WorldWideScience

Sample records for alzheimers disease brain

  1. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  2. Resting-state oscillatory brain dynamics in Alzheimer disease

    NARCIS (Netherlands)

    de Haan, W.; Stam, C.J.; Jones, B.F.; Zuiderwijk, I.M.; van Dijk, B.W.; Scheltens, P.

    2008-01-01

    Altered oscillatory brain activity in Alzheimer disease (AD) may reflect underlying neuropathological changes, and its characterization might lead to new diagnostic possibilities. The present study using quantitative magnetoencephalography was set up to examine power spectrum changes in AD patients,

  3. Microprobe PIXE analysis and EDX analysis on the brain of patients with Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S. [Tokyo Univ. (Japan). Faculty of Medicine; Horino, Y.; Mokuno, Y.; Fujii, K.; Kakimi, S.; Mizutani, T.; Matsushima, H.; Ishikawa, A.

    1996-12-31

    To investigate the cause of Alzheimer`s disease (senile dementia of Alzheimer`s disease type), we examined aluminium (Al) in the brain (hippocampus) of patients with Alzheimer`s disease using heavy ion (5 MeV Si{sup 3+}) microprobe particle-induced X-ray emission (PIXE) analysis. Heavy ion microprobes (3 MeV Si{sup 2+}) have several times higher sensitivity for Al detection than 2 MeV proton microprobes. We also examined Al in the brain of these patients by energy dispersive X-ray spectroscopy (EDX). (1) Al was detected in the cell nuclei isolated from the brain of patients with Alzheimer`s disease using 5 MeV Si{sup 3+} microprobe PIXE analysis, and EDX analysis. (2) EDX analysis demonstrated high levels of Al in the nucleolus of nerve cells in frozen sections prepared from the brain of these patients. Our results support the theory that Alzheimer`s disease is caused by accumulation of Al in the nuclei of brain cells. (author)

  4. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Brain aging, Alzheimer's disease, and mitochondria

    Science.gov (United States)

    Swerdlow, Russell H.

    2011-01-01

    The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. PMID:21920438

  6. Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer's disease.

    Science.gov (United States)

    Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan

    2017-11-01

    Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer's disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer's disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer's disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks-the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer's disease patients with and without cerebrovascular disease. Alzheimer's disease patients without cerebrovascular disease, but not Alzheimer's disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer's disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer's disease patients with and without cerebrovascular disease. Across Alzheimer's disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer's disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer's disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our

  7. Evidence for brain glucose dysregulation in Alzheimer's disease.

    Science.gov (United States)

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  8. CARS microscopy of Alzheimer's diseased brain tissue

    Science.gov (United States)

    Enejder, Annika; Kiskis, Juris; Fink, Helen; Nyberg, Lena; Thyr, Jakob; Li, Jia-Yi

    2014-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder currently without cure, characterized by the presence of extracellular plaques surrounded by dystrophic neurites. In an effort to understand the underlying mechanisms, biochemical analysis (protein immunoblot) of plaque extracts reveals that they consist of amyloid-beta (Aβ) peptides assembled as oligomers, protofibrils and aggregates. Their spatial distribution has been confirmed by Thioflavin-S or immuno-staining with fluorescence microscopy. However, it is increasingly understood that the protein aggregation is only one of several mechanism that causes neuronal dysfunction and death. This raises the need for a more complete biochemical analysis. In this study, we have complemented 2-photon fluorescence microscopy of Thioflavin-S and Aβ immuno-stained human AD plaques with CARS microscopy. We show that the chemical build-up of AD plaques is more complex and that Aβ staining does not provide the complete picture of the spatial distribution or the molecular composition of AD plaques. CARS images provide important complementary information to that obtained by fluorescence microscopy, motivating a broader introduction of CARS microscopy in the AD research field.

  9. Energy metabolism and inflammation in brain aging and Alzheimer's disease.

    Science.gov (United States)

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-11-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  11. Deregulation of brain insulin signaling in Alzheimer's disease.

    Science.gov (United States)

    Chen, Yanxing; Deng, Yanqiu; Zhang, Baorong; Gong, Cheng-Xin

    2014-04-01

    Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.

  12. Blood-Brain Glucose Transfer in Alzheimer's disease

    DEFF Research Database (Denmark)

    Gejl, Michael; Brock, Birgitte; Egefjord, Lærke

    2017-01-01

    There are fewer than normal glucose transporters at the blood-brain barrier (BBB) in Alzheimer's disease (AD). When reduced expression of transporters aggravates the symptoms of AD, the transporters become a potential target of therapy. The incretin hormone GLP-1 prevents the decline of cerebral...... metabolic rate for glucose (CMRglc) in AD, and GLP-1 may serve to raise transporter numbers. We hypothesized that the GLP-1 analog liraglutide would prevent the decline of CMRglc in AD by raising blood-brain glucose transfer, depending on the duration of disease. We randomized 38 patients with AD...

  13. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. How does brain insulin resistance develop in Alzheimer's disease?

    Science.gov (United States)

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  15. Expression of novel Alzheimer's disease risk genes in control and Alzheimer's disease brains.

    Directory of Open Access Journals (Sweden)

    Celeste M Karch

    Full Text Available Late onset Alzheimer's disease (LOAD etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR, with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.

  16. Genetics Home Reference: Alzheimer disease

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Alzheimer disease Alzheimer disease Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Alzheimer disease is a degenerative disease of the brain ...

  17. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial

    OpenAIRE

    Rijpma, A.; Graaf, M. van der; Lansbergen, M.M.; Meulenbroek, O.V.; Cetinyurek-Yavuz, A.; Sijben, J.W.; Heerschap, A.; Olde Rikkert, M.G.M.

    2017-01-01

    Background Synaptic dysfunction contributes to cognitive impairment in Alzheimer?s disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients with Alzheimer?s disease. Methods Thirty-four drug-naive patients with mild Alzheimer?s disease (Mini Mental State Examination score ?20) were enrolled in this exploratory, double-blind, randomized...

  18. Clearance systems in the brain-implications for Alzheimer disease.

    Science.gov (United States)

    Tarasoff-Conway, Jenna M; Carare, Roxana O; Osorio, Ricardo S; Glodzik, Lidia; Butler, Tracy; Fieremans, Els; Axel, Leon; Rusinek, Henry; Nicholson, Charles; Zlokovic, Berislav V; Frangione, Blas; Blennow, Kaj; Ménard, Joël; Zetterberg, Henrik; Wisniewski, Thomas; de Leon, Mony J

    2015-08-01

    Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.

  19. Microprobe PIXE analysis and EDX analysis on the brain of patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Yumoto, S.; Horino, Y.; Mokuno, Y.; Fujii, K.; Kakimi, S.; Mizutani, T.; Matsushima, H.; Ishikawa, A.

    1996-01-01

    To investigate the cause of Alzheimer's disease (senile dementia of Alzheimer's disease type), we examined aluminium (Al) in the brain (hippocampus) of patients with Alzheimer's disease using heavy ion (5 MeV Si 3+ ) microprobe particle-induced X-ray emission (PIXE) analysis. Heavy ion microprobes (3 MeV Si 2+ ) have several times higher sensitivity for Al detection than 2 MeV proton microprobes. We also examined Al in the brain of these patients by energy dispersive X-ray spectroscopy (EDX). (1) Al was detected in the cell nuclei isolated from the brain of patients with Alzheimer's disease using 5 MeV Si 3+ microprobe PIXE analysis, and EDX analysis. (2) EDX analysis demonstrated high levels of Al in the nucleolus of nerve cells in frozen sections prepared from the brain of these patients. Our results support the theory that Alzheimer's disease is caused by accumulation of Al in the nuclei of brain cells. (author)

  20. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    International Nuclear Information System (INIS)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm

  1. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... secrets of Alzheimer's disease: exploring the brain - Duration: 6:27. Fondation Vaincre Alzheimer 348,442 views 6:27 Loading more suggestions... Show more Language: English ...

  2. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  3. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Benito Minjarez

    2016-06-01

    Full Text Available Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article “Identification of proteins that are differentially expressed in brains with Alzheimer’s disease using iTRAQ labeling and tandem mass spectrometry” (Minjarez et al., 2016 [1].

  4. Atrophy-specific MRI brain template for Alzheimer's disease and mild cognitive impairment

    DEFF Research Database (Denmark)

    Fonov, Vladimir; Coupe, Pierrick; Eskildsen, Simon Fristed

    Background Rapid brain loss is characteristic for the patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) [1]. Increase of the lateral ventricular volume is strongly correlated with the progression of the disease. High variability in the degree of atrophy for subjects with AD....... Alzheimer's and Dementia, 2010. 6(4, Supplement 1). [3] Fonov, V, et al. NeuroImage, 2011. 54(1).......Background Rapid brain loss is characteristic for the patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) [1]. Increase of the lateral ventricular volume is strongly correlated with the progression of the disease. High variability in the degree of atrophy for subjects with AD...... of the brain and the contrast between different tissue types for the given level of atrophy. Figure 1 shows images through 6 example values of increasing RLVV. Conclusions The proposed method and resulting template will be useful tools for the development of robust automatic image processing methods targeted...

  5. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.

    Science.gov (United States)

    Chia, L S; Thompson, J E; Moscarello, M A

    1984-09-05

    Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.

  6. Neuroinflammation in Alzheimer's disease

    NARCIS (Netherlands)

    Heneka, Michael T.; Carson, Monica J.; El Khoury, Joseph; Landreth, Gary E.; Brosseron, Frederic; Feinstein, Douglas L.; Jacobs, Andreas H.; Wyss-Coray, Tony; Vitorica, Javier; Ransohoff, Richard M.; Herrup, Karl; Frautschy, Sally A.; Finsen, Bente; Brown, Guy C.; Verkhratsky, Alexei; Yamanaka, Koji; Koistinaho, Jari; Latz, Eicke; Halle, Annett; Petzold, Gabor C.; Town, Terrence; Morgan, Dave; Shinohara, Mari L.; Perry, V. Hugh; Holmes, Clive; Bazan, Nicolas G.; Brooks, David J.; Hunot, Stephane; Joseph, Bertrand; Deigendesch, Nikolaus; Garaschuk, Olga; Boddeke, Erik; Dinarello, Charles A.; Breitner, John C.; Cole, Greg M.; Golenbock, Douglas T.; Kummer, Markus P.

    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and

  7. Neuroinflammation in Alzheimer's disease

    NARCIS (Netherlands)

    Heneka, M.T.; Carson, M.J.; Khoury, J. El; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P.

    2015-01-01

    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and

  8. Elemental analysis of the frontal lobe of 'normal' brain tissue and that affected by Alzheimer's disease

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    'Normal' brain tissue and brain tissue affected by Alzheimer's disease has been taken from the frontal lobe of both hemispheres and their elemental compositions in terms of major, minor and trace elements compared. Brain samples were obtained from the MRC Alzheimer's Disease Brain Bank, London. 25 samples were taken from 18 individuals (5 males and 13 females) of mean age 79.9 ± 7.3 years with pathologically confirmed Alzheimer's disease and 26 samples from 15 individuals (8 males and 7 females) of mean age 71.8 ± 13.0 years with no pathological sings of Alzheimer's disease ('normals'). The elemental concentration of the samples were determined by the techniques of Rutherford backscattering (RBS) analysis, particle induced X-ray emission (PIXE) analysis and instrumental neutron activation analysis (INAA). Na, Mg, Al, Cl, K, Sc, Fe, Zn, Se, Br, Rb and Cs were detected by INAA and significant differences in concentrations were found between concentrations in normal and Alzheimer tissue for the elements. Na, Cl, K, Se, Br and Rb, P, S, Cl, K, Ca, Fe, Zn and Cd were detected by PIXE analysis and significant differences found for the elements P, S, Cl, K and Ca. (author)

  9. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    Science.gov (United States)

    2016-09-01

    stages of repetitive brain trauma as well. Current methods of measure brain glutamate using proton spectroscopy is not specific to different cell...covering a representative range of clinical cases: a young female , young male , middle-aged male (all healthy volunteers) and a male patient with...AWARD NUMBER: W81XWH-15-1-0412 TITLE: Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease PRINCIPAL INVESTIGATOR

  10. Neuroimaging of Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2005-01-01

    Main purposes of neuroimaging in Alzheimer's disease have been moved from diagnosis of advanced Alzheimer's disease to diagnosis of very early Alzheimer's disease at a prodromal stage of mild cognitive impairment, prediction of conversion from mild cognitive impairment to Alzheimer's disease, and differential diagnosis from other diseases causing dementia. Structural MRI studies and functional studies using fluorodeoxyglucose (FDG)-PET and brain perfusion SPECT are widely used in diagnosis of Alzheimer's disease. Outstanding progress in diagnostic accuracy of these neuroimaging modalities has been obtained using statistical analysis on a voxel-by-voxel basis after spatial normalization of individual scans to a standardized brain-volume template instead of visual inspection or a conventional region of interest technique. In a very early stage of Alzheimer's disease, this statistical approach revealed gray matter loss in the entorhinal and hippocampal areas and hypometabolism or hypoperfusion in the posterior cingulate cortex. These two findings might be related in view of anatomical knowledge that the regions are linked through the circuit of Papez. This statistical approach also offers accurate evaluation of therapeutical effects on brain metabolism or perfusion. The latest development in functional imaging relates to the final pathological hallmark of Alzheimer's disease-amyloid plaques. Amyloid imaging might be an important surrogate marker for trials of disease-modifying agents. (author)

  11. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  12. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lauren P. Klosinski

    2015-12-01

    Full Text Available White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  13. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial

    NARCIS (Netherlands)

    Rijpma, A.; Graaf, M. van der; Lansbergen, M.M.; Meulenbroek, O.V.; Cetinyurek-Yavuz, A.; Sijben, J.W.; Heerschap, A.; Olde Rikkert, M.G.M.

    2017-01-01

    BACKGROUND: Synaptic dysfunction contributes to cognitive impairment in Alzheimer's disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients

  14. Complement mRNA in the mammalian brain: responses to Alzheimer's disease and experimental brain lesioning.

    Science.gov (United States)

    Johnson, S A; Lampert-Etchells, M; Pasinetti, G M; Rozovsky, I; Finch, C E

    1992-01-01

    This study describes evidence in the adult human and rat brain for mRNAs that encode two complement (C) proteins, C1qB and C4. C proteins are important effectors of humoral immunity and inflammation in peripheral tissues but have not been considered as normally present in brain. Previous immunocytochemical studies showed that C proteins are associated with plaques, tangles, and dystrophic neurites in Alzheimer's disease (AD), but their source is unknown. Combined immunocytochemistry and in situ hybridization techniques show C4 mRNA in pyramidal neurons and C1qB mRNA in microglia. Primary rat neuron cultures also show C1qB mRNA. In the cortex from AD brains, there were two- to threefold increases of C1qB mRNA and C4 mRNA, and increased C1qB mRNA prevalence was in part associated with microglia. As a model for AD, we examined entorhinal cortex perforant path transection in the rat brain, which caused rapid increases of C1qB mRNA in the ipsilateral, but not contralateral, hippocampus and entorhinal cortex. The role of brain-derived acute and chronic C induction during AD and experimental lesions can now be considered in relation to functions of C proteins that pertain to cell degeneration and/or cell preservation and synaptic plasticity.

  15. Schooling mediates brain reserve in Alzheimer's disease: findings of fluoro-deoxy-glucose-positron emission tomography.

    Science.gov (United States)

    Perneczky, R; Drzezga, A; Diehl-Schmid, J; Schmid, G; Wohlschläger, A; Kars, S; Grimmer, T; Wagenpfeil, S; Monsch, A; Kurz, A

    2006-09-01

    Functional imaging studies report that higher education is associated with more severe pathology in patients with Alzheimer's disease, controlling for disease severity. Therefore, schooling seems to provide brain reserve against neurodegeneration. To provide further evidence for brain reserve in a large sample, using a sensitive technique for the indirect assessment of brain abnormality (18F-fluoro-deoxy-glucose-positron emission tomography (FDG-PET)), a comprehensive measure of global cognitive impairment to control for disease severity (total score of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery) and an approach unbiased by predefined regions of interest for the statistical analysis (statistical parametric mapping (SPM)). 93 patients with mild Alzheimer's disease and 16 healthy controls underwent 18F-FDG-PET imaging of the brain. A linear regression analysis with education as independent and glucose utilisation as dependent variables, adjusted for global cognitive status and demographic variables, was conducted in SPM2. The regression analysis showed a marked inverse association between years of schooling and glucose metabolism in the posterior temporo-occipital association cortex and the precuneus in the left hemisphere. In line with previous reports, the findings suggest that education is associated with brain reserve and that people with higher education can cope with brain damage for a longer time.

  16. Neuroinflammation in Alzheimer's disease

    DEFF Research Database (Denmark)

    Heneka, Michael T; Carson, Monica J; Khoury, Joseph El

    2015-01-01

    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia......, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded...... therapeutic or preventive strategies for Alzheimer's disease....

  17. Decreased alternative splicing of estrogen receptor-α mRNA in the Alzheimer's disease brain

    NARCIS (Netherlands)

    Ishunina, Tatjana A.; Swaab, Dick F.

    2012-01-01

    In this study we identified 62 estrogen receptor alpha (ERα) mRNA splice variants in different human brain areas of Alzheimer's disease (AD) and control cases and classified them into 12 groups. Forty-eight of these splice forms were identified for the first time. The distribution of alternatively

  18. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show ... 1:36 Your Amazing Brain - Dementia Explained - Alzheimer's Research UK - Duration: 4:58. AlzheimersResearch UK 17,154 ...

  19. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show ... 5:15 Your Amazing Brain - Dementia Explained - Alzheimer's Research UK - Duration: 4:58. AlzheimersResearch UK 16,695 ...

  20. The effect of aging on brain barriers and the consequences for Alzheimer's disease development.

    Science.gov (United States)

    Gorlé, Nina; Van Cauwenberghe, Caroline; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-08-01

    Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease.

  1. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Science.gov (United States)

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  2. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Maria Niures P.S. Matioli

    Full Text Available Several studies have indicated that Diabetes Mellitus (DM can increase the risk of developing Alzheimer's disease (AD. This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection.

  3. Brain insulin signaling and Alzheimer's disease: current evidence and future directions.

    Science.gov (United States)

    Schiöth, Helgi B; Craft, Suzanne; Brooks, Samantha J; Frey, William H; Benedict, Christian

    2012-08-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.

  4. Neuroinflammation in Alzheimer's Disease

    Science.gov (United States)

    Heneka, Michael T.; Carson, Monica J.; El Khoury, Joseph; Landreth, Gary E.; Brosseron, Frederik; Feinstein, Douglas L.; Jacobs, Andreas H.; Wyss-Coray, Tony; Vitorica, Javier; Ransohoff, Richard M.; Herrup, Karl; Frautschy, Sally A.; Finsen, Bente; Brown, Guy C.; Verkhratsky, Alexei; Yamanaka, Koji; Koistinaho, Jari; Latz, Eicke; Halle, Annett; Petzold, Gabor C.; Town, Terrence; Morgan, Dave; Shinohara, Mari L.; Perry, V. Hugh; Holmes, Clive; Bazan, Nicolas G.; Brooks, David J.; Hunot, Stephane; Joseph, Bertrand; Deigendesch, Nikolaus; Garaschuk, Olga; Boddeke, Erik; Dinarello, Charles A.; Breitner, John C.; Cole, Greg M.; Golenbock, Douglas T.; Kummer, Markus P.

    2018-01-01

    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment but strongly interacts with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on micro- and astroglia and trigger an innate immune response, characterized by the release of inflammatory mediators, which contribute to disease progression and severity. Genome wide analysis suggests that several genes, which increase the risk for sporadic Alzheimer's disease en-code for factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity are likely to interfere with the immunological processes of the brain and further promote disease progression. This re-view provides an overview on the current knowledge and focuses on the most recent and exciting findings. Modulation of risk factors and intervention with the described immune mechanisms are likely to lead to future preventive or therapeutic strategies for Alzheimer's disease. PMID:25792098

  5. The Effect of Souvenaid on Functional Brain Network Organisation in Patients with Mild Alzheimer's Disease: A Randomised Controlled Study

    NARCIS (Netherlands)

    de Waal, H.; Stam, C.J.; Lansbergen, M.M.; Wieggers, R.L.; Kamphuis, P.J.G.H.; Scheltens, P.; Maestu, F.; van Straaten, E.C.W.

    2014-01-01

    Background: Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn

  6. A culture-brain link: Negative age stereotypes predict Alzheimer's disease biomarkers.

    Science.gov (United States)

    Levy, Becca R; Ferrucci, Luigi; Zonderman, Alan B; Slade, Martin D; Troncoso, Juan; Resnick, Susan M

    2016-02-01

    Although negative age stereotypes have been found to predict adverse outcomes among older individuals, it was unknown whether the influence of stereotypes extends to brain changes associated with Alzheimer's disease. To consider this possibility, we drew on dementia-free participants, in the Baltimore Longitudinal Study of Aging, whose age stereotypes were assessed decades before yearly magnetic resonance images and brain autopsies were performed. Those holding more-negative age stereotypes earlier in life had significantly steeper hippocampal-volume loss and significantly greater accumulation of neurofibrillary tangles and amyloid plaques, adjusting for relevant covariates. These findings suggest a new pathway to identifying mechanisms and potential interventions related to the pathology of Alzheimer's disease. (c) 2016 APA, all rights reserved).

  7. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    Science.gov (United States)

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  9. Segmentation of brain parenchymal regions into gray matter and white matter with Alzheimer's disease

    International Nuclear Information System (INIS)

    Tokunaga, Chiaki; Yoshiura, Takashi; Yamashita, Yasuo; Magome, Taiki; Honda, Hiroshi; Arimura, Hidetaka; Toyofuku, Fukai; Ohki, Masafumi

    2010-01-01

    It is very difficult and time consuming for neuroradiologists to estimate the degree of cerebral atrophy based on the volume of cortical regions etc. Our purpose of this study was to develop an automated segmentation of the brain parenchyma into gray and white matter regions with Alzheimer's disease (AD) in three-dimensional (3D) T1-weighted MR images. Our proposed method consisted of extraction of a brain parenchymal region based on a brain model matching and segmentation of the brain parenchyma into gray and white matter regions based on a fuzzy c-means (FCM) algorithm. We applied our proposed method to MR images of the whole brains obtained from 9 cases, including 4 clinically AD cases and 5 control cases. The mean volume percentage of a cortical region (41.7%) to a brain parenchymal region in AD patients was smaller than that (45.2%) in the control subjects (p=0.000462). (author)

  10. Quiz: Alzheimer's Disease

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Past Issues / Winter 2015 Table of Contents ... How many Americans over age 65 may have Alzheimer's disease? as many as 5 million as many ...

  11. Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative.

    Science.gov (United States)

    Weiner, Michael W; Veitch, Dallas P; Hayes, Jacqueline; Neylan, Thomas; Grafman, Jordan; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford; Jagust, William; Trojanowski, John Q; Shaw, Leslie M; Saykin, Andrew J; Green, Robert C; Harvey, Danielle; Toga, Arthur W; Friedl, Karl E; Pacifico, Anthony; Sheline, Yvette; Yaffe, Kristine; Mohlenoff, Brian

    2014-06-01

    Both traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are common problems resulting from military service, and both have been associated with increased risk of cognitive decline and dementia resulting from Alzheimer's disease (AD) or other causes. This study aims to use imaging techniques and biomarker analysis to determine whether traumatic brain injury (TBI) and/or PTSD resulting from combat or other traumas increase the risk for AD and decrease cognitive reserve in Veteran subjects, after accounting for age. Using military and Department of Veterans Affairs records, 65 Vietnam War veterans with a history of moderate or severe TBI with or without PTSD, 65 with ongoing PTSD without TBI, and 65 control subjects are being enrolled in this study at 19 sites. The study aims to select subject groups that are comparable in age, gender, ethnicity, and education. Subjects with mild cognitive impairment (MCI) or dementia are being excluded. However, a new study just beginning, and similar in size, will study subjects with TBI, subjects with PTSD, and control subjects with MCI. Baseline measurements of cognition, function, blood, and cerebrospinal fluid biomarkers; magnetic resonance images (structural, diffusion tensor, and resting state blood-level oxygen dependent (BOLD) functional magnetic resonance imaging); and amyloid positron emission tomographic (PET) images with florbetapir are being obtained. One-year follow-up measurements will be collected for most of the baseline procedures, with the exception of the lumbar puncture, the PET imaging, and apolipoprotein E genotyping. To date, 19 subjects with TBI only, 46 with PTSD only, and 15 with TBI and PTSD have been recruited and referred to 13 clinics to undergo the study protocol. It is expected that cohorts will be fully recruited by October 2014. This study is a first step toward the design and statistical powering of an AD prevention trial using at-risk veterans as subjects, and provides the

  12. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  13. Graph theoretical analysis and application of fMRI-based brain network in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    LIU Xue-na

    2012-08-01

    Full Text Available Alzheimer's disease (AD, a progressive neurodegenerative disease, is clinically characterized by impaired memory and many other cognitive functions. However, the pathophysiological mechanisms underlying the disease are not thoroughly understood. In recent years, using functional magnetic resonance imaging (fMRI as well as advanced graph theory based network analysis approach, several studies of patients with AD suggested abnormal topological organization in both global and regional properties of functional brain networks, specifically, as demonstrated by a loss of small-world network characteristics. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis. In this paper we introduce the essential concepts of complex brain networks theory, and review recent advances of the study on human functional brain networks in AD, especially focusing on the graph theoretical analysis of small-world network based on fMRI. We also propound the existent problems and research orientation.

  14. Alzheimer\\'s Disease: Yesterday, Today, Tomorrow

    Directory of Open Access Journals (Sweden)

    Farid Fadaei

    2007-04-01

    Full Text Available Alzheimer's disease is the most common and well - known cause of dementia, as a progressive, irreversible brain disorder that affects cognitive function, personality, thought, perception and behaviour. Alzheimer's disease is the fourth leading cause of death in western countries. Interesting to know that this disease was unknown in medical community till 100 years ago and had no name. Dr. Alois Alzheimer, a German psychiatrist was the person who suspected the presence of this new illness and by succinct clinical, neuroanatomic, and neuropathologic examination of some cases; including the first known case of this disease- a woman named Auguste Deter- documented it. In further Emil Kraepe1inby knowing about the cases that Dr. Alzheimer reported, and another reports of this disease that were published in the first decade of the twentieth century, set the name of Alzbeimer on this new disease. Descriptions of Dr. Alzheimer and Kraepelin are the same as the present day descriptions of this disease. Electron microscopy, quantitative morphology and modem biochemistry emerging in the second half of the twentieth century opened a new era in dementia research with description of the ultra structure and biochemistry of senileplaques and neuronfibrillary tangles, the major disease markers of Alzheimer's disease. Basic research gave insight into the molecular genetics and pathophysiology of Alzheimers disease and based on the biochemical findings, new pharmacological treatment options were opened. The future attempts will probably be concentrated on the prevention of this disease. Oxidative stress, excessive transition metal ions, and misfolded / aggregated proteins and inflammation are among the probable causes of Alzheimer's disease and the future research will focus on their better understanding and prevention of their occurrence. As the last word, stem cells grafts that in animals have led to remarkable improvement of brain function may also be a

  15. Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis

    International Nuclear Information System (INIS)

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD

  16. Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI

    DEFF Research Database (Denmark)

    Erleben, Lene Lillemark; Sørensen, Lauge Emil; Pai, Akshay Sadananda Uppinakudru

    2014-01-01

    BACKGROUND:Alzheimer's disease (AD) is a progressive, incurable neurodegenerative disease and the most common type of dementia. It cannot be prevented, cured or drastically slowed, even though AD research has increased in the past 5-10 years. Instead of focusing on the brain volume or on the single...... brain structures like hippocampus, this paper investigates the relationship and proximity between regions in the brain and uses this information as a novel way of classifying normal control (NC), mild cognitive impaired (MCI), and AD subjects.METHODS:A longitudinal cohort of 528 subjects (170 NC, 240...... to whole brain and hippocampus volume.RESULTS:We found that both our markers was able to significantly classify the subjects. The surface connectivity marker showed the best results with an area under the curve (AUC) at 0.877 (p...

  17. Glaucoma and Alzheimer Disease: A Single Age-Related Neurodegenerative Disease of the Brain.

    Science.gov (United States)

    Mancino, Raffaele; Martucci, Alessio; Cesareo, Massimo; Giannini, Clarissa; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2017-12-06

    Open Angle Glaucoma is one of the leading causes of irreversible blindness worldwide. Elevated intraocular pressure is considered an important risk factor for glaucoma, however a subset of patients experience disease progression even in presence of normal intraocular pressure values. This implies that risk factors other than intraocular pressure are involved in the pathogenesis of glaucoma. A possible relationship between glaucoma and neurodegenerative diseases such as Alzheimer Disease has been suggested. In this regard, we have recently described a high prevalence of alterations typical of glaucoma, using Heidelberg Retinal Tomograph-3 (HRT-3), in a group of patients with Alzheimer Disease. Interestingly, these alterations were not associated with elevated intraocular pressure or abnormal Central Corneal Thickness values. Alzheimer Disease is the most common form of dementia associated with progressive deterioration of memory and cognition. Complaints related to vision are common among Alzheimer Disease patients. Features common to both diseases, including risk factors and pathophysiological mechanisms, gleaned from the recent literature do suggest that Alzheimer Disease and glaucoma can be considered age-related neurodegenerative diseases that may co-exist in the elderly. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Inflammation and Alzheimer's disease

    NARCIS (Netherlands)

    Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G. M.; Cooper, N. R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B. L.; Finch, C. E.; Frautschy, S.; Griffin, W. S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I. R.; McGeer, P. L.; O'Banion, M. K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; van Muiswinkel, F. L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T.

    2000-01-01

    Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical

  19. The Alzheimer's Disease-Related Glucose Metabolic Brain Pattern

    NARCIS (Netherlands)

    Teune, Laura K.; Strijkert, Fijanne; Renken, Remco J.; Izaks, Gerbrand J.; de Vries, Jeroen J.; Segbers, Marcel; Roerdink, Jos B. T. M.; Dierckx, Rudi A. J. O.; Leenders, Klaus L.

    2014-01-01

    Purpose: [F-18] fluorodeoxyglucose (FDG) PET imaging of the brain can be used to assist in the differential diagnosis of dementia. Group differences in glucose uptake between patients with dementia and controls are well-known. However, a multivariate analysis technique called scaled subprofile

  20. Epidemiology of Alzheimer disease.

    Science.gov (United States)

    Mayeux, Richard; Stern, Yaakov

    2012-08-01

    The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease.

  1. Epidemiology of Alzheimer Disease

    Science.gov (United States)

    Mayeux, Richard; Stern, Yaakov

    2012-01-01

    The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease. PMID:22908189

  2. Asbestos exposure and Alzheimer disease

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C; Bittesini, L; Brollo, A

    1986-02-01

    10 cases in which an asbestos-related disease (malignant pleural mesothelioma or asbestosis) was associated with severe Alzheimer type lesions in the brain are reported. The patients, all males aged between 67 and 78 years, had been occupationally exposed to asbestos in the shipbuilding industry. The hypothesis that asbestos is a favoring factor in the genesis of Alzheimer disease is discussed.

  3. [Biomarkers of Alzheimer disease].

    Science.gov (United States)

    Rachel, Wojciech; Grela, Agatha; Zyss, Tomasz; Zieba, Andrzej; Piekoszewski, Wojciech

    2014-01-01

    Cognitive impairment is one of the most abundant age-related psychiatric disorders. The outcome of cognitive impairment in Alzheimer's disease has both individual (the patients and their families) and socio-economic effects. The prevalence of Alzheimer's disease doubles after the age of 65 years, every 4.5 years. An etiologically heterogenic group of disorders related to aging as well as genetic and environmental interactions probably underlie the impairment in Alzheimer's disease. Those factors cause the degeneration of brain tissue which leads to significant cognitive dysfunction. There are two main hypotheses that are linked to the process of neurodegeneration: (i) amyloid cascade and (ii) the role of secretases and dysfunction of mitochondria. From the therapeutic standpoint it is crucial to get an early diagnosis and start with an adequate treatment. The undeniable progress in the field of biomarker research should lead to a better understanding of the early stages of the disorder. So far, the best recognised and described biomarkers of Alzheimer's disease, which can be detected in both cerebrospinal fluid and blood, are: beta-amyloid, tau-protein and phosphorylated tau-protein (phospho-tau). The article discusses the usefulness of the known biomarkers of Alzheimer's disease in early diagnosis.

  4. Regional analysis of the magnetization transfer ratio of the brain in mild Alzheimer disease and amnestic mild cognitive impairment.

    Science.gov (United States)

    Mascalchi, M; Ginestroni, A; Bessi, V; Toschi, N; Padiglioni, S; Ciulli, S; Tessa, C; Giannelli, M; Bracco, L; Diciotti, S

    2013-01-01

    Manually drawn VOI-based analysis shows a decrease in magnetization transfer ratio in the hippocampus of patients with Alzheimer disease. We investigated with whole-brain voxelwise analysis the regional changes of the magnetization transfer ratio in patients with mild Alzheimer disease and patients with amnestic mild cognitive impairment. Twenty patients with mild Alzheimer disease, 27 patients with amnestic mild cognitive impairment, and 30 healthy elderly control subjects were examined with high-resolution T1WI and 3-mm-thick magnetization transfer images. Whole-brain voxelwise analysis of magnetization transfer ratio maps was performed by use of Statistical Parametric Mapping 8 software and was supplemented by the analysis of the magnetization transfer ratio in FreeSurfer parcellation-derived VOIs. Voxelwise analysis showed 2 clusters of significantly decreased magnetization transfer ratio in the left hippocampus and amygdala and in the left posterior mesial temporal cortex (fusiform gyrus) of patients with Alzheimer disease as compared with control subjects but no difference between patients with amnestic mild cognitive impairment and either patients with Alzheimer disease or control subjects. VOI analysis showed that the magnetization transfer ratio in the hippocampus and amygdala was significantly lower (bilaterally) in patients with Alzheimer disease when compared with control subjects (ANOVA with Bonferroni correction, at P ratio values in the hippocampus and amygdala in patients with amnestic mild cognitive impairment were between those of healthy control subjects and those of patients with mild Alzheimer disease. Support vector machine-based classification demonstrated improved classification performance after inclusion of magnetization transfer ratio-related features, especially between patients with Alzheimer disease versus healthy subjects. Bilateral but asymmetric decrease of magnetization transfer ratio reflecting microstructural changes of the

  5. The APOE ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R

    2017-07-19

    The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.

  6. Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers

    International Nuclear Information System (INIS)

    Matoug, S; Abdel-Dayem, A; Passi, K; Gross, W; Alqarni, M

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and cognitive tests, often followed by a brain scan. Advanced medical imaging and pattern recognition techniques are good tools to create a learning database in the first step and to predict the class label of incoming data in order to assess the development of the disease, i.e., the conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease, which is the most critical brain disease for the senior population. Advanced medical imaging such as the volumetric MRI can detect changes in the size of brain regions due to the loss of the brain tissues. Measuring regions that atrophy during the progress of Alzheimer's disease can help neurologists in detecting and staging the disease. In the present investigation, we present a pseudo-automatic scheme that reads volumetric MRI, extracts the middle slices of the brain region, performs segmentation in order to detect the region of brain's ventricle, generates a feature vector that characterizes this region, creates an SQL database that contains the generated data, and finally classifies the images based on the extracted features. For our results, we have used the MRI data sets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

  7. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Disease - Duration: 42:07. All N One Home Health 102,543 views 42:07 Your Amazing Brain - ... Bredesen, MD - Duration: 1:13:27. Silicon Valley Health Institute 95,087 views 1:13:27 Alzheimer's ...

  8. Deep brain two-photon NIR fluorescence imaging for study of Alzheimer's disease

    Science.gov (United States)

    Chen, Congping; Liang, Zhuoyi; Zhou, Biao; Ip, Nancy Y.; Qu, Jianan Y.

    2018-02-01

    Amyloid depositions in the brain represent the characteristic hallmarks of Alzheimer's disease (AD) pathology. The abnormal accumulation of extracellular amyloid-beta (Aβ) and resulting toxic amyloid plaques are considered to be responsible for the clinical deficits including cognitive decline and memory loss. In vivo two-photon fluorescence imaging of amyloid plaques in live AD mouse model through a chronic imaging window (thinned skull or craniotomy) provides a mean to greatly facilitate the study of the pathological mechanism of AD owing to its high spatial resolution and long-term continuous monitoring. However, the imaging depth for amyloid plaques is largely limited to upper cortical layers due to the short-wavelength fluorescence emission of commonly used amyloid probes. In this work, we reported that CRANAD-3, a near-infrared (NIR) probe for amyloid species with excitation wavelength at 900 nm and emission wavelength around 650 nm, has great advantages over conventionally used probes and is well suited for twophoton deep imaging of amyloid plaques in AD mouse brain. Compared with a commonly used MeO-X04 probe, the imaging depth of CRANAD-3 is largely extended for open skull cranial window. Furthermore, by using two-photon excited fluorescence spectroscopic imaging, we characterized the intrinsic fluorescence of the "aging pigment" lipofuscin in vivo, which has distinct spectra from CRANAD-3 labeled plaques. This study reveals the unique potential of NIR probes for in vivo, high-resolution and deep imaging of brain amyloid in Alzheimer's disease.

  9. In Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism

    DEFF Research Database (Denmark)

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer's disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients...... with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [11C]PIB (PIB), CMRglc with [18F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe...

  10. Anti-Amyloid-?-Mediated Positron Emission Tomography Imaging in Alzheimer's Disease Mouse Brains

    OpenAIRE

    McLean, Daniel; Cooke, Michael J.; Wang, Yuanfei; Green, David; Fraser, Paul E.; George-Hyslop, Peter St; Shoichet, Molly S.

    2012-01-01

    Antibody-mediated imaging of amyloid β (Aβ) in Alzheimer's disease (AD) offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG) and a positron emitting isotope, Copper-64 (t(½) = 12.7 h), and intra...

  11. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.

    Science.gov (United States)

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina

    2017-03-01

    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  12. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  13. Agrin in Alzheimer's Disease: Altered Solubility and Abnormal Distribution within Microvasculature and Brain Parenchyma

    Science.gov (United States)

    Donahue, John E.; Berzin, Tyler M.; Rafii, Michael S.; Glass, David J.; Yancopoulos, George D.; Fallon, Justin R.; Stopa, Edward G.

    1999-05-01

    Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with β -amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to β -amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.

  14. A Systematic Investigation into Aging Related Genes in Brain and Their Relationship with Alzheimer's Disease.

    Science.gov (United States)

    Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang

    2016-01-01

    Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer's Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer's Disease.

  15. IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease?

    Science.gov (United States)

    Zheng, Ping; Tong, Wusong

    2017-08-01

    There is a growing body of evidence that the insulin-like growth factor-1 (IGF-1) is dynamically involved in the regulation of body homeostasis and glucose regulation. Traumatic brain injury (TBI) is considered to be a risk factor for Alzheimer's disease (AD). As alterations of IGF-1 have been implicated in both TBI and AD and the IGF-1 signaling also mediates the neuronal excitability and synaptic plasticity in both diseases, we propose that IGF-1 may act as the endogenous connection between TBI and AD. Growing evidence suggests that dysfunction of this pathway contributes to the progressive loss of neurons in Alzheimer's disease (AD), one of the most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting IGF-1 signaling with currently available antidiabetics. These studies have shown that exogenous administration of IGF-1 reverses signaling abnormalities and has neuroprotective effects. In the first part of this review, we discuss physiological functions of IGF-1 signaling pathway including its distribution within the brain and its relationship with TBI and AD. In the second part, we undertake a comprehensive overview of IGF-1 signaling in TBI and AD, respectively. We then detail targeted IGF-1 in preclinical models of neurodegeneration and the design of clinical trials that have used anti-diabetics for treating AD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into clinical sessions.

  16. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    International Nuclear Information System (INIS)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon; Seo, Hyung Suk

    2009-01-01

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p 2 , 715.4 ± 107 cm3) were significantly smaller than in MCI patients (595.9 ± 108, 844.1 ± 85) and the HCs (563.2 ± 75, 818.9 ± 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  17. Inflammatory mechanisms in Alzheimer's disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Zhan, S. S.; van Gool, W. A.; Allsop, D.

    1994-01-01

    Alzheimer's disease is aetiologically heterogeneous, but the pathogenesis is often considered to be initiated by the deposition of amyloid fibrils, followed by neuritic tau pathology and neuronal death. A variety of inflammatory proteins has been identified in the brains of patients with Alzheimer's

  18. The preliminary study of 18F-FDG brain PET in diagnosis of alzheimer's disease

    International Nuclear Information System (INIS)

    Ma Yunchuan; Zhang Xinqing; Li Depeng; Shang Jianwen; Su Yusheng; Zhang Linying; Peng Cheng; Pan Zhongyun

    2000-01-01

    Objective: To investigate the imaging characteristics and diagnostic criteria of 18 F-FDG brain PET in diagnosis of Alzheimer's disease (AD). Methods: The sutdy included 12 normal subjects, 12 patients with AD and 11 patients with non-AD dementia. 40 min after intravenous administration of 18 F-FDG, brain scan was performed using Siemens ECAT47 scanner. The transaxial, coronal and sagittal images were then reconstructed by computer. At the same time, semiquantitative analysis was also applied to help evaluation using the ratio of mean radioactivity of cerebral lobe to cerebellum (R cl/cb ). Results: In normal subjects PET scan showed clear images of cerebral cortex, basal ganglia, thalamus and cerebellum with symmetrical distribution of radioactivity. PET images from Alzheimer's disease patients were classified into 3 patterns: bilateral parietal hypometabolism in 5 cases, bilateral temporo-parietal hypometabolism in 4 cases and unilateral temporo-parietal hypometabolism in 3 cases. The R cl/cb of AD patients in parietal and temporal lobe was significantly decreased than normal subjects (P cl/cb was also reflecting thedementia degree. Compared with MRI imaging , 12 patients with AD had cerebral hypometabolism but only 10 had hippocampus atrophy. 10 patients with non-AD dementia had local structural foci seen in MRI, including old hemorrhage, infarction and encephalomalacia, but these lesions were not found in AD. Conclusions: Based on excluding cerebral structural lesions which are better detected by MRI, bilateral or unilateral parietal or temporo-parietal hypometabolism found in FDG PET can be considered indicative of Alzheimer's disease. Semiquantitative analysis of the images yielded can help to evaluate the dementia degree

  19. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Anti-amyloid-β-mediated positron emission tomography imaging in Alzheimer's disease mouse brains.

    Directory of Open Access Journals (Sweden)

    Daniel McLean

    Full Text Available Antibody-mediated imaging of amyloid β (Aβ in Alzheimer's disease (AD offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG and a positron emitting isotope, Copper-64 (t(½ = 12.7 h, and intravenously delivered to the TgCRND8 mouse model of Alzheimer's disease. Modification of 6E10 with PEG (6E10-PEG increases accumulation of 6E10 in brain tissue in both TgCRND8 and wild type control animals. 6E10-PEG differentiates TgCRND8 animals from wild type controls using positron emission tomography (PET and provides a framework for using antibodies to detect pathology using non-invasive medical imaging techniques.

  1. Characterizing brain patterns in conversion from mild cognitive impairment (MCI) to Alzheimer's disease

    Science.gov (United States)

    Silva R., Santiago S.; Giraldo, Diana L.; Romero, Eduardo

    2017-11-01

    Structural Magnetic Resonance (MR) brain images should provide quantitative information about the stage and progression of Alzheimer's disease. However, the use of MRI is limited and practically reduced to corroborate a diagnosis already performed with neuropsychological tools. This paper presents an automated strategy for extraction of relevant anatomic patterns related with the conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) using T1-weighted MR images. The process starts by representing each of the possible classes with models generated from a linear combination of volumes. The difference between models allows us to establish which are the regions where relevant patterns might be located. The approach searches patterns in a space of brain sulci, herein approximated by the most representative gradients found in regions of interest defined by the difference between the linear models. This hypothesis is assessed by training a conventional SVM model with the found relevant patterns under a leave-one-out scheme. The resultant AUC was 0.86 for the group of women and 0.61 for the group of men.

  2. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    Science.gov (United States)

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  3. Markers of microglia in post-mortem brain samples from patients with Alzheimer's disease: a systematic review.

    Science.gov (United States)

    Hopperton, K E; Mohammad, D; Trépanier, M O; Giuliano, V; Bazinet, R P

    2018-02-01

    Neuroinflammation is proposed as one of the mechanisms by which Alzheimer's disease pathology, including amyloid-β plaques, leads to neuronal death and dysfunction. Increases in the expression of markers of microglia, the main neuroinmmune cell, are widely reported in brains from patients with Alzheimer's disease, but the literature has not yet been systematically reviewed to determine whether this is a consistent pathological feature. A systematic search was conducted in Medline, Embase and PsychINFO for articles published up to 23 February 2017. Papers were included if they quantitatively compared microglia markers in post-mortem brain samples from patients with Alzheimer's disease and aged controls without neurological disease. A total of 113 relevant articles were identified. Consistent increases in markers related to activation, such as major histocompatibility complex II (36/43 studies) and cluster of differentiation 68 (17/21 studies), were identified relative to nonneurological aged controls, whereas other common markers that stain both resting and activated microglia, such as ionized calcium-binding adaptor molecule 1 (10/20 studies) and cluster of differentiation 11b (2/5 studies), were not consistently elevated. Studies of ionized calcium-binding adaptor molecule 1 that used cell counts almost uniformly identified no difference relative to control, indicating that increases in activation occurred without an expansion of the total number of microglia. White matter and cerebellum appeared to be more resistant to these increases than other brain regions. Nine studies were identified that included high pathology controls, patients who remained free of dementia despite Alzheimer's disease pathology. The majority (5/9) of these studies reported higher levels of microglial markers in Alzheimer's disease relative to controls, suggesting that these increases are not solely a consequence of Alzheimer's disease pathology. These results show that increased markers

  4. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  5. Deep brain stimulation for the treatment of Alzheimer disease and dementias.

    Science.gov (United States)

    Laxton, Adrian W; Lozano, Andres M

    2013-01-01

    To review the use of deep brain stimulation (DBS) for treatment of dementia. A PubMed literature search was conducted to identify all studies that have investigated the use of DBS for treatment of dementia. Three studies examined the use of DBS for dementia. One study involved fornix DBS for Alzheimer disease (AD), and two studies involved DBS of the nucleus basalis of Meynert, one to treat AD and one to treat Parkinson disease dementia. Evidence for the use of DBS to treat dementia is preliminary and limited. Fornix and nucleus basalis of Meynert DBS can influence activity in the pathologic neural circuits that underlie AD and Parkinson disease dementia. Further investigation into the potential clinical effects of DBS for dementia is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease.

    Science.gov (United States)

    Schweizer, Tom A; Ware, Jenna; Fischer, Corinne E; Craik, Fergus I M; Bialystok, Ellen

    2012-09-01

    Much of the research on delaying the onset of symptoms of Alzheimer's disease (AD) has focused on pharmacotherapy, but environmental factors have also been acknowledged to play a significant role. Bilingualism may be one factor contributing to 'cognitive reserve' (CR) and therefore to a delay in symptom onset. If bilingualism is protective, then the brains of bilinguals should show greater atrophy in relevant areas, since their enhanced CR enables them to function at a higher level than would be predicted from their level of disease. We analyzed a number of linear measurements of brain atrophy from the computed tomography (CT) scans of monolingual and bilingual patients diagnosed with probable AD who were matched on level of cognitive performance and years of education. Bilingual patients with AD exhibited substantially greater amounts of brain atrophy than monolingual patients in areas traditionally used to distinguish AD patients from healthy controls, specifically, the radial width of the temporal horn and the temporal horn ratio. Other measures of brain atrophy were comparable for the two groups. Bilingualism appears to contribute to increased CR, thereby delaying the onset of AD and requiring the presence of greater amounts of neuropathology before the disease is manifest. Copyright © 2011 Elsevier Srl. All rights reserved.

  7. Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer's Disease Brain

    Directory of Open Access Journals (Sweden)

    Sarah L. DeVos

    2018-04-01

    Full Text Available Alzheimer's disease (AD is defined by the presence of intraneuronal neurofibrillary tangles (NFTs composed of hyperphosphorylated tau aggregates as well as extracellular amyloid-beta plaques. The presence and spread of tau pathology through the brain is classified by Braak stages and thought to correlate with the progression of AD. Several in vitro and in vivo studies have examined the ability of tau pathology to move from one neuron to the next, suggesting a “prion-like” spread of tau aggregates may be an underlying cause of Braak tau staging in AD. Using the HEK293 TauRD-P301S-CFP/YFP expressing biosensor cells as a highly sensitive and specific tool to identify the presence of seed competent aggregated tau in brain lysate—i.e., tau aggregates that are capable of recruiting and misfolding monomeric tau—, we detected substantial tau seeding levels in the entorhinal cortex from human cases with only very rare NFTs, suggesting that soluble tau aggregates can exist prior to the development of overt tau pathology. We next looked at tau seeding levels in human brains of varying Braak stages along six regions of the Braak Tau Pathway. Tau seeding levels were detected not only in the brain regions impacted by pathology, but also in the subsequent non-pathology containing region along the Braak pathway. These data imply that pathogenic tau aggregates precede overt tau pathology in a manner that is consistent with transneuronal spread of tau aggregates. We then detected tau seeding in frontal white matter tracts and the optic nerve, two brain regions comprised of axons that contain little to no neuronal cell bodies, implying that tau aggregates can indeed traverse along axons. Finally, we isolated cytosolic and synaptosome fractions along the Braak Tau Pathway from brains of varying Braak stages. Phosphorylated and seed competent tau was significantly enriched in the synaptic fraction of brain regions that did not have extensive cellular tau

  8. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    Science.gov (United States)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  9. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Evaluation of brain perfusion in Alzheimer disease with perfusion computed tomography and comparison to elderly patient without dementia.

    Science.gov (United States)

    Yildirim, Tülin; Karakurum Göksel, Başak; Demir, Şenay; Tokmak, Naime; Tan, Meliha

    2016-04-19

    The aim of this study was to evaluate perfusion computed tomography (PCT) findings in patients with Alzheimer disease and to compare them with those of patients without dementia. PCT was performed in 35 patients: 20 with Alzheimer disease (mean age, 69.7 ± 5.5 years) and 15 control subjects (mean age, 67.5 ± 3.5 years). Control subjects were elderly individuals with no cognitive problems who were admitted with headaches. All PCT examinations were performed on a 4-slice CT unit. The PCT analysis software program was used to calculate regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional time-to-peak (rTTP) values in the bilateral frontal, temporal, and occipital cortices, and bilateral lentiform nucleus. rCBF values in the bilateral frontal and temporal cortices and bilateral lentiform nucleus were significantly lower in the patients with Alzheimer disease than in the control subjects. There were no significant differences in rCBV values between Alzheimer disease and the control group. rTTP values in all cortical areas and bilateral lentiform nucleus were significantly higher in the patients with Alzheimer disease than in the control subjects. PCT is a rapid and reliable imaging modality for evaluating brain perfusion in Alzheimer disease.

  11. A putative Alzheimer's disease risk allele in PCK1 influences brain atrophy in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Zongqi Xia

    2010-11-01

    Full Text Available Brain atrophy and cognitive dysfunction are neurodegenerative features of Multiple Sclerosis (MS. We used a candidate gene approach to address whether genetic variants implicated in susceptibility to late onset Alzheimer's Disease (AD influence brain volume and cognition in MS patients.MS subjects were genotyped for five single nucleotide polymorphisms (snps associated with susceptibility to AD: PICALM, CR1, CLU, PCK1, and ZNF224. We assessed brain volume using Brain Parenchymal Fraction (BPF measurements obtained from Magnetic Resonance Imaging (MRI data and cognitive function using the Symbol Digit Modalities Test (SDMT. Genotypes were correlated with cross-sectional BPF and SDMT scores using linear regression after adjusting for sex, age at symptom onset, and disease duration. 722 MS patients with a mean (±SD age at enrollment of 41 (±10 years were followed for 44 (±28 months. The AD risk-associated allele of a non-synonymous SNP in the PCK1 locus (rs8192708G is associated with a smaller average brain volume (P=0.0047 at the baseline MRI, but it does not impact our baseline estimate of cognition. PCK1 is additionally associated with higher baseline T2-hyperintense lesion volume (P=0.0088. Finally, we provide technical validation of our observation in a subset of 641 subjects that have more than one MRI study, demonstrating the same association between PCK1 and smaller average brain volume (P=0.0089 at the last MRI visit.Our study provides suggestive evidence for greater brain atrophy in MS patients bearing the PCK1 allele associated with AD-susceptibility, yielding new insights into potentially shared neurodegenerative process between MS and late onset AD.

  12. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

    Directory of Open Access Journals (Sweden)

    Sarita S. Hardas

    2013-01-01

    Full Text Available Alzheimer disease (AD is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP and intracellular neurofibrillary tangles (NFTs. The major component of SP is amyloid β-peptide (Aβ, which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE. HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  13. Fine-mapping the effects of Alzheimer's disease risk loci on brain morphology.

    Science.gov (United States)

    Roshchupkin, Gennady V; Adams, Hieab H; van der Lee, Sven J; Vernooij, Meike W; van Duijn, Cornelia M; Uitterlinden, Andre G; van der Lugt, Aad; Hofman, Albert; Niessen, Wiro J; Ikram, Mohammad A

    2016-12-01

    The neural substrate of genetic risk variants for Alzheimer's disease (AD) remains unknown. We studied their effect on healthy brain morphology to provide insight into disease etiology in the preclinical phase. We included 4071 nondemented, elderly participants of the population-based Rotterdam Study who underwent brain magnetic resonance imaging and genotyping. We performed voxel-based morphometry (VBM) on all gray-matter voxels for 19 previously identified, common AD risk variants. Whole-brain expression data from the Allen Human Brain Atlas was used to examine spatial overlap between VBM association results and expression of genes in AD risk loci regions. Brain regions most significantly associated with AD risk variants were the left postcentral gyrus with ABCA7 (rs4147929, p = 4.45 × 10 -6 ), right superior frontal gyrus by ZCWPW1 (rs1476679, p = 5.12 × 10 -6 ), and right postcentral gyrus by APOE (p = 6.91 × 10 -6 ). Although no individual voxel passed multiple-testing correction, we found significant spatial overlap between the effects of AD risk loci on VBM and the expression of genes (MEF2C, CLU, and SLC24A4) in the Allen Brain Atlas. Results are available online on www.imagene.nl/ADSNPs/. In this single largest imaging genetics data set worldwide, we found that AD risk loci affect cortical gray matter in several brain regions known to be involved in AD, as well as regions that have not been implicated before. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi

    2014-01-01

    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  15. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Palacios, Hector H; Walrafen, Brianna; Lipsitt, Amanda E; Obrenovich, Mark E; Morales, Ludis

    2009-10-01

    Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.

  16. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains.

    Science.gov (United States)

    Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J

    2017-01-01

    Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z

  17. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  18. Brain perfusion SPECT correlates with CSF biomarkers in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Habert, Marie-Odile [UMR-S 678, Universite Pierre et Marie Curie-Paris 6, INSERM, Paris (France); CHU Pitie-Salpetriere, AP-HP, Department of Nuclear Medicine, Paris (France); Hopital Pitie-Salpetriere, Department of Nuclear Medicine, Paris (France); Souza, Leonardo Cruz de; Dubois, Bruno; Sarazin, Marie [CHU Pitie-Salpetriere, AP-HP, Research and Resource Memory Centre and INSERM U610, Paris (France); Lamari, Foudil; Jardel, Claude [CHU Pitie-Salpetriere, AP-HP, Department of Metabolic Biochemistry, Paris (France); Daragon, Nelle; Desarnaud, Serge [CHU Pitie-Salpetriere, AP-HP, Department of Nuclear Medicine, Paris (France)

    2010-03-15

    Our aim was to study the correlations between cerebrospinal fluid (CSF) biomarker levels such as {beta}-amyloid 42 (A{beta}{sub 42}), total and phosphorylated tau protein (T-tau and P-tau) and brain perfusion SPECT in Alzheimer's disease (AD) using a voxel-based methodology. Patients (n = 31) with clinical features of AD (n = 25) or amnestic mild cognitive impairment (aMCI) (n = 6) were retrospectively included. All subjects underwent the same clinical, neuropsychological and neuroimaging tests. They had a lumbar puncture and a brain perfusion ({sup 99m}Tc-ECD) SPECT within a time interval of 10 ({+-}26) days. Correlations between CSF biomarker concentrations and perfusion were studied using SPM2 software. Individual normalised regional activity values were extracted from the eligible clusters for calculation of correlation coefficients. No significant correlation was found between A{beta}{sub 42} concentrations and brain perfusion. A significant correlation (p < 0.01, corrected) was found between T-tau or P-tau concentrations and perfusion in the left parietal cortex. Our results suggest a strong correlation between T-tau and P-tau levels and decreased brain perfusion in regions typically affected by neuropathological changes in AD. (orig.)

  19. 7 Warning Signs of Alzheimer's | Alzheimer's disease | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Alzheimer's Disease 7 Warning Signs of Alzheimer's Past Issues / Fall 2010 Table of Contents The ... Suncoast Gerontology Center, University of South Florida. How Alzheimer's Changes the Brain The only definite way to ...

  20. Sex differences in metabolic aging of the brain: insights into female susceptibility to Alzheimer's disease.

    Science.gov (United States)

    Zhao, Liqin; Mao, Zisu; Woody, Sarah K; Brinton, Roberta D

    2016-06-01

    Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These

  1. ERP-based detection of brain pathology in rat models for preclinical Alzheimer's disease

    Science.gov (United States)

    Nouriziabari, Seyed Berdia

    Early pathological features of Alzheimer's disease (AD) include the accumulation of hyperphosphorylated tau protein (HP-tau) in the entorhinal cortex and progressive loss of basal forebrain (BF) cholinergic neurons. These pathologies are known to remain asymptomatic for many years before AD is clinically diagnosed; however, they may induce aberrant brain processing which can be captured as an abnormality in event-related potentials (ERPs). Here, we examined cortical ERPs while a differential associative learning paradigm was applied to adult male rats with entorhinal HP-tau, pharmacological blockade of muscarinic acetylcholine receptors, or both conditions. Despite no impairment in differential associative and reversal learning, each pathological feature induced distinct abnormality in cortical ERPs to an extent that was sufficient for machine classifiers to accurately detect a specific type of pathology based on these ERP features. These results highlight a potential use of ERPs during differential associative learning as a biomarker for asymptomatic AD pathology.

  2. [Theoretic basis on the same therapeutic program for different degenerative brain diseases in terms of the Governor Vessel: Alzheimer's disease and Parkinson's disease].

    Science.gov (United States)

    Wu, Junyan; Wang, Jie; Zhang, Junlong

    2015-05-01

    Through the consultation of TCM ancient classical theory, the relationship of kidney essence, marrow and brain is analyzed. It is discovered that the degenerative brain diseases, represented by Alzheimer's disease (AD) and Parkinson's disease (PD) share the same etiological basis as "kidney essence deficiency and brain marrow emptiness" and have the mutual pathological outcomes as yang qi declining. The Governor Vessel gathers yang qi of the whole body and maintains the normal functional activity of zangfu organs in the human body through the storage, regulation and invigoration of yang qi. It is viewed that the theory of the Governor Vessel is applied to treat the different degenerative brain diseases, which provides the theoretic support and practice guide for the thought of TCM as the same therapeutic program for the different diseases. As a result, the degenerative brain diseases can be retarded and the approach is provided to the effective prevention and treatment of degenerative diseases in central nerve system:

  3. Voxel-based comparison of whole brain gray matter of patients with mild Alzheimer's disease with normal aging volunteers

    International Nuclear Information System (INIS)

    Xie Sheng; Wu Hongkun; Xiao Jiangxi; Wang Yinhua; Jiang Xuexiang

    2006-01-01

    Objective: To detect gray matter abnormalities of whole brain in patients with mild Alzheimer's disease (AD) by voxel-based morphometry (VBM). Methods: Thirteen patients with mild Alzheimer's disease and sixteen normal aging volunteers underwent 3D SPGR scanning. For every subject, data was transferred to PC to be normalized, segmented and smoothed using SPM99. Non-dependent samples T-tests were conducted to compare gray matter' density voxel to voxel between the two groups. Results Significant reductions in gray matter density were found in the bilateral hippocampi and nucleus amygdalae, bilateral insulae, bilateral medial thalami, bilateral rectus gyri, right superior temporal gyms, right caudate nucleus, fight prefrontal lobe, right basal forebrain and portions of right occipital lobe. Conclusion: VBM reveals significant gray matter' reductions of numeral cortices in mild Alzheimer's disease. It can be a useful method to evaluate the anatomical changes in the progress of the disease. (authors)

  4. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-11-01

    Full Text Available Alzheimer's disease (AD is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs, 33 early MCI (EMCI, 32 late MCI (LMCI, and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ scores and global Clinical Dementia Rating (CDR scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE

  5. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity.

    Science.gov (United States)

    Lopes, Kryslaine O; Sparks, D Larry; Streit, Wolfgang J

    2008-08-01

    Degeneration of microglial cells may be important for understanding the pathogenesis of aging-related neurodegeneration and neurodegenerative diseases. In this study, we analyzed the morphological characteristics of microglial cells in the nondemented and Alzheimer's disease (AD) human brain using ferritin immunohistochemistry. The central hypothesis was that expression of the iron storage protein ferritin increases the susceptibility of microglia to degeneration, particularly in the aged brain since senescent microglia might become less efficient in maintaining iron homeostasis and free iron can promote oxidative damage. In a primary set of 24 subjects (age range 34-97 years) examined, microglial cells immunoreactive for ferritin were found to constitute a subpopulation of the larger microglial pool labeled with an antibody for HLA-DR antigens. The majority of these ferritin-positive microglia exhibited aberrant morphological (dystrophic) changes in the aged and particularly in the AD brain. No spatial correlation was found between ferritin-positive dystrophic microglia and senile plaques in AD tissues. Analysis of a secondary set of human postmortem brain tissues with a wide range of postmortem intervals (PMI, average 10.94 +/- 5.69 h) showed that the occurrence of microglial dystrophy was independent of PMI and consequently not a product of tissue autolysis. Collectively, these results suggest that microglial involvement in iron storage and metabolism contributes to their degeneration, possibly through increased exposure of the cells to oxidative stress. We conclude that ferritin immunohistochemistry may be a useful method for detecting degenerating microglia in the human brain. (c) 2008 Wiley-Liss, Inc.

  6. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study.

    Science.gov (United States)

    Snowdon, D A; Greiner, L H; Mortimer, J A; Riley, K P; Greiner, P A; Markesbery, W R

    1997-03-12

    To determine the relationship of brain infarction to the clinical expression of Alzheimer disease (AD). Cognitive function and the prevalence of dementia were determined for participants in the Nun Study who later died. At autopsy, lacunar and larger brain infarcts were identified, and senile plaques and neurofibrillary tangles in the neocortex were quantitated. Participants with abundant senile plaques and some neurofibrillary tangles in the neocortex were classified as having met the neuropathologic criteria for AD. Convents in the Midwestern, Eastern, and Southern United States. A total of 102 college-educated women aged 76 to 100 years. Cognitive function assessed by standard tests and dementia and AD assessed by clinical and neuropathologic criteria. Among 61 participants who met the neuropathologic criteria for AD, those with brain infarcts had poorer cognitive function and a higher prevalence of dementia than those without infarcts. Participants with lacunar infarcts in the basal ganglia, thalamus, or deep white matter had an especially high prevalence of dementia, compared with those without infarcts (the odds ratio [OR] for dementia was 20.7, 95% confidence interval [95% CI], 1.5-288.0). Fewer neuropathologic lesions of AD appeared to result in dementia in those with lacunar infarcts in the basal ganglia, thalamus, or deep white matter than in those without infarcts. In contrast, among 41 participants who did not meet the neuropathologic criteria for AD, brain infarcts were only weakly associated with poor cognitive function and dementia. Among all 102 participants, atherosclerosis of the circle of Willis was strongly associated with lacunar and large brain infarcts. These findings suggest that cerebrovascular disease may play an important role in determining the presence and severity of the clinical symptoms of AD.

  7. Neurogenesis and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.

  8. Voluntary exercise confers protection against age-related deficits in brain oxygenation in awake mice model of Alzheimer's disease

    Science.gov (United States)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.

  9. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Mancini, Simona; Minniti, Stefania; Gregori, Maria; Sancini, Giulio; Cagnotto, Alfredo; Couraud, Pierre-Olivier; Ordóñez-Gutiérrez, Lara; Wandosell, Francisco; Salmona, Mario; Re, Francesca

    2016-01-01

    We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aβ in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aβ peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aβ oligomers (Aβo), but not of Aβ fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aβo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aβo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aβ level, suggesting that Aβ-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-β (Aβ) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Brain alpha-amylase - a novel energy regulator important in Alzheimer disease?

    NARCIS (Netherlands)

    Byman, Elin; Schultz, Nina; Huitinga, I.; Fex, Malin; Wennström, Malin

    2018-01-01

    Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well-known pathological findings associated with Alzheimer's disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen,

  11. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... How Alzheimer's Changes the Brain National Institute On Aging Loading... Unsubscribe from National Institute On Aging? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 7K Loading... ...

  12. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    Science.gov (United States)

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  13. Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gabriella Testa

    2016-12-01

    Full Text Available Alzheimer's disease (AD is a gradually debilitating disease that leads to dementia. The molecular mechanisms underlying AD are still not clear, and at present no reliable biomarkers are available for the early diagnosis. In the last several years, together with oxidative stress and neuroinflammation, altered cholesterol metabolism in the brain has become increasingly implicated in AD progression. A significant body of evidence indicates that oxidized cholesterol, in the form of oxysterols, is one of the main triggers of AD. The oxysterols potentially most closely involved in the pathogenesis of AD are 24-hydroxycholesterol and 27-hydroxycholesterol, respectively deriving from cholesterol oxidation by the enzymes CYP46A1 and CYP27A1. However, the possible involvement of oxysterols resulting from cholesterol autooxidation, including 7-ketocholesterol and 7β-hydroxycholesterol, is now emerging. In a systematic analysis of oxysterols in post-mortem human AD brains, classified by the Braak staging system of neurofibrillary pathology, alongside the two oxysterols of enzymatic origin, a variety of oxysterols deriving from cholesterol autoxidation were identified; these included 7-ketocholesterol, 7α-hydroxycholesterol, 4β-hydroxycholesterol, 5α,6α-epoxycholesterol, and 5β,6β-epoxycholesterol. Their levels were quantified and compared across the disease stages. Some inflammatory mediators, and the proteolytic enzyme matrix metalloprotease-9, were also found to be enhanced in the brains, depending on disease progression. This highlights the pathogenic association between the trends of inflammatory molecules and oxysterol levels during the evolution of AD. Conversely, sirtuin 1, an enzyme that regulates several pathways involved in the anti-inflammatory response, was reduced markedly with the progression of AD, supporting the hypothesis that the loss of sirtuin 1 might play a key role in AD. Taken together, these results strongly support the

  14. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Get YouTube Red. Working... Not now Try it free Find out why Close How Alzheimer's Changes the ... 4:22 Your Amazing Brain - Dementia Explained - Alzheimer's Research UK - Duration: 4:58. AlzheimersResearch UK 16,695 ...

  15. Comparative Lipidomic Analysis of Mouse and Human Brain with Alzheimer Disease*

    Science.gov (United States)

    Chan, Robin B.; Oliveira, Tiago G.; Cortes, Etty P.; Honig, Lawrence S.; Duff, Karen E.; Small, Scott A.; Wenk, Markus R.; Shui, Guanghou; Di Paolo, Gilbert

    2012-01-01

    Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D2, which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D2, and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis. PMID:22134919

  16. Alzheimer disease

    Science.gov (United States)

    ... likely need to plan for their loved one's future care. The final phase of the disease may ... disease and other dementias. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  17. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

    Science.gov (United States)

    Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C

    2017-05-15

    Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional

  18. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis.

    Science.gov (United States)

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer

    2014-06-20

    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Diagnosis of Alzheimer's disease using brain SPECT with three-dimensional stereotactic surface projections

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Abe, Shine; Iwamoto, Toshihiko; Takasaki, Masaru

    2001-01-01

    We compared the diagnostic usefulness of three-dimensional stereotactic surface projection (3D-SSP) with that of standard transaxial images in brain SPECT in patients with Alzheimer's disease (AD). The subjects consisted of 69 patients with AD and 60 patients with non-AD, including vascular dementia, Parkinson's disease with dementia, frontotemporal dementia, other dementing diseases and neuropsychiatric diseases. Standard transaxial section and 3D-SSP SPECT images with N-isopropyl-p-[ 123 I] iodoamphetamine were blindly interpreted by three examiners and were classified into the following three patterns: typical AD, atypical AD, and not indicative AD patterns. The 3D-SSP images demonstrated reductions of cerebral blood flow in the parieto-temporal association cortex and posterior cingulate gyrus more clearly and easily than the standard transaxial images. The diagnostic sensitivity and specificity were 93% and 85% with 3D-SSP and 83% and 82% with standard transaxial section respectively. 3D-SSP was especially useful for early or atypical AD which showed no characteristic perfusion abnormalities on standard transaxial images. These results suggest that SPECT with 3D-SSP provides an sensitive as well as accurate tool for the diagnosis of AD. (author)

  20. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study.

    Directory of Open Access Journals (Sweden)

    Vijay R Varma

    2018-01-01

    Full Text Available The metabolic basis of Alzheimer disease (AD is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression.Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180 assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA (N = 44, mean age = 81.33, % female = 36.36 from AD (N = 15, control (CN; N = 14, and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15 participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63 and preclinical (BLSA (N = 207, mean age = 78.68, % female = 42.63 AD, in which we tested their associations with magnetic resonance imaging (MRI measures of AD-related brain atrophy, cerebrospinal fluid (CSF biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of

  1. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions.

    Directory of Open Access Journals (Sweden)

    Nisha Puthiyedth

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation.The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD from the Entorhinal Cortex (EC, Hippocampus (HIP, Middle temporal gyrus (MTG, Posterior cingulate cortex (PC, Superior frontal gyrus (SFG and visual cortex (VCX brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets.We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we

  2. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease.

    Science.gov (United States)

    Parbo, Peter; Ismail, Rola; Hansen, Kim V; Amidi, Ali; Mårup, Frederik H; Gottrup, Hanne; Brændgaard, Hans; Eriksson, Bengt O; Eskildsen, Simon F; Lund, Torben E; Tietze, Anna; Edison, Paul; Pavese, Nicola; Stokholm, Morten G; Borghammer, Per; Hinz, Rainer; Aanerud, Joel; Brooks, David J

    2017-07-01

    See Kreisl (doi:10.1093/awx151) for a scientific commentary on this article.Subjects with mild cognitive impairment associated with cortical amyloid-β have a greatly increased risk of progressing to Alzheimer's disease. We hypothesized that neuroinflammation occurs early in Alzheimer's disease and would be present in most amyloid-positive mild cognitive impairment cases. 11C-Pittsburgh compound B and 11C-(R)-PK11195 positron emission tomography was used to determine the amyloid load and detect the extent of neuroinflammation (microglial activation) in 42 mild cognitive impairment cases. Twelve age-matched healthy control subjects had 11C-Pittsburgh compound B and 10 healthy control subjects had 11C-(R)-PK11195 positron emission tomography for comparison. Amyloid-positivity was defined as 11C-Pittsburgh compound B target-to-cerebellar ratio above 1.5 within a composite cortical volume of interest. Supervised cluster analysis was used to generate parametric maps of 11C-(R)-PK11195 binding potential. Levels of 11C-(R)-PK11195 binding potential were measured in a selection of cortical volumes of interest and at a voxel level. Twenty-six (62%) of 42 mild cognitive impairment cases showed a raised cortical amyloid load compared to healthy controls. Twenty-two (85%) of the 26 amyloid-positive mild cognitive impairment cases showed clusters of increased cortical microglial activation accompanying the amyloid. There was a positive correlation between levels of amyloid load and 11C-(R)-PK11195 binding potentials at a voxel level within subregions of frontal, parietal and temporal cortices. 11C-(R)-PK11195 positron emission tomography reveals increased inflammation in a majority of amyloid positive mild cognitive impairment cases, its cortical distribution overlapping that of amyloid deposition. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. [Proceeding memory in Alzheimer's disease].

    Science.gov (United States)

    Arroyo-Anlló, Eva Ma; Chamorro-Sánchez, Jorge; Díaz-Marta, Juan Poveda; Gil, Roger

    2013-01-01

    Procedural learning can acquire or develop skills through performance and repetition of a task unconsciously or unintentionally. Procedural skills are considered as the cornerstone in the neuropsychological rehabilitation to promote the autonomy of patients with brain damage, as those with Alzheimer's disease. This review presents data about procedural skills in Alzheimer's disease. Over the past three decades, we have found 40 articles studying various procedural skills in the Alzheimer's disease: motor, perceptual-motor, cognitive, perceptual-cognitive and those developed through serial reaction-time paradigm. We analyzed every study evaluating a procedural skill, indicating the used task and preservation or no preservation of procedural learning. Overall, most of the papers published describe conservation of learning procedures or relatively conserved in Alzheimer's disease, which could be used to promote patient autonomy.

  4. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism.

    Science.gov (United States)

    Butterfield, D Allan; Lange, Miranda L Bader

    2009-11-01

    Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.

  5. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Giuseppe Astarita

    Full Text Available The molecular bases of Alzheimer's disease (AD remain unclear. We used a lipidomic approach to identify lipid abnormalities in the brains of subjects with AD (N = 37 compared to age-matched controls (N = 17. The analyses revealed statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs and mead acid (20:3n-9 in mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b, were elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio ('desaturation index'--displayed a strong negative correlation with measures of cognition: the Mini Mental State Examination test (r = -0.80; P = 0.0001 and the Boston Naming test (r = -0.57; P = 0.0071. Our results reveal a previously unrecognized role for the lipogenic enzyme SCD in AD.

  6. FLOW-BASED NETWORK MEASURES OF BRAIN CONNECTIVITY IN ALZHEIMER'S DISEASE.

    Science.gov (United States)

    Prasad, Gautam; Joshi, Shantanu H; Nir, Talia M; Toga, Arthur W; Thompson, Paul M

    2013-01-01

    We present a new flow-based method for modeling brain structural connectivity. The method uses a modified maximum-flow algorithm that is robust to noise in the diffusion data and guided by biologically viable pathways and structure of the brain. A flow network is first created using a lattice graph by connecting all lattice points (voxel centers) to all their neighbors by edges. Edge weights are based on the orientation distribution function (ODF) value in the direction of the edge. The maximum-flow is computed based on this flow graph using the flow or the capacity between each region of interest (ROI) pair by following the connected tractography fibers projected onto the flow graph edges. Network measures such as global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity are computed from the flow connectivity matrix. We applied our method to diffusion-weighted images (DWIs) from 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD) and segmented co-registered anatomical MRIs into cortical regions. Experimental results showed better performance compared to the standard fiber-counting methods when distinguishing Alzheimer's disease from normal aging.

  7. Trail Making Test Part A and Brain Perfusion Imaging in Mild Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Aki Shindo

    2013-06-01

    Full Text Available Background/Aims: The Trail Making Test (TMT has long been used to investigate deficits in cognitive processing speed and executive function in humans. However, there are few studies that elucidate the neural substrates of the TMT. The aim of the present study was to identify the regional perfusion patterns of the brain associated with performance on the TMT part A (TMT-A in patients with Alzheimer's disease (AD. Methods: Eighteen AD patients with poor performance on the TMT-A and 36 age- and sex-matched AD patients with good performance were selected. All subjects underwent brain single photon emission computed tomography. Results: No significant differences between the good and poor performance groups were found with respect to years of education and revised Addenbrooke's Cognitive Examination scores. However, higher z-scores for hypoperfusion in the bilateral superior parietal lobule were observed in the group that scored poorly on the TMT-A compared with the good performance group. Conclusion: Our results suggest that functional activity of the bilateral superior parietal lobules is closely related to performance time on the TMT-A. Thus, the performance time on the TMT-A might be a promising index of dysfunction of the superior parietal area among mild AD patients.

  8. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  9. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks

  10. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Try it free Find out why Close How Alzheimer's Changes the Brain National Institute On Aging Loading... ... 23, 2017 This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ...

  11. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Find out why Close How Alzheimer's Changes the Brain National Institute On Aging Loading... Unsubscribe from National ... minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat and ...

  12. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close How Alzheimer's Changes the Brain National Institute On Aging Loading... ... 23, 2017 This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ...

  13. How Alzheimer's Changes the Brain

    Science.gov (United States)

    ... 3-months free Find out why Close How Alzheimer's Changes the Brain National Institute On Aging Loading... ... 23, 2017 This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ...

  14. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 3-months free Find out why Close How Alzheimer's Changes the Brain National Institute On Aging Loading... ... 23, 2017 This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ...

  15. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ya-Ru Wen

    2018-01-01

    Full Text Available Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain. First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3, significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.

  16. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.

    Science.gov (United States)

    Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B

    2017-09-01

    Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download ... about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease ...

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download ... worried about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease ...

  19. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s disease (AD). Abnormal tau...Special Reporting Requirements……………………………………10 9. Appendices……………………………………………………………10 1. INTRODUCTION Traumatic Brain Injury (TBI) is a risk factor for... risk factor for Alzheimer’s disease, Neurosci. Biobehav. Rev. 36(5), 1376-81. Teague SJ, Davis AM, Leeson PD, Oprea T (1999) The Design of Leadlike

  20. Multimodal Imaging of Brain Connectivity Using the MIBCA Toolbox: Preliminary Application to Alzheimer's Disease

    Science.gov (United States)

    Ribeiro, André Santos; Lacerda, Luís Miguel; Silva, Nuno André da; Ferreira, Hugo Alexandre

    2015-06-01

    The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI, and PET. In this work, the MIBCA functionalities were used to study Alzheimer's Disease (AD) in a multimodal MR/PET approach. Materials and Methods: Data from 12 healthy controls, and 36 patients with EMCI, LMCI and AD (12 patients for each group) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic PET data from 40-60 min post injection (4x5 min). Both MR and PET data were automatically pre-processed for all subjects using MIBCA. T1-w data was parcellated into cortical and subcortical regions-of-interest (ROIs), and the corresponding thicknesses and volumes were calculated. DTI data was used to compute structural connectivity matrices based on fibers connecting pairs of ROIs. Lastly, dynamic PET images were summed, and the relative Standard Uptake Values calculated for each ROI. Results: An overall higher uptake of 18F-AV-45, consistent with an increased deposition of beta-amyloid, was observed for the AD group. Additionally, patients showed significant cortical atrophy (thickness and volume) especially in the entorhinal cortex and temporal areas, and a significant increase in Mean Diffusivity (MD) in the hippocampus, amygdala and temporal areas. Furthermore, patients showed a reduction of fiber connectivity with the progression of the disease, especially for intra-hemispherical connections. Conclusion: This work shows the potential of the MIBCA toolbox for the study of AD, as findings were shown to be in agreement with the literature. Here, only structural changes and beta-amyloid accumulation were considered. Yet, MIBCA is further able to

  1. Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways.

    Science.gov (United States)

    Zilka, Norbert; Kazmerova, Zuzana; Jadhav, Santosh; Neradil, Peter; Madari, Aladar; Obetkova, Dominika; Bugos, Ondrej; Novak, Michal

    2012-03-07

    Neurodegeneration, induced by misfolded tau protein, and neuroinflammation, driven by glial cells, represent the salient features of Alzheimer's disease (AD) and related human tauopathies. While tau neurodegeneration significantly correlates with disease progression, brain inflammation seems to be an important factor in regulating the resistance or susceptibility to AD neurodegeneration. Previously, it has been shown that there is a reciprocal relationship between the local inflammatory response and neurofibrillary lesions. Numerous independent studies have reported that inflammatory responses may contribute to the development of tau pathology and thus accelerate the course of disease. It has been shown that various cytokines can significantly affect the functional and structural properties of intracellular tau. Notwithstanding, anti-inflammatory approaches have not unequivocally demonstrated that inhibition of the brain immune response can lead to reduction of neurofibrillary lesions. On the other hand, our recent data show that misfolded tau could represent a trigger for microglial activation, suggesting the dual role of misfolded tau in the Alzheimer's disease inflammatory cascade. On the basis of current knowledge, we can conclude that misfolded tau is located at the crossroad of the neurodegenerative and neuroinflammatory pathways. Thus disease-modified tau represents an important target for potential therapeutic strategies for patients with Alzheimer's disease.

  2. Clinical Evaluation of Brain Perfusion SPECT with Brodmann Areas Mapping in Early Diagnosis of Alzheimer's Disease.

    Science.gov (United States)

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Fezoulidis, Ioannis; Kapsalaki, Eftychia; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2015-01-01

    Early diagnosis of Alzheimer's disease (AD) based on clinical criteria alone may be problematic, while current and future treatments should be administered earlier in order to be more effective. Thus, various disease biomarkers could be used for early detection of AD. We evaluated brain perfusion with 99mTc-HMPAO single photon emission computed tomography (SPECT) and Brodmann areas (BAs) mapping in mild AD using an automated software (NeuroGam) for the semi-quantitative evaluation of perfusion in BAs and the comparison with the software's normal database. We studied 34 consecutive patients with mild AD: 9 men, 25 women, mean age 70.9 ± 8.1 years, mean Mini-Mental State Examination 22.6 ± 2.5. BAs 25L, 25R, 38L, 38R, 28L, 28R, 36L, and 36R had the lower mean perfusion values, while BAs 31L, 31R, 19R, 18L, 18R, 17L, and 17R had the higher mean values. Compared with healthy subjects of the same age, perfusion values in BAs 25L, 25R, 28R, 28L, 36L, and 36R had the greatest deviations from the healthy sample, while the lowest deviations were found in BAs 32L, 32R, 19R, 24L, 17L, 17R, 18L, and 18R. A percentage of ≥94% of patients had perfusion values more than -2SDs below the mean of healthy subjects in BAs 38R, 38L, 36L, 36R, 23L, 23R, 22L, 44L, 28L, 28R, 25L, and 25R. The corresponding proportion was less than 38% for BAs 11L, 19R, 32L, 32R, 18L, 18R, 24L, and 17R. In conclusion, brain SPECT studies with automated perfusion mapping could be useful as an ancillary tool in daily practice, revealing perfusion impairments in early AD.

  3. Association of traumatic brain injury and Alzheimer disease onset: A systematic review.

    Science.gov (United States)

    Julien, J; Joubert, S; Ferland, M-C; Frenette, L C; Boudreau-Duhaime, M M; Malo-Véronneau, L; de Guise, E

    2017-09-01

    Inconsistencies regarding the risk of developing Alzheimer disease after traumatic brain injury (TBI) remain in the literature. Indeed, why AD develops in certain TBI patients while others are unaffected is still unclear. The aim of this study was to performed a systematic review to investigate whether certain variables related to TBI, such as TBI severity, loss of consciousness (LOC) and post-traumatic amnesia (PTA), are predictors of risk of AD in adults. From 841 citations retrieved from MEDLINE via PubMed, EMBASE, PSYINFO and Cochrane Library databases, 18 studies were eligible for the review. The review revealed that about 55.5% of TBI patients may show deteriorated condition, from acute post-TBI cognitive deficits to then meeting diagnostic criteria for AD, but whether TBI is a risk factor for AD remains elusive. Failure to establish such a link may be related to methodological problems in the studies. To shed light on this dilemma, future studies should use a prospective design, define the types and severities of TBI and use standardized AD and TBI diagnostic criteria. Ultimately, an AD prediction model, based on several variables, would be useful for clinicians detecting TBI patients at risk of AD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease.

    Science.gov (United States)

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D

    2015-07-01

    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer's disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AbetaPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Abeta peptide processed from AbetaPP, 8-hydroxy-2'-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AbetaPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration.

  6. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI

    International Nuclear Information System (INIS)

    Magnin, Benoit; Mesrob, Lilia; Kinkingnehun, Serge; Pelegrini-Issac, Melanie; Colliot, Olivier; Sarazin, Marie; Dubois, Bruno; Lehericy, Stephane; Benali, Habib

    2009-01-01

    We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer's disease (AD) and elderly control subjects. We studied 16 patients with AD [mean age ± standard deviation (SD)=74.1 ±5.2 years, mini-mental score examination (MMSE) = 23.1 ± 2.9] and 22 elderly controls (72.3±5.0 years, MMSE=28.5± 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results. We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%). Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD. (orig.)

  7. Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer's disease

    International Nuclear Information System (INIS)

    Honda, Norinari; Machida, Kikuo

    2003-01-01

    Alzheimer's disease (AD) is diagnosed by either inspection of the brain perfusion SPECT, or three-dimensional stereotactic surface display (3D-SSP). The purpose was to compare diagnostic performances of these methods. Sixteen nuclear medicine physicians independently interpreted 99m Tc-ECD SPECT in one session and SPECT with 3D-SSP in another session without clinical information for 50 studies of AD patients and 40 studies of healthy volunteers. Probabilities of AD were reported according to a subjective scale from 0% (normal) to 100% (definite AD). Receiver operating characteristics curves were generated to calculate areas under the receiver operating characteristic (ROC) curves (Az's) for the inspection as well as for an automated diagnosis based on a mean Z value in the bilateral posterior cingulate gyri in a 3D-SSP template. Mean Az for visual interpretation of SPECT alone (0.679±0.058) was significantly smaller than that for visual interpretation of both SPECT and 3D-SSP (0.778±0.060). Az for the automated diagnosis (0.883±0.037) was significantly greater than that for both modes of visual interpretation. 3D-SSP enhanced performance of the nuclear medicine physicians inspecting SPECT. Performance of the automated diagnosis exceeded that of the physicians inspecting SPECT with and without 3D-SSP. (author)

  8. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  9. Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Elaheh Moradi

    2017-01-01

    Full Text Available Rey's Auditory Verbal Learning Test (RAVLT is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD, thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50 and RAVLT Percent Forgetting (R = 0.43 in a dataset consisting of 806 AD, mild cognitive impairment (MCI or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

  10. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health.

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Ray J

    2008-02-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of effects of physostigmine on stimulus- and attention- related brain activations, plus between-group comparisons for these. Subjects viewed face or building stimuli while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed slower than controls in both tasks, while physostigmine benefited the patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in patients relative to controls, but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed physostigmine-induced enhancement of stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased stimulus and task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. The differences in brain activations between groups and treatments were not attributable merely to performance (reaction time) differences. Our results demonstrate

  11. Widespread disruption of functional brain organization in early-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sofie M Adriaanse

    Full Text Available Early-onset Alzheimer's disease (AD patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old, 28 late-onset (≥65 years old AD patients and 15 "young" (<65 years old and 31 "old" (≥65 years old age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls, which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive

  12. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Traumatic brain injury (TBI has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer's disease (AD-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.

  13. Cerebral imaging revealing Alzheimer's disease

    International Nuclear Information System (INIS)

    2011-01-01

    Cerebral imaging is the only non-invasive means of examining the brain and is essential in studying Alzheimer's disease. As a tool for early diagnosis, evaluation and treatment monitoring, this technology is at the heart of the research being done to further improve its reliability and sensitivity. (authors)

  14. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial.

    Science.gov (United States)

    Rijpma, Anne; van der Graaf, Marinette; Lansbergen, Marieke M; Meulenbroek, Olga; Cetinyurek-Yavuz, Aysun; Sijben, John W; Heerschap, Arend; Olde Rikkert, Marcel G M

    2017-07-26

    Synaptic dysfunction contributes to cognitive impairment in Alzheimer's disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients with Alzheimer's disease. Thirty-four drug-naive patients with mild Alzheimer's disease (Mini Mental State Examination score ≥20) were enrolled in this exploratory, double-blind, randomized controlled study. Before and after 4-week intervention with Souvenaid or an isocaloric control product, phosphorus and proton magnetic resonance spectroscopy (MRS) was performed to assess surrogate measures of phospholipid synthesis and breakdown (phosphomonoesters [PME] and phosphodiesters [PDEs]), neural integrity (N-acetyl aspartate), gliosis (myo-inositol), and choline metabolism (choline-containing compounds [tCho]). The main outcome parameters were PME and PDE signal intensities and the PME/PDE ratio. MRS data from 33 patients (60-86 years old; 42% males; Souvenaid arm n = 16; control arm n = 17) were analyzed. PME/PDE and tCho were higher after 4 weeks of Souvenaid compared with control (PME/PDE least squares [LS] mean difference [95% CI] 0.18 [0.06-0.30], p = 0.005; tCho LS mean difference [95% CI] 0.01 [0.00-0.02], p = 0.019). No significant differences were observed in the other MRS outcome parameters. MRS reveals that Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease, in line with findings in preclinical studies. Netherlands Trial Register, NTR3346 . Registered on 13 March 2012.

  15. Brain Substrates of Learning and Retention in Mild Cognitive Impairment Diagnosis and Progression to Alzheimer's Disease

    Science.gov (United States)

    Chang, Yu-Ling; Bondi, Mark W.; Fennema-Notestine, Christine; McEvoy, Linda K.; Hagler, Donald J., Jr.; Jacobson, Mark W.; Dale, Anders M.

    2010-01-01

    Understanding the underlying qualitative features of memory deficits in mild cognitive impairment (MCI) can provide critical information for early detection of Alzheimer's disease (AD). This study sought to investigate the utility of both learning and retention measures in (a) the diagnosis of MCI, (b) predicting progression to AD, and (c)…

  16. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Yasushi Kishimoto

    2016-12-01

    Full Text Available This data article contains supporting information regarding the research article entitled “Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease” (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016 [1]. Triple-transgenic (3×Tg-Alzheimer׳s disease (AD model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI. Correspondingly, amyloid-β (Aβ deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  17. Recent Advances on the Role of Neurogenesis in the Adult Brain: Therapeutic Potential in Parkinson's and Alzheimer's Diseases.

    Science.gov (United States)

    Radad, Khaled; Moldzio, Rudolf; Al-Shraim, Mubarak; Kranner, Barbara; Krewenka, Christopher; Rausch, Wolf-Dieter

    2017-01-01

    Generation of nascent functional neurons from neural stem cells in the adult brain has recently become largely accepted by the neuroscience community. In adult mammals including humans, the process of neurogenesis has been well documented in two brain regions; the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. Some evidence has indicated neurogenesis in other regions of the adult mammalian brain such as the neocortex, cerebellum, striatum, amygdala and hypothalamus. These discoveries question a long standing dogma on nervous system regeneration and provide medical science with potential new strategies to harness the process of neurogenesis for treating neurological disabilities and neurodegenerative diseases. In this current review, we address the most recent advances on the role of neurogenesis in the adult brain and therapeutic potential in the two most common neurodegenerative disorders, Parkinson's and Alzheimer's diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... 272.3900 Donate Alzheimer's & Dementia What Is Alzheimer's? Brain Tour Younger/Early Onset Risk Factors Genetics Myths ... Dementia Korsakoff Syndrome Related Conditions CTE MCI Traumatic Brain Injury Facts and Figures Know the 10 Signs ...

  19. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  20. Clinicopathological correlation of psychosis and brain vascular changes in Alzheimer's disease.

    Science.gov (United States)

    Ting, Simon Kang Seng; Hao, Ying; Chia, Pei Shi; Tan, Eng-King; Hameed, Shahul

    2016-02-12

    Psychosis is common in Alzheimer's disease (AD). However, studies on neuropathology in vascular etiology contributing to psychosis in AD is lacking to date. The aim of this study was to investigate neuropathological vascular related changes in Alzheimer's disease with psychosis. Data of patients with AD from the National Alzheimer's Coordinating Center between 2005 to September 2013 was accessed and reviewed. Presence of psychosis was determined based on Neuropsychiatric Inventory Questionnaire taken from the last visit within one year prior to death, and patients were divided into psychosis positive and negative group. Comparison of clinical details and neuropathological vascular changes between the groups was performed using Wilcoxon rank sum test and Chi-square/ Fisher's exact test. Significant variables were further included in a multivariate logistic model. Overall, 145 patients was included. Of these, 50 patients were psychosis positive. Presence of one or more cortical microinfarcts and moderate to severe arteriosclerosis was found to be positively associated with psychosis. Our results suggest vascular changes correlate with psychosis in Alzheimer's disease.

  1. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Juliet A Moncaster

    2010-05-01

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta

  2. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... How Alzheimer's Changes the Brain National Institute On Aging Loading... Unsubscribe from National Institute On Aging? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 6.8K ...

  3. Reduced N-acetylaspartate content in the frontal part of the brain in patients with probable Alzheimer's disease

    DEFF Research Database (Denmark)

    Christiansen, P; Schlosser, A; Henriksen, O

    1995-01-01

    The fully relaxed water signal was used as an internal standard in a STEAM experiment to calculate the concentrations of the metabolites: N-acetylaspartate (NAA), creatine + phosphocreatine [Cr + PCr], and choline-containing metabolites (Cho) in the frontal part of the brain in 12 patients...... with probable Alzheimer's disease. Eight age-matched healthy volunteers served as controls. Furthermore, T1 and T2 relaxation times of the metabolites and signal ratios: NAA/Cho, NAA/[Cr + PCr], and [Cr + PCr]/Cho at four different echo times (TE) and two different repetition times (TR) were calculated....... The experiments were carried out using a Siemens Helicon SP 63/84 wholebody MR-scanner at 1.5 T. The concentration of NAA was significantly lower in the patients with probable Alzheimer's disease than in the healthy volunteers. No significant difference was found for any other metabolite concentration...

  4. Lack of evidence for dysfunction of the blood-brain barrier in Alzheimer's disease: an immunohistochemical study

    NARCIS (Netherlands)

    Rozemuller, J. M.; Eikelenboom, P.; Kamphorst, W.; Stam, F. C.

    1988-01-01

    With immunohistoperoxidase techniques the presence of plasma (serum) proteins was investigated in senile plaques, congophilic angiopathy, neurons and glial cells in brains of patients with Alzheimer's dementia. Other investigators have found plasma proteins in brain parenchyma and suggested that

  5. Brain local and regional neuroglial alterations in Alzheimer's Disease: cell types, responses and implications.

    Science.gov (United States)

    Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio

    2016-01-01

    From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.

  6. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Rahbar Rooshandel, Nahid; Omidzahir, Shila

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and Beta amyloid (ABeta) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 muL of ABeta (1-40) into the hippocampal fissure. In the present study, ABeta (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. ABeta injection CA1 caused ABeta deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group.

  7. Concordance between brain 18F-FDG PET and cerebrospinal fluid biomarkers in diagnosing Alzheimer's disease.

    Science.gov (United States)

    Rubí, S; Noguera, A; Tarongí, S; Oporto, M; García, A; Vico, H; Espino, A; Picado, M J; Mas, A; Peña, C; Amer, G

    Cortical posterior hypometabolism on PET imaging with 18 F-FDG (FDG-PET), and altered levels of Aß 1-42 peptide, total Tau (tTau) and phosphorylated Tau (pTau) proteins in cerebrospinal fluid (CSF) are established diagnostic biomarkers in Alzheimer's disease (AD). An evaluation has been made of the concordance and relationship between the results of FDG-PET and CSF biomarkers in symptomatic patients with suspected AD. A retrospective review was carried out on 120 patients with cognitive impairment referred to our Cognitive Neurology Unit, and who were evaluated by brain FDG-PET and a lumbar puncture for CSF biomarkers. In order to calculate their Kappa coefficient of concordance, the result of the FDG-PET and the set of the three CSF biomarkers in each patient was classified as normal, inconclusive, or AD-compatible. The relationship between the results of both methods was further assessed using logistic regression analysis, including the Aß 1-42 , tTau and pTau levels as quantitative predictors, and the FDG-PET result as the dependent variable. The weighted Kappa coefficient between FDG-PET and CSF biomarkers was 0.46 (95% CI: 0.35-0.57). Logistic regression analysis showed that the Aß 1-42 and tTau values together were capable of discriminating an FDG-PET result metabolically suggestive of AD from one non-suggestive of AD, with a 91% sensitivity and 93% specificity at the cut-off line Aß 1-42 =44+1.3×tTau. The level of concordance between FDG-PET and CSF biomarkers was moderate, indicating their complementary value in diagnosing AD. The Aß 1-42 and tTau levels in CSF help to predict the patient FDG-PET cortical metabolic status. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  8. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... health and long-term care costs. worried about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts ... Copyright © 2018 Alzheimer's Association ® . All rights reserved. Our vision is a world without Alzheimer's Formed in 1980, ...

  9. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... FightingAlzheimers 597,278 views 9:37 Reversing Alzheimer’s Disease- Dr. Dale Bredesen, MD - Duration: 1:13:27. Silicon ... 5:15 5 Signs You'll Get Alzheimer's Disease - Dr. Russell Blaylock Offers Crucial Advice. - Duration: 33:27. ...

  10. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less ... Mystery of Alzheimer's Disease - Duration: 4:22. Knoxville News Sentinel 34,722 views 4:22 Alzheimer's and ...

  11. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 702,464 views 13:57 2-Minute Neuroscience: Alzheimer's Disease - Duration: 2:01. Neuroscientifically Challenged 23,314 views 2:01 The 7 Stages of Alzheimer's Disease Through a Caregiver's Eyes - Duration: 54:55. Toni ...

  12. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 632,620 views 13:57 2-Minute Neuroscience: Alzheimer's Disease - Duration: 2:01. Neuroscientifically Challenged 21,392 views 2:01 The 7 Stages of Alzheimer's Disease Through a Caregiver's Eyes - Duration: 54:55. Toni ...

  13. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... automatically play next. Up next 2-Minute Neuroscience: Alzheimer's Disease - Duration: 2:01. Neuroscientifically Challenged 22,187 views ... 130 views 13:57 The 7 Stages of Alzheimer's Disease Through a Caregiver's Eyes - Duration: 54:55. Toni ...

  14. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Agrawal, Mukta; Ajazuddin; Tripathi, Dulal K; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Mourtas, Spyridon; Hammarlund-Udenaes, Margareta; Alexander, Amit

    2017-08-28

    In this modern era, with the help of various advanced technologies, medical science has overcome most of the health-related issues successfully. Though, some diseases still remain unresolved due to various physiological barriers. One such condition is Alzheimer; a neurodegenerative disorder characterized by progressive memory impairment, behavioral abnormalities, mood swing and disturbed routine activities of the person suffering from. It is well known to all that the brain is entirely covered by a protective layer commonly known as blood brain barrier (BBB) which is responsible to maintain the homeostasis of brain by restricting the entry of toxic substances, drug molecules, various proteins and peptides, small hydrophilic molecules, large lipophilic substances and so many other peripheral components to protect the brain from any harmful stimuli. This functionally essential structure creates a major hurdle for delivery of any drug into the brain. Still, there are some provisions on BBB which facilitate the entry of useful substances in the brain via specific mechanisms like passive diffusion, receptor-mediated transcytosis, carrier-mediated transcytosis etc. Another important factor for drug transport is the selection of a suitable drug delivery systems like, liposome, which is a novel drug carrier system offering a potential approach to resolving this problem. Its unique phospholipid bilayer structure (similar to physiological membrane) had made it more compatible with the lipoidal layer of BBB and helps the drug to enter the brain. The present review work focused on various surface modifications with functional ligand (like lactoferrin, transferrin etc.) and carrier molecules (such as glutathione, glucose etc.) on the liposomal structure to enhance its brain targeting ability towards the successful treatment of Alzheimer disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health

    OpenAIRE

    Bentley, P.; Driver, J.; Dolan, R. J.

    2008-01-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject plac...

  16. Cholinergic modulation of visual and attentional brain responses in Alzheimer's disease and in health

    OpenAIRE

    Bentley, P.; Driver, J.; Dolan, R.J.

    2007-01-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visual attentional processing would be impaired relative to controls, yet partially susceptible to improvement with cholinesterase inhibition. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled c...

  17. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study

    Science.gov (United States)

    Oommen, Anup M.; Varma, Sudhir; Casanova, Ramon; An, Yang; O’Brien, Richard; Pletnikova, Olga; Kastenmueller, Gabi; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Thambisetty, Madhav

    2018-01-01

    Background The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Methods and findings Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and “asymptomatic Alzheimer’s disease” (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes—sphingolipids and glycerophospholipids—that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer’s Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that

  18. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Nishikawa, Junichi; Kosaka, Noboru; Ohtake, Tohru; Watanabe, Toshiaki; Yoshikawa, Kohki; Iio, Masahiro [Tokyo Univ. (Japan). Faculty of Medicine

    1989-09-01

    Eighteen patients with Alzheimer's disease (AD), 5 patients with Pick disease (PD), 6 patients with other types of degenerative dementia (O) and 12 age-matched normal control subjects (N) were studied using N-isopropyl p-(I-123)iodoamphetamine (I-123 IMP) with SPECT. Regional to cerebellar activity (R/CE) ratio and frontal to parietal (F/R) activity ratio were evaluated in each case. I-123 IMP-SPECT revealed focal abnormality in all cases in AD, PD, O group, while XCT and/or MRI were normal or showed cerebral atrophy without focal abnormal density or intensity. In AD group, R/CE ratio in all the regions except for bilateral Rolandic area and left primary visual cortex were significantly lower (p<0.05 or p<0.01) than that in N group, and F/P ratio were significantly higher (p<0.01) than that in P and O group. In conclusion, I-123 IMP-SPECT is useful to detect focal perfusion abnormality in dementia and may be of value in differentiating Alzheimer's disease from dementia of non-Alzheimer type. (author).

  19. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in Alzheimer's disease

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Nishikawa, Junichi; Kosaka, Noboru; Ohtake, Tohru; Watanabe, Toshiaki; Yoshikawa, Kohki; Iio, Masahiro

    1989-01-01

    Eighteen patients with Alzheimer's disease (AD), 5 patients with Pick disease (PD), 6 patients with other types of degenerative dementia (O) and 12 age-matched normal control subjects (N) were studied using N-isopropyl p-[I-123]iodoamphetamine (I-123 IMP) with SPECT. Regional to cerebellar activity (R/CE) ratio and frontal to parietal (F/R) activity ratio were evaluated in each case. I-123 IMP-SPECT revealed focal abnormality in all cases in AD, PD, O group, while XCT and/or MRI were normal or showed cerebral atrophy without focal abnormal density or intensity. In AD group, R/CE ratio in all the regions except for bilateral Rolandic area and left primary visual cortex were significantly lower (p<0.05 or p<0.01) than that in N group, and F/P ratio were significantly higher (p<0.01) than that in P and O group. In conclusion, I-123 IMP-SPECT is useful to detect focal perfusion abnormality in dementia and may be of value in differentiating Alzheimer's disease from dementia of non-Alzheimer type. (author)

  20. CT study in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Heii; Kobayashi, Kazunari; Ikeda, Kenji; Nagao, Yoshiko; Ogihara, Ryuji; Kosaka, Kenji [Tokyo Metropolitan Matsuzawa Hospital (Japan)

    1983-01-01

    Cerebral atrophy on CT was studied in 18 patients with clinically diagnosed Alzheimer's disease and in 14 healthy age-matched subjects as the control. The patients with Alzheimer's disease were divided into three groups of Stages I, II and III, according to their clinical symptoms. The study of the measurement method disclosed that the computerized measurement involving calculation of the number of pixels contained within the range of the designated CT numbers is liable to produce errors for the determination of the subarachnoid spaces and the ventricles with calcified colloid plexus. Therefore, for the present study was the method adopted, in which the subarachnoid spaces and the ventricles are measured based on the number of pixels contained in the region of interest by tracing them on the display monitor. Then, both Subarachnoid Space Volume Index (SVI) and Ventricle Volume Index (VVI) were calculated as the indices for cortical atrophy and ventricular dilatation in a slice through the level of the foramen interventriculare Monroi and other three successive ones through upper regions. Cerebral atrophy observed on CT in Alzheimer patients is attributable to Alzheimer's disease processes, rather than to physiological aging of the brain. The degree of the atrophy increases in proportion to the clinical stage, and cortical atrophy is apparent even at Stage I, whereas ventricular dilatation becomes pronounced at later stage. CT is one of effective clinical tests for the diagnosis of Alzheimer's disease.

  1. CT study in Alzheimer's disease

    International Nuclear Information System (INIS)

    Arai, Heii; Kobayashi, Kazunari; Ikeda, Kenji; Nagao, Yoshiko; Ogihara, Ryuji; Kosaka, Kenji

    1983-01-01

    Cerebral atrophy on CT was studied in 18 patients with clinically diagnosed Alzheimer's disease and in 14 healthy age-matched subjects as the control. The patients with Alzheimer's disease were divided into three groups of Stages I, Ii and III, according to their clinical symptoms. The study of the measurement method disclosed that the computerized measurement involving calculation of the number of pixels contained within the range of the designated CT numbers is liable to produce errors for the determination of the subarachnoid spaces and the ventricles with calcified colloid plexus. Therefor, for the present study was the method adopted, in which the subarachnoid spaces and the ventricles are measured based on the number of pixels contained in the region of interest by tracing them on the display monitor. Then, both Subarachnoid Space Volume Index (SVI) and Ventricle Volume Index (VVI) were calculated as the indices for cortical atrophy and ventricular dilatation in a slice through the level of the foramen interventriculare Monroi and other three successive ones through upper regions. Cerebral atrophy observed on CT in Alzheimer patients is attributable to Alzheimer's disease processes, rather than to physiological aging of the brain. The degree of the atrophy increases in proportion to the clinical stage, and cortical atrophy is apparent even at Stage I, whereas ventricular dilatation becomes pronounced at later stage. CT is one of effective clinical tests for the diagnosis of Alzheimer's disease. (J.P.N.)

  2. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    2017-12-01

    Full Text Available Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases

  3. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  4. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.

  5. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon [Dongguk University Medical Center, Goyang (Korea, Republic of); Seo, Hyung Suk [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2009-07-15

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p < 0.01). The CC area and brain volume in AD patients (498.7 +- 72 mm{sup 2}, 715.4 +- 107 cm3) were significantly smaller than in MCI patients (595.9 +- 108, 844.1 +- 85) and the HCs (563.2 +- 75, 818.9 +- 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  6. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Hoglund, K; Thelen, K M; Syversen, S

    2005-01-01

    During the last years, several clinical studies have been published trying to elucidate the effect of statin treatment on amyloid precursor protein (APP) processing and metabolism of brain cholesterol in Alzheimer's disease (AD) in humans. We present an open biochemical study where 19 patients...... with AD have been treated with simvastatin (20 mg/day) for 12 months. The aim was to further investigate the effect of simvastatin treatment on cerebrospinal fluid (CSF) biomarkers of APP processing, AD biomarkers as total tau and tau phosphorylated at threonine 181, brain cholesterol metabolism as well...... as on cognitive decline in patients with AD. Despite biochemical data suggesting that treatment with 20 mg/day of simvastatin for 12 months does affect the brain cholesterol metabolism, we did not find any change in CSF or plasma levels of beta-amyloid (Abeta)(1-42). However, by analysis of APP isoforms, we found...

  7. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease.

    Science.gov (United States)

    Huang, Xiao-Tian; Qian, Zhong-Ming; He, Xuan; Gong, Qi; Wu, Ka-Chun; Jiang, Li-Rong; Lu, Li-Na; Zhu, Zhou-Jing; Zhang, Hai-Yan; Yung, Wing-Ho; Ke, Ya

    2014-05-01

    Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... to prevent Alzheimer's | Lisa Genova - Duration: 13:57. TED 721,752 views 13:57 Alzheimer's Disease, How ... scans | Daniel Amen | TEDxOrangeCoast - Duration: 14:37. TEDx Talks 5,407,641 views 14:37 5 Signs ...

  9. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show ... 9:37. FightingAlzheimers 593,181 views 9:37 Kids Meet a Woman with Alzheimer's | Cut - Duration: 5: ...

  10. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Disease, How I Stopped and Reversed It - Duration: 9:37. FightingAlzheimers 593,181 views 9:37 Kids Meet a Woman with Alzheimer's | Cut - ... Oil: Ian Blair Hamilton and Cassie Bond - Duration: 9:57. AlkaWay 379,787 views 9:57 Tracking ...

  11. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... suggested video will automatically play next. Up next What you can do to prevent Alzheimer's | Lisa Genova - Duration: 13:57. TED 759,201 views 13:57 The 7 Stages of Alzheimer's Disease Through a Caregiver's Eyes - Duration: 54:55. Toni Wombaker 966,865 ...

  12. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 342 views 2:01 Alzheimer's Disease, How I Stopped and Reversed It - Duration: 9:37. FightingAlzheimers 610, ... Old Man In Nursing Home Reacts To Hearing Music From His Era - Duration: 6:30. Mahmoud Abdul- ...

  13. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... The 7 Stages of Alzheimer's Disease Through a Caregiver's Eyes - Duration: 54:55. Toni Wombaker 965,067 ... 07 Day in the Life of an Alzheimer's Caregiver: Heartbreaking - Duration: 4:39. DavidNazarNews 35,452 views ...

  14. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease Facts and Figures report ... on the impact of this disease in every state across the nation. Click below to see the ...

  15. Treatment of Alzheimer disease.

    Science.gov (United States)

    Winslow, Bradford T; Onysko, Mary K; Stob, Christian M; Hazlewood, Kathleen A

    2011-06-15

    Alzheimer disease is the most common form of dementia, affecting nearly one-half [corrected] of Americans older than 85 years. It is characterized by progressive memory loss and cognitive decline. Amyloid plaque accumulation, neurofibrillary tau tangles, and depletion of acetylcholine are among the pathologic manifestations of Alzheimer disease. Although there are no proven modalities for preventing Alzheimer disease, hypertension treatment, omega-3 fatty acid supplementation, physical activity, and cognitive engagement demonstrate modest potential. Acetylcholinesterase inhibitors are first-line medications for the treatment of Alzheimer disease, and are associated with mild improvements in cognitive function, behavior, and activities of daily living; however, the clinical relevance of these effects is unclear. The most common adverse effects of acetylcholinesterase inhibitors are nausea, vomiting, diarrhea, dizziness, confusion, and cardiac arrhythmias. Short-term use of the N-methyl-D-aspartate receptor antagonist memantine can modestly improve measures of cognition, behavior, and activities of daily living in patients with moderate to severe Alzheimer disease. Memantine can also be used in combination with acetylcholinesterase inhibitors. Memantine is generally well tolerated, but whether its benefits produce clinically meaningful improvement is controversial. Although N-methyl-D-aspartate receptor antagonists and acetylcholinesterase inhibitors can slow the progression of Alzheimer disease, no pharmacologic agents can reverse the progression. Atypical antipsychotics can improve some behavioral symptoms, but have been associated with increased mortality rates in older patients with dementia. There is conflicting evidence about the benefit of selegiline, testosterone, and ginkgo for the treatment of Alzheimer disease. There is no evidence supporting the beneficial effects of vitamin E, estrogen, or nonsteroidal anti-inflammatory drug therapy.

  16. Brain correlates of performance in a free/cued recall task with semantic encoding in Alzheimer disease.

    Science.gov (United States)

    Lekeu, Françoise; Van der Linden, Martial; Chicherio, Christian; Collette, Fabienne; Degueldre, Christian; Franck, Georges; Moonen, Gustave; Salmon, Eric

    2003-01-01

    The goal of this study was to explore in patients with Alzheimer's disease (AD) the brain correlates of free and cued recall performance using an adaptation of the procedure developed by Grober and Buschke (1987). This procedure, which ensures semantic processing and coordinates encoding and retrieval, has been shown to be very sensitive to an early diagnosis of AD. Statistical parametric mapping (SPM 99) was used to establish clinicometabolic correlations between performance at free and cued verbal recall and resting brain metabolism in 31 patients with AD. Results showed that patient's score on free recall correlated with metabolic activity in right frontal regions (BA 10 and BA 45), suggesting that performance reflected a strategic retrieval attempt. Poor retrieval performance was tentatively attributed to a loss of functional correlation between frontal and medial temporal regions in patients with AD compared with elderly controls. Performance on cued recall was correlated to residual metabolic activity in bilateral parahippocampal regions (BA 36), suggesting that performance reflected retrieval of semantic associations, without recollection in AD. In conclusion, this study demonstrates that the diagnostic sensitivity for Alzheimer's disease of the cued recall performance in the Grober and Buschke procedure (1987) depends on the activity of parahippocampal regions, one of the earliest targets of the disease. Moreover, the results suggest that the poor performance of patients with AD during free and cued recall is related to a decreased connectivity between parahippocampal regions and frontal areas.

  17. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    Science.gov (United States)

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Analysis of the brain tissues from a patient with Alzheimer's disease and effects of chelating treatment

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Fujisawa, S.; Takada, K.; Yoshida, K.; Murayama, H.; Shin, R.W.

    1999-01-01

    Alzheimer's, Parkinson's disease and ALS are among major neurodegenerative diseases. The cause of neurodegeneration is unknown, but there are indications that excessive accumulation of essential elements, and sometimes, incorporation of toxic foreign elements in neurons aggravate neurodegeneration. During the past decade, many researchers investigated the causative factors in degenerative diseases to specify genetic or environmental factor. PIXE analysis has been used for these studies because of the sample preparation is easy and detection limit is very low. However, the concentration of matrix elements and foreign elements are extremely low and difficult to detect and to quantify. In this study, specimens from patients with Alzheimer's disease with no chemical treatment, and those with chelating were analyzed. In all analyzed specimens, Na, Al, Si, P, S, Cl, Ca, Ti, Vi, Cr, Fe and Cu were detected. Each specimen in this study consisted of cerebral cortex and substantia alba. From these experiments we can observe a clear tendency that the accumulation of the metal elements use different depending on the constituent tissues, and the method of sample preparation has a dominant role in the measurement results. (author)

  19. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline.

    Science.gov (United States)

    Risacher, Shannon L; Anderson, Wesley H; Charil, Arnaud; Castelluccio, Peter F; Shcherbinin, Sergey; Saykin, Andrew J; Schwarz, Adam J

    2017-11-21

    To test the hypothesis that cortical and hippocampal volumes, measured in vivo from volumetric MRI (vMRI) scans, could be used to identify variant subtypes of Alzheimer disease (AD) and to prospectively predict the rate of clinical decline. Amyloid-positive participants with AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 1 and ADNI2 with baseline MRI scans (n = 229) and 2-year clinical follow-up (n = 100) were included. AD subtypes (hippocampal sparing [HpSp MRI ], limbic predominant [LP MRI ], typical AD [tAD MRI ]) were defined according to an algorithm analogous to one recently proposed for tau neuropathology. Relationships between baseline hippocampal volume to cortical volume ratio (HV:CTV) and clinical variables were examined by both continuous regression and categorical models. When participants were divided categorically, the HpSp MRI group showed significantly more AD-like hypometabolism on 18 F-fluorodeoxyglucose-PET ( p Alzheimer's Disease Assessment Scale, 13-Item Subscale (ADAS-Cog 13 ), Mini-Mental State Examination (MMSE), and Functional Assessment Questionnaire (all p < 0.05) and tAD MRI on the MMSE and Clinical Dementia Rating Sum of Boxes (CDR-SB) (both p < 0.05). Finally, a larger HV:CTV was associated with poorer baseline executive function and a faster slope of decline in CDR-SB, MMSE, and ADAS-Cog 13 score ( p < 0.05). These associations were driven mostly by the amount of cortical rather than hippocampal atrophy. AD subtypes with phenotypes consistent with those observed with tau neuropathology can be identified in vivo with vMRI. An increased HV:CTV ratio was predictive of faster clinical decline in participants with AD who were clinically indistinguishable at baseline except for a greater dysexecutive presentation. © 2017 American Academy of Neurology.

  20. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... UK 17,154 views 4:58 2-Minute Neuroscience: Alzheimer's Disease - Duration: 2:01. Neuroscientifically Challenged 23, ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  1. Semi-automatic ROI placement system for analysis of brain PET images based on elastic model. Application to diagnosis of Alzheimer's disease

    International Nuclear Information System (INIS)

    Ohyama, Masashi; Mishina, Masahiro; Kitamura, Shin; Katayama, Yasuo; Senda, Michio; Tanizaki, Naoki; Ishii, Kenji

    2000-01-01

    PET with 18F-fluorodeoxyglucose (FDG) is a useful technique to image cerebral glucose metabolism and to detect patients with Alzheimer's disease in the early stage, in which characteristic temporoparietal hypometabolism is visualized. We have developed a new system, in which the standard brain ROI atlas made of networks of segments is elastically transformed to match the subject brain images, so that standard ROIs defined on the segments are placed on the individual brain images and are used to measure radioactivity over each brain region. We applied this methods to Alzheimer's disease. This method was applied to the images of 10 normal subjects (ages 55 +/- 12) and 21 patients clinically diagnosed as Alzheimer's disease (age 61 +/- 10). The FDG uptake reflecting glucose metabolism was evaluated with SUV, i.e. decay corrected radioactivity divided by injected dose per body weight in (Bq/ml)/(Bq/g). The system worked all right in every subject including those with extensive hypometabolism. Alzheimer patients showed markedly lower in the parietal cortex (4.0-4.1). When the threshold value of FDG uptake in the parietal lobe was set as 5 (Bq/ml)/(Bq/g), we could discriminate the patients with Alzheimer's disease from the normal subjects. The sensitivity was 86% and the specificity was 90%. This system can assist diagnosis of FDG images and may be useful for treating data of a large number of subjects; e.g. when PET is applied to health screening. (author)

  2. Algebraic connectivity of brain networks shows patterns of segregation leading to reduced network robustness in Alzheimer's disease

    Science.gov (United States)

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Leonardo, Cassandra D.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew A.; Thompson, Paul M.

    2015-01-01

    Measures of network topology and connectivity aid the understanding of network breakdown as the brain degenerates in Alzheimer's disease (AD). We analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 72 with early- and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD. Using whole-brain tractography, we reconstructed structural connectivity networks representing connections between pairs of cortical regions. We examined, for the first time in this context, the network's Laplacian matrix and its Fiedler value, describing the network's algebraic connectivity, and the Fiedler vector, used to partition a graph. We assessed algebraic connectivity and four additional supporting metrics, revealing a decrease in network robustness and increasing disarray among nodes as dementia progressed. Network components became more disconnected and segregated, and their modularity increased. These measures are sensitive to diagnostic group differences, and may help understand the complex changes in AD. PMID:26640830

  3. Mitophagy and Alzheimer's Disease

    DEFF Research Database (Denmark)

    Kerr, Jesse S.; Adriaanse, Bryan A.; Greig, Nigel H.

    2017-01-01

    Neurons affected in Alzheimer's disease (AD) experience mitochondrial dysfunction and a bioenergetic deficit that occurs early and promotes the disease-defining amyloid beta peptide (Aβ) and Tau pathologies. Emerging findings suggest that the autophagy/lysosome pathway that removes damaged...

  4. Trends in brain oxygenation during mental and physical exercise measured using near-infrared spectroscopy (NIRS): potential for early detection of Alzheimer's disease

    Science.gov (United States)

    Allen, Monica S.; Allen, Jeffery W.; Mikkilineni, Shweta; Liu, Hanli

    2005-04-01

    Motivation: Early diagnosis of Alzheimer's disease (AD) is crucial because symptoms respond best to available treatments in the initial stages of the disease. Recent studies have shown that marked changes in brain oxygenation during mental and physical tasks can be used for noninvasive functional brain imaging to detect Alzheimer"s disease. The goal of our study is to explore the possibility of using near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for AD before the onset of significant morphological changes in the brain. Methods: A 16-channel NIRS brain imager was used to noninvasively measure spatial and temporal changes in cerebral hemodynamics induced during verbal fluency task and physical activity. The experiments involved healthy subjects (n = 10) in the age range of 25+/-5 years. The NIRS signals were taken from the subjects' prefrontal cortex during the activities. Results and Conclusion: Trends of oxygenated and deoxygenated hemoglobin in the prefrontal cortex of the brain were observed. During the mental stimulation, the subjects showed significant increase in oxygenated hemoglobin [HbO2] with a simultaneous decrease in deoxygenated hemoglobin [Hb]. However, physical exercise caused a rise in levels of HbO2 with small variations in Hb. This study basically demonstrates that NIRM taken from the prefrontal cortex of the human brain is sensitive to both mental and physical tasks and holds potential to serve as a diagnostic means for early detection of Alzheimer's disease.

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... of death among those age 65 and older. It also is a leading cause of disability and ... development of biomarkers for Alzheimer's disease is making it possible to detect Alzheimer's disease and provide an ...

  6. Recent developments in Alzheimer's disease therapeutics

    Directory of Open Access Journals (Sweden)

    Aisen Paul S

    2009-02-01

    Full Text Available Abstract Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed.

  7. Improved mitochondrial function in brain aging and Alzheimer disease - the new mechanism of action of the old metabolic enhancer piracetam

    Directory of Open Access Journals (Sweden)

    Kristina Leuner

    2010-09-01

    Full Text Available Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g. might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential (MMP, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease (AD. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, these new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions.

  8. Potential neuroimaging biomarkers of pathologic brain changes in Mild Cognitive Impairment and Alzheimer's disease: a systematic review.

    Science.gov (United States)

    Ruan, Qingwei; D'Onofrio, Grazia; Sancarlo, Daniele; Bao, Zhijun; Greco, Antonio; Yu, Zhuowei

    2016-05-16

    Neuroimaging-biomarkers of Mild Cognitive Impairment (MCI) allow an early diagnosis in preclinical stages of Alzheimer's disease (AD). The goal in this paper was to review of biomarkers for Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD), with emphasis on neuroimaging biomarkers. A systematic review was conducted from existing literature that draws on markers and evidence for new measurement techniques of neuroimaging in AD, MCI and non-demented subjects. Selection criteria included: 1) age ≥ 60 years; 2) diagnosis of AD according to NIAAA criteria, 3) diagnosis of MCI according to NIAAA criteria with a confirmed progression to AD assessed by clinical follow-up, and 4) acceptable clinical measures of cognitive impairment, disability, quality of life, and global clinical assessments. Seventy-two articles were included in the review. With the development of new radioligands of neuroimaging, today it is possible to measure different aspects of AD neuropathology, early diagnosis of MCI and AD become probable from preclinical stage of AD to AD dementia and non-AD dementia. The panel of noninvasive neuroimaging-biomarkers reviewed provides a set methods to measure brain structural and functional pathophysiological changes in vivo, which are closely associated with preclinical AD, MCI and non-AD dementia. The dynamic measures of these imaging biomarkers are used to predict the disease progression in the early stages and improve the assessment of therapeutic efficacy in these diseases in future clinical trials.

  9. Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease: Methodology and Baseline Sample Characteristics.

    Science.gov (United States)

    Byun, Min Soo; Yi, Dahyun; Lee, Jun Ho; Choe, Young Min; Sohn, Bo Kyung; Lee, Jun-Young; Choi, Hyo Jung; Baek, Hyewon; Kim, Yu Kyeong; Lee, Yun-Sang; Sohn, Chul-Ho; Mook-Jung, Inhee; Choi, Murim; Lee, Yu Jin; Lee, Dong Woo; Ryu, Seung-Ho; Kim, Shin Gyeom; Kim, Jee Wook; Woo, Jong Inn; Lee, Dong Young

    2017-11-01

    The Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) aimed to recruit 650 individuals, aged from 20 to 90 years, to search for new biomarkers of Alzheimer's disease (AD) and to investigate how multi-faceted lifetime experiences and bodily changes contribute to the brain changes or brain pathologies related to the AD process. All participants received comprehensive clinical and neuropsychological evaluations, multi-modal brain imaging, including magnetic resonance imaging, magnetic resonance angiography, [ 11 C]Pittsburgh compound B-positron emission tomography (PET), and [ 18 F]fluorodeoxyglucose-PET, blood and genetic marker analyses at baseline, and a subset of participants underwent actigraph monitoring and completed a sleep diary. Participants are to be followed annually with clinical and neuropsychological assessments, and biannually with the full KBASE assessment, including neuroimaging and laboratory tests. As of March 2017, in total, 758 individuals had volunteered for this study. Among them, in total, 591 participants-291 cognitively normal (CN) old-aged individuals, 74 CN young- and middle-aged individuals, 139 individuals with mild cognitive impairment (MCI), and 87 individuals with AD dementia (ADD)-were enrolled at baseline, after excluding 162 individuals. A subset of participants (n=275) underwent actigraph monitoring. The KBASE cohort is a prospective, longitudinal cohort study that recruited participants with a wide age range and a wide distribution of cognitive status (CN, MCI, and ADD) and it has several strengths in its design and methodologies. Details of the recruitment, study methodology, and baseline sample characteristics are described in this paper.

  10. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease

    OpenAIRE

    Munoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-01-01

    Background Animal models of Alzheimer’s disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain c...

  11. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study.

    Directory of Open Access Journals (Sweden)

    Stuart G Snowden

    2017-03-01

    Full Text Available The metabolic basis of Alzheimer disease (AD pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain.We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14, controls (N = 14 and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15 from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA. We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG and resistant (cerebellum to classical AD pathology. The levels of six unsaturated fatty acids (UFAs in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10-8, FC = 0.52, q = 1.03 x 10-6, linolenic acid (p = 2.5 x 10-4, FC = 0.84, q = 4.03 x 10-4, docosahexaenoic acid (p = 1.7 x 10-7, FC = 1.45, q = 1.24 x 10-6, eicosapentaenoic acid (p = 4.4 x 10-4, FC = 0.16, q = 6.48 x 10-4, oleic acid (p = 3.3 x 10-7, FC = 0.34, q = 1.46 x 10-6, and arachidonic acid (p = 2.98 x 10-5, FC = 0.75, q = 7.95 x 10-5. These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p ASYMAD>AD and increases in docosahexanoic acid (AD>ASYMAD>control may represent regionally specific threshold levels of these metabolites beyond which the accumulation of AD pathology triggers the expression of clinical symptoms. The main limitation of this study is the relatively small sample size. There are few cohorts with extensive longitudinal cognitive assessments

  12. [How to define Alzheimer's disease].

    Science.gov (United States)

    Poncet, Michel

    2011-09-01

    Alzheimer's disease, which was considered to be a rare disease in subjects aged under 65 until the seventies/eighties, has become a very common disease affecting mostly older subjects. Many consider that it is important to review the meaning of the eponym "Alzheimer's disease", and a revolution, quite literally, is likely to occur. The role of vascular lesions in the onset of dementias among older subjects is widely acknowledged; considering those dementias as Alzheimer's disease may have negative consequences for patient management. Indeed, vascular lesions can be prevented and treated, while Alzheimer's lesions cannot. It may be justified to use "Alzheimer syndrome" instead of "Alzheimer's disease" when vascular risk factors and, all the more so, vascular lesions are present. Significant progress has been made in the understanding of the pathological proteins involved in Alzheimer's disease, as well as their effects on neurons and synapses. However, the etiology of the disease is still unknown, except in the rare hereditary cases, and there is no cure for Alzheimer's disease at present. Clinical research is progressing, and diagnostic criteria for the pre-dementia stage of Alzheimer's disease were suggested. In France, the outstanding Alzheimer plan 2008-2012 should play an important role in enhancing the understanding of Alzheimer's disease, Alzheimer's syndromes and related disorders.

  13. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 146 views 12:17 Alzheimer’s Is Not Normal Aging — And We Can Cure It | Samuel Cohen | TED Talks - Duration: 7:54. ... Alzheimer's Prevention Program: Keep Your Brain Healthy for the Rest of Your Life - Duration: 57: ...

  14. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    International Nuclear Information System (INIS)

    Handayani, N; Akbar, Y; Khotimah, S N; Haryanto, F; Arif, I; Taruno, W P

    2016-01-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons. (paper)

  15. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer's disease?

    Science.gov (United States)

    Kent, Brianne A

    2014-01-01

    Alzheimer's disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD.

  16. Brain Metabolic Dysfunction in Capgras Delusion During Alzheimer's Disease: A Positron Emission Tomography Study.

    Science.gov (United States)

    Jedidi, H; Daury, N; Capa, R; Bahri, M A; Collette, F; Feyers, D; Bastin, C; Maquet, P; Salmon, E

    2015-11-01

    Capgras delusion is characterized by the misidentification of people and by the delusional belief that the misidentified persons have been replaced by impostors, generally perceived as persecutors. Since little is known regarding the neural correlates of Capgras syndrome, the cerebral metabolic pattern of a patient with probable Alzheimer's disease (AD) and Capgras syndrome was compared with those of 24-healthy elderly participants and 26 patients with AD without delusional syndrome. Comparing the healthy group with the AD group, the patient with AD had significant hypometabolism in frontal and posterior midline structures. In the light of current neural models of face perception, our patients with Capgras syndrome may be related to impaired recognition of a familiar face, subserved by the posterior cingulate/precuneus cortex, and impaired reflection about personally relevant knowledge related to a face, subserved by the dorsomedial prefrontal cortex. © The Author(s) 2013.

  17. Brain Information Sharing During Visual Short-Term Memory Binding Yields a Memory Biomarker for Familial Alzheimer's Disease.

    Science.gov (United States)

    Parra, Mario A; Mikulan, Ezequiel; Trujillo, Natalia; Sala, Sergio Della; Lopera, Francisco; Manes, Facundo; Starr, John; Ibanez, Agustin

    2017-01-01

    Alzheimer's disease (AD) as a disconnection syndrome which disrupts both brain information sharing and memory binding functions. The extent to which these two phenotypic expressions share pathophysiological mechanisms remains unknown. To unveil the electrophysiological correlates of integrative memory impairments in AD towards new memory biomarkers for its prodromal stages. Patients with 100% risk of familial AD (FAD) and healthy controls underwent assessment with the Visual Short-Term Memory binding test (VSTMBT) while we recorded their EEG. We applied a novel brain connectivity method (Weighted Symbolic Mutual Information) to EEG data. Patients showed significant deficits during the VSTMBT. A reduction of brain connectivity was observed during resting as well as during correct VSTM binding, particularly over frontal and posterior regions. An increase of connectivity was found during VSTM binding performance over central regions. While decreased connectivity was found in cases in more advanced stages of FAD, increased brain connectivity appeared in cases in earlier stages. Such altered patterns of task-related connectivity were found in 89% of the assessed patients. VSTM binding in the prodromal stages of FAD are associated to altered patterns of brain connectivity thus confirming the link between integrative memory deficits and impaired brain information sharing in prodromal FAD. While significant loss of brain connectivity seems to be a feature of the advanced stages of FAD increased brain connectivity characterizes its earlier stages. These findings are discussed in the light of recent proposals about the earliest pathophysiological mechanisms of AD and their clinical expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. 3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry

    Science.gov (United States)

    Hua, Xue; Leow, Alex D.; Lee, Suh; Klunder, Andrea D.; Toga, Arthur W.; Lepore, Natasha; Chou, Yi-Yu; Brun, Caroline; Chiang, Ming-Chang; Barysheva, Marina; Jack, Clifford R.; Bernstein, Matt A.; Britson, Paula J.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret; Fleisher, Adam S.; Fox, Nick C.; Boyes, Richard G.; Barnes, Josephine; Harvey, Danielle; Kornak, John; Schuff, Norbert; Boreta, Lauren; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2008-01-01

    Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.1 years+/−7.7 SD). We warped each individual brain image (N=120) to the control group average template to create Jacobian maps, which show the local expansion or compression factor at each point in the image, reflecting individual volumetric differences. Statistical maps of group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser, more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9- versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors that resist or accelerate the disease process, and (2) measure disease burden in treatment trials. PMID:18378167

  19. Head-to-Head Visual Comparison between Brain Perfusion SPECT and Arterial Spin-Labeling MRI with Different Postlabeling Delays in Alzheimer Disease.

    Science.gov (United States)

    Kaneta, T; Katsuse, O; Hirano, T; Ogawa, M; Yoshida, K; Odawara, T; Hirayasu, Y; Inoue, T

    2017-08-01

    Arterial spin-labeling MR imaging has been recently developed as a noninvasive technique with magnetically labeled arterial blood water as an endogenous contrast medium for the evaluation of CBF. Our aim was to compare arterial spin-labeling MR imaging and SPECT in the visual assessment of CBF in patients with Alzheimer disease. In 33 patients with Alzheimer disease or mild cognitive impairment due to Alzheimer disease, CBF images were obtained by using both arterial spin-labeling-MR imaging with a postlabeling delay of 1.5 seconds and 2.5 seconds (PLD 1.5 and PLD 2.5 , respectively) and brain perfusion SPECT. Twenty-two brain regions were visually assessed, and the diagnostic confidence of Alzheimer disease was recorded. Among all arterial spin-labeling images, 84.9% of PLD 1.5 and 9% of PLD 2.5 images showed the typical pattern of advanced Alzheimer disease (ie, decreased CBF in the bilateral parietal, temporal, and frontal lobes). PLD 1.5 , PLD 2.5 , and SPECT imaging resulted in obviously different visual assessments. PLD 1.5 showed a broad decrease in CBF, which could have been due to an early perfusion. In contrast, PLD 2.5 did not appear to be influenced by an early perfusion but showed fewer pathologic findings than SPECT. The distinctions observed by us should be carefully considered in the visual assessments of Alzheimer disease. Further studies are required to define the patterns of change in arterial spin-labeling-MR imaging associated with Alzheimer disease. © 2017 by American Journal of Neuroradiology.

  20. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns.

    Science.gov (United States)

    Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C

    2016-04-05

    We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (Prisk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.

  1. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... of Alzheimer's. Today, someone in the United States develops Alzheimer's every 65 seconds. By mid-century, someone in the United States will develop the disease every 33 seconds. GET INVOLVED. Join ...

  2. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Join the Cause alz.org >> Alzheimer's & Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download the Infographic: English Spanish Share the ...

  3. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... SPECIAL REPORT: FINANCIAL AND PERSONAL BENEFITS OF EARLY DIAGNOSIS Early diagnosis of Alzheimer's provides a number of important benefits ... to detect Alzheimer's disease and provide an accurate diagnosis earlier than at any other time in history. ...

  4. Alzheimer's Disease Facts and Figures

    Science.gov (United States)

    ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty-three percent of the help ...

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty-three percent of the help ...

  6. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Help | Join the Cause alz.org >> Alzheimer's & Dementia >> Home Text size: A A A 2018 Alzheimer's Disease ... people who receive adult day services and nursing home care. Take action. Become an advocate SPECIAL REPORT: ...

  7. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... existing cases of Alzheimer's. Today, someone in the United States develops Alzheimer's every 65 seconds. By mid-century, someone in the United States will develop the disease every 33 seconds. GET ...

  8. Down Syndrome and Alzheimer's Disease

    Science.gov (United States)

    ... A A A Share Plus on Google Plus Alzheimer's & Dementia alz.org | IHaveAlz Overview What Is Dementia ... chapter Join our online community Down Syndrome and Alzheimer's Disease As they age, those affected by Down ...

  9. A positron emission tomography analysis of glucose metabolism in Alzheimer's disease brain using [F-18] fluorodeoxyglucose : A parallel study with elemental concentrations

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Stedman, JD; Leenders, KL

    Alzheimer's disease (AD) isa debilitating form of dementia which leads to impaired memory, thinking and behavior. This work examines elemental concentrations between "normal" and AD subjects as well as the hemispherical differences within the brain. Tissue samples from both hemispheres of the

  10. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks.

    Science.gov (United States)

    Grothe, Michel J; Teipel, Stefan J

    2016-01-01

    Recent neuroimaging studies of Alzheimer's disease (AD) have emphasized topographical similarities between AD-related brain changes and a prominent cortical association network called the default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET, neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants from the Alzheimer's Disease Neuroimaging Initiative, including preclinical, predementia, and clinically manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypometabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of modality-dependent network specificity were also observed in the predementia and, for amyloid deposition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability profiles of these networks markedly differ for distinct aspects of AD pathology. © 2015 Wiley Periodicals, Inc.

  11. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Wombaker 929,392 views 54:55 2-Minute Neuroscience: Alzheimer's Disease - Duration: 2:01. Neuroscientifically Challenged 21, ... disease - Duration: 41:57. The Florey Institute of Neuroscience and Mental Health 2,709 views 41:57 ...

  12. Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder.

    Science.gov (United States)

    Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu

    2016-05-01

    Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy

  13. A methodological approach to studying resilience mechanisms: demonstration of utility in age and Alzheimer's disease-related brain pathology.

    Science.gov (United States)

    Wolf, Dominik; Fischer, Florian Udo; Fellgiebel, Andreas

    2018-05-01

    The present work aims at providing a methodological approach for the investigation of resilience factors and mechanisms in normal aging, Alzheimer's disease (AD) and other neurodegenerative disorders. By expanding and re-conceptualizing traditional regression approaches, we propose an approach that not only aims at identifying potential resilience factors but also allows for a differentiation between general and dynamic resilience factors in terms of their association with pathology. Dynamic resilience factors are characterized by an increasing relevance with increasing levels of pathology, while the relevance of general resilience factors is independent of the amount of pathology. Utility of the approach is demonstrated in age and AD-related brain pathology by investigating widely accepted resilience factors, including education and brain volume. Moreover, the approach is used to test hippocampal volume as potential resilience factor. Education and brain volume could be identified as general resilience factors against age and AD-related pathology. Beyond that, analyses highlighted that hippocampal volume may not only be disease target but also serve as a potential resilience factor in age and AD-related pathology, particularly at higher levels of tau-pathology (i.e. dynamic resilience factor). Given its unspecific and superordinate nature the approach is suitable for the investigation of a wide range of potential resilience factors in normal aging, AD and other neurodegenerative disorders. Consequently, it may find a wide application and thereby promote the comparability between studies.

  14. TREM2 Variants in Alzheimer's Disease

    Science.gov (United States)

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  15. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Ericksen Mielle Borba

    2016-12-01

    Full Text Available Background/Aims: Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD pathology. Serum brain-derived neurotrophic factor (BDNF reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]. Methods: Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results: MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion: The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  16. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease.

    Science.gov (United States)

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  17. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease.

    Science.gov (United States)

    Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire

    2017-11-01

    Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.

  18. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer's disease.

    Science.gov (United States)

    Boggio, Paulo Sérgio; Valasek, Claudia Aparecida; Campanhã, Camila; Giglio, Ana Carolina Alem; Baptista, Nathalia Ishikawa; Lapenta, Olivia Morgan; Fregni, Felipe

    2011-10-01

    Alzheimer's disease (AD) is a neurodegenerative and progressive disease related to a gradual decline in cognitive functions such as memory, attention, perceptual-spatial abilities, language, and executive functions. Recent evidence has suggested that interventions promoting neural plasticity can induce significant cognitive gains especially in subjects at risk of or with mild AD. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive techniques that can induce significant and long-lasting changes in focal and non-focal neuroplasticity. In this review, we present initial preliminary evidence that TMS and tDCS can enhance performance in cognitive functions typically impaired in AD. Also, we reviewed the initial six studies on AD that presented early findings showing cognitive gains such as in recognition memory and language associated with TMS and tDCS treatment. In addition, we showed that TMS has also been used to assess neuroplasticity changes in AD supporting the notion that cortical excitability is changed in AD due to the neurodegenerative process. Due to the safe profile, cost of these tools, and initial clinical trials results, further studies are warranted in order to replicate and extend the initial findings of rTMS and tDCS as cognitive enhancers in AD. Further trials should explore different targets of stimulation along with different paradigms of stimulation including combination with behavioural interventions.

  19. Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer's and Parkinson's Disease.

    Science.gov (United States)

    Caruana, Mario; Cauchi, Ruben; Vassallo, Neville

    2016-01-01

    Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common age-related neurodegenerative disorders and hence pose remarkable socio-economical burdens to both families and state. Although AD and PD have different clinical and neuropathological features, they share common molecular mechanisms that appear to be triggered by multi-factorial events, such as protein aggregation, mitochondrial dysfunction, oxidative stress (OS), and neuroinflammation, ultimately leading to neuronal cell death. Currently, there are no established and validated disease-modifying strategies for either AD or PD. Among the various lifestyle factors that may prevent or slow age-related neurodegenerative diseases, epidemiological studies on moderate consumption of red wine, especially as part of a holistic Mediterranean diet, have attracted increasing interest. Red wine is particularly rich in specific polyphenolic compounds that appear to affect the biological processes of AD and PD, such as quercetin, myricetin, catechins, tannins, anthocyanidins, resveratrol, and ferulic acid. Indeed, there is now a consistent body of in vitro and in vivo data on the neuroprotective effects of red wine polyphenols (RWP) showing that they do not merely possess antioxidant properties, but may additionally act upon, in a multi-target manner, the underlying key mechanisms featuring in both AD and PD. Furthermore, it is important that bioavailability issues are addressed in order for neuroprotection to be relevant in a clinical study scenario. This review summarizes the current knowledge about the major classes of RWP and places into perspective their potential to be considered as nutraceuticals to target neuropathology in AD and PD.

  20. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    Directory of Open Access Journals (Sweden)

    Hanneke de Waal

    Full Text Available Synaptic loss is a major hallmark of Alzheimer's disease (AD. Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials.To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD.A 24-week randomised, controlled, double-blind, parallel-group, multi-country study.179 drug-naïve mild AD patients who participated in the Souvenir II study.Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks.In a secondary analysis of the Souvenir II study, electroencephalography (EEG brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma and global network integration (normalised characteristic path length lambda were compared between study groups, and related to memory performance.THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance.The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and

  1. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    Science.gov (United States)

    de Waal, Hanneke; Stam, Cornelis J; Lansbergen, Marieke M; Wieggers, Rico L; Kamphuis, Patrick J G H; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C W

    2014-01-01

    Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. 179 drug-naïve mild AD patients who participated in the Souvenir II study. Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for

  2. [Calcium hypothesis of Alzheimer disease].

    Science.gov (United States)

    Riazantseva, M A; Mozhaeva, G N; Kaznacheeva, E V

    2012-01-01

    Alzheimer's disease is the most common neurodegenerative disorder characterized by progressive memory and cognitive abilities loss. The etiology of Alzheimer's disease is poorly understood. In this regard, there is no effective treatment for the disease. Various hypotheses to explain the nature of the pathology of Alzheimer's disease led to the development of appropriate therapeutics. Despite of decades of research and clinical trials available therapeutics, at best, can only slow down the progression of the disease, but cannot cure it. This review dedicated to the one of modern hypotheses of Alzheimer's disease pathogenesis implied the impairment of calcium homeostasis as a key event for the development of neurodegenerative processes.

  3. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    Science.gov (United States)

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  4. Design, Synthesis, and Preliminary Evaluation of SPECT Probes for Imaging β-Amyloid in Alzheimer's Disease Affected Brain.

    Science.gov (United States)

    Okumura, Yuki; Maya, Yoshifumi; Onishi, Takako; Shoyama, Yoshinari; Izawa, Akihiro; Nakamura, Daisaku; Tanifuji, Shigeyuki; Tanaka, Akihiro; Arano, Yasushi; Matsumoto, Hiroki

    2018-04-06

    In this study, we synthesized of a series of 2-phenyl- and 2-pyridyl-imidazo[1,2- a]pyridine derivatives and examine their suitability as novel probes for single-photon emission computed tomography (SPECT)-based imaging of β-amyloid (Aβ). Among the 11 evaluated compounds, 10 showed moderate affinity to Aβ(1-42) aggregates, exhibiting half-maximal inhibitory concentrations (IC 50 ) of 14.7 ± 6.07-87.6 ± 39.8 nM. In vitro autoradiography indicated that 123 I-labeled triazole-substituted derivatives displayed highly selective binding to Aβ plaques in the hippocampal region of Alzheimer's disease (AD)-affected brain. Moreover, biodistribution studies performed on normal rats demonstrated that all 123 I-labeled probes featured high initial uptake into the brain followed by a rapid washout and were thus well suited for imaging Aβ plaques, with the highest selectivity observed for a 1 H-1,2,3-triazole-substituted 2-pyridyl-imidazopyridine derivative, [ 123 I]ABC577. This compound showed good kinetics in rat brain as well as moderate in vivo stability in rats and is thus a promising SPECT imaging probe for AD in clinical settings.

  5. Quantitation, regional vulnerability, and kinetic modeling of brain glucose metabolism in mild Alzheimer's disease

    International Nuclear Information System (INIS)

    Mosconi, Lisa; Rusinek, Henry; De Santi, Susan; Li, Yi; Tsui, Wai H.; De Leon, Mony J.; Wang, Gene-Jack; Fowler, Joanna; Pupi, Alberto

    2007-01-01

    To examine CMRglc measures and corresponding glucose transport (K 1 and k 2 ) and phosphorylation (k 3 ) rates in the medial temporal lobe (MTL, comprising the hippocampus and amygdala) and posterior cingulate cortex (PCC) in mild Alzheimer's disease (AD). Dynamic FDG PET with arterial blood sampling was performed in seven mild AD patients (age 68 ± 8 years, four females, median MMSE 23) and six normal (NL) elderly (age 69 ± 9 years, three females, median MMSE 30). Absolute CMRglc (μmol/100 g/min) was calculated from MRI-defined regions of interest using multiparametric analysis with individually fitted kinetic rate constants, Gjedde-Patlak plot, and Sokoloff's autoradiographic method with population-based rate constants. Relative ROI/pons CMRglc (unitless) was also examined. With all methods, AD patients showed significant CMRglc reductions in the hippocampus and PCC, and a trend towards reduced parietotemporal CMRglc, as compared with NL. Significant k 3 reductions were found in the hippocampus, PCC and amygdala. K 1 reductions were restricted to the hippocampus. Relative CMRglc had the largest effect sizes in separating AD from NL. However, the magnitude of CMRglc reductions was 1.2- to 1.9-fold greater with absolute than with relative measures. CMRglc reductions are most prominent in the MTL and PCC in mild AD, as detected with both absolute and relative CMRglc measures. Results are discussed in terms of clinical and pharmaceutical applicability. (orig.)

  6. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Nektaria Nicolakakis

    2010-05-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ, and synthetic ligands for PPARα (fibrates and PPARγ (Thiazolidinediones, TZDs are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature, until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer’s disease (AD, leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials.

  7. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show ... 345,680 views 6:27 Kids Meet a Woman with Alzheimer's | Cut - Duration: 5:15. Cut 7, ...

  8. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less ... to a Cure: Combating Alzheimer's With New Compute Technology - Duration: 5:13. Great Big Story 455,862 ...

  9. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less ... Vsauce 4,618,939 views 15:02 Our story; Alzheimers' and Coconut Oil: Ian Blair Hamilton and ...

  10. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less Loading... Autoplay When autoplay is enabled, a suggested video will automatically play next. Up next What you can do to prevent Alzheimer's | Lisa Genova - ...

  11. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains.

    Science.gov (United States)

    Benseny-Cases, Núria; Klementieva, Oxana; Cotte, Marine; Ferrer, Isidre; Cladera, Josep

    2014-12-16

    Amyloid peptides are the main component of one of the characteristic pathological hallmarks of Alzheimer's disease (AD): senile plaques. According to the amyloid cascade hypothesis, amyloid peptides may play a central role in the sequence of events that leads to neurodegeneration. However, there are other factors, such as oxidative stress, that may be crucial for the development of the disease. In the present paper, we show that it is possible, by using Fourier tranform infrared (FTIR) microscopy, to co-localize amyloid deposits and lipid peroxidation in tissue slides from patients affected by Alzheimer's disease. Plaques and lipids can be analyzed in the same sample, making use of the characteristic infrared bands for peptide aggregation and lipid oxidation. The results show that, in samples from patients diagnosed with AD, the plaques and their immediate surroundings are always characterized by the presence of oxidized lipids. As for samples from non-AD individuals, those without amyloid plaques show a lower level of lipid oxidation than AD individuals. However, it is known that plaques can be detected in the brains of some non-AD individuals. Our results show that, in such cases, the lipid in the plaques and their surroundings display oxidation levels that are similar to those of tissues with no plaques. These results point to lipid oxidation as a possible key factor in the path that goes from showing the typical neurophatological hallmarks to suffering from dementia. In this process, the oxidative power of the amyloid peptide, possibly in the form of nonfibrillar aggregates, could play a central role.

  12. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease.

    Science.gov (United States)

    Meng, Fanfei; Asghar, Sajid; Gao, Shiya; Su, Zhigui; Song, Jue; Huo, Meirong; Meng, Weidong; Ping, Qineng; Xiao, Yanyu

    2015-10-01

    In this study, a novel low density lipoprotein (LDL)-mimic nanostructured lipid carrier (NLC) modified with lactoferrin (Lf) and loaded with curcumin (Cur) was designed for brain-targeted delivery, and its effect on controlling the progression of Alzheimer's disease (AD) in rats was evaluated. NLC with the composition resembling the lipid portion of LDL was prepared by using solvent evaporation method. Lf was adsorbed onto the surface of NLC via electrostatic interaction to yield Lf modified-NLC (Lf-mNLC) as the LDL-mimic nanocarrier. In order to make sure more Lf was adsorbed on the surface of NLC, negatively charged carboxylated polyethylene glycol (100) monostearate (S100-COOH) was synthesized and anchored into NLC. Different levels of S100-COOH (0-0.02 mmol) and Lf modified NLC (0.5-2.5 mg/mL of Lf solution) were prepared and characterized. The uptake and potential cytotoxicities of different preparations were investigated in the brain capillary endothelial cells (BCECs). An AD model of rats was employed to evaluate the therapeutic effects of Lf-mNLC. The results indicate that Lf-mNLC with a high level of Lf showed the maximum uptake in BCECs (1.39 folds greater than NLC) as cellular uptake of Lf-mNLC by BCECs was found to be mediated by the Lf receptor. FRET studies showed Cur still wrapped inside NLC after uptake by BCECs, demonstrating stability of the carrier as it moved across the BBB. Ex vivo imaging studies exposed Lf-mNLC could effectively permeate BBB and preferentially accumulate in the brain (2.78 times greater than NLC). Histopathological evaluation confirmed superior efficacy of Lf-mNLC in controlling the damage associated with AD. In conclusion, Lf-mNLC is a promising drug delivery system for targeting therapy of brain disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. GLP-1 analog raises glucose transport capacity of blood-brain barrier in Alzheimer's disease

    DEFF Research Database (Denmark)

    Gejl, M.; Brock, B.; Egefjord, L.

    2017-01-01

    transport capacity (Tmax) with [18F]FDG (FDG) (ClinicalTrials.gov NCT01469351). Results: In both groups, the Tmax estimates declined in proportion to the duration of AD. The GLP-1 analog treatment very significantly (P cerebral cortex as a whole compared...... and degeneration. Hypothesis: The incretin hormone GLP-1 prevents the decline of the cerebral metabolic rate of glucose that signifies cognitive impairment, synaptic dysfunction, and disease evolution in AD, and GLP-1 may directly activate GLUT1 transport in brain capillary endothelium. For this reason, we here...

  14. Reduced brain perfusion in basal forebrain associated with cognitive decline in Alzheimer's diseases: a Tc-99m HMPAO SPECT study

    International Nuclear Information System (INIS)

    Lee, M.C.; Kang, H.; Kang, E.; Lee, J.S.; Lee, D.S.; Lee, D.W.; Cho, M.J.

    2002-01-01

    Aim: Reduction of regional cerebral blood flow (rCBF) in various cerebral regions and decline of cognitive function have been reported in Alzheimer's disease (AD) patients. The aim of this study was to identify the brain areas showing correlation between longitudinal changes of rCBFs and decline of general mental function, measured by Mini-Mental State Examination (MMSE) in probable Alzheimer's disease patients. Materials and Methods: Nine probable AD patients according to NINCDS-ADRDA criteria and DSM-IV were studied with Tc-99m HMPAO SPECT at an initial point and at the follow-up after a period of average 1.8 year. MMSE score was obtained in both occasions (average MMSE 16.4 at initial study; average MMSE = 8.1 at follow-up). Single SPECT was performed in 30 age-matched normal controls. Each SPECT image was normalized to the cerebellar activity. Using statistical parametric mapping (SPM99), correlation was analyzed between individual changes in rCBF of two SPECT scans and the MMSE scores at the time of each study in AD patients. In addition, the SPECT images of the initial study and the follow-up study were compared with SPECT images of the age-matched normal group respectively. Results: Significant correlation between longitudinal changes of rCBFs and MMSE scores was found in left basal forebrain region including substantia innominata (x, y, z = -24, 16, -23; P < .05, corrected). Within a short follow-up period of 1.8 years, cerebral hypoperfusion extended to various cortical regions from bilateral temporo-parietal to bilateral frontal regions and cingulate cortex, compared to normal controls. Conclusion: The decline of cognitive function in individual AD patients was correlated with rCBF reduction in left basal forebrain. This finding supports the cholinergic hypothesis of AD since hypoperfusion in basal forebrain region might indicate deterioration of cholinergic neurons in nucleus basalis of Meynert or substantia innominata

  15. Gender- and age-dependent gamma-secretase activity in mouse brain and its implication in sporadic Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Lisa Placanica

    Full Text Available Alzheimer disease (AD is an age-related disorder. Aging and female gender are two important risk factors associated with sporadic AD. However, the mechanism by which aging and gender contribute to the pathogenesis of sporadic AD is unclear. It is well known that genetic mutations in gamma-secretase result in rare forms of early onset AD due to the aberrant production of Abeta42 peptides, which are the major constituents of senile plaques. However, the effect of age and gender on gamma-secretase has not been fully investigated. Here, using normal wild-type mice, we show mouse brain gamma-secretase exhibits gender- and age-dependent activity. Both male and female mice exhibit increased Abeta42ratioAbeta40 ratios in aged brain, which mimics the effect of familial mutations of Presenilin-1, Presenlin-2, and the amyloid precursor protein on Abeta production. Additionally, female mice exhibit much higher gamma-secretase activity in aged brain compared to male mice. Furthermore, both male and female mice exhibit a steady decline in Notch1 gamma-secretase activity with aging. Using a small molecule affinity probe we demonstrate that male mice have less active gamma-secretase complexes than female mice, which may account for the gender-associated differences in activity in aged brain. These findings demonstrate that aging can affect gamma-secretase activity and specificity, suggesting a role for gamma-secretase in sporadic AD. Furthermore, the increased APP gamma-secretase activity seen in aged females may contribute to the increased incidence of sporadic AD in women and the aggressive Abeta plaque pathology seen in female mouse models of AD. In addition, deceased Notch gamma-secretase activity may also contribute to neurodegeneration. Therefore, this study implicates altered gamma-secretase activity and specificity as a possible mechanism of sporadic AD during aging.

  16. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer's disease and progressive supranuclear palsy brains.

    Science.gov (United States)

    Huin, Vincent; Buée, Luc; Behal, Hélène; Labreuche, Julien; Sablonnière, Bernard; Dhaenens, Claire-Marie

    2017-10-03

    Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.

  17. A comparison of early diagnostic utility of Alzheimer disease biomarkers in brain magnetic resonance and cerebrospinal fluid.

    Science.gov (United States)

    Monge Argilés, J A; Blanco Cantó, M A; Leiva Salinas, C; Flors, L; Muñoz Ruiz, C; Sánchez Payá, J; Gasparini Berenguer, R; Leiva Santana, C

    2014-09-01

    The goals of this study were to compare the early diagnostic utility of Alzheimer disease biomarkers in the CSF with those in brain MRI in conditions found in our clinical practice, and to ascertain the diagnostic accuracy of both techniques used together. Between 2008 and 2009, we included 30 patients with mild cognitive impairment (MCI) who were examined using 1.5 Tesla brain MRI and AD biomarker analysis in CSF. MRI studies were evaluated by 2 radiologists according to the Korf́s visual scale. CSF biomarkers were analysed using INNOTEST reagents for Aβ1-42, total-tau and phospho-tau181p. We evaluated clinical changes 2 years after inclusion. By 2 years after inclusion, 15 of the original 30 patients (50%) had developed AD (NINCDS-ADRA criteria). The predictive utility of AD biomarkers in CSF (RR 2.7; 95% CI, 1.1-6.7; Pde Neurología. Published by Elsevier Espana. All rights reserved.

  18. The pilot European Alzheimer's Disease Neuroimaging Initiative of the European Alzheimer's Disease Consortium

    DEFF Research Database (Denmark)

    Frisoni, G.B.; Henneman, W.J.; Weiner, M.W.

    2008-01-01

    BACKGROUND: In North America, the Alzheimer's Disease Neuroimaging Initiative (ADNI) has established a platform to track the brain changes of Alzheimer's disease. A pilot study has been carried out in Europe to test the feasibility of the adoption of the ADNI platform (pilot E-ADNI). METHODS: Seven...... academic sites of the European Alzheimer's Disease Consortium (EADC) enrolled 19 patients with mild cognitive impairment (MCI), 22 with AD, and 18 older healthy persons by using the ADNI clinical and neuropsychological battery. ADNI compliant magnetic resonance imaging (MRI) scans, cerebrospinal fluid...

  19. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain.

    Science.gov (United States)

    Butterfield, D Allan; Di Domenico, Fabio; Barone, Eugenio

    2014-09-01

    Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Murat Demirtaş

    2017-01-01

    Full Text Available Alzheimer's disease (AD is the most common dementia with dramatic consequences. The research in structural and functional neuroimaging showed altered brain connectivity in AD. In this study, we investigated the whole-brain resting state functional connectivity (FC of the subjects with preclinical Alzheimer's disease (PAD, mild cognitive impairment due to AD (MCI and mild dementia due to Alzheimer's disease (AD, the impact of APOE4 carriership, as well as in relation to variations in core AD CSF biomarkers. The synchronization in the whole-brain was monotonously decreasing during the course of the disease progression. Furthermore, in AD patients we found widespread significant decreases in functional connectivity (FC strengths particularly in the brain regions with high global connectivity. We employed a whole-brain computational modeling approach to study the mechanisms underlying these alterations. To characterize the causal interactions between brain regions, we estimated the effective connectivity (EC in the model. We found that the significant EC differences in AD were primarily located in left temporal lobe. Then, we systematically manipulated the underlying dynamics of the model to investigate simulated changes in FC based on the healthy control subjects. Furthermore, we found distinct patterns involving CSF biomarkers of amyloid-beta (Aβ1−42 total tau (t-tau and phosphorylated tau (p-tau. CSF Aβ1−42 was associated to the contrast between healthy control subjects and clinical groups. Nevertheless, tau CSF biomarkers were associated to the variability in whole-brain synchronization and sensory integration regions. These associations were robust across clinical groups, unlike the associations that were found for CSF Aβ1−42. APOE4 carriership showed no significant correlations with the connectivity measures.

  1. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Mortality Alzheimer's disease is the only top 10 cause of death in the United States that cannot be prevented, ... even slowed. Alzheimer's disease is the sixth-leading cause of death in the United States, and the fifth-leading ...

  2. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... get Alzheimer's disease were diagnosed in the mild cognitive impairment (MCI) stage — before dementia — it would collectively save $7 trillion to $7.9 trillion in health and long-term care costs. worried about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts ...

  3. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)

    2011-02-15

    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  4. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    International Nuclear Information System (INIS)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko; Yagi, Shunsuke; Ouchi, Yasuomi; Yoshikawa, Etsuji; Kikuchi, Mitsuru; Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki; Ueki, Takatoshi

    2011-01-01

    Amyloid β protein (Aβ) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between Aβ accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [ 11 C](R)PK11195, [ 11 C]PIB and [ 18 F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [ 11 C](R)PK11195 were directly compared with those of [ 11 C]PIB in the brain regions with reduced glucose metabolism. BPs of [ 11 C](R)PK11195 and [ 11 C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [ 11 C](R)PK11195 BPs, but not [ 11 C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [ 11 C](R)PK11195 and [ 11 C]PIB BPs in the posterior cingulate cortex (PCC) (p 18 F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that Aβ accumulation shown by [ 11 C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of Aβ in early AD. (orig.)

  5. Neurochemical Characterization of PSA-NCAM+ Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex.

    Science.gov (United States)

    Murray, Helen C; Swanson, Molly E V; Dieriks, B Victor; Turner, Clinton; Faull, Richard L M; Curtis, Maurice A

    2018-02-21

    Polysialylated neural cell adhesion molecule (PSA-NCAM) is widely expressed in the adult human brain and facilitates structural remodeling of cells through steric inhibition of intercellular NCAM adhesion. We previously showed that PSA-NCAM immunoreactivity is decreased in the entorhinal cortex in Alzheimer's disease (AD). Based on available evidence, we hypothesized that a loss of PSA-NCAM + interneurons may underlie this reduction. PSA-NCAM expression by interneurons has previously been described in the human medial prefrontal cortex. Here we used postmortem human brain tissue to provide further evidence of PSA-NCAM + interneurons throughout the human hippocampal formation and additional cortical regions. Furthermore, PSA-NCAM + cell populations were assessed in the entorhinal cortex of normal and AD cases using fluorescent double labeling and manual cell counting. We found a significant decrease in the number of PSA-NCAM + cells per mm 2 in layer II and V of the entorhinal cortex, supporting our previous description of reduced PSA-NCAM immunoreactivity. Additionally, we found a significant decrease in the proportion of PSA-NCAM + cells that co-labeled with NeuN and parvalbumin, but no change in the proportion that co-labeled with calbindin or calretinin. These results demonstrate that PSA-NCAM is expressed by a variety of interneuron populations throughout the brain. Furthermore, that loss of PSA-NCAM expression by NeuN + cells predominantly contributes to the reduced PSA-NCAM immunoreactivity in the AD entorhinal cortex. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Is cerebral glucose metabolism related to blood–brain barrier dysfunction and intrathecal IgG synthesis in Alzheimer disease?

    Science.gov (United States)

    Chiaravalloti, Agostino; Fiorentini, Alessandro; Francesco, Ursini; Martorana, Alessandro; Koch, Giacomo; Belli, Lorena; Torniolo, Sofia; Di Pietro, Barbara; Motta, Caterina; Schillaci, Orazio

    2016-01-01

    Abstract The aim of this study was to investigate the relationships between blood–brain barrier (BBB) dysfunction, intrathecal IgG synthesis, and brain glucose consumption as detectable by means of serum/cerebrospinal fluid (CSF) albumin index (Qalb) and IgG index [(CSF IgG/serum IgG) × Serum albumin/CSF albumin)] and 2-deoxy-2-(18F) fluoro-d-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in a selected population affected by Alzheimer disease (AD). The study included 134 newly diagnosed AD patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 60 were male and 64 were female. Mini mental State Examination was equal to 18.9 (±7.2). All patients underwent a CSF assay and magnetic resonance before 18F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). We found a significant negative correlation between the increase of Qalb and 18F-FDG uptake in the Brodmann Area 42 and 22 that corresponds to the left superior temporal gyrus, with higher Qalb values being related to a reduced glucose consumption in these areas. No significant relationships have been found between brain glucose consumption and IgG index. The results of our study suggest that BBB dysfunction is related to reduction of cortical activity in the left temporal cortex in AD subjects. PMID:27631200

  7. Sleep Apnea, Sleep Duration and Brain MRI Markers of Cerebral Vascular Disease and Alzheimer's Disease: The Atherosclerosis Risk in Communities Study (ARIC.

    Directory of Open Access Journals (Sweden)

    Pamela L Lutsey

    Full Text Available A growing body of literature has suggested that obstructive sleep apnea (OSA and habitual short sleep duration are linked to poor cognitive function. Neuroimaging studies may provide insight into this relation.We tested the hypotheses that OSA and habitual short sleep duration, measured at ages 54-73 years, would be associated with adverse brain morphology at ages 67-89 years.Included in this analysis are 312 ARIC study participants who underwent in-home overnight polysomnography in 1996-1998 and brain MRI scans about 15 years later (2012-2013. Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/severe (≥15.0 events/hour, mild (5.0-14.9 events/hour, or normal (<5.0 events/hour. Habitual sleep duration was categorized, in hours, as <7, 7 to <8, ≥8. MRI outcomes included number of infarcts (total, subcortical, and cortical and white matter hyperintensity (WMH and Alzheimer's disease signature region volumes. Multivariable adjusted logistic and linear regression models were used. All models incorporated inverse probability weighting, to adjust for potential selection bias.At the time of the sleep study participants were 61.7 (SD: 5.0 years old and 54% female; 19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0 years later, when participants were 76.5 (SD: 5.2 years old. In multivariable models which accounted for body mass index, neither OSA nor abnormal sleep duration were statistically significantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain volumes.In this community-based sample, mid-life OSA and habitually short sleep duration were not associated with later-life cerebral markers of vascular dementia and Alzheimer's disease. However, selection bias may have influenced our results and the modest sample size led to relatively imprecise associations.

  8. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice

    DEFF Research Database (Denmark)

    Von Linstow, C. U.; Severino, Maurizio; Metaxas, Athanasios

    2017-01-01

    , but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APPSWE/PS1δE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild......-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels...... of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice...

  9. Neuroinflammation and Alzheimer disease: clinical and therapeutic implications

    NARCIS (Netherlands)

    Eikelenboom, P.; Rozemuller, A. J.; Hoozemans, J. J.; Veerhuis, R.; van Gool, W. A.

    2000-01-01

    In Alzheimer disease brains, the amyloid plaques are closely associated with a locally induced, nonimmune-mediated, chronic inflammatory response without any apparent influx of leukocytes from the blood. The present findings indicate that in cerebral A beta diseases (Alzheimer disease, Down

  10. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    Science.gov (United States)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  11. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    International Nuclear Information System (INIS)

    Lowe, Xiu R.; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p -53 ) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease

  12. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  13. Why Do We Get Alzheimer's Disease?

    International Nuclear Information System (INIS)

    Wyss-Coray, Tony

    2006-01-01

    Neurodegenerative diseases and Alzheimer's disease (AD) in particular, are among the major health concerns of the elderly in industrialized societies. The cause of AD is unknown and no disease-modifying treatments are available. The disease is characterized clinically by a progressive dementia and pathologically by the accumulation of protein aggregates in the brain and a profound loss of nerve cells. It has also become clear recently that local immune responses are activated in the AD brain and may have a role in the disease. Our laboratory uses genetic mouse models to understand the disease process and to identify potential therapeutic targets.

  14. Molecular subtypes of Alzheimer's disease.

    Science.gov (United States)

    Di Fede, Giuseppe; Catania, Marcella; Maderna, Emanuela; Ghidoni, Roberta; Benussi, Luisa; Tonoli, Elisa; Giaccone, Giorgio; Moda, Fabio; Paterlini, Anna; Campagnani, Ilaria; Sorrentino, Stefano; Colombo, Laura; Kubis, Adriana; Bistaffa, Edoardo; Ghetti, Bernardino; Tagliavini, Fabrizio

    2018-02-19

    Protein misfolding and aggregation is a central feature of several neurodegenerative disorders including Alzheimer's disease (AD), in which assemblies of amyloid β (Aβ) peptides accumulate in the brain in the form of parenchymal and/or vascular amyloid. A widely accepted concept is that AD is characterized by distinct clinical and neuropathological phenotypes. Recent studies revealed that Aβ assemblies might have structural differences among AD brains and that such pleomorphic assemblies can correlate with distinct disease phenotypes. We found that in both sporadic and inherited forms of AD, amyloid aggregates differ in the biochemical composition of Aβ species. These differences affect the physicochemical properties of Aβ assemblies including aggregation kinetics, resistance to degradation by proteases and seeding ability. Aβ-amyloidosis can be induced and propagated in animal models by inoculation of brain extracts containing aggregated Aβ. We found that brain homogenates from AD patients with different molecular profiles of Aβ are able to induce distinct patterns of Aβ-amyloidosis when injected into mice. Overall these data suggest that the assembly of mixtures of Aβ peptides into different Aβ seeds leads to the formation of distinct subtypes of amyloid having distinctive physicochemical and biological properties which result in the generation of distinct AD molecular subgroups.

  15. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... 2018 Alzheimer's Disease Facts and Figures report contains data on the impact of this disease in every ... with third parties. Please read our security and privacy policy . Plan ahead Get help and support I ...

  16. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... ALZHEIMER'S DISEASE IS THE 6TH LEADING CAUSE OF DEATH IN THE UNITED STATES. 16.1 MILLION AMERICANS ... AT OVER $323 BILLION. BETWEEN 2000 AND 2015 DEATHS FROM HEART DISEASE HAVE DECREASED 11% WHILE DEATHS ...

  17. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... home care. Take action. Become an advocate SPECIAL REPORT: FINANCIAL AND PERSONAL BENEFITS OF EARLY DIAGNOSIS Early ... State The 2018 Alzheimer's Disease Facts and Figures report contains data on the impact of this disease ...

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... disease is the only top 10 cause of death in the United States that cannot be prevented, ... Alzheimer's disease is the sixth-leading cause of death in the United States, and the fifth-leading ...

  19. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... 323 BILLION. BETWEEN 2000 AND 2015 DEATHS FROM HEART DISEASE HAVE DECREASED 11% WHILE DEATHS FROM ALZHEIMER'S ... deaths from the number one cause of death (heart disease) decreased 11 percent. Among people age 70, ...

  20. Re-engineering therapeutic antibodies for Alzheimer's disease as blood-brain barrier penetrating bi-specific antibodies.

    Science.gov (United States)

    Pardridge, William M

    2016-12-01

    Therapeutic antibodies are large molecule drugs that do not cross the blood-brain barrier (BBB). Therefore, drug development of therapeutic antibodies for Alzheimer's disease (AD) requires that these molecules be re-engineered to enable BBB delivery. This is possible by joining the therapeutic antibody with a transporter antibody, resulting in the engineering of a BBB-penetrating bispecific antibody (BSA). Areas covered: The manuscript covers transporter antibodies that cross the BBB via receptor-mediated transport systems on the BBB, such as the insulin receptor or transferrin receptor. Furthermore, it highlights therapeutic antibodies for AD that target the Abeta amyloid peptide, beta secretase-1, or the metabotropic glutamate receptor-1. BSAs are comprised of both the transporter antibody and the therapeutic antibody, as well as IgG constant region, which can induce immune tolerance or trigger transport via Fc receptors. Expert opinion: Multiple types of BSA molecular designs have been used to engineer BBB-penetrating BSAs, which differ in valency and spatial orientation of the transporter and therapeutic domains of the BSA. The plasma pharmacokinetics and dosing regimens of BSAs differ from that of conventional therapeutic antibodies. BBB-penetrating BSAs may be engineered in the future as new treatments of AD, as well as other neural disorders.

  1. Brain Insulin Signaling and Alzheimer's Disease: Current Evidence and Future Directions

    OpenAIRE

    Schiöth, Helgi B.; Craft, Suzanne; Brooks, Samantha J.; Frey, William H.; Benedict, Christian

    2011-01-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood–brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes as...

  2. Diagnostic value of β amyloid plaques imaging agent 131I-IMPY brain imaging in early Alzheimer's disease

    International Nuclear Information System (INIS)

    Ye Wanzhong; Lu Chunxiong; Yang Min; Bao Jiandong; Cheng Zhaohuo; Cai Deliang; Wang Zhiqiang; Yang Bixiu

    2012-01-01

    Objective: To evaluate the diagnostic value of β-amyloid plaques imaging agent [ 131 I] 2( 4-dimethylaminop henyl)-6-iodoimidazo [1, 2-α] pyridine ( 131 I-IMPY) SPECT imaging in early Alzheimer's Disease. Methods: 24 cases of AD (7 males, 17 females, aged 48∼79 years) and 14 normal (6 males, 8 females, aged 42∼67 years) control subjects were selected for this study. 131 I-IMPY SPECT imaging was carried out 2-3 h post injection. 131 I-IMPY uptake defined as the ratio of each brain gyrus and cerebellum uptake on fixed region of interest (ROI) (Rcl/cb) was calculated. Comparative analysis between the two groups was carried out using t-test. Results: In patients with early AD (MCI), 131 I-IMPY was increased in parietal gyrus, temporal gyrus and frontal gyrus compared with normal control group and it were found to be statistically significant (t = 1.3967∼2.8757, all P 0.05). In patients with AD, increase in 131 I-IMPY were observed in parietal, temporal, occipital lobes and basal ganglia compared with normal control group and it were found to be statistically significant (t=2.1001∼6.2789, all P 0.05), and 131 I-IMPY was increased in occipital lobes and basal ganglia compared with MCI group and it were found to be statistically significant (t=2.0850∼3.6772, all P 131 I-IMPY was lightly increased in each brain of left side gyrus compared with right but without statistically significant difference (t=0.1273∼0.5571, all P>0.05). Conclusions: 131 I-IMPY SPECT Imaging was helpful for early diagnosis of AD. (authors)

  3. Time series changes of MR/PET image of brain glucose metabolism in healthy subjects and alzheimer disease patients

    International Nuclear Information System (INIS)

    Tarusawa, Ayaka; Nihei, Mitsuyo; Tanaka, Mika; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Kawasaki, Keiichi; Ishiwata, Kiichi; Ishii, Kenji

    2010-01-01

    Combination of morphological information by MRI and functional one by positron emission tomography (PET) was applied to quantitative evaluation of brain regional glucose metabolism in healthy subjects (HS) and Alzheimer disease patients (AD) and their individual aging changes were elucidated for ultimate purpose of computer-aided diagnosis. Subjects were: 5 AD patients (3M/2F, av. age 77.27 y), 14 ε4-carrying HS (EHS, 4M/10F, 71.3y) and 24 non-ε4-carrying HS (NEHS, 4M/20F, 70.21), where ε4 (apolipoprotein E type 4 gene allele)-carrying HS were reported to be prone to early AD and to tend to give increased brain atrophy incidence. Acquisitions of T1-weighted 3D MR and PET images were in 256 x 256 x(88-104) and x (90-100) voxels, respectively, with digitization level 16 bits, and were repeated 3 times in the time series of 21-38 months. Segmentation was performed with the MR imaging software SPM8 (Statistic Parametric Mapping: Metalab) to specify the regions of white/gray matters and cerebrospinal fluid (CSF). The binary MR and registered PET images were fused for comparison of glucose metabolism by SUVs (standardized uptake values) in gray matter of the three subject groups. Findings were: SUV in AD was markedly reduced; average time series changes per year were 0.11% in AD, -2.63% in EHS and 1.48% in NEHS; and statistical significance of the changes was between AD and NEHS, and between EHS and NEHS. Glucose metabolism by MR/PET can be thus used for a distinction of ε4-carrier and non-carrier in HS. (T.T.)

  4. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model.

    Science.gov (United States)

    Mendiola-Precoma, Jesus; Padilla, Karla; Rodríguez-Cruz, Alfredo; Berumen, Laura C; Miledi, Ricardo; García-Alcocer, Guadalupe

    2017-01-01

    Dementia caused by Alzheimer's disease (AD) is mainly characterized by accumulation in the brain of extra- and intraneuronal amyloid-β (Aβ) and tau proteins, respectively, which selectively affect specific regions, particularly the neocortex and the hippocampus. Sporadic AD is mainly caused by an increase in apolipoprotein E, a component of chylomicrons, which are cholesterol transporters in the brain. Recent studies have shown that high lipid levels, especially cholesterol, are linked to AD. Adenosine is an atypical neurotransmitter that regulates a wide range of physiological functions by activating four P1 receptors (A1, A2A, A2B, and A3) and P2 purinergic receptors that are G protein-coupled. A1 receptors are involved in the inhibition of neurotransmitter release, which could be related to AD. The aim of the present work was to study the effects of a lard-enriched diet (LED) on cognitive and memory processes in adult rats (6 months of age) as well as the effect of theobromine on these processes. The results indicated that the fat-enriched diet resulted in a long-term deterioration in cognitive and memory functions. Increased levels of Aβ protein and IL-1β were also observed in the rats fed with a high-cholesterol diet, which were used to validate the AD animal model. In addition, the results of qPCR and immunohistochemistry indicated a decrease in gene expression and distribution of A1 purinegic receptor, respectively, in the hippocampus of LED-fed rats. Interestingly, theobromine, at both concentrations tested, restored A1 receptor levels and improved cognitive functions and Aβ levels for a dose of 30 mg/L drinking water.

  5. Diagnosis of Alzheimer's disease using brain perfusion SPECT and MR imaging: which modality achieves better diagnostic accuracy?

    International Nuclear Information System (INIS)

    Kubota, Takao; Ushijima, Yo; Yamada, Kei; Okuyama, Chio; Kizu, Osamu; Nishimura, Tsunehiko

    2005-01-01

    The purpose of this study was to compare the accuracy of MR imaging and brain perfusion single-photon emission tomography (SPECT) in diagnosing Alzheimer's disease (AD). The transaxial section display of brain perfusion SPECT, three-dimensional stereotactic surface projection (3D-SSP) SPECT image sets, thin-section MR imaging of the hippocampus and perfusion MR imaging were evaluated in 66 subjects comprising 35 AD patients and 31 subjects without AD. SPECT and MR imaging were visually interpreted by two experts and two novices, and the diagnostic ability of each modality was evaluated by receiver operating characteristic (ROC) analysis. In the experts' interpretations, there was no significant difference in the area under the ROC curve (A z ) between 3D-SSP and thin-section MR imaging, whereas the A z of transaxial SPECT display was significantly lower than that of 3D-SSP (3D-SSP: 0.97, thin-section MR imaging: 0.96, transaxial SPECT: 0.91), and the A z of perfusion MR imaging was lowest (0.63). The sensitivity and specificity of each modality were, respectively, 80.0% and 96.8% for 3D-SSP, 77.1% and 96.8% for thin-section MR imaging, 60.0% and 93.5% for transaxial SPECT display and 34.3% and 100% for perfusion MR imaging. In the novices' interpretations, the A z , sensitivity and specificity of 3D-SSP were superior to those of thin-section MR imaging. Thin-section hippocampal MR imaging and 3D-SSP image sets had potentially equivalent value for the diagnosis of AD, and they were superior to transaxial SPECT display and perfusion MR imaging. For avoidance of the effect of interpreters' experience on image evaluation, 3D-SSP appears to be optimal. (orig.)

  6. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The

  7. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease

    Science.gov (United States)

    Fouquet, Marine; Desgranges, Béatrice; Landeau, Brigitte; Duchesnay, Edouard; Mézenge, Florence; De La Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Chételat, Gaël

    2009-01-01

    A sensitive marker for monitoring progression of early Alzheimer’s Disease (AD) would help to develop and test new therapeutic strategies. The present study aimed at investigating brain metabolism changes over time, as potential monitoring marker, in patients with amnestic Mild Cognitive Impairment (aMCI), according to their clinical outcome (converters or non-converters), and in relation to their cognitive decline. Seventeen aMCI patients underwent MRI and 18FDG-PET scans both at inclusion and 18 months later. Baseline and follow-up PET data were corrected for partial volume effects and spatially normalized using MRI data, scaled to the vermis and compared using SPM2. ‘PET-PAC’ maps reflecting metabolic percent annual changes were created for correlation analyses with cognitive decline. In the whole sample, the greatest metabolic decrease concerned the posterior cingulate-precuneus area. Converters had significantly greater metabolic decrease than nonconverters in two ventro-medial prefrontal areas, the subgenual (BA25) and anterior cingulate (BA24/32). PET-PAC in BA25 and BA24/32 combined allowed complete between-group discrimination. BA25 PET-PAC significantly correlated with both cognitive decline and PET-PAC in the hippocampal region and temporal pole, while BA24/32 PET-PAC correlated with posterior cingulate PET-PAC. Finally, the metabolic change in BA8/9/10 was inversely related to that in BA25 and showed relative increase with cognitive decline, suggesting that compensatory processes may occur in this dorso-medial prefrontal region. The observed ventro-medial prefrontal disruption is likely to reflect disconnection from the hippocampus, both indirectly through the cingulum bundle and posterior cingulate cortex for BA24/32, and directly through the uncinate fasciculus for BA25. Altogether, our findings emphasize the potential of 18FDG-PET for monitoring early AD progression. PMID:19477964

  8. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... health and long-term care costs. worried about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts ... is a not-for-profit 501(c)(3) organization. Copyright © 2018 Alzheimer's Association ® . All rights reserved. Our ...

  9. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

    Science.gov (United States)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.

    2018-02-01

    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  10. Galantamine for Alzheimer's disease.

    Science.gov (United States)

    Olin, J; Schneider, L

    2001-01-01

    Galantamine (also called galanthamine, marketed as Reminyl (Janssen)) can be isolated from several plants, including daffodil bulbs, and now synthesized. Galantamine is a specific, competitive, and reversible acetylcholinesterase inhibitor. It is also an allosteric modulator at nicotinic cholinergic receptor sites potentiating cholinergic nicotinic neurotransmission. A small number of early studies showed mild cognitive and global benefits for patients with Alzheimer's disease, and recently several multicentre clinical trials have been published with positive findings. Galantamine has received regulatory approval in Sweden, is available in Austria, and awaits marketing approval in the United States, Europe, and other countries. The objective of this review is to assess the clinical effects of galantamine in patients with probable Alzheimer's disease, and to investigate potential moderators of an effect. The Cochrane Dementia Group specialized register of clinical trials was searched using the terms 'galantamine,' and 'galanthamine' (15 February 2000) as was the Cochrane Controlled Trials Register (2000, Issue 2). These terms were also used to search the following databases: EMBASE, MEDLINE, PsychLit; Combined Health Information Database, NRR (National Research Register), ADEAR (Alzheimer's Disease Education and Referral Centre clinical database, BIOMED (Biomedicine and Health), Glaxo-Wellcome Clinical Trials Register, National Institutes of Health Clinical Trials Databases, Current Controlled Trials, Dissertation Abstracts (mainly North American dissertations) 1961-1994, Index to UK Theses (British dissertations) 1970-1994. Published reviews were inspected for further sources. Additional information was collected from an unpublished investigational brochure for galantamine. Trials selected were randomized, double-blind, parallel-group, and unconfounded comparisons of galantamine with placebo for a treatment duration of greater than 4 weeks in people with Alzheimer

  11. Advancing frontiers in Alzheimer's disease research

    International Nuclear Information System (INIS)

    Glenner, G.G.; Wurtman, R.J.

    1987-01-01

    This book contain 16 chapters. Some of the titles are: Transmitter Alterations in Alzheimer's Disease: Relation to Cortical Dysfunction as Suggested by Positron Emission Tomography; Single-Photon Emission Computed Tomography in the Clinical Evaluation of Dementia; Clinical Diagnosis of Alzheimer's Disease; Down's Syndrome and Alzheimer's Disease: What is the Relationship; and Beta Protein: A Possible Marker for Alzheimer's Disease

  12. Aging and Alzheimer's Disease: Lessons from the Nun Study.

    Science.gov (United States)

    Snowdon, David A.

    1997-01-01

    Describes a woman who maintained high cognitive test scores until her death at 101 years of age despite anatomical evidence of Alzheimer's disease. The woman was part of a larger "Nun Study" in which 678 sisters donated their brains to teach others about the etiology of aging and Alzheimer's disease. Findings are discussed. (RJM)

  13. Neurogenesis and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.

  14. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License ...

  15. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard ... Keep Your Brain Healthy for the Rest of Your Life - Duration: 57:30. University of California Television (UCTV) ...

  16. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard ... Program: Keep Your Brain Healthy for the Rest of Your Life - Duration: 57:30. University of California Television (UCTV) ...

  17. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less ...

  18. Computed tomography study of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H; Kobayashi, K; Ikeda, Y; Nagao, Y; Ogihara, R; Kosaka, K

    1983-01-01

    Computed tomography (CT) was used to study cerebral atrophy in 18 patients with clinically diagnosed Alzheimer's disease of presenile type and in 14 healthy age-matched subjects as controls. Using the computerized planimetric method, Subarachnoid Space Volume Index and Ventricle Volume Index were calculated as the measure of cortical atrophy and ventricular dilatation respectively. From the results the following conclusions were drawn: 1. The cerebral atrophy in Alzheimer patients could be attributable to the disease processes rather than to physiological aging of the brain. 2. The degree of atrophy increases in parallel with the progress of the clinical stage, and the cortical atrophy is already apparent at an early stage, whereas the ventricular dilatation becomes pronounced at later stages. 3. CT could be one of the most useful clinical tests available for the diagnosis of Alzheimer's disease.

  19. A computed tomography study of Alzheimer's disease

    International Nuclear Information System (INIS)

    Arai, H.; Kobayashi, K.; Juntendo Univ. School of Medicine, Tokyo; Ikeda, Y.; Nagao, Y.; Ogihara, R.; Kosaka, K.; Psychiatric Research Inst. of Tokyo

    1983-01-01

    Computed tomography (CT) was used to study cerebral atrophy in 18 patients with clinically diagnosed Alzheimer's disease of presenile type and in 14 healthy age-matched subjects as controls. Using the computerized planimetric method, Subarachnoid Space Volume Index and Ventricle Volume Index were calculated as the measure of cortical atrophy and ventricular dilatation respectively. From the results the following conclusions were drawn: 1. The cerebral atrophy in Alzheimer patients could be attributable to the disease processes rather than to physiological aging of the brain. 2. The degree of atrophy increases in parallel with the progress of the clinical stage, and the cortical atrophy is already apparent at an early stage, whereas the ventricular dilatation becomes pronounced at later stages. 3. CT could be one of the most useful clinical tests available for the diagnosis of Alzheimer's disease. (orig.) [de

  20. Alzheimer disease and anesthesia.

    Science.gov (United States)

    Inan, Gözde; Özköse Satirlar, Zerrin

    2015-01-01

    Alzheimer disease (AD) is one of the most common neurodegenerative diseases and the most prevalent form of dementia. Some factors in the development of AD, age being the best-known one, have been suggested; however, no causes have been found yet. The pathophysiology of the disease is highly complex, current therapies are palliative, and a cure is still lacking. Adverse effects of anesthetics in the elderly have been reported since the 1950s; however, awareness of this old problem has recently gained inportance again. Whether exposure to surgery and general anesthesia (GA) is associated with the development of AD has been questioned. As the population is aging, many elderly patients will need to be anesthetized, and maybe some were already anesthetized before they were diagnosed. Exposure to anesthetics has been demonstrated to promote pathogenesis of AD in both in vitro and in vivo studies. However, to date, there have not been any clinical trials to address a link between exposure to GA and the development of AD in humans. Therefore, before making any conclusions we need further studies, but we should be aware of the potential risks and take cautions with vulnerable elderly patients.

  1. Patterns of regional brain hypometabolism associated with knowledge of semantic features and categories in alzheimer's disease

    DEFF Research Database (Denmark)

    Zahn, R.; Garrard, P.; Talazko, J.

    2006-01-01

    damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used...... properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for nonliving objects largely overlapped in the left anterior...... and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas....

  2. [Aβ immunotherapy for Alzheimer's disease].

    Science.gov (United States)

    Sakai, Kenji; Yamada, Masahito

    2013-04-01

    Alzheimer's disease (AD) is one of the neurodegenerative diseases characterized by the deposition of amyloid-β-protein (Aβ) as senile plaques in the brain parenchyma and phosphorylated-tau accumulation as neurofibrillary tangles in the neurons. Although details of the disease pathomechanisms remain unclear, Aβ likely acts as a key protein for AD initiation and progression, followed by abnormal tau phosphorylation and neuronal death (amyloid-cascade hypothesis). According to this hypothesis, Aβ immunization therapies are created to eliminate Aβ from the brain, and to prevent the neurons from damage by these pathogenic proteins. There are two methods for Aβ immunotherapies: active and passive immunization. Previous studies have shown Aβ removal and improved cognitive function in animal models of AD. Clinical trials on various drugs, including AN1792, bapineuzumab, and solanezumab, have been carried out; however, all trials have failed to demonstrate apparent clinical benefits. On the contrary, side effects emerged, such as meningoencephalitis, vasogenic edema, which are currently called amyloid related imaging abnormalities (ARIA)-E and microhemorrhage (ARIA-H). In neuropathological studies of immunized cases, Aβ was removed from the brain parenchyma and phosphorylated-tau was reduced in the neuronal processes. Moreover, deterioration of the cerebral amyloid angiopathy (CAA) and an increase of microhemorrhages and microinfarcts were described. Aβ is cleared from the brain mainly via the lymphatic drainage pathway. ARIA could stem from severe CAA due to dysfunction of the drainage pathway after immunotherapy. Aβ immunization has a potential of cure for AD patients, although the above-described problems must be overcome before applying this therapy in clinical treatment.

  3. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    International Nuclear Information System (INIS)

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.; Hoffmann, R.G.; Palmer, D.W.; Glatt, S.L.; Antuono, P.G.; Isitman, A.T.; Papke, R.A.

    1989-01-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determined from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake

  4. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Today, someone in the United States develops Alzheimer's every 65 seconds. By mid-century, someone in the United States will develop the disease every 33 seconds. GET INVOLVED. Join the cause Mortality ...

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Argentina ADNI Amyloid Imaging Task Force Alzheimer’s Association Business Consortia (AABC) Biomarker Consortium GBSC Working Groups Global Alzheimer’s Association Interactive Network International Alzheimer's Disease Research ...

  6. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... as well as society as a whole. The development of biomarkers for Alzheimer's disease is making it ... I am a caregiver I am a care professional I am a physician I am a researcher ...

  7. Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936.

    Science.gov (United States)

    Lyall, Donald M; Harris, Sarah E; Bastin, Mark E; Muñoz Maniega, Susana; Murray, Catherine; Lutz, Michael W; Saunders, Ann M; Roses, Allen D; Valdés Hernández, Maria del C; Royle, Natalie A; Starr, John M; Porteous, David J; Wardlaw, Joanna M; Deary, Ian J

    2014-06-01

    Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 ("523") variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640-650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 "short" allele showed lower white matter integrity when compared with carriers of the "long" and "very-long" alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older population are more specific and restricted compared with those reported in previous studies, and the

  8. Application of PET in Alzheimer's disease

    International Nuclear Information System (INIS)

    Zhang Chun

    2003-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease of central nervous system that causes progressive cognitive and memory deterioration in the elderly people. Affected brains of AD patients are characterized by the presence of senile plaques (SP) and neurofilbrillary tangles (NFT). The review will focus on the application of positron emission tomography (PET) in the diagnosis, progression prediction, treatment and evaluation of neurotransmission activity of AD

  9. Quantification of amyloid deposits and oxygen extraction fraction in the brain with multispectral optoacoustic imaging in arcAβ mouse model of Alzheimer's disease

    Science.gov (United States)

    Ni, Ruiqing; Vaas, Markus; Rudin, Markus; Klohs, Jan

    2018-02-01

    Beta-amyloid (Aβ) deposition and vascular dysfunction are important contributors to the pathogenesis in Alzheimer's disease (AD). However, the spatio-temporal relationship between an altered oxygen metabolism and Aβ deposition in the brain remains elusive. Here we provide novel in-vivo estimates of brain Aβ load with Aβ-binding probe CRANAD-2 and measures of brain oxygen saturation by using multi-spectral optoacoustic imaging (MSOT) and perfusion imaging with magnetic resonance imaging (MRI) in arcAβ mouse models of AD. We demonstrated a decreased cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in the cortical region of the arcAβ mice compared to wildtype littermates at 24 months. In addition, we showed proof-of-concept for the detection of cerebral Aβ deposits in brain from arcAβ mice compared to wild-type littermates.

  10. Functional brain SPECT with 99mTc-HMPAO in the diagnosis of Alzheimer disease

    International Nuclear Information System (INIS)

    Urbanek, J.; Kupka, K.; Samal, M.; Jirak, R.; Obenberger, J.

    1998-01-01

    The explanatory power of perfusion diagrams obtained by the title technique was examined. In addition to the standard reconstruction procedure, a special reorientation procedure aimed at a differentiation of the hippocampus structure was applied. The study gave evidence of a high specificity and sensitivity of brain SPECT in the differential diagnosis of dementias. Multifactorial analysis of all available diagnostic techniques has borne out the dominant position of brain SPECT with 99m Tc-HMPAO, particularly when using special projection onto the hippocampus, and has led to the formulation of an examination algorithm where a combination of SPECT and MRI (and CT) enables DAT to be distinguished from dementias of other etiologies with a probability higher than 90%

  11. Quiz: Alzheimer's Disease Quiz | Alzheimer's disease | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Quiz Past Issues / Fall 2010 Table of ... How many people in the United States have Alzheimer's disease? as many as 5.1 million as ...

  12. Genetic Variation Underlying Traumatic Brain injury (TBI) and Late Onset Alzheimer’s Disease (LOAD)

    Science.gov (United States)

    2017-10-01

    Stable trajectory, Decliners were more likely women , older, less educated, from non-White ancestry population and APOE-ε4 carriers. The highest annual...with slightly higher rates for women compared to males (rates= 4.0 versus 3.8) and the highest rates achieved by subjects with a Caribbean-Hispanic... Single nucleotide polymorphism (dbSNP) Deoxyribonucleic acid (DNA) The Department of Defense and Veterans Brain Injury Center (DVBIC) Genome

  13. Diagnosis and treatment of Alzheimer's disease

    International Nuclear Information System (INIS)

    Hampel, H.; Padberg, F.; Koetter, H.U.; Teipel, S.J.; Ehrhardt, T.; Hegerl, U.; Stuebner, S.; Moeller, H.J.

    1997-01-01

    Alzheimer's disease is often diagnosed too late. Its etiology is still largely unknown and remains one of the big challenges in neurobiological fundamental research. Optimized early and differential diagnosis can be ensured by a dynamic concept of multidisciplinary diagnosis in cooperation between practitioners specializing in brain disorders, clinical psychogeriatric deprtments, and general practitioners. This, in turn, will enable individualized planning of further living conditions and care of Alzheimer patients and their relations as well as efficient and early pharmacotherapy and psychological intervention. (orig) [de

  14. A light therapy for treating Alzheimer's disease

    Science.gov (United States)

    Wang, Xue; Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2017-02-01

    It is generally believed that there are some connections between Alzheimer's disease and amyloid protein plaques in the brain. The typical symptoms of Alzheimer's disease are memory loss, language disorders, mood swings, loss of motivation and behavioral issues. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. Infrared light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research we have studied the effect of infrared light on Alzheimer's disease through transgenic mouse model. We designed an experimental apparatus for treating mice, which primarily included a therapeutic box and a LED array, which emitted infrared light. After the treatment, we assessed the effects of infrared light by performing two tests: cognitive performance of mice in Morris water maze, and plaque load by immunofluorescence analysis. Immunofluorescence analysis was based on measuring the quantity of plaques in mouse brain slices. Our results show that infrared therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  15. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease

    Science.gov (United States)

    Deane, Rashid; Singh, Itender; Sagare, Abhay P.; Bell, Robert D.; Ross, Nathan T.; LaRue, Barbra; Love, Rachal; Perry, Sheldon; Paquette, Nicole; Deane, Richard J.; Thiyagarajan, Meenakshisundaram; Zarcone, Troy; Fritz, Gunter; Friedman, Alan E.; Miller, Benjamin L.; Zlokovic, Berislav V.

    2012-01-01

    In Alzheimer disease (AD), amyloid β peptide (Aβ) accumulates in plaques in the brain. Receptor for advanced glycation end products (RAGE) mediates Aβ-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a high-affinity RAGE-specific inhibitor (FPS-ZM1) that blocked Aβ binding to the V domain of RAGE and inhibited Aβ40- and Aβ42-induced cellular stress in RAGE-expressing cells in vitro and in the mouse brain in vivo. FPS-ZM1 was nontoxic to mice and readily crossed the blood-brain barrier (BBB). In aged APPsw/0 mice overexpressing human Aβ-precursor protein, a transgenic mouse model of AD with established Aβ pathology, FPS-ZM1 inhibited RAGE-mediated influx of circulating Aβ40 and Aβ42 into the brain. In brain, FPS-ZM1 bound exclusively to RAGE, which inhibited β-secretase activity and Aβ production and suppressed microglia activation and the neuroinflammatory response. Blockade of RAGE actions at the BBB and in the brain reduced Aβ40 and Aβ42 levels in brain markedly and normalized cognitive performance and cerebral blood flow responses in aged APPsw/0 mice. Our data suggest that FPS-ZM1 is a potent multimodal RAGE blocker that effectively controls progression of Aβ-mediated brain disorder and that it may have the potential to be a disease-modifying agent for AD. PMID:22406537

  16. Tau Processing by Mural Cells in Traumatic Brain Injury and Alzheimer’s Disease

    Science.gov (United States)

    2017-10-01

    Cerebrovessels were treated with recombinant human tau (5ng/ml) for 1 hour at 37oC and total tau uptake was assessed in the lysates via ELISA . We observed a...to 5ng/ml recombinant human tau (rhtau-441) for 1 hour at 37oC. Lysates were analyzed for total tau content by ELISA and normalized to total protein...and 6 months post-last injury). Brain vessels were analyzed for PDGFRβ and α-SMC-actin content by ELISA and normalized to total protein using the

  17. Alzheimer's disease and intelligence.

    Science.gov (United States)

    Yeo, R A; Arden, R; Jung, R E

    2011-06-01

    A significant body of evidence has accumulated suggesting that individual variation in intellectual ability, whether assessed directly by intelligence tests or indirectly through proxy measures, is related to risk of developing Alzheimer's disease (AD) in later life. Important questions remain unanswered, however, such as the specificity of risk for AD vs. other forms of dementia, and the specific links between premorbid intelligence and development of the neuropathology characteristic of AD. Lower premorbid intelligence has also emerged as a risk factor for greater mortality across myriad health and mental health diagnoses. Genetic covariance contributes importantly to these associations, and pleiotropic genetic effects may impact diverse organ systems through similar processes, including inefficient design and oxidative stress. Through such processes, the genetic underpinnings of intelligence, specifically, mutation load, may also increase the risk of developing AD. We discuss how specific neurobiologic features of relatively lower premorbid intelligence, including reduced metabolic efficiency, may facilitate the development of AD neuropathology. The cognitive reserve hypothesis, the most widely accepted account of the intelligence-AD association, is reviewed in the context of this larger literature.

  18. Measurement of brain metabolites by 1H-MR spectroscopy in patients with alzheimer disease: a Meta analysis

    International Nuclear Information System (INIS)

    Zhang Xiaochun; Wang Xiaoming; Zuo Lin

    2012-01-01

    Objective: To have a systemic review of the association between relative ratio in proton magnetic resonance spectroscopy ( 1 H-MRS) and Alzheimer's disease (AD). Methods: A search in Medline and China National Knowledge Infrastructure (CNKI) was performed, and relevant English and Chinese-language articles about assessing AD with 1 H-MRS were identified. The data of relative metabolic ratios (NAA/Cr, Cho/Cr, mI/Cr) from different brain regions (hippocampus, posterior cingulate gyrus, temporal lobe, parietal lobe, frontal lobe, occipital lobe) were extracted from the articles. The quality of the articles was evaluated according to the standard recommended by Newcastle-Ottawa criteria. The Meta-analysis was done with the Review Manager 4.2 to calculate pooled weighted mean difference (WMD) with 95% confidence interval (95% CI), and linear correlation analysis between NAA/Cr ratio and mI/Cr ratio was done by SPSS 17.0. Results: Thirty six articles (27 English articles, 9 Chinese articles) were included. After heterogeneity test was done,fixed effects model or random effects model was selected. The meta-analysis showed that the NAA/Cr ratio in patients with AD was higher than that in controls (WMD:-0.14, 95% CI: -0.17 to -0.11). The mI/Cr ratio in patients with AD was lower than that in controls (WMD: 0.10, 95% CI: 0.07 to 0.13). There were greatest changes in NAA/Cr ratio and mI/Cr ratio on the hippocampus (WMD of NAA/Cr: -0.27,95% CI: -0.36 to -0.19; WMD of mI/Cr: 0.21, 95% CI: 0.10 to 0.33). There were also no differences between patients with AD and controls with respect to the Cho/Cr ratio (WMD: 0.01, 95% CI:0.00 to 0.01, P>0.05). The NAA/Cr and mI/Cr changes are markedly correlated with each other in different brain regions (r=0.947, P=0.004). Conclusion: The hippocampus region is the first to present neuropathological changes in AD and the changes of NAA/Cr and MI/Cr might reflect the neurodegenerative process of AD. (authors)

  19. The biological substrates of Alzheimer's disease

    International Nuclear Information System (INIS)

    Scheibel, A.B.; Wechsler, A.F.; Brazier, M.A.B.

    1986-01-01

    This book contains 21 selections. Some of the titles are: Dementia of the Alzheimer Type: Genetic Aspects; Determination of Cerebral Metabolic Patterns in Dementia Using Positron Emission Tomography; Pathology of the Basal Forebrain in Alzheimer's Disease and Other Dementias; Characterization of Neurofibrillary Tangles with Monoclonal Antibodies Raised Against Alzheimer Neurofibrillary Tangles; and HLA Associations in Alzheimer's Disease

  20. Astrocytic Disruption in Traumatic Brain Injury and Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    AD), with a growing body of evidence suggesting that TBI is a risk factor for AD. Using a TBI induction protocol that effectively models the injury...these pathologies overlap with those observed in Alzheimer’s disease (AD), with a growing body of evidence suggesting that TBI is a risk factor for

  1. Functional neuroimaging in Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2006-01-01

    Recent progress in the title is reviewed often referring to authors' investigations. The method eZIS developed by them is for automated diagnosis of brain perfusion SPECT, where voxel-based analysis can be done using a Z-score map calculable from patient's data and standard database with 3D-stereotactic surface projection. Decreases of regional cerebral blood flow (rCBF) and of glucose metabolism detectable in specified brain regions by PET or SPECT in patients with mild cognitive impairment (MCI), are found useful for predicting the stage progression of MCI to Alzheimer disease (AD) in future. Partial volume correction method, essentially the division of images of a gray matter SPECT by MR, has elevated the precision of cerebral image analysis. Differential diagnosis of AD and dementia with Lewy bodies, the second most common form of dementia, is possible by the difference of occipital perfusion or glucose metabolism. Evidences by rCBF SPECT as well as by symptomatic ones have been accumulated recently for the therapeutic effect of donepezil, an inhibitor of acetylcholine esterase used for AD treatment. PET and SPECT imaging for the assessment of rCBF and metabolism has thus played very important roles in AD diagnosis, staging, differentiation, prediction and drug effect assessment. Recent advance in voxel-based statistical analysis of PET and SPECT images has raised the value of neuroimaging in dementia. (T.I.)

  2. Precision pharmacology for Alzheimer's disease.

    Science.gov (United States)

    Hampel, Harald; Vergallo, Andrea; Aguilar, Lisi Flores; Benda, Norbert; Broich, Karl; Cuello, A Claudio; Cummings, Jeffrey; Dubois, Bruno; Federoff, Howard J; Fiandaca, Massimo; Genthon, Remy; Haberkamp, Marion; Karran, Eric; Mapstone, Mark; Perry, George; Schneider, Lon S; Welikovitch, Lindsay A; Woodcock, Janet; Baldacci, Filippo; Lista, Simone

    2018-04-01

    disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A positron emission tomography analysis of glucose metabolism in Alzheimer's disease brain using [18F] fluorodeoxyglucose. A parallel study with elemental concentrations

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.; Stedman, J.D.

    2000-01-01

    Alzheimer's disease (AD) is a debilitating form of dementia which leads to impaired memory, thinking and behavior. Elemental concentrations between 'normal' and AD subjects as well as the hemispherical differences within the brain were examined. Tissue samples from both hemispheres of the frontal lobe in both AD and normal subjects were examined for their trace element concentrations using PIXE and RBS analyses. Elemental concentrations were seen to differ between AD and normal brain tissue samples. While in the normal group concentrations were found to be significantly higher in the right hemisphere than in the left the converse was tru in AD. A change in elemental concentrations may indicate possible alterations in the function of the blood brain barrier. This was examined by determining regional cerebral metabolic rates of glucose (rCMRGlu) using the in vivo technique of positron emission tomography (PET). Again variations between both hemispheres and between AD and normal were found. (author)

  4. Sleep Apnea, Sleep Duration and Brain MRI Markers of Cerebral Vascular Disease and Alzheimer's Disease: The Atherosclerosis Risk in Communities Study (ARIC).

    Science.gov (United States)

    Lutsey, Pamela L; Norby, Faye L; Gottesman, Rebecca F; Mosley, Thomas; MacLehose, Richard F; Punjabi, Naresh M; Shahar, Eyal; Jack, Clifford R; Alonso, Alvaro

    2016-01-01

    A growing body of literature has suggested that obstructive sleep apnea (OSA) and habitual short sleep duration are linked to poor cognitive function. Neuroimaging studies may provide insight into this relation. We tested the hypotheses that OSA and habitual short sleep duration, measured at ages 54-73 years, would be associated with adverse brain morphology at ages 67-89 years. Included in this analysis are 312 ARIC study participants who underwent in-home overnight polysomnography in 1996-1998 and brain MRI scans about 15 years later (2012-2013). Sleep apnea was quantified by the apnea-hypopnea index and categorized as moderate/severe (≥15.0 events/hour), mild (5.0-14.9 events/hour), or normal (sleep duration was categorized, in hours, as sleep study participants were 61.7 (SD: 5.0) years old and 54% female; 19% had moderate/severe sleep apnea. MRI imaging took place 14.8 (SD: 1.0) years later, when participants were 76.5 (SD: 5.2) years old. In multivariable models which accounted for body mass index, neither OSA nor abnormal sleep duration were statistically significantly associated with odds of cerebral infarcts, WMH brain volumes or regional brain volumes. In this community-based sample, mid-life OSA and habitually short sleep duration were not associated with later-life cerebral markers of vascular dementia and Alzheimer's disease. However, selection bias may have influenced our results and the modest sample size led to relatively imprecise associations.

  5. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study.

    Science.gov (United States)

    Dubois, Bruno; Epelbaum, Stephane; Nyasse, Francis; Bakardjian, Hovagim; Gagliardi, Geoffroy; Uspenskaya, Olga; Houot, Marion; Lista, Simone; Cacciamani, Federica; Potier, Marie-Claude; Bertrand, Anne; Lamari, Foudil; Benali, Habib; Mangin, Jean-François; Colliot, Olivier; Genthon, Remy; Habert, Marie-Odile; Hampel, Harald

    2018-04-01

    Improved understanding is needed of risk factors and markers of disease progression in preclinical Alzheimer's disease. We assessed associations between brain β-amyloidosis and various cognitive and neuroimaging parameters with progression of cognitive decline in individuals with preclinical Alzheimer's disease. The INSIGHT-preAD is an ongoing single-centre observational study at the Salpêtrière Hospital, Paris, France. Eligible participants were age 70-85 years with subjective memory complaints but unimpaired cognition and memory (Mini-Mental State Examination [MMSE] score ≥27, Clinical Dementia Rating score 0, and Free and Cued Selective Reminding Test [FCSRT] total recall score ≥41). We stratified participants by brain amyloid β deposition on 18 F-florbetapir PET (positive or negative) at baseline. All patients underwent baseline assessments of demographic, cognitive, and psychobehavioural, characteristics, APOE ε4 allele carrier status, brain structure and function on MRI, brain glucose-metabolism on 18 F-fluorodeoxyglucose ( 18 F-FDG) PET, and event-related potentials on electroencephalograms (EEGs). Actigraphy and CSF investigations were optional. Participants were followed up with clinical, cognitive, and psychobehavioural assessments every 6 months, neuropsychological assessments, EEG, and actigraphy every 12 months, and MRI, and 18 F-FDG and 18 F-florbetapir PET every 24 months. We assessed associations of amyloid β deposition status with test outcomes at baseline and 24 months, and with clinical status at 30 months. Progression to prodromal Alzheimer's disease was defined as an amnestic syndrome of the hippocampal type. From May 25, 2013, to Jan 20, 2015, we enrolled 318 participants with a mean age of 76·0 years (SD 3·5). The mean baseline MMSE score was 28·67 (SD 0·96), and the mean level of education was high (score >6 [SD 2] on a scale of 1-8, where 1=infant school and 8=higher education). 88 (28%) of 318 participants showed amyloid

  6. Nutritional supplementation for Alzheimer's disease?

    Science.gov (United States)

    Shea, Thomas B; Remington, Ruth

    2015-03-01

    Evidence for the benefit of nutrition in Alzheimer's disease continues to accumulate. Many studies with individual vitamins or supplements show marginal, if any, benefit. However, new findings with combinatorial formulations demonstrate improvement in cognitive performance and behavioral difficulties that accompany Alzheimer's disease. Herein, we review some of the most recent clinical advances and summarize supportive preclinical studies. We present novel positive effects on Alzheimer's disease derived from diet, trace elements, vitamins and supplements. We discuss the inherent difficulty in conducting nutritional studies because of the variance in participants' nutritional history, versus pharmacological interventions in which participants are naive to the intervention. We examine the evidence that epigenetics play a role in Alzheimer's disease and how nutritional intervention can modify the key epigenetic events to maintain or improve cognitive performance. Overall consideration of the most recent collective evidence suggests that the optimal approach for Alzheimer's disease would seem to combine early, multicomponent nutritional approaches (a Mediterranean-style diet, multivitamins and key combinatorial supplements), along with lifestyle modifications such as social activity and mental and physical exercise, with ultimate addition of pharmacological agents when warranted.

  7. Ayurvedic Profiling of Alzheimer's Disease.

    Science.gov (United States)

    Bredesen, Dale E; Rao, Rammohan V

    2017-05-01

    Alzheimer's disease (AD) is an age-associated, progressive neurodegenerative disease that is characterized by severe memory loss, personality changes, and an overall decline in cognitive function. The cause of AD is not yet completely defined and efforts to find a cure for it have so far been disappointing. AD is one of the most significant health care problems nationally and globally. Recently, we described a personalized therapeutic approach called metabolic enhancement for neurodegeneration (MEND) that successfully reversed the cognitive decline in patients with early AD. The magnitude of the improvement was exceptional, providing testimony to the fact that a personalized and programmatic approach to cognitive decline is highly effective. Ayurveda is a personalized system of traditional medicine native to India and the Indian subcontinent. Although a direct reference to AD in the ancient Ayurvedic literature is missing, concepts including forgetfulness, memory loss, and brain cell loss have been described. Using the clinical information and the metabolic profiling of AD individuals we recently reported using the MEND program, we now describe in this commentary, 3 subtypes of AD based on the Ayurvedic interpretation. Ayurvedic profiling of patients with AD reveals 3 readily distinguishable subtypes, namely Vata, Pitta, and Krimi, which will prove useful in patients with cognitive decline and those at risk for such decline from the standpoint of specific subtype-based Ayurvedic intervention.

  8. Insulin and Alzheimer disease: type 3 diabetes?

    Directory of Open Access Journals (Sweden)

    Andrés Jagua Gualdrón

    2007-01-01

    Full Text Available Alzheimer Disease is a neurodegenerative disease of central nervous system whose incidence will increase in next years. Recent investigations relate alzheimer with insulin signaling defects in neurons. Is alzheimer Disease a type 3 diabetes? In this communication write a brief article about evidences from this alzheimer‘s disease model.

  9. Imaging epigenetics in Alzheimer's disease.

    Science.gov (United States)

    Lista, Simone; Garaci, Francesco G; Toschi, Nicola; Hampel, Harald

    2013-01-01

    Sporadic Alzheimer's disease (AD) is a prevalent, complex and chronically progressive brain disease. Its course is non-linear, dynamic, adaptive to maladaptive, and compensatory to decompensatory, affecting large-scale neural networks through a plethora of mechanistic and signaling pathway alterations that converge into regional and cell type-specific neurodegeneration and, finally, into clinically overt cognitive and behavioral decline. This decline includes reductions in the activities of daily living, quality of life, independence, and life expectancy. Evolving lines of research suggest that epigenetic mechanisms may play a crucial role during AD development and progression. Epigenetics designates molecular mechanisms that alter gene expression without modifications of the genetic code. This topic includes modifications on DNA and histone proteins, the primary elements of chromatin structure. Accumulating evidence has revealed the relevant processes that mediate epigenetic modifications and has begun to elucidate how these processes are apparently dysregulated in AD. This evidence has led to the clarification of the roles of specific classes of therapeutic compounds that affect epigenetic pathways and characteristics of the epigenome. This insight is accompanied by the development of new methods for studying the global patterns of DNA methylation and chromatin alterations. In particular, high-throughput sequencing approaches, such as next-generation DNA sequencing techniques, are beginning to drive the field into the next stage of development. In parallel, genetic imaging is beginning to answer additional questions through its ability to uncover genetic variants, with or without genome-wide significance, that are related to brain structure, function and metabolism, which impact disease risk and fundamental network-based cognitive processes. Neuroimaging measures can further be used to define AD systems and endophenotypes. The integration of genetic neuroimaging

  10. Ophthalmic examination in early diagnosis of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-02-01

    Full Text Available Alzheimer's disease is a progressive neurodegenerative disorder causing irreversible deterioration in memory and loss of self-care ability, which is seriously affecting the quality of life. There is no cure for Alzheimer's disease. Medication only can control the progression of the disease. Early diagnosis and control of disease progress is of great significance in improving the quality of life of the patients and reducing the burden of family and society. Ophthalmic examination is seen as a window which can “see” brain directly, and some changes in the eye can reflect the changes of the brain most directly. This paper reviews the ophthalmic examination of Alzheimer's disease, including optical coherence tomography(OCT, visual field, contrast sensitivity and eye movements, et al. We hope to provide a new idea for the early diagnosis of Alzheimer's disease.

  11. Galantamine for Alzheimer's disease.

    Science.gov (United States)

    Olin, J; Schneider, L

    2002-01-01

    Galantamine (also called galanthamine, marketed by Janssen as Reminyl) was originally isolated from several plants, including daffodil bulbs, but is now synthesized. Galantamine is a specific, competitive, and reversible acetylcholinesterase inhibitor. It is also an allosteric modulator at nicotinic cholinergic receptor sites potentiating cholinergic nicotinic neurotransmission. A small number of early studies showed mild cognitive and global benefits for patients with Alzheimer's disease (AD), and recently several multicentre clinical trials have been published with positive findings. Galantamine has received regulatory approval in 29 counties: Argentina, Australia, Canada, Czechia, the European Union (except for The Netherlands), Iceland, Korea, Mexico, Norway, Poland, Singapore, South Africa, Switzerland, Thailand, and the United States. The objective of this overview is to assess the clinical effects of galantamine in patients with probable AD, and to investigate potential moderators of an effect. The trials were identified from a search of the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group on 15 May 2002 using the terms galantamine and Reminyl. Published reviews were inspected for further sources. Additional information was collected from an unpublished investigational brochure for galantamine. Trials selected were randomized, double-blind, parallel-group, unconfounded comparisons of galantamine with placebo for a treatment duration of greater than 4 weeks for people with AD. Data were extracted independently by the reviewers and pooled where appropriate and possible. The pooled odds ratios (95%CI) or the average differences (95%CI) were estimated. Intention-to-treat and observed cases data were both reported, if the data were available. Outcomes of interest include the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog), clinical global impression of change (CIBIC-plus or CGIC), Alzheimer's Disease Cooperative

  12. Expression of cellular prion protein in the frontal and occipital lobe in Alzheimer's disease, diffuse Lewy body disease, and in normal brain: an immunohistochemical study.

    Science.gov (United States)

    Rezaie, Payam; Pontikis, Charlie C; Hudson, Lance; Cairns, Nigel J; Lantos, Peter L

    2005-08-01

    Cellular prion protein (PrP(c)) is a glycoprotein expressed at low to moderate levels within the nervous system. Recent studies suggest that PrP(c) may possess neuroprotective functions and that its expression is upregulated in certain neurodegenerative disorders. We investigated whether PrP(c) expression is altered in the frontal and occipital cortex in two well-characterized neurodegenerative disorders--Alzheimer's disease (AD) and diffuse Lewy body disease (DLBD)--compared with that in normal human brain using immunohistochemistry and computerized image analysis. The distribution of PrP(c) was further tested for correlation with glial reactivity. We found that PrP(c) was localized mainly in the gray matter (predominantly in neurons) and expressed at higher levels within the occipital cortex in the normal human brain. Image analysis revealed no significant variability in PrP(c) expression between DLBD and control cases. However, blood vessels within the white matter of DLBD cases showed immunoreactivity to PrP(c). By contrast, this protein was differentially expressed in the frontal and occipital cortex of AD cases; it was markedly overexpressed in the former and significantly reduced in the latter. Epitope specificity of antibodies appeared important when detecting PrP(c). The distribution of PrP(c) did not correlate with glial immunoreactivity. In conclusion, this study supports the proposal that regional changes in expression of PrP(c) may occur in certain neurodegenerative disorders such as AD, but not in other disorders such as DLBD.

  13. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 5,433,357 views 14:37 After a year my dad remembered me! Alzheimer's, if you don' ... feedback! Yes No I'm not sure Language: English Location: United States Restricted Mode: Off History Help ...

  14. Reduction of Alzheimer's disease beta-amyloid pathology in the absence of gut microbiota

    OpenAIRE

    Harach, T.; Marungruang, N.; Dutilleul, N.; Cheatham, V.; Coy, K. D. Mc; Neher, J. J.; Jucker, M.; Fåk, F.; T.; Lasser; Bolmont, T.

    2015-01-01

    Alzheimer's disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer's disease is not known. We generated a germ-free mouse model of Alzheimer's disease and discovered a drastic reduction of cerebral Ab amyloid pathology when compared to control Alzheimer's disease a...

  15. Therapeutic role of rifampicin in Alzheimer's disease.

    Science.gov (United States)

    Yulug, Burak; Hanoglu, Lütfü; Ozansoy, Mehmet; Isık, Dogan; Kilic, Ulkan; Kilic, Ertugrul; Schabitz, Wolf Rüdiger

    2018-03-01

    Rifampicin exerts significant brain protective functions in multiple experimental models. Here we summarize the underlying mechanisms of the neuroprotective and pro-cognitive effects of rifampicin that are mediated by its anti-inflammatory, anti-tau, anti-amyloid, and cholinergic effects. Beyond suggesting that rifampicin shows strong brain protective effects in preclinical models of Alzheimer's disease, we also provide substantial clinical evidence for the neuroprotective and pro-cognitive effects of rifampicin. Future neuroimaging studies combined with clinical assessment scores are the following steps to be taken in this field of research. © 2018 The Authors. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  16. Exploring Symmetry to Assist Alzheimer's Disease Diagnosis

    Science.gov (United States)

    Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.

  17. Early-onset Alzheimer's Disease Phenotypes: Neuropsychology and Neural Networks

    Science.gov (United States)

    2017-05-11

    Alzheimer Disease, Early Onset; Alzheimer Disease; Alzheimer Disease, Late Onset; Dementia, Alzheimer Type; Logopenic Progressive Aphasia; Primary Progressive Aphasia; Visuospatial/Perceptual Abilities; Posterior Cortical Atrophy; Executive Dysfunction; Corticobasal Degeneration; Ideomotor Apraxia

  18. Radiopharmaceuticals for Assessment of Altered Metabolism and Biometal Fluxes in Brain Aging and Alzheimer's Disease with Positron Emission Tomography.

    Science.gov (United States)

    Xie, Fang; Peng, Fangyu

    2017-01-01

    Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.

  19. Improved Mitochondrial Function in Brain Aging and Alzheimer Disease – the New Mechanism of Action of the Old Metabolic Enhancer Piracetam

    Science.gov (United States)

    Leuner, Kristina; Kurz, Christopher; Guidetti, Giorgio; Orgogozo, Jean-Marc; Müller, Walter E.

    2010-01-01

    Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g., might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, this new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions. PMID:20877425

  20. Imaging Alzheimer's disease pathophysiology with PET

    Directory of Open Access Journals (Sweden)

    Lucas Porcello Schilling

    Full Text Available ABSTRACT Alzheimer's disease (AD has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI, and dementia stages. Positron emission tomography (PET associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.

  1. Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects.

    Science.gov (United States)

    Hua, Xue; Lee, Suh; Yanovsky, Igor; Leow, Alex D; Chou, Yi-Yu; Ho, April J; Gutman, Boris; Toga, Arthur W; Jack, Clifford R; Bernstein, Matt A; Reiman, Eric M; Harvey, Danielle J; Kornak, John; Schuff, Norbert; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2009-12-01

    Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis method to determine what methodological factors, and which image-derived measures, maximize statistical power to track brain change. 3D maps, tracking rates of structural atrophy over time, were created from 1030 longitudinal brain MRI scans (1-year follow-up) of 104 AD patients (age: 75.7+/-7.2 years; MMSE: 23.3+/-1.8, at baseline), 254 amnestic MCI subjects (75.0+/-7.2 years; 27.0+/-1.8), and 157 healthy elderly subjects (75.9+/-5.1 years; 29.1+/-1.0), as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). To determine which TBM designs gave greatest statistical power, we compared different linear and nonlinear registration parameters (including different regularization functions), and different numerical summary measures derived from the maps. Detection power was greatly enhanced by summarizing changes in a statistically-defined region-of-interest (ROI) derived from an independent training sample of 22 AD patients. Effect sizes were compared using cumulative distribution function (CDF) plots and false discovery rate methods. In power analyses, the best method required only 48 AD and 88 MCI subjects to give 80% power to detect a 25% reduction in the mean annual change using a two-sided test (at alpha=0.05). This is a drastic sample size reduction relative to using clinical scores as outcome measures (619 AD/6797 MCI for the ADAS-Cog, and 408 AD/796 MCI for the Clinical Dementia Rating sum-of-boxes scores). TBM offers high statistical power to track brain changes in large, multi-site neuroimaging studies and clinical trials of AD.

  2. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.

    Science.gov (United States)

    Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L

    2018-06-01

    There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

  3. Genome instability in Alzheimer disease

    DEFF Research Database (Denmark)

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis...

  4. Head trauma and Alzheimer's disease

    NARCIS (Netherlands)

    Nandoe, Rishi D. S.; Scheltens, Philip; Eikelenboom, Piet

    2002-01-01

    The authors describe a case of a 55 year old woman who was diagnosed with Alzheimer's disease 1.5 years after a car accident in which she experienced a mild concussion. Extensive history taking disclosed no cognitive changes prior to the car accident. The case is discussed in view of the

  5. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease

    NARCIS (Netherlands)

    Wiesmann, M.; Roelofs, M.; Lugt, R. Van Der; Heerschap, A.; Kiliaan, A.J.; Claassen, J.A.H.R.

    2017-01-01

    Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced

  6. Pharmacologic management of Alzheimer disease.

    Science.gov (United States)

    Downey, Deborah

    2008-02-01

    Although the diagnosis of AD can be devastating, treatment options exist that can slow the disease's progression and allow patients to continue performing ADLs, thereby improving the quality of life for both patient and caregiver. Research is ongoing, and it is estimated by the Alzheimer's Association that finding a treatment that could delay onset by only 5 years could reduce the number of individuals with AD by nearly 50% over the next 50 years (Alzheimer's Association, 2007). Although pharmacotherapy is not yet a cure, it does remain an important part of a total approach to caring for patients and families affected by AD.

  7. Perception of Alzheimer Disease in Iranian Traditional Medicine.

    Science.gov (United States)

    Saifadini, Rostam; Tajadini, Haleh; Choopani, Rasool; Mehrabani, Mitra; Kamalinegad, Mohamad; Haghdoost, Aliakbar

    2016-03-01

    Alzheimer disease (AD) is the most common cause of dementia. In regards to the world's aging population, control and treatment of AD will be one of the major concerns of global public health in the next century. Alzheimer disease was not mentioned with the same phrase or its equivalent in traditional medical texts. The main of present paper was to investigate symptoms and causes of alzheimer disease from the view point of Iranian traditional medicine. In this qualitative study, we searched reliable sources of Iranian traditional medicine such as Canon of Medicide by Avicenna (Al-Quanon fi- tibb), Aghili cure by Aghili's (Molajat-E-aghili), Tib-E-Akbari, Exire -E-Aazam and Sharh-E-Asbab and some reliable resources of neurology were probed base on keywords to find a disease that had the most overlap in terms of symptoms with alzheimer disease. By taking from the relevant materials, the extracted texts were compared and analyzed. Findings showed that alzheimer disease has the most overlap with Nesyan (fisad-e-zekr, fisad-e-fekr and fisad-e-takhayol) symptoms in Iranian traditional medicine. Although this is not a perfect overlap and there are causes, including coldness and dryness of the brain or coldness and wetness that could also lead to alzheimer disease according to Iranian traditional medicine. According to Iranian traditional medicine, The brain dystemperement is considered the main causes of alzheimer disease. By correcting the brain dystemperement, alzheimer can be well managed. This study helps to suggest a better strategy for preventing and treating alzheimer in the future.

  8. microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0318 TITLE: microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury...After Brain Injury 5b. GRANT NUMBER AZ14046 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...responses to brain injury that precede, and likely drive, changes in protein expression that lead to the development of AD. We have additional preliminary

  9. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  10. Brain catalase in the streptozotocin-rat model of sporadic Alzheimer's disease treated with the iron chelator-monoamine oxidase inhibitor, M30.

    Science.gov (United States)

    Sofic, E; Salkovic-Petrisic, M; Tahirovic, I; Sapcanin, A; Mandel, S; Youdim, M; Riederer, P

    2015-04-01

    Low intracerebroventricular (icv) doses of streptozotocin (STZ) produce regionally specific brain neurochemical changes in rats that are similar to those found in the brain of patients with sporadic Alzheimer's disease (sAD). Since oxidative stress is thought to be one of the major pathologic processes in sAD, catalase (CAT) activity was estimated in the regional brain tissue of animals treated intracerebroventricularly with STZ and the multitarget iron chelator, antioxidant and MAO-inhibitor M30 [5-(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline]. Five-day oral pre-treatment of adult male Wistar rats with 10 mg/kg/day M30 dose was followed by a single injection of STZ (1 mg/kg, icv). CAT activity was measured colorimetrically in the hippocampus (HPC), brain stem (BS) and cerebellum (CB) of the control, STZ-, M30- and STZ + M30-treated rats, respectively, 4 weeks after the STZ treatment. STZ-treated rats demonstrated significantly lower CAT activity in all three brain regions in comparison to the controls (p effects in this non-transgenic sAD model.

  11. Alzheimer's disease: studies of diagnosis and therapy

    NARCIS (Netherlands)

    J.J. Claus (Jules Johan)

    1993-01-01

    textabstractDespite tremendous recent advances in the clinical neurology, neurobiology and epidemiology of Alzheimer's disease, the cause as well as its treatment remains as much a mystery today as when it was first described in 1907 by Alois Alzheimer.' Alzheimer's disease, the most common type

  12. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  13. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.; Ehmann, W.D. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levels to those in the pituitary gland of AD and control subjects.

  14. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Sleep | Letting Go - Duration: 6:28:17. ZenLifeRelax 1,475,805 views 6:28:17 Alzheimer e a confusão na hora de dormir - Duration: 0:44. Meu caduquinho favorito 5,221 views 0: ...

  15. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 17. TEDx Talks 12,392 views 12:17 Alzheimer’s Is Not Normal Aging — And We Can Cure It | Samuel Cohen | TED Talks - Duration: 7:54. TED 286,506 views 7:54 Day in the Life of an Alzheimer's Caregiver: Heartbreaking - Duration: 4:39. DavidNazarNews 31,783 ...

  16. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... starting stop Loading... Watch Queue Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with ... ads? Get YouTube Red. Working... Not now Try it free Find out why Close How Alzheimer's Changes ...

  17. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease.

    Science.gov (United States)

    Yin, Tiantian; Yang, Licong; Liu, Yanan; Zhou, Xianbo; Sun, Jing; Liu, Jie

    2015-10-01

    The blood-brain barrier (BBB) is a formidable gatekeeper toward exogenous substances, playing an important role in brain homeostasis and maintaining a healthy microenvironment for complex neuronal activities. However, it also greatly hinders drug permeability into the brain and limits the management of brain diseases. The development of new drugs that show improved transport across the BBB represents a promising strategy for Alzheimer's disease (AD) intervention. Whereas, previous study of receptor-mediated endogenous BBB transport systems has focused on a strategy of using transferrin to facilitate brain drug delivery system, a system that still suffers from limitations including synthesis procedure, stability and immunological response. In the present study, we synthetised sialic acid (SA)-modified selenium (Se) nanoparticles conjugated with an alternative peptide-B6 peptide (B6-SA-SeNPs, a synthetic selenoprotein analogue), which shows high permeability across the BBB and has the potential to serve as a novel nanomedicine for disease modification in AD. Laser-scanning confocal microscopy, flow cytometry analysis and inductively coupled plasma-atomic emission spectroscopy ICP-AES revealed high cellular uptake of B6-SA-SeNPs by cerebral endothelial cells (bEnd.3). The transport efficiency of B6-SA-SeNPs was evaluated in a Transwell experiment based on in vitro BBB model. It provided direct evidence for B6-SA-SeNPs crossing the BBB and being absorbed by PC12 cells. Moreover, inhibitory effects of B6-SA-SeNPs on amyloid-β peptide (Aβ) fibrillation could be demonstrated in PC12 cells and bEnd3 cells. B6-SA-SeNPs could not only effectively inhibit Aβ aggregation but could disaggregate preformed Aβ fibrils into non-toxic amorphous oligomers. These results suggested that B6-SA-SeNPs may provide a promising platform, particularly for the application of nanoparticles in the treatment of brain diseases. Alzheimer's disease (AD) is the world's most common form of

  18. Is Alzheimer's disease a homogeneous disease entity?

    Science.gov (United States)

    Korczyn, Amos D

    2013-10-01

    The epidemic proportions of dementia in old age are a cause of great concern for the medical profession and the society at large. It is customary to consider Alzheimer's disease (AD) as the most common cause of dementia, and vascular dementia (VaD) as being the second. This dichotomous view of a primary neurodegenerative disease as opposed to a disorder where extrinsic factors cause brain damage led to separate lines of research in these two entities. New biomarkers, particularly the introduction of modern neuroimaging and cerebrospinal fluid changes, have, in recent years, helped to identify anatomical and chemical changes of VaD and of AD. Nevertheless, there is a substantial difference between the two entities. While it is clear that VaD is a heterogeneous entity, AD is supposed to be a single disorder. Nobody attempts to use CADASIL as a template to develops treatment for sporadic VaD. On the other hand, early-onset AD is used to develop therapy for sporadic AD. This paper will discuss the problems relating to this false concept and its consequences.

  19. Assessing neuronal networks: understanding Alzheimer's disease.

    LENUS (Irish Health Repository)

    Bokde, Arun L W

    2012-02-01

    Findings derived from neuroimaging of the structural and functional organization of the human brain have led to the widely supported hypothesis that neuronal networks of temporally coordinated brain activity across different regional brain structures underpin cognitive function. Failure of integration within a network leads to cognitive dysfunction. The current discussion on Alzheimer\\'s disease (AD) argues that it presents in part a disconnection syndrome. Studies using functional magnetic resonance imaging, positron emission tomography and electroencephalography demonstrate that synchronicity of brain activity is altered in AD and correlates with cognitive deficits. Moreover, recent advances in diffusion tensor imaging have made it possible to track axonal projections across the brain, revealing substantial regional impairment in fiber-tract integrity in AD. Accumulating evidence points towards a network breakdown reflecting disconnection at both the structural and functional system level. The exact relationship among these multiple mechanistic variables and their contribution to cognitive alterations and ultimately decline is yet unknown. Focused research efforts aimed at the integration of both function and structure hold great promise not only in improving our understanding of cognition but also of its characteristic progressive metamorphosis in complex chronic neurodegenerative disorders such as AD.

  20. Neuroinflammation in Alzheimer's disease and prion disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Bate, C.; van Gool, W. A.; Hoozemans, J. J. M.; Rozemuller, J. M.; Veerhuis, R.; Williams, A.

    2002-01-01

    Alzheimer's disease (AD) and prion disease are characterized neuropathologically by extracellular deposits of Abeta and PrP amyloid fibrils, respectively. In both disorders, these cerebral amyloid deposits are co-localized with a broad variety of inflammation-related proteins (complement factors,

  1. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples

    Directory of Open Access Journals (Sweden)

    Eleonora Ciarlo

    2013-03-01

    Recent studies indicated that sortilin-related receptor 1 (SORL1 is a risk gene for late-onset Alzheimer's disease (AD, although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc RNA (hereafter referred to as 51A that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP, leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.

  2. The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer's disease-related cytoskeletal pathology.

    Science.gov (United States)

    Rüb, U; Del Tredici, K; Schultz, C; Thal, D R; Braak, E; Braak, H

    2001-06-01

    The nuclei of the pontine parabrachial region (medial parabrachial nucleus, MPB; lateral parabrachial nucleus, LPB; subpeduncular nucleus, SPP) together with the intermediate zone of the medullary reticular formation (IRZ) are pivotal relay stations within central autonomic regulatory feedback systems. This study was undertaken to investigate the evolution of the Alzheimer's disease-related cytoskeletal pathology in these four sites of the lower brain stem. We examined the MPB, LPB, SPP and IRZ in 27 autopsy cases and classified the cortical Alzheimer-related cytoskeletal anomalies according to an established staging system (neurofibrillary tangle/neuropil threads [NFT/NT] stages I-VI). The lesions were visualized either with the antibody AT8, which is immunospecific for the abnormally phosphorylated form of the cytoskeletal protein tau, or with a modified Gallyas silver iodide stain. The MPB, SPB, and IRZ display cytoskeletal pathology in stage I and the LPB in stage II, whereby bothstages correspond to the preclinical phase of Alzheimer's disease (AD). In stages III-IV (incipient AD), the MPB and SPP are severely affected. In all of the stage III-IV cases, the lesions in the LPB and IRZ are well developed. In stages V and VI (clinical phase of AD), the MPB and SPP are filled with the abnormal intraneuronal material. At stages V-VI, the LPB is moderately involved and the IRZ shows severe damage. The pathogenesis of the AD-related cytoskeletal lesions in the nuclei of the pontine parabrachial region and in the IRZ conforms with the cortical NFT/NT staging sequence I-VI. In the event that the cytoskeletal pathology observed in this study impairs the function of the nerve cells involved, it is conceivable that autonomic mechanisms progressively deteriorate with advancing cortical NFT/NT stages. This relationship remains to be established, but it could provide insights into the illusive correlation between the AD-related cytoskeletal pathology and the function of

  3. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease

    NARCIS (Netherlands)

    Bana, Laura; Minniti, Stefania; Salvati, Elisa; Sesana, Silvia; Zambelli, Vanessa; Cagnotto, Alfredo; Orlando, Antonina; Cazzaniga, Emanuela; Zwart, Rob; Scheper, Wiep; Masserini, Massimo; Re, Francesca

    2014-01-01

    Targeting amyloid-β peptide (Aβ) within the brain is a strategy actively sought for therapy of Alzheimer's disease (AD). We investigated the ability of liposomes bi-functionalized with phosphatidic acid and with a modified ApoE-derived peptide (mApoE-PA-LIP) to affect Aβ aggregation/disaggregation

  4. Is brain copper deficiency in Alzheimer's, Lewy body, and Creutzfeldt Jakob diseases the common key for a free radical mechanism and oxidative stress-induced damage?

    Science.gov (United States)

    Deloncle, Roger; Guillard, Olivier

    2015-01-01

    In Alzheimer's (AD), Lewy body (LBD), and Creutzfeldt Jakob (CJD) diseases, similar pathological hallmarks have been described, one of which is brain deposition of abnormal protease-resistant proteins. For these pathologies, copper bound to proteins is able to protect against free radicals by reduction from cupric Cu++ to cupreous Cu+. We have previously demonstrated in bovine brain homogenate that free radicals produce proteinase K-resistant prion after manganese is substituted for copper. Since low brain copper levels have been described in transmissible spongiform encephalopathies, in substantia nigra in Parkinson's disease, and in various brain regions in AD, LBD, and CJD, a mechanism has been proposed that may underlie the neurodegenerative processes that occur when copper protection against free radicals is impaired. In peptide sequences, the alpha acid proton near the peptide bond is highly mobile and can be pulled out by free radicals. It will produce a trivalent α-carbon radical and induce a free radical chain process that will generate a D-amino acid configuration in the peptide sequence. Since only L-amino acids are physiologically present in mammalian (human) proteins, it may be supposed that only physiological L-peptides can be recycled by physiological enzymes such as proteases. If a D-amino acid is found in the peptide sequence subsequent to deficient copper protection against free radicals, it will not be recognized and might alter the proteasome L-amino acid recycling from brain peptides. In the brain, there will result an accumulation of abnormal protease-resistant proteins such as those observed in AD, LBD, and CJD.

  5. Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer's disease and elderly controls after oral administration of sembragiline

    International Nuclear Information System (INIS)

    Sturm, Stefan; Forsberg, Anton; Stenkrona, Per; Varrone, Andrea; Fazio, Patrik; Nakao, Ryuji; Halldin, Christer; Nave, Stephane; Jamois, Candice; Ricci, Benedicte; Seneca, Nicholas; Comley, Robert A.; Ejduk, Zbigniew; Al-Tawil, Nabil; Akenine, Ulrika; Andreasen, Niels

    2017-01-01

    In Alzheimer's disease (AD), increased metabolism of monoamines by monoamine oxidase type B (MAO-B) leads to the production of toxic reactive oxygen species (ROS), which are thought to contribute to disease pathogenesis. Inhibition of the MAO-B enzyme may restore brain levels of monoaminergic neurotransmitters, reduce the formation of toxic ROS and reduce neuroinflammation (reactive astrocytosis), potentially leading to neuroprotection. Sembragiline (also referred as RO4602522, RG1577 and EVT 302 in previous communications) is a potent, selective and reversible inhibitor of MAO-B developed as a potential treatment for AD. This study assessed the relationship between plasma concentration of sembragiline and brain MAO-B inhibition in patients with AD and in healthy elderly control (EC) subjects. Positron emission tomography (PET) scans using [ 11 C]- L -deprenyl-D 2 radiotracer were performed in ten patients with AD and six EC subjects, who received sembragiline each day for 6-15 days. At steady state, the relationship between sembragiline plasma concentration and MAO-B inhibition resulted in an E max of ∝80-90 % across brain regions of interest and in an EC 50 of 1-2 ng/mL. Data in patients with AD and EC subjects showed that near-maximal inhibition of brain MAO-B was achieved with 1 mg sembragiline daily, regardless of the population, whereas lower doses resulted in lower and variable brain MAO-B inhibition. This PET study confirmed that daily treatment of at least 1 mg sembragiline resulted in near-maximal inhibition of brain MAO-B enzyme in patients with AD. (orig.)

  6. Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer's disease and elderly controls after oral administration of sembragiline

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Stefan [Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel (Switzerland); F. Hoffmann-La Roche Ltd, Basel (Switzerland); Forsberg, Anton; Stenkrona, Per; Varrone, Andrea; Fazio, Patrik; Nakao, Ryuji; Halldin, Christer [Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Stockholm (Sweden); Nave, Stephane; Jamois, Candice; Ricci, Benedicte [Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel (Switzerland); Seneca, Nicholas [AstraZeneca Translational Science Center, Stockholm (Sweden); Comley, Robert A. [AbbVie, North Chicago, IL (United States); Ejduk, Zbigniew [Miedzyleski Specialistic Hospital, Internal Disease and Gastroenterology, Warsaw (Poland); Al-Tawil, Nabil [Karolinska University Hospital, Karolinska Trial Alliance Phase 1 Unit, Stockholm (Sweden); Akenine, Ulrika; Andreasen, Niels [Karolinska University Hospital, Karolinska Institutet Alzheimer Disease Research Centre and Clinical Trial Unit, Geriatric Clinic, Huddinge (Sweden)

    2017-03-15

    In Alzheimer's disease (AD), increased metabolism of monoamines by monoamine oxidase type B (MAO-B) leads to the production of toxic reactive oxygen species (ROS), which are thought to contribute to disease pathogenesis. Inhibition of the MAO-B enzyme may restore brain levels of monoaminergic neurotransmitters, reduce the formation of toxic ROS and reduce neuroinflammation (reactive astrocytosis), potentially leading to neuroprotection. Sembragiline (also referred as RO4602522, RG1577 and EVT 302 in previous communications) is a potent, selective and reversible inhibitor of MAO-B developed as a potential treatment for AD. This study assessed the relationship between plasma concentration of sembragiline and brain MAO-B inhibition in patients with AD and in healthy elderly control (EC) subjects. Positron emission tomography (PET) scans using [{sup 11}C]-{sub L}-deprenyl-D{sub 2} radiotracer were performed in ten patients with AD and six EC subjects, who received sembragiline each day for 6-15 days. At steady state, the relationship between sembragiline plasma concentration and MAO-B inhibition resulted in an E{sub max} of ∝80-90 % across brain regions of interest and in an EC{sub 50} of 1-2 ng/mL. Data in patients with AD and EC subjects showed that near-maximal inhibition of brain MAO-B was achieved with 1 mg sembragiline daily, regardless of the population, whereas lower doses resulted in lower and variable brain MAO-B inhibition. This PET study confirmed that daily treatment of at least 1 mg sembragiline resulted in near-maximal inhibition of brain MAO-B enzyme in patients with AD. (orig.)

  7. Economic considerations in the management of Alzheimer?s disease

    OpenAIRE

    Zhu, Carolyn W; Sano, Mary

    2006-01-01

    Alzheimer?s disease is a devastating chronic disease that significantly increases healthcare costs and affects the quality of life (QoL) of the afflicted patients and their caregivers. Population aging and other demographic changes may further increase the already staggering costs of this devastating disease. While few pharmacoeconomic studies have used a prospective health economics design to assess resource utilization, most studies showed beneficial treatment effects and suggested potentia...

  8. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Science.gov (United States)

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  9. Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve.

    Science.gov (United States)

    Duncan, Hilary D; Nikelski, Jim; Pilon, Randi; Steffener, Jason; Chertkow, Howard; Phillips, Natalie A

    2018-01-31

    Two independent lines of research provide evidence that speaking more than one language may 1) contribute to increased grey matter in healthy younger and older adults and 2) delay cognitive symptoms in mild cognitive impairment (MCI) or Alzheimer disease (AD). We examined cortical thickness and tissue density in monolingual and multilingual MCI and AD patients matched (within Diagnosis Groups) on demographic and cognitive variables. In medial temporal disease-related (DR) areas, we found higher tissue density in multilingual MCIs versus monolingual MCIs, but similar or lower tissue density in multilingual AD versus monolingual AD, a pattern consistent with cognitive reserve in AD. In areas related to language and cognitive control (LCC), both multilingual MCI and AD patients had thicker cortex than the monolinguals. Results were largely replicated in our native-born Canadian MCI participants, ruling out immigration as a potential confound. Finally, multilingual patients showed a correlation between cortical thickness in LCC regions and performance on episodic memory tasks. Given that multilinguals and monolinguals were matched on memory functioning, this suggests that increased gray matter in these regions may provide support to memory functioning. Our results suggest that being multilingual may contribute to increased gray matter in LCC areas and may also delay the cognitive effects of disease-related atrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of 18F-FDG PET Data.

    Science.gov (United States)

    Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio

    2017-07-01

    Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of 18 F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of 18 F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Transport of cryptotanshinone, a major active triterpenoid in Salvia miltiorrhiza Bunge widely used in the treatment of stroke and Alzheimer's disease, across the blood-brain barrier.

    Science.gov (United States)

    Yu, Xi-Yong; Lin, Shu-Guang; Chen, Xiao; Zhou, Zhi-Wei; Liang, Jun; Duan, Wei; Chowbay, Balram; Wen, Jing-Yuan; Chan, Eli; Cao, Jie; Li, Chun-Guang; Zhou, Shu-Feng

    2007-05-01

    Cryptotanshinone (CTS), a major constituent from the roots of Salvia miltiorrhiza (Danshen), is widely used in the treatment of coronary heart disease, stroke and less commonly Alzheimer's disease. Our recent study indicates that CTS is a substrate for P-glycoprotein (PgP/MDR1/ABCB1). This study has investigated the nature of the brain distribution of CTS across the brain-blood barrier (BBB) using several in vitro and in vivo rodent models. A polarized transport of CTS was found in rat primary microvascular endothelial cell (RBMVEC) monolayers, with facilitated efflux from the abluminal side to luminal side. Addition of a PgP (e.g. verapamil and quinidine) or multi-drug resistance protein 1/2 (MRP1/2) inhibitor (e.g. probenecid and MK-571) in both luminal and abluminal sides attenuated the polarized transport. In a bilateral in situ brain perfusion model, the uptake of CTS into the cerebrum increased from 0.52 +/- 0.1% at 1 min to 11.13 +/- 2.36 ml/100 g tissue at 30 min and was significantly greater than that of sucrose. Co-perfusion of a PgP/MDR1 (e.g. verapamil) or MRP1/2 inhibitor (e.g. probenecid) significantly increased the brain distribution of CTS by 35.1-163.6%. The brain levels of CTS were only about 21% of those in plasma, and were significantly increased when coadministered with verapamil or probenecid in rats. The brain levels of CTS in rats subjected to middle cerebral artery occlusion and rats treated with quinolinic acid (a neurotoxin) were about 2- to 2.5-fold higher than the control rats. Moreover, the brain levels in mdr1a(-/-) and mrp1(-/-) mice were 10.9- and 1.5-fold higher than those in the wild-type mice, respectively. Taken collectively, these findings indicate that PgP and Mrp1 limit the brain penetration of CTS in rodents, suggesting a possible role of PgP and MRP1 in limiting the brain penetration of CTS in patients and causing drug resistance to Danshen therapy and interactions with conventional drugs that are substrates of PgP and MRP1

  12. Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology.

    Science.gov (United States)

    Kamat, Pradip K; Kalani, Anuradha; Rai, Shivika; Tota, Santosh Kumar; Kumar, Ashok; Ahmad, Abdullah S

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.

  13. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... on the latest news and advances in Alzheimer's treatments, care and research. Get tips for living with ... dementia What is Alzheimer's 7 stages of Alzheimer's Treatments Contact us 24/7 Helpline: 1-800-272- ...

  14. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... c)(3) organization. Copyright © 2018 Alzheimer's Association ® . All rights reserved. Our vision is a world without Alzheimer's Formed in 1980, the Alzheimer's Association is the world's leading voluntary health ...

  15. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... is Alzheimer's 7 stages of Alzheimer's Treatments Contact us 24/7 Helpline: 1-800-272-3900 Find ... Walk to End Alzheimer's Become an advocate About Us | News | Events | Press | About this Site | Privacy Policy | ...

  16. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... In My Area | Alzheimer's & Dementia | Life with ALZ | Research | Professionals | We Can Help | Join the Cause alz. ... news and advances in Alzheimer's treatments, care and research. Get tips for living with Alzheimer's as well ...

  17. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... is a not-for-profit 501(c)(3) organization. Copyright © 2018 Alzheimer's Association ® . All rights reserved. Our ... Alzheimer's Association is the world's leading voluntary health organization in Alzheimer's care, support and research.

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... 501(c)(3) organization. Copyright © 2018 Alzheimer's Association ® . All rights reserved. Our vision is a world without Alzheimer's Formed in 1980, the Alzheimer's Association ...

  19. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... a rate twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty-three percent of ... Association ® . All rights reserved. Our vision is a world without Alzheimer's Formed in 1980, the Alzheimer's Association ...

  20. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... your chapter: search by state In My Area | Alzheimer's & Dementia | Life with ALZ | Research | Professionals | We Can Help | Join the Cause alz.org >> Alzheimer's & Dementia >> Home Text size: A A A 2018 Alzheimer's ...

  1. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Alzheimer's & Dementia | Life with ALZ | Research | Professionals | We Can Help | Join the Cause alz.org >> Alzheimer's & Dementia >> ... as well as simple ideas on how you can support the fight to end Alzheimer's. First name: ...

  2. Potential of the Antibody Against cis-Phosphorylated Tau in the Early Diagnosis, Treatment, and Prevention of Alzheimer Disease and Brain Injury.

    Science.gov (United States)

    Lu, Kun Ping; Kondo, Asami; Albayram, Onder; Herbert, Megan K; Liu, Hekun; Zhou, Xiao Zhen

    2016-11-01

    Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) share a common neuropathologic signature-neurofibrillary tangles made of phosphorylated tau-but do not have the same pathogenesis or symptoms. Although whether traumatic brain injury (TBI) could cause AD has not been established, CTE is shown to be associated with TBI. Until recently, whether and how TBI leads to tau-mediated neurodegeneration was unknown. The unique prolyl isomerase Pin1 protects against the development of tau-mediated neurodegeneration in AD by converting the phosphorylated Thr231-Pro motif in tau (ptau) from the pathogenic cis conformation to the physiologic trans conformation, thereby restoring ptau function. The recent development of antibodies able to distinguish and eliminate both conformations specifically has led to the discovery of cis-ptau as a precursor of tau-induced pathologic change and an early driver of neurodegeneration that directly links TBI to CTE and possibly to AD. Within hours of TBI in mice or neuronal stress in vitro, neurons prominently produce cis-ptau, which causes and spreads cis-ptau pathologic changes, termed cistauosis. Cistauosis eventually leads to widespread tau-mediated neurodegeneration and brain atrophy. Cistauosis is effectively blocked by the cis-ptau antibody, which targets intracellular cis-ptau for proteasome-mediated degradation and prevents extracellular cis-ptau from spreading to other neurons. Treating TBI mice with cis-ptau antibody not only blocks early cistauosis but also prevents development and spreading of tau-mediated neurodegeneration and brain atrophy and restores brain histopathologic features and functional outcomes. Thus, cistauosis is a common early disease mechanism for AD, TBI, and CTE, and cis-ptau and its antibody may be useful for early diagnosis, treatment, and prevention of these devastating diseases.

  3. beta. -Amyloid gene dosage in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, G H; Manuelidis, L; Kim, J H; Manuelidis, E E

    1988-01-11

    The 4-5 kd amyloid ..beta..-peptide is a major constituent of the characteristic amyloid plaque of Alzheimer's disease. It has been reported that some cases of sporatic Alzheimer's disease are associated with at least a partial duplication of chromosome 21 containing the gene corresponding to the 695 residue precursor of this peptide. To contribute to an understanding of the frequency to such a duplication event in the overall Alzheimer's population, the authors have determined the gene dosage of the ..beta..-amyloid gene in this collection of cases. All cases had a clinical diagnosis of Alzheimer's confirmed neuropathologically. Each Alzheimer's case had an apparent normal diploid ..beta..-amyloid gene dosage, while control Down's cases had the expected triploid dosage. Thus partial duplication of chromosome 21 may be a rare finding in Alzheimer's disease. Similar conclusions were just reported in several studies of the Harvard Alzheimer collection.

  4. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Science.gov (United States)

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Magnetic resonance imaging of Alzheimer's disease

    International Nuclear Information System (INIS)

    Lehericy, Stephane; Marjanska, Malgorzata; Mesrob, Lilia; Kinkingnehun, Serge; Sarazin, Marie

    2007-01-01

    A modern challenge for neuroimaging techniques is to contribute to the early diagnosis of neurodegenerative diseases, such as Alzheimer's disease (AD). Early diagnosis includes recognition of pre-demented conditions, such as mild cognitive impairment (MCI) or having a high risk of developing AD. The role of neuroimaging therefore extends beyond its traditional role of excluding other conditions such as neurosurgical lesions. In addition, early diagnosis would allow early treatment using currently available therapies or new therapies in the future. Structural imaging can detect and follow the time course of subtle brain atrophy as a surrogate marker for pathological processes. New MR techniques and image analysis software can detect subtle brain microstructural, perfusion or metabolic changes that provide new tools to study the pathological processes and detect pre-demented conditions. This review focuses on markers of macro- and microstructural, perfusion, diffusion and metabolic MR imaging and spectroscopy in AD. (orig.)

  6. Risk profiles of Alzheimer disease.

    Science.gov (United States)

    Bilbul, Melanie; Schipper, Hyman M

    2011-07-01

    Alzheimer disease (AD) is a dementing, neurodegenerative disorder that affects approximately 500,000 Canadians and its prevalence is expected to double over the next 30 years. Although several medications may temporarily augment cognitive abilities in AD, there presently exists no proven method to avoid the inevitable clinical deterioration in this devastating condition. The delineation of risk factors for the development of AD offers hope for the advent of effective prevention or interventions that might retard the onset of symptoms. In this article, we provide a comprehensive review of midlife risk factors implicated in the etiopathogenesis of sporadic AD. Although some risk factors are heritable and largely beyond our control, others are determined by lifestyle or environment and are potentially modifiable. In a companion paper, we introduce the concept of an Alzheimer Risk Assessment Clinic for ascertainment and mitigation of these and other putative dementia risk factors in middle-aged adults.

  7. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease.

    Science.gov (United States)

    Miners, J Scott; Schulz, Isabel; Love, Seth

    2018-01-01

    Recent studies implicate loss of pericytes in hypoperfusion and blood-brain barrier (BBB) leakage in Alzheimer's disease (AD). In this study, we have measured levels of the pericyte marker, platelet-derived growth factor receptor-β (PDGFRB), and fibrinogen (to assess blood-brain barrier leakage), and analyzed their relationship to indicators of microvessel density (von Willebrand factor level), ante-mortem oxygenation (myelin-associated glycoprotein:proteolipid protein-1 ratio and vascular endothelial growth factor level), Aβ level and plaque load, in precuneus and underlying white matter from 49 AD to 37 control brains. There was reduction in PDGFRB and increased fibrinogen in the precuneus in AD. These changes correlated with reduction in oxygenation and with plaque load. In the underlying white matter, increased fibrinogen correlated with reduced oxygenation, but PDGFRB level was unchanged. The level of platelet-derived growth factor-ββ (PDGF-BB), important for pericyte maintenance, was increased in AD but mainly in the insoluble tissue fraction, correlating with insoluble Aβ level. Loss of the PDGFRB within the precuneus in AD is associated with fibrinogen leakage and reduced oxygenation, and related to fibrillar Aβ accumulation. In contrast, fibrinogen leakage and reduced oxygenation of underlying white matter occur independently of loss of PDGFRB, perhaps secondary to reduced transcortical perfusion.

  8. Characterization of Proteins Present in Isolated Senile Plaques from Alzheimer's Diseased Brains by MALDI-TOF MS with MS/MS.

    Science.gov (United States)

    Kelley, Andrea R; Perry, George; Bach, Stephan B H

    2018-04-18

    The increase of insoluble senile plaques in the brain is a primary hallmark of Alzheimer's disease. The usefulness of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with tandem MS for the characterization of senile plaques from AD brains and the relevance of the components identified to furthering AD research using MS is discussed. Thirty-three components were reproducibly observed within tryptic aliquots of senile plaques from two different AD brains after sample preparation optimization. Additionally, this is one of the first accounts of LIFT being utilized for the direct sequencing of peptides from isolated senile plaques. While many of the species observed coisolated within senile plaques have been linked to AD etiology, if only speculatively, this is the first instance that many of them have been demonstrated to be a part of the plaques themselves. This work is the first step in determining the potential roles that the species may have in the aggregation or proliferation of the plaques.

  9. Report by the Spanish Foundation of the Brain on the social impact of Alzheimer disease and other types of dementia.

    Science.gov (United States)

    Villarejo Galende, A; Eimil Ortiz, M; Llamas Velasco, S; Llanero Luque, M; López de Silanes de Miguel, C; Prieto Jurczynska, C

    2017-12-14

    Knowledge of the socioeconomic impact of dementia-related disorders is essential for appropriate management of healthcare resources and for raising social awareness. We performed a literature review of the published evidence on the epidemiology, morbidity, mortality, associated disability and dependence, and economic impact of dementia and Alzheimer disease (AD) in Spain. Most population studies of patients older than 65 report prevalence rates ranging from 4% to 9%. Prevalence of dementia and AD is higher in women for nearly every age group. AD is the most common cause of dementia (50%-70% of all cases). Dementia is associated with increased morbidity, mortality, disability, and dependence, and results in a considerable decrease in quality of life and survival. Around 80% of all patients with dementia are cared for by their families, which cover a mean of 87% of the total economic cost, resulting in considerable economic and health burden on caregivers and loss of quality of life. The economic impact of dementia is huge and difficult to evaluate due to the combination of direct and indirect costs. More comprehensive programmes should be developed and resources dedicated to research, prevention, early diagnosis, multidimensional treatment, and multidisciplinary management of these patients in order to reduce the health, social, and economic burden of dementia. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation.

    Science.gov (United States)

    Graña, M; Termenon, M; Savio, A; Gonzalez-Pinto, A; Echeveste, J; Pérez, J M; Besga, A

    2011-09-20

    The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Quantitation, regional vulnerability, and kinetic modeling of brain glucose metabolism in mild Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, Lisa; Rusinek, Henry; De Santi, Susan; Li, Yi [New York University School of Medicine, Center for Brain Health, MHL 400, Department of Psychiatry, New York, NY (United States); Tsui, Wai H.; De Leon, Mony J. [New York University School of Medicine, Center for Brain Health, MHL 400, Department of Psychiatry, New York, NY (United States); Nathan Kline Institute, Orangeburg, NY (United States); Wang, Gene-Jack; Fowler, Joanna [Brookhaven National Laboratory, Upton, NY (United States); Pupi, Alberto [University of Florence, Department of Clinical Pathophysiology, Nuclear Medicine Unit, Florence (Italy)

    2007-09-15

    To examine CMRglc measures and corresponding glucose transport (K{sub 1} and k{sub 2}) and phosphorylation (k{sub 3}) rates in the medial temporal lobe (MTL, comprising the hippocampus and amygdala) and posterior cingulate cortex (PCC) in mild Alzheimer's disease (AD). Dynamic FDG PET with arterial blood sampling was performed in seven mild AD patients (age 68 {+-} 8 years, four females, median MMSE 23) and six normal (NL) elderly (age 69 {+-} 9 years, three females, median MMSE 30). Absolute CMRglc ({mu}mol/100 g/min) was calculated from MRI-defined regions of interest using multiparametric analysis with individually fitted kinetic rate constants, Gjedde-Patlak plot, and Sokoloff's autoradiographic method with population-based rate constants. Relative ROI/pons CMRglc (unitless) was also examined. With all methods, AD patients showed significant CMRglc reductions in the hippocampus and PCC, and a trend towards reduced parietotemporal CMRglc, as compared with NL. Significant k{sub 3} reductions were found in the hippocampus, PCC and amygdala. K{sub 1} reductions were restricted to the hippocampus. Relative CMRglc had the largest effect sizes in separating AD from NL. However, the magnitude of CMRglc reductions was 1.2- to 1.9-fold greater with absolute than with relative measures. CMRglc reductions are most prominent in the MTL and PCC in mild AD, as detected with both absolute and relative CMRglc measures. Results are discussed in terms of clinical and pharmaceutical applicability. (orig.)

  12. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat ... views 2:29 The resistant brain: nourishing our bodies against Alzheimer’s | Owen Carmichael | TEDxLSU - Duration: 12:17. ...

  13. Advances in Raman spectroscopy for the diagnosis of Alzheimer's disease

    Science.gov (United States)

    Sudworth, Caroline D.; Archer, John K. J.; Black, Richard A.; Mann, David

    2006-02-01

    Within the next 50 years Alzheimer's disease is expected to affect 100 million people worldwide. The progressive decline in the mental health of the patient is caused by severe brain atrophy generated by the breakdown and aggregation of proteins, resulting in β-amyloid plaques and neurofibrillary tangles. The greatest challenge to Alzheimer's disease lies in the pursuit of an early and definitive diagnosis, in order that suitable treatment can be administered. At the present time, definitive diagnosis is restricted to post-mortem examination. Alzheimer's disease also remains without a long-term cure. This research demonstrates the potential role of Raman spectroscopy, combined with principle components analysis (PCA), as a diagnostic method. Analyses of ethically approved ex vivo post-mortem brain tissues (originating from frontal and occipital lobes) from control (3 normal elderly subjects and 3 Huntingdon's disease subjects) and Alzheimer's disease (12 subjects) brain sections, and a further set of 12 blinded samples are presented. Spectra originating from these tissues are highly reproducible, and initial results indicate a vital difference in protein content and conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Further examination of these spectra using PCA allows for the separation of control from diseased tissues. The validation of the PCA models using blinded samples also displays promise for the identification of Alzheimer's disease, in conjunction with secondary information regarding other brain diseases and dementias. These results provide a route for Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.

  14. Corpus callosum atrophy in patients with mild Alzheimer's disease

    DEFF Research Database (Denmark)

    Frederiksen, Kristian Steen; Garde, Ellen; Skimminge, Arnold

    2011-01-01

    Several studies have found atrophy of the corpus callosum (CC) in patients with Alzheimer's disease (AD). However, it remains unclear whether callosal atrophy is already present in the early stages of AD, and to what extent it may be associated with other structural changes in the brain......, such as age-related white matter changes (ARWMC) and progression of the disease....

  15. Magnetoencephalography as a putative biomarker for Alzheimer's disease

    NARCIS (Netherlands)

    Zamrini, E.; Maestu, F.; Pekkonen, E.; Funke, M.; Makela, J.; Riley, M.; Bajo, R.; Sudre, G.; Fernandez, A.; Castellanos, N.; Del Pozo, F.; Stam, C.J.; van Dijk, B.W.; Bagic, A.; Becker, J.T.

    2011-01-01

    Alzheimer's Disease (AD) is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease,

  16. Zinc and platelet membrane microviscosity in Alzheimer's disease

    African Journals Online (AJOL)

    zinc in AD patients, a recent study has contradicted this ... Atthough AD is seen as a disease of the brain, there is mounting evidence that ... membrane damage in the in vitro system.tI Zinc also .... who showed that 15 AD patients receiving dietary ... Onset 01 AlzheImer's dIsease: Influence of genes and environmental factors ...

  17. A novel blood-brain barrier co-culture system for drug targeting of Alzheimer's disease: establishment by using acitretin as a model drug.

    Science.gov (United States)

    Freese, Christian; Reinhardt, Sven; Hefner, Gudrun; Unger, Ronald E; Kirkpatrick, C James; Endres, Kristina

    2014-01-01

    In the pathogenesis of Alzheimer's disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin--a synthetic retinoid-e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their

  18. Neuroimaging Measures as Endophenotypes in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Meredith N. Braskie

    2011-01-01

    Full Text Available Late onset Alzheimer's disease (AD is moderately to highly heritable. Apolipoprotein E allele ε4 (APOE4 has been replicated consistently as an AD risk factor over many studies, and recently confirmed variants in other genes such as CLU, CR1, and PICALM each increase the lifetime risk of AD. However, much of the heritability of AD remains unexplained. AD is a complex disease that is diagnosed largely through neuropsychological testing, though neuroimaging measures may be more sensitive for detecting the incipient disease stages. Difficulties in early diagnosis and variable environmental contributions to the disease can obscure genetic relationships in traditional case-control genetic studies. Neuroimaging measures may be used as endophenotypes for AD, offering a reliable, objective tool to search for possible genetic risk factors. Imaging measures might also clarify the specific mechanisms by which proposed risk factors influence the brain.

  19. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P [Nuclear Medicine Dpt, University Hospital of Larissa, Larissa (Greece); Papatriantafyllou, J; Karageorgiou, C [Neurology Dpt, General Hospital ' G. Gennimatas' , Athens (Greece); Sifakis, N; Zerva, C [Nuclear Medicine Dpt, ' Alexandra' University Hospital, Athens (Greece)], E-mail: vanvalot@yahoo.gr

    2009-05-15

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76{+-}6.51 years, education 11.81{+-}4.25 years, MMSE 16.69{+-}9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25{+-}10.48 years, education 10{+-}4.6 years, MMSE 12.5{+-}3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  20. Combustion-Derived Nanoparticles in Key Brain Target Cells and Organelles in Young Urbanites: Culprit Hidden in Plain Sight in Alzheimer's Disease Development.

    Science.gov (United States)

    González-Maciel, Angélica; Reynoso-Robles, Rafael; Torres-Jardón, Ricardo; Mukherjee, Partha S; Calderón-Garcidueñas, Lilian

    2017-01-01

    Millions of children and young adults are exposed to fine particulate matter (PM2.5) and ozone, associated with Alzheimer's disease (AD) risk. Mexico City (MC) children exhibit systemic and brain inflammation, low cerebrospinal fluid (CSF) Aβ1-42, breakdown of nasal, olfactory, alveolar-capillary, duodenal, and blood-brain barriers, volumetric and metabolic brain changes, attention and short-term memory deficits, and hallmarks of AD and Parkinson's disease. Airborne iron-rich strongly magnetic combustion-derived nanoparticles (CDNPs) are present in young urbanites' brains. Using transmission electron microscopy, we documented CDNPs in neurons, glia, choroid plexus, and neurovascular units of young MC residents versus matched clean air controls. CDNPs are associated with pathology in mitochondria, endoplasmic reticulum (ER), mitochondria-ER contacts (MERCs), axons,and dendrites. There is a significant difference in size and numbers between spherical CDNPs (>85%) and the angular, euhedral endogenous NPs (<15%). Spherical CDNPs (dogs 21.2±7.1 nm in diameter versus humans 29.1±11.2 nm, p = 0.002) are present in neurons, glia, choroid plexus, endothelium, nasal and olfactory epithelium, and in CSF at significantly higher in numbers in MC residents (p < 0.0001). Degenerated MERCs, abnormal mitochondria, and dilated ER are widespread, and CDNPs in close contact with neurofilaments, glial fibers, and chromatin are a potential source for altered microtubule dynamics, mitochondrial dysfunction, accumulation and aggregation of unfolded proteins, abnormal endosomal systems, altered insulin signaling, calcium homeostasis, apoptotic signaling, autophagy, and epigenetic changes. Highly oxidative, ubiquitous CDNPs constitute a novel path into AD pathogenesis. Exposed children and young adults need early neuroprotection and multidisciplinary prevention efforts to modify the course of AD at early stages.

  1. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  2. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Prevention Program: Keep Your Brain Healthy for the Rest of Your Life - Duration: 57:30. University of ... more suggestions... Show more Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... ...

  3. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... people without Alzheimer's — a rate twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty- ... IL 60601 Alzheimer's Association is a not-for-profit 501(c)(3) organization. Copyright © 2018 Alzheimer's Association ® . ...

  4. Effect and mechanism of acupuncture on Alzheimer's disease.

    Science.gov (United States)

    Zeng, Bai-Yun; Salvage, Sarah; Jenner, Peter

    2013-01-01

    Alzheimer's disease is the most common form of dementia diagnosed in the aging population worldwide. The cause of Alzheimer's is still not clear. There is no cure for the disease and current treatments are only symptomatic relieve. The search for new treatment is made ever more urgent due to increasing population aging. Acupuncture has been in practice in China for more than 3000 years and used to treat a wide variety of conditions including cardiovascular and psychiatric diseases, acute, and chronic pain. In this chapter, we review recent development on the effects and mechanisms of acupuncture on Alzheimer's disease. In Alzheimer's animal models, acupuncture stimulation at acupoints enhances cholinergic neurotransmission, trophic factor releasing, reduces apoptotic and oxidative damages, improves synaptic plasticity and decreases the levels of Aβ proteins in the hippocampus and relevant brain regions. The biochemical modulations by acupuncture in the brains of Alzheimer's models are correlated with the cognitive improvement. In Alzheimer's patients, functional brain images demonstrated that acupuncture increased in the activity in the temporal lobe and prefrontal lobe which are related to the memory and cognitive function. Although only a few acupuncture clinical studies with a small number of participants are reported, they represent an important step forward in the research of both acupuncture and Alzheimer's. Translation of acupuncture research in animal model studies into the human subjects will undoubtedly enhance acupuncture efficacy in clinical study and treatment which could eventually lead to a safer, well-tolerated and inexpensive form of care for Alzheimer's patients. © 2013 Elsevier Inc. All rights reserved.

  5. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer's disease therapeutics.

    Science.gov (United States)

    de la Monte, Suzanne M

    Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol . 2011 Sep 12. Alzheimer's disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer's, subsequent neurodegeneration might be prevented. Administering systemic insulin to elderly non-diabetics poses unacceptable risks of inadvertant hypoglycemia. However, intranasal delivery directs the insulin into the brain, avoiding systemic side-effects. This pilot study demonstrates both efficacy and safety of using intranasal insulin to treat early Alzheimer's and mild cognitive impairment, i.e. the precursor to Alzheimer's. Significant improvements in learning, memory, and cognition occured within a few months, but without intranasal insulin, brain function continued to deteriorate in measurable degrees. Intranasal insulin therapy holds promise for halting progression of Alzheimer's disease.

  6. Costs of Alzheimer's disease (in Dutch); A study of the most important cost items of patients with Alzheimer's disease in the Netherlands and in France

    NARCIS (Netherlands)

    N. van der Roer; J.J. van Busschbach (Jan); E.S. Goes; L. van Hakkaart-van Roijen (Leona)

    2001-01-01

    textabstractThe most frequently occurring type of dementia is Alzheimer's disease. Alzheimer's disease is a degenerative illness affecting the brain, decreasing the patient's memory and judgement. A cure is not available but it is possible to delay the cognitive decline with medication. New drugs

  7. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

    Directory of Open Access Journals (Sweden)

    McNamara Laurie K

    2007-09-01

    Full Text Available Abstract Background An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD. This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. Methods A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. Results A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM was developed. Oral administration of the compound at a low dose (2.5 mg/kg resulted in attenuation of

  8. Mathematical model on Alzheimer's disease.

    Science.gov (United States)

    Hao, Wenrui; Friedman, Avner

    2016-11-18

    Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer's patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually. The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials. Based on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.

  9. Towards an All-Polymer Biosensor for Early Alzheimer's Disease

    DEFF Research Database (Denmark)

    Christiansen, Nikolaj Ormstrup; Heegaard, Niels

    Alzheimer's disease (AD) is quickly evolving into one of the biggest and most costly health issues in Europe and the United States. AD is a protein misfolding disease, caused by accumulation of abnormally folded β-amyloid and tau protein in the brain. The build-up of protein is believed...... to degenerate the brain tissue literally shrinking the brain. This slowly destroys function of these parts of the brain. It has been discovered that the concentration of A42 in cerebrospinal fluid (CSF) is a biomarker for this disease. It is therefor of great interest to develop quick and low cost methods...

  10. Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis.

    Science.gov (United States)

    2017-02-01

    This article updates the Calcium Hypothesis of Alzheimer's disease and brain aging on the basis of emerging evidence since 1994 (The present article, with the subtitle "New evidence for a central role of Ca 2+ in neurodegeneration," includes three appendices that provide context and further explanations for the rationale for the revisions in the updated hypothesis-the three appendices are as follows: Appendix I "Emerging concepts on potential pathogenic roles of [Ca 2+ ]," Appendix II "Future studies to validate the central role of dysregulated [Ca 2+ ] in neurodegeneration," and Appendix III "Epilogue: towards a comprehensive hypothesis.") (Marx J. Fresh evidence points to an old suspect: calcium. Science 2007; 318:384-385). The aim is not only to re-evaluate the original key claims of the hypothesis with a critical eye but also to identify gaps in knowledge required to validate relevant claims and delineate additional studies and/or data that are needed. Some of the key challenges for this effort included examination of questions regarding (1) the temporal and spatial relationships of molecular mechanisms that regulate neuronal calcium ion (Ca 2+ ), (2) the role of changes in concentration of calcium ion [Ca 2+ ] in various subcellular compartments of neurons, (3) how alterations in Ca 2+ signaling affect the performance of neurons under various conditions, ranging from optimal functioning in a healthy state to conditions of decline and deterioration in performance during aging and in disease, and (4) new ideas about the contributions of aging, genetic, and environmental factors to the causal relationships between dysregulation of [Ca 2+ ] and the functioning of neurons (see Appendices I and II). The updated Calcium Hypothesis also includes revised postulates that are intended to promote further crucial experiments to confirm or reject the various predictions of the hypothesis (see Appendix III). Copyright © 2016 the Alzheimer's Association. All rights reserved.

  11. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Caroli, Anna; Salvatore, Elena; Nicolai, Emanuele; Marzano, Nicola; Lizio, Roberta; Cavedo, Enrica; Landau, Susan; Chen, Kewei; Jagust, William; Reiman, Eric; Tedeschi, Gioacchino; Montella, Patrizia; De Stefano, Manuela; Gesualdo, Loreto; Frisoni, Giovanni B; Soricelli, Andrea

    2016-12-01

    Cortical sources of resting state electroencephalographic (EEG) delta (2-4 Hz) and low-frequency alpha (8-10.5 Hz) rhythms show abnormal activity (i.e., current density) in patients with dementia due to Alzheimer's disease (AD). Here, we hypothesized that abnormality of this activity is related to relevant disease processes as revealed by cortical hypometabolism typically observed in AD patients by fluorodeoxyglucose positron emission tomography. Resting state eyes-closed EEG data were recorded in 19 AD patients with dementia and 40 healthy elderly (Nold) subjects. EEG frequency bands of interest were delta and low-frequency alpha. EEG sources were estimated in these bands by low-resolution brain electromagnetic tomography (LORETA). Fluorodeoxyglucose positron emission tomography images were recorded only in the AD patients, and cortical hypometabolism was indexed by the so-called Alzheimer's discrimination analysis tool (PALZ) in the frontal association, ventromedial frontal, temporoparietal association, posterior cingulate, and precuneus areas. Results showed that compared with the Nold group, the AD group pointed to higher activity of delta sources and lower activity of low-frequency alpha sources in a cortical region of interest formed by all cortical areas of the PALZ score. In the AD patients, there was a positive correlation between the PALZ score and the activity of delta sources in the cortical region of interest (p < 0.05). These results suggest a relationship between resting state cortical hypometabolism and synchronization of cortical neurons at delta rhythms in AD patients with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Caregiving for Alzheimer's Disease or Other Dementia

    Science.gov (United States)

    ... What's this? Submit Button Caregiving for Person with Alzheimer's Disease or a related Dementia Recommend on Facebook Tweet Share Compartir What is Alzheimer’s Disease? Alzheimer’s disease is the most common form ...

  13. [Antibody therapy for Alzheimer's disease].

    Science.gov (United States)

    Tabira, Takeshi; Matsumoto, Shin-Ei; Jin, Haifeng

    2011-11-01

    In order to avoid Abeta-induced autoimmune encephalitis, several monoclonal and polyclonal antibodies are in clinical trials. These are bapineuzumab, solanezumab, ponezumab, gantenerumab, BAN2401, gammaguard and octagam. Since each antibody has a different antigen epitope of Abeta, anti-amyloid activities are different. It is unknown which antibody is effective for Alzheimer disease, and we must wait for the result of clinical trials. Some patients who developed tissue amyloid plaque immuno-reactive (TAPIR) antibody showed slower decline after AN-1792 vaccination. We developed TAPIR-like monoclonal antibody, which was found to react with Abeta oligomers preferentially.

  14. Alzheimer's disease prevention: A way forward.

    Science.gov (United States)

    Bermejo-Pareja, F; Llamas-Velasco, S; Villarejo-Galende, A

    2016-12-01

    This review proposes a more optimistic view of Alzheimer's disease (AD), in contrast to that contributed by the ageing of the population and the failure of potentially curative therapies (vaccines and others). Treatment failure is likely due to the fact that AD gestates in the brain for decades but manifests in old age. This review updates the concept of AD and presents the results of recent studies that show that primary prevention can reduce the incidence and delay the onset of the disease. Half of all cases of AD are potentially preventable through education, the control of cardiovascular risk factors, the promotion of healthy lifestyles and specific drug treatments. These approaches could substantially reduce the future incidence rate of this disease. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  15. Angiotensins in Alzheimer's disease - friend or foe?

    Science.gov (United States)

    Kehoe, Patrick G; Miners, Scott; Love, Seth

    2009-12-01

    The renin-angiotensin system (RAS) is an important regulator of blood pressure. Observational and experimental studies suggest that alterations in blood pressure and components of the brain RAS contribute to the development and progression of Alzheimer's disease (AD), resulting in changes that can lead or contribute to cognitive decline. The complexity of the RAS and diversity of its interactions with neurological processes have recently become apparent but large gaps in our understanding still remain. Modulation of activity of components of the brain RAS offers substantial opportunities for the treatment and prevention of dementia, including AD. This paper reviews molecular, genetic, experimental and clinical data as well as the therapeutic opportunities that relate to the involvement of the RAS in AD.

  16. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer's disease management: preparation and detection in rat brain.

    Science.gov (United States)

    Hanafy, Amira S; Farid, Ragwa M; ElGamal, Safaa S

    2015-01-01

    Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer's disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined. Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25 °C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1 h after administration using fluorescence microscopy and software-aided image processing. Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190 nm, and a zeta potential of +40.4 and +31.6 mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07% ± 6.67 after 72 h), improved formulation stability at 4 °C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p > 0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices. Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully

  17. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on Aug 23, 2017 This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat ...

  18. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. ... Journey 179,203 views 2:20 The most important lesson from 83,000 brain scans | Daniel Amen | ...

  19. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 760 views 2:20 Classical Music for Brain Power - Mozart Effect - Duration: 2:23:55. HALIDONMUSIC 13, ... 10 HEAL while you SLEEP ~ With this UNBELIEVABLE POWER - Duration: 2:13:43. Dauchsy 5,931,363 ...

  20. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... 965,607 views 54:55 The most important lesson from 83,000 brain scans | Daniel Amen | TEDxOrangeCoast - ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  1. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... available when the video has been rented. This feature is not available right now. Please try again later. Published on Aug 23, 2017 This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat ...

  2. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on Aug 23, 2017 This 4-minute video shows how Alzheimer’s affects the human brain and looks at promising ideas to treat and ...

  3. Understanding Alzheimer's

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  4. Comparative value of brain perfusion SPECT and [{sup 123}I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Shimizu, Soichiro; Hirao, Kentaro; Kanetaka, Hidekazu; Iwamoto, Toshihiko [Tokyo Medical University, Department of Geriatric Medicine, Tokyo (Japan); Chikamori, Taishiro; Usui, Yasuhiro; Yamashina, Akira [Tokyo Medical University, 2. Department of Internal Medicine, Tokyo (Japan); Koizumi, Kiyoshi; Abe, Kimihiko [Tokyo Medical University, Department of Radiology, Tokyo (Japan)

    2006-03-15

    Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer's disease (AD). The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[{sup 123}I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections. Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT. MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT. (orig.)

  5. Comparative value of brain perfusion SPECT and [123I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer's disease

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Shimizu, Soichiro; Hirao, Kentaro; Kanetaka, Hidekazu; Iwamoto, Toshihiko; Chikamori, Taishiro; Usui, Yasuhiro; Yamashina, Akira; Koizumi, Kiyoshi; Abe, Kimihiko

    2006-01-01

    Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac 123 I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer's disease (AD). The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[ 123 I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections. Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT. MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT. (orig.)

  6. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    Science.gov (United States)

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  7. Time to Amyloid Positivity and Preclinical Changes in Brain Metabolism, Atrophy, and Cognition: Evidence for Emerging Amyloid Pathology in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philip S. Insel

    2017-05-01

    Full Text Available Background: Aβ pathology is associated with longitudinal changes of brain metabolism, atrophy, and cognition, in cognitively healthy elders. However, Aβ information is usually measured cross-sectionally and dichotomized to classify subjects as Aβ-positive or Aβ-negative, making it difficult to evaluate when brain and cognitive changes occur with respect to emerging Aβ pathology. In this study, we use longitudinal Aβ information to combine the level and rate of change of Aβ to estimate the time to Aβ-positivity for each subject and test this temporal proximity to significant Aβ pathology for associations with brain structure, metabolism, and cognition.Methods: In 89 cognitively healthy elders with up to 10 years of follow-up, we estimated the points at which rates of fluorodeoxyglucose (FDG PET, MRI, and cognitive and functional decline begin to accelerate with respect to the time to Aβ-positivity. Points of initial acceleration in rates of decline were estimated using mixed-effects models with penalized regression splines.Results: Acceleration of rates of FDG PET were observed to occur 20+ years before the conventional threshold for Aβ-positivity. Subtle signs of cognitive dysfunction were observed 10+ years before Aβ-positivity.Conclusions: Aβ may have subtle associations with other hallmarks of Alzheimer's disease before Aβ biomarkers reach conventional thresholds for Aβ-positivity. Therefore, we propose that emerging Aβ pathology occurs many years before cognitively healthy elders reach the current threshold for Aβ positivity (preclinical AD. To allow prevention in the earliest disease stages, AD clinical trials may be designed to also include subjects with Aβ biomarkers in the sub-threshold range.

  8. Estrogen and early-onset Alzheimer's disease

    NARCIS (Netherlands)

    A.J.C. Slooter (Arjen); J.B. Bronzova (Juliana); A. Hofman (Albert); C. van Broeckhoven (Christine); C.M. van Duijn (Cornelia); J.C.M. Witteman (Jacqueline)

    1999-01-01

    textabstractEstrogen use may be protective for Alzheimer's disease with late onset. However, the effects on early onset Alzheimer's disease are unclear. This issue was studied in a population based setting. For each female patient, a female control was matched on age (within 5 years) and place of

  9. Turning principles into practice in Alzheimer's disease

    NARCIS (Netherlands)

    Lindesay, J.; Bullock, R.; Daniels, H.; Emre, M.; Foerstl, H.; Froelich, L.; Gabryelewicz, T.; Martinez-Lage, P.; Monsch, A. U.; Tsolaki, M.; van Laar, T.

    P>The prevalence of dementia is reaching epidemic proportions globally, but there remain a number of issues that prevent people with dementia, their families and caregivers, from taking control of their condition. In 2008, Alzheimer's Disease International (ADI) launched a Global Alzheimer's Disease

  10. Individualized quantification of brain β-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls

    International Nuclear Information System (INIS)

    Barthel, Henryk; Luthardt, Julia; Becker, Georg; Patt, Marianne; Sattler, Bernhard; Schildan, Andreas; Hesse, Swen; Meyer, Philipp M.; Sabri, Osama; Hammerstein, Eva; Hartwig, Kristin; Gertz, Hermann-Josef; Eggers, Birk; Wolf, Henrike; Zimmermann, Torsten; Reischl, Joachim; Rohde, Beate; Reininger, Cornelia

    2011-01-01

    Complementing clinical findings with those generated by biomarkers - such as β-amyloid-targeted positron emission tomography (PET) imaging - has been proposed as a means of increasing overall accuracy in the diagnosis of Alzheimer's disease (AD). Florbetaben ([ 18 F]BAY 94-9172) is a novel β-amyloid PET tracer currently in global clinical development. We present the results of a proof of mechanism study in which the diagnostic efficacy, pharmacokinetics, safety and tolerability of florbetaben were assessed. The value of various quantitative parameters derived from the PET scans as potential surrogate markers of cognitive decline was also investigated. Ten patients with mild-moderate probable AD (DSM-IV and NINCDS-ADRDA criteria) and ten age-matched (≥ 55 years) healthy controls (HCs) were administered a single dose of 300 MBq florbetaben, which contained a tracer mass dose of < 5 μg. The 70-90 min post-injection brain PET data were visually analysed by three blinded experts. Quantitative assessment was also performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of standardized uptake value (SUV) ratios (SUVRs, cerebellar cortex as reference region). Furthermore, single-case, voxelwise analysis was used to calculate individual ''whole brain β-amyloid load''. Visual analysis of the PET data revealed nine of the ten AD, but only one of the ten HC brains to be β-amyloid positive (p = 0.001), with high inter-reader agreement (weighted kappa ≥ 0.88). When compared to HCs, the neocortical SUVRs were significantly higher in the ADs (with descending order of effect size) in frontal cortex, lateral temporal cortex, occipital cortex, anterior and posterior cingulate cortices, and parietal cortex (p = 0.003-0.010). Voxel-based group comparison confirmed these differences. Amongst the PET-derived parameters, the Statistical Parametric Mapping-based whole brain β-amyloid load yielded the closest correlation with

  11. No change in total length of white matter fibers in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jorgensen, A.M.; Marner, L.; Pakkenberg, B.

    2008-01-01

    White matter changes have been reported as part of Alzheimer dementia. To investigate this, the total subcortical myelinated nerve fiber length was estimated in postmortem brains from eight females (age 79-88 years) with severe Alzheimer's disease (AD) and compared with brains from 10 female...

  12. Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Hopperton, Kathryn E; Trépanier, Marc-Olivier; James, Nicholas C E; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-03-01

    Neuroinflammation is a recognized hallmark of Alzheimer's disease, along with accumulation of amyloid-β plaques, neurofibrillary tangles and synaptic loss. n-3 polyunsaturated fatty acids (PUFA) and molecules derived from them, including eicosapentaenoic acid-derived eicosanoids and docosahexaenoic acid-derived docosanoids, are known to have both anti-inflammatory and pro-resolving properties, while human observational data links consumption of these fatty acids to a decreased risk of Alzheimer's disease. Few studies have examined the neuroinflammation-modulating effects of n-3 PUFA feeding in an Alzheimer's disease-related model, and none have investigated whether these effects are mediated by changes in brain eicosanoids and docosanoids. Here, we use both a fat-1 transgenic mouse and a fish oil feeding model to study the impact of increasing tissue n-3 PUFA on neuroinflammation and the production of pro-inflammatory and pro-resolving lipid mediators. Fat-1 mice, transgenic animals that can convert n-6 to n-3 PUFA, and their wildtype littermates were fed diets containing either fish oil (high n-3 PUFA) or safflower oil (negligible n-3 PUFA) from weaning to 12 weeks. Animals then underwent intracerebroventricular infusion of either amyloid-β 1-40 or a control peptide. Hippocampi were collected from non-surgery and surgery animals 10 days after infusion. Microarray was used to measure enrichment of inflammation-associated gene categories and expression of genes involved in the synthesis of lipid mediators. Results were validated by real-time PCR in a separate cohort of animals. Lipid mediators were measured via liquid chromatography tandem mass spectrometry. Fat-1 and wildtype mice fed fish oil had higher total hippocampal DHA than wildtype mice fed the safflower oil diet. The safflower-fed mice, but not the fat-1 or fish oil-fed mice, had significantly increased expression in gene ontology categories associated with inflammation in response to amyloid

  13. Analysis of Regional Cerebral Blood Flow Using 99mTc-HMPAO Brain SPECT in Senile Dementia of Alzheimer Type

    International Nuclear Information System (INIS)

    Lee, Myung Hae; Lee, Myung Chul; Koh, Chang Soon; Roh, Jae Kyu; Woo, Chong In

    1988-01-01

    99m Tc-HMPAO brain SPECT studies were performed in 11 patients with Alzheimer's disease, 7 patients with psychological depression and 12 normal controls. Changes of regional cerebral blood flow was semiquantitatively analyzed and the results were as follows. 1) In 11 patients with Alzheimer's disease, significant reduction of regional cerebral blood flow was found In both temporoparietal areas. 2) Relative perfusion between cerebral hemispheres was rather symmetrical in patient with Alzheimer's disease. 3) All patients with depression showed normal SPECT findings. As for conclusion, 99m Tc-HMPAO brain SPECT seemed to be a valuable method for clinical assessment and management of patients with Alzheimer's disease.

  14. The fitness for the Ageing Brain Study II (FABS II: protocol for a randomized controlled clinical trial evaluating the effect of physical activity on cognitive function in patients with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ames David

    2010-12-01

    Full Text Available Abstract Background Observational studies have documented a potential protective effect of physical exercise in older adults who are at risk for developing Alzheimer's disease. The Fitness for the Ageing Brain II (FABS II study is a multicentre randomized controlled clinical trial (RCT aiming to determine whether physical activity reduces the rate of cognitive decline among individuals with Alzheimer's disease. This paper describes the background, objectives of the study, and an overview of the protocol including design, organization and data collection methods. Methods/Design The study will recruit 230 community-dwelling participants diagnosed with Alzheimer's disease. Participants will be randomly allocated to two treatment groups: usual care group or 24-week home-based program consisting of 150 minutes per week of tailored moderate physical activity. The primary outcome measure of the study is cognitive decline as measured by the change from baseline in the total score on the Alzheimer's disease Assessment Scale-Cognitive section. Secondary outcomes of interest include behavioral and psychological symptoms, quality of life, functional level, carer burden and physical function (strength, balance, endurance, physical activity. Primary endpoints will be measured at six and twelve months following the baseline assessment. Discussion This RCT will contribute evidence regarding the potential benefits of a systematic program of physical activity as an affordable and safe intervention for people with Alzheimer's disease. Further, if successful, physical activity in combination with usual care has the potential to alleviate the symptoms of Alzheimer's disease and improve its management and the quality of life of patients and their carers. Trial Registration Australia New Zealand Clinical Trials Registry ACTRN12609000755235

  15. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    OpenAIRE

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  16. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... were diagnosed in the mild cognitive impairment (MCI) stage — before dementia — it would collectively save $7 trillion ... symptoms What is dementia What is Alzheimer's 7 stages of Alzheimer's Treatments Contact us 24/7 Helpline: ...

  17. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... and privacy policy . Plan ahead Get help and support I have Alzheimer's I am a caregiver I ... world's leading voluntary health organization in Alzheimer's care, support and research.

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... and social benefits and facilitating participation in important clinical trials, early diagnosis enables ... in Alzheimer's treatments, care and research. Get tips for living with Alzheimer's as well ...

  19. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... age 65 and older and approximately 200,000 individuals under age 65 who have younger-onset Alzheimer's. ... of health care and long-term care for individuals with Alzheimer's or other dementias are substantial. Dementia ...

  20. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... state. Read past editions . Sign up for our e-newsletter Stay up-to-date on the latest ... Alzheimer's. First name: Last name: *Email: *Zip: Weekly E-Newsletter Breaking Research Updates The Alzheimer's Association does ...

  1. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... SPECIAL REPORT: FINANCIAL AND PERSONAL BENEFITS OF EARLY DIAGNOSIS Early diagnosis of Alzheimer's provides a number of ... is a not-for-profit 501(c)(3) organization. Copyright © 2018 Alzheimer's Association ® . All rights reserved. Our ...

  2. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... ACTION > Read past editions . Sign up for our e-newsletter Stay up-to-date on the latest ... Alzheimer's. First name: Last name: *Email: *Zip: Weekly E-Newsletter Breaking Research Updates The Alzheimer's Association does ...

  3. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... This number includes an estimated 5.5 million people age 65 and older and approximately 200,000 ... who have younger-onset Alzheimer's. One in 10 people age 65 and older (10 percent) has Alzheimer's ...

  4. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... care. Caring for someone with Alzheimer's? Get Resources Cost to Nation Alzheimer's places a huge burden on the health care system, with annual costs exceeding a quarter of a trillion dollars. In ...

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Share the facts: Quick Facts Prevalence Mortality Caregivers Cost Special Report Alzheimer's in each state Quick Facts Share the facts: Prevalence The number of Americans living with Alzheimer's is growing — and growing fast. An ...

  6. Memantine Attenuates Alzheimer's Disease-Like Pathology and Cognitive Impairment.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Wang

    Full Text Available Deficiency of protein phosphatase-2A is a key event in Alzheimer's disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer's disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer's disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer's disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer's disease patients.

  7. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... ideas to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  8. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less ... Language: English Location: United States Restricted Mode: Off History Help Loading... Loading... Loading... About Press Copyright Creators ...

  9. Visual system manifestations of Alzheimer's disease.

    Science.gov (United States)

    Kusne, Yael; Wolf, Andrew B; Townley, Kate; Conway, Mandi; Peyman, Gholam A

    2017-12-01

    Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Neuropathological Alterations in Alzheimer Disease

    Science.gov (United States)

    Serrano-Pozo, Alberto; Frosch, Matthew P.; Masliah, Eliezer; Hyman, Bradley T.

    2011-01-01

    The neuropathological hallmarks of Alzheimer disease (AD) include “positive” lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and “negative” lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between “normal” aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI. PMID:22229116

  11. [Alzheimer's disease: New therapeutic strategies].

    Science.gov (United States)

    Villegas, Sandra

    2015-07-20

    The rapid increase in prevalence rates of Alzheimer's disease means that treatments to prevent, stop or reverse this devastating disease are urgently needed. Despite advances in understanding its molecular pathology, there are no drugs that can halt its progression. This review takes a tour through phase 2, or higher studies, probing receptor agonist agents interfering with aggregation, inhibitors/modulators of secretases, lipid-lowering agents, and, finally and most extensively, immunotherapy. The fact that phase 3 studies with bapineuzumab and solaneuzumab have recently failed does not invalidate the potential of immunotherapy, as more information is available and new clinical trials are being initiated. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  12. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  13. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen T., Jesper; Arvaniti, Maria

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus...

  14. Neural activities during affective processing in people with Alzheimer's disease

    NARCIS (Netherlands)

    Lee, Tatia M. C.; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to

  15. Neuropeptides in Alzheimer's Disease : From Pathophysiological Mechanisms to Therapeutic Opportunities

    NARCIS (Netherlands)

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul

    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition

  16. Diminished neuronal metabolic activity in Alzheimer's disease. Review article

    NARCIS (Netherlands)

    Salehi, A.; Swaab, D. F.

    1999-01-01

    An increasing number of studies have appeared in the literature suggesting that Alzheimer's disease (AD) is a hypometabolic brain disorder. Decreased metabolism in AD has been revealed by a variety of in vivo and postmortem methods and techniques including positron emission tomography and glucose

  17. Cerebrospinal Fluid Biomarkers in Diagnosing Alzheimer's Disease in Clinical Practice

    DEFF Research Database (Denmark)

    Slats, Diane; Spies, Petra E; Sjögren, Magnus J C

    2010-01-01

    Analysis of the brain specific biomarkers amyloid beta(42) (Abeta(42)) and total tau (t-tau) protein in cerebrospinal fluid (CSF) has a sensitivity and specificity of more than 85% for differentiating Alzheimer's Disease (AD) from non-demented controls. International guidelines are contradictory...

  18. Assessment of degradation of the selected projectile, commissural and association brain fibers in patients with Alzheimers disease on diffusion tensor MR imaging

    International Nuclear Information System (INIS)

    Szewczyk, P.; Zimny, A.; Sasiadek, M.; Trypka, E.; Wojtynska, R.; Leszek, J.

    2010-01-01

    Background: Pathological examinations and the increasingly popular diffusion tensor imaging (DTI) show that in Alzheimers disease (AD), the pathology involves not only the cortical and hippocampal structures, but also the white matter of the brain. DTI is a well recognized technique for evaluation of the integrity of white matter fibers. The aim of this study was to assess with the use of DTI some selected brain tracts in patients with AD, as well as to analyze the severity and distribution of the identified changes. Material/Methods: Thirty-five patients with AD (mean age of 71.6 years, MMSE 17.6), and a control group of 15 healthy volunteers (mean age of 69.1 years, MMSE 29.8) were enrolled in the study. All patients were subjected to a thorough psychiatric examination and psychological tests. DTI examinations (TE 8500, TR 100) were performed using a 1.5 T MR scanner. Fractional anisotropy (FA) measurements in the selected areas of interest (ROI) of the white matter fibers were performed under the control of color FA maps. The following fibers were evaluated - the middle cerebellar peduncles (MCP), the inferior longitudinal fasciculi (ILF), inferior frontooccipital fasciculi (IFO), genu (GCC) and splenium of the corpus callosum (SCC), posterior limbs of internal capsules (PLIC), superior longitudinal fasciculi (SLF) and posterior cingula (CG). Results: There was a statistically significant decrease in FA in patients with AD, comparing to the control group. It was particularly strongly expressed in both CG (P < 0.0001), followed by both ILF, right IFO, and left SLF. Less pronounced changes were found in GCC, SCC, and left IFO. In both PLICs and MCPs and in the right SLF, there was no significant change of FA. Conclusions: In Alzheimers disease, there is a significant decrease in FA, which suggests degradation of the majority of the assessed white matter tracts. Distribution of these changes is not uniform. They involve the selected association fibers mainly and

  19. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... date on the latest news and advances in Alzheimer's treatments, care and research. Get tips for living with ... is dementia What is Alzheimer's 7 stages of Alzheimer's Treatments Contact us 24/7 Helpline: 1-800-272- ...

  20. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Claudio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); Chiaravalloti, Agostino; Schillaci, Orazio [University of Rome ' Tor Vergata' , Department of Biomedicine and Prevention, Rome (Italy); IRCSS Neuromed, Pozzilli (Italy); Sancesario, Giuseppe; Stefani, Alessandro [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Sancesario, Giulia Maria [IRCCS Fondazione Santa Lucia, Rome (Italy); Mercuri, Nicola Biagio [University of Rome ' ' Tor Vergata' ' , Neurophysiopathology Unit, Department of Systems Medicine, Rome (Italy); University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy); IRCCS Fondazione Santa Lucia, Rome (Italy); Pierantozzi, Mariangela [University of Rome ' ' Tor Vergata' ' , Neurology Unit, Department of Systems Medicine, Rome (Italy)

    2016-10-15

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  1. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease

    International Nuclear Information System (INIS)

    Liguori, Claudio; Chiaravalloti, Agostino; Schillaci, Orazio; Sancesario, Giuseppe; Stefani, Alessandro; Sancesario, Giulia Maria; Mercuri, Nicola Biagio; Pierantozzi, Mariangela

    2016-01-01

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in impairing

  2. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)].

    Science.gov (United States)

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles

    2012-09-01

    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Astrocytes in physiological aging and Alzheimer's disease.

    Science.gov (United States)

    Rodríguez-Arellano, J J; Parpura, V; Zorec, R; Verkhratsky, A

    2016-05-26

    Astrocytes are fundamental for homoeostasis, defence and regeneration of the central nervous system. Loss of astroglial function and astroglial reactivity contributes to the aging of the brain and to neurodegenerative diseases. Changes in astroglia in aging and neurodegeneration are highly heterogeneous and region-specific. In animal models of Alzheimer's disease (AD) astrocytes undergo degeneration and atrophy at the early stages of pathological progression, which possibly may alter the homeostatic reserve of the brain and contribute to early cognitive deficits. At later stages of AD reactive astrocytes are associated with neurite plaques, the feature commonly found in animal models and in human diseased tissue. In animal models of the AD reactive astrogliosis develops in some (e.g. in the hippocampus) but not in all regions of the brain. For instance, in entorhinal and prefrontal cortices astrocytes do not mount gliotic response to emerging β-amyloid deposits. These deficits in reactivity coincide with higher vulnerability of these regions to AD-type pathology. Astroglial morphology and function can be regulated through environmental stimulation and/or medication suggesting that astrocytes can be regarded as a target for therapies aimed at the prevention and cure of neurodegenerative disorders. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Language impairment in Alzheimer's disease and benefits of acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Ferris SH

    2013-08-01

    Full Text Available Steven H Ferris,1 Martin Farlow21Alzheimer's Disease Center, Comprehensive Center on Brain Aging, New York University Langone Medical Center, New York, NY, 2Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USAAbstract: Alzheimer's disease is characterized by progressively worsening deficits in several cognitive domains, including language. Language impairment in Alzheimer's disease primarily occurs because of decline in semantic and pragmatic levels of language processing. Given the centrality of language to cognitive function, a number of language-specific scales have been developed to assess language deficits throughout progression of the disease and to evaluate the effects of pharmacotherapy on language function. Trials of acetylcholinesterase inhibitors, used for the treatment of clinical symptoms of Alzheimer's disease, have generally focused on overall cognitive effects. However, in the current report, we review data indicating specific beneficial effects of acetylcholinesterase inhibitors on language abilities in patients with Alzheimer’s disease, with a particular focus on outcomes among patients in the moderate and severe disease stages, during which communication is at risk and preservation is particularly important.Keywords: Alzheimer's disease, donepezil, cognition, language, communication, clinical trials

  5. Serotonin 6 receptor controls alzheimer?s disease and depression

    OpenAIRE

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-01-01

    Alzheimer?s disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of A? via the inhibition of ?-secretase activity and the inact...

  6. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer's disease brain, serum and cerebrospinal fluid towards potential biomarker discovery.

    Science.gov (United States)

    Gizaw, Solomon T; Ohashi, Tetsu; Tanaka, Masakazu; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2016-08-01

    Understanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers. We designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF). The structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups. Alteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols. The changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal

  7. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less Loading... Autoplay When ... Loading... Loading... About Press Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new ...

  8. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less ... YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... Working... Sign in to add this ...

  9. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... to treat and prevent the disease. Category Science & Technology License Standard YouTube License Show more Show less ... About Press Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Test new features Loading... ...

  10. How Alzheimer's Changes the Brain

    Medline Plus

    Full Text Available ... YouTube. Uninterrupted. Loading... Want music and videos with zero ads? Get YouTube Red. Working... Not now Try ... Reversing Alzheimer’s Disease- Dr. Dale Bredesen, MD - Duration: 1:13:27. Silicon Valley Health Institute 102,295 ...

  11. Genetic Aspects of Alzheimer Disease

    Science.gov (United States)

    Williamson, Jennifer; Goldman, Jill; Marder, Karen S.

    2011-01-01

    Background Alzheimer disease (AD) is a genetically complex disorder. Mutations in 3 genes, presenilin 1, amyloid precursor protein, and presenilin 2, lead to early-onset familial AD in rare families with onset of disease occurring prior to age 65. Specific polymorphisms in apolipoprotein E are associated with the more common, late-onset AD occurring after age 65. In this review, we discuss current advances in AD genetics, the implications of the known AD genes, presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E, and other possible genes on the clinical diagnosis, treatment, and genetic counseling of patients and families with early- and late-onset AD. Review Summary In addition to the mutations in 4 known genes associated with AD, mutations in other genes may be implicated in the pathogenesis of the disease. Most recently, 2 different research groups have reported genetic association between 2 genes, sortilin-related receptor and GAB2, and AD. These associations have not changed the diagnostic and medical management of AD. Conclusions New research in the genetics of AD have implicated novel genes as having a role in the disease, but these findings have not been replicated nor have specific disease causing mutations been identified. To date, clinical genetic testing is limited to familial early-onset disease for symptomatic individuals and asymptomatic relatives and, although not recommended, amyloid precursor protein apolipoprotein E testing as an adjunct to diagnosis of symptomatic individuals. PMID:19276785

  12. Disease-modifying drugs in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ghezzi L

    2013-12-01

    Full Text Available Laura Ghezzi, Elio Scarpini, Daniela Galimberti Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy Abstract: Alzheimer's disease (AD is an age-dependent neurodegenerative disorder and the most common cause of dementia. The early stages of AD are characterized by short-term memory loss. Once the disease progresses, patients experience difficulties in sense of direction, oral communication, calculation, ability to learn, and cognitive thinking. The median duration of the disease is 10 years. The pathology is characterized by deposition of amyloid beta peptide (so-called senile plaques and tau protein in the form of neurofibrillary tangles. Currently, two classes of drugs are licensed by the European Medicines Agency for the treatment of AD, ie, acetylcholinesterase inhibitors for mild to moderate AD, and memantine, an N-methyl-D-aspartate receptor antagonist, for moderate and severe AD. Treatment with acetylcholinesterase inhibitors or memantine aims at slowing progression and controlling symptoms, whereas drugs under development are intended to modify the pathologic steps leading to AD. Herein, we review the clinical features, pharmacologic properties, and cost-effectiveness of the available acetylcholinesterase inhibitors and memantine, and focus on disease-modifying drugs aiming to interfere with the amyloid beta peptide, including vaccination, passive immunization, and tau deposition. Keywords: Alzheimer's disease, acetylcholinesterase inhibitors, memantine, disease-modifying drugs, diagnosis, treatment

  13. Longitudinal morphometric MRI study of Alzheimer's disease

    International Nuclear Information System (INIS)

    Ogomori, Koji; Takano, Koichi; Kuwabara, Yasuo; Nakano, Seigo; Nawata, Hideyuki; Yano, Rika; Nishimura, Ryoji; Takita, Masashi

    2009-01-01

    A longitudinal morphometric MRI study of Alzheimer's disease (AD) was conducted to determine the relationship between the progression of the symptoms and the progression of the brain atrophy. The Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD), developed by Matsuda et al. was used as a method of morphometry to perform the statistical MR image analysis. Thirty-eight patients of AD patients were investigated with VSRAD. These patients were divided into two groups according to the progression of symptoms based on a clinical evaluation. One group was the progress group (20 patients), while the other group was the stable group (18 patients) for comparison. The relationship was investigated between the speed of the symptomatic progression and the change in each VSRAD indicator. Consequently, the entorhinal Z-score and the entorhinal atrophy rate showed a correlation with the speed of the symptomatic progression. The increase of the entorhinal Z-score in the follow-up was larger in the progress group than that in the stable group (0.65/1.28 years in the progress group and 0.05/1.26 years in the stable group.). These results suggest that a rapid symptomatic progression in an AD patient accompanies the rapid progression of atrophy in the entorhinal cortex. (author)

  14. Cerebral hemodynamic difference between early- and late-onset Alzheimer's disease by circumferential profile analysis with 123I-IMP brain SPECT

    International Nuclear Information System (INIS)

    Arai, Hisayuki; Hanyu, Haruo; Abe, Shinei; Asano, Tetsuichi; Takasaki, Masaru; Suzuki, Takanari; Abe, Kimihiko; Katsunuma, Hideyo.

    1992-01-01

    We conducted investigation to determine whether early- and late-onset Alzheimer's diseases differ pathophysiologically. Five patients with the early-onset (65 years and under) of the disease and 11 with the late-onset (65 years and over) of the disease were studied by single photon emission CT (SPECT) with N-isopropyl-p-[ 123 I]iodoamphetamine (IMP). Circumferential profile analysis (CPA) was performed to examine differences in the predominant hypoperfusion in the temporoparietal lobe, which is considered to be functionally damaged the most in Alzheimer's disease. The Xm values, calculated from gradients between the motorsensory or occipital cortices and temporoparietal cortex in the circumferential profile curve, were compared in both groups. The Xm values for patients with early- and late-onset Alzheimer's disease were 6.81±2.10 (counts/degree) and 3.28±1.58, respectively, the difference being significant. Our results suggest that functional abnormalities in the temporoparietal area severer in early- than late-onset Alzheimer's disease and that the application of CPA to IMP SPECT is useful to elucidate the pathophysiological difference between each of the disease. (author)

  15. Development of an UPLC-MS/MS method for simultaneous quantitation of 11 d-amino acids in different regions of rat brain: Application to a study on the associations of d-amino acid concentration changes and Alzheimer's disease.

    Science.gov (United States)

    Li, Zhe; Xing, Yuping; Guo, Xingjie; Cui, Yan

    2017-07-15

    There are significant differences in d-amino acid concentrations between healthy people and Alzheimer's disease patients. In order to investigate the potential correlation between d-amino acids and Alzheimer's disease, a simple and sensitive ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed. The method was applied to simultaneous determination of 11 d-amino acids in different regions of rat brain. Rat brain homogenates were firstly pretreated with protein precipitation procedure and then derivatized with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester [(S)-NIFE]. Baseline separation of the derivatives was achieved on an ACQUITY UPLC BEH C 18 column (2.1 mm×50mm, 1.7μm). The mobile phase consisted of acetonitrile and water (containing 8mM ammonium hydrogen carbonate) and the flow rate was 0.6mLmin -1 . The derived analytes were sensitively detected by multiple reaction monitoring in the positive ion mode. The lower limits of quantitation ranged from 0.06 to 10ngmL -1 with excellent linearity (r≥0.9909). The intra- and inter-day RSD were in the range of 3.6-12% and 5.7-12%, respectively. The recovery rate was 82.5%-95.3%. With this UPLC-MS/MS method, the 11 d-amino acids in hippocampus, cerebral cortex, olfactory bulb and cerebellum from Alzheimer's disease rats and age-matched controls could be simultaneously determined. Compared with the normal controls, the concentrations of d-serine, d-alanine, d-leucine, and d-proline in hippocampus and cerebral cortex of Alzheimer's disease rat brain were significantly decreased, while no differences in olfactory bulb and cerebellum of all the d-amino acids were observed. The different amounts and distribution of d-amino acids in brain between the two groups, which regulated by particular pathological changes of Alzheimer's disease, would give new insights into further study in neuropathogenesis and provide novel therapeutic targets of Alzheimer

  16. Hierarchical clustering of Alzheimer and "normal" brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Leenders, KL

    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element

  17. Cognitive Decline in Neuronal Aging and Alzheimer's Disease: Role of NMDA Receptors and Associated Proteins

    Directory of Open Access Journals (Sweden)

    Jesús Avila

    2017-11-01

    Full Text Available Molecular changes associated with neuronal aging lead to a decrease in cognitive capacity. Here we discuss these alterations at the level of brain regions, brain cells, and brain membrane and cytoskeletal proteins with an special focus in NMDA molecular changes through aging and its effect in cognitive decline and Alzheimer disease. Here, we propose that some neurodegenerative disorders, like Alzheimer's disease (AD, are characterized by an increase and acceleration of some of these changes.

  18. Mitochondrial Drugs for Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Xiongwei Zhu

    2009-12-01

    Full Text Available Therapeutic strategies for Alzheimer disease (AD have yet to offer a diseasemodifying effect to stop the debilitating progression of neurodegeneration and cognitive decline. Rather, treatments thus far are limited to agents that slow disease progression without halting it, and although much work towards a cure is underway, a greater understanding of disease etiology is certainly necessary for any such achievement. Mitochondria, as the centers of cellular metabolic activity and the primary generators of reactive oxidative species in the cell, received particular attention especially given that mitochondrial defects are known to contribute to cellular damage. Furthermore, as oxidative stress has come to the forefront of AD as a causal theory, and as mitochondrial damage is known to precede much of the hallmark pathologies of AD, it seems increasingly apparent that this metabolic organelle is ultimately responsible for much, if not all of disease pathogenesis. In this review, we review the role of neuronal mitochondria in the pathogenesis of AD and critically assess treatment strategies that utilize this upstream access point as a method for disease prevention. We suspect that, with a revived focus on mitochondrial repair and protection, an effective and realistic therapeutic agent can be successfully developed.

  19. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters.

    Science.gov (United States)

    Lai, Lanmei; Zhao, Chunqiu; Su, Meina; Li, Xiaoqi; Liu, Xiaoli; Jiang, Hui; Amatore, Christian; Wang, Xuemei

    2016-07-21

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.

  20. Harmonized diagnostic criteria for Alzheimer's disease

    DEFF Research Database (Denmark)

    Morris, J C; Blennow, K; Froelich, L

    2014-01-01

    BACKGROUND: Two major sets of criteria for the clinical diagnosis of Alzheimer's disease (AD) recently have been published, one from an International Working Group (IWG) and the other from working groups convened by the National Institute on Aging (NIA) and the Alzheimer's Association (AA...

  1. The genetics of Alzheimer disease.

    Science.gov (United States)

    Tanzi, Rudolph E

    2012-10-01

    Family history is the second strongest risk factor for Alzheimer disease (AD) following advanced age. Twin and family studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The inheritance of AD exhibits a dichotomous pattern. On one hand, rare mutations in APP, PSEN1, and PSEN2 virtually guarantee early-onset (<60 years) familial AD, which represents ∼5% of AD. On the other hand, common gene polymorphisms, such as the ε4 and ε2 variants of the APOE gene, can influence susceptibility for ∼50% of the common late-onset AD. These four genes account for 30%-50% of the inheritability of AD. Genome-wide association studies have recently led to the identification of 11 additional AD candidate genes. This paper reviews the past, present, and future attempts to elucidate the complex and heterogeneous genetic underpinnings of AD.

  2. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    International Nuclear Information System (INIS)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P; Papatriantafyllou, J; Karageorgiou, C; Sifakis, N; Zerva, C

    2009-01-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  3. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Science.gov (United States)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  4. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease.

    Science.gov (United States)

    Meng, Qingqing; Wang, Aiping; Hua, Hongchen; Jiang, Ying; Wang, Yiyun; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang

    2018-01-01

    Safe and effective delivery of therapeutic drugs to the brain is important for successful therapy of Alzheimer's disease (AD). To develop Huperzine A (HupA)-loaded, mucoadhesive and targeted polylactide-co-glycoside (PLGA) nanoparticles (NPs) with surface modification by lactoferrin (Lf)-conjugated N-trimethylated chitosan (TMC) (HupA Lf-TMC NPs) for efficient intranasal delivery of HupA to the brain for AD treatment. HupA Lf-TMC NPs were prepared using the emulsion-solvent evaporation method and optimized using the Box-Behnken design. The particle size, zeta potential, drug entrapment efficiency, adhesion and in vitro release behavior were investigated. The cellular uptake was investigated by fluorescence microscopy and flow cytometry. MTT assay was used to evaluate the cytotoxicity of the NPs. In vivo imaging system was used to investigate brain targeting effect of NPs after intranasal administration. The biodistribution of Hup-A NPs after intranasal administration was determined by liquid chromatography-tandem mass spectrometry. Optimized HupA Lf-TMC NPs had a particle size of 153.2±13.7 nm, polydispersity index of 0.229±0.078, zeta potential of +35.6±5.2 mV, drug entrapment efficiency of 73.8%±5.7%, and sustained release in vitro over a 48 h period. Adsorption of mucin onto Lf-TMC NPs was 86.9%±1.8%, which was significantly higher than that onto PLGA NPs (32.1%±2.5%). HupA Lf-TMC NPs showed lower toxicity in the 16HBE cell line compared with HupA solution. Qualitative and quantitative cellular uptake experiments indicated that accumulation of Lf-TMC NPs was higher than nontargeted analogs in 16HBE and SH-SY5Y cells. In vivo imaging results showed that Lf-TMC NPs exhibited a higher fluorescence intensity in the brain and a longer residence time than nontargeted NPs. After intranasal administration, Lf-TMC NPs facilitated the distribution of HupA in the brain, and the values of the drug targeting index in the mouse olfactory bulb, cerebrum (with hippocampus

  5. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    Directory of Open Access Journals (Sweden)

    Matej Orešič

    2018-01-01

    Full Text Available Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB, implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH and brain tumors (BT. Blood samples were collected from 27 NPH and 20 BT patients. The profiles of 21 metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD, NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased with respect to all other groups (mean values −30% or more, but the differences were not statistically significant. Serine was increased in NPH as compared to BT. In conclusion, AD, NPH and BT have different metabolic profiles. This preliminary study may help in identifying the blood based markers that are specific to these three CNS diseases.

  6. The genetics of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Bagyinszky E

    2014-04-01

    Full Text Available Eva Bagyinszky,1 Young Chul Youn,2 Seong Soo A An,1,* SangYun Kim3,*1Department of BioNano Technology Gachon University, Gyeonggi-do, 2Department of Neurology, Chung-Ang University College of Medicine, Seoul, 3Department of Neurology, Seoul National University Budang Hospital, Gyeonggi-do, South Korea*These authors contributed equally to this workAbstract: Alzheimer's disease (AD is a complex and heterogeneous neurodegenerative disorder, classified as either early onset (under 65 years of age, or late onset (over 65 years of age. Three main genes are involved in early onset AD: amyloid precursor protein (APP, presenilin 1 (PSEN1, and presenilin 2 (PSEN2. The apolipoprotein E (APOE E4 allele has been found to be a main risk factor for late-onset Alzheimer's disease. Additionally, genome-wide association studies (GWASs have identified several genes that might be potential risk factors for AD, including clusterin (CLU, complement receptor 1 (CR1, phosphatidylinositol binding clathrin assembly protein (PICALM, and sortilin-related receptor (SORL1. Recent studies have discovered additional novel genes that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 2 (TREM2 and cluster of differentiation 33 (CD33. Identification of new AD-related genes is important for better understanding of the pathomechanisms leading to neurodegeneration. Since the differential diagnoses of neurodegenerative disorders are difficult, especially in the early stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies have been successfully used for detecting mutations, monitoring the epigenetic changes, and analyzing transcriptomes. These studies may be a promising approach toward understanding the complete genetic mechanisms of diverse genetic disorders such as AD.Keywords: dementia, amyloid precursor protein, presenilin 1, presenilin 2, APOE, mutation, diagnosis, genetic testing

  7. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi [Kanazawa Univ. (Japan). School of Medicine; Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi

    1990-10-01

    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  8. Biofidelic Three-Dimensional Brain Surrogate Models of mTBI-Induced Alzheimer’s Disease Pathology

    Science.gov (United States)

    2016-10-01

    Behavioural Brain Research (2016) – Contents lists available at ScienceDirect Behavioural Brain Research journa l homepage: www.e lsev ier...ARTICLEBR-10398; No. of Pages 12 H. Song et al. / Behavioural B eported findings in post-mortem brains of three blast exposed oldiers with no physical...instantaneously filled with gas under high pressure and temperature. The resulting energy expands radially outward as a blast wave moving at

  9. Microglia and neuroprotection: implications for Alzheimer's disease.

    Science.gov (United States)

    Streit, Wolfgang J

    2005-04-01

    The first part of this paper summarizes some of the key observations from experimental work in animals that support a role of microglia as neuroprotective cells after acute neuronal injury. These studies point towards an important role of neuronal-microglial crosstalk in the facilitation of neuroprotection. Conceptually, injured neurons are thought to generate rescue signals that trigger microglial activation and, in turn, activated microglia produce trophic or other factors that help damaged neurons recover from injury. Against this background, the second part of this paper summarizes recent work from postmortem studies conducted in humans that have revealed the occurrence of senescent, or dystrophic, microglial cells in the aged and Alzheimer's disease brain. These findings suggest that microglial cells become increasingly dysfunctional with advancing age and that a loss of microglial cell function may involve a loss of neuroprotective properties that could contribute to the development of aging-related neurodegeneration.

  10. Biological markers of Alzheimer?s disease

    Directory of Open Access Journals (Sweden)

    Leonardo Cruz de Souza

    2014-03-01

    Full Text Available The challenges for establishing an early diagnosis of Alzheimer’s disease (AD have created a need for biomarkers that reflect the core pathology of the disease. The cerebrospinal fluid (CSF levels of total Tau (T-tau, phosphorylated Tau (P-Tau and beta-amyloid peptide (Aβ42 reflect, respectively, neurofibrillary tangle and amyloid pathologies and are considered as surrogate markers of AD pathophysiology. The combination of low Aβ42 and high levels of T-tau and P-Tau can accurately identify patients with AD at early stages, even before the development of dementia. The combined analysis of the CSF biomarkers is also helpful for the differential diagnosis between AD and other degenerative dementias. The development of these CSF biomarkers has evolved to a novel diagnostic definition of the disease. The identification of a specific clinical phenotype combined with the in vivo evidence of pathophysiological markers offers the possibility to make a diagnosis of AD before the dementia stage with high specificity.

  11. Olive Oil and its Potential Effects on Alzheimer's Disease

    Science.gov (United States)

    Antony, Shan; Zhang, G. P.

    Alzheimer's disease is a neuro-degenerative brain disease that is responsible for affecting the lives of hundreds of thousands of people every year. There has been no evidence to suggest a cure for the disease and the only existing treatments have very low rates of success in trial patients. This is largely due to the fact that the brain is one of the most undiscovered parts of the human body. Brain chemistry is highly complex and responds to its environment in random and radical ways. My research includes testing the reactionary outcomes of combining compounds of olive oil with the 20 basic amino acids. Regions around the world with olive oil based diets show a direct correlation to lower rates of Alzheimer's. Testing few compounds of olive oil with chemicals already found in the brain may yield to a better understanding as to why that is. I took the compounds tyrosol, hydroxytyrosol, and oleocanthal, and combined them with the 20 basic amino acids and calculated the total energy of the new molecule. The molecules produced with acceptably low energy values will be the center of further research. These molecules could lead to truly understanding olive oil's effect on the brain, and ultimately, the cure or prevention of Alzheimer's disease.

  12. Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus

    Science.gov (United States)

    Li, Bin; Yamamori, Hidenaga; Tatebayashi, Yoshitaka; Shafit-Zagardo, Bridget; Tanimukai, Hitoshi; Chen, She; Iqbal, Khalid; Grundke-Iqbal, Inge

    2011-01-01

    The dentate gyrus, an important anatomic structure of the hippocampal formation, is one of the major areas in which neurogenesis takes place in the adult mammalian brain. Neurogenesis in the dentate gyrus is thought to play an important role in hippocampus-dependent learning and memory. Neurogenesis has been reported to be increased in the dentate gyrus of patients with Alzheimer disease, but it is not known whether the newly generated neurons differentiate into mature neurons. In this study, the expression of the mature neuronal marker high molecular weight microtubule-associated protein (MAP) isoforms MAP2a and b was found to be dramatically decreased in Alzheimer disease dentate gyrus, as determined by immunohistochemistry and in situ hybridization. The total MAP2, including expression of the immature neuronal marker, the MAP2c isoform, was less affected. These findings suggest that newly generated neurons in Alzheimer disease dentate gyrus do not become mature neurons, although neuroproliferation is increased. PMID:18091557

  13. Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Meeker, Kole D; Meabon, James S; Cook, David G

    2015-01-01

    The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimer's disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.

  14. Association of rs6265 and rs2030324 polymorphisms in brain-derived neurotrophic factor gene with Alzheimer's disease: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available BACKGROUND: The association between polymorphisms rs6265 and rs2030324 in brain-derived neurotrophic factor (BDNF and Alzheimer's disease (AD has been widely reported, but the results remain controversial. METHODS: A comprehensive search of Pubmed, Web of Science, China National Knowledge Infrastructure (CNKI, Wanfang Med Online and China Biology Medical literature database (CBM was performed. Pooled odds ratios (ORs with 95% confidence intervals (CIs were calculated using fixed or random-effects models. We excluded the studies with OR>3.0 or OR<0.3 for sensitive analysis. Subgroup analysis by ethnicity, form of AD and gender was carried out. Meta-regression was conducted to explore the potential sources of between-study heterogeneity. RESULTS: 29 articles with 7548 cases and 7334 controls concerning rs6265 and 22 articles with 5796 cases and 5706 controls concerning rs2030324 were included in this meta-analysis. The combined evidence suggested rs6265 contributing significantly to the increased risk of AD in females (codominant: fixed-effects model (FEM: OR = 1.13, 95% CI = 1.04-1.23; dominant: FEM: OR = 1.17, 95% CI = 1.05-1.31, especially for Caucasian females (codominant: FEM: OR = 1.18, 95% CI = 1.03-1.34; dominant: FEM: OR = 1.18, 95% CI = 1.01-1.37 and female late-onset Alzheimer's disease (LOAD patients (codominant: FEM: OR = 1.22, 95% CI = 1.05-1.41; dominant: FEM: OR = 1.23, 95% CI = 1.03-1.46. No evidence indicated an association between rs2030324 with AD in codominant (random-effects model (REM: OR = 1.06, 95% CI = 0.89-1.26 and dominant (REM: OR = 1.05, 95% CI = 0.86-1.27 models. CONCLUSION: This meta-analysis suggested A allele of rs6265 might increase the risk of AD in Caucasian females and female LOAD patients. In addition, no evidence indicated an association between rs2030324 with AD. Further studies are needed to confirm these results.

  15. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... mail addresses with third parties. Please read our security and privacy policy . Plan ahead ... | Contact Us National Headquarters Alzheimer's Association National Office, 225 N. Michigan ...

  16. Synaptic changes in Alzheimer's disease in vivo

    International Nuclear Information System (INIS)

    Mueller-Gaertner, H.W.

    1994-01-01

    The article describes the current knowledge on biochemical changes in Alzheimer's disease. Following a summary on post mortem findings, results from positron emission tomography will be focused on. This synopsis shows that patients with Alzheimer's disease show very consistently changes in the cholinergic transmission. In addition to this, changes of the dopaminergic, noradrenergic and serotonergic system are observed. It is possible, that clinical, pathological and functional differences in Alzheimer's disease between different patients reflect variations of a single disease process. It is also thinkable, that there are subclassifications in Alzheimer's disease which are reflected in the above described biochemical abnormalities. In this case it is important in therapeutical terms to investigate these subtypes. (orig.) [de

  17. Apolipoprotein J (clusterin) and Alzheimer's disease.

    Science.gov (United States)

    Calero, M; Rostagno, A; Matsubara, E; Zlokovic, B; Frangione, B; Ghiso, J

    2000-08-15

    Apolipoprotein J (clusterin) is a ubiquitous multifunctional glycoprotein capable of interacting with a broad spectrum of molecules. In pathological conditions, it is an amyloid associated protein, co-localizing with fibrillar deposits in systemic and localized amyloid disorders. In Alzheimer's disease, the most frequent form of amyloidosis in humans and the major cause of dementia in the elderly, apoJ is present in amyloid plaques and cerebrovascular deposits but is rarely seen in NFT-containing neurons. ApoJ expression is up-regulated in a wide variety of insults and may represent a defense response against local damage to neurons. Four different mechanisms of action could be postulated to explain the role of apoJ as a neuroprotectant during cellular stress: (1) function as an anti-apoptotic signal, (2) protection against oxidative stress, (3) inhibition of the membrane attack complex of complement proteins locally activated as a result of inflammation, and (4) binding to hydrophobic regions of partially unfolded, stressed proteins, and therefore avoiding aggregation in a chaperone-like manner. This review focuses on the association of apoJ in biological fluids with Alzheimer's soluble Abeta. This interaction prevents Abeta aggregation and fibrillization and modulates its blood-brain barrier transport at the cerebrovascular endothelium. Copyright 2000 Wiley-Liss, Inc.

  18. Combined Creutzfeldt-Jakob/ Alzheimer's Disease Cases are Important in Search for Microbes in Alzheimer's Disease.