (ischemic vascular disease (IVD) program project), differential patterns were observed between AS and atrophy/cognition versus AD and atrophy/cognition. The total effect of AD pathology on global cognition (β = -0.61, s.e. = 0.06) was four times stronger than that of AS (β = -0.15, s.e. = 0.08). The effect of AS on cognition appears to occur through cerebral infarction and CGM atrophy (β = -0.13, s.e. = 0.04). In contrast, the effects of AD pathology on global cognition (β = -0.50, s.e. = 0.07) occur through a direct pathway that is five times stronger than the indirect pathway acting through CGM atrophy (β = -0.09, s.e. = 0.03). The strength of this direct AD pathway was not significantly mitigated by adding hippocampal volume to the model. AD pathology affects cognition not only through brain atrophy, but also via an unmeasured pathway that could be related to synaptic dysfunction before the development of cortical atrophy.

  2. Brain expression of Kv3 subunits during development, adulthood and aging and in a murine model of Alzheimer's disease. (United States)

    Boda, Enrica; Hoxha, Eriola; Pini, Alessandro; Montarolo, Francesca; Tempia, Filippo


    In neurons, voltage-dependent Kv3 potassium channels are essential for the generation of action potentials at high frequency. A dysregulation of the Kv3.1 and Kv3.4 channel subunits has been suggested to contribute to neuronal and glial alterations in Alzheimer's disease, but a quantitative evaluation of these subunits in a mouse model of the pathology is still lacking. We analysed the profile of expression of the four Kv3 subunits by quantitative reverse transcription PCR and Western blot in the whole mouse brain and in dissected brain regions (olfactory bulb, septum, neocortex, hippocampus, brainstem and cerebellum) from 14 days after conception to 18 months after birth. In addition, we measured the levels of Kv3.1 and Kv3.4 messenger RNAs (mRNAs) and proteins in neocortex and hippocampus of APPPS1 mice, a transgenic model of Alzheimer's disease. Although all Kv3 transcripts were significantly expressed in embryonic age in whole brain extracts, only Kv3.1, Kv3.2 and Kv3.4 subunit proteins were present, suggesting a novel role for Kv3 channels at this developmental stage. With the exception of Kv3.4, during postnatal development, Kv3 transcripts and proteins showed a progressive increase in expression and reached an asymptote in adulthood, suggesting that the increase in Kv3 expression during development might contribute to the maturation of the electrical activity of neurons. During aging, Kv3 expression was rather stable. In contrast, in the neocortex of aged APPPS1 mice, Kv3.1 mRNA and protein levels were significantly lower compared to wild type, suggesting that a decrease in Kv3 currents could play a role in the cognitive symptoms of Alzheimer's disease.

  3. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients : Effect of polymorphisms in the ABCB1 gene

    NARCIS (Netherlands)

    D.M.E. van Assema (Daniëlle); M. Lubberink (Mark); P. Rizzu (Patrizia); J.C. van Swieten (John); R.C. Schuit (Robert); J. Eriksson (Joel); P. Scheltens (Philip); M. Koepp (Matthias); A.A. Lammertsma (Adriaan); B.N.M. van Berckel (Bart )


    textabstractBackground: P-glycoprotein is a blood-brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimer's disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide po

  4. [Brain imaging of Alzheimer' disease: state of the art and perspectives for clinicians]. (United States)

    Trombella, Sara; Assal, Frédéric; Zekry, Dina; Gold, Gabriel; Giannakopoulos, Panteleimon; Garibotto, Valentina; Démonet, Jean-François; Frisoni, Giovanni B


    To improve the clinical detection of Alzheimer's disease (AD) new diagnostic criteria have been proposed, based on biomarkers of synaptic dysfunction, AD-related neurodegeneration, and Aβ cerebral amyloidosis. Magnetic resonance imaging (MRI) and position emission tomography (PET) neuroimaging can be configured as powerful means for the detection of medial-temporal atrophy, reduced uptake of 18F-FDG PET or and increased retention of Aβ amyloid protein by amyloïd-PET. In this review, we will discuss these promising techniques that allow assessing in vivo AD pathology and help clinicians to better diagnose and follow-up patients, particularly in clinical trials using disease-modifying treatments.

  5. Glycation in Parkinson's disease and Alzheimer's disease. (United States)

    Vicente Miranda, Hugo; El-Agnaf, Omar M A; Outeiro, Tiago Fleming


    Glycation is a spontaneous age-dependent posttranslational modification that can impact the structure and function of several proteins. Interestingly, glycation can be detected at the periphery of Lewy bodies in the brain in Parkinson's disease. Moreover, α-synuclein can be glycated, at least under experimental conditions. In Alzheimer's disease, glycation of amyloid β peptide exacerbates its toxicity and contributes to neurodegeneration. Recent studies establish diabetes mellitus as a risk factor for several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, the mechanisms underlying this connection remain unclear. We hypothesize that hyperglycemia might play an important role in the development of these disorders, possibly by also inducing protein glycation and thereby dysfunction, aggregation, and deposition. Here, we explore protein glycation as a common player in Parkinson's and Alzheimer's diseases and propose it may constitute a novel target for the development of strategies for neuroprotective therapeutic interventions. © 2016 International Parkinson and Movement Disorder Society.

  6. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy (United States)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong


    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  7. Biondi ring tangles in the choroid plexus of Alzheimer's disease and normal aging brains: a quantitative study. (United States)

    Wen, G Y; Wisniewski, H M; Kascsak, R J


    The choroid plexus (CP) performs the vital function of producing up to 90% (450-1000 ml/day) of cerebrospinal fluid (CSF) to nourish and to protect the brain in the CSF suspension. The CP also acts as a selective barrier between blood and CSF to regulate ions and other essential molecules. However, the accumulation of intracellular inclusions called Biondi ring tangles (BRTs) in CP cells of Alzheimer's disease (AD)/aging brains may affect these vital functions of the CP. Statistical analysis of quantitative data on the numbers of CP cells containing BRTs from 54 brains (29 AD and 25 normal control), age range 1-100 years, indicated a significant difference (pbiomarker for AD in addition to NPs and NFTs.

  8. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease. (United States)

    Huang, Xiao-Tian; Qian, Zhong-Ming; He, Xuan; Gong, Qi; Wu, Ka-Chun; Jiang, Li-Rong; Lu, Li-Na; Zhu, Zhou-Jing; Zhang, Hai-Yan; Yung, Wing-Ho; Ke, Ya


    Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease.

  9. Metallostasis in Alzheimer's disease. (United States)

    Ayton, Scott; Lei, Peng; Bush, Ashley I


    2012 has been another year in which multiple large-scale clinical trials for Alzheimer's disease (AD) have failed to meet their clinical endpoints. With the social and financial burden of this disease increasing every year, the onus is now on the field of AD researchers to investigate alternative ideas to deliver outcomes for patients. Although several major clinical trials targeting Aβ have failed, three smaller clinical trials targeting metal interactions with Aβ have all shown benefit for patients. Here we review the genetic, pathological, biochemical, and pharmacological evidence that underlies the metal hypothesis of AD. The AD-affected brain suffers from metallostasis, or fatigue of metal trafficking, resulting in redistribution of metals into inappropriate compartments. The metal hypothesis is built upon a triad of transition elements: iron, copper, and zinc. The hypothesis has matured from early investigations showing amyloidogenic and oxidative stress consequences of these metals; recently, disease-related proteins, APP, tau, and presenilin, have been shown to have major roles in metal regulation, which provides insight into the pathway of neurodegeneration in AD and illuminates potential new therapeutic avenues.

  10. Treatment of Alzheimer disease. (United States)

    Winslow, Bradford T; Onysko, Mary K; Stob, Christian M; Hazlewood, Kathleen A


    Alzheimer disease is the most common form of dementia, affecting nearly one-half [corrected] of Americans older than 85 years. It is characterized by progressive memory loss and cognitive decline. Amyloid plaque accumulation, neurofibrillary tau tangles, and depletion of acetylcholine are among the pathologic manifestations of Alzheimer disease. Although there are no proven modalities for preventing Alzheimer disease, hypertension treatment, omega-3 fatty acid supplementation, physical activity, and cognitive engagement demonstrate modest potential. Acetylcholinesterase inhibitors are first-line medications for the treatment of Alzheimer disease, and are associated with mild improvements in cognitive function, behavior, and activities of daily living; however, the clinical relevance of these effects is unclear. The most common adverse effects of acetylcholinesterase inhibitors are nausea, vomiting, diarrhea, dizziness, confusion, and cardiac arrhythmias. Short-term use of the N-methyl-D-aspartate receptor antagonist memantine can modestly improve measures of cognition, behavior, and activities of daily living in patients with moderate to severe Alzheimer disease. Memantine can also be used in combination with acetylcholinesterase inhibitors. Memantine is generally well tolerated, but whether its benefits produce clinically meaningful improvement is controversial. Although N-methyl-D-aspartate receptor antagonists and acetylcholinesterase inhibitors can slow the progression of Alzheimer disease, no pharmacologic agents can reverse the progression. Atypical antipsychotics can improve some behavioral symptoms, but have been associated with increased mortality rates in older patients with dementia. There is conflicting evidence about the benefit of selegiline, testosterone, and ginkgo for the treatment of Alzheimer disease. There is no evidence supporting the beneficial effects of vitamin E, estrogen, or nonsteroidal anti-inflammatory drug therapy.

  11. Alzheimer's disease and periodontitis - an elusive link

    Directory of Open Access Journals (Sweden)

    Abhijit N. Gurav


    Full Text Available Alzheimer's disease is the preeminent cause and commonest form of dementia. It is clinically characterized by a progressive descent in the cognitive function, which commences with deterioration in memory. The exact etiology and pathophysiologic mechanism of Alzheimer's disease is still not fully understood. However it is hypothesized that, neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease. Alzheimer's disease is marked by salient inflammatory features, characterized by microglial activation and escalation in the levels of pro-inflammatory cytokines in the affected regions. Studies have suggested a probable role of systemic infection conducing to inflammatory status of the central nervous system. Periodontitis is common oral infection affiliated with gram negative, anaerobic bacteria, capable of orchestrating localized and systemic infections in the subject. Periodontitis is known to elicit a "low grade systemic inflammation" by release of pro-inflammatory cytokines into systemic circulation. This review elucidates the possible role of periodontitis in exacerbating Alzheimer's disease. Periodontitis may bear the potential to affect the onset and progression of Alzheimer's disease. Periodontitis shares the two important features of Alzheimer's disease namely oxidative damage and inflammation, which are exhibited in the brain pathology of Alzheimer's disease. Periodontitis can be treated and hence it is a modifiable risk factor for Alzheimer's disease.

  12. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer's disease mice. (United States)

    Liu, Yang; An, Sai; Li, Jianfeng; Kuang, Yuyang; He, Xi; Guo, Yubo; Ma, Haojun; Zhang, Yu; Ji, Bin; Jiang, Chen


    Multifunctional nanocarriers are increasingly promising for disease treatment aimed to regulate multiple pathological dysfunctions and overcome barriers in drug delivery. Here we develop a multifunctional nanocarrier for Alzheimer's disease (AD) treatment by achieving therapeutic gene and peptide co-delivery to brain based on PEGylated dendrigraft poly-l-lysines (DGLs) via systemic administration. The dendritic amine-rich structure of DGLs provides plenty reaction sites and positive charge for drug loading. Successful co-delivery of drugs overcoming the blood-brain barrier by brain-targeted ligand modification was demonstrated both in vitro and in vivo. The pharmacodynamics study of the system following multiple-dosing treatment was verified in transgenic AD mice. Down-regulation of the key enzyme in amyloid-β formation was achieved by delivering non-coding RNA plasmid. Simultaneous delivery of the therapeutic peptide into brain leads to reduction of neurofibrillary tangles. Meanwhile, memory loss rescue in AD mice was also observed. Taken together, the multifunctional nanocarrier provides an excellent drug co-delivery platform for brain diseases.

  13. Influence of drug transporters and stereoselectivity on the brain penetration of pioglitazone as a potential medicine against Alzheimer's disease. (United States)

    Chang, Kai Lun; Pee, Hai Ning; Yang, Shili; Ho, Paul C


    Pioglitazone is currently undergoing clinical trials for treatment of Alzheimer's disease (AD). However, poor brain penetration remains an obstacle to development of the drug for such intended clinical uses. In this study, we demonstrate that the inhibition of P-glycoprotein (P-gp) significantly increases brain penetration of pioglitazone, whereas inhibition of breast cancer resistance protein (BCRP) has little effect. We also investigate the stereoselectivity of pioglitazone uptake in the brain. When mice were dosed with racemic pioglitazone, the concentration of (+)-pioglitazone was 46.6% higher than that of (-)-pioglitazone in brain tissue and 67.7% lower than that of (-)-pioglitazone in plasma. Dosing mice with pure (+)-pioglitazone led to a 76% increase in brain exposure levels compared to those from an equivalent dose of racemic pioglitazone. Pure (+)-pioglitazone was also shown to have comparable amyloid-lowering capabilities to the racemic pioglitazone in an in vitro AD model. These results suggest that P-gp may act as a stereoselective barrier to prevent pioglitazone entry into the brain. Dosing with (+)-pioglitazone instead of the racemic mixture may result in higher levels of brain exposure to pioglitazone, thus potentially improving the development of pioglitazone treatment of AD.

  14. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer's and Parkinson's diseases. (United States)

    Chen, Xuesong; Ghribi, Othman; Geiger, Jonathan D


    Sporadic Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common neurodegenerative diseases and as such they represent major public health problems. Finding effective treatments for AD and PD represents an unmet and elusive goal largely because these diseases are chronic and progressive, and have a complicated and ill-understood pathogenesis. Although the underlying mechanisms are not fully understood, caffeine, the most commonly ingested psychoactive drug in the world, has been shown in human and animal studies to be protective against AD and PD. One mechanism implicated in the pathogenesis of AD and PD is blood-brain barrier (BBB) dysfunction and we reported recently that caffeine exerts protective effects against AD and PD at least in part by keeping the BBB intact. The present review focuses on the role of BBB dysfunction in the pathogenesis of AD and PD, caffeine's protective effects against AD and PD, and potential mechanisms whereby caffeine protects against BBB leakage.

  15. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. (United States)

    Pamplona, Reinald; Dalfó, Esther; Ayala, Victòria; Bellmunt, Maria Josep; Prat, Joan; Ferrer, Isidre; Portero-Otín, Manuel


    Diverse oxidative pathways, such as direct oxidation of amino acids, glycoxidation, and lipoxidation could contribute to Alzheimer disease pathogenesis. A global survey for the amount of structurally characterized probes for these reactions is lacking and could overcome the lack of specificity derived from measurement of 2,4-dinitrophenylhydrazine reactive carbonyls. Consequently we analyzed (i) the presence and concentrations of glutamic and aminoadipic semialdehydes, N(epsilon)-(carboxymethyl)-lysine, N(epsilon)-(carboxyethyl)-lysine, and N(epsilon)-(malondialdehyde)-lysine by means of gas chromatography/mass spectrometry, (ii) the biological response through expression of the receptor for advanced glycation end products, (iii) the fatty acid composition in brain samples from Alzheimer disease patients and age-matched controls, and (iv) the targets of N(epsilon)-(malondialdehyde)-lysine formation in brain cortex by proteomic techniques. Alzheimer disease was associated with significant, although heterogeneous, increases in the concentrations of all evaluated markers. Alzheimer disease samples presented increases in expression of the receptor for advanced glycation end products with high molecular heterogeneity. Samples from Alzheimer disease patients also showed content of docosahexaenoic acid, which increased lipid peroxidizability. In accordance, N(epsilon)-(malondialdehyde)-lysine formation targeted important proteins for both glial and neuronal homeostasis such as neurofilament L, alpha-tubulin, glial fibrillary acidic protein, ubiquinol-cytochrome c reductase complex protein I, and the beta chain of ATP synthase. These data support an important role for lipid peroxidation-derived protein modifications in Alzheimer disease pathogenesis.

  16. The discovery of Alzheimer's disease


    Hippius, Hanns; Neundörfer, Gabriele


    On Novembers, 1306, a clinical psychiatrist and neuroanatomist, Alois Alzheimer, reported “A peculiar severe disease process of the cerebral cortex” to the 37th Meeting of South-West German Psychiatrists in Tubingen, He described a 50-year-old woman whom he had followed from her admission for paranoia, progressive sleep and memory disturbance, aggression, and confusion, until her death 5 years later. His report noted distinctive plaques and neurofibrillary tangles in the brain histology. It e...

  17. [Biomarkers in Alzheimer's disease]. (United States)

    García-Ribas, G; López-Sendón Moreno, J L; García-Caldentey, J


    The new diagnostic criteria for Alzheimer's disease (AD) include brain imaging and cerebrospinal fluid (CSF) biomarkers, with the aim of increasing the certainty of whether a patient has an ongoing AD neuropathologic process or not. Three CSF biomarkers, Aß42, total tau, and phosphorylated tau, reflect the core pathological features of AD. It is already known that these pathological processes of AD starts decades before the first symptoms, so these biomarkers may provide means of early disease detection. At least three stages of AD could be identified: preclinical AD, mild cognitive impairment due to AD, and dementia due to AD. In this review, we aim to summarize the CSF biomarker data available for each of these stages. We also review the actual research on blood-based biomarkers. Recent studies on healthy elderly subjects and on carriers of dominantly inherited AD mutations have also found biomarker changes that allow separate groups in these preclinical stages. These studies may aid for segregate populations in clinical trials and objectively evaluate if there are changes over the pathological processes of AD. Limits to widespread use of CSF biomarkers, apart from the invasive nature of the process itself, is the higher coefficient of variation for the analyses between centres. It requires strict pre-analytical and analytical procedures that may make feasible multi-centre studies and global cut-off points for the different stages of AD.

  18. 'Pseudo-Alzheimer's' and primary brain tumour.


    O'Mahony, D; Walsh, J. B.; Coakley, D.


    Primary brain tumour may present in the elderly purely as a dementing illness before the onset or detection of sensorimotor neurological symptoms or signs. Although neurological examination may indicate no definite signs, close attention to accepted DSM-IIIR and NINCDS-ADRDA diagnostic criteria for primary degenerative dementia and 'probable' Alzheimer's disease respectively will suggest a process other than a degenerative one. This was the case in two patients with primary brain tumour prese...

  19. Microglial Dystrophy in the Aged and Alzheimer's Disease Brain Is Associated with Ferritin Immunoreactivity

    Institute of Scientific and Technical Information of China (English)



    小胶质细胞变性对认识衰老相关的神经退变和神经退行性疾病的发病机制非常重要.本研究通过铁蛋白免疫组织化学方法来分析非痴呆和阿茨海默病患者大脑中的小胶质细胞形态特征.作者的主要假设为,铁储存蛋白-铁蛋白的表达提高小胶质细胞对退化的敏感性,尤其是在老年大脑中,因为衰老的小胶质细胞越来越无力维持铁环境稳定,而游离铁可促进氧化损伤.在24例34-97岁的病例中,小胶质细胞对铁蛋白的免疫反应被发现组成一个较大的HLA-DR抗体标记的小胶质细胞池.在老年尤其是AD大脑中,铁蛋白阳性的大部分小胶质细胞呈现出异常的形态学变化,即营养不良.铁蛋白阳性的营养不良小胶质细胞和AD组织中的老年斑之间并未发现空间相关性.对平均死亡时间(10.94±5.69)h的人脑组织的研究显示,小胶质细胞营养不良的出现不依赖于死亡时间,因而不是组织自溶的产物.这些结果均提示,包含铁储存和新陈代谢的小胶质细胞的变性可能是通过其高暴露于氧化应激.作者推论,铁蛋白免疫组织化学法可能是检测人脑小胶质细胞退行性变的有效方法.%Degeneration of microglial cells may be important for understanding the pathogenesis of aging-related neurodegeneration and neurodegenerative diseases. In this study,we analyzed the morphological characteristics of microglial cells in the nondemented and Alzheimer's disease(AD)human brain using ferritin immunohistochemistry. The central hypothesis was that expression of the iron storage protein ferritin increases the susceptibility of microglia to degeneration,particularly in the aged brain since senescent microglia might become less efficient in maintaining iron homeostasis and free iron can promote oxidative damage. In a primary set of 24 subjects(age range 34-97 years)examined,microglial cells immunoreactive for ferritin were found to constitute a

  20. Trends in brain oxygenation during mental and physical exercise measured using near-infrared spectroscopy (NIRS): potential for early detection of Alzheimer's disease (United States)

    Allen, Monica S.; Allen, Jeffery W.; Mikkilineni, Shweta; Liu, Hanli


    Motivation: Early diagnosis of Alzheimer's disease (AD) is crucial because symptoms respond best to available treatments in the initial stages of the disease. Recent studies have shown that marked changes in brain oxygenation during mental and physical tasks can be used for noninvasive functional brain imaging to detect Alzheimer"s disease. The goal of our study is to explore the possibility of using near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for AD before the onset of significant morphological changes in the brain. Methods: A 16-channel NIRS brain imager was used to noninvasively measure spatial and temporal changes in cerebral hemodynamics induced during verbal fluency task and physical activity. The experiments involved healthy subjects (n = 10) in the age range of 25+/-5 years. The NIRS signals were taken from the subjects' prefrontal cortex during the activities. Results and Conclusion: Trends of oxygenated and deoxygenated hemoglobin in the prefrontal cortex of the brain were observed. During the mental stimulation, the subjects showed significant increase in oxygenated hemoglobin [HbO2] with a simultaneous decrease in deoxygenated hemoglobin [Hb]. However, physical exercise caused a rise in levels of HbO2 with small variations in Hb. This study basically demonstrates that NIRM taken from the prefrontal cortex of the human brain is sensitive to both mental and physical tasks and holds potential to serve as a diagnostic means for early detection of Alzheimer's disease.

  1. T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers (United States)

    Mietelska-Porowska, Anna


    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.

  2. Recent developments in Alzheimer's disease therapeutics

    Directory of Open Access Journals (Sweden)

    Aisen Paul S


    Full Text Available Abstract Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed.

  3. The pilot European Alzheimer's Disease Neuroimaging Initiative of the European Alzheimer's Disease Consortium

    DEFF Research Database (Denmark)

    Frisoni, G.B.; Henneman, W.J.; Weiner, M.W.


    BACKGROUND: In North America, the Alzheimer's Disease Neuroimaging Initiative (ADNI) has established a platform to track the brain changes of Alzheimer's disease. A pilot study has been carried out in Europe to test the feasibility of the adoption of the ADNI platform (pilot E-ADNI). METHODS: Sev...

  4. Improved mitochondrial function in brain aging and Alzheimer disease - the new mechanism of action of the old metabolic enhancer piracetam

    Directory of Open Access Journals (Sweden)

    Kristina Leuner


    Full Text Available Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g. might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential (MMP, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease (AD. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, these new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions.

  5. β-Amyloid precursor protein: function in stem cell development and Alzheimer's disease brain. (United States)

    Small, David H; Hu, Yanling; Bolós, Marta; Dawkins, Edgar; Foa, Lisa; Young, Kaylene M


    Stem cell therapy may be a suitable approach for the treatment of many neurodegenerative diseases. However, one major impediment to the development of successful cell-based therapies is our limited understanding of the mechanisms that instruct neural stem cell behaviour, such as proliferation and cell fate specification. The β-amyloid precursor protein (APP) of Alzheimer's disease (AD) may play an important role in neural stem cell proliferation and differentiation. Our recent work shows that in vitro, APP stimulates neural stem or progenitor cell proliferation and neuronal differentiation. The effect on proliferation is mediated by an autocrine factor that we have identified as cystatin C. As cystatin C expression is also reported to inhibit the development of amyloid pathology in APP transgenic mice, our finding has implications for the possible use of cystatin C for the therapy of AD.

  6. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment. (United States)

    Mattsson, Niklas; Tosun, Duygu; Insel, Philip S; Simonson, Alix; Jack, Clifford R; Beckett, Laurel A; Donohue, Michael; Jagust, William; Schuff, Norbert; Weiner, Michael W


    Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to

  7. 3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry. (United States)

    Hua, Xue; Leow, Alex D; Lee, Suh; Klunder, Andrea D; Toga, Arthur W; Lepore, Natasha; Chou, Yi-Yu; Brun, Caroline; Chiang, Ming-Chang; Barysheva, Marina; Jack, Clifford R; Bernstein, Matt A; Britson, Paula J; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret; Fleisher, Adam S; Fox, Nick C; Boyes, Richard G; Barnes, Josephine; Harvey, Danielle; Kornak, John; Schuff, Norbert; Boreta, Lauren; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M


    Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.1 years+/-7.7 SD). We warped each individual brain image (N=120) to the control group average template to create Jacobian maps, which show the local expansion or compression factor at each point in the image, reflecting individual volumetric differences. Statistical maps of group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser, more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9- versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors that resist or accelerate the disease process, and (2) measure disease burden in treatment trials.

  8. CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Stefano Loizzo

    Full Text Available Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis.

  9. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... for someone with Alzheimer's? Get Resources Cost to Nation The costs of health care and long-term ... of this disease in every state across the nation. Click below to see the effect that Alzheimer's ...

  10. Down Syndrome and Alzheimer's Disease (United States)

    ... A A A Share Plus on Google Plus Alzheimer's & Dementia | IHaveAlz Overview What Is Dementia ... chapter Join our online community Down Syndrome and Alzheimer's Disease As they age, those affected by Down ...

  11. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... advances a biomarker-based method for diagnosis and treatment at the earliest stages of Alzheimer's disease, we ... on the latest news and advances in Alzheimer's treatments, care and research. Get tips for living with ...

  12. Design, synthesis and biological evaluation of trimethine cyanine dyes as fluorescent probes for the detection of tau fibrils in Alzheimer's disease brain and olfactory epithelium. (United States)

    Gu, Jiamin; Anumala, Upendra Rao; Heyny-von Haußen, Roland; Hölzer, Jana; Goetschy-Meyer, Valérie; Mall, Gerhard; Hilger, Ingrid; Czech, Christian; Schmidt, Boris


    Shedding light on grey matter: Fluorescent trimethine cyanines were evaluated as imaging probes for neurofibrillary tangles in post-mortem brain sections of Alzheimer's disease patients. These probes bind to neurofibrillary tangles with high contrast and selectivity over amyloid β plaques.

  13. A positron emission tomography analysis of glucose metabolism in Alzheimer's disease brain using [F-18] fluorodeoxyglucose : A parallel study with elemental concentrations

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Stedman, JD; Leenders, KL


    Alzheimer's disease (AD) isa debilitating form of dementia which leads to impaired memory, thinking and behavior. This work examines elemental concentrations between "normal" and AD subjects as well as the hemispherical differences within the brain. Tissue samples from both hemispheres of the fronta

  14. MRI morphometry in Alzheimer's disease. (United States)

    Matsuda, Hiroshi


    MRI based evaluation of brain atrophy is regarded as a valid method to stage the disease and to assess progression in Alzheimer's disease (AD). Volumetric software programs have made it possible to quantify gray matter in the human brain in an automated fashion. At present, voxel based morphometry (VBM) is easily applicable to the routine clinical procedure with a short execution time. The importance of the VBM approach is that it is not biased to one particular structure and is able to assess anatomical differences throughout the brain. Stand-alone VBM software running on Windows, Voxel-based Specific Regional analysis system for AD (VSRAD), has been widely used in the clinical diagnosis of AD in Japan. On the other hand, recent application of graph theory to MRI has made it possible to analyze changes in structural connectivity in AD.

  15. Neurons in Vulnerable Regions of the Alzheimer's Disease Brain Display Reduced ATM Signaling. (United States)

    Shen, Xuting; Chen, Jianmin; Li, Jiali; Kofler, Julia; Herrup, Karl


    Ataxia telangiectasia (A-T) is a multisystemic disease caused by mutations in the ATM (A-T mutated) gene. It strikes before 5 years of age and leads to dysfunctions in many tissues, including the CNS, where it leads to neurodegeneration, primarily in cerebellum. Alzheimer's disease (AD), by contrast, is a largely sporadic neurodegenerative disorder that rarely strikes before the 7th decade of life with primary neuronal losses in hippocampus, frontal cortex, and certain subcortical nuclei. Despite these differences, we present data supporting the hypothesis that a failure of ATM signaling is involved in the neuronal death in individuals with AD. In both, partially ATM-deficient mice and AD mouse models, neurons show evidence for a loss of ATM. In human AD, three independent indices of reduced ATM function-nuclear translocation of histone deacetylase 4, trimethylation of histone H3, and the presence of cell cycle activity-appear coordinately in neurons in regions where degeneration is prevalent. These same neurons also show reduced ATM protein levels. And though they represent only a fraction of the total neurons in each affected region, their numbers significantly correlate with disease stage. This previously unknown role for the ATM kinase in AD pathogenesis suggests that the failure of ATM function may be an important contributor to the death of neurons in AD individuals.

  16. Comparison of histological techniques to visualize iron in paraffin-embedded brain tissue of patients with Alzheimer's disease. (United States)

    van Duijn, Sara; Nabuurs, Rob J A; van Duinen, Sjoerd G; Natté, Remco


    Better knowledge of the distribution of iron in the brains of Alzheimer's disease (AD) patients may facilitate the development of an in vivo magnetic resonance (MR) marker for AD and may cast light on the role of this potentially toxic molecule in the pathogenesis of AD. Several histological iron staining techniques have been used in the past but they have not been systematically tested for sensitivity and specificity. This article compares three histochemical techniques and ferritin immunohistochemistry to visualize iron in paraffin-embedded human AD brain tissue. The specificity of the histochemical techniques was tested by staining sections after iron extraction. Iron was demonstrated in the white matter, in layers IV/V of the frontal neocortex, in iron containing plaques, and in microglia. In our hands, these structures were best visualized using the Meguro iron stain, a method that has not been described for iron staining in human brain or AD in particular. Ferritin immunohistochemistry stained microglia and iron containing plaques similar to the Meguro method but was less intense in myelin-associated iron. The Meguro method is most suitable for identifying iron-positive structures in paraffin-embedded human AD brain tissue.

  17. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Although anomalies in the topological architecture of whole-brain connectivity have been found to be associated with Alzheimer's disease (AD, our understanding about the progression of AD in a functional connectivity (FC perspective is still rudimentary and few study has explored the function-structure relations in brain networks of AD patients. By using resting-state functional MRI (fMRI, this study firstly investigated organizational alternations in FC networks in 12 AD patients, 15 amnestic mild cognitive impairment (aMCI patients, and 14 age-matched healthy aging subjects and found that all three groups exhibit economical small-world network properties. Nonetheless, we found a decline of the optimal architecture in the progression of AD, represented by a more localized modular organization with less efficient local information transfer. Our results also show that aMCI forms a boundary between normal aging and AD and represents a functional continuum between healthy aging and the earliest signs of dementia. Moreover, we revealed a dissociated relationship between the overall FC and structural connectivity (SC in AD patients. In this study, diffusion tensor imaging tractography was used to map the structural network of the same individuals. The decreased FC-SC coupling may be indicative of more stringent and less dynamic brain function in AD patients. Our findings provided insightful implications for understanding the pathophysiological mechanisms of brain dysfunctions in aMCI and AD patients and demonstrated that functional disorders can be characterized by multimodal neuroimaging-based metrics.

  18. Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer's disease. (United States)

    Schultz, Stephanie A; Larson, Jordan; Oh, Jennifer; Koscik, Rebecca; Dowling, Maritza N; Gallagher, Catherine L; Carlsson, Cynthia M; Rowley, Howard A; Bendlin, Barbara B; Asthana, Sanjay; Hermann, Bruce P; Johnson, Sterling C; Sager, Mark; LaRue, Asenath; Okonkwo, Ozioma C


    This study tested the hypothesis that frequent participation in cognitively-stimulating activities, specifically those related to playing games and puzzles, is beneficial to brain health and cognition among middle-aged adults at increased risk for Alzheimer's disease (AD). Three hundred twenty-nine cognitively normal, middle-aged adults (age range, 43.2-73.8 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention (WRAP) participated in this study. They reported their current engagement in cognitive activities using a modified version of the Cognitive Activity Scale (CAS), underwent a structural MRI scan, and completed a comprehensive cognitive battery. FreeSurfer was used to derive gray matter (GM) volumes from AD-related regions of interest (ROIs), and composite measures of episodic memory and executive function were obtained from the cognitive tests. Covariate-adjusted least squares analyses were used to examine the association between the Games item on the CAS (CAS-Games) and both GM volumes and cognitive composites. Higher scores on CAS-Games were associated with greater GM volumes in several ROIs including the hippocampus, posterior cingulate, anterior cingulate, and middle frontal gyrus. Similarly, CAS-Games scores were positively associated with scores on the Immediate Memory, Verbal Learning & Memory, and Speed & Flexibility domains. These findings were not modified by known risk factors for AD. In addition, the Total score on the CAS was not as sensitive as CAS-Games to the examined brain and cognitive measures. For some individuals, participation in cognitive activities pertinent to game playing may help prevent AD by preserving brain structures and cognitive functions vulnerable to AD pathophysiology.

  19. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Ericksen Mielle Borba


    Full Text Available Background/Aims: Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD pathology. Serum brain-derived neurotrophic factor (BDNF reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]. Methods: Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results: MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion: The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  20. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease (United States)

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes


    Background/Aims Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Methods Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction. PMID:28101102

  1. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer's disease. (United States)

    Boggio, Paulo Sérgio; Valasek, Claudia Aparecida; Campanhã, Camila; Giglio, Ana Carolina Alem; Baptista, Nathalia Ishikawa; Lapenta, Olivia Morgan; Fregni, Felipe


    Alzheimer's disease (AD) is a neurodegenerative and progressive disease related to a gradual decline in cognitive functions such as memory, attention, perceptual-spatial abilities, language, and executive functions. Recent evidence has suggested that interventions promoting neural plasticity can induce significant cognitive gains especially in subjects at risk of or with mild AD. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive techniques that can induce significant and long-lasting changes in focal and non-focal neuroplasticity. In this review, we present initial preliminary evidence that TMS and tDCS can enhance performance in cognitive functions typically impaired in AD. Also, we reviewed the initial six studies on AD that presented early findings showing cognitive gains such as in recognition memory and language associated with TMS and tDCS treatment. In addition, we showed that TMS has also been used to assess neuroplasticity changes in AD supporting the notion that cortical excitability is changed in AD due to the neurodegenerative process. Due to the safe profile, cost of these tools, and initial clinical trials results, further studies are warranted in order to replicate and extend the initial findings of rTMS and tDCS as cognitive enhancers in AD. Further trials should explore different targets of stimulation along with different paradigms of stimulation including combination with behavioural interventions.

  2. Multi-resolution Statistical Analysis of Brain Connectivity Graphs in Preclinical Alzheimer's Disease (United States)

    Kim, Won Hwa; Adluru, Nagesh; Chung, Moo K.; Okonkwo, Ozioma C.; Johnson, Sterling C.; Bendlin, Barbara; Singh, Vikas


    There is significant interest, both from basic and applied research perspectives, in understanding how structural/functional connectivity changes can explain behavioral symptoms and predict decline in neurodegenerative diseases such as Alzheimer's disease (AD). The first step in most such analyses is to encode the connectivity information as a graph; then, one may perform statistical inference on various ‘global’ graph theoretic summary measures (e.g., modularity, graph diameter) and/or at the level of individual edges (or connections). For AD in particular, clear differences in connectivity at the dementia stage of the disease (relative to healthy controls) have been identified. Despite such findings, AD-related connectivity changes in preclinical disease remain poorly characterized. Such preclinical datasets are typically smaller and group differences are weaker. In this paper, we propose a new multi-resolution method for performing statistical analysis of connectivity networks/graphs derived from neuroimaging data. At the high level, the method occupies the middle ground between the two contrasts — that is, to analyze global graph summary measures (global) or connectivity strengths or correlations for individual edges similar to voxel based analysis (local). Instead, our strategy derives a Wavelet representation at each primitive (connection edge) which captures the graph context at multiple resolutions. We provide extensive empirical evidence of how this framework offers improved statistical power by analyzing two distinct AD datasets. Here, connectivity is derived from diffusion tensor magnetic resonance images by running a tractography routine. We first present results showing significant connectivity differences between AD patients and controls that were not evident using standard approaches. Later, we show results on populations that are not diagnosed with AD but have a positive family history risk of AD where our algorithm helps in identifying

  3. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    Directory of Open Access Journals (Sweden)

    Hanneke de Waal

    Full Text Available BACKGROUND: Synaptic loss is a major hallmark of Alzheimer's disease (AD. Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. OBJECTIVE: To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. DESIGN: A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. PARTICIPANTS: 179 drug-naïve mild AD patients who participated in the Souvenir II study. INTERVENTION: Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. OUTCOME: In a secondary analysis of the Souvenir II study, electroencephalography (EEG brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma and global network integration (normalised characteristic path length lambda were compared between study groups, and related to memory performance. RESULTS: THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. CONCLUSIONS: The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude

  4. Regulation of metallothionein-III (GIF) mRNA in the brain of patients with Alzheimer disease is not impaired. (United States)

    Amoureux, M C; Van Gool, D; Herrero, M T; Dom, R; Colpaert, F C; Pauwels, P J


    Contradictory results have been reported on the downregulation and role of the brain-specific protein metallothionein-III (MT-III, GIF) in Alzheimer disease (AD). In this article, the importance of MT-III downregulation in AD brain was re-evaluated in temporal and frontal cortex, hippocampus, and cerebellum of 11 AD patients and two groups of five and six control subjects, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify the levels of MT-III mRNA relative to the levels of three constitutive RNAs: beta-actin, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), and ribosomal RNA 18S (rRNA 18S). The distribution of MT-III was similar to that of each of the three constitutive RNAs. The relative levels of each of these RNAs was high in brain regions examined in both AD patients and control subjects. Our findings do not support a downregulation of MT-III mRNA in the frontal cortex as well as the temporal cortex and hippocampus of AD patients. However, the level of MT-III mRNA was not constant in the investigated samples, suggesting that MT-III mRNA regulation could be controlled by factors other than AD pathology. Brain-derived neurotrophic factor (BDNF) mRNA levels were hardly detectable by RT-PCR in human brain tissue; a trend for a decrease was apparent in the temporal cortex of AD patients. In conclusion, the content of MT-III mRNA in the brain of AD patients was not detectably impaired, whereas BDNF mRNA may be affected.

  5. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain. (United States)

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James


    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice.

  6. Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Zhang Weixiong


    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity. Methods We analysed microarray data of four regions - entorhinal cortex (EC, hippocampus (HIP, posterior cingulate cortex (PCC and middle temporal gyrus (MTG from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions. Results and conclusion Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.

  7. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. (United States)

    Sultana, Rukhsana; Perluigi, Marzia; Allan Butterfield, D


    Lipid peroxidation involves a cascade of reactions in which production of free radicals occurs selectively in the lipid components of cellular membranes. Polyunsaturated fatty acids easily undergo lipid peroxidation chain reactions, which, in turn, lead to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. Proteins are susceptible to posttranslational modifications caused by aldehydes binding covalently to specific amino acid residues, in a process called Michael adduction, and these types of protein adducts, if not efficiently removed, may be, and generally are, dangerous for cellular homeostasis. In the present review, we focused the discussion on the selective proteins that are identified, by redox proteomics, as selective targets of HNE modification during the progression and pathogenesis of Alzheimer disease (AD). By comparing results obtained at different stages of the AD, it may be possible to identify key biochemical pathways involved and ideally identify therapeutic targets to prevent, delay, or treat AD.

  8. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain. (United States)

    Thomas, Stefani N; Yang, Austin J


    Recent advances in mass spectrometry (MS)-based proteomics have greatly facilitated the robust identification and quantification of posttranslational modifications (PTMs), including those that are present at substoichiometric site occupancies. The abnormal posttranslational modification and accumulation of the microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer's disease (AD), and it is thought that the primary mode of regulation of tau occurs through PTMs. Several studies have been published regarding tau phosphorylation; however, other tau PTMs such as ubiquitylation, acetylation, methylation, oxidation, sumoylation, nitration, and glycosylation have not been analyzed as extensively. The comprehensive detection and delineation of these PTMs is critical for drug target discovery and validation. Lysine-directed PTMs including ubiquitylation, acetylation, and methylation play key regulatory roles with respect to the rates of tau turnover and aggregation. MS-based analytical approaches have been used to gain insight into the tau lysine-directed PTM signature that is most closely associated with neurofibrillary lesion formation. This chapter provides details pertaining to the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based analysis of the lysine-directed posttranslational modification of tau.

  9. Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG). (United States)

    Lehmann, Christoph; Koenig, Thomas; Jelic, Vesna; Prichep, Leslie; John, Roy E; Wahlund, Lars-Olof; Dodge, Yadolah; Dierks, Thomas


    The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.

  10. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Chera L Maarouf

    Full Text Available Defining the biochemical alterations that occur in the brain during "normal" aging is an important part of understanding the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated changes. Three groups were selected based on age and on having no evidence of neurological or significant neurodegenerative disease: 1 young adult individuals, average age 26 years (n = 9; 2 middle-aged subjects, average age 59 years (n = 5; 3 oldest-old individuals, average age 93 years (n = 6. Using ELISA and Western blotting methods, we quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer's disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed along the course of aging and dementia. This work underscores the need to examine through direct observation how the processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence.

  11. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study (United States)

    An, Yang; Pletnikova, Olga; O’Brien, Richard; Troncoso, John; Legido-Quigley, Cristina; Thambisetty, Madhav


    Background The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. Methods and findings We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and “asymptomatic Alzheimer’s disease” (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10−8, FC = 0.52, q = 1.03 x 10−6), linolenic acid (p = 2.5 x 10−4, FC = 0.84, q = 4.03 x 10−4), docosahexaenoic acid (p = 1.7 x 10−7, FC = 1.45, q = 1.24 x 10−6), eicosapentaenoic acid (p = 4.4 x 10−4, FC = 0.16, q = 6.48 x 10−4), oleic acid (p = 3.3 x 10−7, FC = 0.34, q = 1.46 x 10−6), and arachidonic acid (p = 2.98 x 10−5, FC = 0.75, q = 7.95 x 10−5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p ASYMAD>AD) and increases in docosahexanoic acid (AD>ASYMAD>control) may represent regionally specific threshold levels of these metabolites beyond which the accumulation of AD pathology triggers the expression of clinical symptoms. The main limitation of this study is the relatively small sample size. There are few

  12. Constructional apraxia as a distinctive cognitive and structural brain feature of pre-senile Alzheimer's disease. (United States)

    Serra, Laura; Fadda, Lucia; Perri, Roberta; Spanò, Barbara; Marra, Camillo; Castelli, Diana; Torso, Mario; Makovac, Elena; Cercignani, Mara; Caltagirone, Carlo; Bozzali, Marco


    Constructional apraxia (CA) is often, but not always, observed in patients with Alzheimer's disease (AD). CA is usually explained by impairment of either basic perceptual and motor abilities, or executive functions. This study aims to evaluate the structural correlates of CA in AD. Forty-eight patients with AD and 20 healthy age-matched controls underwent a thorough neuropsychological investigation and an MRI scan to collect high-resolution T1-weighted data. Patients were classified as having (ADca) or not having (ADnonca) CA based on performance on the Freehand copying of drawings task. T1-weighted volumes were process according to the voxel based morphometry protocol, to assess the presence of significant differences in local to grey matter volumes in patients compared to controls and in ADca compared to ADnonca. Post-hoc, the mean grey matter volume of clusters that resulted significantly different between groups was regressed against the neuropsychological scores in which the two patient groups performed differently. A pre-senile disease onset was significantly more frequent in patients with CA compared to ADnonca. ADca patients also showed worse performances than patients with ADnonca at some tests requiring the processing of visuo-spatial data and testing working memory. They also showed widespread reductions in grey matter volume, mainly located in areas known to be implicated in object recognition and localization, and in maintenance and re-orienting of spatial attention. These findings suggest that the occurrence of CA in AD is often associated with a peculiar clinical onset (i.e., pre-senile), neuropsychological profile, and distribution of grey matter atrophy.

  13. Study on Alzheimer's disease model

    Institute of Scientific and Technical Information of China (English)


    It is well known that the main brain lesion in Alzheimer's disease (AD) brain is neurofibrillary tangles (NFT) and senile plaques (SP). The amount of NFT is positively correlated with clinical degree of dementia in AD. It is also well studied that the major component of NFT is abnormally hyperphosphorylated microtubule associated protein tau that is caused by an imbalance of protein kinase and protein phosphatase (PP). To reconstitute a specific AD model based on the above hypothesis, we have injected separately calcium calmodulin dependent protein kinase (CaMKKII) activator, bradykinin and PP-2B inhibitor, cyclosporin A into rat hippocampus in the present study. The results showed that the injection of bradykinin caused learning and memory deficient in rats as well as Alzheimer-like tau phosphorylation, including Ser-262/356, Thr-231/235 and Ser-396/404. On the other hand, the injection of cyclosporin A induced the same phosphorylation sites as above except Ser-262/356, however, it did not mimic rat behavior abnormality as bradykinin injection did. The data suggested that activating of CaMKII and the phosphorylation of Ser-262/356 at tau might responsible for the lesion of learning and memory in our model rats. We also incubated PP-2A and PP-1 inhibitor, okadaic acid with human neuroblastoma cell line (SH-SY5Y), and found that (1) inhibition of above PPs induced Alzheimer-like phosphorylation and accumulation of neurofilaments, and Alzheimer-like microtubule disruption, (2) melatonin showed certain protection of the cell from okadaic acid toxicity. The data obtained from this study is significant in AD specific model study.

  14. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease


    Bateman, R. J.; Aisen, P.S.; De Strooper, B.; Fox, N C.; Lemere, C. A.; Ringman, J.M.; Salloway, S.; Sperling, R. A.; Windisch, M.; Xiong, C.


    Autosomal-dominant Alzheimer's disease has provided significant understanding of the pathophysiology of Alzheimer's disease. The present review summarizes clinical, pathological, imaging, biochemical, and molecular studies of autosomal-dominant Alzheimer's disease, highlighting the similarities and differences between the dominantly inherited form of Alzheimer's disease and the more common sporadic form of Alzheimer's disease. Current developments in autosomal-dominant Alzheimer's disease are...

  15. Neuroinflammation in Alzheimer's disease wanes with age

    NARCIS (Netherlands)

    Hoozemans, J.J.M.; Rozemuller, A.J.M.; van Haastert, E.S.; Eikelenboom, P.; van Gool, W.A.


    ABSTRACT: BACKGROUND: Inflammation is a prominent feature in Alzheimer's disease (AD). It has been proposed that aging has an effect on the function of inflammation in the brain, thereby contributing to the development of age-related diseases like AD. However, the age-dependent relationship between

  16. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns. (United States)

    Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C


    We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.

  17. Diffusion tensor imaging of the brain in patients with Alzheimer's disease and cerebrovascular lesions

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-qiong; KANG Zhuang; HU Xi-quan; HU Bing; ZOU Yan


    Background: Recent autopsy study showed a high incidence ofcerebrovascular lesions in Alzheimer's disease (AD).To assess the impact of cerebrovascular pathology in AD, we used diffusion tensor imaging (DTI) to study AD patients with and without cerebrovascular lesions. Materials and Methods: Conventional and DTI scans were obtained from 10 patients with probable AD, 10 AD/V patients (probable AD with cerebrovascular lesions) and ten normal controls. Mean diffusivity (D) and fractional anisotropy (FA) values of some structures involved with AD pathology were measured. Results: D value was higher in AD patients than in controls in hippocampus and the cingulate gyrus. In AD/V patients, increased D value was found in the same structures and also in the thalamus and basal ganglia compared to controls. There was a significant difference of D value between AD and AD/V patients. FA value reduced in the white matter of left inferior temporal gyrus and in the bilateral middle cingulate gyrus in patients with AD/V compared with controls. The MMSE (mini-mental state examination) score significantly correlated with FA value in the right hippocampus (r=0.639, P<0.019), in the right anterior cingulate gyrus (r=0.587, P<0.035) and in left parahippocampal gyrus (r=0.559, P<0.047). Conclusion: Cerebrovascular pathology had stronger impact on the D value than the AD pathology alone did. Elevated D value in thalamic and basal ganglia may contribute to cognitive decline in AD/V patients.Reduced FA values in AD/V patients may indicate that cerebrovascular pathology induced more severe white matter damage than the AD pathology alone did.

  18. Caregiving for Alzheimer's Disease or Other Dementia (United States)

    ... What's this? Submit Button Caregiving for Person with Alzheimer's Disease or a related Dementia Recommend on Facebook Tweet Share Compartir What is Alzheimer's Disease? Alzheimer's disease is the most common form ...

  19. A role for the brain RAS in Alzheimer's and Parkinson's diseases

    Directory of Open Access Journals (Sweden)

    John William Wright


    Full Text Available The brain renin-angiotensin system (RAS has available the necessary functional components to produce the active ligands angiotensins II, III, IV, angiotensin (1-7, and angiotensin (3-7. These ligands interact with several receptor proteins including AT1, AT2, AT4 and Mas distributed within the central and peripheral nervous systems as well as local RASs in several organs. This review first describes the enzymatic pathways in place to synthesize these ligands and the binding characteristics of these angiotensin receptor subtypes. We next discuss current hypotheses to explain the disorders of Alzheimer’s disease (AD and Parkinson’s disease (PD, as well as research efforts focused on the use of angiotensin converting enzyme (ACE inhibitors and angiotensin receptor blockers (ARBs, in their treatment. ACE inhibitors and ARBs are showing promise in the treatment of several neurodegenerative pathologies; however, there is a need for the development of analogues capable of penetrating the blood-brain barrier and acting as agonists or antagonists at these receptor sites. Angiotensins II (AngII and IV (Ang(IV have been shown to play opposing roles regarding memory acquisition and consolidation in animal models. We discuss the development of efficacious AngIV analogues in the treatment of animal models of AD and PD. These AngIV analogues act via the AT4 receptor subtype which may coincide with the hepatocyte growth factor (HGF/c-Met receptor system. Finally, future research directions are described concerning new approaches to the treatment of these two neurological diseases.

  20. Alzheimer disease update. (United States)

    Matthews, Brandy R


    Alzheimer disease (AD) is a progressive neurodegenerative disorder affecting more than 37 million people worldwide and increasing in incidence based on its primary risk factor, advancing age. A growing body of knowledge regarding amyloid and tau neuropathology, genetic and environmental risk modifiers, early and atypical clinical presentations, and the use of symptom-modifying medical and psychosocial therapies is available to aid in the diagnosis and management of patients with AD. Exciting recent advances in neurobiology render the areas of genetic susceptibility, biomarkers for early disease detection and assessment of disease progression, and novel therapeutic strategies to modify the natural history of the disease compelling, but in need of further study before implementation into routine clinical practice is feasible.

  1. APP processing in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Zhang Yun-wu


    Full Text Available Abstract An important pathological feature of Alzheimer's disease (AD is the presence of extracellular senile plaques in the brain. Senile plaques are composed of aggregations of small peptides called β-amyloid (Aβ. Multiple lines of evidence demonstrate that overproduction/aggregation of Aβ in the brain is a primary cause of AD and inhibition of Aβ generation has become a hot topic in AD research. Aβ is generated from β-amyloid precursor protein (APP through sequential cleavages first by β-secretase and then by γ-secretase complex. Alternatively, APP can be cleaved by α-secretase within the Aβ domain to release soluble APPα and preclude Aβ generation. Cleavage of APP by caspases may also contribute to AD pathologies. Therefore, understanding the metabolism/processing of APP is crucial for AD therapeutics. Here we review current knowledge of APP processing regulation as well as the patho/physiological functions of APP and its metabolites.

  2. The alternative splicing of the apolipoprotein E gene is unperturbed in the brains of Alzheimer's disease patients. (United States)

    Mills, James D; Sheahan, Pamela J; Lai, Donna; Kril, Jillian J; Janitz, Michael; Sutherland, Greg T


    The prevalence of Alzheimer's disease (AD) is increasing rapidly worldwide due to an ageing population and a lack of disease modifying therapeutics. In monogenic forms of AD mutations lead to the accumulation of neurotoxic peptides called beta-amyloid. Beta-amyloid accumulation is also postulated to precipitate sporadic AD although the pathogenesis of this common form remains largely unknown. The two leading risk factors for sporadic AD are ageing and the possession of the APOE epsilon 4 allele. Changes in APOE expression that are independent of the epsilon genotype have also been described in the AD brain including a recent RNA-Seq analysis that showed upregulation of a rare alternative splice isoform (APOE-005). To replicate these RNA-Seq findings we used quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) to compare APOE-005 and total APOE expression in the superior temporal gyrus of 14 AD cases and 16 neurologically normal controls. In AD, this area shows prominent beta-amyloid deposition but few neurofibrillary tangles and only moderate neuronal loss. As poorer RNA quality among the AD cases was a likely confounder in this study, the analysis was repeated in a RIN-matched sub-cohort of 17 individuals. Contrary to the original RNA-Seq study, we found no difference in total APOE, APOE-005 or the common isoform, APOE-001, between AD cases and controls. Our findings are consistent with ApoE acting largely at the protein level to increase the risk for sporadic AD.

  3. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains. (United States)

    Bushman, Diane M; Kaeser, Gwendolyn E; Siddoway, Benjamin; Westra, Jurgen W; Rivera, Richard R; Rehen, Stevens K; Yung, Yun C; Chun, Jerold


    Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ~8% over non-diseased controls that were unrelated to trisomy 21. Two independent single-cell copy number analyses identified amplifications at the APP locus. The use of single-cell qPCR identified up to 12 copies of APP in sampled neurons. Peptide nucleic acid (PNA) probes targeting APP, combined with super-resolution microscopy detected primarily single fluorescent signals of variable intensity that paralleled single-cell qPCR analyses. These data identify somatic genomic changes in single neurons, affecting known and unknown loci, which are increased in sporadic AD, and further indicate functionality for genomic mosaicism in the CNS.

  4. A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. (United States)

    Hori, Yukiko; Takeda, Shuko; Cho, Hansang; Wegmann, Susanne; Shoup, Timothy M; Takahashi, Kazue; Irimia, Daniel; Elmaleh, David R; Hyman, Bradley T; Hudry, Eloise


    Interfering with the assembly of Amyloid β (Aβ) peptides from monomer to oligomeric species and fibrils or promoting their clearance from the brain are targets of anti-Aβ-directed therapies in Alzheimer disease. Here we demonstrate that cromolyn sodium (disodium cromoglycate), a Food and Drug Administration-approved drug already in use for the treatment of asthma, efficiently inhibits the aggregation of Aβ monomers into higher-order oligomers and fibrils in vitro without affecting Aβ production. In vivo, the levels of soluble Aβ are decreased by over 50% after only 1 week of daily intraperitoneally administered cromolyn sodium. Additional in vivo microdialysis studies also show that this compound decreases the half-life of soluble Aβ in the brain. These data suggest a clear effect of a peripherally administered, Food and Drug Administration-approved medication on Aβ economy, supporting further investigation of the potential long-term efficacy of cromolyn sodium in Alzheimer disease.

  5. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)


    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  6. Brain MRI, apoliprotein E genotype, and plasma homocysteine in American Indian Alzheimer disease patients and Indian controls. (United States)

    Weiner, Myron F; de la Plata, Carlos Marquez; Fields, B A Julie; Womack, Kyle B; Rosenberg, Roger N; Gong, Yun-Hua; Qu, Bao-Xi; Diaz-Arrastia, Ramon; Hynan, Linda S


    We obtained brain MRIs, plasma homocysteine levels and apolipoprotein E genotyping for 11 American Indian Alzheimer disease (AD) subjects and 10 Indian controls. We calculated white matter hyperintensity volume (WMHV), whole brain volume (WBV), and ratio of white matter hyperintensity volume to whole brain volume (WMHV/WBV). There were no significant differences between AD subjects and controls in gender, history of hypertension, diabetes, or history of high cholesterol, but hypertension and diabetes were more common among AD subjects. There was no difference between AD and control groups in age (range for all subjects was 61-89 years), % Indian heritage, waist size or body mass index. Median Indian heritage was 50% or greater in both groups. Range of education was 5-13 years in the AD group and 12-16 years in controls. Median plasma homocysteine concentration was higher in AD subjects (11 micromol/L vs. 9.8 micromol/L), but did not achieve statistical significance. Significantly more AD subjects had apolipoprotein Eepsilon4 alleles than did controls (63% vs.10%). Neuroimaging findings were not significantly different between the 2 groups, but AD subjects had greater WMHV (median 15.64 vs. 5.52 cc) and greater WMHV/WBV ratio (median 1.63 vs. 0.65 %) and a far greater range of WMHV. In combined AD subjects and controls, WBV correlated with BMI and age. WMHV and WMHV/WBV correlated inversely with MMSE scores (p = 0.001, 0.002, respectively). In addition, WMHV correlated positively with % Indian heritage (p = 0.047).

  7. Effects of Alzheimer's disease transgenes on neurochemical expression in the mouse brain determined by ¹H MRS in vitro. (United States)

    Forster, D M; James, M F; Williams, S R


    Transgenic models of human disease can be used to understand pathology and to discover biomarkers of disease presence, progression and response to therapy. Here we report a study of longitudinal metabolic differences between TASTPM transgenic Alzheimer's disease (AD) mice and their wild type counterparts using (1)H magnetic resonance spectroscopy (MRS) to look for potential biomarkers for use in AD research and drug discovery. Chloroform methanol extractions were performed on the brains of mice aged between 3 and 18 months. (1)H MR spectra were recorded from the aqueous fractions. Absolute metabolite concentrations, determined from resonance integrals relative to an internal standard, were analysed by 2-way ANOVA (genotype x age). Significant effects of age alone were identified for creatine, glutamine and total choline-containing compounds. There was a marked increase in creatine in the oldest (15-18 mo) TASTPM mice. The increase in creatine was unexpected and may be caused by osmotic stress in older animals as plaque load increases. Care should be taken when using creatine as a reference metabolite during scans of these animals in vivo. A significant effect of genotype alone was identified for myo-inositol (MI), which was higher in TASTPM mice at all ages. Succinate, glycerophosphocholine and choline all showed significant effects of age and genotype. No significant effects were detected in N-acetylaspartate (NAA) levels. Increased MI could be a marker of gliosis or microglial activation in TASTPM mice, but the absence of an age dependence for MI levels means it may be a biomarker of disease, but not of disease progression. Decreased succinate is indicative of disrupted neuronal energy metabolism, an effect that has been seen in human AD.

  8. Sleep Apnea, Sleep Duration and Brain MRI Markers of Cerebral Vascular Disease and Alzheimer's Disease: The Atherosclerosis Risk in Communities Study (ARIC.

    Directory of Open Access Journals (Sweden)

    Pamela L Lutsey

    Full Text Available A growing body of literature has suggested that obstructive sleep apnea (OSA and habitual short sleep duration are linked to poor cognitive function. Neuroimaging studies may provide insight into this relation.We tested the hypotheses that OSA and habitual short sleep duration, measured at ages 54-73 years, would be associated with adverse brain morphology at ages 67-89 years.Included in this analysis are 312 ARIC study participants who underwent in-home overnight polysomnography in 1996-1998 and brain MRI scans about 15 years later (2012-2013. Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/severe (≥15.0 events/hour, mild (5.0-14.9 events/hour, or normal (<5.0 events/hour. Habitual sleep duration was categorized, in hours, as <7, 7 to <8, ≥8. MRI outcomes included number of infarcts (total, subcortical, and cortical and white matter hyperintensity (WMH and Alzheimer's disease signature region volumes. Multivariable adjusted logistic and linear regression models were used. All models incorporated inverse probability weighting, to adjust for potential selection bias.At the time of the sleep study participants were 61.7 (SD: 5.0 years old and 54% female; 19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0 years later, when participants were 76.5 (SD: 5.2 years old. In multivariable models which accounted for body mass index, neither OSA nor abnormal sleep duration were statistically significantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain volumes.In this community-based sample, mid-life OSA and habitually short sleep duration were not associated with later-life cerebral markers of vascular dementia and Alzheimer's disease. However, selection bias may have influenced our results and the modest sample size led to relatively imprecise associations.

  9. Alzheimer's disease and stigmatization

    Directory of Open Access Journals (Sweden)

    Dimitrios Kosmidis


    Full Text Available Aim: The main objective of the study was to explore social bias experienced by patients with Alzheimer's disease and to investigate the knowledge of a sample of the general population regarding this particular disease. Method: The sample consisted of 91 individuals who were first degree relatives of members of three Centers of Open Protection for the Elderly, who did not suffer from dementia as they have recently undergone screening for Alzheimer's disease. A survey design was adopted using a face-to-face questionnaire which apart from the demographical data and two open-ended questions, was based on a 5-point lickert scale, looking at knowledge, attitudes and stigma towards the disease. Data was analyzed through SPSS software using descriptive statistics while results were regarded significant at p<0,05 level of significance Results: For the quantitave questions, cronbach's a was a=0,75 and the average discrete index 0,31. Stigma was explored through a series of direct and in-direct questions and while 70 (77% persons distinguish dementia from mental illness, 9(9,9% people did not answer these questions. The majority (62,6% did not stigmatize the patient as 57 persons said that the patient is not to blame for the disease. Conclusions: from the distribution of results it becomes evident that there is a need for education, training and multifaceted enlightenment of the general population on issues concerning mental health. Answers that implied tendencies of marginalization of patients with dementia emanated mainly came from individuals in the sample with limited knowledge of the illness and relatively low educational background.

  10. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.


    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  11. ImmunoPEGliposome-mediated reduction of blood and brain amyloid levels in a mouse model of Alzheimer's disease is restricted to aged animals

    DEFF Research Database (Denmark)

    Ordóñez-Gutiérrez, Lara; Posado-Fernández, Adrián; Ahmadvand, Davoud


    The accumulation of extracellular amyloid-beta (Aβ) and intracellular neurofibrillary tangles (hyper-phosphorylated Tau) in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). Active and passive immunotherapy may limit cerebral Aβ deposition and/or accelerate its clea...... treatment was superior to free monoclonal antibody administration (at an equivalent antibody dose). The potential mechanisms and significance of age-dependent immunoliposome therapy in AD is discussed....

  12. Structural Neuroimaging in Aging and Alzheimer's Disease

    NARCIS (Netherlands)

    Vernooij, Meike W.; Smits, Marion


    The role of structural neuroimaging in the diagnosis of Alzheimer's disease (AD) is becoming increasingly important. As a consequence, a basic understanding of what are normal brain changes in aging is key to be able to recognize what is abnormal. The first part of this article discusses normal vers

  13. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer's disease. (United States)

    Savioz, Armand; Leuba, Geneviève; Vallet, Philippe G


    The postsynaptic density protein PSD-95 is a major element of synapses. PSD-95 is involved in aging, Alzheimer's disease (AD) and numerous psychiatric disorders. However, contradictory data about PSD-95 expression in aging and AD have been reported. Indeed in AD versus control brains PSD-95 varies according to regions, increasing in the frontal cortex, at least in a primary stage, and decreasing in the temporal cortex. In contrast, in transgenic mouse models of aging and AD PSD-95 expression is decreased, in behaviorally aged impaired versus unimpaired rodents it can decrease or increase and finally, it is increased in rodents grown in enriched environments. Different factors explain these contradictory results in both animals and humans, among others concomitant psychiatric endophenotypes, such as depression. The possible involvement of PSD-95 in reactive and/or compensatory mechanisms during AD progression is underscored, at least before the occurrence of important synaptic elimination. Thus, in AD but not in AD transgenic mice, enhanced expression might precede the diminution commonly observed in advanced aging. A two-compartments cell model, separating events taking place in cell bodies and synapses, is presented. Overall these data suggest that AD research will progress by untangling pathological from protective events, a prerequisite for effective therapeutic strategies.

  14. Changes of biochemical indices in brain, liver tissue and serum in mice with Alzheimer disease after Chinese medicine treatment

    Institute of Scientific and Technical Information of China (English)

    Xiangyang Wang; Lili Zhang; Haode Huang; Qiang Qin; Guimei Luo; Chaogan Li; Shuqiu Zhang


    BACKGROUND: Alzheimer disease is a main type of dementia, and the important clinical characteristic is the rapid declines of memory and cognitive ability.OBJECTIVE: To study changes of biochemical indices in brain, liver tissue and serum, as well as memory of mice with Alzheimer disease after Chinese medicine treatment. DESIGN: A comparative animal experimental observation. SETTING: Haierfu Research Center of Youjiang Medical College for Nationalities.MATERIALS: Forty-eight healthy Kunming mice (24 males and 24 females), 3 months old, were provided by the animal room of Youjiang Medical College for Nationalities. The animals were divided into four groups according to sex and body mass: control group, model group, Wuyuan Buxue treated group, Haierfu treated group, and 12 mice in each group. Wuyuan Buxue oral liquid was extracted from Polygonum multiflorum Thunb (red, radix) and longan meat (country medicine quasi- word B20020828). Haierfu oral liquid was extracted from Yinhua, poriacocos, licorice, etc (Q/452600RYYLC01-92). METHODS: The experiment was completed in Haierfu Research Center and Institute of Heavy Metal and Fluorosis-Arsenism of Youjiang Medical College for Nationalities from May 2006 to December 2006. ①All animals except those in the control group were given feed which was mixed with AlC3 (12 g/L), and they could freely drink 3 g/L Al(NO3)3. The mice in the control group were given normal feed. Wuyuan Buxue oral liquid and Haierfu oral liquid were distilled by distilled water for one time respectively. Five months after model establishment, mice in the Wuyuan Buxue treated group and Haierfu treated group were given intrapastric perfusion of Wuyuan Buxue oral liquid and Haierfu oral liquid respectively, and those in the model group and control group were given intrapastric perfusion of distilled water of the same volume. All the mice were treated for 45 days. ②The swimming time (s) and error times were determined with Y-shape water maze before and

  15. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The

  16. Potential fluid biomarkers for pathological brain changes in Alzheimer's disease: Implication for the screening of cognitive frailty (United States)

    Ruan, Qingwei; D'Onofrio, Grazia; Sancarlo, Daniele; Greco, Antonio; Yu, Zhuowei


    Cognitive frailty (CF) overlaps with early neuropathological alterations associated with aging-related major neurocognitive disorders, including Alzheimer's disease (AD). Fluid biomarkers for these pathological brain alterations allow for early diagnosis in the preclinical stages of AD, and for objective prognostic assessments in clinical intervention trials. These biomarkers may also be helpful in the screening of CF. The present study reviewed the literature and identified systematic reviews of cohort studies and other authoritative reports. The selection criteria for potentially suitable fluid biomarkers included: i) Frequent use in studies of fluid-derived markers and ii) evidence of novel measurement techniques for fluid-derived markers. The present study focused on studies that assessed these biomarkers in AD, mild cognitive impairment and non-AD demented subjects. At present, widely used fluid biomarkers include cerebrospinal fluid (CSF), total tau, phosphorylated tau and amyloid-β levels. With the development of novel measurement techniques and improvements in understanding regarding the mechanisms underlying aging-related major neurocognitive disorders, numerous novel biomarkers associated with various aspects of AD neuropathology are being explored. These include specific measurements of Aβ oligomer or monomer forms, tau proteins in the peripheral plasma and CSF, and novel markers of synaptic dysfunction, neuronal damage and apoptosis, neuronal activity alteration, neuroinflammation, blood brain barrier dysfunction, oxidative stress, metabolites, mitochondrial function and aberrant lipid metabolism. The proposed panels of fluid biomarkers may be useful in the early diagnosis of AD, prediction of the progression of AD from preclinical stages to the dementia stage, and the differentiation of AD from non-AD dementia. In combination with physical frailty, the present study surmised that these biomarkers may also be used as biomarkers for CF, thus contribute

  17. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model. (United States)

    Mendiola-Precoma, Jesus; Padilla, Karla; Rodríguez-Cruz, Alfredo; Berumen, Laura C; Miledi, Ricardo; García-Alcocer, Guadalupe


    Dementia caused by Alzheimer's disease (AD) is mainly characterized by accumulation in the brain of extra- and intraneuronal amyloid-β (Aβ) and tau proteins, respectively, which selectively affect specific regions, particularly the neocortex and the hippocampus. Sporadic AD is mainly caused by an increase in apolipoprotein E, a component of chylomicrons, which are cholesterol transporters in the brain. Recent studies have shown that high lipid levels, especially cholesterol, are linked to AD. Adenosine is an atypical neurotransmitter that regulates a wide range of physiological functions by activating four P1 receptors (A1, A2A, A2B, and A3) and P2 purinergic receptors that are G protein-coupled. A1 receptors are involved in the inhibition of neurotransmitter release, which could be related to AD. The aim of the present work was to study the effects of a lard-enriched diet (LED) on cognitive and memory processes in adult rats (6 months of age) as well as the effect of theobromine on these processes. The results indicated that the fat-enriched diet resulted in a long-term deterioration in cognitive and memory functions. Increased levels of Aβ protein and IL-1β were also observed in the rats fed with a high-cholesterol diet, which were used to validate the AD animal model. In addition, the results of qPCR and immunohistochemistry indicated a decrease in gene expression and distribution of A1 purinegic receptor, respectively, in the hippocampus of LED-fed rats. Interestingly, theobromine, at both concentrations tested, restored A1 receptor levels and improved cognitive functions and Aβ levels for a dose of 30 mg/L drinking water.

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... serve our health care needs. The arc of scientific progress is now requiring a change in how we diagnose Alzheimer's disease. Both the National Institute on Aging – Alzheimer's Association (NIA-AA) 2011 workgroup and the International Work Group (IWG) have proposed guidelines that use detectable ...

  19. Treatment for Alzheimer's diseases

    Directory of Open Access Journals (Sweden)

    Nina Arkadyevna Tyuvina


    Full Text Available The paper gives an update on the epidemiology, etiology, pathogenesis, prevention, and treatment of Alzheimer's disease (AD. It points out the role of acetylcholine and glutamatergic components of neurotransmission in the pathogenesis of the disease, as well as their interactions, which is important to keep in mind to have a potentiated response to therapy that includes both these components. Different approaches to AD therapy are considered on the basis of the current ideas on the pathogenetic mechanisms of a degenerative process and with regard to the clinical features of the disease (the nature of the psychopathological symptoms of the disease and its stage. Particular emphasis is placed on compensatory therapy for deficient cholinergic and glutamatergic neurotransmission. Whether psychopharmacological agents may be used and psychotherapeutic work with the relatives of patients with AD should be done are also highlighted. Data on the efficiency of replacement therapy for different dementia stages, which promotes a delay in degenerative processes and a definite stabilization of the mental status, are presented.

  20. Biomarkers for early detection of Alzheimer disease. (United States)

    Barber, Robert C


    The existence of an effective biomarker for early detection of Alzheimer disease would facilitate improved diagnosis and stimulate therapeutic trials. Multidisciplinary clinical diagnosis of Alzheimer disease is time consuming and expensive and relies on experts who are rarely available outside of specialty clinics. Thus, many patients do not receive proper diagnosis until the disease has progressed beyond stages in which treatments are maximally effective. In the clinical trial setting, rapid, cost-effective screening of patients for Alzheimer disease is of paramount importance for the development of new treatments. Neuroimaging of cortical amyloid burden and volumetric changes in the brain and assessment of protein concentrations (eg, β-amyloid 1-42, total tau, phosphorylated tau) in cerebrospinal fluid are diagnostic tools that are not widely available. Known genetic markers do not provide sufficient discriminatory power between different forms of dementia to be useful in isolation. Recent studies using panels of biomarkers for diagnosis of Alzheimer disease or mild cognitive impairment have been promising, though no such studies have been cross-validated in independent samples of subjects. The ideal biomarker enabling early detection of Alzheimer disease has not yet been identified.

  1. Providing Counseling for Individuals with Alzheimer's Disease and Their Caregivers (United States)

    Granello, Paul F.; Fleming, Matthew S.


    Alzheimer's disease is a progressive condition that results in brain wasting and eventual death. With its increasing diagnosis rate, counselors will likely acquire clients with Alzheimer's disease or their caregivers. Important background information and several practical counseling methods are provided that may assist counselors working with this…

  2. Lipofuscin hypothesis of Alzheimer's disease. (United States)

    Giaccone, Giorgio; Orsi, Laura; Cupidi, Chiara; Tagliavini, Fabrizio


    The primary culprit responsible for Alzheimer's disease (AD) remains unknown. Aβ protein has been identified as the main component of amyloid of senile plaques, the hallmark lesion of AD, but it is not definitively established whether the formation of extracellular Aβ deposits is the absolute harbinger of the series of pathological events that hit the brain in the course of sporadic AD. The aim of this paper is to draw attention to a relatively overlooked age-related product, lipofuscin, and advance the hypothesis that its release into the extracellular space following the death of neurons may substantially contribute to the formation of senile plaques. The presence of intraneuronal Aβ, similarities between AD and age-related macular degeneration, and the possible explanation of some of the unknown issues in AD suggest that this hypothesis should not be discarded out of hand.

  3. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease. (United States)

    Villain, Nicolas; Fouquet, Marine; Baron, Jean-Claude; Mézenge, Florence; Landeau, Brigitte; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël


    Hippocampal atrophy, posterior cingulate and frontal glucose hypometabolism, and white-matter tract disruption are well described early macroscopic events in Alzheimer's disease. The relationships between these three types of alterations have been documented in previous studies, but their chronology still remains to be established. The present study used multi-modal fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging longitudinal data to address this question in patients with amnestic mild cognitive impairment. We found unidirectional, specific sequential relationships between: (i) baseline hippocampal atrophy and both cingulum bundle (r = 0.70; P = 3 × 10⁻³) and uncinate fasciculus (r = 0.75; P = 7 × 10⁻⁴) rate of atrophy; (ii) baseline cingulum bundle atrophy and rate of decline of posterior (r = 0.72; P = 2 × 10⁻³); and anterior (r = 0.74; P = 1 × 10⁻³) cingulate metabolism; and (iii) baseline uncinate white matter atrophy and subgenual metabolism rate of change (r = 0.65; P = 6 × 10⁻³). Baseline local grey matter atrophy was not found to contribute to hypometabolism progression within the posterior and anterior cingulate as well as subgenual cortices. These findings suggest that hippocampal atrophy progressively leads to disruption of the cingulum bundle and uncinate fasciculus, which in turn leads to glucose hypometabolism of the cingulate and subgenual cortices, respectively. This study reinforces the relevance of remote mechanisms above local interactions to account for the pattern of metabolic brain alteration observed in amnestic mild cognitive impairment, and provides new avenues to assess the sequence of events in complex diseases characterized by multiple manifestations.

  4. Communication of brain network core connections altered in behavioral variant frontotemporal dementia but possibly preserved in early-onset Alzheimer's disease (United States)

    Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.


    Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... action. Become an advocate SPECIAL REPORT — ALZHEIMER'S DISEASE: THE NEXT FRONTIER In the history of medicine, one ... physician I am a researcher Message boards Get the facts 10 warning signs & symptoms What is dementia ...

  6. Prolyl oligopeptidase colocalizes with α-synuclein, β-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson's and Alzheimer's diseases. (United States)

    Hannula, M J; Myöhänen, T T; Tenorio-Laranga, J; Männistö, P T; Garcia-Horsman, J A


    Prolyl oligopeptidase (EC, PREP) is a serine protease that hydrolyzes proline-containing peptides shorter than 30-mer but it has also nonhydrolytic functions. PREP has been shown to accelerate aggregation of wild-type α-synuclein (α-syn) under cell-free conditions, and PREP inhibitors can block this aggregation both in vitro and in vivo. α-syn is the main component of Lewy bodies in Parkinson's disease (PD) and Lewy body dementia. To clarify the possible interaction of PREP with other markers of neurodegenerative diseases, we studied colocalizations of PREP and (1) α-syn, (2) β-amyloid, (3) tau protein and (4) astroglial and microglial cells in human post-mortem brain samples from PD, Alzheimer's disease (AD) patients and in healthy control brain samples. In the substantia nigra of PD brains, an intense colocalization with PREP and α-syn was evident. PREP colocalized also with β-amyloid plaques in AD brains and with tau protein in AD and in healthy brains. PREP was also found in astroglial cells in PD, AD and control brains, but not in the microglia. Our findings are the first ones to demonstrate colocalization of PREP and pathological proteins in the human brain and support the view that, at least in spatial terms, PREP could be associated with pathogenesis of neurodegenerative diseases.

  7. Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936☆ (United States)

    Lyall, Donald M.; Harris, Sarah E.; Bastin, Mark E.; Muñoz Maniega, Susana; Murray, Catherine; Lutz, Michael W.; Saunders, Ann M.; Roses, Allen D.; Valdés Hernández, Maria del C.; Royle, Natalie A.; Starr, John M.; Porteous, David. J.; Wardlaw, Joanna M.; Deary, Ian J.


    Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 (“523”) variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640–650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p < 0.05). For APOE, deleterious effects of ε4 “risk” allele presence (vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 “short” allele showed lower white matter integrity when compared with carriers of the “long” and “very-long” alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older

  8. Altered angiotensin-converting enzyme and its effects on the brain in a rat model of Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    HOU De-ren; WANG Yan; ZHOU Lin; CHEN Kun; TIAN Yi; SONG Zhi; BAO Juan; YANG Qi-dong


    Background Alzheimer disease (AD) is a neurodegenerative disease related to aging.At present,its pathological mechanisms remain unclear.Family members of the renin-angiotensin system (RAS) pray a role in neuronal plasticity,as well as formation of learning and memory,in this study,we explore the effects of altered angiotensin-converting enzyme (ACE),and investigate the possible mechanisms of perindopril,an ACE inhibitor,on brain structure and function in a rat model of AD,as well as the role that ACE plays in AD.Methods Sixty Sprague-Dawley rats were selected and randomly divided into 3 groups:control,AD,and perindopril.Each group consisted of 20 rats,with 10 rats for determining pathology,and the remaining 10 rats for quantifying ACE activity.The rat AD model was established by stereotactically injecting amyloid beta protein (A-beta) 1-42 into the right hippocampus.Learning and memory functions were tested using the Y-type electric maze.The number and morphology of abnormal neurons were determined by haematoxylin and eosin staining.Amyloid deposition was measured by Congo red staining.Finally,ACE activity was estimated by spectrophotometry.Results Compared with the control group,the number of times needed to escape electrical stimuli increased (23.70±3.13,P <0.001),the number of normal neurons in the CA1 region was reduced (density of 96.5±32.6/mm,Pgroup.In the perindopril group,the number of times needed to escape electrical stimuli decreased (18.50±3.66,P <0.001),the number of abnormal neurons increased (density of CA1 neurons was 180.8±28.5/mm,P <0.001),amyloid Conclusions ACE activity increased in the brains of AD rats.Perindopril improved learning and memory in AD rats,which correlated with decreased ACE activity and delayed AD pathogenesis.

  9. Quiz: Alzheimer's Disease Quiz | Alzheimer's disease | NIH MedlinePlus the Magazine (United States)

    ... of this page please turn Javascript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Quiz Past Issues / Fall 2010 Table of ... How many people in the United States have Alzheimer's disease? as many as 5.1 million as ...

  10. Alzheimer's disease therapeutics targeted to the control of amyloid precursor protein translation: maintenance of brain iron homeostasis. (United States)

    Bandyopadhyay, Sanghamitra; Rogers, Jack T


    The neurotoxicity of amyloid beta (Aβ), a major cleavage product of the amyloid precursor protein (APP), is enhanced by iron, as found in the amyloid plaques of Alzheimer's disease (AD) patients. By contrast, the long-known neuroprotective activity of APP is evident after α-secretase cleavage of the precursor to release sAPPα, and depends on the iron export actions of APP itself. The latter underlie its neurotrophic and protective effects in facilitating the homeostatic actions of ferroportin mediated-iron export. Thus APP-dependent iron export may alleviate oxidative stress by minimizing labile iron thus protecting neurons from iron overload during stroke and hemorrhage. Consistent with this, altered phosphorylation of iron-regulatory protein-1 (IRP1) and its signaling processes play a critical role in modulating APP translation via the 5' untranslated region (5'UTR) of its transcript. The APP 5'UTR region encodes a functional iron-responsive element (IRE) RNA stem loop that represents a potential target for modulating APP production. Targeted regulation of APP gene expression via the modulation of 5'UTR sequence function represents a novel approach for the potential treatment of AD since altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. Approved drugs including paroxetine and desferrioxamine and several novel compounds have been identified that suppress abnormal metal-promoted Aβ accumulation with a subset of these acting via APP 5'UTR-dependent mechanisms to modulate APP translation and cleavage to generate the non-toxic sAPPα.

  11. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. (United States)

    Di Domenico, Fabio; Pupo, Gilda; Tramutola, Antonella; Giorgi, Alessandra; Schininà, Maria Eugenia; Coccia, Raffaella; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia


    Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.

  12. A Common Variant of IL-6R is Associated with Elevated IL-6 Pathway Activity in Alzheimer's Disease Brains. (United States)

    Haddick, Patrick C G; Larson, Jessica L; Rathore, Nisha; Bhangale, Tushar R; Phung, Qui T; Srinivasan, Karpagam; Hansen, David V; Lill, Jennie R; Pericak-Vance, Margaret A; Haines, Jonathan; Farrer, Lindsay A; Kauwe, John S; Schellenberg, Gerard D; Cruchaga, Carlos; Goate, Alison M; Behrens, Timothy W; Watts, Ryan J; Graham, Robert R; Kaminker, Joshua S; van der Brug, Marcel


    The common p.D358A variant (rs2228145) in IL-6R is associated with risk for multiple diseases and with increased levels of soluble IL-6R in the periphery and central nervous system (CNS). Here, we show that the p.D358A allele leads to increased proteolysis of membrane bound IL-6R and demonstrate that IL-6R peptides with A358 are more susceptible to cleavage by ADAM10 and ADAM17. IL-6 responsive genes were identified in primary astrocytes and microglia and an IL-6 gene signature was increased in the CNS of late onset Alzheimer's disease subjects in an IL6R allele dependent manner. We conducted a screen to identify variants associated with the age of onset of Alzheimer's disease in APOE ɛ4 carriers. Across five datasets, p.D358A had a meta P = 3 ×10-4 and an odds ratio = 1.3, 95% confidence interval 1.12 -1.48. Our study suggests that a common coding region variant of the IL-6 receptor results in neuroinflammatory changes that may influence the age of onset of Alzheimer's disease in APOE ɛ4 carriers.

  13. The Oral Iron Chelator, Deferasirox, Reverses the Age-Dependent Alterations in Iron and Amyloid-β Homeostasis in Rat Brain: Implications in the Therapy of Alzheimer's Disease. (United States)

    Banerjee, Priyanjalee; Sahoo, Arghyadip; Anand, Shruti; Bir, Aritri; Chakrabarti, Sasanka


    The altered metabolism of iron impacts the brain function in multiple deleterious ways during normal aging as well as in Alzheimer's disease. We have shown in this study that chelatable iron accumulates in the aged rat brain along with overexpression of transferrin receptor 1 (TfR1) and ferritin, accompanied by significant alterations in amyloid-β (Aβ) peptide homeostasis in the aging brain, such as an increased production of the amyloid-β protein precursor, a decreased level of neprilysin, and increased accumulation of Aβ42. When aged rats are given daily the iron chelator, deferasirox, over a period of more than 4 months starting from the 18th month, the age-related accumulation of iron and overexpression of TfR1 and ferritin in the brain are significantly prevented. More interestingly, the chelator treatment also considerably reverses the altered Aβ peptide metabolism in the aging brain implying a significant role of iron in the latter phenomenon. Further, other results indicate that iron accumulation results in oxidative stress and the activation of NF-κB in the aged rat brain, which are also reversed by the deferasirox treatment. The analysis of the results together suggests that iron accumulation and oxidative stress interact at multiple levels that include transcriptional and post-transcriptional mechanisms to bring about changes in the expression levels of TfR1 and ferritin and also alterations in Aβ peptide metabolism in the aging rat brain. The efficacy of deferasirox in preventing age-related changes in iron and Aβ peptide metabolism in the aging brain, as shown here, has obvious therapeutic implications for Alzheimer's disease.

  14. Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'?

    DEFF Research Database (Denmark)

    Moro, Maria Luisa; Collins, Matthew J; Cappellini, Enrico


    Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues....... Since these modifications may affect folding and turnover, they reduce protein functionality over time and may be linked to pathological conditions. The present mini-review describes evidence of AAR and AAI involvement in the misfolding and brain accumulation of Abeta (amyloid beta-peptide), a central...

  15. Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer's disease. (United States)

    Falangola, Maria F; Jensen, Jens H; Tabesh, Ali; Hu, Caixia; Deardorff, Rachael L; Babb, James S; Ferris, Steven; Helpern, Joseph A


    We report the first application of a novel diffusion-based MRI method, called diffusional kurtosis imaging (DKI), to investigate changes in brain tissue microstructure in patients with mild cognitive impairment (MCI) and AD and in cognitively intact controls. The subject groups were characterized and compared in terms of DKI-derived metrics for selected brain regions using analysis of covariance with a Tukey multiple comparison correction. Receiver operating characteristic (ROC) and binary logistic regression analyses were used to assess the utility of regional diffusion measures, alone and in combination, to discriminate each pair of subject groups. ROC analyses identified mean and radial kurtoses in the anterior corona radiata as the best individual discriminators of MCI from controls, with the measures having an area under the ROC curve (AUC) of 0.80 and 0.82, respectively. The next best discriminators of MCI from controls were diffusivity and kurtosis (both mean and radial) in the prefrontal white matter (WM), with each measure having an AUC between 0.77 and 0.79. Finally, the axial diffusivity in the hippocampus was the best overall discriminator of MCI from AD, having an AUC of 0.90. These preliminary results suggest that non-Gaussian diffusion MRI may be beneficial in the assessment of microstructural tissue damage at the early stage of MCI and may be useful in developing biomarkers for the clinical staging of AD.

  16. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Brianne Alyssia Kent


    Full Text Available Alzheimer’s disease (AD is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behaviour and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD.

  17. [Late-onset Neurodegenerative Diseases Following Traumatic Brain Injury: Chronic Traumatic Encephalopathy (CTE) and Alzheimer's Disease Secondary to TBI (AD-TBI)]. (United States)

    Takahata, Keisuke; Tabuchi, Hajime; Mimura, Masaru


    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease, which is associated with mild repetitive traumatic brain injury (TBI). This long-term and progressive symptom due to TBI was initially called punch-drunk syndrome or dementia pugilistica, since it was believed to be associated with boxing. However, serial neuropathological studies of mild repetitive TBI in the last decade have revealed that CTE occurs not only in boxers but also in a wider population including American football players, wrestlers, and military personnel. CTE has gained large public interest owing to dramatic cases involving retired professional athletes wherein serious behavioral problems and tragic incidents were reported. Unlike mild repetitive TBI, a single episode of severe TBI can cause another type of late-onset neuropsychiatric disease including Alzheimer's disease (AD). Several epidemiological studies have shown that a single episode of severe TBI is one of the major risk factors of AD. Pathologically, both AD and CTE are characterized by abnormal accumulations of hyperphosphorylated tau proteins. However, recent neuropathological studies revealed that CTE demonstrates a unique pattern of tau pathology in neurons and astrocytes, and accumulation of other misfolded proteins such as TDP-43. Currently, no reliable biomarkers of late-onset neurodegenerative diseases following TBI are available, and a definitive diagnosis can be made only via postmortem neuropathological examination. Development in neuroimaging techniques such as tau and amyloid positron emission tomography imaging might not only enable early diagnosis of CTE, but also contribute to the interventions for prevention of late-onset neurodegenerative diseases following TBI. Further studies are necessary to elucidate the mechanisms of neurodegeneration in the living brain of patients with TBI.

  18. [Music therapy and Alzheimer disease]. (United States)

    Tromeur, Emilie


    Music therapy and Alzheimer's dementia. Dementia such as Alzheimer's leads to the deterioration of the patient's global capacities. The cognitive disorders associated with it are disabling and affect every area of the patient's life. Every therapy's session undertaken with and by patients can act as a mirror of the progress of their disease and help to feel better, as described in this article on music therapy.

  19. Astrocytic Disruption in Traumatic Brain Injury and Alzheimer’s Disease (United States)


    Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department... tau aggregation, increased amyloid burden, and reactive astrocytosis. Many of these pathologies overlap with those observed in Alzheimer’s disease

  20. Brain imaging and blood biomarker abnormalities in children with autosomal-dominant Alzheimer's disease: A cross-sectional Study (United States)

    Quiroz, Y.T.; Schultz, A.; Chen, K.; Protas, H.; Brickhouse, M.; Fleisher, A.S.; Langbaum, J.B.; Thiyyagura, P.; Fagan, A.M.; Shah, A.R.; Muniz, M.; Arboleda-Velasquez, JF; Munoz, C.; Garcia, G.; Acosta-Baena, N.; Giraldo, M.; Tirado, V.; Ramirez, D.; Tariot, PN; Dickerson, B.C.; Sperling, R.A.; Lopera, F.; Reiman, E.M.


    IMPORTANCE Brain imaging and fluid biomarkers are characterized in children at risk for autosomal dominant Alzheimer disease (ADAD). OBJECTIVE To characterize and compare structural magnetic resonance imaging (MRI), resting-state and task-dependent functional MRI, and plasma amyloid-β (Aβ) measurements in presenilin 1 (PSEN1) E280A mutation–carrying and noncarrying children with ADAD. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of structural and functional MRI and plasma Aβ assays were assessed in 18 PSEN1 E280A carriers and 19 noncarriers aged 9 to 17 years from a Colombian kindred with ADAD. Recruitment and data collection for this study were conducted at the University of Antioquia and the Hospital Pablo Tobon Uribe in Medellin, Colombia, between August 2011 and June 2012. MAIN OUTCOMES AND MEASURES All participants had blood sampling, structural MRI, and functional MRI during associative memory encoding and resting-state and cognitive assessments. Outcome measures included plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios, memory encoding–dependent activation changes, resting-state connectivity, and regional gray matter volumes. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to AD. RESULTS Similar to findings in adult mutation carriers, in the later preclinical and clinical stages of ADAD, mutation-carrying children were distinguished from control individuals by significantly higher plasma Aβ1-42 levels (mean [SD]: carriers, 18.8 [5.1] pg/mL and noncarriers, 13.1 [3.2] pg/mL; P < .001) and Aβ1-42:Aβ1-40 ratios (mean [SD]: carriers, 0.32 [0.06] and noncarriers, 0.21 [0.03]; P < .001), as well as less memory encoding task–related deactivation in parietal regions (eg, mean [SD] parameter estimates for the right precuneus were −0.590 [0.50] for noncarriers and −0.087 [0.38] for carriers; P < .005 uncorrected). Unlike carriers in the later stages, mutation

  1. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer's disease Tg2576 mice. (United States)

    Cheng, Kwok Kin; Yeung, Chin Fung; Ho, Shuk Wai; Chow, Shing Fung; Chow, Albert H L; Baum, Larry


    The therapeutic effects of curcumin in treating Alzheimer's disease (AD) depend on the ability to penetrate the blood-brain barrier. The latest nanoparticle technology can help to improve the bioavailability of curcumin, which is affected by the final particle size and stability. We developed a stable curcumin nanoparticle formulation to test in vitro and in AD model Tg2576 mice. Flash nanoprecipitation of curcumin, polyethylene glycol-polylactic acid co-block polymer, and polyvinylpyrrolidone in a multi-inlet vortex mixer, followed by freeze drying with β-cyclodextrin, produced dry nanocurcumin with mean particle size nanoparticles with positive treatment effects in Tg2576 mice.

  2. Neurofibrillary pathology and aluminum in Alzheimer's disease


    Shin, R. W.; Lee, V.M.Y.; Trojanowski, J.Q.


    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  3. Alzheimer's Disease | NIH MedlinePlus the Magazine (United States)

    ... of this page please turn JavaScript on. Feature: Alzheimer's Disease Living with Alzheimer's Disease Past Issues / Winter 2015 Table of Contents ... delay or prevent the disease. Free Guide for Alzheimer's Caregivers Caring for a person with Alzheimer's disease ...

  4. Context memory in Alzheimer's disease

    NARCIS (Netherlands)

    El Haj, M.; Kessels, R.P.C.


    Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by a gradual loss of memory. Specifically, context aspects of memory are impaired in AD. Our review sheds light on the neurocognitive mechanisms of this memory component that forms the core of episodic memory function.

  5. New drug treatments show neuroprotective effects in Alzheimer's and Parkinson's diseases. (United States)

    Hölscher, Christian


    Type 2 diabetes is a risk factor for Alzheimer's disease and Parkinson's disease. Insulin signaling in the brains of people with Alzheimer's disease or Parkinson's disease is impaired. Preclinical studies of growth factors showed impressive neuroprotective effects. In animal models of Alzheimer's disease and Parkinson's disease, insulin, glia-derived neurotrophic factor, or analogues of the incretin glucagon-like peptide-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality in Alzheimer's disease and Parkinson's disease. On the basis of these promising findings, several clinical trials are ongoing with the first encouraging clinical results published. This gives hope for developing effective treatments for Alzheimer's disease and Parkinson's disease that are currently unavailable.

  6. Metal dyshomeostasis and oxidative stress in Alzheimer's disease. (United States)

    Greenough, Mark A; Camakaris, James; Bush, Ashley I


    Alzheimer's disease is the leading cause of dementia in the elderly and is defined by two pathological hallmarks; the accumulation of aggregated amyloid beta and excessively phosphorylated Tau proteins. The etiology of Alzheimer's disease progression is still debated, however, increased oxidative stress is an early and sustained event that underlies much of the neurotoxicity and consequent neuronal loss. Amyloid beta is a metal binding protein and copper, zinc and iron promote amyloid beta oligomer formation. Additionally, copper and iron are redox active and can generate reactive oxygen species via Fenton (and Fenton-like chemistry) and the Haber-Weiss reaction. Copper, zinc and iron are naturally abundant in the brain but Alzheimer's disease brain contains elevated concentrations of these metals in areas of amyloid plaque pathology. Amyloid beta can become pro-oxidant and when complexed to copper or iron it can generate hydrogen peroxide. Accumulating evidence suggests that copper, zinc, and iron homeostasis may become perturbed in Alzheimer's disease and could underlie an increased oxidative stress burden. In this review we discuss oxidative/nitrosative stress in Alzheimer's disease with a focus on the role that metals play in this process. Recent studies have started to elucidate molecular links with oxidative/nitrosative stress and Alzheimer's disease. Finally, we discuss metal binding compounds that are designed to cross the blood brain barrier and restore metal homeostasis as potential Alzheimer's disease therapeutics.

  7. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jessica F Jordão

    Full Text Available Immunotherapy for Alzheimer's disease (AD relies on antibodies directed against toxic amyloid-beta peptide (Abeta, which circulate in the bloodstream and remove Abeta from the brain. In mouse models of AD, the administration of anti-Abeta antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Abeta plaque pathology. Therefore, delivering anti-Abeta antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS is known to transiently-enhance the permeability of the blood-brain barrier (BBB, allowing intravenously administered therapeutics to enter the brain. Our goal was to establish that anti-Abeta antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS can reduce plaque pathology. To test this, TgCRND8 mice received intravenous injections of MRI and FUS contrast agents, as well as anti-Abeta antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Abeta plaques in targeted cortical areas. Four days post-treatment, Abeta pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Abeta antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology.

  8. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer's Disease. (United States)

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; Vandenberghe, Camille; St-Pierre, Valérie; Fortier, Mélanie; Hennebelle, Marie; Croteau, Etienne; Bocti, Christian; Fulop, Tamas; Castellano, Christian-Alexandre


    We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer's disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal for age. (ii) The regional deficit in brain glucose uptake is present in adults old who have genetic or lifestyle risk factors for AD but in whom cognitive decline has not yet started. Examples include young adult carriers of presenilin-1 or apolipoprotein E4, and young adults with mild insulin resistance or with a maternal family history of AD. (iii) Regional brain glucose uptake is impaired in AD and mild cognitive impairment (MCI), but brain uptake of ketones (beta-hydroxybutyrate and acetoacetate), remains the same in AD and MCI as in cognitively healthy age-matched controls. These observations point to a brain fuel deficit which appears to be specific to glucose, precedes cognitive decline associated with AD, and becomes more severe as MCI progresses toward AD. Since glucose is the brain's main fuel, we suggest that gradual brain glucose exhaustion is contributing significantly to the onset or progression of AD. (iv) Interventions that raise ketone availability to the brain improve cognitive outcomes in both MCI and AD as well as in acute experimental hypoglycemia. Ketones are the brain's main alternative fuel to glucose and brain ketone uptake is still normal in MCI and in early AD, which would help explain why ketogenic interventions improve some cognitive outcomes in MCI and AD. We suggest that the brain energy deficit needs to be overcome in order to successfully develop more effective therapeutics for AD. At present, oral ketogenic supplements are the most promising means of achieving this goal.

  9. The Alzheimer's disease β-secretase enzyme, BACE1


    Vassar Robert; Cole Sarah L


    Abstract The pathogenesis of Alzheimer's disease is highly complex. While several pathologies characterize this disease, amyloid plaques, composed of the β-amyloid peptide are hallmark neuropathological lesions in Alzheimer's disease brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. The BACE1 enzyme is essential for the generation of β-amyloid. BACE1 knockout m...

  10. Diazepam-binding inhibitor. A brain neuropeptide present in human spinal fluid: studies in depression, schizophrenia, and Alzheimer's disease. (United States)

    Barbaccia, M L; Costa, E; Ferrero, P; Guidotti, A; Roy, A; Sunderland, T; Pickar, D; Paul, S M; Goodwin, F K


    Diazepam-binding inhibitor is a novel peptide purified to homogeneity from rat and human brain. Diazepam-binding inhibitor is present, though not exclusively, in gamma-aminobutyric acid (GABA)-containing neurons where it is believed to inhibit GABAergic neurotransmission mediated by GABA by binding to the benzodiazepine-GABA receptor complex. Since an impairment of central GABAergic tone has been postulated to be associated with a number of neuropsychiatric disorders, we measured human diazepam-binding inhibitor immunoreactivity in the cerebrospinal fluid (CSF) of patients suffering from endogenous depression, schizophrenia, and dementia of the Alzheimer's type. Patients with major depression had significantly higher concentrations of human diazepam-binding inhibitor immunoreactivity in CSF when compared with age- and sex-matched normal volunteers, while no difference in CSF diazepam-binding inhibitor immunoreactivity was found in schizophrenics or patients with dementia of the Alzheimer's type when compared with controls. The possibility is discussed that the increased CSF human diazepam-binding inhibitor immunoreactivity observed in depressed patients may represent a functional disinhibition of GABAergic neurotransmission associated with depression.

  11. Calcium channel blockers and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yi Tan; Yulin Deng; Hong Qing


    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofi-brillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers in-volved in Alzheimer's disease therapy.

  12. What Do We Know About Preventing Alzheimer's? (United States)

    ... or not things like exercise, diet, and "brain games" can help delay or prevent Alzheimer's disease and ... the Signs of Alzheimer's Disease? / Preventing Alzheimer's Disease / Quiz: Alzheimer's Disease / Treatment Winter 2015 Issue: Volume 9 ...

  13. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights

    Energy Technology Data Exchange (ETDEWEB)

    Acquaah-Mensah, George K.; Taylor, Ronald C.


    Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen BrainAtlasmouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networkswere learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations inmousewhole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, andSyn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.

  14. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis. (United States)

    Hsu, Wan-Yu; Ku, Yixuan; Zanto, Theodore P; Gazzaley, Adam


    The study aimed to evaluate the effects of noninvasive brain stimulation on cognitive function in healthy older adults and patients with Alzheimer's disease. A comprehensive literature search was performed on noninvasive stimulation studies published from January 1990 to November 2014 in Pubmed and Web of Science. Fourteen articles with a total of 331 participants were identified as studies with healthy older adults, and the mean effect size and 95% confidence interval were estimated. A significant effect size of 0.42 was found for the cognitive outcome. Further subgroup analyses demonstrated more prominent effects for studies delivering the stimulation before the execution of the task and studies applying multiple sessions of stimulation. To assess the effects of stimulation on Alzheimer's disease patients, 11 studies with a total of 200 patients were included in the analysis. A significant effect size of 1.35 was found for the cognitive outcomes. Subgroup analyses indicated more pronounced effects for studies applying the stimulation during the execution of the task compared with studies delivering the stimulation before the execution of the task. Noninvasive brain stimulation has a positive effect on cognitive function in physiological and pathological aging.

  15. [Aluminum, hypothetic cause of Alzheimer disease]. (United States)

    Pailler, F M; Bequet, D; Corbé, H; Giudicelli, C P


    A great deal of research has focused on aluminium as a putative causative factor in Alzheimer's disease. We measured by atomic absorption spectrophotometry aluminium levels in blood, urine and cerebrospinal fluid from 15 patients with Alzheimer's disease, compared with 20 control individuals. There were no statistically significant differences between the two groups. This suggests that aluminium is not a causative factor for Alzheimer's disease.

  16. Traffic jam at the blood-brain barrier promotes greater accumulation of Alzheimer's disease amyloid-β proteins in the cerebral vasculature. (United States)

    Agyare, Edward K; Leonard, Sarah R; Curran, Geoffry L; Yu, Caroline C; Lowe, Val J; Paravastu, Anant K; Poduslo, Joseph F; Kandimalla, Karunya K


    Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer's disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 shows preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain, and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other copathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA.

  17. Gene Interactions and Structural Brain Change in Early-Onset Alzheimer's Disease Subjects Using the Pipeline Environment (United States)

    Dinov, Ivo D.; Zamanyan, Alen; Shi, Ran; Genco, Alex; Hobel, Sam; Thompson, Paul M.; Toga, Arthur W.


    Objective This article investigates subjects aged 55 to 65 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to broaden our understanding of early-onset (EO) cognitive impairment using neuroimaging and genetics biomarkers. Methods Nine of the subjects had EO-AD (Alzheimer's disease) and 27 had EO-MCI (mild cognitive impairment). The 15 most important neuroimaging markers were extracted with the Global Shape Analysis (GSA) Pipeline workflow. The 20 most significant single nucleotide polymorphisms (SNPs) were chosen and were associated with specific neuroimaging biomarkers. Results We identified associations between the neuroimaging phenotypes and genotypes for a total of 36 subjects. Our results for all the subjects taken together showed the most significant associations between rs7718456 and L_hippocampus (volume), and between rs7718456 and R_hippocampus (volume). For the 27 MCI subjects, we found the most significant associations between rs6446443 and R_superior_frontal_gyrus (volume), and between rs17029131 and L_Precuneus (volume). For the nine AD subjects, we found the most significant associations between rs16964473 and L_rectus gyrus (surface area), and between rs12972537 and L_rectus_gyrus (surface area). Conclusion We observed significant correlations between the SNPs and the neuroimaging phenotypes in the 36 EO subjects in terms of neuroimaging genetics. However, larger sample sizes are needed to ensure that the effects will be detectable for a reasonable false-positive error rate using the GSA and Plink Pipeline workflows. PMID:25670955

  18. Imaging Alzheimer's disease pathophysiology with PET

    Directory of Open Access Journals (Sweden)

    Lucas Porcello Schilling

    Full Text Available ABSTRACT Alzheimer's disease (AD has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI, and dementia stages. Positron emission tomography (PET associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.

  19. Genome instability in Alzheimer disease

    DEFF Research Database (Denmark)

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L


    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis...

  20. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... An estimated 5.5 million Americans of all ages have Alzheimer's disease. Of the estimated 5.5 ... in 2017, an estimated 5.3 million are age 65 and older and approximately 200,000 individuals ...

  1. Memory and consciousness in Alzheimer's disease. (United States)

    Souchay, C; Moulin, C J A


    Human memory can be split into familiarity and recollection processes which contribute to different aspects of memory function. These separate processes result in different experiential states. In this review, we examine how this dominant theoretical framework can explain the subjective experience of people with Alzheimer's disease, the profile of their memory impairments and their inability to reflect on their performance metacognitively. We conclude with a brief overview of the brain regions supporting conscious experience of memory, and propose that the memory and awareness deficits seen in Alzheimer's disease could be conceived of as a deficit in autonoetic consciousness. A future priority for research is to take these robust constructs into research programmes examining rehabilitation and pharmacological intervention.

  2. Neuroprotective effect of the active components of three Chinese herbs on brain iron load in a mouse model of Alzheimer's disease. (United States)

    Dong, Xian-Hui; Gao, Wei-Juan; Kong, Wei-Na; Xie, Hong-Lin; Peng, Yan; Shao, Tie-Mei; Yu, Wen-Guo; Chai, Xi-Qing


    Alzheimer's disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on learning and memory impairment, β-amyloid (Aβ) reduction and brain iron load in an APPswe/PS1ΔE9 transgenic mouse model of AD. Increasing evidence indicates that a disturbance of normal iron homeostasis may contribute to the pathology of AD. However, the underlying mechanisms resulting in abnormal iron load in the AD brain remain unclear. It has been hypothesized that the brain iron load is influenced by the deregulation of certain proteins associated with brain iron metabolism, including divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). The present study investigated the effects of the active components of Epimedium, Astragalus and Radix Puerariae on the expression levels of DMT1 and FPN1. The treatment with the active components reduced cognitive deficits, inhibited Aβ plaque accumulation, reversed Aβ burden and reduced the brain iron load in AD model mice. A significant increase was observed in the levels of DMT1-iron-responsive element (IRE) and DMT1-nonIRE in the hippocampus of the AD mouse brain, which was reduced by treatment with the active components. In addition, the levels of FPN1 were significantly reduced in the hippocampus of the AD mouse brain compared with those of control mice, and these levels were increased following treatment with the active components. Thus, the present study indicated that the active components of Epimedium, Astragalus and Radix Puerariae may exert a neuroprotective effect against AD by reducing iron overload in the AD brain and may provide a novel approach for the development of drugs for the treatment of AD.

  3. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E


    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  4. Oxidative stress and Alzheimer disease. (United States)

    Christen, Y


    Research in the field of molecular biology has helped to provide a better understanding of both the cascade of biochemical events that occurs with Alzheimer disease (AD) and the heterogeneous nature of the disease. One hypothesis that accounts for both the heterogeneous nature of AD and the fact that aging is the most obvious risk factor is that free radicals are involved. The probability of this involvement is supported by the fact that neurons are extremely sensitive to attacks by destructive free radicals. Furthermore, lesions are present in the brains of AD patients that are typically associated with attacks by free radicals (eg, damage to DNA, protein oxidation, lipid peroxidation, and advanced glycosylation end products), and metals (eg, iron, copper, zinc, and aluminum) are present that have catalytic activity that produce free radicals. beta-Amyloid is aggregated and produces more free radicals in the presence of free radicals; beta-amyloid toxicity is eliminated by free radical scavengers. Apolipoprotein E is subject to attacks by free radicals, and apolipoprotein E peroxidation has been correlated with AD. In contrast, apolipoprotein E can act as a free radical scavenger and this behavior is isoform dependent. AD has been linked to mitochondrial anomalies affecting cytochrome-c oxidase, and these anomalies may contribute to the abnormal production of free radicals. Finally, many free radical scavengers (eg, vitamin E, selegeline, and Ginkgo biloba extract EGb 761) have produced promising results in relation to AD, as has desferrioxamine-an iron-chelating agent-and antiinflammatory drugs and estrogens, which also have an antioxidant effect.

  5. Differentiating shunt-responsive normal pressure hydrocephalus from Alzheimer disease and normal aging: pilot study using automated MRI brain tissue segmentation. (United States)

    Serulle, Yafell; Rusinek, Henry; Kirov, Ivan I; Milch, Hannah; Fieremans, Els; Baxter, Alexander B; McMenamy, John; Jain, Rajan; Wisoff, Jeffrey; Golomb, James; Gonen, Oded; George, Ajax E


    Evidence suggests that normal pressure hydrocephalus (NPH) is underdiagnosed in day to day radiologic practice, and differentiating NPH from cerebral atrophy due to other neurodegenerative diseases and normal aging remains a challenge. To better characterize NPH, we test the hypothesis that a prediction model based on automated MRI brain tissue segmentation can help differentiate shunt-responsive NPH patients from cerebral atrophy due to Alzheimer disease (AD) and normal aging. Brain segmentation into gray and white matter (GM, WM), and intracranial cerebrospinal fluid was derived from pre-shunt T1-weighted MRI of 15 shunt-responsive NPH patients (9 men, 72.6 ± 8.0 years-old), 17 AD patients (10 men, 72.1 ± 11.0 years-old) chosen as a representative of cerebral atrophy in this age group; and 18 matched healthy elderly controls (HC, 7 men, 69.7 ± 7.0 years old). A multinomial prediction model was generated based on brain tissue volume distributions. GM decrease of 33% relative to HC characterized AD (P normal GM volumes characterized NPH. A multinomial regression model based on gender, GM and ventricular volume had 96.3% accuracy differentiating NPH from AD and HC. In conclusion, automated MRI brain tissue segmentation differentiates shunt-responsive NPH with high accuracy from atrophy due to AD and normal aging. This method may improve diagnosis of NPH and improve our ability to distinguish normal from pathologic aging.

  6. Brain catalase in the streptozotocin-rat model of sporadic Alzheimer's disease treated with the iron chelator-monoamine oxidase inhibitor, M30. (United States)

    Sofic, E; Salkovic-Petrisic, M; Tahirovic, I; Sapcanin, A; Mandel, S; Youdim, M; Riederer, P


    Low intracerebroventricular (icv) doses of streptozotocin (STZ) produce regionally specific brain neurochemical changes in rats that are similar to those found in the brain of patients with sporadic Alzheimer's disease (sAD). Since oxidative stress is thought to be one of the major pathologic processes in sAD, catalase (CAT) activity was estimated in the regional brain tissue of animals treated intracerebroventricularly with STZ and the multitarget iron chelator, antioxidant and MAO-inhibitor M30 [5-(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline]. Five-day oral pre-treatment of adult male Wistar rats with 10 mg/kg/day M30 dose was followed by a single injection of STZ (1 mg/kg, icv). CAT activity was measured colorimetrically in the hippocampus (HPC), brain stem (BS) and cerebellum (CB) of the control, STZ-, M30- and STZ + M30-treated rats, respectively, 4 weeks after the STZ treatment. STZ-treated rats demonstrated significantly lower CAT activity in all three brain regions in comparison to the controls (p iron chelators such as M30 might also have beneficial effects in this non-transgenic sAD model.

  7. Visual system manifestations of Alzheimer's disease. (United States)

    Kusne, Yael; Wolf, Andrew B; Townley, Kate; Conway, Mandi; Peyman, Gholam A


    Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD.

  8. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. (United States)

    Jack, Clifford R; Wiste, Heather J; Vemuri, Prashanthi; Weigand, Stephen D; Senjem, Matthew L; Zeng, Guang; Bernstein, Matt A; Gunter, Jeffrey L; Pankratz, Vernon S; Aisen, Paul S; Weiner, Michael W; Petersen, Ronald C; Shaw, Leslie M; Trojanowski, John Q; Knopman, David S


    Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer's dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer's Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer's dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were 'amyloid positive' (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were 'amyloid negative' (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan-Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter

  9. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH


    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  10. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Willem Kamphuis

    Full Text Available Glial fibrillary acidic protein (GFAP is the main astrocytic intermediate filament (IF. GFAP splice isoforms show differential expression patterns in the human brain. GFAPδ is preferentially expressed by neurogenic astrocytes in the subventricular zone (SVZ, whereas GFAP(+1 is found in a subset of astrocytes throughout the brain. In addition, the expression of these isoforms in human brain material of epilepsy, Alzheimer and glioma patients has been reported. Here, for the first time, we present a comprehensive study of GFAP isoform expression in both wild-type and Alzheimer Disease (AD mouse models. In cortex, cerebellum, and striatum of wild-type mice, transcripts for Gfap-α, Gfap-β, Gfap-γ, Gfap-δ, Gfap-κ, and a newly identified isoform Gfap-ζ, were detected. Their relative expression levels were similar in all regions studied. GFAPα showed a widespread expression whilst GFAPδ distribution was prominent in the SVZ, rostral migratory stream (RMS, neurogenic astrocytes of the subgranular zone (SGZ, and subpial astrocytes. In contrast to the human SVZ, we could not establish an unambiguous GFAPδ localization in proliferating cells of the mouse SVZ. In APPswePS1dE9 and 3xTgAD mice, plaque-associated reactive astrocytes had increased transcript levels of all detectable GFAP isoforms and low levels of a new GFAP isoform, Gfap-ΔEx7. Reactive astrocytes in AD mice showed enhanced GFAPα and GFAPδ immunolabeling, less frequently increased vimentin and nestin, but no GFAPκ or GFAP(+1 staining. In conclusion, GFAPδ protein is present in SVZ, RMS, and neurogenic astrocytes of the SGZ, but also outside neurogenic niches. Furthermore, differential GFAP isoform expression is not linked with aging or reactive gliosis. This evidence points to the conclusion that differential regulation of GFAP isoforms is not involved in the reorganization of the IF network in reactive gliosis or in neurogenesis in the mouse brain.

  11. Network Topology Analysis of Post-Mortem Brain Microarrays Identifies More Alzheimer's Related Genes and MicroRNAs and Points to Novel Routes for Fighting with the Disease.

    Directory of Open Access Journals (Sweden)

    Sreedevi Chandrasekaran

    Full Text Available Network-based approaches are powerful and beneficial tools to study complex systems in their entirety, elucidating the essential factors that turn the multitude of individual elements into a functional system. In this study we used critical network topology descriptors and guilt-by-association rule to explore and understand the significant molecular players, drug targets and underlying biological mechanisms of Alzheimer's disease. Analyzing two post-mortem brain gene microarrays (GSE4757 and GSE28146 with Pathway Studio software package we constructed and analyzed a set of protein-protein interaction, as well as miRNA-target networks. In a 4-step procedure the expression datasets were normalized using Robust Multi-array Average approach, while the modulation of gene expression by the disease was statistically evaluated by the empirical Bayes method from the limma Bioconductor package. Representative set of 214 seed-genes (p<0.01 common for the three brain sections of the two microarrays was thus created. The Pathway Studio analysis of the networks built identified 15 new potential AD-related genes and 17 novel AD-involved microRNAs. Using KEGG pathways relevant in Alzheimer's disease we built an integrated mechanistic network from the interactions between the overlapping genes in these pathways. Routes of possible disease initiation process were thus revealed through the CD4, DCN, and IL8 extracellular ligands. DAVID and IPA enrichment analysis uncovered a number of deregulated biological processes and pathways including neuron projection/differentiation, aging, oxidative stress, chemokine/ neurotrophin signaling, long-term potentiation and others. The findings in this study offer information of interest for subsequent experimental studies.

  12. Alzheimer's Disease - Multiple Languages: MedlinePlus (United States)

    ... d'Alzheimer - français (French) Bilingual PDF Health Information Translations Inside the Brain: An Interactive Tour English Exploration Interactive de l'Intérieur du Cerveau - français (French) Alzheimer's Association German (Deutsch) Inside the Brain: An Interactive Tour English Im ...

  13. Mitochondrial haplotypes associated with biomarkers for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Various studies have suggested that the mitochondrial genome plays a role in late-onset Alzheimer's disease, although results are mixed. We used an endophenotype-based approach to further characterize mitochondrial genetic variation and its relationship to risk markers for Alzheimer's disease. We analyzed longitudinal data from non-demented, mild cognitive impairment, and late-onset Alzheimer's disease participants in the Alzheimer's Disease Neuroimaging Initiative with genetic, brain imaging, and behavioral data. We assessed the relationship of structural MRI and cognitive biomarkers with mitochondrial genome variation using TreeScanning, a haplotype-based approach that concentrates statistical power by analyzing evolutionarily meaningful groups (or clades of haplotypes together for association with a phenotype. Four clades were associated with three different endophenotypes: whole brain volume, percent change in temporal pole thickness, and left hippocampal atrophy over two years. This is the first study of its kind to identify mitochondrial variation associated with brain imaging endophenotypes of Alzheimer's disease. Our results provide additional evidence that the mitochondrial genome plays a role in risk for Alzheimer's disease.

  14. Turning principles into practice in Alzheimer's disease


    Lindesay, James; Bullock, Roger; Daniels, Hugo; Emre, Murat; Förstl, Hans; Frölich, Lutz; Gabryelewicz, Tomasz; Martínez-Lage, Pablo; Monsch, Andreas; Tsolaki, Magda; van Laar, Teus


    Abstract The prevalence of dementia is reaching epidemic proportions globally, but there remain a number of issues that prevent people with dementia, their families and caregivers, from taking control of their condition. In 2008, Alzheimer?s Disease International (ADI) launched a Global Alzheimer?s Disease Charter, which comprises six principles that underscore the urgency for a more ambitious approach to diagnosis, treatment and care. This review highlights some of the most import...

  15. Is Alzheimer's disease a homogeneous disease entity? (United States)

    Korczyn, Amos D


    The epidemic proportions of dementia in old age are a cause of great concern for the medical profession and the society at large. It is customary to consider Alzheimer's disease (AD) as the most common cause of dementia, and vascular dementia (VaD) as being the second. This dichotomous view of a primary neurodegenerative disease as opposed to a disorder where extrinsic factors cause brain damage led to separate lines of research in these two entities. New biomarkers, particularly the introduction of modern neuroimaging and cerebrospinal fluid changes, have, in recent years, helped to identify anatomical and chemical changes of VaD and of AD. Nevertheless, there is a substantial difference between the two entities. While it is clear that VaD is a heterogeneous entity, AD is supposed to be a single disorder. Nobody attempts to use CADASIL as a template to develops treatment for sporadic VaD. On the other hand, early-onset AD is used to develop therapy for sporadic AD. This paper will discuss the problems relating to this false concept and its consequences.

  16. Assessing neuronal networks: understanding Alzheimer's disease.

    LENUS (Irish Health Repository)

    Bokde, Arun L W


    Findings derived from neuroimaging of the structural and functional organization of the human brain have led to the widely supported hypothesis that neuronal networks of temporally coordinated brain activity across different regional brain structures underpin cognitive function. Failure of integration within a network leads to cognitive dysfunction. The current discussion on Alzheimer\\'s disease (AD) argues that it presents in part a disconnection syndrome. Studies using functional magnetic resonance imaging, positron emission tomography and electroencephalography demonstrate that synchronicity of brain activity is altered in AD and correlates with cognitive deficits. Moreover, recent advances in diffusion tensor imaging have made it possible to track axonal projections across the brain, revealing substantial regional impairment in fiber-tract integrity in AD. Accumulating evidence points towards a network breakdown reflecting disconnection at both the structural and functional system level. The exact relationship among these multiple mechanistic variables and their contribution to cognitive alterations and ultimately decline is yet unknown. Focused research efforts aimed at the integration of both function and structure hold great promise not only in improving our understanding of cognition but also of its characteristic progressive metamorphosis in complex chronic neurodegenerative disorders such as AD.

  17. Hippocampal atrophy rates in Alzheimer disease (United States)

    Henneman, W J.P.; Sluimer, J D.; Barnes, J; van der Flier, W M.; Sluimer, I C.; Fox, N C.; Scheltens, P; Vrenken, H; Barkhof, F


    Objective: To investigate the added value of hippocampal atrophy rates over whole brain volume measurements on MRI in patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI), and controls. Methods: We included 64 patients with AD (67 ± 9 years; F/M 38/26), 44 patients with MCI (71 ± 6 years; 21/23), and 34 controls (67 ± 9 years; 16/18). Two MR scans were performed (scan interval: 1.8 ± 0.7 years; 1.0 T), using a coronal three-dimensional T1-weighted gradient echo sequence. At follow-up, 3 controls and 23 patients with MCI had progressed to AD. Hippocampi were manually delineated at baseline. Hippocampal atrophy rates were calculated using regional, nonlinear fluid registration. Whole brain baseline volumes and atrophy rates were determined using automated segmentation and registration tools. Results: All MRI measures differed between groups (p < 0.005). For the distinction of MCI from controls, larger effect sizes of hippocampal measures were found compared to whole brain measures. Between MCI and AD, only whole brain atrophy rate differed significantly. Cox proportional hazards models (variables dichotomized by median) showed that within all patients without dementia, hippocampal baseline volume (hazard ratio [HR]: 5.7 [95% confidence interval: 1.5–22.2]), hippocampal atrophy rate (5.2 [1.9–14.3]), and whole brain atrophy rate (2.8 [1.1–7.2]) independently predicted progression to AD; the combination of low hippocampal volume and high atrophy rate yielded a HR of 61.1 (6.1–606.8). Within patients with MCI, only hippocampal baseline volume and atrophy rate predicted progression. Conclusion: Hippocampal measures, especially hippocampal atrophy rate, best discriminate mild cognitive impairment (MCI) from controls. Whole brain atrophy rate discriminates Alzheimer disease (AD) from MCI. Regional measures of hippocampal atrophy are the strongest predictors of progression to AD. GLOSSARY AD = Alzheimer disease; BET = brain

  18. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease (United States)


    Ho, Wei Zhao, Roberto Sanchez, Merina Varghese, Daniel Freire , Giulio Maria Pasinetti, Activation of ectopically expressed olfactory receptors in the...disease: a review. Prog. Brain Res. 161, 303-16. Zhao W, Ho L, Varghese M, Yemul S, Dams-O’Connor K, Gordon W, Knable L, Freire D, Haroutunian V

  19. [Alzheimer's disease and human memory]. (United States)

    Eustache, F; Giffard, B; Rauchs, G; Chételat, G; Piolino, P; Desgranges, B


    Memory disorders observed in Alzheimer's disease gave rise, from the eighties, to a detailed analysis into the framework of cognitive neuropsychology which aimed at describing the deficits of very specific processes. Beyond their clinical interest, these studies contributed to the modelisation of human memory thanks to the characterization of different memory systems and their relationships. The first part of this paper gives an overview of the memory deficits in Alzheimer's disease and insists on particular cognitive phenomena. Hence, several examples are developed in the domains of semantic memory (such as hyperpriming and hypopriming effects) and autobiographical memory. Recent results highlight the existence of severe autobiographical amnesia observed in all neurodegenerative diseases, though with contrasting profiles: Ribot's gradient in Alzheimer's disease (showing that remote memories are better preserved than recent ones), reverse gradient in semantic dementia and no clear gradient in the frontal variant of frontotemporal dementia. The second part of this article presents advances in cognitive neuroscience searching to disclose the cerebral substrates of these cognitive deficits in Alzheimer's disease. The studies using functional imaging techniques are the most informative regarding this problematic. While showing the dysfunctions of an extended network, they emphasize the selectivity of cerebral damages that are at the root of very specific cognitive dysfunctions, coming close in that way to the conceptions of cognitive neuropsychology. These neuroimaging studies unravel the existence of compensatory mechanisms, which until recently were clearly missing in the literature on neurodegenerative diseases. These different researches lead to a wide conception of human memory, not just limited to simple instrumental processes (encoding, storage, retrieval), but necessarily covering models of identity and continuity of the subject, which interact in a dynamic way

  20. Research Sheds Light on Mechanism of Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)


    @@ Scientists from the Shanghai Institute of Materia Medica (SIMM) under the CAS Shanghai Institutes for Biological Sciences have made significant progress in suggesting a possible mechanism for the accumulation of amyloid β-peptides (Aβs), which are believed to cause Alzheimer's disease. Aβs are fragments of a protein that is snipped from another protein called amyloid precursor protein (APP). In a healthy brain, these protein fragments would be broken down and eliminated. In Alzheimer's disease, unfortunately, the fragments accumulate to form hard, insoluble plaques, which are the characteristic lesions found in Alzheimer's patients and could dramatically inhibit several genes critical to memory and learning.

  1. Is brain copper deficiency in Alzheimer's, Lewy body, and Creutzfeldt Jakob diseases the common key for a free radical mechanism and oxidative stress-induced damage? (United States)

    Deloncle, Roger; Guillard, Olivier


    In Alzheimer's (AD), Lewy body (LBD), and Creutzfeldt Jakob (CJD) diseases, similar pathological hallmarks have been described, one of which is brain deposition of abnormal protease-resistant proteins. For these pathologies, copper bound to proteins is able to protect against free radicals by reduction from cupric Cu++ to cupreous Cu+. We have previously demonstrated in bovine brain homogenate that free radicals produce proteinase K-resistant prion after manganese is substituted for copper. Since low brain copper levels have been described in transmissible spongiform encephalopathies, in substantia nigra in Parkinson's disease, and in various brain regions in AD, LBD, and CJD, a mechanism has been proposed that may underlie the neurodegenerative processes that occur when copper protection against free radicals is impaired. In peptide sequences, the alpha acid proton near the peptide bond is highly mobile and can be pulled out by free radicals. It will produce a trivalent α-carbon radical and induce a free radical chain process that will generate a D-amino acid configuration in the peptide sequence. Since only L-amino acids are physiologically present in mammalian (human) proteins, it may be supposed that only physiological L-peptides can be recycled by physiological enzymes such as proteases. If a D-amino acid is found in the peptide sequence subsequent to deficient copper protection against free radicals, it will not be recognized and might alter the proteasome L-amino acid recycling from brain peptides. In the brain, there will result an accumulation of abnormal protease-resistant proteins such as those observed in AD, LBD, and CJD.

  2. Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer's disease. (United States)

    Walton, J R


    A recent longitudinal study described an inducible rodent model for age-related cognitive deterioration. This model was produced by chronically feeding rats aluminum, from age 12 months onwards, in measured amounts equivalent to total aluminum levels ingested by Americans from their food, beverages and aluminum additives. The rats performed a hippocampal-dependent spatial memory discrimination task weekly throughout middle age and old age. One-third of the rats attained significantly lower mean performance scores in old age than middle age, in an aluminum dose-dependent manner, and exhibited behavioral signs observed in dementia. The present study used histological and immunohistochemical techniques to identify neuropathological difference between brains of rats that showed cognitive deterioration and the cognitively intact controls. Most aged rat brains had large numbers of aluminum-loaded pyramidal cells in their entorhinal cortex and temporal association cortex but the cognitively deteriorated rats had threefold more such cells than controls (paluminum-rich microtubule-depleted pyramidal cells with shriveled processes, and loss of synapse density. Corticolimbic sections from brains of humans with Alzheimer's disease also showed neuropathology consistent with this type of damage. The evidence suggests bioavailable aluminum gradually accumulates in cortical and limbic regions of susceptible subjects' brains, eventually producing hippocampal lesions consisting of dysfunctional aluminum-rich microtubule-depleted pyramidal cells with damaged neurites and synapse loss. These lesions expand over time, disrupting afferent and efferent hippocampal circuitry with the development of clinically overt dementia.

  3. Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    Directory of Open Access Journals (Sweden)

    Elin S. Blom


    Full Text Available Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2 and v-myc myelocytomatosis viral oncogene homolog (MYC, were increased in Alzheimer's disease (AD (P<.05. Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis.

  4. A composite multivariate polygenic and neuroimaging score for prediction of conversion to Alzheimer's disease


    Filipovych, Roman; Gaonkar, Bilwaj; Davatzikos, Christos


    Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex genetic underpinnings that may influence the timing of the related pathological changes in the brain and can affect the progression from MCI to AD. In this paper, we present a multivariate imaging genetics approach for prediction of conversion to Alzheimer's disease in patients with mild cognitive impair...

  5. Association of Alzheimer's disease and Chlamydophila pneumoniae. (United States)

    Stallings, Tiffany L


    This paper critically reviews the association of infection by Chlamydophila pneumoniae (C. pneumoniae) and Alzheimer's disease (AD). The aging population has increased interest in finding the cause of AD, but studies have yielded contradictory results that are likely due to varying diagnostic tools and different uses of diagnostic tests. Knowledge of AD's characteristics, risk factors, and hypothesized etiologies has expanded since Alois Alzheimer's initial description of AD. Epidemiologic and projection studies provide incidence estimates of AD through a two-stage method: (1) primary diagnosis of dementia by cognitive testing such as Mini-Mental State Examination (MMSE), and (2) clinical diagnosis of AD through criteria such as National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA). Cross-sectional studies yield prevalence estimates of infection by C. pneumoniae by detecting immunoglobulins through laboratory tests such as microimmunofluorescence (MIF). Studies examining the association of C. pneumoniae and AD are limited, but brain autopsy provides information about presence, proximity to areas associated with AD, and bacterial load. Standardization of diagnostic techniques would allow for better comparability of studies, but uncertainty about the best method of diagnosis of infection by C. pneumoniae and AD may call for revised or novel diagnostic tools.

  6. Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer's disease. (United States)

    Boots, Elizabeth A; Schultz, Stephanie A; Oh, Jennifer M; Larson, Jordan; Edwards, Dorothy; Cook, Dane; Koscik, Rebecca L; Dowling, Maritza N; Gallagher, Catherine L; Carlsson, Cynthia M; Rowley, Howard A; Bendlin, Barbara B; LaRue, Asenath; Asthana, Sanjay; Hermann, Bruce P; Sager, Mark A; Johnson, Sterling C; Okonkwo, Ozioma C


    Cardiorespiratory fitness (CRF) is an objective measure of habitual physical activity (PA), and has been linked to increased brain structure and cognition. The gold standard method for measuring CRF is graded exercise testing (GXT), but GXT is not feasible in many settings. The objective of this study was to examine whether a non-exercise estimate of CRF is related to gray matter (GM) volumes, white matter hyperintensities (WMH), cognition, objective and subjective memory function, and mood in a middle-aged cohort at risk for Alzheimer's disease (AD). Three hundred and fifteen cognitively healthy adults (mean age =58.58 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention underwent structural MRI scanning, cognitive testing, anthropometric assessment, venipuncture for laboratory tests, and completed a self-reported PA questionnaire. A subset (n = 85) underwent maximal GXT. CRF was estimated using a previously validated equation incorporating sex, age, body-mass index, resting heart rate, and self-reported PA. Results indicated that the CRF estimate was significantly associated with GXT-derived peak oxygen consumption, validating its use as a non-exercise CRF measure in our sample. Support for this finding was seen in significant associations between the CRF estimate and several cardiovascular risk factors. Higher CRF was associated with greater GM volumes in several AD-relevant brain regions including the hippocampus, amygdala, precuneus, supramarginal gyrus, and rostral middle frontal gyrus. Increased CRF was also associated with lower WMH and better cognitive performance in Verbal Learning & Memory, Speed & Flexibility, and Visuospatial Ability. Lastly, CRF was negatively correlated with self- and informant-reported memory complaints, and depressive symptoms. Together, these findings suggest that habitual participation in physical activity may provide protection for brain structure and cognitive function, thereby decreasing future risk for AD.

  7. Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Gangyong Zhao; Xianjiang Kang; Likai Su


    In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.

  8. Cellular basis of Alzheimer's disease. (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence


    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  9. Incidental findings on brain MRI of cognitively normal first-degree descendants of patients with Alzheimer's disease: a cross-sectional analysis from the ALFA (Alzheimer and Families) project (United States)

    Brugulat-Serrat, Anna; Rojas, Santiago; Bargalló, Nuria; Conesa, Gerardo; Minguillón, Carolina; Fauria, Karine; Gramunt, Nina; Molinuevo, José Luis; Gispert, Juan Domingo


    Objectives To describe the prevalence of brain MRI incidental findings (IF) in a cohort of cognitively normal first-degree descendants of patients with Alzheimer's disease (AD). Design Cross-sectional observational study. Setting All scans were obtained with a 3.0 T scanner. Scans were evaluated by a single neuroradiologist and IF recorded and categorised. The presence of white matter hyperintensities (WMH) was determined with the Fazekas scale and reported as relevant if ≥2. Participants 575 participants (45–75 years) underwent high-resolution structural brain MRI. Participants were cognitively normal and scored over the respective cut-off values in all the following neuropsychological tests: Mini-Mental State Examination (≥26), Memory Impairment Screen (≥6), Time Orientation Subtest of the Barcelona Test II (≥68), verbal semantic fluency (naming animals ≥12). Clinical Dementia Rating (CDR) had to be 0. Results 155 participants (27.0%) presented with at least one IF. Relevant WMH were present in 7.8% of the participants, and vascular abnormalities, cyst and brain volume loss in 10.7%, 3.1% and 6.9% of the study volunteers, respectively. Neoplastic brain findings were found in 2.4% of participants and within these, meningiomas were the most common (1.7%) and more frequently found in women. A positive correlation between increasing age and the presence of IF was found. Additionally, brain atrophy greater than that expected by age was significantly more prevalent in participants without a parental history of AD. Conclusions Brain MRIs of healthy middle-aged participants show a relatively high prevalence of IF even when study participants have been screened for subtle cognitive alterations. Most of our participants are first-degree descendants of patients with AD, and therefore these results are of special relevance for novel imaging studies in the context of AD prevention in cognitively healthy middle-aged participants. Trial registration number NCT

  10. The Role of Mast Cells in Alzheimer's Disease. (United States)

    Shaik-Dasthagirisaheb, Yasdani B; Conti, Pio


    Immunity and inflammation are deeply involved in Alzheimer's disease. The most important properties of pathological Alzheimer's disease are the extracellular deposits of amyloid â-protein plaque aggregates along with other unknown mutated proteins, which are implicated in immunity and inflammation. Mast cells are found in the brain of all mammalian species and in the periphery, and their biological mediators, including cytokines/chemokines, arachidonic acid products and stored enzymes, play an import role in Alzheimer's disease. Cytokines/chemokines, which are generated mostly by microglia and astrocytes in Alzheimer's disease, contribute to nearly every aspect of neuroinflammation and amyloid â-protein plaque aggregates may induce in mast cells the release of a plethora of mediators, including pro-inflammatory cytokines/chemokines such as interleukin-1, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-alpha, vascular endothelial growth factor, transforming growth factor beta, CXCL8 and CCL2-3-4. These proinflammatory cytokines/chemokines are prominent mediators of neuroinflammation in brain disorders such as Alzheimer's disease, and their inhibition may be associated with improved recovery. In this review, we summarize the current knowledge regarding the roles of mast cell mediators (stored and de novo synthesis) in the pathogenesis of Alzheimer's disease.

  11. Palmomental reflex a relevant sign in early Alzheimer's disease diagnosis?


    Gabelle, Audrey; Gutierrez, Laure-Anne; Dartigues, Jean-François; Ritchie, Karen,; Touchon, Jacques; Berr, Claudine


    International audience; AbstractBackground: Sophisticated and expensive biomarkers are proposed for the diagnostic of Alzheimer disease (AD). Amyloid process seems to be early in AD and brain amyloid load affects the frontal lobe. Our objective is to determine if certain simple clinical signs especially frontal-related signs could help reach an earlier and better diagnosis. Methods: In the frame of the 3-City cohort, we conducted a nested case-control study comparing incident cases of Alzheim...

  12. Alzheimer's disease and chronic periodontitis: is there an association? (United States)

    Gaur, Sumit; Agnihotri, Rupali


    Alzheimer's disease, an affliction of old age, is one of the leading causes for dementia worldwide. Various risk factors including family history, genetics and infections have been implicated in its pathogenesis. The cognitive decline in this condition is mainly a result of the formation of amyloid deposits that provoke neuroinflammation, ultimately resulting in cell death. Recently, an association between peripheral inflammation and Alzheimer's disease was hypothesized. It was suggested that chronic systemic inflammation worsened the inflammatory processes in the brain. This was mainly attributed to increased levels of pro-inflammatory mediators, such as interleukin-1, interleukin -6 and tumor necrosis factor-α in the plasma. As chronic periodontitis is a widespread peripheral immunoinflammatory condition, it has been proposed to play a significant role in the aggravation of Alzheimer's disease. With this background, the current review focuses on the relationship between Alzheimer's disease and chronic periodontitis, and its therapeutic implications.

  13. Relation between nicotine intake and Alzheimer's disease.



    OBJECTIVE--To study the association between Alzheimer's disease and nicotine intake through smoking. DESIGN--Population based case-control study. SETTING--City of Rotterdam and four northern provinces of The Netherlands. SUBJECTS--198 patients with early onset Alzheimer's disease, 198 controls matched for age and sex, and families of 17 patients in whom Alzheimer's disease was apparently inherited as an autosomal dominant disorder. MAIN OUTCOME MEASURES--Age of onset of dementia, relative ris...

  14. Disturbance of iron metabolism in brain and Alzheimer's disease%脑铁代谢紊乱与阿尔茨海默病

    Institute of Scientific and Technical Information of China (English)

    符敬坦; 王璞; 郭闯


    脑内铁代谢的异常和其所致的氧化应激与阿尔茨海默病(Alzheimer's disease,AD)的发病有关.AD是常见于老年人的一种神经退行性疾病,其特征性的病理改变主要是脑内神经细胞外β-淀粉样蛋白(β-amyloid,Aβ)的沉积形成老年斑(senile plague,SP)、胞内神经原纤维缠结(neurofibrillary tangles,NFTs)和胆碱能神经元丢失.研究证实,在普通老年人和AD患者脑内有铁沉积增多的趋势,且铁等过渡金属离子与APP、Aβ和Tau蛋白密切相关,提示铁可能参与了AD的发病和进展等病理生理过程.因此,深入探讨铁在AD发病中可能的作用,有利于了解AD的发病机制,从而为AD疾病的治疗提供新的靶点.%The dysregulation of iron homeostasis and consequential induction of oxidative stress in the brain were related to the pathogenesis of Alzheimer's disease(AD). AD is a neurodegenerative disease often occurred in the old stage, with main pathologically features of the extracellular β-amyloid (A β) plaques, intracellular neurofibrillary tangles (NFTs) and selective cholinergic neuronal loss in the brain. Recent studies have shown that Tau, APP and its proteolytic product A β are associated with metal homeostasis in the AD brain, suggesting that exposure to metals may potentially modulate AD pathology, either triggering or ameliorating disease progression. Exploring the effect of iron on the pathogenesis of AD may provide a new target for the prevention and treatment of AD.

  15. Neuroimaging Measures as Endophenotypes in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Meredith N. Braskie


    Full Text Available Late onset Alzheimer's disease (AD is moderately to highly heritable. Apolipoprotein E allele ε4 (APOE4 has been replicated consistently as an AD risk factor over many studies, and recently confirmed variants in other genes such as CLU, CR1, and PICALM each increase the lifetime risk of AD. However, much of the heritability of AD remains unexplained. AD is a complex disease that is diagnosed largely through neuropsychological testing, though neuroimaging measures may be more sensitive for detecting the incipient disease stages. Difficulties in early diagnosis and variable environmental contributions to the disease can obscure genetic relationships in traditional case-control genetic studies. Neuroimaging measures may be used as endophenotypes for AD, offering a reliable, objective tool to search for possible genetic risk factors. Imaging measures might also clarify the specific mechanisms by which proposed risk factors influence the brain.

  16. Corpus callosum atrophy in patients with mild Alzheimer's disease

    DEFF Research Database (Denmark)

    Frederiksen, Kristian Steen; Garde, Ellen; Skimminge, Arnold


    Several studies have found atrophy of the corpus callosum (CC) in patients with Alzheimer's disease (AD). However, it remains unclear whether callosal atrophy is already present in the early stages of AD, and to what extent it may be associated with other structural changes in the brain, such as ......Several studies have found atrophy of the corpus callosum (CC) in patients with Alzheimer's disease (AD). However, it remains unclear whether callosal atrophy is already present in the early stages of AD, and to what extent it may be associated with other structural changes in the brain...

  17. Recent progress of PET in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Na NIU


    Full Text Available Alzheimer's disease is the most common cause of dementia in the current elderly population. PET can detect pathophysiological changes in Alzheimer's disease with different radiotracers. This paper will focus on evaluating the value of 18F-FDG, amyloid and tau protein PET imaging in Alzheimer's disease. PET has been demonstrated to play an important role in the research of etiology, early diagnosis, differential dignosis, prognosis and medical treatment of Alzheimer's disease. doi: 10.3969/j.issn.1672-6731.2014.03.007

  18. The Relationship Between Brain Aging and Preclinical Alzheimer's Disease%脑衰老与阿尔茨海默病症状出现前阶段

    Institute of Scientific and Technical Information of China (English)

    崔德华; 田小生; 王贺成; 王维; 肖卫忠; 樊东升


    脑衰老可分为生理性增龄变化与病理性变化,后者与阿尔茨海默病(Alzheimer's disease,AD)等神经退行性疾病的发生有关.生理性脑衰老与AD在发病早期具有相似的表现形式、病变特征、生化改变和发病机制.其共开的分子机制是异常蛋白质蓄积,提示两者有着相似的病理学基础,脑衰老可能是AD等神经退行性改变的最初级阶段,病理性脑衰老因素可能促进AD等神经退行性疾病的发生发展.临床前期AD(preclinical AD,PCAD)患者的脑、血液和脑脊液中可以检测到AD特定的生物标记物,但AD的临床症状并没有出现,因此也被称为“症状出现前AD(presymptomatic AD)”.PCAD和对照组比较,氧化应激指标和高度不溶性Aβ42并没有显著性升高,寻找早期PCAD发病过程中新的可用于临床早期诊断的生物标记物、药物靶点将成为我们的关注重点.%This article reviews the relationship between brain aging and Alzheimer's disease (AD). Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. A small percentage of individuals with normal antemortem psychometric scores meet the neuropathological criteria for AD termed "preclinical" AD (PCAD). PCAD and control subjects were compared for oxidative stress markers, amyloid beta-peptide, and identification of protein expression differences, and observed a significant increase in highly insoluble monomeric Aβ42, but no significant differences in oligomeric Aβ nor in oxidative stress measurements between controls and PCAD subjects. Expression proteomics identified proteins whose trends in PCAD are indicative of cellular protection, possibly correlating with previous studies showing no cell loss in

  19. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug.

    Directory of Open Access Journals (Sweden)

    Christian Freese

    Full Text Available In the pathogenesis of Alzheimer's disease (AD the homeostasis of amyloid precursor protein (APP processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10 and BACE-1 (beta site APP cleaving enzyme 1 is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs and human neuroblastoma cells (SH-SY5Y transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells

  20. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug. (United States)

    Freese, Christian; Reinhardt, Sven; Hefner, Gudrun; Unger, Ronald E; Kirkpatrick, C James; Endres, Kristina


    In the pathogenesis of Alzheimer's disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their

  1. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, Lisa [New York University School of Medicine, Department of Psychiatry, New York (United States); New York University School of Medicine, Center for Brain Health, MHL 400, New York, NY (United States); Mistur, Rachel; Switalski, Remigiusz; Glodzik, Lidia; Li, Yi; Pirraglia, Elizabeth; De Santi, Susan; Reisberg, Barry [New York University School of Medicine, Department of Psychiatry, New York (United States); Tsui, Wai Hon; De Leon, Mony J. [New York University School of Medicine, Department of Psychiatry, New York (United States); Nathan Kline Institute, Orangeburg, NY (United States); Wisniewski, Thomas [New York University School of Medicine, Department of Psychiatry, New York (United States); New York University School of Medicine, Department of Neurology, New York (United States); New York University School of Medicine, Department of Pathology, New York (United States)


    We report the first clinicopathological series of longitudinal FDG-PET scans in post-mortem (PM) verified cognitively normal elderly (NL) followed to the onset of Alzheimer's-type dementia (DAT), and in patients with mild DAT with progressive cognitive deterioration. Four NL subjects and three patients with mild DAT received longitudinal clinical, neuropsychological and dynamic FDG-PET examinations with arterial input functions. NL subjects were followed for 13 {+-} 5 years, received FDG-PET examinations over 7 {+-} 2 years, and autopsy 6 {+-} 3 years after the last FDG-PET. Two NL declined to mild cognitive impairment (MCI), and two developed probable DAT before death. DAT patients were followed for 9 {+-} 3 years, received FDG-PET examinations over 3 {+-} 2 years, and autopsy 7 {+-} 1 years after the last FDG-PET. Two DAT patients progressed to moderate-to-severe dementia and one developed vascular dementia. The two NL subjects who declined to DAT received a PM diagnosis of definite AD. Their FDG-PET scans indicated a progression of deficits in the cerebral metabolic rate for glucose (CMRglc) from the hippocampus to the parietotemporal and posterior cingulate cortices. One DAT patient showed AD with diffuse Lewy body disease (LBD) at PM, and her last in vivo PET was indicative of possible LBD for the presence of occipital as well as parietotemporal hypometabolism. Progressive CMRglc reductions on FDG-PET occur years in advance of clinical DAT symptoms in patients with pathologically verified disease. The FDG-PET profiles in life were consistent with the PM diagnosis. (orig.)

  2. Differential Effects of Structural Modifications on the Competition of Chalcones for the PIB Amyloid Imaging Ligand-Binding Site in Alzheimer's Disease Brain and Synthetic Aβ Fibrils. (United States)

    Fosso, Marina Y; McCarty, Katie; Head, Elizabeth; Garneau-Tsodikova, Sylvie; LeVine, Harry


    Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aβ(1-40) and Aβ(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.

  3. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease. (United States)

    Xian-hui, Dong; Wei-juan, Gao; Tie-mei, Shao; Hong-lin, Xie; Jiang-tao, Bai; Jing-yi, Zhao; Xi-qing, Chai


    Alzheimer's disease (AD) as a neurodegenerative brain disorder is a devastating pathology leading to disastrous cognitive impairments and dementia, associated with major social and economic costs to society. Iron can catalyze damaging free radical reactions. With age, iron accumulates in brain frontal cortex regions and may contribute to the risk of AD. In this communication, we investigated the age-related brain iron load changes in the frontal cortex of 6- and 12-month-old C57BL/6J (C57) and APPswe/PS1ΔE9 (APP/PS1) double transgenic mouse by using graphite furnace atomic absorption spectrometry (GFAAS) and Perls' reaction. In the present study, we also evaluated the age-related changes of DMT1 and FPN1 by using Western blot and qPCR. We found that compared with 6-month-old APP/PS1 mice and the 12-month-old C57 mice, the 12-month-old APP/PS1 mice had increased iron load in the frontal cortex. The levels of DMT1 were significantly increased and the FPN1 were significantly reduced in the frontal cortex of the 12-month-old APP/PS1 mice than that in the 6-month-old APP/PS1 mice and 12-month-old C57 mice. We conclude that in AD damage occurs in conjunction with iron accumulation, and the brain iron load associated with loss control of the brain iron metabolism related protein DMT1 and FPN1 expressions.

  4. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P [Nuclear Medicine Dpt, University Hospital of Larissa, Larissa (Greece); Papatriantafyllou, J; Karageorgiou, C [Neurology Dpt, General Hospital ' G. Gennimatas' , Athens (Greece); Sifakis, N; Zerva, C [Nuclear Medicine Dpt, ' Alexandra' University Hospital, Athens (Greece)], E-mail:


    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76{+-}6.51 years, education 11.81{+-}4.25 years, MMSE 16.69{+-}9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25{+-}10.48 years, education 10{+-}4.6 years, MMSE 12.5{+-}3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  5. Alzheimer's disease: new diagnostic and therapeutic tools

    Directory of Open Access Journals (Sweden)

    Caruso Calogero


    Full Text Available Abstract On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the lectures of M. Racchi on History and future perspectives of Alzheimer Biomarkers and of G. Scapagnini on Cellular Stress Response and Brain Ageing are summarized. Alzheimer's disease (AD is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for clinica dementia. AD prevention is an important goal of ongoing research. Two objectives must be accomplished to make prevention feasible: i individuals at high risk of AD need to be identified before the earliest symptoms become evident, by which time extensive neurodegeneration has already occurred and intervention to prevent the disease is likely to be less successful and ii safe and effective interventions need to be developed that lead to a decrease in expression of this pathology. On the whole, data here reviewed strongly suggest that the measurement of conformationally altered p53 in blood cells has a high ability to discriminate AD cases from normal ageing, Parkinson's disease and other dementias. On the other hand, available data on the involvement of curcumin in restoring cellular homeostasis and rebalancing redox equilibrium, suggest that curcumin might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation, such as AD.

  6. Quiz: Alzheimer's Disease | NIH MedlinePlus the Magazine (United States)

    ... of this page please turn JavaScript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Past Issues / Winter 2015 Table of Contents ... How many Americans over age 65 may have Alzheimer's disease? as many as 5 million as many ...

  7. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

    Directory of Open Access Journals (Sweden)

    McNamara Laurie K


    Full Text Available Abstract Background An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD. This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. Methods A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. Results A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM was developed. Oral administration of the compound at a low dose (2.5 mg/kg resulted in attenuation of

  8. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer's and Parkinson's disease. (United States)

    Danielyan, Lusine; Beer-Hammer, Sandra; Stolzing, Alexandra; Schäfer, Richard; Siegel, Georg; Fabian, Claire; Kahle, Philipp; Biedermann, Tilo; Lourhmati, Ali; Buadze, Marine; Novakovic, Ana; Proksch, Barbara; Gleiter, Christoph H; Frey, William H; Schwab, Matthias


    In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated

  9. Imbalanced cholesterol metabolism in Alzheimer's disease. (United States)

    Xue-shan, Zhao; Juan, Peng; Qi, Wu; Zhong, Ren; Li-hong, Pan; Zhi-han, Tang; Zhi-sheng, Jiang; Gui-xue, Wang; Lu-shan, Liu


    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear. To further elucidate cholesterol metabolism disorder and AD, we first, review metabolism and regulation of the cholesterol in the brain. Second, we summarize the literature stating that hypercholesterolemia is one of the risk factors of AD. Third, we discuss the main mechanisms of abnormal cholesterol metabolism that increase the risk of AD. Finally, the relationships between AD and apolipoprotein E, PCSK9, and LRP1 are discussed in this article.

  10. Understanding Alzheimer's (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  11. Neuronal histamine and cognitive symptoms in Alzheimer's disease. (United States)

    Zlomuzica, Armin; Dere, Dorothea; Binder, Sonja; De Souza Silva, Maria Angelica; Huston, Joseph P; Dere, Ekrem


    Alzheimer's disease is a neurodegenerative disorder characterized by extracellular amyloid plaque deposits, mainly composed of amyloid-beta peptide and intracellular neurofibrillary tangles consisting of aggregated hyperphosphorylated tau protein. Amyloid-beta represents a neurotoxic proteolytic cleavage product of amyloid precursor protein. The progressive cognitive decline that is associated with Alzheimer's disease has been mainly attributed to a deficit in cholinergic neurotransmission due to the continuous degeneration of cholinergic neurons e.g. in the basal forebrain. There is evidence suggesting that other neurotransmitter systems including neuronal histamine also contribute to the development and maintenance of Alzheimer's disease-related cognitive deficits. Pathological changes in the neuronal histaminergic system of such patients are highly predictive of ensuing cognitive deficits. Furthermore, histamine-related drugs, including histamine 3 receptor antagonists, have been demonstrated to alleviate cognitive symptoms in Alzheimer's disease. This review summarizes findings from animal and clinical research on the relationship between the neuronal histaminergic system and cognitive deterioration in Alzheimer's disease. The significance of the neuronal histaminergic system as a promising target for the development of more effective drugs for the treatment of cognitive symptoms is discussed. Furthermore, the option to use histamine-related agents as neurogenesis-stimulating therapy that counteracts progressive brain atrophy in Alzheimer's disease is considered. This article is part of a Special Issue entitled 'Histamine Receptors'.

  12. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer's disease brain.

    Directory of Open Access Journals (Sweden)

    Wei Wu

    Full Text Available To assess the role of the kynurenine pathway in the pathology of Alzheimer's disease (AD, the expression and localization of key components of the kynurenine pathway including the key regulatory enzyme tryptophan 2,3 dioxygenase (TDO, and the metabolites tryptophan, kynurenine, kynurenic acid, quinolinic acid and picolinic acid were assessed in different brain regions of triple transgenic AD mice. The expression and cell distribution of TDO and quinolinic acid, and their co-localization with neurofibrillary tangles and senile β amyloid deposition were also determined in hippocampal sections from human AD brains. The expression of TDO mRNA was significantly increased in the cerebellum of AD mouse brain. Immunohistochemistry demonstrated that the density of TDO immuno-positive cells was significantly higher in the AD mice. The production of the excitotoxin quinolinic acid strongly increased in the hippocampus in a progressive and age-dependent manner in AD mice. Significantly higher TDO and indoleamine 2,3 dioxygenase 1 immunoreactivity was observed in the hippocampus of AD patients. Furthermore, TDO co-localizes with quinolinic acid, neurofibrillary tangles-tau and amyloid deposits in the hippocampus of AD. These results show that the kynurenine pathway is over-activated in AD mice. This is the first report demonstrating that TDO is highly expressed in the brains of AD mice and in AD patients, suggesting that TDO-mediated activation of the kynurenine pathway could be involved in neurofibrillary tangles formation and associated with senile plaque. Our study adds to the evidence that the kynurenine pathway may play important roles in the neurodegenerative processes of AD.

  13. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease. (United States)

    Bascoul-Colombo, Cécile; Guschina, Irina A; Maskrey, Benjamin H; Good, Mark; O'Donnell, Valerie B; Harwood, John L


    Alzheimer's disease (AD) is of major concern in ageing populations and we have used the Tg2576 mouse model to understand connections between brain lipids and amyloid pathology. Because dietary docosahexaenoic acid (DHA) has been identified as beneficial, we compared mice fed with a DHA-supplemented diet to those on a nutritionally-sufficient diet. Major phospholipids from cortex, hippocampus and cerebellum were separated and analysed. Each phosphoglyceride had a characteristic fatty acid composition which was similar in cortex and hippocampus but different in the cerebellum. The biggest changes on DHA-supplementation were within ethanolamine phospholipids which, together with phosphatidylserine, had the highest proportions of DHA. Reciprocal alterations in DHA and arachidonate were found. The main diet-induced alterations were found in ethanolamine phospholipids, (and included their ether derivatives), as were the changes observed due to genotype. Tg mice appeared more sensitive to diet with generally lower DHA percentages when on the standard diet and higher relative proportions of DHA when the diet was supplemented. All four major phosphoglycerides analysed showed age-dependent decreases in polyunsaturated fatty acid contents. These data provide, for the first time, a detailed evaluation of phospholipids in different brain areas previously shown to be relevant to behaviour in the Tg2576 mouse model for AD. The lipid changes observed with genotype are consistent with the subtle alterations found in AD patients, especially for the ethanolamine phospholipid molecular species. They also emphasise the contrasting changes in fatty acid content induced by DHA supplementation within individual phospholipid classes.

  14. Secreted and Transmembrane αKlotho Isoforms Have Different Spatio-Temporal Profiles in the Brain during Aging and Alzheimer's Disease Progression (United States)

    Massó, Anna; Sánchez, Angela; Gimenez-Llort, Lydia; Lizcano, Jose Miguel; Cañete, Manuel; García, Belen; Torres-Lista, Virginia; Puig, Meritxell; Bosch, Assumpció; Chillon, Miguel


    The Klotho protein is a β-glucuronidase, and its overexpression is associated with life extension. Its mechanism of action is not fully understood, although it has been recently reported that αKlotho improves synaptic and cognitive functions, and it may also influence a variety of structures and functions during CNS maturation and aging. The αKlotho gene has two transcripts, one encoding a transmembrane isoform (m-KL), and the other a putative secreted isoform (s-KL). Unfortunately, little is known about the secreted αKlotho isoform, since available antibodies cannot discriminate s-KL from the KL1 domain cleaved from the transmembrane isoform. This study shows, for the first time, that the klotho transcript produced by alternative splicing generates a stable protein (70 kDa), and that in contrast to the transmembrane Klotho isoform, it is ten times more abundant in the brain than in the kidney suggesting that the two isoforms may have different functions. We also studied whether klotho expression in the CNS was influenced by aging, Alzheimer's disease (AD), or a healthy lifestyle, such as voluntary moderate continuous exercise. We observed a strong correlation between high expression levels of the two klotho transcripts and the healthy status of the animals. Expression of Klotho in brain areas decayed more rapidly in the 3xTg-AD model of AD than in healthy animals, whilst moderate continuous exercise in adulthood prevents the decline in expression of both klotho transcripts. PMID:26599613

  15. Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. (United States)

    Schrag, Matthew; Mueller, Claudius; Oyoyo, Udochukwu; Smith, Mark A; Kirsch, Wolff M


    Dysfunctional homeostasis of transition metals is believed to play a role in the pathogenesis of Alzheimer's disease (AD). Although questioned by some, brain copper, zinc, and particularly iron overload are widely accepted features of AD which have led to the hypothesis that oxidative stress generated from aberrant homeostasis of these transition metals might be a pathogenic mechanism behind AD. This meta-analysis compiled and critically assessed available quantitative data on brain iron, zinc and copper levels in AD patients compared to aged controls. The results were very heterogeneous. A series of heavily cited articles from one laboratory reported a large increase in iron in AD neocortex compared to age-matched controls (piron and this bias was particularly prominent among narrative review articles. Additionally, while zinc was not significantly changed in the neocortex (p=0.29), copper was significantly depleted in AD (p=0.0003). In light of these findings, it will be important to re-evaluate the hypothesis that transition metal overload accounts for oxidative injury noted in AD.

  16. Comparative value of brain perfusion SPECT and [{sup 123}I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Shimizu, Soichiro; Hirao, Kentaro; Kanetaka, Hidekazu; Iwamoto, Toshihiko [Tokyo Medical University, Department of Geriatric Medicine, Tokyo (Japan); Chikamori, Taishiro; Usui, Yasuhiro; Yamashina, Akira [Tokyo Medical University, 2. Department of Internal Medicine, Tokyo (Japan); Koizumi, Kiyoshi; Abe, Kimihiko [Tokyo Medical University, Department of Radiology, Tokyo (Japan)


    Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer's disease (AD). The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[{sup 123}I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections. Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT. MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT. (orig.)

  17. Identification of an amino-terminal fragment of apolipoprotein E4 that localizes to neurofibrillary tangles of the Alzheimer's disease brain. (United States)

    Rohn, Troy T; Catlin, Lindsey W; Coonse, Kendra G; Habig, Jeffrey W


    Although the risk factor for harboring the apolipoprotein E4 (apoE4) allele in late-onset Alzheimer's disease (AD) is well known, the mechanism by which apoE4 contributes to AD pathogenesis has yet to be clarified. Preferential cleavage of the ApoE4 isoform relative to other polymorphic forms appears to be significant, as the resulting fragments are associated with hallmarks of AD. To examine the possible role of apoE4 proteolysis in AD, we designed a site-directed antibody directed at position D172, which would yield a predicted amino-terminal fragment previously identified in AD brain extracts. Western blot analysis utilizing this novel antibody, termed the amino-terminal apoE4 cleavage fragment (nApoE4CF) Ab, consistently identified the predicted amino-terminal fragment (∼18kDa) in several commercially available forms of human recombinant apoE4 purified from E. coli. Mass spectrometry confirmed the identity of this 18kDa fragment as being an amino-terminal fragment of apoE4. Immunohistochemical experiments indicated the nApoE4CF Ab specifically labeled neurofibrillary tangles (NFTs) in AD frontal cortex sections that colocalized with the mature tangle marker PHF-1. Taken together, these results suggest a novel cleavage event of apoE4, generating an amino-terminal fragment that localizes within NFTs of the AD brain.

  18. Secreted and Transmembrane αKlotho Isoforms Have Different Spatio-Temporal Profiles in the Brain during Aging and Alzheimer's Disease Progression.

    Directory of Open Access Journals (Sweden)

    Anna Massó

    Full Text Available The Klotho protein is a β-glucuronidase, and its overexpression is associated with life extension. Its mechanism of action is not fully understood, although it has been recently reported that αKlotho improves synaptic and cognitive functions, and it may also influence a variety of structures and functions during CNS maturation and aging. The αKlotho gene has two transcripts, one encoding a transmembrane isoform (m-KL, and the other a putative secreted isoform (s-KL. Unfortunately, little is known about the secreted αKlotho isoform, since available antibodies cannot discriminate s-KL from the KL1 domain cleaved from the transmembrane isoform. This study shows, for the first time, that the klotho transcript produced by alternative splicing generates a stable protein (70 kDa, and that in contrast to the transmembrane Klotho isoform, it is ten times more abundant in the brain than in the kidney suggesting that the two isoforms may have different functions. We also studied whether klotho expression in the CNS was influenced by aging, Alzheimer's disease (AD, or a healthy lifestyle, such as voluntary moderate continuous exercise. We observed a strong correlation between high expression levels of the two klotho transcripts and the healthy status of the animals. Expression of Klotho in brain areas decayed more rapidly in the 3xTg-AD model of AD than in healthy animals, whilst moderate continuous exercise in adulthood prevents the decline in expression of both klotho transcripts.

  19. Sex- and brain region-specific acceleration of β-amyloidogenesis following behavioral stress in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Devi Latha


    Full Text Available Abstract Background It is hypothesized that complex interactions between multiple environmental factors and genetic factors are implicated in sporadic Alzheimer's disease (AD; however, the underlying mechanisms are poorly understood. Importantly, recent evidence reveals that expression and activity levels of the β-site APP cleaving enzyme 1 (BACE1, which initiates amyloid-β (Aβ production, are elevated in AD brains. In this study, we investigated a molecular mechanism by which sex and stress interactions may accelerate β-amyloidogenesis and contribute to sporadic AD. Results We applied 5-day restraint stress (6 h/day to the male and female 5XFAD transgenic mouse model of AD at the pre-pathological stage of disease, which showed little amyloid deposition under non-stressed control conditions. Exposure to the relatively brief behavioral stress increased levels of neurotoxic Aβ42 peptides, the β-secretase-cleaved C-terminal fragment (C99 and plaque burden in the hippocampus of female 5XFAD mice but not in that of male 5XFAD mice. In contrast, significant changes in the parameters of β-amyloidosis were not observed in the cerebral cortex of stressed male or female 5XFAD mice. We found that this sex- and brain region-specific acceleration of β-amyloidosis was accounted for by elevations in BACE1 and APP levels in response to adverse stress. Furthermore, not only BACE1 mRNA but also phosphorylation of the translation initiation factor eIF2α (a proposed mediator of the post-transcriptional upregulation of BACE1 was elevated in the hippocampus of stressed female 5XFAD mice. Conclusions Our results suggest that the higher prevalence of sporadic AD in women may be attributable to the vulnerability of female brains (especially, the hippocampus to stressful events, which alter APP processing to favor the β-amyloidogenesis through the transcriptional and translational upregulation of BACE1 combined with elevations in its substrate APP.

  20. Turning principles into practice in Alzheimer's disease

    NARCIS (Netherlands)

    Lindesay, J.; Bullock, R.; Daniels, H.; Emre, M.; Foerstl, H.; Froelich, L.; Gabryelewicz, T.; Martinez-Lage, P.; Monsch, A. U.; Tsolaki, M.; van Laar, T.


    P>The prevalence of dementia is reaching epidemic proportions globally, but there remain a number of issues that prevent people with dementia, their families and caregivers, from taking control of their condition. In 2008, Alzheimer's Disease International (ADI) launched a Global Alzheimer's Disease

  1. Explorative and targeted neuroproteomics in Alzheimer's disease. (United States)

    Brinkmalm, Ann; Portelius, Erik; Öhrfelt, Annika; Brinkmalm, Gunnar; Andreasson, Ulf; Gobom, Johan; Blennow, Kaj; Zetterberg, Henrik


    Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other higher brain functions. Neuropathologically, the disease is characterized by accumulation of a 42 amino acid peptide called amyloid β (Aβ42) in extracellular senile plaques, intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Biomarker assays capturing these pathologies have been developed for use on cerebrospinal fluid samples but there are additional molecular pathways that most likely contribute to the neurodegeneration and full clinical expression of AD. One way of learning more about AD pathogenesis is to identify novel biomarkers for these pathways and examine them in longitudinal studies of patients in different stages of the disease. Here, we discuss targeted proteomic approaches to study AD and AD-related pathologies in closer detail and explorative approaches to discover novel pathways that may contribute to the disease. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.

  2. The S100B/RAGE Axis in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Estelle Leclerc


    Full Text Available Increasing evidence suggests that the small EF-hand calcium-binding protein S100B plays an important role in Alzheimer's disease. Among other evidences are the increased levels of both S100B and its receptor, the Receptor for Advanced Glycation Endproducts (RAGEs in the AD diseased brain. The regulation of RAGE signaling by S100B is complex and probably involves other ligands including the amyloid beta peptide (A, the Advanced Glycation Endproducts (AGEs, or transtheyretin. In this paper we discuss the current literature regarding the role of S100B/RAGE activation in Alzheimer's disease.

  3. No change in total length of white matter fibers in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jorgensen, A.M.; Marner, L.; Pakkenberg, B.


    White matter changes have been reported as part of Alzheimer dementia. To investigate this, the total subcortical myelinated nerve fiber length was estimated in postmortem brains from eight females (age 79-88 years) with severe Alzheimer's disease (AD) and compared with brains from 10 female...

  4. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. (United States)

    Halliday, Matthew R; Rege, Sanket V; Ma, Qingyi; Zhao, Zhen; Miller, Carol A; Winkler, Ethan A; Zlokovic, Berislav V


    The blood–brain barrier (BBB) limits the entry of neurotoxic blood-derived products and cells into the brain that is required for normal neuronal functioning and information processing. Pericytes maintain the integrity of the BBB and degenerate in Alzheimer’s disease (AD). The BBB is damaged in AD, particularly in individuals carrying apolipoprotein E4 (APOE4) gene, which is a major genetic risk factor for late-onset AD. The mechanisms underlying the BBB breakdown in AD remain, however, elusive. Here, we show accelerated pericyte degeneration in AD APOE4 carriers >AD APOE3 carriers >non-AD controls, which correlates with the magnitude of BBB breakdown to immunoglobulin G and fibrin. We also show accumulation of the proinflammatory cytokine cyclophilin A (CypA) and matrix metalloproteinase-9 (MMP-9) in pericytes and endothelial cells in AD (APOE4 >APOE3), previously shown to lead to BBB breakdown in transgenic APOE4 mice. The levels of the apoE lipoprotein receptor, low-density lipoprotein receptor-related protein-1 (LRP1), were similarly reduced in AD APOE4 and APOE3 carriers. Our data suggest that APOE4 leads to accelerated pericyte loss and enhanced activation of LRP1-dependent CypA–MMP-9 BBB-degrading pathway in pericytes and endothelial cells, which can mediate a greater BBB damage in AD APOE4 compared with AD APOE3 carriers.

  5. The fitness for the Ageing Brain Study II (FABS II: protocol for a randomized controlled clinical trial evaluating the effect of physical activity on cognitive function in patients with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ames David


    Full Text Available Abstract Background Observational studies have documented a potential protective effect of physical exercise in older adults who are at risk for developing Alzheimer's disease. The Fitness for the Ageing Brain II (FABS II study is a multicentre randomized controlled clinical trial (RCT aiming to determine whether physical activity reduces the rate of cognitive decline among individuals with Alzheimer's disease. This paper describes the background, objectives of the study, and an overview of the protocol including design, organization and data collection methods. Methods/Design The study will recruit 230 community-dwelling participants diagnosed with Alzheimer's disease. Participants will be randomly allocated to two treatment groups: usual care group or 24-week home-based program consisting of 150 minutes per week of tailored moderate physical activity. The primary outcome measure of the study is cognitive decline as measured by the change from baseline in the total score on the Alzheimer's disease Assessment Scale-Cognitive section. Secondary outcomes of interest include behavioral and psychological symptoms, quality of life, functional level, carer burden and physical function (strength, balance, endurance, physical activity. Primary endpoints will be measured at six and twelve months following the baseline assessment. Discussion This RCT will contribute evidence regarding the potential benefits of a systematic program of physical activity as an affordable and safe intervention for people with Alzheimer's disease. Further, if successful, physical activity in combination with usual care has the potential to alleviate the symptoms of Alzheimer's disease and improve its management and the quality of life of patients and their carers. Trial Registration Australia New Zealand Clinical Trials Registry ACTRN12609000755235

  6. Memantine Attenuates Alzheimer's Disease-Like Pathology and Cognitive Impairment.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Wang

    Full Text Available Deficiency of protein phosphatase-2A is a key event in Alzheimer's disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer's disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer's disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer's disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer's disease patients.

  7. ABC Transporters and the Alzheimer's Disease Enigma. (United States)

    Wolf, Andrea; Bauer, Björn; Hartz, Anika M S


    Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.

  8. Iron: a pathological mediator of Alzheimer disease? (United States)

    Bishop, Glenda M; Robinson, Stephen R; Liu, Quan; Perry, George; Atwood, Craig S; Smith, Mark A


    Brains from patients with Alzheimer disease (AD) show a disruption in the metabolism of iron, such that there is an accumulation of iron in senile plaques, and an altered distribution of iron transport and storage proteins. One of the earliest events in AD is the generation of oxidative stress, which may be related to the generation of free radicals by the excess iron that is observed in the disease. Iron has also been shown to mediate the in vitro toxicity of amyloid-beta peptide, and the presence of iron in most in vitro systems could underlie the toxicity that is normally attributed to amyloid-beta in these studies. In contrast, several recent studies have suggested that amyloid-beta may decrease oxidative stress and decrease the toxicity of iron. Continued examination of the complex interactions that occur between iron and amyloid-beta may assist in the elucidation of the mechanisms that underlie the neurodegeneration that leads to dementia in AD.

  9. Neuropeptides in Alzheimer's Disease : From Pathophysiological Mechanisms to Therapeutic Opportunities

    NARCIS (Netherlands)

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul


    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition a

  10. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels


    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  11. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen T., Jesper; Arvaniti, Maria


    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus...

  12. Neural activities during affective processing in people with Alzheimer's disease

    NARCIS (Netherlands)

    Lee, Tatia M. C.; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian


    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to co

  13. Tau-tubulin kinase 1 expression, phosphorylation and co-localization with phospho-Ser422 tau in the Alzheimer's disease brain. (United States)

    Lund, Harald; Cowburn, Richard F; Gustafsson, Elin; Strömberg, Kia; Svensson, Anne; Dahllund, Leif; Malinowsky, David; Sunnemark, Dan


    Recent reports have implicated tau-tubulin kinase 1 (TTBK1) in the pathological phosphorylation of tau that occurs in Alzheimer's disease (AD). The present study was undertaken to provide an extensive characterization of TTBK1 mRNA and protein expression in human brain from AD cases and non-demented controls so as to better understand the disease relevance of this novel kinase. In situ hybridization and immunohistochemistry revealed abundant expression of TTBK1 in the somatodendritic compartment of cortical and hippocampal neurons of both AD cases and controls. TTBK1 immunoreactivity appeared to vary with the level of phospho-tau staining, and was strong in the somatodendritic compartment of apparently healthy hippocampal neurons as well as in pre-tangle neurons where it co-localized with diffuse phospho-Ser422 tau staining. Ser422 was confirmed as a TTBK1 substrate in vitro, and an antibody towards the site, in addition to labeling AT8-positive neurofibrillary tangles (NFTs), neuritic plaques and neuropil threads, also labeled a small population of neurons that were unlabeled with AT8. These data suggest a role for TTBK1 in pre-tangle formation prior to the formation of fibrillar tau and strengthen the idea that tau is phosphorylated at Ser422 at an early/intermediate stage in NFT formation.

  14. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Claudio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); Chiaravalloti, Agostino; Schillaci, Orazio [University of Rome ' Tor Vergata' , Department of Biomedicine and Prevention, Rome (Italy); IRCSS Neuromed, Pozzilli (Italy); Sancesario, Giuseppe; Stefani, Alessandro [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Sancesario, Giulia Maria [IRCCS Fondazione Santa Lucia, Rome (Italy); Mercuri, Nicola Biagio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Pierantozzi, Mariangela [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy)


    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  15. Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Bong-Kwang Jung

    Full Text Available Immunosuppression is a characteristic feature of Toxoplasma gondii-infected murine hosts. The present study aimed to determine the effect of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of Alzheimer's disease (AD in Tg2576 AD mice. Mice were infected with a cyst-forming strain (ME49 of T. gondii, and levels of inflammatory mediators (IFN-γ and nitric oxide, anti-inflammatory cytokines (IL-10 and TGF-β, neuronal damage, and β-amyloid plaque deposition were examined in brain tissues and/or in BV-2 microglial cells. In addition, behavioral tests, including the water maze and Y-maze tests, were performed on T. gondii-infected and uninfected Tg2576 mice. Results revealed that whereas the level of IFN-γ was unchanged, the levels of anti-inflammatory cytokines were significantly higher in T. gondii-infected mice than in uninfected mice, and in BV-2 cells treated with T. gondii lysate antigen. Furthermore, nitrite production from primary cultured brain microglial cells and BV-2 cells was reduced by the addition of T. gondii lysate antigen (TLA, and β-amyloid plaque deposition in the cortex and hippocampus of Tg2576 mouse brains was remarkably lower in T. gondii-infected AD mice than in uninfected controls. In addition, water maze and Y-maze test results revealed retarded cognitive capacities in uninfected mice as compared with infected mice. These findings demonstrate the favorable effects of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of AD in Tg2576 mice.

  16. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)]. (United States)

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles


    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis.

  17. Alzheimer's disease under the mask of stroke

    Directory of Open Access Journals (Sweden)

    A. A. Naumenko


    Full Text Available Cognitive impairments (CIs are common in poststroke patients. The basis for this condition is frequently a neurodegenerative process and most often Alzheimer's disease (AD. Stroke may promote the manifestation of clinically asymptomatic AD, worsen prestroke cognitive deficit or merely manifest prestroke CIs.The paper discusses the epidemiology, risk factors, and pathogenesis of poststroke CIs, current methods for its diagnosis, as well as symptomatic and pathogenetic treatment. The most informative method for the diagnosis of poststroke CIs is neuropsychological examination that should be made in the early poststroke period (if the patient's consciousness is clear. The most common screening tests include mini-mental state examination (the most sensitive to evaluate cognitive dysfunction in Alzheimer type dementias and the Montreal cognitive assessment. Magnetic resonance imaging of the brain, positron emission tomography, cerebrospinal fluid examination, and genetic testing are used to reveal AD at its preclinical stages. Preventive measures include regular physical activity, a balanced diet, and sufficient mental workload. The prevention of stroke and other cardiovascular diseases are also important.The major groups of drugs used to treat AD and vascular CIs are acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists. It is expedient to use glutamatergic and acetylcholinergic therapy earlier in patients with obvious CIs that are unassociated with emotional problems and disturbance of consciousness. Akatinol memantine is a drug that can be regarded not only as a symptomatic but also pathogenetic agent. 

  18. CD40 signaling and Alzheimer's disease pathogenesis. (United States)

    Town, T; Tan, J; Mullan, M


    The interaction between CD40 and its cognate ligand, CD40 ligand, is a primary regulator of the peripheral immune response, including modulation of T lymphocyte activation, B lymphocyte differentiation and antibody secretion, and innate immune cell activation, maturation, and survival. Recently, we and others have identified CD40 expression on a variety of CNS cells, including endothelial cells, smooth muscle cells, astroglia and microglia, and have found that, on many of these cells, CD40 expression is enhanced by pro-inflammatory stimuli. Importantly, the CD40-CD40 ligand interaction on microglia triggers a series of intracellular signaling events that are discussed, beginning with Src-family kinase activation and culminating in microglial activation as evidenced by tumor necrosis factor-alpha secretion. Based on the involvement of microglial activation and brain inflammation in Alzheimer's disease pathogenesis, we have investigated co-stimulation of microglia, smooth muscle, and endothelial cells with CD40 ligand in the presence of low doses of freshly solubilized amyloid-beta peptides. Data reviewed herein show that CD40 ligand and amyloid-beta act synergistically to promote pro-inflammatory responses by these cells, including secretion of interleukin-1 beta by endothelial cells and tumor necrosis factor-alpha by microglia. As these cytokines have been implicated in neuronal injury, a comprehensive model of pro-inflammatory CD40 ligand and amyloid-beta initiated Alzheimer's disease pathogenesis (mediated by multiple CNS cells) is proposed.

  19. Hierarchical clustering of Alzheimer and "normal" brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Leenders, KL


    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element concentrat

  20. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Claude Messier


    Full Text Available Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in aging and in some animal models of type 2 diabetes; brain insulin resistance may be present as well. Studies examining the effect of the hyperinsulinic clamp or intranasal insulin on cognitive function have found a small but consistent improvement in memory and changes in brain neuroelectric parameters in evoked brain potentials consistent with improved attention or memory processing. These effects appear to be due to raised brain insulin levels. Peripheral levels of Insulin Growth Factor-I (IGF-I are associated with glucose regulation and influence glucose disposal. There is some indication that reduced sensitivity to insulin or IGF-I in the brain, as observed in aging, obesity, and diabetes, decreases the clearance of Aβ amyloid. Such a decrease involves the insulin receptor cascade and can also increase amyloid toxicity. Insulin and IGF-I may modulate brain levels of insulin degrading enzyme, which would also lead to an accumulation of Aβ amyloid.

  1. Effectiveness of exercise on cognitive impairment and Alzheimer's disease. (United States)

    Balsamo, Sandor; Willardson, Jeffrey M; Frederico, Santos de Santana; Prestes, Jonato; Balsamo, Denise Coscrato; Dahan, da Cunha Nascimento; Dos Santos-Neto, Leopoldo; Nobrega, Otávio T


    Physical activity has a protective effect on brain function in older people. Here, we briefly reviewed the studies and results related to the effects of exercise on cognitive impairment and Alzheimer's disease. The main findings from the current body of literature indicate positive evidence for structured physical activity (cardiorespiratory and resistance exercise) as a promising non-pharmacological intervention for preventing cognitive decline. More studies are needed to determine the mechanisms involved in this preventative effect, including on strength, cardiorespiratory, and other types of exercise. Thus, the prevention of Alzheimer's disease may depend on healthy lifestyle habits, such as a structured physical fitness program.

  2. Sex and the development of Alzheimer's disease. (United States)

    Pike, Christian J


    Men and women exhibit differences in the development and progression of Alzheimer's disease (AD). The factors underlying the sex differences in AD are not well understood. This Review emphasizes the contributions of sex steroid hormones to the relationship between sex and AD. In women, events that decrease lifetime exposure to estrogens are generally associated with increased AD risk, whereas estrogen-based hormone therapy administered near the time of menopause may reduce AD risk. In men, estrogens do not exhibit age-related reduction and are not significantly associated with AD risk. Rather, normal age-related depletions of testosterone in plasma and brain predict enhanced vulnerability to AD. Both estrogens and androgens exert numerous protective actions in the adult brain that increase neural functioning and resilience as well as specifically attenuating multiple aspects of AD-related neuropathology. Aging diminishes the activational effects of sex hormones in sex-specific manners, which is hypothesized to contribute to the relationship between aging and AD. Sex steroid hormones may also drive sex differences in AD through their organizational effects during developmental sexual differentiation of the brain. Specifically, sex hormone actions during early development may confer inherent vulnerability of the female brain to development of AD in advanced age. The combined effects of organizational and activational effects of sex steroids yield distinct sex differences in AD pathogenesis, a significant variable that must be more rigorously considered in future research. © 2016 Wiley Periodicals, Inc.

  3. [Prevention of Alzheimer's Disease and Nutrients]. (United States)

    Otsuka, Mieko


    The dietary recommendations for the prevention and management of Alzheimer's disease (AD), are the Mediterranean diet and the Japanese-style diet, both of which contain well-balanced nutrients from fish and vegetables. These diets are rich in vitamin E, carotenes, antioxidant flavonoids, vitamin B12, folate, and n-3PUFA. According to recent review supplementation of folate and vitamin E may protect against elderly people's cognitive decline when the serum folate is <12 nmol/L or the vitamin E intake is <6.1 mg/day. Another nutritional topic with regard to dementia and diet is the association of type-2 diabetes and hyperinsulinemia with AD. Expression array data of the brain tissue of AD patients in the Hisayama study strongly suggests a disturbance in insulin signaling in the AD brain. The dysfunction of insulin signaling could directly lead to disrupted glucose utilization in the AD brain. Instead of improperly utilized glucose, the medium chain triglyceride ketone bodies can be an alternative energy resource for the AD brain. In conclusion, the dietary recommendations for the prevention and management of AD are a high consumption of fish, vegetables, and low glycemic index fruits; a moderate amount of meat and dairy products; and a lower amount of carbohydrates and refined sugar.

  4. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models. (United States)

    Medhurst, Andrew D; Atkins, Alan R; Beresford, Isabel J; Brackenborough, Kim; Briggs, Michael A; Calver, Andrew R; Cilia, Jackie; Cluderay, Jane E; Crook, Barry; Davis, John B; Davis, Rebecca K; Davis, Robert P; Dawson, Lee A; Foley, Andrew G; Gartlon, Jane; Gonzalez, M Isabel; Heslop, Teresa; Hirst, Warren D; Jennings, Carol; Jones, Declan N C; Lacroix, Laurent P; Martyn, Abbe; Ociepka, Sandrine; Ray, Alison; Regan, Ciaran M; Roberts, Jennifer C; Schogger, Joanne; Southam, Eric; Stean, Tania O; Trail, Brenda K; Upton, Neil; Wadsworth, Graham; Wald, Jeffrey A; White, Trevor; Witherington, Jason; Woolley, Marie L; Worby, Angela; Wilson, David M


    6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H(3) receptor antagonist with high affinity for human (pK(i) = 9.59 -9.90) and rat (pK(i) = 8.51-9.17) H(3) receptors. GSK189254 is >10,000-fold selective for human H(3) receptors versus other targets tested, and it exhibited potent functional antagonism (pA(2) = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC(50) = 8.20 versus basal guanosine 5'-O-(3-[(35)S]thio)triphosphate binding] at the human recombinant H(3) receptor. In vitro autoradiography demonstrated specific [(3)H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H(3) binding was detected in medial temporal cortex samples from severe cases of Alzheimer's disease, suggesting for the first time that H(3) receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(-)-alpha-methyl[imidazole-2,5(n)-(3)H]histamine dihydrochloride ([(3)H]R-alpha-methylhistamine) binding (ED(50) = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3-3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50) = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimer's disease and other cognitive disorders.

  5. Impairments of auditory scene analysis in Alzheimer's disease. (United States)

    Goll, Johanna C; Kim, Lois G; Ridgway, Gerard R; Hailstone, Julia C; Lehmann, Manja; Buckley, Aisling H; Crutch, Sebastian J; Warren, Jason D


    Parsing of sound sources in the auditory environment or 'auditory scene analysis' is a computationally demanding cognitive operation that is likely to be vulnerable to the neurodegenerative process in Alzheimer's disease. However, little information is available concerning auditory scene analysis in Alzheimer's disease. Here we undertook a detailed neuropsychological and neuroanatomical characterization of auditory scene analysis in a cohort of 21 patients with clinically typical Alzheimer's disease versus age-matched healthy control subjects. We designed a novel auditory dual stream paradigm based on synthetic sound sequences to assess two key generic operations in auditory scene analysis (object segregation and grouping) in relation to simpler auditory perceptual, task and general neuropsychological factors. In order to assess neuroanatomical associations of performance on auditory scene analysis tasks, structural brain magnetic resonance imaging data from the patient cohort were analysed using voxel-based morphometry. Compared with healthy controls, patients with Alzheimer's disease had impairments of auditory scene analysis, and segregation and grouping operations were comparably affected. Auditory scene analysis impairments in Alzheimer's disease were not wholly attributable to simple auditory perceptual or task factors; however, the between-group difference relative to healthy controls was attenuated after accounting for non-verbal (visuospatial) working memory capacity. These findings demonstrate that clinically typical Alzheimer's disease is associated with a generic deficit of auditory scene analysis. Neuroanatomical associations of auditory scene analysis performance were identified in posterior cortical areas including the posterior superior temporal lobes and posterior cingulate. This work suggests a basis for understanding a class of clinical symptoms in Alzheimer's disease and for delineating cognitive mechanisms that mediate auditory scene analysis

  6. The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease. (United States)

    Rantamäki, Tomi; Kemppainen, Susanna; Autio, Henri; Stavén, Saara; Koivisto, Hennariikka; Kojima, Masami; Antila, Hanna; Miettinen, Pasi O; Kärkkäinen, Elisa; Karpova, Nina; Vesa, Liisa; Lindemann, Lothar; Hoener, Marius C; Tanila, Heikki; Castrén, Eero


    Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could

  7. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    Full Text Available Sporadic or late-onset Alzheimer's disease (AD is expected to affect 50% of individuals reaching 85 years of age. The most significant genetic risk factor for late-onset AD is the e4 allele of APOE gene encoding apolipoprotein E, a lipid carrier shown to modulate brain amyloid burden. Recent genome-wide association studies have uncovered additional single nucleotide polymorphisms (SNPs linked to AD susceptibility, including those in the CLU and BIN1 genes encoding for clusterin (CLU and the bridging integrator 1 (BIN1 proteins, respectively. Because CLU has been implicated in brain amyloid-β (Aβ clearance in mouse models of amyloid deposition, we sought to investigate whether an AD-linked SNP in the CLU gene altered Aβ42 biomarker levels in the cerebrospinal fluid (CSF. Instead, we found that the CLU rs11136000 SNP modified CSF levels of the microtubule-associated protein Tau in AD patients. We also found that an intracellular form of CLU (iCLU was upregulated in the brain of Tau overexpressing Tg4510 mice, but not in Tg2576 amyloid mouse model. By overexpressing iCLU and Tau in cell culture systems we discovered that iCLU was a Tau-interacting protein and that iCLU associated with brain-specific isoforms of BIN1, also recently identified as a Tau-binding protein. Through expression analysis of CLU and BIN1 variants, we found that CLU and BIN1 interacted via their coiled-coil motifs. In co-immunoprecipitation studies using human brain tissue, we showed that iCLU and the major BIN1 isoform expressed in neurons were associated with modified Tau species found in AD. Finally, we showed that expression of certain coding CLU variants linked to AD risk led to increased levels of iCLU. Together, our findings suggest that iCLU and BIN1 interaction might impact Tau function in neurons and uncover potential new mechanisms underlying the etiology of Tau pathology in AD.

  8. Effects of baseline CSF α-synuclein on regional brain atrophy rates in healthy elders, mild cognitive impairment and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Niklas Mattsson

    Full Text Available BACKGROUND: Cerebrospinal fluid (CSF α-synuclein is reduced in synucleinopathies, including dementia with Lewy bodies, and some studies have found increased CSF α-synuclein in Alzheimer's disease (AD. No study has explored effects of CSF α-synuclein on brain atrophy. Here we tested if baseline CSF α-synuclein affects brain atrophy rates and if these effects vary across brain regions, and across the cognitive spectrum from healthy elders (NL, to patients with mild cognitive impairment (MCI and AD. METHODS: Baseline CSF α-synuclein measurements and longitudinal structural brain magnetic resonance imaging was performed in 74 NL, 118 MCI patients and 55 AD patients. Effects of baseline CSF α-synuclein on regional atrophy rates were tested in 1 four pre-hoc defined regions possibly associated with Lewy body and/or AD pathology (amygdala, caudate, hippocampus, brainstem, and 2 all available regions of interest. Differences across diagnoses were tested by assessing the interaction of CSF α-synuclein and diagnosis (testing NL versus MCI, and NL versus AD. RESULTS: The effects of CSF α-synuclein on longitudinal atrophy rates were not significant after correction for multiple comparisons. There were tendencies for effects in AD in caudate (higher atrophy rates in subjects with higher CSF α-synuclein, P=0.046 and brainstem (higher atrophy rates in subjects with lower CSF α-synuclein, P=0.063. CSF α-synuclein had significantly different effects on atrophy rates in NL and AD in brainstem (P=0.037 and caudate (P=0.006. DISCUSSION: With the possible exception of caudate and brainstem, the overall weak effects of CSF α-synuclein on atrophy rates in NL, MCI and AD argues against CSF α-synuclein as a biomarker related to longitudinal brain atrophy in these diagnostic groups. Any effects of CSF α-synuclein may be attenuated by possible simultaneous occurrence of AD-related neuronal injury and concomitant Lewy body pathology, which may elevate and

  9. The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Tomi Rantamäki

    Full Text Available Brain-derived neurotrophic factor (BDNF importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9 mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months, BDNF protein levels where either reduced (female or unaltered (male in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported

  10. Traumatic Brain Injury Increases the Expression of Nos1, Aβ Clearance, and Epileptogenesis in APP/PS1 Mouse Model of Alzheimer's Disease. (United States)

    Miszczuk, Diana; Dębski, Konrad J; Tanila, Heikki; Lukasiuk, Katarzyna; Pitkänen, Asla


    To test the hypothesis that an amyloidogenic genetic background predisposes to worsening of post-TBI outcome, we investigated whether traumatic brain injury (TBI) in amyloid precursor protein (APP)/PS1 mice aggravates epileptogenesis and/or enhances somatomotor and cognitive impairment. To elaborate the mechanisms of worsening outcomes, we studied changes in the expression of genes involved in APP processing and Tau pathways in the perilesional cortex, ipsilateral thalamus, and ipsilateral hippocampus 16 weeks post-TBI. Mild (mTBI) or severe TBI (sTBI) was triggered using controlled cortical impact in 3-month-old APP/PS1 mice and wild-type (Wt) littermates. Morris water-maze revealed a genotype effect on spatial learning and memory as APP/PS1-sTBI mice performed more poorly than Wt-sTBI mice (p APP/PS1-sTBI mice had epilepsy compared to 11 % in Wt-sTBI (genotype effect p APP/PS1-sham groups (TBI effect p APP/PS1-sTBI mice compared to APP/PS1-sham (p APP/PS1-sTBI mice compared to APP/PS1-sham mice (p < 0.05). The present study provides the first comprehensive evidence of exacerbated epileptogenesis and its molecular mechanisms in Alzheimer's disease (AD)-related genetic background after TBI.

  11. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi (Kanazawa Univ. (Japan). School of Medicine); Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi


    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  12. Decreased Heme Oxygenase Activity in Patients with Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Berkay Cataloglu


    Full Text Available Alzheimer's disease is a neurodegenerative disorder characterized with progressive im-pairment of cognitive functions. Heme oxygenase is an enzyme that degrades the heme molecule resulting in equimolar amounts of the carbon monoxide, ferrous iron, and bili-verdin. Up to now, heme oxygenase activity and its metabolic effects in Alzheimer's dis-ease have been investigated in so many studies; most of them were performed in post-mortem brain tissues of Alzheimer's disease patients or in animal models. Therefore, we aimed to investigate heme oxygenase activity in leukocytes of Alzheimer's disease pa-tients as a peripheral sample. Mean heme oxygenase activity was significantly lower in patients with Alzheimer's disease (0.53 +/- 0.32 nmol/h/mg protein compared to control sucjects (1.19 +/- 0.84 nmol/h/mg protein (p= 0.001. We think that reduction in leukocyte heme oxygenase activity may limit disease progression through preserving peripheral mitochondrial function by reducing the formation of free iron and carbon monoxide. [Dis Mol Med 2013; 1(2.000: 31-34

  13. Advances in the study of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Angue Nkoghe Francoise; Yunman Li


    Alzheimer's disease (AD) is the most common cause of dementia, and the only treatment currently available for the disease is acetylcholinesterase inhibitors. Recent progress in understanding the molecular and cellular pathophysiology of Alzheimer's disease has suggested possible pharmacological interventions, including acetylcholineseterase inhibitors; secretase inhibitors; cholesterol lowering drugs; metal chelators and amyloid immunization. The objective of this paper is to review the main drugs possibly used for AD and their future therapeutic effects.

  14. Biological markers of Alzheimer?s disease

    Directory of Open Access Journals (Sweden)

    Leonardo Cruz de Souza


    Full Text Available The challenges for establishing an early diagnosis of Alzheimer’s disease (AD have created a need for biomarkers that reflect the core pathology of the disease. The cerebrospinal fluid (CSF levels of total Tau (T-tau, phosphorylated Tau (P-Tau and beta-amyloid peptide (Aβ42 reflect, respectively, neurofibrillary tangle and amyloid pathologies and are considered as surrogate markers of AD pathophysiology. The combination of low Aβ42 and high levels of T-tau and P-Tau can accurately identify patients with AD at early stages, even before the development of dementia. The combined analysis of the CSF biomarkers is also helpful for the differential diagnosis between AD and other degenerative dementias. The development of these CSF biomarkers has evolved to a novel diagnostic definition of the disease. The identification of a specific clinical phenotype combined with the in vivo evidence of pathophysiological markers offers the possibility to make a diagnosis of AD before the dementia stage with high specificity.

  15. Olive Oil and its Potential Effects on Alzheimer's Disease (United States)

    Antony, Shan; Zhang, G. P.

    Alzheimer's disease is a neuro-degenerative brain disease that is responsible for affecting the lives of hundreds of thousands of people every year. There has been no evidence to suggest a cure for the disease and the only existing treatments have very low rates of success in trial patients. This is largely due to the fact that the brain is one of the most undiscovered parts of the human body. Brain chemistry is highly complex and responds to its environment in random and radical ways. My research includes testing the reactionary outcomes of combining compounds of olive oil with the 20 basic amino acids. Regions around the world with olive oil based diets show a direct correlation to lower rates of Alzheimer's. Testing few compounds of olive oil with chemicals already found in the brain may yield to a better understanding as to why that is. I took the compounds tyrosol, hydroxytyrosol, and oleocanthal, and combined them with the 20 basic amino acids and calculated the total energy of the new molecule. The molecules produced with acceptably low energy values will be the center of further research. These molecules could lead to truly understanding olive oil's effect on the brain, and ultimately, the cure or prevention of Alzheimer's disease.

  16. The economic costs of Alzheimer's disease. (United States)

    Hay, J W; Ernst, R L


    This paper estimates the economic costs of Alzheimer's Disease to individuals and to society, based on review of published Alzheimer's Disease-related research. The analysis is derived from epidemiological projections and cost information for the United States population in 1983. Estimated costs include both direct medical care and social support costs, as well as indirect costs, such as support services provided by family or volunteers, and the value of lost economic productivity in Alzheimer's Disease patients. Mid-range estimates of net annual expected costs for an Alzheimer's Disease patient, excluding the value of lost productivity, are $18,517 in the first year and $17,643 in subsequent years, with direct medical and social services comprising about half of these costs. Under base case assumptions, the total cost of disease per patient in 1983, was $48,544 to $493,277, depending upon patient's age at disease onset. The estimated present value of total net costs to society for all persons first diagnosed with Alzheimer's Disease in 1983 was $27.9-31.2 billion. Development of a public or private insurance market for the economic burdens of Alzheimer's Disease would fill some of the gaps in the current US system of financing long-term chronic disease care.

  17. Effects of tenuigenin on the expression of brain-derived neurotrophic factor and its receptor tyrosine protein kinase B in the hippocampus of Alzheimer's disease model rats

    Directory of Open Access Journals (Sweden)

    Wei-rong CHEN


    Full Text Available Objective To investigate the effects of tenuigenin (TEN on expression of brain-derived neurotrophic factor (BDNF, and its receptor tyrosine protein kinase B (TrkB in the hippocampal CA1 region of Alzheimer's disease (AD model rats.  Methods Sixty male Wistar rats were divided randomly into 4 groups: the control group, the model group, 12.50 mg/ml TEN group and 37.50 mg/ml TEN group. AD model rats were made by injecting ibotenic acid into Meynert basal nuclei of aging rats induced by D-galactose. The expressions of BDNF and its receptor TrkB in the hippocampal CA1 region were measured by immunohistochemistry method.  Results The positive expressions of BDNF and TrkB were pale brown and mainly in neuronal cell membrane of the hippocampal CA1 region measured by immunohistochemistry method. The average absorbance values of BDNF and its receptor TrkB in the control group were 0.47 ± 0.02 and 0.46 ± 0.05, while in the model group were 0.30 ± 0.02 and 0.21 ± 0.07 which were significantly lower than that of the control group (P = 0.000, for all. The average absorbance values of BDNF and its receptor TrkB in 12.50 mg/ml TEN group were 0.35 ± 0.05 and 0.32 ± 0.07, which were significantly higher than that of the model group (P = 0.000, for all and 37.50 mg/ml TEN group were 0.43 ± 0.05 and 0.37 ± 0.03, which were significantly higher than that of the model group (P = 0.000, for all. The average absorbance values of BDNF and its receptor TrkB in 37.50 mg/ml TEN group increased significantly than that in 12.50 mg/ml TEN group (P = 0.000.  Conclusions TEN can dose-dependently increase BDNF and its receptor TrkB expression in the hippocampal CA1 region of Alzheimer's disease model rats, which may partly explain the beneficial effects of TEN on cognitive function. doi: 10.3969/j.issn.1672-6731.2014.05.011

  18. Association of rs6265 and rs2030324 polymorphisms in brain-derived neurotrophic factor gene with Alzheimer's disease: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available BACKGROUND: The association between polymorphisms rs6265 and rs2030324 in brain-derived neurotrophic factor (BDNF and Alzheimer's disease (AD has been widely reported, but the results remain controversial. METHODS: A comprehensive search of Pubmed, Web of Science, China National Knowledge Infrastructure (CNKI, Wanfang Med Online and China Biology Medical literature database (CBM was performed. Pooled odds ratios (ORs with 95% confidence intervals (CIs were calculated using fixed or random-effects models. We excluded the studies with OR>3.0 or OR<0.3 for sensitive analysis. Subgroup analysis by ethnicity, form of AD and gender was carried out. Meta-regression was conducted to explore the potential sources of between-study heterogeneity. RESULTS: 29 articles with 7548 cases and 7334 controls concerning rs6265 and 22 articles with 5796 cases and 5706 controls concerning rs2030324 were included in this meta-analysis. The combined evidence suggested rs6265 contributing significantly to the increased risk of AD in females (codominant: fixed-effects model (FEM: OR = 1.13, 95% CI = 1.04-1.23; dominant: FEM: OR = 1.17, 95% CI = 1.05-1.31, especially for Caucasian females (codominant: FEM: OR = 1.18, 95% CI = 1.03-1.34; dominant: FEM: OR = 1.18, 95% CI = 1.01-1.37 and female late-onset Alzheimer's disease (LOAD patients (codominant: FEM: OR = 1.22, 95% CI = 1.05-1.41; dominant: FEM: OR = 1.23, 95% CI = 1.03-1.46. No evidence indicated an association between rs2030324 with AD in codominant (random-effects model (REM: OR = 1.06, 95% CI = 0.89-1.26 and dominant (REM: OR = 1.05, 95% CI = 0.86-1.27 models. CONCLUSION: This meta-analysis suggested A allele of rs6265 might increase the risk of AD in Caucasian females and female LOAD patients. In addition, no evidence indicated an association between rs2030324 with AD. Further studies are needed to confirm these results.

  19. Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus Alzheimer's disease-like pathology.

    Directory of Open Access Journals (Sweden)

    Ronza Abdel Rassoul

    Full Text Available Aging is the primary risk factor of neurodegenerative disorders such as Alzheimer's disease (AD. However, the molecular events occurring during brain aging are extremely complex and still largely unknown. For a better understanding of these age-associated modifications, animal models as close as possible to humans are needed. We thus analyzed the transcriptome of the temporal cortex of the primate Microcebus murinus using human oligonucleotide microarrays (Affymetrix. Gene expression profiles were assessed in the temporal cortex of 6 young adults, 10 healthy old animals and 2 old, "AD-like" animals that presented ß-amyloid plaques and cortical atrophy, which are pathognomonic signs of AD in humans. Gene expression data of the 14,911 genes that were detected in at least 3 samples were analyzed. By SAM (significance analysis of microarrays, we identified 47 genes that discriminated young from healthy old and "AD-like" animals. These findings were confirmed by principal component analysis (PCA. ANOVA of the expression data from the three groups identified 695 genes (including the 47 genes previously identified by SAM and PCA with significant changes of expression in old and "AD-like" in comparison to young animals. About one third of these genes showed similar changes of expression in healthy aging and in "AD-like" animals, whereas more than two thirds showed opposite changes in these two groups in comparison to young animals. Hierarchical clustering analysis of the 695 markers indicated that each group had distinct expression profiles which characterized each group, especially the "AD-like" group. Functional categorization showed that most of the genes that were up-regulated in healthy old animals and down-regulated in "AD-like" animals belonged to metabolic pathways, particularly protein synthesis. These data suggest the existence of compensatory mechanisms during physiological brain aging that disappear in "AD-like" animals. These results open

  20. Prefrontal Lobe Brain Reserve Capacity with Resistance to Higher Global Amyloid Load and White Matter Hyperintensity Burden in Mild Stage Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Ya-Ting Chang

    Full Text Available Amyloid deposition and white matter lesions (WMLs in Alzheimer's disease (AD are both considered clinically significant while a larger brain volume is thought to provide greater brain reserve (BR against these pathological effects. This study identified the topography showing BR in patients with mild AD and explored the clinical balances among BR, amyloid, and WMLs burden.Thirty patients with AD were enrolled, and AV-45 positron emission tomography was conducted to measure the regional standardized uptake value ratio (SUVr in 8 cortical volumes-of- interests (VOIs. The quantitative WMLs burden was measured from magnetic resonance imaging while the normalized VOIs volumes represented BR in this study. The cognitive test represented major clinical correlates.Significant correlations between the prefrontal volume and global (r = 0.470, p = 0.024, but not regional (r = 0.264, p = 0.223 AV-45 SUVr were found. AD patients having larger regional volume in the superior- (r = 0.572, p = 0.004, superior medial- (r = 0.443, p = 0.034, and middle-prefrontal (r = 0.448, p = 0.032 regions had higher global AV-45 SUVr. For global WML loads, the prefrontal (r = -0.458, p = 0.019 and hippocampal volume (r = -0.469, p = 0.016 showed significant correlations while the prefrontal (r = -0.417, p = 0.043 or hippocampal volume (r = -0.422, p = 0.04 also predicted better composite memory scores. There were no interactions between amyloid SUVr and WML loads on the prefrontal volume.BR of the prefrontal region might modulate the adverse global pathological burden caused by amyloid deposition. While prefrontal volume positively associated with hippocampal volume, WMLs had an adverse impact on the hippocampal volume that predicts memory performance in mild stage AD.

  1. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer's disease from non-Alzheimer's dementia

    NARCIS (Netherlands)

    Spies, P E; Slats, D; Sjögren, J M C; Kremer, B P H; Verhey, F R J; Rikkert, M G M Olde; Verbeek, M M


    BACKGROUND: Amyloid beta(40) (Abeta(40)) is the most abundant Abeta peptide in the brain. The cerebrospinal fluid (CSF) level of Abeta(40) might therefore be considered to most closely reflect the total Abeta load in the brain. Both in Alzheimer's disease (AD) and in normal aging the Abeta load in t

  2. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE


    Ayton, Scott; Faux, Noel G.; Bush, Ashley I.; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack Jr, Clifford R.; Jagust, William; Trojanowki, John Q.; Toga, Arthur W; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Leslie M Shaw


    Brain iron elevation is implicated in Alzheimer's disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively asso...

  3. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2' mapping. (United States)

    Qin, Yuanyuan; Zhu, Wenzhen; Zhan, Chuanjia; Zhao, Lingyun; Wang, Jianzhi; Tian, Qing; Wang, Wei


    Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease (AD). The aim of this study was to investigate the correlation of brain iron accumulation with the severity of cognitive impairment in patients with AD by using quantitative MR relaxation rate R2' measurements. Fifteen patients with AD, 15 age- and sex-matched healthy controls, and 30 healthy volunteers underwent 1.5T MR multi-echo T2 mapping and T2* mapping for the measurement of transverse relaxation rate R2' (R2'=R2*-R2). We statistically analyzed the R2' and iron concentrations of bilateral hippocampus (HP), parietal cortex (PC), frontal white matter (FWM), putamen (PU), caudate nucleus (CN), thalamus (TH), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN) of the cerebellum for the correlation with the severity of dementia. Two-tailed t-test, Student-Newman-Keuls test (ANOVA) and linear correlation test were used for statistical analysis. In 30 healthy volunteers, the R2' values of bilateral SN, RN, PU, CN, globus pallidus (GP), TH, and FWM were measured. The correlation with the postmortem iron concentration in normal adults was analyzed in order to establish a formula on the relationship between regional R2' and brain iron concentration. The iron concentration of regions of interest (ROI) in AD patients and controls was calculated by this formula and its correlation with the severity of AD was analyzed. Regional R2' was positively correlated with regional brain iron concentration in normal adults (r=0.977, PIron concentrations in bilateral HP, PC, PU, CN, and DN of patients with AD were significantly higher than those of the controls (Piron concentrations, especially in parietal cortex and hippocampus at the early stage of AD, were positively correlated with the severity of patients' cognitive impairment (Piron concentrations were, the more severe the cognitive impairment was. Regional R2' and iron concentration in parietal cortex and

  4. Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. (United States)

    Natunen, Teemu; Takalo, Mari; Kemppainen, Susanna; Leskelä, Stina; Marttinen, Mikael; Kurkinen, Kaisa M A; Pursiheimo, Juha-Pekka; Sarajärvi, Timo; Viswanathan, Jayashree; Gabbouj, Sami; Solje, Eino; Tahvanainen, Eveliina; Pirttimäki, Tiina; Kurki, Mitja; Paananen, Jussi; Rauramaa, Tuomas; Miettinen, Pasi; Mäkinen, Petra; Leinonen, Ville; Soininen, Hilkka; Airenne, Kari; Tanzi, Rudolph E; Tanila, Heikki; Haapasalo, Annakaisa; Hiltunen, Mikko


    Accumulation of β-amyloid (Aβ) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aβ is generated from amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aβ pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aβ40 and Aβ42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co

  5. Big data to smart data in Alzheimer's disease: The brain health modeling initiative to foster actionable knowledge. (United States)

    Geerts, Hugo; Dacks, Penny A; Devanarayan, Viswanath; Haas, Magali; Khachaturian, Zaven S; Gordon, Mark Forrest; Maudsley, Stuart; Romero, Klaus; Stephenson, Diane


    Massive investment and technological advances in the collection of extensive and longitudinal information on thousands of Alzheimer patients results in large amounts of data. These "big-data" databases can potentially advance CNS research and drug development. However, although necessary, they are not sufficient, and we posit that they must be matched with analytical methods that go beyond retrospective data-driven associations with various clinical phenotypes. Although these empirically derived associations can generate novel and useful hypotheses, they need to be organically integrated in a quantitative understanding of the pathology that can be actionable for drug discovery and development. We argue that mechanism-based modeling and simulation approaches, where existing domain knowledge is formally integrated using complexity science and quantitative systems pharmacology can be combined with data-driven analytics to generate predictive actionable knowledge for drug discovery programs, target validation, and optimization of clinical development.

  6. Education and the risk for Alzheimer's disease

    DEFF Research Database (Denmark)

    Letenneur, L; Launer, L J; Andersen, K


    The hypothesis that a low educational level increases the risk for Alzheimer's disease remains controversial. The authors studied the association of years of schooling with the risk for incident dementia and Alzheimer's disease by using pooled data from four European population-based follow......-up studies. Dementia cases were identified in a two-stage procedure that included a detailed diagnostic assessment of screen-positive subjects. Dementia and Alzheimer's disease were diagnosed by using international research criteria. Educational level was categorized by years of schooling as low (...), middle (8-11), or high (> or =12). Relative risks (95% confidence intervals) were estimated by using Poisson regression, adjusting for age, sex, study center, smoking status, and self-reported myocardial infarction and stroke. There were 493 (328) incident cases of dementia (Alzheimer's disease) and 28...

  7. Lithium May Fend off Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Helen Pilcher; 夏红


    @@ Lithium, a common treatment for manic depression, might also help to stave off②Alzheimer's disease. Patients who take the drug to stabilize their mood disorder are less likely to succumb to dementia③, a study reveals.

  8. In vivo quantitative susceptibility mapping (QSM in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Julio Acosta-Cabronero

    Full Text Available BACKGROUND: This study explores the magnetostatic properties of the Alzheimer's disease brain using a recently proposed, magnetic resonance imaging, postprocessed contrast mechanism. Quantitative susceptibility mapping (QSM has the potential to monitor in vivo iron levels by reconstructing magnetic susceptibility sources from field perturbations. However, with phase data acquired at a single head orientation, the technique relies on several theoretical approximations and requires fast-evolving regularisation strategies. METHODS: In this context, the present study describes a complete methodological framework for magnetic susceptibility measurements with a review of its theoretical foundations. FINDINGS AND SIGNIFICANCE: The regional and whole-brain cross-sectional comparisons between Alzheimer's disease subjects and matched controls indicate that there may be significant magnetic susceptibility differences for deep brain nuclei--particularly the putamen--as well as for posterior grey and white matter regions. The methodology and findings described suggest that the QSM method is ready for larger-scale clinical studies.

  9. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. (United States)

    Toledo, Jon B; Arnold, Steven E; Raible, Kevin; Brettschneider, Johannes; Xie, Sharon X; Grossman, Murray; Monsell, Sarah E; Kukull, Walter A; Trojanowski, John Q


    Cerebrovascular disease and vascular risk factors are associated with Alzheimer's disease, but the evidence for their association with other neurodegenerative disorders is limited. Therefore, we compared the prevalence of cerebrovascular disease, vascular pathology and vascular risk factors in a wide range of neurodegenerative diseases and correlate them with dementia severity. Presence of cerebrovascular disease, vascular pathology and vascular risk factors was studied in 5715 cases of the National Alzheimer's Coordinating Centre database with a single neurodegenerative disease diagnosis (Alzheimer's disease, frontotemporal lobar degeneration due to tau, and TAR DNA-binding protein 43 immunoreactive deposits, α-synucleinopathies, hippocampal sclerosis and prion disease) based on a neuropathological examination with or without cerebrovascular disease, defined neuropathologically. In addition, 210 'unremarkable brain' cases without cognitive impairment, and 280 cases with pure cerebrovascular disease were included for comparison. Cases with cerebrovascular disease were older than those without cerebrovascular disease in all the groups except for those with hippocampal sclerosis. After controlling for age and gender as fixed effects and centre as a random effect, we observed that α-synucleinopathies, frontotemporal lobar degeneration due to tau and TAR DNA-binding protein 43, and prion disease showed a lower prevalence of coincident cerebrovascular disease than patients with Alzheimer's disease, and this was more significant in younger subjects. When cerebrovascular disease was also present, patients with Alzheimer's disease and patients with α-synucleinopathy showed relatively lower burdens of their respective lesions than those without cerebrovascular disease in the context of comparable severity of dementia at time of death. Concurrent cerebrovascular disease is a common neuropathological finding in aged subjects with dementia, is more common in Alzheimer

  10. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease (United States)


    to the head which disrupts normal brain functioning and leads to either transient or chronic impairments in physical, cognitive, emotional , and/ either tran- sient or chronic impairments in physical, cognitive, emotional , and/or behavioral functions. In the civil- ian population, TBI is...212-221. [6] Reeves TM, Lyeth BG, Povlishock JT (1995) Long-term potentiation deficits and excitability changes following trau- matic brain injury

  11. Ferric cycle activity and Alzheimer disease. (United States)

    Dwyer, Barney E; Takeda, Atsushi; Zhu, Xiongwei; Perry, George; Smith, Mark A


    Elevated plasma homocysteine is an independent risk factor for the development of Alzheimer disease, however, the precise mechanisms underlying this are unclear. In this article, we expound on a novel hypothesis depicting the involvement of homocysteine in a vicious circle involving iron dysregulation and oxidative stress designated as the ferric cycle (Dwyer et al., 2004). Moreover, we suspect that the development of a critical heme deficiency in vulnerable neurons is an additional consequence of ferric cycle activity. Oxidative stress and heme deficiency are consistent with many pathological changes found in Alzheimer disease including mitochondrial abnormalities and impaired energy metabolism, cell cycle and cell signaling abnormalities, neuritic pathology, and other features of the disease involving alterations in iron homeostasis such as the abnormal expression of heme oxygenase-1 and iron response protein 2. Based on the ferric cycle concept, we have developed a model of Alzheimer disease development and progression, which offers an explanation for why sporadic Alzheimer disease is different than normal aging and why familial Alzheimer disease and sporadic Alzheimer disease could have different etiologies but a common end-stage.

  12. Periodontitis and Cognitive Decline in Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Mark Ide

    Full Text Available Periodontitis is common in the elderly and may become more common in Alzheimer's disease because of a reduced ability to take care of oral hygiene as the disease progresses. Elevated antibodies to periodontal bacteria are associated with an increased systemic pro-inflammatory state. Elsewhere raised serum pro-inflammatory cytokines have been associated with an increased rate of cognitive decline in Alzheimer's disease. We hypothesized that periodontitis would be associated with increased dementia severity and a more rapid cognitive decline in Alzheimer's disease. We aimed to determine if periodontitis in Alzheimer's disease is associated with both increased dementia severity and cognitive decline, and an increased systemic pro inflammatory state. In a six month observational cohort study 60 community dwelling participants with mild to moderate Alzheimer's Disease were cognitively assessed and a blood sample taken for systemic inflammatory markers. Dental health was assessed by a dental hygienist, blind to cognitive outcomes. All assessments were repeated at six months. The presence of periodontitis at baseline was not related to baseline cognitive state but was associated with a six fold increase in the rate of cognitive decline as assessed by the ADAS-cog over a six month follow up period. Periodontitis at baseline was associated with a relative increase in the pro-inflammatory state over the six month follow up period. Our data showed that periodontitis is associated with an increase in cognitive decline in Alzheimer's Disease, independent to baseline cognitive state, which may be mediated through effects on systemic inflammation.

  13. Periodontitis and Cognitive Decline in Alzheimer's Disease. (United States)

    Ide, Mark; Harris, Marina; Stevens, Annette; Sussams, Rebecca; Hopkins, Viv; Culliford, David; Fuller, James; Ibbett, Paul; Raybould, Rachel; Thomas, Rhodri; Puenter, Ursula; Teeling, Jessica; Perry, V Hugh; Holmes, Clive


    Periodontitis is common in the elderly and may become more common in Alzheimer's disease because of a reduced ability to take care of oral hygiene as the disease progresses. Elevated antibodies to periodontal bacteria are associated with an increased systemic pro-inflammatory state. Elsewhere raised serum pro-inflammatory cytokines have been associated with an increased rate of cognitive decline in Alzheimer's disease. We hypothesized that periodontitis would be associated with increased dementia severity and a more rapid cognitive decline in Alzheimer's disease. We aimed to determine if periodontitis in Alzheimer's disease is associated with both increased dementia severity and cognitive decline, and an increased systemic pro inflammatory state. In a six month observational cohort study 60 community dwelling participants with mild to moderate Alzheimer's Disease were cognitively assessed and a blood sample taken for systemic inflammatory markers. Dental health was assessed by a dental hygienist, blind to cognitive outcomes. All assessments were repeated at six months. The presence of periodontitis at baseline was not related to baseline cognitive state but was associated with a six fold increase in the rate of cognitive decline as assessed by the ADAS-cog over a six month follow up period. Periodontitis at baseline was associated with a relative increase in the pro-inflammatory state over the six month follow up period. Our data showed that periodontitis is associated with an increase in cognitive decline in Alzheimer's Disease, independent to baseline cognitive state, which may be mediated through effects on systemic inflammation.

  14. Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center (TUM-NIC), Munich (Germany); Technische Universitaet Muenchen (TUM), Klinik und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Munich (Germany); Yousefi, Behrooz H.; Wester, Hans-Juergen; Klupp, Elisabeth [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Rominger, Axel [Ludwig Maximilians Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Foerstl, Hans; Kurz, Alexander; Grimmer, Timo [Technische Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Drzezga, Alexander [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center (TUM-NIC), Munich (Germany)


    Similar regional anatomical distributions were reported for fibrillary amyloid deposition [measured by {sup 11}C-Pittsburgh compound B (PIB) positron emission tomography (PET)] and brain hypometabolism [measured by {sup 18}F-fluorodeoxyglucose (FDG) PET] in numerous Alzheimer's disease (AD) studies. However, there is a lack of longitudinal studies evaluating the interrelationships of these two different pathological markers in the same AD population. Our most recent AD study suggested that the longitudinal pattern of hypometabolism anatomically follows the pattern of amyloid deposition with temporal delay, which indicates that neuronal dysfunction may spread within the anatomical pattern of amyloid pathology. Based on this finding we now hypothesize that in early AD patients quantitative longitudinal decline in hypometabolism may be related to the amount of baseline amyloid deposition during a follow-up period of 2 years. Fifteen patients with mild probable AD underwent baseline (T1) and follow-up (T2) examination after 24 {+-} 2.1 months with [{sup 18}F]FDG PET, [{sup 11}C]PIB PET, structural T1-weighted MRI and neuropsychological testing [Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery]. Longitudinal cognitive measures and quantitative PET measures of amyloid deposition and metabolism [standardized uptake value ratios (SUVRs)] were obtained using volume of interest (VOI)-based approaches in the frontal-lateral-retrosplenial (FLR) network and in predefined bihemispheric brain regions after partial volume effect (PVE) correction of PET data. Statistical group comparisons (SUVRs and cognitive measures) between patients and 15 well-matched elderly controls who had undergone identical imaging procedures once as well as Pearson's correlation analyses within patients were performed. Group comparison revealed significant cognitive decline and increased mean PIB/decreased FDG SUVRs in the FLR network as well as

  15. [Western diet and Alzheimer's disease]. (United States)

    Berrino, Franco


    Alzheimer Disease, characterised by a global impairment of cognitive functions, is more and more common in Western societies, both because of longer life expectancy and, probably, because of increasing incidence. Several hints suggest that this degenerative disease is linked to western diet, characterised by excessive dietary intake of sugar, refined carbohydrates (with high glycaemic index), and animal product (with high content of saturated fats), and decreased intake of unrefined seeds--cereals, legumes, and oleaginous seeds--and other vegetables (with high content of fibres, vitamins, polyphenols and other antioxidant substances, phytoestrogens) and, in several populations, of sea food (rich in n-3 fatty acids). It has been hypothesised, in fact, that AD, may be promoted by insulin resistance, decreased endothelial production of nitric oxide, free radical excess, inflammatory metabolites, homocysteine, and oestrogen deficiency. AD, therefore, could theoretically be prevented (or delayed) by relatively simple dietary measures aimed at increasing insulin sensitivity (trough reduction of refined sugars and saturated fats from meat and dairy products), the ratio between n-3 and n-6 fatty acids (e.g. from fish and respectively seed oils), antioxidant vitamins, folic acid, vitamin B6, phytoestrogens (vegetables, whole cereals, and legumes, including soy products), vitamin B12 (bivalve molluscs, liver), and Cr, K, Mg, and Si salts. This comprehensive improvement of diet would fit with all the mechanistic hypotheses cited above. Several studies, on the contrary, are presently exploring monofactorial preventive strategies with specific vitamin supplementation or hormonal drugs, without, however, appreciable results.

  16. Gene Therapy Strategies for Alzheimer's Disease: An Overview. (United States)

    Alves, Sandro; Fol, Romain; Cartier, Nathalie


    Key neuropathological hallmarks of Alzheimer's disease (AD) are extracellular amyloid plaques and intracellular accumulation of hyperphosphorylated Tau protein. The mechanisms underlying these neuropathological changes remain unclear. So far, research on AD therapy has had limited success in terms of symptomatic treatments although it has also had several failures for disease-modifying drugs. Gene transfer strategies to the brain have contributed to evaluate in animal models many interesting tracks, some of which should deserve clinical applications in AD patients in the future.

  17. Pleiotropic Protective Effects of Phytochemicals in Alzheimer's Disease



    Alzheimer's disease (AD) is a severe chronic neurodegenerative disorder of the brain characterised by progressive impairment in memory and cognition. In the past years an intense research has aimed at dissecting the molecular events of AD. However, there is not an exhaustive knowledge about AD pathogenesis and a limited number of therapeutic options are available to treat this neurodegenerative disease. Consequently, considering the heterogeneity of AD, therapeutic agents acting on multiple l...

  18. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, Lisa [University of Florence, Department of Clinical Pathophysiology, Nuclear Medicine Unit (Italy); University School of Medicine, Center for Brain Health, MHL400, Department of Psychiatry New York, New York, NY (United States)


    The demographics of aging suggest a great need for the early diagnosis of dementia and the development of preventive strategies. Neuropathology and structural MRI studies have pointed to the medial temporal lobe (MTL) as the brain region earliest affected in Alzheimer's disease (AD). MRI findings provide strong evidence that in mild cognitive impairments (MCI), AD-related volume losses can be reproducibly detected in the hippocampus, the entorhinal cortex (EC) and, to a lesser extent, the parahippocampal gyrus; they also indicate that lateral temporal lobe changes are becoming increasingly useful in predicting the transition to dementia. Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) imaging has revealed glucose metabolic reductions in the parieto-temporal, frontal and posterior cingulate cortices to be the hallmark of AD. Overall, the pattern of cortical metabolic changes has been useful for the prediction of future AD as well as in distinguishing AD from other neurodegenerative diseases. FDG-PET on average achieves 90% sensitivity in identifying AD, although specificity in differentiating AD from other dementias is lower. Moreover, recent MRI-guided FDG-PET studies have shown that MTL hypometabolism is the most specific and sensitive measure for the identification of MCI, while the utility of cortical deficits is controversial. This review highlights cross-sectional, prediction and longitudinal FDG-PET studies and attempts to put into perspective the value of FDG-PET in diagnosing AD-like changes, particularly at an early stage, and in providing diagnostic specificity. The examination of MTL structures, which has so far been exclusive to MRI protocols, is then examined as a possible strategy to improve diagnostic specificity. All told, there is considerable promise that early and specific diagnosis is feasible through a combination of imaging modalities. (orig.)

  19. Does prevention for Alzheimer's disease exist?


    Sonia Maria Dozzi Brucki


    Abstract The prevention of Alzheimer's disease is a growing public health concern amidst an ageing population. Meanwhile, there is no effective or curative treatment available where prevention could greatly reduce health costs. This review was based on reports of potential preventive factors, including modifiable lifestyle factors, as well as preventive pharmacological strategies. Although the present review was not systematic, the reports selected from PubMed using "Alzheimer's disease" and ...

  20. Molecular imaging of Alzheimer disease pathology. (United States)

    Kantarci, K


    Development of molecular imaging agents for fibrillar β-amyloid positron-emission tomography during the past decade has brought molecular imaging of Alzheimer disease pathology into the spotlight. Large cohort studies with longitudinal follow-up in cognitively normal individuals and patients with mild cognitive impairment and Alzheimer disease indicate that β-amyloid deposition can be detected many years before the onset of symptoms with molecular imaging, and its progression can be followed longitudinally. The utility of β-amyloid PET in the differential diagnosis of Alzheimer disease is greatest when there is no pathologic overlap between 2 dementia syndromes, such as in frontotemporal lobar degeneration and Alzheimer disease. However β-amyloid PET alone may be insufficient in distinguishing dementia syndromes that commonly have overlapping β-amyloid pathology, such as dementia with Lewy bodies and vascular dementia, which represent the 2 most common dementia pathologies after Alzheimer disease. The role of molecular imaging in Alzheimer disease clinical trials is growing rapidly, especially in an era when preventive interventions are designed to eradicate the pathology targeted by molecular imaging agents.

  1. PIN1 gene variants in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Siedlecki Janusz


    Full Text Available Abstract Background Peptidyl-prolyl isomerase, NIMA-interacting 1 (PIN1 plays a significant role in the brain and is implicated in numerous cellular processes related to Alzheimer's disease (AD and other neurodegenerative conditions. There are confounding results concerning PIN1 activity in AD brains. Also PIN1 genetic variation was inconsistently associated with AD risk. Methods We performed analysis of coding and promoter regions of PIN1 in early- and late-onset AD and frontotemporal dementia (FTD patients in comparison with healthy controls. Results Analysis of eighteen PIN1 common polymorphisms and their haplotypes in EOAD, LOAD and FTD individuals in comparison with the control group did not reveal their contribution to disease risk. In six unrelated familial AD patients four novel PIN1 sequence variants were detected. c.58+64C>T substitution that was identified in three patients, was located in an alternative exon. In silico analysis suggested that this variant highly increases a potential affinity for a splicing factor and introduces two intronic splicing enhancers. In the peripheral leukocytes of one living patient carrying the variant, a 2.82 fold decrease in PIN1 expression was observed. Conclusion Our data does not support the role of PIN1 common polymorphisms as AD risk factor. However, we suggest that the identified rare sequence variants could be directly connected with AD pathology, influencing PIN1 splicing and/or expression.

  2. New Perspectives on Alzheimer's Disease and Nutrition. (United States)

    Gustafson, Deborah R; Clare Morris, Martha; Scarmeas, Nikolaos; Shah, Raj C; Sijben, John; Yaffe, Kristine; Zhu, Xiongwei


    Accumulating evidence shows nutritional factors influence the risk of developing Alzheimer's disease (AD) and its rate of clinical progression. Dietary and lifestyle guidelines to help adults reduce their risk have been developed. However, the clinical dementia picture remains complex, and further evidence is required to demonstrate that modifying nutritional status can protect the brain and prevent, delay, or reduce pathophysiological consequences of AD. Moreover, there is a pressing need for further research because of the global epidemic of overweight and obesity combined with longer life expectancy of the general population and generally observed decreases in body weight with aging and AD. A new research approach is needed, incorporating more sophisticated models to account for complex scenarios influencing the relationship between nutritional status and AD. Systematic research should identify and address evidence gaps. Integrating longitudinal epidemiological data with biomarkers of disease, including brain imaging technology, and randomized controlled interventions may provide greater insights into progressive and subtle neurological changes associated with dietary factors in individuals at risk for or living with AD. In addition, greater understanding of mechanisms involved in nutritional influences on AD risk and progression, such as oxidative stress and loss of neuronal membrane integrity, will better inform possible interventional strategies. There is consensus among the authors that nutritional deficits, and even states of excess, are associated with AD, but more work is needed to determine cause and effect. Appropriately designed diets or nutritional interventions may play a role, but additional research is needed on their clinical-cognitive effectiveness.

  3. Brain Diseases (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  4. Insight into the Molecular Imaging of Alzheimer's Disease (United States)

    Bhagat, Neeta


    Alzheimer's disease is a complex neurodegenerative disease affecting millions of individuals worldwide. Earlier it was diagnosed only via clinical assessments and confirmed by postmortem brain histopathology. The development of validated biomarkers for Alzheimer's disease has given impetus to improve diagnostics and accelerate the development of new therapies. Functional imaging like positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), and proton magnetic resonance spectroscopy provides a means of detecting and characterising the regional changes in brain blood flow, metabolism, and receptor binding sites that are associated with Alzheimer's disease. Multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical variations that are associated with neurodegenerative diseases. Radiotracer-based PET and SPECT potentially provide sensitive, accurate methods for the early detection of disease. This paper presents a review of neuroimaging modalities like PET, SPECT, and selected imaging biomarkers/tracers used for the early diagnosis of AD. Neuroimaging with such biomarkers and tracers could achieve a much higher diagnostic accuracy for AD and related disorders in the future. PMID:26880871

  5. 2016 Alzheimer's disease facts and figures. (United States)


    This report describes the public health impact of Alzheimer's disease, including incidence and prevalence, mortality rates, costs of care, and the overall impact on caregivers and society. It also examines in detail the financial impact of Alzheimer's on families, including annual costs to families and the difficult decisions families must often make to pay those costs. An estimated 5.4 million Americans have Alzheimer's disease. By mid-century, the number of people living with Alzheimer's disease in the United States is projected to grow to 13.8 million, fueled in large part by the aging baby boom generation. Today, someone in the country develops Alzheimer's disease every 66 seconds. By 2050, one new case of Alzheimer's is expected to develop every 33 seconds, resulting in nearly 1 million new cases per year. In 2013, official death certificates recorded 84,767 deaths from Alzheimer's disease, making it the sixth leading cause of death in the United States and the fifth leading cause of death in Americans age ≥ 65 years. Between 2000 and 2013, deaths resulting from stroke, heart disease, and prostate cancer decreased 23%, 14%, and 11%, respectively, whereas deaths from Alzheimer's disease increased 71%. The actual number of deaths to which Alzheimer's disease contributes is likely much larger than the number of deaths from Alzheimer's disease recorded on death certificates. In 2016, an estimated 700,000 Americans age ≥ 65 years will die with Alzheimer's disease, and many of them will die because of the complications caused by Alzheimer's disease. In 2015, more than 15 million family members and other unpaid caregivers provided an estimated 18.1 billion hours of care to people with Alzheimer's and other dementias, a contribution valued at more than $221 billion. Average per-person Medicare payments for services to beneficiaries age ≥ 65 years with Alzheimer's disease and other dementias are more than two and a half times as great as payments for all

  6. A composite multivariate polygenic and neuroimaging score for prediction of conversion to Alzheimer's disease. (United States)

    Filipovych, Roman; Gaonkar, Bilwaj; Davatzikos, Christos


    Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex genetic underpinnings that may influence the timing of the related pathological changes in the brain and can affect the progression from MCI to AD. In this paper, we present a multivariate imaging genetics approach for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We employ multivariate pattern recognition approaches to obtain neuroimaging and polygenic discriminators between the healthy individuals and AD patients. We then design, in a linear manner, a composite imaging-genetic score for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. We apply our approach within the Alzheimer's Disease Neuroimaging Initiative and show that the integration of polygenic and neuroimaging information improves prediction of conversion to AD.

  7. Traumatic brain injury as a risk factor for Alzheimer disease. Comparison of two retrospective autopsy cohorts with evaluation of ApoE genotype

    Directory of Open Access Journals (Sweden)

    Wrocklage Christian


    Full Text Available Abstract Background and Purpose The impact of traumatic brain injury (TBI on the pathogenesis of Alzheimer disease (AD is still controversial. The aim of our retrospective autopsy study was to assess the impact of TBE and ApoE allele frequency on the development of AD. Material and Methods We examined 1. the incidence of AD pathology (Braak stageing, CERAD, NIA-Reagan Institute criteria in 58 consecutive patients (mean age ± SD 77.0 ± 6.8 years with residual closed TBI lesions, and 2. the frequency of TBI residuals in 57 age-matched autopsy proven AD cases. In both series, ApoE was evaluated from archival paraffin-embedded brain material. Results 1. TBE series: 12.1 % showed definite and 10.3% probable AD (mean age 77.6 and 75.2 years, only 2/13 with ApoEε3/4. From 45 (77.6% non-AD cases (mean age 78.2 years, 3 had ApoEε3/4. The prevalence of 22.4% AD in this small autopsy cohort was significantly higher than 3.3% in a recent large clinical series and 14% in the general population over age 70. 2. In the AD cohort with ApoEε4 allele frequency of 30% similar to other AD series, residuals of closed TBI were seen in 4 brains (7% (mean age ± SD 78.2 ± 6.4, all lacking the ApoEε4 allele. TBI incidence was slightly lower than 8.5% in the clinical MIRAGE study. Conclusions The results of this first retrospective autopsy study of TBI, ApoEε allele frequency, and AD confirm clinical studies suggesting severe TBI to be a risk factor for the development AD higher in subjects lacking ApoEε4 alleles. Further studies in larger autopsy series are needed to elucidate the relationship between TBI, genetic predisposition, and AD.

  8. Assessing impulsivity changes in Alzheimer disease. (United States)

    Rochat, Lucien; Delbeuck, Xavier; Billieux, Joël; d'Acremont, Mathieu; Van der Linden, Anne-Claude Juillerat; Van der Linden, Martial


    Impulsive behaviors are common in brain-damaged patients including those with neurodegenerative diseases such as Alzheimer disease (AD). The objective of this study was to develop and validate a short version of the UPPS Impulsive Behavior Scale assessing changes on 4 different dimensions of impulsivity, namely urgency, (lack of) premeditation, (lack of) perseverance, and sensation seeking, arising in the course of a neurodegenerative disease. To this end, caregivers of 83 probable AD patients completed a short questionnaire adapted from the UPPS Impulsive Behavior Scale. Exploratory and confirmatory factor analyses of the data were performed and revealed that a model with 4 distinct but related latent variables corresponding to 4 different dimensions of impulsivity fit the data best. Furthermore, the results showed that lack of perseverance, followed by lack of premeditation and urgency, increased after the onset of the disease, whereas sensation seeking decreased. Overall, the multifaceted nature of impulsivity was confirmed in a sample of AD patients, whose caregivers reported significant changes regarding each facet of impulsivity. Consequently, the short version of the UPPS Impulsive Behavior Scale opens up interesting prospects for a better comprehension of behavioral symptoms of dementia.

  9. Magnetoencephalography as a Putative Biomarker for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Edward Zamrini


    Full Text Available Alzheimer's Disease (AD is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease, the loss of dendritic spines and of synapses predate such changes. Popular preclinical detection strategies mainly involve cerebrospinal fluid biomarkers, magnetic resonance imaging, metabolic PET scans, and amyloid imaging. One strategy missing from this list involves neurophysiological measures, which might be more sensitive to detect alterations in brain function. The Magnetoencephalography International Consortium of Alzheimer's Disease arose out of the need to advance the use of Magnetoencephalography (MEG, as a tool in AD and pre-AD research. This paper presents a framework for using MEG in dementia research, and for short-term research priorities.

  10. Reduced N-acetylaspartate content in the frontal part of the brain in patients with probable Alzheimer's disease

    DEFF Research Database (Denmark)

    Christiansen, P; Schlosser, A; Henriksen, O


    The fully relaxed water signal was used as an internal standard in a STEAM experiment to calculate the concentrations of the metabolites: N-acetylaspartate (NAA), creatine + phosphocreatine [Cr + PCr], and choline-containing metabolites (Cho) in the frontal part of the brain in 12 patients...

  11. Inductive reasoning in Alzheimer's disease. (United States)

    Smith, E E; Rhee, J; Dennis, K; Grossman, M


    We evaluated knowledge of basic level and superordinate semantic relations and the role of cognitive resources during inductive reasoning in probable Alzheimer's disease (AD). Nineteen mildly demented AD patients and 17 healthy control subjects judged the truthfulness of arguments with a premise and a conclusion that contain familiar concepts coupled with "blank" predicates, such as "Spiders contain phosphatidylcholine; therefore all insects contain phosphatidylcholine." Like healthy control subjects, AD patients were relatively insensitive to the typicality of the premise category when judging the strength of arguments with a conclusion containing a basic-level concept, but were relatively sensitive to typicality during judgments of arguments containing a superordinate in the conclusion. Moreover, AD patients resembled control subjects in judging arguments with an immediate superordinate in the conclusion compared to arguments with a distant superordinate. AD patients differed from control subjects because they could not take advantage of two premises in an argument containing basic-level concepts. We conclude that semantic knowledge is sufficiently preserved in AD to support inductive reasoning, but that limited cognitive resources may interfere with AD patients' ability to consider the entire spectrum of information available during semantic challenges.

  12. The burden of Alzheimer's disease. (United States)

    Burns, Alistair


    Alzheimer's disease (AD) imposes a severe burden upon patients and their carers. In particular, family carers of AD patients face extreme hardship and distress that represents a major but often hidden burden on healthcare systems. Carers often experience clinically significant alterations in physical and mental health, particularly depression. A number of individual features of the dementia syndrome that are known to be particularly burdensome to carers include the degree of cognitive impairment, amount of help required with activities of daily living, personality changes and the presence of psychiatric symptoms and behavioural disturbances. The neuropsychiatric features of AD patients can adversely impact the relationship between the patient and caregiver generating feelings of strain, burden and social isolation. Individual characteristics of the caregiver including personality, gender, degree of formal and informal support and physical and mental health, as well as attributional style ('coping style') and expressed emotion (critical or hostile attitudes), also dictate carer burden. As informal caregivers play such a crucial role in the care of AD patients, appropriate management strategies that incorporate interventions which address the specific burdens of the individual caregiver are essential. Reducing the burden of care can be achieved by the combination of a number of individual and general measures, including education, respite and emotion-focused interventions. These measures, accompanied by non-pharmacological strategies, are extremely important in the total care of the AD patient, with the emphasis on maintaining people in the community as long as possible.

  13. Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alzheimer's disease and its implication in the pathophysiology of the disease process

    Directory of Open Access Journals (Sweden)

    Tommy Saing


    Full Text Available HIV-1 positive individuals are at high risk for susceptibility to both pulmonary tuberculosis (TB and extra-pulmonary TB, including TB meningitis (TBM which is an extreme form of TB. The goals of this study are to determine the mechanisms responsible for compromised levels of glutathione (GSH in the brain tissue samples derived from HIV-1-infected individuals and individuals with Alzheimer's disease (AD, investigate the possible underlying mechanisms responsible for GSH deficiency in these pathological conditions, and establish a link between GSH levels and pathophysiology of the disease processes. We demonstrated in the autopsied human brain tissues that the levels of total and reduced forms of GSH were significantly compromised in HIV-1 infected individuals compared to in healthy subjects and individuals with AD. Brain tissue samples derived from HIV-1-positive individuals had substantially higher levels of free radicals than that derived from healthy and AD individuals. Enzymes that are responsible for the de novo synthesis of GSH such as γ-glutamate cysteine-ligase catalytic subunit (GCLC-rate limiting step enzyme and glutathione synthetase (GSS-enzyme involved in the second step reaction were significantly decreased in the brain tissue samples derived from HIV-1-positive individuals with low CD4+ T-cells (<200 cells/mm3 compared to healthy and AD individuals. Levels of glutathione reductase (GSR were also decreased in the brain tissue samples derived from HIV-1 infected individuals. Overall, our findings demonstrate causes for GSH deficiency in the brain tissue from HIV-1 infected individuals explaining the possible reasons for increased susceptibility to the most severe form of extra-pulmonary TB, TBM.

  14. Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alzheimer's disease and its implication in the pathophysiology of the disease process. (United States)

    Saing, Tommy; Lagman, Minette; Castrillon, Jeffery; Gutierrez, Eutiquio; Guilford, Frederick T; Venketaraman, Vishwanath


    HIV-1 positive individuals are at high risk for susceptibility to both pulmonary tuberculosis (TB) and extra-pulmonary TB, including TB meningitis (TBM) which is an extreme form of TB. The goals of this study are to determine the mechanisms responsible for compromised levels of glutathione (GSH) in the brain tissue samples derived from HIV-1-infected individuals and individuals with Alzheimer's disease (AD), investigate the possible underlying mechanisms responsible for GSH deficiency in these pathological conditions, and establish a link between GSH levels and pathophysiology of the disease processes. We demonstrated in the autopsied human brain tissues that the levels of total and reduced forms of GSH were significantly compromised in HIV-1 infected individuals compared to in healthy subjects and individuals with AD. Brain tissue samples derived from HIV-1-positive individuals had substantially higher levels of free radicals than that derived from healthy and AD individuals. Enzymes that are responsible for the de novo synthesis of GSH such as γ-glutamate cysteine-ligase catalytic subunit (GCLC-rate limiting step enzyme) and glutathione synthetase (GSS-enzyme involved in the second step reaction) were significantly decreased in the brain tissue samples derived from HIV-1-positive individuals with low CD4 + T-cells (< 200 cells/mm(3)) compared to healthy and AD individuals. Levels of glutathione reductase (GSR) were also decreased in the brain tissue samples derived from HIV-1 infected individuals. Overall, our findings demonstrate causes for GSH deficiency in the brain tissue from HIV-1 infected individuals explaining the possible reasons for increased susceptibility to the most severe form of extra-pulmonary TB, TBM.

  15. BRCA1 and p53 tumor suppressor molecules in Alzheimer's disease. (United States)

    Nakanishi, Atsuko; Minami, Akari; Kitagishi, Yasuko; Ogura, Yasunori; Matsuda, Satoru


    Tumor suppressor molecules play a pivotal role in regulating DNA repair, cell proliferation, and cell death, which are also important processes in the pathogenesis of Alzheimer's disease. Alzheimer's disease is the most common neurodegenerative disorder, however, the precise molecular events that control the death of neuronal cells are unclear. Recently, a fundamental role for tumor suppressor molecules in regulating neurons in Alzheimer's disease was highlighted. Generally, onset of neurodegenerative diseases including Alzheimer's disease may be delayed with use of dietary neuro-protective agents against oxidative stresses. Studies suggest that dietary antioxidants are also beneficial for brain health in reducing disease-risk and in slowing down disease-progression. We summarize research advances in dietary regulation for the treatment of Alzheimer's disease with a focus on its modulatory roles in BRCA1 and p53 tumor suppressor expression, in support of further therapeutic research in this field.

  16. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Carlos Spuch


    Full Text Available Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB. Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease.

  17. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Almost two-thirds of Americans with Alzheimer's are women. African-Americans are about twice as likely to ... 1 billion. Approximately two-thirds of caregivers are women, and 34 percent are age 65 or older. ...

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... to those with Alzheimer's and other dementias, a contribution to the nation valued at $230.1 billion. ... NIA-AA) 2011 workgroup and the International Work Group (IWG) have proposed guidelines that use detectable measures ...

  19. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimers Disease (United States)


    chronic impairments in physical, cognitive, emotional , and/or behavioral functions. In the civilian population, TBI is typically associated with...functioning, which leads to either tran- sient or chronic impairments in physical, cognitive, emotional , and/or behavioral functions. In the civil...expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res 89, 212-221. [6] Reeves TM, Lyeth BG, Povlishock

  20. Improved mitochondrial function in brain aging and Alzheimer disease - the new mechanism of action of the old metabolic enhancer piracetam



    Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g., might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential, enhanced ATP production, and ...

  1. Delaying the onset of Alzheimer disease (United States)

    Craik, Fergus I.M.; Bialystok, Ellen; Freedman, Morris


    Objectives: There is strong epidemiologic evidence to suggest that older adults who maintain an active lifestyle in terms of social, mental, and physical engagement are protected to some degree against the onset of dementia. Such factors are said to contribute to cognitive reserve, which acts to compensate for the accumulation of amyloid and other brain pathologies. We present evidence that lifelong bilingualism is a further factor contributing to cognitive reserve. Methods: Data were collected from 211 consecutive patients diagnosed with probable Alzheimer disease (AD). Patients' age at onset of cognitive impairment was recorded, as was information on occupational history, education, and language history, including fluency in English and any other languages. Following this procedure, 102 patients were classified as bilingual and 109 as monolingual. Results: We found that the bilingual patients had been diagnosed 4.3 years later and had reported the onset of symptoms 5.1 years later than the monolingual patients. The groups were equivalent on measures of cognitive and occupational level, there was no apparent effect of immigration status, and the monolingual patients had received more formal education. There were no gender differences. Conclusions: The present data confirm results from an earlier study, and thus we conclude that lifelong bilingualism confers protection against the onset of AD. The effect does not appear to be attributable to such possible confounding factors as education, occupational status, or immigration. Bilingualism thus appears to contribute to cognitive reserve, which acts to compensate for the effects of accumulated neuropathology. GLOSSARY AD = Alzheimer disease; MMSE = Mini-Mental State Examination. PMID:21060095

  2. Stem cell treatment for Alzheimer's disease. (United States)

    Li, Ming; Guo, Kequan; Ikehara, Susumu


    Alzheimer's disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.

  3. Cellular and molecular mechanisms underlying the action of ginsenoside Rg1 against Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Xi Li; Ming Li; Yuan Li; Qiankun Quan; Juan Wang


    Ginsenoside Rg1 inhibits oxidation, aging and cell apoptosis, and improves cognitive function. In this study, we pretreated rat brain tissue sections with ginsenoside Rg1, and established brain slice models of Alzheimer's disease induced by okadaic acid. The results revealed that ginsenoside Rg1 pretreatment suppressed the increase in phosphorylated Tau protein expression induced by incubation with okadaic acid, and reduced brain-derived neurotrophic factor expression. These results suggest that ginsenoside Rg1 upregulates brain-derived neurotrophic factor expression and inhibits Tau protein phosphorylation in brain slices from a rat model of Alzheimer's disease.

  4. Alzheimer's disease drug development: translational neuroscience strategies. (United States)

    Cummings, Jeffrey L; Banks, Sarah J; Gary, Ronald K; Kinney, Jefferson W; Lombardo, Joseph M; Walsh, Ryan R; Zhong, Kate


    Alzheimer's disease (AD) is an urgent public health challenge that is rapidly approaching epidemic proportions. New therapies that defer or prevent the onset, delay the decline, or improve the symptoms are urgently needed. All phase 3 drug development programs for disease-modifying agents have failed thus far. New approaches to drug development are needed. Translational neuroscience focuses on the linkages between basic neuroscience and the development of new diagnostic and therapeutic products that will improve the lives of patients or prevent the occurrence of brain disorders. Translational neuroscience includes new preclinical models that may better predict human efficacy and safety, improved clinical trial designs and outcomes that will accelerate drug development, and the use of biomarkers to more rapidly provide information regarding the effects of drugs on the underlying disease biology. Early translational research is complemented by later stage translational approaches regarding how best to use evidence to impact clinical practice and to assess the influence of new treatments on the public health. Funding of translational research is evolving with an increased emphasis on academic and NIH involvement in drug development. Translational neuroscience provides a framework for advancing development of new therapies for AD patients.

  5. Neuroinflammation in Alzheimer's disease wanes with age

    Directory of Open Access Journals (Sweden)

    Hoozemans Jeroen JM


    Full Text Available Abstract Background Inflammation is a prominent feature in Alzheimer's disease (AD. It has been proposed that aging has an effect on the function of inflammation in the brain, thereby contributing to the development of age-related diseases like AD. However, the age-dependent relationship between inflammation and clinical phenotype of AD has never been investigated. Methods In this study we have analysed features of the neuroinflammatory response in clinically and pathologically confirmed AD and control cases in relation to age (range 52-97 years. The mid-temporal cortex of 19 controls and 19 AD cases was assessed for the occurrence of microglia and astrocytes by immunohistochemistry using antibodies directed against CD68 (KP1, HLA class II (CR3/43 and glial fibrillary acidic protein (GFAP. Results By measuring the area density of immunoreactivity we found significantly more microglia and astrocytes in AD cases younger than 80 years compared to older AD patients. In addition, the presence of KP1, CR3/43 and GFAP decreases significantly with increasing age in AD. Conclusion Our data suggest that the association between neuroinflammation and AD is stronger in relatively young patients than in the oldest patients. This age-dependent relationship between inflammation and clinical phenotype of AD has implications for the interpretation of biomarkers and treatment of the disease.

  6. Stem cell therapy for Alzheimer's disease. (United States)

    Abdel-Salam, Omar M E


    Alzheimer's disease (AD) is a progressive neurodegenerative disorder which impairs the memory and intellectual abilities of the affected individuals. Loss of episodic as well as semantic memory is an early and principal feature. The basal forebrain cholinergic system is the population of neurons most affected by the neurodegenerative process. Extracellular as well as intracellular deposition of beta-amyloid or Abeta (Abeta) protein, intracellular formation of neurofibrillary tangles and neuronal loss are the neuropathological hallmarks of AD. In the last few years, hopes were raised that cell replacement therapy would provide cure by compensating the lost neuronal systems. Stem cells obtained from embryonic as well as adult tissue and grafted into the intact brain of mice or rats were mostly followed by their incorporation into the host parenchyma and differentiation into functional neural lineages. In the lesioned brain, stem cells exhibited targeted migration towards the damaged regions of the brain, where they engrafted, proliferated and matured into functional neurones. Neural precursor cells can be intravenously administered and yet migrate into brain damaged areas and induce functional recovery. Observations in animal models of AD have provided evidence that transplanted stem cells or neural precursor cells (NPCs) survive, migrate, and differentiate into cholinergic neurons, astrocytes, and oligodendrocytes with amelioration of the learning/memory deficits. Besides replacement of lost or damaged cells, stem cells stimulate endogenous neural precursors, enhance structural neuroplasticity, and down regulate proinflammatory cytokines and neuronal apoptotic death. Stem cells could also be genetically modified to express growth factors into the brain. In the last years, evidence indicated that the adult brain of mammals preserves the capacity to generate new neurons from neural stem/progenitor cells. Inefficient adult neurogenesis may contribute to the

  7. Protein phosphatase 2A, a key player in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Rong LIU; Qing TIAN


    Protein phosphatase 2A (PP2A) is the pre-dominant serine/threonine phosphatase in eukaryotic cells. In the brains of patients with Alzheimer's disease (AD), decreased PP2A activities were observed, which is suggested to be involved in neurofibrillary tangle (NFT) formation, disturbed amyloid precursor protein (APP) secretion and neurodegeneration in AD brain. Based on our research and other previous findings, decreased PP2Ac level, decreased PP2A holoenzyme composition, increased level of PP2A inhibitors, increased PP2Ac Leu309 demethylation and Tyr307 phosphorylation underlie PP2A inactivation in AD. β-amyloid (Aβ) over-production, estrogen deficiency and impaired homocys-teine metabolism are the possible up-stream factors that inactivate PP2A in AD neurons. Further studies are required to disclose the role of PP2A in Alzheimer's disease.

  8. Imaging markers for Alzheimer disease (United States)

    Bocchetta, Martina; Chételat, Gael; Rabinovici, Gil D.; de Leon, Mony J.; Kaye, Jeffrey; Reiman, Eric M.; Scheltens, Philip; Barkhof, Frederik; Black, Sandra E.; Brooks, David J.; Carrillo, Maria C.; Fox, Nick C.; Herholz, Karl; Nordberg, Agneta; Jack, Clifford R.; Jagust, William J.; Johnson, Keith A.; Rowe, Christopher C.; Sperling, Reisa A.; Thies, William; Wahlund, Lars-Olof; Weiner, Michael W.; Pasqualetti, Patrizio; DeCarli, Charles


    Revised diagnostic criteria for Alzheimer disease (AD) acknowledge a key role of imaging biomarkers for early diagnosis. Diagnostic accuracy depends on which marker (i.e., amyloid imaging, 18F-fluorodeoxyglucose [FDG]-PET, SPECT, MRI) as well as how it is measured (“metric”: visual, manual, semiautomated, or automated segmentation/computation). We evaluated diagnostic accuracy of marker vs metric in separating AD from healthy and prognostic accuracy to predict progression in mild cognitive impairment. The outcome measure was positive (negative) likelihood ratio, LR+ (LR−), defined as the ratio between the probability of positive (negative) test outcome in patients and the probability of positive (negative) test outcome in healthy controls. Diagnostic LR+ of markers was between 4.4 and 9.4 and LR− between 0.25 and 0.08, whereas prognostic LR+ and LR− were between 1.7 and 7.5, and 0.50 and 0.11, respectively. Within metrics, LRs varied up to 100-fold: LR+ from approximately 1 to 100; LR− from approximately 1.00 to 0.01. Markers accounted for 11% and 18% of diagnostic and prognostic variance of LR+ and 16% and 24% of LR−. Across all markers, metrics accounted for an equal or larger amount of variance than markers: 13% and 62% of diagnostic and prognostic variance of LR+, and 29% and 18% of LR−. Within markers, the largest proportion of diagnostic LR+ and LR− variability was within 18F-FDG-PET and MRI metrics, respectively. Diagnostic and prognostic accuracy of imaging AD biomarkers is at least as dependent on how the biomarker is measured as on the biomarker itself. Standard operating procedures are key to biomarker use in the clinical routine and drug trials. PMID:23897875

  9. Therapeutics for Alzheimer's disease based on the metal hypothesis. (United States)

    Bush, Ashley I; Tanzi, Rudolph E


    Alzheimer's disease is the most common form of dementia in the elderly, and it is characterized by elevated brain iron levels and accumulation of copper and zinc in cerebral beta-amyloid deposits (e.g., senile plaques). Both ionic zinc and copper are able to accelerate the aggregation of Abeta, the principle component of beta-amyloid deposits. Copper (and iron) can also promote the neurotoxic redox activity of Abeta and induce oxidative cross-linking of the peptide into stable oligomers. Recent reports have documented the release of Abeta together with ionic zinc and copper in cortical glutamatergic synapses after excitation. This, in turn, leads to the formation of Abeta oligomers, which, in turn, modulates long-term potentiation by controlling synaptic levels of the NMDA receptor. The excessive accumulation of Abeta oligomers in the synaptic cleft would then be predicted to adversely affect synaptic neurotransmission. Based on these findings, we have proposed the "Metal Hypothesis of Alzheimer's Disease," which stipulates that the neuropathogenic effects of Abeta in Alzheimer's disease are promoted by (and possibly even dependent on) Abeta-metal interactions. Increasingly sophisticated pharmaceutical approaches are now being implemented to attenuate abnormal Abeta-metal interactions without causing systemic disturbance of essential metals. Small molecules targeting Abeta-metal interactions (e.g., PBT2) are currently advancing through clinical trials and show increasing promise as disease-modifying agents for Alzheimer's disease based on the "metal hypothesis."

  10. Exploring the Effect of Phyllanthus emblica L. on Cognitive Performance, Brain Antioxidant Markers and Acetylcholinesterase Activity in Rats: Promising Natural Gift for the Mitigation of Alzheimer's Disease (United States)

    Uddin, Md. Sahab; Mamun, Abdullah Al; Hossain, Md. Sarwar; Akter, Farjana; Iqbal, Mohammed Ashraful; Asaduzzaman, Md.


    Neurodegenerative diseases are incurable and debilitating conditions that result in the progressive degeneration of nerve cells, which affect the cognitive activity. Currently, as a result of multiple studies linking Alzheimer's disease (AD) to oxidative damage, the uses of natural antioxidant to prevent, delay, or enhance the pathological changes underlying the progression of AD has received considerable attention. Therefore, this study was aimed at examining the effect of ethanolic extracts of Phyllanthus emblica (EEPE) ripe (EEPEr) and EEPE unripe (EEPEu) fruits on cognitive functions, brain antioxidant enzymes, and acetylcholinesterase (AChE) activity in rat. The effects of EEPEr and EEPEu fruits (i.e., 100 and 200 mg/kg b.w.) were examined in Swiss albino male rats for 12 days and its effect on cognitive functions, brain antioxidant enzymes, and AChE activity determined. Learning and memory enhancing activity of EEPE fruit was examined by using passive avoidance test and rewarded alternation test. Antioxidant potentiality was evaluated by measuring the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase, reduced glutathione (GSH), glutathione-S-transferase, and the contents of thiobarbituric acid reactive substances (TBARS) in entire brain tissue homogenates. AChE activity was determined using colorimetric method. Administration of the highest dose (i.e., 200 mg/kg b.w.) of EEPEr fruit significantly (p < 0.01) and both lowest and highest doses (i.e., 100 and 200 mg/kg b.w.) of EEPEu fruit markedly (p < 0.05, p < 0.001) increased step-through latency in rats on 6th, 11th, and 12th day with respect to the control group. For aforementioned doses, the percentage of memory retention (MR) was considerably (p < 0.05, p < 0.01) increased in rats on 10th, 11th, and 12th days with respect to the control group. The extract, particularly highest dose (i.e., 200 mg/kg b.w.) of EEPEr

  11. Creativity and dementia: emerging diagnostic and treatment methods for Alzheimer's disease. (United States)

    Cummings, Jeffrey L; Miller, Bruce L; Christensen, Daniel D; Cherry, Debra


    Alzheimer's disease research is beginning to yield promising treatments and prevention strategies. Current Alzheimer's disease treatments benefit symptoms, but do not appreciably alter the basic disease process. The new generation of Alzheimer's disease medications, however, will likely include disease-modifying treatments, which will slow disease progression or stop it entirely. These new treatments pursue four points of intervention: increasing the clearance of amyloid-beta42 (Abeta42) proteins in the brain, blocking Abeta42 production, decreasing Abeta42 production, and decreasing Abeta42 aggregation. Neurogenerative therapies are being explored as well, suggesting future treatments may not only stop disease progression but also reverse it. Risk factors for developing Alzheimer's disease and factors associated with a lower risk of Alzheimer's disease have been identified. Future Alzheimer's disease management may come to resemble routine cardiovascular disease prevention and management, which involves the control of modifiable risk factors and the use of medications that decrease or stop underlying pathology. The hope is that such management will arrest the disease process before cognitive symptoms have begun. Like other neurologic illnesses, Alzheimer's disease has a profound impact on creativity. Alzheimer's disease attacks the right posterior part of the brain, which enables people to retrieve internal imagery and copy images. Alzheimer's disease patients may lose the ability to copy images entirely. However, people with Alzheimer's disease can continue to produce art by using their remaining strengths, such as color or composition instead of shapes or realism. Studying art and dementia is a model for identifying the strengths of psychiatric patients. Remarkably, art emerges in some patients even in the face of degenerative disease. In this expert roundtable supplement, Jeffrey L. Cummings, MD, offers an overview of recent advances in Alzheimer's disease

  12. Geriatric Dentistry and the Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho GOIATO


    Full Text Available Introduction: The world population is getting old, mainly in countries in development like Brazil. So, the number of pathologies, which appears in the elderly, will happen in a higher frequency. Among these diseases, we can point Alzheimer, an irreversible dementia, that has been related to age, cerebral vascular disease, stroke, immunological defects and to genetic factors (Down Syndrome. It is known that with the progression of dementia, patients present difficulties of oral hygiene caused by decrease of motor and cognitive functions of Alzheimer's bearers. These patients demand specific strategies for a dental treatment without bigger difficulties. Objective: the aim of this paper was to review the articles about the relationship of geriatric dentistry and Alzheimer disease focusing and the characteristics of the patients with this kind of dementia and the cares to them. For this purpose, a peer-reviewed literature was completed using Medline database for the period from 1972 to 2006, including alzheimer disease and dentistry, and BBO for the period from 1987 to 2004, with geriatric keyword. Conclusion: The available data indicate that individuals with Alzheimer disease have more oral health problems than individuals without dementia.

  13. Early alterations in blood and brain RANTES and MCP-1 expression and the effect of exercise frequency in the 3xTg-AD mouse model of Alzheimer's disease. (United States)

    Haskins, Morgan; Jones, Terry E; Lu, Qun; Bareiss, Sonja K


    Exercise has been shown to protect against cognitive decline and Alzheimer's disease (AD) progression, however the dose of exercise required to protect against AD is unknown. Recent studies show that the pathological processes leading to AD cause characteristic alterations in blood and brain inflammatory proteins that are associated with the progression of AD, suggesting that these markers could be used to diagnosis and monitor disease progression. The purpose of this study was to determine the impact of exercise frequency on AD blood chemokine profiles, and correlate these findings with chemokine brain expression changes in the triple transgenic AD (3xTg-AD) mouse model. Three month old 3xTg-AD mice were subjected to 12 weeks of moderate intensity wheel running at a frequency of either 1×/week or 3×/week. Blood and cortical tissue were analyzed for expression of monocyte chemotactic protein-1 (MCP-1) and regulated and normal T cell expressed and secreted (RANTES). Alterations in blood RANTES and MCP-1 expression were evident at 3 and 6 month old animals compared to WT animals. Three times per week exercise but not 1×/week exercise was effective at reversing serum and brain RANTES and MCP-1 expression to the levels of WT controls, revealing a dose dependent response to exercise. Analysis of these chemokines showed a strong negative correlation between blood and brain expression of RANTES. The results indicate that alterations in serum and brain inflammatory chemokines are evident as early signs of Alzheimer's disease pathology and that higher frequency exercise was necessary to restore blood and brain inflammatory expression levels in this AD mouse model.

  14. Alzheimer Disease: Failure to Tune Out Irrelevant Input?


    Alexander Drzezga; Timo Grimmer; Martin Peller; Marc Wermke; Hartwig Siebner; Rauschecker, Josef P.; Markus Schwaiger; Alexander Kurz


    BACKGROUND: Successful cognitive performance depends not only on the activation of specific neuronal networks but also on selective suppression of task-irrelevant modalities, i.e., deactivation of non-required cerebral regions. This ability to suppress the activation of specific brain regions has, to our knowledge, never been systematically evaluated in patients with Alzheimer disease (AD). The aim of the current study was to evaluate both cerebral activation and deactivation in (1) healthy v...

  15. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. (United States)

    Venigalla, Madhuri; Gyengesi, Erika; Münch, Gerald


    Alzheimer's disease is a progressive neurodegenerative disorder, characterized by deposition of amyloid beta, neurofibrillary tangles, astrogliosis and microgliosis, leading to neuronal dysfunction and loss in the brain. Current treatments for Alzheimer's disease primarily focus on enhancement of cholinergic transmission. However, these treatments are only symptomatic, and no disease-modifying drug is available for Alzheimer's disease patients. This review will provide an overview of the proven antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects of curcumin and apigenin and discuss the potential of these compounds for Alzheimer's disease prevention and treatment. We suggest that these compounds might delay the onset of Alzheimer's disease or slow down its progression, and they should enter clinical trials as soon as possible.

  16. Aluminum and Alzheimer's disease: a new look. (United States)

    Miu, Andrei C; Benga, Oana


    Despite the circumstantial and sometimes equivocal support, the hypothetic involvement of aluminum (Al) in the etiology and pathogenesis of Alzheimer's disease (AD) has subsisted in neuroscience. There are very few other examples of scientific hypotheses on the pathogenesis of a disease that have been revisited so many times, once a new method that would allow a test of Al's accumulations in the brain of AD patients or a comparison between Al-induced and AD neuropathological signs has become available. Although objects of methodological controversies for scientists and oversimplification for lay spectators, several lines of evidence have strongly supported the involvement of Al as a secondary aggravating factor or risk factor in the pathogenesis of AD. We review evidence on the similarities and dissimilarities between Al-induced neurofibrillary degeneration and paired helical filaments from AD, the accumulation of Al in neurofibrillary tangles and senile plaques from AD, the neuropathological dissociation between AD and dialysis associated encephalopathy, and the epidemiological relations between Al in drinking water and the prevalence of AD. We also critically analyze the prospects of Al-amyloid cascade studies and other evolving lines of evidence that might shed insights into the link between Al and AD. The message between the lines of the following article is that the involvement of Al in the pathogenesis of AD should not be discarded, especially in these times when the amyloid dogma of AD etiology shows its myopia.

  17. The role of adenosine in Alzheimer's disease. (United States)

    Rahman, Anisur


    Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.

  18. 75 FR 67899 - National Alzheimer's Disease Awareness Month, 2010 (United States)


    ... terrible disease. As we continue our fight against Alzheimer's disease, we must seek new ways to prevent... and attention to those facing Alzheimer's disease. Until we find more effective treatments and a cure... Documents#0;#0; ] Proclamation 8591 of October 29, 2010 National Alzheimer's Disease Awareness Month,...

  19. Therapeutic potential of resveratrol in Alzheimer's disease


    Vingtdeux, Valérie; Dreses-Werringloer, Ute; Zhao, Haitian; Davies, Peter; Marambaud, Philippe


    Several epidemiological studies indicate that moderate consumption of red wine is associated with a lower incidence of dementia and Alzheimer's disease. Red wine is enriched in antioxidant polyphenols with potential neuroprotective activities. Despite scepticism concerning the bioavailability of these polyphenols, in vivo data have clearly demonstrated the neuroprotective properties of the naturally occurring polyphenol resveratrol in rodent models for stress and diseases. Furthermore, recent...

  20. Looking for Signs of Alzheimer's Disease (United States)

    Hodgson, Lynne Gershenson; Cutler, Stephen J.


    This study examined the correlates of symptom-seeking behavior for Alzheimer's disease (AD) among middle-aged persons. Symptom seeking, the tendency to search for signs of disease, is one manifestation of an individual's concern about developing AD. The data were obtained from a survey of two subsamples of 40-60 year old adults: 1) 108 adult…

  1. Llama VHH as immunotherapeutics in Alzheimer's disease

    NARCIS (Netherlands)

    Dorresteijn, B.


    Alzheimer's Disease (AD) is the most common form of dementia among elderly in the Western world. AD is a devastating neurodegenerative disease where patients starting with episodic memory problems end up completely bedridden and care dependent. At present there is no real therapy stopping or reversi

  2. The role of novel chitin-like polysaccharides in Alzheimer disease. (United States)

    Castellani, Rudy J; Perry, George; Smith, Mark A


    While controversy over the role of carbohydrates in amyloidosis has existed since the initial recognition of amyloid, current understanding of the role of polysaccharides in the pathogenesis of amyloid deposition of Alzheimer disease and other amyloidoses is limited to studies of glyco-conjugates such as heparin sulfate proteoglycan. We hypothesized that polysaccharides may play a broader role in light of 1) the impaired glucose utilization in Alzheimer disease; 2) the demonstration of amylose in the Alzheimer disease brain; 3) the role of amyloid in Alzheimer disease pathogenesis. Specifically, as with glucose polymers (amyloid), we wanted to explore whether glucosamine polymers such as chitin were being synthesized and deposited as a result of impaired glucose utilization and aberrant hexosamine pathway activation. To this end, using calcofluor histochemistry, we recently demonstrated that amyloid plaques and blood vessels affected by amyloid angiopathy in subjects with sporadic and familial Alzheimer disease elicit chitin-type characteristics. Since chitin is a highly insoluble molecule and a substrate for glycan-protein interactions, chitin-like polysaccharides within the Alzheimer disease brain could provide a scaffolding for amyloid-beta deposition. As such, glucosamine may facilitate the process of amyloidosis, and /or provide neuroprotection in the Alzheimer disease brain.

  3. Current treatments for patients with Alzheimer disease. (United States)

    Osborn, Gerald G; Saunders, Amanda Vaughn


    There is neither proven effective prevention for Alzheimer disease nor a cure for patients with this disorder. Nevertheless, a spectrum of biopsychosocial therapeutic measures is available for slowing progression of the illness and enhancing quality of life for patients. These measures include a range of educational, psychological, social, and behavioral interventions that remain fundamental to effective care. Also available are a number of pharmacologic treatments, including prescription medications approved by the US Food and Drug Administration for Alzheimer disease, "off-label" uses of medications to manage target symptoms, and controversial complementary therapies. Physicians must make the earliest possible diagnosis to use these treatments most effectively. Physicians' goals should be to educate patients and their caregivers, to plan long-term care options, to maximally manage concurrent illnesses, to slow and ameliorate the most disabling symptoms, and to preserve effective functioning for as long as possible. The authors review the various current treatments for patients with Alzheimer disease.

  4. Microglia, Alzheimer's Disease, and Complement

    Directory of Open Access Journals (Sweden)

    Helen Crehan


    Full Text Available Microglia, the immune cell of the brain, are implicated in cascades leading to neuronal loss and cognitive decline in Alzheimer’s disease (AD. Recent genome-wide association studies have indicated a number of risk factors for the development of late-onset AD. Two of these risk factors are an altered immune response and polymorphisms in complement receptor 1. In view of these findings, we discuss how complement signalling in the AD brain and microglial responses in AD intersect. Dysregulation of the complement cascade, either by changes in receptor expression, enhanced activation of different complement pathways or imbalances between complement factor production and complement cascade inhibitors may all contribute to the involvement of complement in AD. Altered complement signalling may reduce the ability of microglia to phagocytose apoptotic cells and clear amyloid beta peptides, modulate the expression by microglia of complement components and receptors, promote complement factor production by plaque-associated cytokines derived from activated microglia and astrocytes, and disrupt complement inhibitor production. The evidence presented here indicates that microglia in AD are influenced by complement factors to adopt protective or harmful phenotypes and the challenge ahead lies in understanding how this can be manipulated to therapeutic advantage to treat late onset AD.

  5. Biomedicine and Informatics Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kang Cheng


    Full Text Available In a perspective of biomedicine and informatics, the mechanism of Alzheimer's, senile amnesia, or other aging-associated and cognitive impairment related diseases involve four important informative processing procedures: propagation, consolidation, retrieval and cognition, In this study, we systematically model the four procedures based on published experimental data. When modeling the propagation, we develop an equivalent circuit of biological membrane to describe how the neuron signals are propagated, attenuated, compensated, transferred, oscillated and filtered; and how wrong signals are related to the diseases. Our circuit involves complex admittances, resonance angular frequencies, propagating constants, active pump currents, transfer functions in frequency domain and memory functions in time domain. Our circuit explains recurrent of brain neurons and clinical EEG frequencies as well as represents an encoding of current or electric field intensity (EFI. When modeling the consolidation and the retrieval of long term memory (LTM, we emphasize the EFI consists of a non conservative electric field intensity (NCEFI and a conservative electric field intensity (CEFI. It is mostly a NCEFI of acquired information to evoke an informative flow: from the inherited or mutant DNA to the transcribed RNA, from the transcribed RNA to the translated proteins. Some new synthesized proteins relate to the memory functions. The charges of the proteins and the memory functions mostly store the LTM and play an important role during the LTM retrieval. When modeling the cognition in working memory (WM, our model demonstrates: if a sum of two sets of EFI signals is enhanced positively (or negatively, at a sub-cellular level (especially at the axon hillock, the sum supports a positive (or negative cognition; otherwise, the sum tends to be no cognition. A set of related brain neurons in WM work organically to vote, by EFI signal outputs through their axons, if they

  6. Alzheimer's disease: a mathematical model for onset and progression

    CERN Document Server

    Bertsch, Michiel; Marcello, Norina; Tesi, Maria Carla; Tosin, Andrea


    In this paper we propose a mathematical model for the onset and progression of Alzheimer's disease based on transport and diffusion equations. We regard brain neurons as a continuous medium, and structure them by their degree of malfunctioning. Two different mechanisms are assumed to be relevant for the temporal evolution of the disease: i) diffusion and agglomeration of soluble polymers of amyloid, produced by damaged neurons; ii) neuron-to-neuron prion-like transmission. We model these two processes by a system of Smoluchowski equations for the amyloid concentration, coupled to a kinetic-type transport equation for the distribution function of the degree of malfunctioning of neurons. The second equation contains an integral term describing the random onset of the disease as a jump process localized in particularly sensitive areas of the brain. Even though we deliberately neglect many aspects of the complexity of the brain and the disease, numerical simulations are in good qualitative agreement with clinical...

  7. Science Signaling Podcast for 10 May 2016: PKCα in Alzheimer's disease. (United States)

    Newton, Alexandra C; Tanzi, Rudolph E; VanHook, Annalisa M


    This Podcast features an interview with Alexandra Newton and Rudolph Tanzi, authors of a Research Article that appears in the 10 May 2016 issue of Science Signaling, about activating mutations in protein kinase Cα that may promote the type of neural defects that characterize Alzheimer's disease. Alzheimer's disease is a progressive neurodegenerative disorder that causes cognitive loss and, eventually, death. Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ), synaptic depression, and synaptic degeneration. Alfonso et al found activating mutations in the gene encoding protein kinase Cα (PKCα) in some families with inherited Alzheimer's disease. Loss of PKCα function prevented Aβ-induced synaptic depression in brain tissue from mice, suggesting that activated forms of PKCα may contribute to Alzheimer's disease in some patients.Listen to Podcast.

  8. Changes in the brain and plasma Aβ peptide levels with age and its relationship with cognitive impairment in the APPswe/PS1dE9 mouse model of Alzheimer's disease. (United States)

    Izco, M; Martínez, P; Corrales, A; Fandos, N; García, S; Insua, D; Montañes, M; Pérez-Grijalba, V; Rueda, N; Vidal, V; Martínez-Cué, C; Pesini, P; Sarasa, M


    Double transgenic mice expressing mutant amyloid precursor protein (APPswe) and mutant presenilin 1 (PS1dE9) are a model of Alzheimer-type amyloidosis and are widely used in experimental studies. In the present work, the relationships between brain and plasma amyloid-β peptide (Aβ) levels and cognitive impairments were examined in male APPswe/PS1dE9 double transgenic mice at different ages. When compared with non-transgenic littermates, APPswe/PS1dE9 mice exhibited significant learning deficits from the age of 6months (M6), which were aggravated at later stages of life (M8 and M12). Sporadic brain amyloid plaques were observed in mice as early as M3 and progressively increased in number and size up to M12. A similar increase was observed in brain insoluble Aβ levels as assessed by enzyme-linked immunosorbent assay (ELISA). In particular, the levels of brain insoluble Aβ peptides rose steeply from M4 to M6. Interestingly, this pronounced amyloid deposition was accompanied by a temporary fall in the concentration of brain soluble and membrane-bound Aβ peptides at M6 that rose again at M8 and M12. The plasma levels of Aβ40 and Aβ42 decreased with advancing age up to M8, when they stabilized at M12. This decrease in plasma Aβ levels coincided with the observed increase in insoluble brain Aβ levels. These results could be useful for developing plasma Aβ levels as possible biomarkers of the cerebral amyloidosis and provide advances in the knowledge of the Aβ peptide biochemical changes that occur in the brain of Alzheimer's disease patients.

  9. Beta-amyloidolysis and glutathione in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lasierra-Cirujeda J


    Full Text Available J Lasierra-Cirujeda,1 P Coronel,2 MJ Aza,3 M Gimeno2 1CM Hematológico SC, Logroño, La Rioja, Spain; 2Tedec-Meiji Farma, SA, Alcalá de Henares, Madrid, Spain; 3Pharmaceutical Act, Ministry of Health, Regional Government, La Rioja, Spain Abstract: In this review, we hypothesized the importance of the interaction between the brain glutathione (GSH system, the proteolytic tissue plasminogen activator (t-PA/plasminogen/plasmin system, regulated by plasminogen activator inhibitor (PAI-1, and neuroserpin in the pathogenesis of Alzheimer's disease. The histopathological characteristic hallmark that gives personality to the diagnosis of Alzheimer's disease is the accumulation of neurofibroid tangles located intracellularly in the brain, such as the protein tau and extracellular senile plaques made primarily of amyloidal substance. These formations of complex etiology are intimately related to GSH, brain protective antioxidants, and the proteolytic system, in which t-PA plays a key role. There is scientific evidence that suggests a relationship between aging, a number of neurodegenerative disorders, and the excessive production of reactive oxygen species and accompanying decreased brain proteolysis. The plasminogen system in the brain is an essential proteolytic mechanism that effectively degrades amyloid peptides ("beta-amyloidolysis" through action of the plasmin, and this physiologic process may be considered to be a means of prevention of neurodegenerative disorders. In parallel to the decrease in GSH levels seen in aging, there is also a decrease in plasmin brain activity and a progressive decrease of t-PA activity, caused by a decrease in the expression of the t-PA together with an increase of the PAI-1 levels, which rise to an increment in the production of amyloid peptides and a lesser clearance of them. Better knowledge of the GSH mechanism and cerebral proteolysis will allow us to hypothesize about therapeutic practices. Keywords: glutathione

  10. Circulating Biomarker Panels in Alzheimer's Disease. (United States)

    Zafari, Sachli; Backes, Christina; Meese, Eckart; Keller, Andreas


    The early diagnosis of diseases frequently represents an important unmet clinical need supporting in-time treatment of pathologies. This also applies to neurodegenerative diseases such as Alzheimer's disease (AD), the most common form of dementia, estimated to affect millions of individuals worldwide. The respective diagnostic and prognostic markers, especially for the preclinical stages of AD, are expected to improve patients' outcome significantly. In the last decades, many approaches to detecting AD have been developed, including markers to discover changes in amyloid-β levels [from cerebrospinal fluid (CSF) or using positron emission tomography] or other brain imaging technologies such as structural magnetic resonance imaging (MRI), functional-connectivity MRI or task-related functional MRI. A major challenge is the detection of AD using minimally or even noninvasive biomarkers from body fluids such as plasma or serum. Circulating biomarker candidates based on mRNAs or proteins measured from blood cells, plasma or serum have been proposed for various pathologies including AD. As for other diseases, there is a tendency to use marker signatures obtained by high-throughput approaches, which allow the generation of profiles of hundreds to thousands of biomarkers simultaneously [microarrays, mass spectrometry or next-generation sequencing (NGS)]. Beyond mRNAs and proteins, recent approaches have measured small noncoding RNA (so-called microRNA) profiles in AD patients' blood samples using NGS or array-based technologies. Generally, the development of marker panels is in its early stages and requires further, substantial clinical validation. In this review, we provide an overview of different circulating AD biomarkers, starting with a brief summary of CSF markers and focusing on novel biomarker signatures such as small noncoding RNA profiles.

  11. Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes (United States)

    Tousseyn, Thomas; Bajsarowicz, Krystyna; Sánchez, Henry; Gheyara, Ania; Oehler, Abby; Geschwind, Michael; DeArmond, Bernadette; DeArmond, Stephen J.


    We examined the brains of 266 patients with prion diseases (PrionD) and found that 46 (17%) had Alzheimer disease (AD)-like changes. To explore potential mechanistic links between PrionD and AD, we exposed human brain aggregates (Hu BrnAggs) to brain homogenate from a patient with sporadic Creutzfeldt-Jakob disease (CJD) and found that the neurons in the Hu BrnAggs produced many β-amyloid (β42) inclusions, whereas uninfected, control-exposed Hu BrnAggs did not. Western blots of 20-pooled CJD-infected BrnAggs verified higher Aβ42 levels than controls. We next examined the CA1 region of the hippocampus from 14 patients with PrionD and found that 5 patients had low levels of scrapie-associated prion protein (PrPSc), many Aβ42 intraneuronal inclusions, low APOE-4, and no significant nerve cell loss. Seven patients had high levels of PrPSc, low Aβ42, high APOE-4 and 40% nerve cell loss, suggesting that APOE-4 and PrPSc together cause neuron loss in PrionD. There were also increased levels of hyperphosphorylated tau protein (Hτ) and Hτ-positive neuropil threads and neuron bodies in both PrionD and AD groups. The brains of 6 age-matched control patients without dementia did not contain Aβ42 deposits; however, there were rare Hτ-positive threads in 5 controls and 2 controls had a few Hτ-positive nerve cell bodies. We conclude that PrionD may trigger biochemical changes similar to AD and suggest that PrionD are diseases of PrPSc, Aβ42, APOE-4 and abnormal tau. PMID:26226132

  12. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Wen-Han Hu; De-Long Wu; Kai Zhang; Jian-Guo Zhang


    Background:Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS) can be used as a tool to enhance cognitive functions.The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit,including the anterior nucleus of thalamus (ANT),the entorhinal cortex (EC),and the fornix (FX),on cognitive behaviors in an Alzheimer's disease (AD) rat model.Methods:Forty-eight rats were subjected to an intrahippocampal injection ofamyloid peptides 1-42 to induce an AD model.Rats were divided into six groups:DBS and sham DBS groups of ANT,EC,and FX.Spatial learning and memory were assessed by the Morris water maze (MWM).Recognition memory was investigated by the novel object recognition memory test (NORM).Locomotor and anxiety-related behaviors were detected by the open field test (OF).By using two-way analysis of variance (ANOVA),behavior differences between the six groups were analyzed.Results:In the MWM,the ANT,EC,and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2.23) =6.04,P < 0.01),the frequency of platform crossing (F(2,23) =11.53,P < 0.001),and the percent time spent within the platform quadrant (F(2,23) =6.29,P < 0.01).In the NORM,the EC and FX DBS groups spent more time with the novel object,although the ANT DBS group did not (F(2,23) =10.03,P < 0.001).In the OF,all of the groups showed a similar total distance moved (F(1.42) =1.14,P =0.29)and relative time spent in the center (F(2,42) =0.56,P =0.58).Conclusions:Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently thanANT DBS.In addition,hippocampus-independent recognition memory was enhanced by EC and FX DBS.None of the targets showed side-effects of anxiety or locomotor behaviors.

  13. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Although saturated (SAFA, monounsaturated (MUFA, and polyunsaturated (PUFA fatty acids are important structural components of neuronal membranes and precursors of signaling molecules, knowledge of their metabolism in Alzheimer's disease (AD is limited. Based on recent discovery that lipids in cerebrospinal fluid (CSF are distributed in both brain-derived nanoparticles (NP and supernatant fluid (SF, we hypothesized that fatty acid (FA abundance and distribution into these compartments is altered in early AD pathology.We assayed the FA composition and abundance in CSF fractions from cognitively healthy (CH, mild cognitive impairment (MCI, and AD study participants using gas chromatography-mass spectrometry. In the SF fraction, concentration of docosahexaenoic acid [DHA, (C22:6n-3] was less in AD compared with CH, while alpha linolenic acid [α-LNA, (C18:3n-3] was lower in MCI compared with CH. In the NP fraction, levels of SAFAs (C15:0, C16:0 and a MUFA (C15:1 differentiated CH from MCI, while two MUFAs (C15:1, C19:1 and four PUFAs (C20:2n-6, C20:3n-3, C22:4n-6, C22:5n-3 were higher in AD compared with CH. Levels of even-chain free SAFA and total free FA levels were higher in AD, levels of odd-chain free SAFAs, MUFAs, n-3 PUFAs, and total PUFA, were lower in AD compared with CH. Free n-6 PUFA levels were similar in all three groups.FA metabolism is compartmentalized differently in NP versus SF fractions of CSF, and altered FA levels reflect the importance of abnormal metabolism and oxidative pathways in AD. Depleted DHA in CSF fractions in AD is consistent with the importance of n-3 PUFAs in cognitive function, and suggests that disturbed PUFA metabolism contributes to AD pathology. This study of FA levels in CSF fractions from different cognitive stages shows potential AD biomarkers, and provides further insight into cell membrane dysfunctions, including mechanisms leading to amyloid production.

  14. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer's disease. (United States)

    Arlt, Sönke; Buchert, Ralph; Spies, Lothar; Eichenlaub, Martin; Lehmbeck, Jan T; Jahn, Holger


    Fully automated magnetic resonance imaging (MRI)-based volumetry may serve as biomarker for the diagnosis in patients with mild cognitive impairment (MCI) or dementia. We aimed at investigating the relation between fully automated MRI-based volumetric measures and neuropsychological test performance in amnestic MCI and patients with mild dementia due to Alzheimer's disease (AD) in a cross-sectional and longitudinal study. In order to assess a possible prognostic value of fully automated MRI-based volumetry for future cognitive performance, the rate of change of neuropsychological test performance over time was also tested for its correlation with fully automated MRI-based volumetry at baseline. In 50 subjects, 18 with amnestic MCI, 21 with mild AD, and 11 controls, neuropsychological testing and T1-weighted MRI were performed at baseline and at a mean follow-up interval of 2.1 ± 0.5 years (n = 19). Fully automated MRI volumetry of the grey matter volume (GMV) was performed using a combined stereotactic normalisation and segmentation approach as provided by SPM8 and a set of pre-defined binary lobe masks. Left and right hippocampus masks were derived from probabilistic cytoarchitectonic maps. Volumes of the inner and outer liquor space were also determined automatically from the MRI. Pearson's test was used for the correlation analyses. Left hippocampal GMV was significantly correlated with performance in memory tasks, and left temporal GMV was related to performance in language tasks. Bilateral frontal, parietal and occipital GMVs were correlated to performance in neuropsychological tests comprising multiple domains. Rate of GMV change in the left hippocampus was correlated with decline of performance in the Boston Naming Test (BNT), Mini-Mental Status Examination, and trail making test B (TMT-B). The decrease of BNT and TMT-A performance over time correlated with the loss of grey matter in multiple brain regions. We conclude that fully automated MRI

  15. Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA) (United States)

    Christov, Alexander; Ottman, Todd; Grammas, Paula


    Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (Pcollagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.

  16. Neuropeptides in Alzheimer's disease: from pathophysiological mechanisms to therapeutic opportunities. (United States)

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul


    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition and behavior are observed, the study of neuropeptides is particularly interesting since altered neuropeptides can function as biomarkers or as targets for new medication. In this article neuropeptides with relevance to AD are listed and their influence on cognitive and behavioral disturbances is discussed. Findings from human cerebrospinal fluid and brain tissue, and AD mouse models are described and related to the pathophysiology and symptomatology of the disease. In the past, clinical trials with neuropeptides have often failed due to insufficient delivery to the brain. Therefore, new strategies to target the brain with peptide drugs are also covered.

  17. A Subset of Cerebrospinal Fluid Proteins from a Multi-Analyte Panel Associated with Brain Atrophy, Disease Classification and Prediction in Alzheimer's Disease. (United States)

    Khan, Wasim; Aguilar, Carlos; Kiddle, Steven J; Doyle, Orla; Thambisetty, Madhav; Muehlboeck, Sebastian; Sattlecker, Martina; Newhouse, Stephen; Lovestone, Simon; Dobson, Richard; Giampietro, Vincent; Westman, Eric; Simmons, Andrew


    In this exploratory neuroimaging-proteomic study, we aimed to identify CSF proteins associated with AD and test their prognostic ability for disease classification and MCI to AD conversion prediction. Our study sample consisted of 295 subjects with CSF multi-analyte panel data and MRI at baseline downloaded from ADNI. Firstly, we tested the statistical effects of CSF proteins (n = 83) to measures of brain atrophy, CSF biomarkers, ApoE genotype and cognitive decline. We found that several proteins (primarily CgA and FABP) were related to either brain atrophy or CSF biomarkers. In relation to ApoE genotype, a unique biochemical profile characterised by low CSF levels of Apo E was evident in ε4 carriers compared to ε3 carriers. In an exploratory analysis, 3/83 proteins (SGOT, MCP-1, IL6r) were also found to be mildly associated with cognitive decline in MCI subjects over a 4-year period. Future studies are warranted to establish the validity of these proteins as prognostic factors for cognitive decline. For disease classification, a subset of proteins (n = 24) combined with MRI measurements and CSF biomarkers achieved an accuracy of 95.1% (Sensitivity 87.7%; Specificity 94.3%; AUC 0.95) and accurately detected 94.1% of MCI subjects progressing to AD at 12 months. The subset of proteins included FABP, CgA, MMP-2, and PPP as strong predictors in the model. Our findings suggest that the marker of panel of proteins identified here may be important candidates for improving the earlier detection of AD. Further targeted proteomic and longitudinal studies would be required to validate these findings with more generalisability.

  18. Family History of Alzheimer's Disease and Cortical Thickness in Patients With Dementia. (United States)

    Ganske, Steffi; Haussmann, Robert; Gruschwitz, Antonia; Werner, Annett; Osterrath, Antje; Baumgaertel, Johanna; Lange, Jan; Donix, Katharina L; Linn, Jennifer; Donix, Markus


    A first-degree family history of Alzheimer's disease reflects genetic risks for the neurodegenerative disorder. Recent imaging data suggest localized effects of genetic risks on brain structure in healthy people. It is unknown whether this association can also be found in patients who already have dementia. Our aim was to investigate whether family history risk modulates regional medial temporal lobe cortical thickness in patients with Alzheimer's disease. We performed high-resolution magnetic resonance imaging and cortical unfolding data analysis on 54 patients and 53 nondemented individuals. A first-degree family history of Alzheimer's disease was associated with left hemispheric cortical thinning in the subiculum among patients and controls. The contribution of Alzheimer's disease family history to regional brain anatomy changes independent of cognitive impairment may reflect genetic risks that modulate onset and clinical course of the disease.

  19. 77 FR 66519 - National Alzheimer's Disease Awareness Month, 2012 (United States)


    ... Documents#0;#0; ] Proclamation 8897 of November 1, 2012 National Alzheimer's Disease Awareness Month, 2012... country confront the tragic realities of Alzheimer's disease--an irreversible, fatal illness that robs men... Americans grows in the coming years, Alzheimer's disease will continue to pose serious risks to our...

  20. 76 FR 68615 - National Alzheimer's Disease Awareness Month, 2011 (United States)


    ... Documents#0;#0; ] Proclamation 8745 of November 1, 2011 National Alzheimer's Disease Awareness Month, 2011... heartbreak of watching a loved one struggle with Alzheimer's disease is a pain they know all too well. Alzheimer's disease burdens an increasing number of our Nation's elders and their families, and it...

  1. 78 FR 66611 - National Alzheimer's Disease Awareness Month, 2013 (United States)


    ... Documents#0;#0; ] Proclamation 9050 of October 31, 2013 National Alzheimer's Disease Awareness Month, 2013 By the President of the United States of America A Proclamation Alzheimer's disease is an... younger Americans with early-onset Alzheimer's disease. This month, we stand with everyone confronting...

  2. Transcranial Magnetic Stimulation Studies in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Andrea Guerra


    Full Text Available Although motor deficits affect patients with Alzheimer's disease (AD only at later stages, recent studies demonstrated that primary motor cortex is precociously affected by neuronal degeneration. It is conceivable that neuronal loss is compensated by reorganization of the neural circuitries, thereby maintaining motor performances in daily living. Effectively several transcranial magnetic stimulation (TMS studies have demonstrated that cortical excitability is enhanced in AD and primary motor cortex presents functional reorganization. Although the best hypothesis for the pathogenesis of AD remains the degeneration of cholinergic neurons in specific regions of the basal forebrain, the application of specific TMS protocols pointed out a role of other neurotransmitters. The present paper provides a perspective of the TMS techniques used to study neurophysiological aspects of AD showing also that, based on different patterns of cortical excitability, TMS may be useful in discriminating between physiological and pathological brain aging at least at the group level. Moreover repetitive TMS might become useful in the rehabilitation of AD patients. Finally integrated approaches utilizing TMS together with others neuro-physiological techniques, such as high-density EEG, and structural and functional imaging as well as biological markers are proposed as promising tool for large-scale, low-cost, and noninvasive evaluation of at-risk populations.

  3. Biomarkers in translational research of Alzheimer's disease. (United States)

    Tarawneh, Rawan; Holtzman, David M


    The identification and characterization of amyloid-beta (Abeta) and tau as the main pathological substrates of Alzheimer's disease (AD) have driven many efforts in search for suitable biomarkers for AD. In the last decade, research in this area has focused on developing a better understanding of the principles that govern protein deposition, mechanisms that link aggregation to toxicity and neuronal death, and a better understanding of protein dynamics in brain tissue, interstitial fluid and CSF. While Abeta and tau represent the two key pathological mediators of disease, other aspects of this multifaceted disease (e.g. oxidative stress, calcium-mediated toxicity, and neuroinflammation) are being unraveled, with the hope to develop a more comprehensive approach in exploring disease mechanisms. This has not only expanded possible areas for disease-modifying therapies, but has also allowed the introduction of novel, and potentially useful, fluid and radiological markers for the presence and progression of AD pathology. There is no doubt that the identification of several fluid and imaging biomarkers that can reliably detect the early stages of AD will have great implications in the design of clinical trials, in the selection of homogenous research populations, and in the assessment of disease outcomes. Markers with good diagnostic specificity will aid researchers in differentiating individuals with preclinical and probable AD from individuals who do not have AD pathology or have other dementing disorders. Markers that change with disease progression may offer utility in assessing the rates of disease progression and the efficacy of potential therapeutic agents on AD pathology. For both of these purposes, CSF Abeta42, amyloid imaging, and CSF tau appear to be very good markers of the presence of AD pathology as well as predictive of who will progress from MCI to AD. Volumetric MRI is also good at separating individuals with MCI and AD from controls and is predictive of

  4. Perceptions, Knowledge, Incentives, and Barriers of Brain Donation among African American Elders Enrolled in an Alzheimer's Research Program (United States)

    Lambe, Susan; Cantwell, Nicole; Islam, Fareesa; Horvath, Kathy; Jefferson, Angela L.


    Purpose: To learn about African American older adults' knowledge and perceptions of brain donation, factors that relate to participating or not participating in a brain donation research program, and methods to increase African American brain donation commitment rates in the context of an Alzheimer's disease (AD) research program. Design and…

  5. Translocator protein (TSPO) role in aging and Alzheimer's disease. (United States)

    Repalli, Jayanthi


    Cellular damage and deregulated apoptotic cell death lead to functional impairment, and a main consequence of these events is aging. Cellular damage is initiated by different stress/risk factors such as oxidative stress, inflammation, and heavy metals. These stress/risk factors affect the cellular homeostasis by altering methylation status of several aging and Alzheimer's disease associated genes; these effects can be manifested immediately after exposure to stress and at later stages of life. However, when cellular damage exceeds certain threshold levels apoptosis is initiated. This review discusses the stress factors involved in cellular damage and the role and potential of TSPO-mediated cell death in aging as well as in Alzheimer's disease, which is also characterized by extensive cell death. Mitochondrial-mediated apoptotic death through the release of cytochrome c is regulated by TSPO, and increased expression of this protein is observed in both elderly people and in patients with Alzheimer's disease. TSPO forms and mediates opening of the mitochondrial membrane pore, mPTP and oxidizes cardiolipin, and these events lead to the leakage of apoptotic death mediators, such as cytochrome c, resulting in cell death. However, TSPO has many proposed functions and can also increase steroid synthesis, which leads to inhibition of inflammation and inhibition of the release of apoptotic factors, thereby decreasing cell damage and promoting cell survival. Thus, TSPO mediates apoptosis and decreases the cell damage, which in turn dictates the process of aging as well as the functionality of organs such as the brain. TSPO modulation with ligands in the Alzheimer's disease mouse model showed improvement in behavioral symptoms, and studies in Drosophila species showed increased cell survival and prolonged lifespan in flies after TSPO inhibition. These data suggest that since effects/signs of stress can manifest at any time, prevention through change in lifestyle and TSPO

  6. Extensive nuclear sphere generation in the human Alzheimer's brain. (United States)

    Kolbe, Katharina; Bukhari, Hassan; Loosse, Christina; Leonhardt, Gregor; Glotzbach, Annika; Pawlas, Magdalena; Hess, Katharina; Theiss, Carsten; Müller, Thorsten


    Nuclear spheres are protein aggregates consisting of FE65, TIP60, BLM, and other yet unknown proteins. Generation of these structures in the cellular nucleus is putatively modulated by the amyloid precursor protein (APP), either by its cleavage or its phosphorylation. Nuclear spheres were preferentially studied in cell culture models