WorldWideScience

Sample records for alzheimers disease amyloid

  1. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Science.gov (United States)

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Anti-amyloid treatments in Alzheimer's disease.

    Science.gov (United States)

    Sapra, Mamta; Kim, Kye Y

    2009-06-01

    Alzheimer's disease is one of the most challenging threats to the healthcare system in society. One of the main characteristic of Alzheimer's disease (AD) pathology is formation of amyloid plaques from accumulation of amyloid beta peptide. The therapeutic agents that are currently available for AD including acetylcholinesterase inhibitors (AchEIs) and the N-methyl-D-aspartate (NMDA) antagonist are focused on improving the symptoms and do not revert the progression of the disease. This limitation coupled with the burgeoning increase in the prevalence of AD and resultant impact on healthcare economics calls for more substantial treatments for AD. According to the leading amyloid hypothesis, cleavage of amyloid precursor protein to release amyloid beta peptide is the critical event in pathogenesis of Alzheimer's disease. Recently treatment strategies have been focused on modifying the formation, clearance and accumulation of neurotoxic amyloid beta peptide. This article reviews different therapeutic approaches that have been investigated to target amyloid beta ranging from secretase modulators, antiaggregation agents to amyloid immunotherapy. Authors review the different novel drugs which are in clinical trials.

  3. beta. -Amyloid gene dosage in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, G H; Manuelidis, L; Kim, J H; Manuelidis, E E

    1988-01-11

    The 4-5 kd amyloid ..beta..-peptide is a major constituent of the characteristic amyloid plaque of Alzheimer's disease. It has been reported that some cases of sporatic Alzheimer's disease are associated with at least a partial duplication of chromosome 21 containing the gene corresponding to the 695 residue precursor of this peptide. To contribute to an understanding of the frequency to such a duplication event in the overall Alzheimer's population, the authors have determined the gene dosage of the ..beta..-amyloid gene in this collection of cases. All cases had a clinical diagnosis of Alzheimer's confirmed neuropathologically. Each Alzheimer's case had an apparent normal diploid ..beta..-amyloid gene dosage, while control Down's cases had the expected triploid dosage. Thus partial duplication of chromosome 21 may be a rare finding in Alzheimer's disease. Similar conclusions were just reported in several studies of the Harvard Alzheimer collection.

  4. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    Science.gov (United States)

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows investigations

  5. [Development of anti-Alzheimer's disease drug based on beta-amyloid hypothesis].

    Science.gov (United States)

    Sugimoto, Hachiro

    2010-04-01

    Currently, there are five anti-Alzheimer's disease drugs approved. These are tacrine, donepezil, rivastigmine, galantamine, and memantine. The mechanism of the first four drugs is acetylcholinesterase inhibition, while memantine is an NMDA-receptor antagonist. However, these drugs do not cure Alzheimer's, but are only symptomatic treatments. Therefore, a cure for Alzheimer's disease is truly needed. Alzheimer's disease is a progressive neurodegenerative disease characterized by cognitive deficits. The cause of the disease is not well understood, but research indicates that the aggregation of beta-amyloid is the fundamental cause. This theory suggests that beta-amyloid aggregation causes neurotoxicity. Therefore, development of the next anti-Alzheimer's disease drug is based on the beta-amyloid theory. We are now studying natural products, such as mulberry leaf extracts and curcumin derivatives, as potential cure for Alzheimer's disease. In this report, we describe some data about these natural products and derivatives.

  6. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis.

    Science.gov (United States)

    Luo, Jinghui; Wärmländer, Sebastian K T S; Gräslund, Astrid; Abrahams, Jan Pieter

    2016-08-05

    Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. In situ hybridization of nucleus basalis neurons shows increased β-amyloid mRNA in Alzheimer disease

    International Nuclear Information System (INIS)

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.; Younkin, L.H.; Younkin, S.G.

    1988-01-01

    To determine which cells within the brain produce β-amyloid mRNA and to assess expression of the β-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that β-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more β-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the β-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease

  8. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.

    Science.gov (United States)

    Rodriguez-Vieitez, Elena; Saint-Aubert, Laure; Carter, Stephen F; Almkvist, Ove; Farid, Karim; Schöll, Michael; Chiotis, Konstantinos; Thordardottir, Steinunn; Graff, Caroline; Wall, Anders; Långström, Bengt; Nordberg, Agneta

    2016-03-01

    Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer (11)C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition ((11)C-Pittsburgh compound B), and glucose metabolism ((18)F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer's disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer's disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer's disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into (11)C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and (11)C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear

  9. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R

    2000-01-01

    Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease-implicated ......Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease...... cerebral Abeta deposition, suggesting a novel mucosal immunological approach for the treatment and prevention of AD....

  10. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology

    Science.gov (United States)

    Revett, Timothy J.; Baker, Glen B.; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid β peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid β and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid β production, but also amyloid β can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  11. A potential amyloid-imaging probe for Alzheimer's disease

    International Nuclear Information System (INIS)

    Cai Jiong; Wang Shizhen; Yuan Jiangang; Qiang Boqin

    2004-01-01

    Purpose: To screen out the human single-chain fragment variable (scFv) against amyloid β peptide 40 from a human synthetic antibody library, sub-clone its gene into E. coli expression system, and express and purify it for amyloid peptide imaging research. The overload of amyloid β peptide and the appearance of senile plaques in the human brain tissue is one of the hallmark of the Alzheimer's disease, and in vivo imaging of amyloidβ peptide is valuable for the earlier diagnosis of Alzheimer's disease. Methods: Amyloid β peptide 40 was bound on the solid surface of Nunc plates as antigen and a human antibody library constructed with human antibody heavy and light chain variable gene and nucleotides sequence coded (Gly4Ser)3 linker and displayed on the protein surface of filamentous phage was used to screen the binding clones. After five rounds of bio-panning, the host E. coli TG1 was infected with eluted filamentous phage from the last turn of selection. 55 well-separated colonies were picked randomly from the plates and several specific positive clones were identified by ELISA testing, and their binding sites were determined by competitive ELISA with amyloid 13 peptide 40, 1-16, 25-35. The single-chain Fv antibody gene was sequenced and their amino acids sequence was deduced. The scFv antibody gene was sub-cloned into a protokayotic expression vector pET-22b(+) and transformed into bacteria strain BL21 to express the His6-tagged single-chain antibody and the whole cell culture was subjected to SDS-PAGE analysis. The antibody was expressed in inclusion bodies and purified with serial buffers and verified with western blotting and their activity was tested by ELISA against amyloid β peptide 40. Results: ELISA testing showed that 33 clones could bind amyloid β peptide 40 and 10 of these clones could be inhibited by amyloid β peptide 40 itself to below 50% of its original binding activities. Five clones could also be inhibited by amyloid β peptide 1-16. DNA

  12. Reduction of Alzheimer's disease beta-amyloid pathology in the absence of gut microbiota

    OpenAIRE

    Harach, T.; Marungruang, N.; Dutilleul, N.; Cheatham, V.; Coy, K. D. Mc; Neher, J. J.; Jucker, M.; Fåk, F.; T.; Lasser; Bolmont, T.

    2015-01-01

    Alzheimer's disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer's disease is not known. We generated a germ-free mouse model of Alzheimer's disease and discovered a drastic reduction of cerebral Ab amyloid pathology when compared to control Alzheimer's disease a...

  13. Multimodal PET Imaging of Amyloid and Tau Pathology in Alzheimer Disease and Non-Alzheimer Disease Dementias.

    Science.gov (United States)

    Xia, Chenjie; Dickerson, Bradford C

    2017-07-01

    Biomarkers of the molecular pathology underpinning dementia syndromes are increasingly recognized as crucial for diagnosis and development of disease-modifying treatments. Amyloid PET imaging is an integral part of the diagnostic assessment of Alzheimer disease. Its use has also deepened understanding of the role of amyloid pathology in Lewy body disorders and aging. Tau PET imaging is an imaging biomarker that will likely play an important role in the diagnosis, monitoring, and treatment in dementias. Using tau PET imaging to examine how tau pathology relates to amyloid and other markers of neurodegeneration will serve to better understand the pathophysiologic cascade that leads to dementia. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques.

    Science.gov (United States)

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M

    2015-07-14

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.

  15. Disrupting beta-amyloid aggregation for Alzheimer disease treatment.

    Science.gov (United States)

    Estrada, L D; Soto, C

    2007-01-01

    Alzheimer's disease is a devastating degenerative disorder for which there is no cure or effective treatment. Although the etiology of Alzheimer's disease is not fully understood, compelling evidence indicates that deposition of aggregates composed by a misfolded form of the amyloid beta peptide (Abeta) is the central event in the disease pathogenesis. Therefore, an attractive therapeutic strategy is to prevent or reverse Abeta misfolding and aggregation. Diverse strategies have been described to identify inhibitors of this process, including screening of libraries of small molecules chemical compounds, rational design of synthetic peptides, assessment of natural Abeta-binding proteins and stimulation of the immune system by vaccination. In this article we describe these different approaches, their principles and their potential strengths and weaknesses. Overall the available data suggest that the development of drugs to interfere with Abeta misfolding and aggregation is a feasible target that hold great promise for the treatment of Alzheimer's disease.

  16. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.

    2015-01-14

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer\\'s disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  17. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-01-01

    Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimer's disease brain contributes to Alzheimer's disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimer's disease mouse model TgCRND8 similar to that previously described in Alzheimer's disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimer's disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimer's disease.

  18. Towards Alzheimer's beta-amyloid vaccination.

    Science.gov (United States)

    Frenkel, D; Solomon, B

    2001-01-01

    Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human beta-amyloid peptide bind to preformed beta-amyloid fibrils (Abeta), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid beta-protein (AbetaP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AbetaP. Such antibodies are able to sequester peripheral AbetaP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed beta-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases. Copyright 2001 The International Association for Biologicals.

  19. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  20. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    International Nuclear Information System (INIS)

    Wengenack, Thomas M.; Poduslo, Joseph F.; Jack, Clifford R.; Garwood, Michael

    2008-01-01

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  1. Neuroinflammation and common mechanism in Alzheimer's disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration

    NARCIS (Netherlands)

    Rozemuller, A.J.M.; Jansen, C.; Carrano, A.; van Haastert, E.S.; Hondius, D.; van der Vies, S.M.; Hoozemans, J.J.M.

    2012-01-01

    Background: In cases with a long (>1 year) clinical duration of prion disease, the prion protein can form amyloid deposits. These cases do not show accumulation of 4-kDa β-amyloid, which is observed in amyloid deposits in Alzheimer's disease (AD). In AD, amyloid is associated with inflammation and

  2. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer's Disease: Results from the DIAN Study Group.

    Directory of Open Access Journals (Sweden)

    Yi Su

    Full Text Available Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN, an autosomal dominant Alzheimer's disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer's disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.

  3. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.

    Science.gov (United States)

    Barage, Sagar H; Sonawane, Kailas D

    2015-08-01

    Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  5. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wengenack, Thomas M.; Poduslo, Joseph F. [Mayo Clinic, Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience, and Biochemistry/Molecular Biology, Rochester, MN (United States); Jack, Clifford R. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Garwood, Michael [University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN (United States); University of Minnesota Medical School, Department of Radiology, Minneapolis, MN (United States)

    2008-03-15

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  6. Quantifying the pattern of beta/A4 amyloid protein distribution in Alzheimer's disease by image analysis.

    Science.gov (United States)

    Bruce, C V; Clinton, J; Gentleman, S M; Roberts, G W; Royston, M C

    1992-04-01

    We have undertaken a study of the distribution of the beta/A4 amyloid deposited in the cerebral cortex in Alzheimer's disease. Previous studies which have examined the differential distribution of amyloid in the cortex in order to determine the laminar pattern of cortical pathology have not proved to be conclusive. We have developed an alternative method for the solution of this problem. It involves the immunostaining of sections followed by computer-enhanced image analysis. A mathematical model is then used to describe both the amount and the pattern of amyloid across the cortex. This method is both accurate and reliable and also removes many of the problems concerning inter and intra-rater variability in measurement. This method will provide the basis for further quantitative studies on the differential distribution of amyloid in Alzheimer's disease and other cases of dementia where cerebral amyloidosis occurs.

  7. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.

    NARCIS (Netherlands)

    Wilhelmus, M.M.M.; Boelens, W.C.; Otte-Holler, I.; Kamps, B.; Kusters, B.; Maat-Schieman, M.L.; Waal, R.M.W. de; Verbeek, M.M.

    2006-01-01

    Alzheimer's disease (AD) is characterized by pathological lesions, such as senile plaques (SPs) and cerebral amyloid angiopathy (CAA), both predominantly consisting of a proteolytic cleavage product of the amyloid-beta precursor protein (APP), the amyloid-beta peptide (Abeta). CAA is also the major

  8. Ten Challenges of the Amyloid Hypothesis of Alzheimer's Disease.

    Science.gov (United States)

    Kepp, Kasper Planeta

    2017-01-01

    The inability to effectively halt or cure Alzheimer's disease (AD), exacerbated by the recent failures of high-profile clinical trials, emphasizes the urgent need to understand the complex biochemistry of this major neurodegenerative disease. In this paper, ten central, current challenges of the major paradigm in the field, the amyloid hypothesis, are sharply formulated. These challenges together show that new approaches are necessary that address data heterogeneity, increase focus on the proteome level, use available human patient data more actively, account for the aging phenotype as a background model of the disease, unify our understanding of the interplay between genetic and non-genetic risk factors, and combine into one framework both the familial and sporadic forms of the disease.

  9. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.; Magistretti, Pierre J.; Pellerin, Luc

    2015-01-01

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer's disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  10. Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease.

    Science.gov (United States)

    Steinitz, Michael

    2008-05-01

    Alzheimer's disease is a devastating disorder, clinically characterized by a comprehensive cognitive decline. The novel strategy of anti-amyloid-beta immunotherapy has been suggested following encouraging results obtained in murine models of Alzheimer's disease, in non-human primates, and in small-scale clinical trials. To examine the choice between active or passive anti-amyloid-beta immunization and the choice of the molecule to which the immune machinery should be targeted, which are central issues in future immune therapy of Alzheimer's disease. Research into the new area of Alzheimer's disease immune therapy is primarily based on in vivo and in vitro studies of murine models of Alzheimer's disease. The studies are hence limited to defined genetic deficiencies. In humans, infusion of anti-amyloid-beta antibodies is considered a safer approach than active anti-amyloid-beta vaccination. Alzheimer's-disease-protective anti-amyloid-beta monoclonal antibodies should target specific epitopes within the amyloid beta(1 42) peptide, avoiding possibly harmful binding to the ubiquitous normal amyloid precursor protein. Since Alzheimer's disease immunotherapy requires repeated infusion of antibodies over a prolonged period of time, Alzheimer's disease patients will tolerate such antibodies provided the latter are exclusively of human origin. Human monoclonal antibodies that correspond to ubiquitous anti-amyloid-beta, present in all healthy humans, might bear important protective characteristics.

  11. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer's disease mouse models

    International Nuclear Information System (INIS)

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2009-01-01

    Amyloid-β plaques are an Alzheimer's disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer's disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1-1000, amyloid burden from 0-10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source-detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source-detector pairs).

  12. A systematic review of amyloid-beta peptides as putative mediators of the association between affective disorders and Alzheimer's disease

    DEFF Research Database (Denmark)

    Abbasowa, Leda; Heegaard, N. H. H.

    2014-01-01

    Background: Affective disorders are associated with an increased occurrence of cognitive deficits and have been linked to cognitive impairment and Alzheimer's disease. The putative molecular mechanisms involved in these associations are however not clear. The aim of this systematic review...... were limited by very low sample numbers. Finally, different assays for amyloid-beta were utilized in the different studies, thus hampering comparisons. Conclusion: To unravel possible risk relations and causalities between affective disorder and Alzheimer's disease and to determine how amyloid...

  13. Natural Products based P-glycoprotein Activators for Improved β-amyloid Clearance in Alzheimer's Disease: An in silico Approach.

    Science.gov (United States)

    Shinde, Pravin; Vidyasagar, Nikhil; Dhulap, Sivakami; Dhulap, Abhijeet; Hirwani, Raj

    2015-01-01

    Alzheimer's disease is an age related disorder and is defined to be progressive, irreversible neurodegenerative disease. The potential targets which are associated with the Alzheimer's disease are cholinesterases, N-methyl-D-aspartate receptor, Beta secretase 1, Pregnane X receptor (PXR) and P-glycoprotein (Pgp). P-glycoprotein is a member of the ATP binding cassette (ABC) transporter family, which is an important integral of the blood-brain, blood-cerebrospinal fluid and the blood-testis barrier. Reports from the literature provide evidences that the up-regulation of the efflux pump is liable for a decrease in β -amyloid intracellular accumulation and is an important hallmark in Alzheimer's disease (AD). Thus, targeting β-amyloid clearance by stimulating Pgp could be a useful strategy to prevent Alzheimer's advancement. Currently available drugs provide limited effectiveness and do not assure to cure Alzheimer's disease completely. On the other hand, the current research is now directed towards the development of synthetic or natural based therapeutics which can delay the onset or progression of Alzheimer's disease. Since ancient time medicinal plants such as Withania somnifera, Bacopa monieri, Nerium indicum have been used to prevent neurological disorders including Alzheimer's disease. Till today around 125 Indian medicinal plants have been screened on the basis of ethnopharmacology for their activity against neurological disorders. In this paper, we report bioactives from natural sources which show binding affinity towards the Pgp receptor using ligand based pharmacophore development, virtual screening, molecular docking and molecular dynamics simulation studies for the bioactives possessing acceptable ADME properties. These bioactives can thus be useful to treat Alzheimer's disease.

  14. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ya-Ru Wen

    2018-01-01

    Full Text Available Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain. First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3, significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.

  15. FKBP immunophilins and Alzheimer's disease: A chaperoned affair

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... FKBP immunophilins and Alzheimer's disease: A chaperoned affair. Weihuan Cao Mary ... Keywords. Alzheimer's disease; amyloid precursor protein; beta amyloid; FKBP; FK506; immunophilins; tau ... 43 | Issue 1. March 2018.

  16. Impact of amyloid imaging on drug development in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, Chester A. [Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)], E-mail: mathisca@upmc.edu; Lopresti, Brian J. [Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Klunk, William E. [Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2007-10-15

    Imaging agents capable of assessing amyloid-beta (A{beta}) content in vivo in the brains of Alzheimer's disease (AD) subjects likely will be important as diagnostic agents to detect A{beta} plaques in the brain as well as to help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of anti-amyloid therapeutics currently under development and in clinical trials. Positron emission tomography (PET) imaging studies of amyloid deposition in human subjects with several A{beta} imaging agents are currently underway. We reported the first PET studies of the carbon 11-labeled thioflavin-T derivative Pittsburgh Compound B in 2004, and this work has subsequently been extended to include a variety of subject groups, including AD patients, mild cognitive impairment patients and healthy controls. The ability to quantify regional A{beta} plaque load in the brains of living human subjects has provided a means to begin to apply this technology as a diagnostic agent to detect regional concentrations of A{beta} plaques and as a surrogate marker of therapeutic efficacy in anti-amyloid drug trials.

  17. Use of amyloid PET across the spectrum of Alzheimer's disease: clinical utility and associated ethical issues.

    Science.gov (United States)

    Leuzy, Antoine; Zimmer, Eduardo Rigon; Heurling, Kerstin; Rosa-Neto, Pedro; Gauthier, Serge

    2014-09-01

    Abstract Recent advances have made possible the in vivo detection of beta-amyloid (Aβ) pathology using positron emission tomography. While the gold standard for amyloid imaging, carbon-11 labeled Pittsburgh compound B is increasingly being replaced by fluorine-18 labeled radiopharmaceuticals, with three already approved for clinical use by US and European regulatory bodies. Appropriate use criteria proposed by an amyloid imaging taskforce convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging recommend restricting use of this technology to the evaluation of patients with mild cognitive impairment or atypical dementia syndromes. While use among asymptomatic individuals is currently viewed as inappropriate due prognostic uncertainty, elevated levels of brain Aβ among asymptomatic individuals may represent preclinical Alzheimer's disease. Amyloid imaging is likewise expected to play a role in the design of clinical trials. Though preliminary results suggest amyloid imaging to possess clinical utility and cost-effectiveness, both domains have yet to be assessed systematically. As the field moves toward adoption of a pro-disclosure stance for amyloid imaging findings, it is imperative that a broad range of stakeholders be involved to ensure the appropriateness of emerging policies and protocols.

  18. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  19. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  20. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    Science.gov (United States)

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  1. Neuroimaging of Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2005-01-01

    Main purposes of neuroimaging in Alzheimer's disease have been moved from diagnosis of advanced Alzheimer's disease to diagnosis of very early Alzheimer's disease at a prodromal stage of mild cognitive impairment, prediction of conversion from mild cognitive impairment to Alzheimer's disease, and differential diagnosis from other diseases causing dementia. Structural MRI studies and functional studies using fluorodeoxyglucose (FDG)-PET and brain perfusion SPECT are widely used in diagnosis of Alzheimer's disease. Outstanding progress in diagnostic accuracy of these neuroimaging modalities has been obtained using statistical analysis on a voxel-by-voxel basis after spatial normalization of individual scans to a standardized brain-volume template instead of visual inspection or a conventional region of interest technique. In a very early stage of Alzheimer's disease, this statistical approach revealed gray matter loss in the entorhinal and hippocampal areas and hypometabolism or hypoperfusion in the posterior cingulate cortex. These two findings might be related in view of anatomical knowledge that the regions are linked through the circuit of Papez. This statistical approach also offers accurate evaluation of therapeutical effects on brain metabolism or perfusion. The latest development in functional imaging relates to the final pathological hallmark of Alzheimer's disease-amyloid plaques. Amyloid imaging might be an important surrogate marker for trials of disease-modifying agents. (author)

  2. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease.

    Science.gov (United States)

    Parbo, Peter; Ismail, Rola; Hansen, Kim V; Amidi, Ali; Mårup, Frederik H; Gottrup, Hanne; Brændgaard, Hans; Eriksson, Bengt O; Eskildsen, Simon F; Lund, Torben E; Tietze, Anna; Edison, Paul; Pavese, Nicola; Stokholm, Morten G; Borghammer, Per; Hinz, Rainer; Aanerud, Joel; Brooks, David J

    2017-07-01

    See Kreisl (doi:10.1093/awx151) for a scientific commentary on this article.Subjects with mild cognitive impairment associated with cortical amyloid-β have a greatly increased risk of progressing to Alzheimer's disease. We hypothesized that neuroinflammation occurs early in Alzheimer's disease and would be present in most amyloid-positive mild cognitive impairment cases. 11C-Pittsburgh compound B and 11C-(R)-PK11195 positron emission tomography was used to determine the amyloid load and detect the extent of neuroinflammation (microglial activation) in 42 mild cognitive impairment cases. Twelve age-matched healthy control subjects had 11C-Pittsburgh compound B and 10 healthy control subjects had 11C-(R)-PK11195 positron emission tomography for comparison. Amyloid-positivity was defined as 11C-Pittsburgh compound B target-to-cerebellar ratio above 1.5 within a composite cortical volume of interest. Supervised cluster analysis was used to generate parametric maps of 11C-(R)-PK11195 binding potential. Levels of 11C-(R)-PK11195 binding potential were measured in a selection of cortical volumes of interest and at a voxel level. Twenty-six (62%) of 42 mild cognitive impairment cases showed a raised cortical amyloid load compared to healthy controls. Twenty-two (85%) of the 26 amyloid-positive mild cognitive impairment cases showed clusters of increased cortical microglial activation accompanying the amyloid. There was a positive correlation between levels of amyloid load and 11C-(R)-PK11195 binding potentials at a voxel level within subregions of frontal, parietal and temporal cortices. 11C-(R)-PK11195 positron emission tomography reveals increased inflammation in a majority of amyloid positive mild cognitive impairment cases, its cortical distribution overlapping that of amyloid deposition. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Neuroinflammation in Alzheimer's disease and prion disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Bate, C.; van Gool, W. A.; Hoozemans, J. J. M.; Rozemuller, J. M.; Veerhuis, R.; Williams, A.

    2002-01-01

    Alzheimer's disease (AD) and prion disease are characterized neuropathologically by extracellular deposits of Abeta and PrP amyloid fibrils, respectively. In both disorders, these cerebral amyloid deposits are co-localized with a broad variety of inflammation-related proteins (complement factors,

  4. Neuroinflammation and Complexes of 17 beta-Hydroxysteroid Dehydrogenase type 10-Amyloid beta in Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Řípová, D.; Bartoš, A.; Bocková, Markéta; Hegnerová, Kateřina; Říčný, J.; Čechová, L.; Vrajová, M.; Homola, Jiří

    2013-01-01

    Roč. 10, č. 2 (2013), s. 165-173 ISSN 1567-2050 R&D Projects: GA MZd(CZ) NT11225 Institutional support: RVO:67985882 Keywords : Amyloid beta * mitochondrial enzyme * Alzheimer 's disease Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.796, year: 2013

  5. Inactivation of Nitric Oxide Synthesis Exacerbates the Development of Alzheimer Disease Pathology in APPPS1 Mice (Amyloid Precursor Protein/Presenilin-1).

    Science.gov (United States)

    Cifuentes, Diana; Poittevin, Marine; Bonnin, Philippe; Ngkelo, Anta; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I

    2017-07-31

    The epidemiological link between hypertension and Alzheimer disease is established. We previously reported that hypertension aggravates the Alzheimer-like pathology in APPPS1 mice (amyloid precursor protein/presenilin-1, mouse model of Alzheimer disease) with angiotensin II-induced hypertension, in relation with hypertension and nitric oxide deficiency. To provide further insights into the role of nitric oxide in the hypertension-Alzheimer disease cross-talk, we studied the effects of nitric oxide blockade in APPPS1 mice using N (ω)-nitro-l-arginine methyl ester (l-NAME) alone or in combination with hydralazine, to normalize blood pressure. Compared with normotensive APPPS1 mice, those with l-NAME-induced hypertension had greater amyloid burden ( P <0.05), increased cortical amyloid angiopathy ( P <0.01), decreased regional microvascular density ( P <0.05), and deficient long-term spatial reference memory ( P <0.001). Blood pressure normalization with hydralazine did not protect APPPS1 mice from l-NAME-induced deterioration except for cortical amyloid angiopathy, linked to hypertension-induced arterial wall remodeling. By testing the cerebrovascular response to hypercapnic breathing, we evidenced early functional impairment of cerebral vasomotor activity in APPPS1 mice. Whereas in control wild-type normotensive mice, carbon dioxide breathing resulted in 15±1.3% increase in the mean blood flow velocity ( P <0.001), paradoxical mild decrease (1.5±0.4%) was recorded in normotensive APPPS1 mice ( P <0.001). Carbon dioxide-induced decrease in mean blood flow velocity was not significantly modified in l-NAME-treated hypertensive APPPS1 mice (2.5±1.2%) and partly reversed to mild vasodilation by hydralazine (3.2±1.5%, P <0.01). These results suggest that impaired nitric oxide bioavailability exacerbates the pathophysiology of Alzheimer disease, essentially impacting amyloid load and cognitive impairment, independently of l-NAME-induced hypertension. Only cerebral

  6. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  7. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  8. Stable Size Distribution of Amyloid Plaques Over the Course of Alzheimer Disease

    Science.gov (United States)

    Serrano-Pozo, Alberto; Mielke, Matthew L.; Muzitansky, Alona; Gómez-Isla, Teresa; Growdon, John H.; Bacskai, Brian J.; Betensky, Rebecca A.; Frosch, Matthew P.; Hyman, Bradley T.

    2012-01-01

    Amyloid-β plaques are a key pathological feature of Alzheimer disease (AD), but whether plaque sizes increase or stabilize over the course of AD is unknown. We measured the size distribution of total immunoreactive (10D5-positive) and dense-core (Thioflavine-S-positive) plaques in the temporal neocortex of a large group of AD and plaque-bearing age-matched non-demented subjects to test the hypothesis that amyloid plaques continue to grow along with the progression of the disease. The size of amyloid-β (10D5)-positive plaques did not differ between groups whereas dense-core plaques from the AD group were slightly larger than those in the non-demented group (~25%–30%, p = 0.01). Within the AD group, dense-core plaque size did not independently correlate with duration of clinical disease (from 4 to 21 years, p = 0.68), whereas 10D5-positive plaque size correlated negatively with disease duration (p = 0.01). By contrast, an earlier age of symptom onset strongly predicted a larger postmortem plaque size; this effect was independent of disease duration and the presence of the APOEε4 allele (p = 0.0001). We conclude that plaques vary in size among patients, with larger size distributions correlating with an earlier age of onset, but plaques do not substantially increase in size over the clinical course of the disease. PMID:22805771

  9. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains.

    Science.gov (United States)

    Benseny-Cases, Núria; Klementieva, Oxana; Cotte, Marine; Ferrer, Isidre; Cladera, Josep

    2014-12-16

    Amyloid peptides are the main component of one of the characteristic pathological hallmarks of Alzheimer's disease (AD): senile plaques. According to the amyloid cascade hypothesis, amyloid peptides may play a central role in the sequence of events that leads to neurodegeneration. However, there are other factors, such as oxidative stress, that may be crucial for the development of the disease. In the present paper, we show that it is possible, by using Fourier tranform infrared (FTIR) microscopy, to co-localize amyloid deposits and lipid peroxidation in tissue slides from patients affected by Alzheimer's disease. Plaques and lipids can be analyzed in the same sample, making use of the characteristic infrared bands for peptide aggregation and lipid oxidation. The results show that, in samples from patients diagnosed with AD, the plaques and their immediate surroundings are always characterized by the presence of oxidized lipids. As for samples from non-AD individuals, those without amyloid plaques show a lower level of lipid oxidation than AD individuals. However, it is known that plaques can be detected in the brains of some non-AD individuals. Our results show that, in such cases, the lipid in the plaques and their surroundings display oxidation levels that are similar to those of tissues with no plaques. These results point to lipid oxidation as a possible key factor in the path that goes from showing the typical neurophatological hallmarks to suffering from dementia. In this process, the oxidative power of the amyloid peptide, possibly in the form of nonfibrillar aggregates, could play a central role.

  10. Imaging β-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization

    International Nuclear Information System (INIS)

    Shoghi-Jadid, Kooresh; Barrio, Jorge R.; Kepe, Vladimir; Wu, H.-M.; Small, Gary W.; Phelps, Michael E.; Huang, S.-C.

    2005-01-01

    The polymerization of β-amyloid (Aβ) peptides into fibrillary plaques is implicated, in part, in the pathogenesis of Alzheimer's disease. Aβ molecular imaging probes (Aβ-MIPs) have been introduced in an effort to quantify amyloid burden or load, in subjects afflicted with AD by invoking the classic PET receptor model for the quantitation of neuronal receptor density. In this communication, we explore conceptual differences between imaging the density of amyloid fibril polymers and neuronal receptors. We formulate a mathematical model for the polymerization of Aβ with parameters that are mapped to biological modulators of fibrillogenesis and introduce a universal measure for amyloid load to accommodate various interactions of Aβ-MIPs with fibrils. Subsequently, we hypothesize four Aβ-MIPs and utilize the fibrillogenesis model to simulate PET tissue time activity curves (TACs). Given the unique nature of polymer growth and resulting PET TAC, the four probes report differing amyloid burdens for a given brain pathology, thus complicating the interpretation of PET images. In addition, we introduce the notion of an MIP's resolution, apparent maximal binding site concentration, optimal kinetic topology and its resolving power in characterizing the pathological progression of AD and the effectiveness of drug therapy. The concepts introduced in this work call for a new paradigm that goes beyond the classic parameters B max and K D to include binding characteristics to polymeric peptide aggregates such as amyloid fibrils, neurofibrillary tangles and prions

  11. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga

    2004-01-01

    beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques...

  12. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits.

    Science.gov (United States)

    Dinamarca, M C; Cerpa, W; Garrido, J; Hancke, J L; Inestrosa, N C

    2006-11-01

    The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.

  13. Immunotherapy for the treatment of Alzheimer's disease: amyloid-β or tau, which is the right target?

    Directory of Open Access Journals (Sweden)

    Castillo-Carranza DL

    2013-12-01

    Full Text Available Diana L Castillo-Carranza,1,2 Marcos J Guerrero-Muñoz,1,2 Rakez Kayed1–31Mitchell Center for Neurodegenerative Diseases, 2Departments of Neurology, Neuroscience, and Cell Biology, 3Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USAAbstract: Alzheimer's disease (AD is characterized by the presence of amyloid plaques composed mainly of amyloid-β (Aβ protein. Overproduction or slow clearance of Aβ initiates a cascade of pathologic events that may lead to formation of neurofibrillary tangles, neuronal cell death, and dementia. Although immunotherapy in animal models has been demonstrated to be successful at removing plaques or prefibrillar forms of Aβ, clinical trials have yielded disappointing results. The lack of substantial cognitive improvement obtained by targeting Aβ raises the question of whether or not this is the correct target. Another important pathologic process in the AD brain is tau aggregation, which seems to become independent once initiated. Recent studies targeting tau in AD mouse models have displayed evidence of cognitive improvement, providing a novel therapeutic approach for the treatment of AD. In this review, we describe new advances in immunotherapy targeting Aβ peptide and tau protein, as well as future directions.Keywords: immunotherapy, Alzheimer's disease, β-amyloid, tau

  14. [Biomarkers of Alzheimer disease].

    Science.gov (United States)

    Rachel, Wojciech; Grela, Agatha; Zyss, Tomasz; Zieba, Andrzej; Piekoszewski, Wojciech

    2014-01-01

    Cognitive impairment is one of the most abundant age-related psychiatric disorders. The outcome of cognitive impairment in Alzheimer's disease has both individual (the patients and their families) and socio-economic effects. The prevalence of Alzheimer's disease doubles after the age of 65 years, every 4.5 years. An etiologically heterogenic group of disorders related to aging as well as genetic and environmental interactions probably underlie the impairment in Alzheimer's disease. Those factors cause the degeneration of brain tissue which leads to significant cognitive dysfunction. There are two main hypotheses that are linked to the process of neurodegeneration: (i) amyloid cascade and (ii) the role of secretases and dysfunction of mitochondria. From the therapeutic standpoint it is crucial to get an early diagnosis and start with an adequate treatment. The undeniable progress in the field of biomarker research should lead to a better understanding of the early stages of the disorder. So far, the best recognised and described biomarkers of Alzheimer's disease, which can be detected in both cerebrospinal fluid and blood, are: beta-amyloid, tau-protein and phosphorylated tau-protein (phospho-tau). The article discusses the usefulness of the known biomarkers of Alzheimer's disease in early diagnosis.

  15. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  16. Does sleep disturbance affect the amyloid clearance mechanisms in Alzheimer's disease?

    Science.gov (United States)

    Yulug, Burak; Hanoglu, Lutfu; Kilic, Ertugrul

    2017-10-01

    Sleep is an important factor that plays a key role in Alzheimer's disease pathogenesis. However, it is still unclear whether poor-quality sleep may overlap with sleep disturbances in the underlying dysfunctional mechanisms of amyloid beta (Aβ) clearance metabolism. Here, we aimed to evaluate the current evidence on the role of sleep deprivation in Aβ clearance metabolism. To that end, we discuss possible mechanisms underlying the bidirectional interaction between the sleep deprivation and Aβ clearance pathways. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  17. Microsatellite D21D210 (GT-12) allele frequencies in sporadic Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Lannfelt, L; Lilius, L; Viitanen, M; Winblad, B; Basun, H [Huddinge Hospital, Karolinska Institute, Dept. of Geriatric Medicine, (Sweden); Houlden, H; Rossor, M [St. Mary` s Hospital, Dept. of Neurology, Medical School, London (United Kingdom); Hardy, J [University of South Florida, Suncoast Alzheimer` s Disease Research Labs, Department of Psychiatry, Tampa (United States)

    1995-02-01

    Four disease-causing mutations have so far been described in the amyloid precursor protein gene on chromosome 21 in familial early-onset Alzheimer`s disease. Linkage analysis with a fourteen-allele microsatellite at D21S210 named GT-12 has proven useful in the elucidation of amyloid presursor protein gene involvement in Alzheimer`s disease families, as it is closely linked to the gene. Most cases of Alzheimer`s disease are thought to be sporadic and not familial. However, evidence from earlier studies suggests an important genetic contribution also in sporadic cases, where gene-environment interaction may contribute to the disease. We have determined frequencies of the GT-12 alleles in 78 Swedish and 49 British sporadic Alzheimer`s disease cases and 104 healthy elderly control subjects, to investigate if the disease associates with a particular genotype in GT-12. However, no differences in allele frequencies were observed between any of the groups. (au) (26 refs.).

  18. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    OpenAIRE

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Boun...

  19. Anti-Amyloid-?-Mediated Positron Emission Tomography Imaging in Alzheimer's Disease Mouse Brains

    OpenAIRE

    McLean, Daniel; Cooke, Michael J.; Wang, Yuanfei; Green, David; Fraser, Paul E.; George-Hyslop, Peter St; Shoichet, Molly S.

    2012-01-01

    Antibody-mediated imaging of amyloid β (Aβ) in Alzheimer's disease (AD) offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG) and a positron emitting isotope, Copper-64 (t(½) = 12.7 h), and intra...

  20. Detection of amyloid in Alzheimer's disease with positron emission tomography using [11C]AZD2184

    International Nuclear Information System (INIS)

    Nyberg, Svante; Cselenyi, Zsolt; Julin, Per; Olsson, Hans; Svensson, Samuel; Eriksdotter Joenhagen, Maria; Freund-Levi, Yvonne; Halldin, Christer; Andersson, Jan; Varnaes, Katarina; Farde, Lars

    2009-01-01

    Current positron emission tomography (PET) radioligands for detection of Aβ amyloid in Alzheimer's disease (AD) are not ideal for quantification. To improve the signal to noise ratio we have developed the radioligand [ 11 C]AZD2184 and report here the first clinical evaluation. Eight AD patients and four younger control subjects underwent 93-min PET measurements with [ 11 C]AZD2184. A ratio approach using the cerebellum as reference region was applied to determine binding parameters. Brain uptake of [ 11 C]AZD2184 peaked within 1 min at 3-4% of injected radioactivity. AD patients had high radioactivity in cortical regions while controls had uniformly low radioactivity uptake. Specific binding peaked within 30 min at which time standardized uptake value ratios (SUVR) ranged between 1.19 and 2.57. [ 11 C]AZD2184 is a promising radioligand for detailed mapping of Aβ amyloid depositions in Alzheimer's disease, due to low non-specific binding, high signal to background ratio and reversible binding as evident from early peak equilibrium. (orig.)

  1. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer's and Type 2 Diabetes Diseases.

    Science.gov (United States)

    Ben Hmidene, Asma; Hanaki, Mizuho; Murakami, Kazuma; Irie, Kazuhiro; Isoda, Hiroko; Shigemori, Hideyuki

    2017-01-01

    The prevention of amyloid aggregation is promising for the treatment of age-related diseases such as Alzheimer's (AD) and type 2 diabetes (T2D). Ten antioxidant flavonoids isolated from the medicinal halophyte Tamarix gallica were tested for their amyloid aggregation inhibition potential. Glucuronosylated flavonoids show relatively strong inhibitory activity of Amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregation compared to their aglycone analogs. Structure-activity relationship of the flavonoids suggests that the catechol moiety is important for amyloid aggregation inhibition, while the methylation of the carboxyl group in the glucuronide moiety and of the hydroxyl group in the aglycone flavonoids decreased it.

  2. Spectroscopic study of Alzheimer's amyloid fibrils using terahertz time domain spectroscopy

    International Nuclear Information System (INIS)

    Jung, Euna; Kim, Jeonghoi; Han, Younho; Moon, Kiwon; Lim, Meehyun; Han, Haewook; Park, Joonhyuck; Kim, Sungjee

    2008-01-01

    Alzheimer's disease, one of the most common neurodegenerative diseases, is characterized by extensive amyloid deposition. Amyloid deposits contain the abundant fibrils formed by amyloid β protein (Aβ). Because amyloid fibrils are associated with amyloid diseases, including Alzheimer's disease, type 2 diabetes, prion disease, Parkinson's disease, senile systemic amyloidosis and Huntington's disease, there has been considerable interest within the biomedical and biochemical research communities. In transmission electron microscopic (TEM)images, amyloid firils are 0.1∼10μm long and approximately 10nm wide. Amyloid fibrils commonly exhibit self assembled filaments, often described as twisted or parallel assemblies of finer protofilaments. They are formed by the spontaneous aggregation of a wide variety of peptides and proteins. Structural studies of amyloid fibrils have revealed that the common structural motif of virtually all amyloid fibrils consists of cross β sheets in which the peptide strands are arranged perpendicular to the long axis of the fiber. But little was known until recently about the molecular level structures of amyloid fibils. Therefore, spectroscopic investigation of both amyloid fibrils and Aβ at the molecular level can provide the significant evidence for the molecular understanding of amyloidogenesis and for the development of innovative therapeutic and diagnostic approaches. We used terahertz time domain spectroscopy (THz TDS)to investigate both Aβ and amyloid fibril. THz TDS, developed over the last two decades, is a powerful tool to extract the properties of biomaterials and provides unique spectral signatures of biomolecules within 0.1∼10THz, which exists between microwave and infrared frequency range. Current interest in THz radiation arises from its capability of probing the delocalized collective vibrational modes in proteins. Studying the collective modes of proteins in THz frequency range can play an important role in

  3. The Alzheimer's disease β-secretase enzyme, BACE1

    Directory of Open Access Journals (Sweden)

    Vassar Robert

    2007-11-01

    Full Text Available Abstract The pathogenesis of Alzheimer's disease is highly complex. While several pathologies characterize this disease, amyloid plaques, composed of the β-amyloid peptide are hallmark neuropathological lesions in Alzheimer's disease brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. The BACE1 enzyme is essential for the generation of β-amyloid. BACE1 knockout mice do not produce β-amyloid and are free from Alzheimer's associated pathologies including neuronal loss and certain memory deficits. The fact that BACE1 initiates the formation of β-amyloid, and the observation that BACE1 levels are elevated in this disease provide direct and compelling reasons to develop therapies directed at BACE1 inhibition thus reducing β-amyloid and its associated toxicities. However, new data indicates that complete abolishment of BACE1 may be associated with specific behavioral and physiological alterations. Recently a number of non-APP BACE1 substrates have been identified. It is plausible that failure to process certain BACE1 substrates may underlie some of the reported abnormalities in the BACE1-deficient mice. Here we review BACE1 biology, covering aspects ranging from the initial identification and characterization of this enzyme to recent data detailing the apparent dysregulation of BACE1 in Alzheimer's disease. We pay special attention to the putative function of BACE1 during healthy conditions and discuss in detail the relationship that exists between key risk factors for AD, such as vascular disease (and downstream cellular consequences, and the pathogenic alterations in BACE1 that are observed in the diseased state.

  4. Identifying amyloid pathology?related cerebrospinal fluid biomarkers for Alzheimer's disease in a multicohort study

    OpenAIRE

    Leung, Yuk Yee; Toledo, Jon B.; Nefedov, Alexey; Polikar, Robi; Raghavan, Nandini; Xie, Sharon X.; Farnum, Michael; Schultz, Tim; Baek, Young; Van Deerlin, Vivianna M.; Hu, William T.; Holtzman, David M.; Fagan, Anne M.; Perrin, Richard J.; Grossman, Murray

    2015-01-01

    Introduction The dynamic range of cerebrospinal fluid (CSF) amyloid ? (A?1?42) measurement does not parallel to cognitive changes in Alzheimer's disease (AD) and cognitively normal (CN) subjects across different studies. Therefore, identifying novel proteins to characterize symptomatic AD samples is important. Methods Proteins were profiled using a multianalyte platform by Rules Based Medicine (MAP-RBM). Due to underlying heterogeneity and unbalanced sample size, we combined subjects (344 AD ...

  5. The road to restoring neural circuits for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Canter, Rebecca G; Penney, Jay; Tsai, Li-Huei

    2016-11-10

    Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.

  6. Inflammatory mechanisms in Alzheimer's disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Zhan, S. S.; van Gool, W. A.; Allsop, D.

    1994-01-01

    Alzheimer's disease is aetiologically heterogeneous, but the pathogenesis is often considered to be initiated by the deposition of amyloid fibrils, followed by neuritic tau pathology and neuronal death. A variety of inflammatory proteins has been identified in the brains of patients with Alzheimer's

  7. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Morgan Robinson

    2015-07-01

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative disorder with no cure and limited treatment solutions that are unable to target any of the suspected causes. Increasing evidence suggests that one of the causes of neurodegeneration is the overproduction of amyloid beta (Aβ and the inability of Aβ peptides to be cleared from the brain, resulting in self-aggregation to form toxic oligomers, fibrils and plaques. One of the potential treatment options is to target Aβ and prevent self-aggregation to allow for a natural clearing of the brain. In this paper, we review the drugs and drug delivery systems that target Aβ in relation to Alzheimer's disease. Many attempts have been made to use anti-Aβ targeting molecules capable of targeting Aβ (with much success in vitro and in vivo animal models, but the major obstacle to this technique is the challenge posed by the blood brain barrier (BBB. This highly selective barrier protects the brain from toxic molecules and pathogens and prevents the delivery of most drugs. Therefore novel Aβ aggregation inhibitor drugs will require well thought-out drug delivery systems to deliver sufficient concentrations to the brain.

  8. New cardiovascular targets to prevent late onset Alzheimer disease.

    Science.gov (United States)

    Claassen, Jurgen A H R

    2015-09-15

    The prevalence of dementia rises to between 20% and 40% with advancing age. The dominant cause of dementia in approximately 70% of these patients is Alzheimer disease. There is no effective disease-modifying pharmaceutical treatment for this neurodegenerative disease. A wide range of Alzheimer drugs that appeared effective in animal models have recently failed to show clinical benefit in patients. However, hopeful news has emerged from recent studies that suggest that therapeutic strategies aimed at reducing cardiovascular disease may also reduce the prevalence of dementia due to Alzheimer disease. This review summarizes the evidence for this link between cardiovascular disease and late onset Alzheimer dementia. Only evidence from human research is considered here. Longitudinal studies show an association between high blood pressure and pathological accumulation of the protein amyloid-beta42, and an even stronger association between vascular stiffness and amyloid accumulation, in elderly subjects. Amyloid-beta42 accumulation is considered to be an early marker of Alzheimer disease, and increases the risk of subsequent cognitive decline and development of dementia. These observations could provide an explanation for recent observations of reduced dementia prevalence associated with improved cardiovascular care. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Juliet A Moncaster

    2010-05-01

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta

  10. Cerebrospinal Fluid Amyloid Beta and Tau Concentrations Are Not Modulated by 16 Weeks of Moderate- to High-Intensity Physical Exercise in Patients with Alzheimer Disease

    DEFF Research Database (Denmark)

    Steen Jensen, Camilla; Portelius, Erik; Siersma, Volkert

    2016-01-01

    BACKGROUND: Physical exercise may have some effect on cognition in patients with Alzheimer disease (AD). However, the underlying biochemical effects are unclear. Animal studies have shown that amyloid beta (Aβ), one of the pathological hallmarks of AD, can be altered with high levels of physical...... of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study we analyzed cerebrospinal fluid samples for Aβ species, total tau (t-tau), phosphorylated tau (p-tau) and soluble amyloid precursor protein (sAPP) species. We also assessed the patients...

  11. Anti-amyloid-β-mediated positron emission tomography imaging in Alzheimer's disease mouse brains.

    Directory of Open Access Journals (Sweden)

    Daniel McLean

    Full Text Available Antibody-mediated imaging of amyloid β (Aβ in Alzheimer's disease (AD offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG and a positron emitting isotope, Copper-64 (t(½ = 12.7 h, and intravenously delivered to the TgCRND8 mouse model of Alzheimer's disease. Modification of 6E10 with PEG (6E10-PEG increases accumulation of 6E10 in brain tissue in both TgCRND8 and wild type control animals. 6E10-PEG differentiates TgCRND8 animals from wild type controls using positron emission tomography (PET and provides a framework for using antibodies to detect pathology using non-invasive medical imaging techniques.

  12. Mitophagy and Alzheimer's Disease

    DEFF Research Database (Denmark)

    Kerr, Jesse S.; Adriaanse, Bryan A.; Greig, Nigel H.

    2017-01-01

    Neurons affected in Alzheimer's disease (AD) experience mitochondrial dysfunction and a bioenergetic deficit that occurs early and promotes the disease-defining amyloid beta peptide (Aβ) and Tau pathologies. Emerging findings suggest that the autophagy/lysosome pathway that removes damaged...

  13. Molecular basis and pharmacological implications of Alzheimer amyloid ß-peptide fibril formation,

    OpenAIRE

    Tjernberg, Lars

    1998-01-01

    Alzheimer's disease is a progressive neurodegenerative disease, mostly affectingelderly. The invariable deposition of protease-resistant fibrils of Alzheimer amyloidß-peptide (Aß) in the parenchyma and blood vessels of the brain is a centralevent. The aim of this study was to investigate whether Aß develops proteaseresistance upon polymerization and whether Aß may be generated through non specificproteolysis of a polymerized precursor, to identify Aß-Aß binding and fibrilfor...

  14. Neurodegeneration in Alzheimer Disease: Role of Amyloid Precursor Protein and Presenilin 1 Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Mario Nizzari

    2012-01-01

    Full Text Available Alzheimer disease (AD is a heterogeneous neurodegenerative disorder characterized by (1 progressive loss of synapses and neurons, (2 intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3 amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP and presenilin 1 and 2 (PS1 and PS2. The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.

  15. Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β.

    Science.gov (United States)

    Di Fede, Giuseppe; Catania, Marcella; Maderna, Emanuela; Morbin, Michela; Moda, Fabio; Colombo, Laura; Rossi, Alessandro; Cagnotto, Alfredo; Virgilio, Tommaso; Palamara, Luisa; Ruggerone, Margherita; Giaccone, Giorgio; Campagnani, Ilaria; Costanza, Massimo; Pedotti, Rosetta; Salvalaglio, Matteo; Salmona, Mario; Tagliavini, Fabrizio

    2016-02-11

    We developed a novel therapeutic strategy for Alzheimer's disease (AD) exploiting the properties of a natural variant of Amyloid-β (Aβ) carrying the A2V substitution, which protects heterozygous carriers from AD by its ability to interact with wild-type Aβ, hindering conformational changes and assembly thereof. As prototypic compound we designed a six-mer mutated peptide (Aβ1-6A2V), linked to the HIV-related TAT protein, which is widely used for brain delivery and cell membrane penetration of drugs. The resulting molecule [Aβ1-6A2VTAT(D)] revealed strong anti-amyloidogenic effects in vitro and protected human neuroblastoma cells from Aβ toxicity. Preclinical studies in AD mouse models showed that short-term treatment with Aβ1-6A2VTAT(D) inhibits Aβ aggregation and cerebral amyloid deposition, but a long treatment schedule unexpectedly increases amyloid burden, although preventing cognitive deterioration. Our data support the view that the AβA2V-based strategy can be successfully used for the development of treatments for AD, as suggested by the natural protection against the disease in human A2V heterozygous carriers. The undesirable outcome of the prolonged treatment with Aβ1-6A2VTAT(D) was likely due to the TAT intrinsic attitude to increase Aβ production, avidly bind amyloid and boost its seeding activity, warning against the use of the TAT carrier in the design of AD therapeutics.

  16. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Létitia Jean

    2007-07-01

    Full Text Available Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-beta peptide (Abeta production via beta and gamma secretases in Alzheimer's Disease (AD, is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Abeta in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE and neprilysin (NEP. The known association of human acetylcholinesterase (hAChE with pathological aggregates in AD together with its ability to increase Abeta fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE(575-614 is an exposed amphiphilic alpha-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR with high propensity for conversion to non-native (hidden beta-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE(586-599 encompassing the CSR region shares homology with Abeta and forms beta-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE beta-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE(586-599, or versus Abeta, differed. Moreover, IDE digestion of T40 triggered the conformational switch from alpha- to beta-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers. Crucially, these CSR species significantly increased Abeta fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation

  17. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks.

    Science.gov (United States)

    Grothe, Michel J; Teipel, Stefan J

    2016-01-01

    Recent neuroimaging studies of Alzheimer's disease (AD) have emphasized topographical similarities between AD-related brain changes and a prominent cortical association network called the default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET, neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants from the Alzheimer's Disease Neuroimaging Initiative, including preclinical, predementia, and clinically manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypometabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of modality-dependent network specificity were also observed in the predementia and, for amyloid deposition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability profiles of these networks markedly differ for distinct aspects of AD pathology. © 2015 Wiley Periodicals, Inc.

  18. Neuroinflammation and Alzheimer disease: clinical and therapeutic implications

    NARCIS (Netherlands)

    Eikelenboom, P.; Rozemuller, A. J.; Hoozemans, J. J.; Veerhuis, R.; van Gool, W. A.

    2000-01-01

    In Alzheimer disease brains, the amyloid plaques are closely associated with a locally induced, nonimmune-mediated, chronic inflammatory response without any apparent influx of leukocytes from the blood. The present findings indicate that in cerebral A beta diseases (Alzheimer disease, Down

  19. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  20. Spectroscopic study of Alzheimer's amyloid fibrils using terahertz time domain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Euna; Kim, Jeonghoi; Han, Younho; Moon, Kiwon; Lim, Meehyun; Han, Haewook; Park, Joonhyuck; Kim, Sungjee [POSTECH, Pohang (Korea, Republic of)

    2008-11-15

    Alzheimer's disease, one of the most common neurodegenerative diseases, is characterized by extensive amyloid deposition. Amyloid deposits contain the abundant fibrils formed by amyloid β protein (Aβ). Because amyloid fibrils are associated with amyloid diseases, including Alzheimer's disease, type 2 diabetes, prion disease, Parkinson's disease, senile systemic amyloidosis and Huntington's disease, there has been considerable interest within the biomedical and biochemical research communities. In transmission electron microscopic (TEM)images, amyloid firils are 0.1∼10μm long and approximately 10nm wide. Amyloid fibrils commonly exhibit self assembled filaments, often described as twisted or parallel assemblies of finer protofilaments. They are formed by the spontaneous aggregation of a wide variety of peptides and proteins. Structural studies of amyloid fibrils have revealed that the common structural motif of virtually all amyloid fibrils consists of cross β sheets in which the peptide strands are arranged perpendicular to the long axis of the fiber. But little was known until recently about the molecular level structures of amyloid fibils. Therefore, spectroscopic investigation of both amyloid fibrils and Aβ at the molecular level can provide the significant evidence for the molecular understanding of amyloidogenesis and for the development of innovative therapeutic and diagnostic approaches. We used terahertz time domain spectroscopy (THz TDS)to investigate both Aβ and amyloid fibril. THz TDS, developed over the last two decades, is a powerful tool to extract the properties of biomaterials and provides unique spectral signatures of biomolecules within 0.1∼10THz, which exists between microwave and infrared frequency range. Current interest in THz radiation arises from its capability of probing the delocalized collective vibrational modes in proteins. Studying the collective modes of proteins in THz frequency range can play an

  1. Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimer's disease

    DEFF Research Database (Denmark)

    Mattsson, Niklas; Groot, Colin; Jansen, Willemijn J

    2018-01-01

    INTRODUCTION: Apolipoprotein E (APOE) ε4 is the major genetic risk factor for Alzheimer's disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid β (Aβ) pathology. METHODS: We included 3451 Aβ+ subjects (853 AD-type dementia, 1810 mild cog...

  2. Impact of amyloid-beta changes on cognitive outcomes in Alzheimer's disease: analysis of clinical trials using a quantitative systems pharmacology model.

    Science.gov (United States)

    Geerts, Hugo; Spiros, Athan; Roberts, Patrick

    2018-02-02

    Despite a tremendous amount of information on the role of amyloid in Alzheimer's disease (AD), almost all clinical trials testing this hypothesis have failed to generate clinically relevant cognitive effects. We present an advanced mechanism-based and biophysically realistic quantitative systems pharmacology computer model of an Alzheimer-type neuronal cortical network that has been calibrated with Alzheimer Disease Assessment Scale, cognitive subscale (ADAS-Cog) readouts from historical clinical trials and simulated the differential impact of amyloid-beta (Aβ40 and Aβ42) oligomers on glutamate and nicotinic neurotransmission. Preclinical data suggest a beneficial effect of shorter Aβ forms within a limited dose range. Such a beneficial effect of Aβ40 on glutamate neurotransmission in human patients is absolutely necessary to reproduce clinical data on the ADAS-Cog in minimal cognitive impairment (MCI) patients with and without amyloid load, the effect of APOE genotype effect on the slope of the cognitive trajectory over time in placebo AD patients and higher sensitivity to cholinergic manipulation with scopolamine associated with higher Aβ in MCI subjects. We further derive a relationship between units of Aβ load in our model and the standard uptake value ratio from amyloid imaging. When introducing the documented clinical pharmacodynamic effects on Aβ levels for various amyloid-related clinical interventions in patients with low Aβ baseline, the platform predicts an overall significant worsening for passive vaccination with solanezumab, beta-secretase inhibitor verubecestat and gamma-secretase inhibitor semagacestat. In contrast, all three interventions improved cognition in subjects with moderate to high baseline Aβ levels, with verubecestat anticipated to have the greatest effect (around ADAS-Cog value 1.5 points), solanezumab the lowest (0.8 ADAS-Cog value points) and semagacestat in between. This could explain the success of many amyloid

  3. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    C. Cheignon

    2018-04-01

    Full Text Available Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer’s disease (AD, an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS when bound to the amyloid-β (Aβ. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …. This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level. Keywords: Oxidative stress, Amyloid beta peptide, Metal-ions, Reactive oxygen species, Oxidative damages

  4. What can we learn from study of Alzheimer's disease in patients with Down syndrome for early-onset Alzheimer's disease in the general population?

    OpenAIRE

    Wallace, Robyn A; Dalton, Arthur J

    2011-01-01

    The clinical and scientific study of dementia in adults with Down syndrome led to the development of the amyloid hypothesis as a fundamental concept in Alzheimer's disease pathogenesis. The journey started with the discovery of the structure and metabolic processing of ?-amyloid brain deposits associated with Alzheimer's dementia in adults with Down syndrome, and then the prediction and confirmation of the amyloid precursor protein gene on chromosome 21. The processes and genes responsible fo...

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Argentina ADNI Amyloid Imaging Task Force Alzheimer’s Association Business Consortia (AABC) Biomarker Consortium GBSC Working Groups Global Alzheimer’s Association Interactive Network International Alzheimer's Disease Research ...

  6. Alzheimer's disease due to loss of function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses....... The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts...

  7. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta.

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R; Lesinski, Andrea N; Asselin, Caroline N; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T; Tanzi, Rudolph E

    2013-05-22

    The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Differences between amyloid-β aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer's disease.

    Science.gov (United States)

    Kotler, Samuel A; Walsh, Patrick; Brender, Jeffrey R; Ramamoorthy, Ayyalusamy

    2014-10-07

    The association of the amyloid-β (Aβ) peptide with cellular membranes is hypothesized to be the underlying phenomenon of neurotoxicity in Alzheimer's disease. Misfolding of proteins and peptides, as is the case with Aβ, follows a progression from a monomeric state, through intermediates, ending at long, unbranched amyloid fibers. This tutorial review offers a perspective on the association of toxic Aβ structures with membranes as well as details of membrane-associated mechanisms of toxicity.

  9. Immunotherapy of Alzheimer's disease (AD): from murine models to anti-amyloid beta (Abeta) human monoclonal antibodies.

    Science.gov (United States)

    Geylis, Valeria; Steinitz, Michael

    2006-01-01

    The deposition of amyloid beta (Abeta) protein is a key pathological feature in Alzheimer's disease (AD). In murine models of AD, both active and passive immunization against Abeta induce a marked reduction in amyloid brain burden and an improvement in cognitive functions. Preliminary results of a prematurely terminated clinical trial where AD patients were actively vaccinated with aggregated Abeta bear resemblance to those documented in murine models. Passive immunization of AD patients with anti-Abeta antibodies, in particular human antibodies, is a strategy that provides a more cautious management and control of any undesired side effects. Sera of all healthy adults contain anti-Abeta IgG autoimmune antibodies. Hence antigen-committed human B-cells are easily immortalized by Epstein-Barr virus (EBV) into anti-Abeta secreting cell lines. Two anti-Abeta human monoclonal antibodies which we recently prepared bind to the N-terminus of Abeta peptide and were shown to stain amyloid plaques in non-fixed brain sections from an AD patient. It is anticipated that specifically selected anti-Abeta human monoclonal antibodies could reduce and inhibit deposits of amyloid in brain while avoiding the cognitive decline that characterizes AD. In the future, this type of antibody may prove to be a promising immune therapy for the disease.

  10. Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease.

    Science.gov (United States)

    Mormino, Elizabeth C; Betensky, Rebecca A; Hedden, Trey; Schultz, Aaron P; Ward, Andrew; Huijbers, Willem; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A

    2014-05-20

    To examine whether β-amyloid (Aβ) and APOE ε4 status independently contribute or interact to influence longitudinal cognitive decline in clinically normal older individuals (CN). Data from 490 CNs were aggregated across 3 observational cohort studies (Harvard Aging Brain Study, Alzheimer's Disease Neuroimaging Initiative, and Australian Imaging Biomarkers and Lifestyle Study of Ageing; median age = 75.0 years, 255 female), and the contributions of APOE ε4 and Aβ on longitudinal change over a median of 1.49 years were examined. Cognitive decline was assessed with the Mini-Mental State Examination (MMSE) and Logical Memory (immediate and delayed recall scores). High Aβ participants were more likely to be APOE ε4+ than low Aβ participants. CNs who were both high Aβ and APOE ε4+ showed greater decline in Logical Memory immediate recall (p Alzheimer disease risk factors on cognitive decline in aging. © 2014 American Academy of Neurology.

  11. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT

    Science.gov (United States)

    2016-08-01

    Geraghty, J. A. Seibert, and S. L. Wootton-Gorges, “Dose reduction in pediatric CT : A rational approach,” Radiology 228, 352–360 (2003). Medical...improvement in image quality can be quantified as large as 450 [Fig. 6(c)] and 350 [Fig. 6(d)] Hounsfield units (HUs), where the Hounsfield unit is defined...AWARD NUMBER: W81XWH-12-1-0138 TITLE: Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-ray Phase CT PRINCIPAL INVESTIGATOR

  12. Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Telling, Neil D; Everett, James; Collingwood, Joanna F; Dobson, Jon; van der Laan, Gerrit; Gallagher, Joseph J; Wang, Jian; Hitchcock, Adam P

    2017-10-19

    A signature characteristic of Alzheimer's disease (AD) is aggregation of amyloid-beta (Aβ) fibrils in the brain. Nevertheless, the links between Aβ and AD pathology remain incompletely understood. It has been proposed that neurotoxicity arising from aggregation of the Aβ 1-42 peptide can in part be explained by metal ion binding interactions. Using advanced X-ray microscopy techniques at sub-micron resolution, we investigated relationships between iron biochemistry and AD pathology in intact cortex from an established mouse model over-producing Aβ. We found a direct correlation of amyloid plaque morphology with iron, and evidence for the formation of an iron-amyloid complex. We also show that iron biomineral deposits in the cortical tissue contain the mineral magnetite, and provide evidence that Aβ-induced chemical reduction of iron could occur in vivo. Our observations point to the specific role of iron in amyloid deposition and AD pathology, and may impact development of iron-modifying therapeutics for AD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Targeting the Nrf2/Amyloid-Beta Liaison in Alzheimer's Disease: A Rational Approach.

    Science.gov (United States)

    Simoni, Elena; Serafini, Melania M; Caporaso, Roberta; Marchetti, Chiara; Racchi, Marco; Minarini, Anna; Bartolini, Manuela; Lanni, Cristina; Rosini, Michela

    2017-07-19

    Amyloid is a prominent feature of Alzheimer's disease (AD). Yet, a linear linkage between amyloid-β peptide (Aβ) and the disease onset and progression has recently been questioned. In this context, the crucial partnership between Aβ and Nrf2 pathways is acquiring paramount importance, offering prospects for deciphering the Aβ-centered disease network. Here, we report on a new class of antiaggregating agents rationally designed to simultaneously activate transcription-based antioxidant responses, whose lead 1 showed interesting properties in a preliminary investigation. Relying on the requirements of Aβ recognition, we identified the catechol derivative 12. In SH-SY5Y neuroblastoma cells, 12 combined remarkable free radical scavenger properties to the ability to trigger the Nrf2 pathway and induce the Nrf2-dependent defensive gene NQO1 by means of electrophilic activation of the transcriptional response. Moreover, 12 prevented the formation of cytotoxic stable oligomeric intermediates, being significantly more effective, and per se less toxic, than prototype 1. More importantly, as different chemical features were exploited to regulate Nrf2 and Aβ activities, the two pathways could be tuned independently. These findings point to compound 12 and its derivatives as promising tools for investigating the therapeutic potential of the Nrf2/Aβ cellular network, laying foundation for generating new drug leads to confront AD.

  15. Mathematical model on Alzheimer's disease.

    Science.gov (United States)

    Hao, Wenrui; Friedman, Avner

    2016-11-18

    Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer's patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually. The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials. Based on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.

  16. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia.

    Science.gov (United States)

    Thomas, Taya; Miners, Scott; Love, Seth

    2015-04-01

    Perfusion is reduced in the cerebral neocortex in Alzheimer's disease. We have explored some of the mechanisms, by measurement of perfusion-sensitive and disease-related proteins in post-mortem tissue from Alzheimer's disease, vascular dementia and age-matched control brains. To distinguish physiological from pathological reduction in perfusion (i.e. reduction exceeding the decline in metabolic demand), we measured the concentration of vascular endothelial growth factor (VEGF), a protein induced under conditions of tissue hypoxia through the actions of hypoxia-inducible factors, and the myelin associated glycoprotein to proteolipid protein 1 (MAG:PLP1) ratio, which declines in chronically hypoperfused brain tissue. To evaluate possible mechanisms of hypoperfusion, we also measured the levels of amyloid-β40, amyloid-β42, von Willebrand factor (VWF; a measure of microvascular density) and the potent vasoconstrictor endothelin 1 (EDN1); we assayed the activity of angiotensin I converting enzyme (ACE), which catalyses the production of another potent vasoconstrictor, angiotensin II; and we scored the severity of arteriolosclerotic small vessel disease and cerebral amyloid angiopathy, and determined the Braak tangle stage. VEGF was markedly increased in frontal and parahippocampal cortex in Alzheimer's disease but only slightly and not significantly in vascular dementia. In frontal cortex the MAG:PLP1 ratio was significantly reduced in Alzheimer's disease and even more so in vascular dementia. VEGF but not MAG:PLP1 increased with Alzheimer's disease severity, as measured by Braak tangle stage, and correlated with amyloid-β42 and amyloid-β42: amyloid-β40 but not amyloid-β40. Although MAG:PLP1 tended to be lowest in cortex from patients with severe small vessel disease or cerebral amyloid angiopathy, neither VEGF nor MAG:PLP1 correlated significantly with the severity of structural vascular pathology (small vessel disease, cerebral amyloid angiopathy or VWF

  17. Alzheimer's disease: is a vaccine possible?

    International Nuclear Information System (INIS)

    Alves, R.P.S.; Yang, M.J.; Batista, M.T.; Ferreira, L.C.S.

    2014-01-01

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility

  18. Alzheimer's disease: is a vaccine possible?

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.P.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Yang, M.J. [Instituto Butantan, Laboratório de Genética, São Paulo, SP, Brasil, Laboratório de Genética, Instituto Butantan, São Paulo, SP (Brazil); Batista, M.T.; Ferreira, L.C.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility.

  19. Epidemiology of Alzheimer disease.

    Science.gov (United States)

    Mayeux, Richard; Stern, Yaakov

    2012-08-01

    The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease.

  20. Novel approaches for immunotherapeutic intervention in Alzheimer's disease.

    Science.gov (United States)

    Vasilevko, Vitaly; Cribbs, David H

    2006-07-01

    Immunotherapy can attenuate amyloid neuropathology and improve cognitive function in transgenic models of Alzheimer's disease. However, the first clinical trial was halted when 6% of the Alzheimer's patients developed aseptic meningoencephalitis. Postmortem analysis of two cases with meningoencephalitis showed robust glial activation, T-cell infiltration and sporadic clearance of Abeta. Interestingly, transgenic mouse models of Alzheimer's disease failed as predictors of these adverse inflammatory events. However there are now several studies with amyloid precursor protein transgenic mice that have reported an increased risk of microhemorrhages at sites of cerebrovascular amyloid deposits and because approximately 80% of Alzheimer's patient's have cerebrovascular pathology, there is concern regarding clinical trials using passive administration of humanized anti-Abeta antibodies. Although many studies have now been published on immunotherapy in mouse models, the mechanism(s) of antibody-mediated clearance of beta-amyloid from the brain, and the cause of the antibody-induced microhemorrhages remain unclear. In this review, we will discuss the most recent results from the first clinical trial, offer speculation on possible causes for the failure of the trial, review data on antibody-mediated clearance mechanisms, explore the role of complement and inflammation in the clearance of beta-amyloid, and suggest novel strategies for avoiding problems in future clinical trials. The central hypothesis being proposed in this review is that anti-Abeta antibodies delivered directly to the CNS at the sites of amyloid deposits will be far more effective at clearing Abeta and safer than active or passive immunization strategies where the majority of the antibodies are in the periphery.

  1. Novel Detox Gel Depot sequesters β-Amyloid Peptides in a mouse model of Alzheimer's Disease.

    Science.gov (United States)

    Sundaram, Ranjini K; Kasinathan, Chinnaswamy; Stein, Stanley; Sundaram, Pazhani

    2012-06-01

    Alzheimer's Disease (AD), a debilitating neurodegenerative disease is caused by aggregation and accumulation of a 39-43 amino acid peptide (amyloid β or Aβ) in brain parenchyma and cerebrovasculature. The rational approach would be to use drugs that interfere with Aβ-Aβ interaction and disrupt polymerization. Peptide ligands capable of binding to the KLVFF (amino acids 16-20) region in the Aβ molecule have been investigated as possible drug candidates. Retro-inverso (RI) peptide of this pentapeptide, ffvlk, has been shown to bind artificial fibrils made from Aβ with moderate affinity. We hypothesized that a 'detox gel', which is synthesized by covalently linking a tetrameric version of RI peptide ffvlk to poly (ethylene glycol) polymer chains will act like a 'sink' to capture Aβ peptides from the surrounding environment. We previously demonstrated that this hypothesis works in an in vitro system. The present study extended this hypothesis to an in vivo mouse model of Alzheimer's Disease and determined the therapeutic effect of our detox gel. We injected detox gel subcutaneously to AD model mice and analyzed brain levels of Aβ-42 and improvement in memory parameters. The results showed a reduction of brain amyloid burden in detox gel treated mice. Memory parameters in the treated mice improved. No undesirable immune response was observed. The data strongly suggest that our detox gel can be used as an effective therapy to deplete brain Aβ levels. Considering recent abandonment of failed antibody based therapies, our detox gel appears to have the advantage of being a non-immune based therapy.

  2. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients

    DEFF Research Database (Denmark)

    Sennvik, K; Fastbom, J; Blomberg, M

    2000-01-01

    Alternative cleavage of the amyloid precursor protein (APP) results in generation and secretion of both soluble APP (sAPP) and beta-amyloid (Abeta). Abeta is the main component of the amyloid depositions in the brains of Alzheimer's disease (AD) patients. Using Western blotting, we compared...... the levels of alpha-secretase cleaved sAPP, beta-secretase cleaved sAPP and total sAPP, in cerebrospinal fluid (CSF) from 13 sporadic AD patients and 13 healthy controls. Our findings show significant amounts of beta-secretase cleaved sAPP in CSF. There was no statistically significant difference...... in the levels of beta-secretase cleaved sAPP between AD patients and controls. The levels of alpha-secretase cleaved sAPP and total sAPP were, however, found to be significantly lower in the AD patients than in the controls....

  3. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    OpenAIRE

    Van Leuven Fred; Wera Stefaan; Van der Auwera Ingrid; Henderson Samuel T

    2005-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ) deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results S...

  4. Regulation of gamma-Secretase in Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter; Jap, Bing

    2007-02-07

    The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol and sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.

  5. Early neurovascular dysfunction in a transgenic rat model of Alzheimer?s disease

    OpenAIRE

    Joo, Illsung L.; Lai, Aaron Y.; Bazzigaluppi, Paolo; Koletar, Margaret M.; Dorr, Adrienne; Brown, Mary E.; Thomason, Lynsie A. M.; Sled, John G.; McLaurin, JoAnne; Stefanovic, Bojana

    2017-01-01

    Alzheimer?s disease (AD), pathologically characterized by amyloid-? peptide (A?) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some A?-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease p...

  6. Recent developments in Alzheimer's disease therapeutics

    Directory of Open Access Journals (Sweden)

    Aisen Paul S

    2009-02-01

    Full Text Available Abstract Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed.

  7. Epidemiology of Alzheimer Disease

    Science.gov (United States)

    Mayeux, Richard; Stern, Yaakov

    2012-01-01

    The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease. PMID:22908189

  8. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Yasushi Kishimoto

    2016-12-01

    Full Text Available This data article contains supporting information regarding the research article entitled “Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease” (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016 [1]. Triple-transgenic (3×Tg-Alzheimer׳s disease (AD model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI. Correspondingly, amyloid-β (Aβ deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  9. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

    Science.gov (United States)

    Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui

    2014-08-09

    Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.

  10. Combined Creutzfeldt-Jakob/ Alzheimer's Disease Cases are Important in Search for Microbes in Alzheimer's Disease.

    Science.gov (United States)

    Bastian, Frank O

    2017-01-01

    The question whether Alzheimer's disease is infectious as brought up in the recent editorial published in the Journal of Alzheimer's Disease is complicated by the controversy whether the causal agent is a microbe or a misfolded host protein (amyloid). The replicating amyloid (prion) theory, based upon data from studies of Creutzfeldt-Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs), has been challenged since the prion can be separated from TSE infectivity, and spiroplasma, a wall-less bacterium, has been shown to be involved in the pathogenesis of CJD. Further support for a microbial cause for AD comes from occurrence of mixed CJD/AD cases involving up to 15% of AD brains submitted to brain banks. The association of CJD with AD suggests a common etiology rather than simply being a medical curiosity. A co-infection with the transmissible agent of CJD, which we propose to be a Spiroplasma sp., would explain the diversity of bacteria shown to be associated with cases of AD.

  11. Down's Syndrome with Alzheimer's Disease-Like Pathology: What Can It Teach Us about the Amyloid Cascade Hypothesis?

    Directory of Open Access Journals (Sweden)

    Rania M. Bakkar

    2010-01-01

    Full Text Available Down's syndrome (DS, trisomy 21 represents a complex genetic abnormality that leads to pathology in later life that is similar to Alzheimer's disease (AD. We compared two cases of DS with APOE 3/3 genotypes, a similar age at death, and comparable amyloid-beta 42 peptide (A42 burdens in the brain but that differed markedly in the severity of AD-like pathology. One exhibited extensive neurofibrillary pathology whereas the other showed minimal features of this type. Comparable loads of A42 could relate to the cases' similar life-time accumulation of A due to trisomy 21-enhanced metabolism of amyloid precursor protein (APP. The cases' significant difference in AD-like pathology, however, suggests that parenchymal deposition of A42, even when extensive, may not inevitably trigger AD-like tau pathology (though it may be necessary. Thus, these observations of a natural experiment may contribute to understanding the nuances of the amyloid cascade hypothesis of AD pathogenesis.

  12. Exploring APOE genotype effects on Alzheimer's disease risk and amyloid β burden in individuals with subjective cognitive decline: The FundacioACE Healthy Brain Initiative (FACEHBI) study baseline results.

    Science.gov (United States)

    Moreno-Grau, Sonia; Rodríguez-Gómez, Octavio; Sanabria, Ángela; Pérez-Cordón, Alba; Sánchez-Ruiz, Domingo; Abdelnour, Carla; Valero, Sergi; Hernández, Isabel; Rosende-Roca, Maitée; Mauleón, Ana; Vargas, Liliana; Lafuente, Asunción; Gil, Silvia; Santos-Santos, Miguel Ángel; Alegret, Montserrat; Espinosa, Ana; Ortega, Gemma; Guitart, Marina; Gailhajanet, Anna; de Rojas, Itziar; Sotolongo-Grau, Óscar; Ruiz, Susana; Aguilera, Nuria; Papasey, Judith; Martín, Elvira; Peleja, Esther; Lomeña, Francisco; Campos, Francisco; Vivas, Assumpta; Gómez-Chiari, Marta; Tejero, Miguel Ángel; Giménez, Joan; Serrano-Ríos, Manuel; Orellana, Adelina; Tárraga, Lluís; Ruiz, Agustín; Boada, Mercè

    2018-05-01

    Subjective cognitive decline (SCD) has been proposed as a potential preclinical stage of Alzheimer's disease (AD). Nevertheless, the genetic and biomarker profiles of SCD individuals remain mostly unexplored. We evaluated apolipoprotein E (APOE) ε4's effect in the risk of presenting SCD, using the Fundacio ACE Healthy Brain Initiative (FACEHBI) SCD cohort and Spanish controls, and performed a meta-analysis addressing the same question. We assessed the relationship between APOE dosage and brain amyloid burden in the FACEHBI SCD and Alzheimer's Disease Neuroimaging Initiative cohorts. Analysis of the FACEHBI cohort and the meta-analysis demonstrated SCD individuals presented higher allelic frequencies of APOE ε4 with respect to controls. APOE dosage explained 9% (FACEHBI cohort) and 11% (FACEHBI and Alzheimer's Disease Neuroimaging Initiative cohorts) of the variance of cerebral amyloid levels. The FACEHBI sample presents APOE ε4 enrichment, suggesting that a pool of AD patients is nested in our sample. Cerebral amyloid levels are partially explained by the APOE allele dosage, suggesting that other genetic or epigenetic factors are involved in this AD endophenotype. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    Science.gov (United States)

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  14. Amyloid PET imaging in Alzheimer's disease: a comparison of three radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Landau, S.M.; Jagust, W.J. [University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, CA (United States); Thomas, B.A. [University College London, Institute of Nuclear Medicine, London (United Kingdom); Thurfjell, L. [GE Healthcare, Uppsala (Sweden); Schmidt, M. [Janssen Pharmaceutica, NV, Beerse (Belgium); Margolin, R. [Janssen Alzheimer Immunotherapy, South San Francisco, CA (United States); Mintun, M.; Pontecorvo, M. [Avid Radiopharmaceuticals, Inc., Philadelphia, PA (United States); Baker, S.L. [Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, CA (United States); Collaboration: The Alzheimer' s Disease Neuroimaging Initiative

    2014-07-15

    The increasing use of amyloid PET in Alzheimer's disease research and clinical trials has motivated efforts to standardize methodology. We compared retention of the {sup 11}C radiotracer Pittsburgh Compound B (PiB) and that of two {sup 18}F amyloid radiotracers (florbetapir and flutemetamol) using two study populations. We also examined the feasibility of converting between tracer-specific measures, using PiB as the common link between the two {sup 18}F tracers. One group of 40 subjects underwent PiB and flutemetamol imaging sessions and a separate group of 32 subjects underwent PiB and florbetapir imaging sessions. We compared cortical and white matter retention for each {sup 18}F tracer relative to that of PiB, as well as retention in several reference regions and image analysis methods. Correlations between tracer pairs were used to convert tracer-specific threshold values for amyloid positivity between tracers. Cortical retention for each pair of tracers was strongly correlated regardless of reference region (PiB-flutemetamol, ρ = 0.84-0.99; PiB-florbetapir, ρ = 0.83-0.97) and analysis method (ρ = 0.90-0.99). Compared to PiB, flutemetamol had higher white matter retention, while florbetapir had lower cortical retention. Two previously established independent thresholds for amyloid positivity were highly consistent when values were converted between tracer pairs. Despite differing white and grey matter retention characteristics, cortical retention for each {sup 18}F tracer was highly correlated with that of PiB, enabling conversion of thresholds across tracer measurement scales with a high level of internal consistency. Standardization of analysis methods and measurement scales may facilitate the comparison of amyloid PET data obtained using different tracers. (orig.)

  15. Neuropathological Alterations in Alzheimer Disease

    Science.gov (United States)

    Serrano-Pozo, Alberto; Frosch, Matthew P.; Masliah, Eliezer; Hyman, Bradley T.

    2011-01-01

    The neuropathological hallmarks of Alzheimer disease (AD) include “positive” lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and “negative” lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between “normal” aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI. PMID:22229116

  16. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease.

    Science.gov (United States)

    Hanenberg, Michael; McAfoose, Jordan; Kulic, Luka; Welt, Tobias; Wirth, Fabian; Parizek, Petra; Strobel, Lisa; Cattepoel, Susann; Späni, Claudia; Derungs, Rebecca; Maier, Marcel; Plückthun, Andreas; Nitsch, Roger M

    2014-09-26

    Passive immunization with anti-amyloid-β peptide (Aβ) antibodies is effective in animal models of Alzheimer disease. With the advent of efficient in vitro selection technologies, the novel class of designed ankyrin repeat proteins (DARPins) presents an attractive alternative to the immunoglobulin scaffold. DARPins are small and highly stable proteins with a compact modular architecture ideal for high affinity protein-protein interactions. In this report, we describe the selection, binding profile, and epitope analysis of Aβ-specific DARPins. We further showed their ability to delay Aβ aggregation and prevent Aβ-mediated neurotoxicity in vitro. To demonstrate their therapeutic potential in vivo, mono- and trivalent Aβ-specific DARPins (D23 and 3×D23) were infused intracerebroventricularly into the brains of 11-month-old Tg2576 mice over 4 weeks. Both D23 and 3×D23 treatments were shown to result in improved cognitive performance and reduced soluble Aβ levels. These findings demonstrate the therapeutic potential of Aβ-specific DARPins for the treatment of Alzheimer disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1.

    LENUS (Irish Health Repository)

    Yu, Hoi-Tin

    2010-03-01

    FE65 is a neuronal-enriched adaptor protein that binds to the Alzheimer\\'s disease amyloid precursor protein (APP). FE65 forms a transcriptionally active complex with the APP intracellular domain (AICD). The precise gene targets for this complex are unclear but several Alzheimer\\'s disease-linked genes have been proposed. Additionally, evidence suggests that FE65 influences APP metabolism. The mechanism by which FE65 expression is regulated is as yet unknown. To gain insight into the regulatory mechanism, we cloned a 1.6 kb fragment upstream of the human FE65 gene and found that it possesses particularly strong promoter activity in neurones. To delineate essential regions in the human FE65 promoter, a series of deletion mutants were generated. The minimal FE65 promoter was located between -100 and +5, which contains a functional Sp1 site. Overexpression of the transcription factor Sp1 potentiates the FE65 promoter activity. Conversely, suppression of the FE65 promoter was observed in cells either treated with an Sp1 inhibitor or in which Sp1 was knocked down. Furthermore, reduced levels of Sp1 resulted in downregulation of endogenous FE65 mRNA and protein. These findings reveal that Sp1 plays a crucial role in transcriptional control of the human FE65 gene.

  19. Telomere shortening reduces Alzheimer's disease amyloid pathology in mice

    NARCIS (Netherlands)

    Rolyan, Harshvardhan; Scheffold, Annika; Heinrich, Annette; Begus-Nahrmann, Yvonne; Langkopf, Britta Heike; Hoelter, Sabine M.; Vogt-Weisenhorn, Daniela M.; Liss, Birgit; Wurst, Wolfgang; Lie, Dieter Chichung; Thal, Dietmar Rudolf; Biber, Knut; Rudolph, Karl Lenhard

    Alzheimer's disease is a neurodegenerative disorder of the elderly and advancing age is the major risk factor for Alzheimer's disease development. Telomere shortening represents one of the molecular causes of ageing that limits the proliferative capacity of cells, including neural stem cells.

  20. Genome instability in Alzheimer disease

    DEFF Research Database (Denmark)

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis...

  1. Multi-potent Natural Scaffolds Targeting Amyloid Cascade: In Search of Alzheimer's Disease Therapeutics.

    Science.gov (United States)

    Chakraborty, Sandipan

    2017-01-01

    Alzheimer's Disease (AD) once considered a rare disorder emerges as a major health concern in recent times. The disease pathogenesis is very complex and yet to be understood completely. However, "Amyloid Cascade" is the central event in disease pathogenesis. Several proteins of the amyloid cascade are currently being considered as potential targets for AD therapeutics discovery. Many potential compounds are in clinical trials, but till now there is no known cure for the disease. Recent years have witnessed remarkable research interest in the search of novel concepts in drug designing for AD. Multi-targeted ligand design is a paradigm shift in conventional drug discovery. In this process rather than designing ligands targeting a single receptor, novel ligands have been designed/ synthesized that can simultaneously target many pathways involved in disease pathogenesis. Here, recent developments in computational drug designing protocols to identify multi-targeted ligand for AD have been discussed. Therapeutic potential of different multi-potent compounds also has been discussed briefly. Prime emphasis has been given to multi-potent ligand from natural resources. Polyphenols are an interesting group of compounds which show efficacy against a wide range of disease and have the property to exhibit multi-potency. Several groups attempted to identify novel multi-potent phytochemicals for AD therapy. Multi-potency of several polyphenols or compounds synthesized using the poly-phenolic scaffolds have been briefly discussed here. However, the multi-targeted drug designing for AD is still in early stages, more advancement in drug designing method/algorithm developments is urgently required to discover more efficient compounds for AD therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent

    DEFF Research Database (Denmark)

    Hartlage-Rübsamen, Maike; Zeitschel, Ulrike; Apelt, Jenny

    2003-01-01

    The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental...... paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients....

  3. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    Science.gov (United States)

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Bound Aβ(1–40) features a β-hairpin comprising residues 17–36, providing the first high-resolution structure of Aβ in β conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Aβ. ZAβ3 stabilizes the β-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Aβ hairpin within a large hydrophobic tunnel-like cavity. Consequently, ZAβ3 acts as a stoichiometric inhibitor of Aβ fibrillation. The selected Aβ conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates. PMID:18375754

  4. Disease-modifying drugs in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ghezzi L

    2013-12-01

    Full Text Available Laura Ghezzi, Elio Scarpini, Daniela Galimberti Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy Abstract: Alzheimer's disease (AD is an age-dependent neurodegenerative disorder and the most common cause of dementia. The early stages of AD are characterized by short-term memory loss. Once the disease progresses, patients experience difficulties in sense of direction, oral communication, calculation, ability to learn, and cognitive thinking. The median duration of the disease is 10 years. The pathology is characterized by deposition of amyloid beta peptide (so-called senile plaques and tau protein in the form of neurofibrillary tangles. Currently, two classes of drugs are licensed by the European Medicines Agency for the treatment of AD, ie, acetylcholinesterase inhibitors for mild to moderate AD, and memantine, an N-methyl-D-aspartate receptor antagonist, for moderate and severe AD. Treatment with acetylcholinesterase inhibitors or memantine aims at slowing progression and controlling symptoms, whereas drugs under development are intended to modify the pathologic steps leading to AD. Herein, we review the clinical features, pharmacologic properties, and cost-effectiveness of the available acetylcholinesterase inhibitors and memantine, and focus on disease-modifying drugs aiming to interfere with the amyloid beta peptide, including vaccination, passive immunization, and tau deposition. Keywords: Alzheimer's disease, acetylcholinesterase inhibitors, memantine, disease-modifying drugs, diagnosis, treatment

  5. Oxidative Stress as an Important Factor in the Pathophysiology of alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tanise Gemelli,

    2013-06-01

    Full Text Available Oxidative stress has been associated to play a crucial role in the pathogenesis of many diseases, including neurodegenerative diseases. Alzheimer's disease is an age-related neurodegenerative disorder, which is recognized as the most common form of dementia. In this article, the aim was to review the involvement of oxidative stress on Alzheimer's disease. Alzheimer's disease is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid-? peptide and loss of synapses. Moreover, the brain and the nervous system are more prone to oxidative stress and oxidative damage influences the neurodegenerative diseases. However, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in proteins constitute complex intertwined pathologies that lead to neuronal cell death. Mitochondrial mutations on deoxyribonucleic acid and oxidative stress contribute to aging, affecting different cell signaling systems, as well as the connectivity and neuronal cell death may lead to the largest risk factor for neurodegenerative diseases such as Alzheimer's Disease.

  6. X11beta rescues memory and long-term potentiation deficits in Alzheimer's disease APPswe Tg2576 mice.

    LENUS (Irish Health Repository)

    Mitchell, Jacqueline C

    2009-12-01

    Increased production and deposition of amyloid beta-protein (Abeta) are believed to be key pathogenic events in Alzheimer\\'s disease. As such, routes for lowering cerebral Abeta levels represent potential therapeutic targets for Alzheimer\\'s disease. X11beta is a neuronal adaptor protein that binds to the intracellular domain of the amyloid precursor protein (APP). Overexpression of X11beta inhibits Abeta production in a number of experimental systems. However, whether these changes to APP processing and Abeta production induced by X11beta overexpression also induce beneficial effects to memory and synaptic plasticity are not known. We report here that X11beta-mediated reduction in cerebral Abeta is associated with normalization of both cognition and in vivo long-term potentiation in aged APPswe Tg2576 transgenic mice that model the amyloid pathology of Alzheimer\\'s disease. Overexpression of X11beta itself has no detectable adverse effects upon mouse behaviour. These findings support the notion that modulation of X11beta function represents a therapeutic target for Abeta-mediated neuronal dysfunction in Alzheimer\\'s disease.

  7. Treatment of Alzheimer disease.

    Science.gov (United States)

    Winslow, Bradford T; Onysko, Mary K; Stob, Christian M; Hazlewood, Kathleen A

    2011-06-15

    Alzheimer disease is the most common form of dementia, affecting nearly one-half [corrected] of Americans older than 85 years. It is characterized by progressive memory loss and cognitive decline. Amyloid plaque accumulation, neurofibrillary tau tangles, and depletion of acetylcholine are among the pathologic manifestations of Alzheimer disease. Although there are no proven modalities for preventing Alzheimer disease, hypertension treatment, omega-3 fatty acid supplementation, physical activity, and cognitive engagement demonstrate modest potential. Acetylcholinesterase inhibitors are first-line medications for the treatment of Alzheimer disease, and are associated with mild improvements in cognitive function, behavior, and activities of daily living; however, the clinical relevance of these effects is unclear. The most common adverse effects of acetylcholinesterase inhibitors are nausea, vomiting, diarrhea, dizziness, confusion, and cardiac arrhythmias. Short-term use of the N-methyl-D-aspartate receptor antagonist memantine can modestly improve measures of cognition, behavior, and activities of daily living in patients with moderate to severe Alzheimer disease. Memantine can also be used in combination with acetylcholinesterase inhibitors. Memantine is generally well tolerated, but whether its benefits produce clinically meaningful improvement is controversial. Although N-methyl-D-aspartate receptor antagonists and acetylcholinesterase inhibitors can slow the progression of Alzheimer disease, no pharmacologic agents can reverse the progression. Atypical antipsychotics can improve some behavioral symptoms, but have been associated with increased mortality rates in older patients with dementia. There is conflicting evidence about the benefit of selegiline, testosterone, and ginkgo for the treatment of Alzheimer disease. There is no evidence supporting the beneficial effects of vitamin E, estrogen, or nonsteroidal anti-inflammatory drug therapy.

  8. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases

    OpenAIRE

    Parvez Alam; Sumit Kumar Chaturvedi; Mohammad Khursheed Siddiqi; Ravi Kant Rajpoot; Mohd Rehan Ajmal; Masihuz Zaman; Rizwan Hasan Khan

    2016-01-01

    Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer?s, Parkinson?s and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and A?-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demons...

  9. A novel neurotrophic drug for cognitive enhancement and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qi Chen

    Full Text Available Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD, the focus is the amyloid beta peptide (Aß that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model.

  10. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Karagiannis, Tom C; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  11. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tom C. Karagiannis

    2012-02-01

    Full Text Available Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  12. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer's parents

    DEFF Research Database (Denmark)

    Mosconi, Lisa; Rinne, Juha O; Tsui, Wai H

    2013-01-01

    This study examines the relationship between fibrillar beta-amyloid (Aβ) deposition and reduced glucose metabolism, a proxy for neuronal dysfunction, in cognitively normal (NL) individuals with a parent affected by late-onset Alzheimer's disease (AD). Forty-seven 40-80-year-old NL received positr...

  13. Aluminium and Alzheimer's disease: the science that describes the link

    National Research Council Canada - National Science Library

    Exley, Christopher

    2001-01-01

    ... that has been encircled is the gene for the amyloid precursor protein. (Thanks to Walter Lukiw for supplying this information.) Aluminium and Alzheimer's Disease: The Science that Describes the LinkAluminium and Alzheimer's Disease The Science that Describes the Link Edited by Christopher Exley Birchall Centre for Inorganic Chemistry and Materials Scienc...

  14. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  15. The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Adriaanse, Sofie M. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); VU University Medical Center, Department of Radiology and Nuclear Medicine, Alzheimer Center, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Van Dijk, Koene R.A. [Harvard University, Department of Psychology, Center for Brain Science, Cambridge, MA (United States); Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Ossenkoppele, Rik; Tolboom, Nelleke; Zwan, Marissa D.; Barkhof, Frederik; Berckel, Bart N.M. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Alzheimer Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Reuter, Martin [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Division of Health Sciences and Technology, Cambridge, MA (United States); Yaqub, Maqsood; Boellaard, Ronald; Windhorst, Albert D.; Lammertsma, Adriaan A. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Flier, Wiesje M. van der; Scheltens, Philip [VU University Medical Center, Department of Neurology, Alzheimer Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands)

    2014-06-15

    The present multimodal neuroimaging study examined whether amyloid pathology and glucose metabolism are related to cortical volume loss over time in Alzheimer's disease (AD) patients and healthy elderly controls. Structural MRI scans of eleven AD patients and ten controls were available at baseline and follow-up (mean interval 2.5 years). Change in brain structure over time was defined as percent change of cortical volume within seven a-priori defined regions that typically show the strongest structural loss in AD. In addition, two PET scans were performed at baseline: [{sup 11}C]PIB to assess amyloid-β plaque load and [{sup 18}F]FDG to assess glucose metabolism. [{sup 11}C]PIB binding and [{sup 18}F]FDG uptake were measured in the precuneus, a region in which both amyloid deposition and glucose hypometabolism occur early in the course of AD. While amyloid-β plaque load at baseline was not related to cortical volume loss over time in either group, glucose metabolism within the group of AD patients was significantly related to volume loss over time (rho = 0.56, p < 0.05). The present study shows that in a group of AD patients amyloid-β plaque load as measured by [{sup 11}C]PIB behaves as a trait marker (i.e., all AD patients showed elevated levels of amyloid, not related to subsequent disease course), whilst hypometabolism as measured by [{sup 18}F]FDG changed over time indicating that it could serve as a state marker that is predictive of neurodegeneration. (orig.)

  16. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease

    International Nuclear Information System (INIS)

    van Duinen, S.G.; Castano, E.M.; Prelli, F.; Bots, G.T.A.B.; Luyendijk, W.; Frangione, B.

    1987-01-01

    Hereditary cerebral hemorrhage with amyloidosis in Dutch patients is an autosomal dominant form of vascular amyloidosis restricted to the leptomeninges and cerebral cortex. Clinically the disease is characterized by cerebral hemorrhages leading to an early death. Immunohistochemical studies of five patients revealed that the vascular amyloid deposits reacted intensely with an antiserum raised against a synthetic peptide homologous to the Alzheimer disease-related β-protein. Silver stain-positive, senile plaque-like structures were also labeled by the antiserum, yet these lesions lacked the dense amyloid cores present in typical plaques of Alzheimer disease. No neurofibrillary tangles were present. Amyloid fibrils were purified from the leptomeningeal vessels of one patient who clinically had no signs of dementia. The protein had a molecular weight of ∼ 4000 and its partial amino acid sequence to position 21 showed homology to the β-protein of Alzheimer disease and Down syndrome. These results suggest that hereditary cerebral hemorrhage with amyloidosis of Dutch origin is pathogenetically related to Alzheimer disease and support the concept that the initial amyloid deposition in this disorder occurs in the vessel walls before damaging the brain parenchyma. Thus, deposition of β-protein in brain tissue seems to be related to a spectrum of diseases involving vascular syndromes, progressive dementia, or both

  17. Disclosure of amyloid status is not a barrier to recruitment in preclinical Alzheimer's disease clinical trials.

    Science.gov (United States)

    Grill, Joshua D; Zhou, Yan; Elashoff, David; Karlawish, Jason

    2016-03-01

    Preclinical Alzheimer's disease (AD) clinical trials may require participants to learn if they meet biomarker enrollment criteria. To examine whether this requirement will impact trial recruitment, we presented 132 older community volunteers who self-reported normal cognition with 1 of 2 hypothetical informed consent forms (ICFs) describing an AD prevention clinical trial. Both ICFs described amyloid Positron Emission Tomography scans. One ICF stated that scan results would not be shared with the participants (blinded enrollment); the other stated that only persons with elevated amyloid would be eligible (transparent enrollment). Participants rated their likelihood of enrollment and completed an interview with a research assistant. We found no difference between the groups in willingness to participate. Study risks and the requirement of a study partner were reported as the most important factors in the decision whether to enroll. The requirement of biomarker disclosure may not slow recruitment to preclinical AD trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Synthesis and biological evaluation of novel radioiodinated imidazopyridine derivatives for amyloid-β imaging in Alzheimer's disease.

    Science.gov (United States)

    Chen, Chun-Jen; Bando, Kazunori; Ashino, Hiroki; Taguchi, Kazumi; Shiraishi, Hideaki; Fujimoto, Osuke; Kitamura, Chiemi; Matsushima, Satoshi; Fujinaga, Masayuki; Zhang, Ming-Rong; Kasahara, Hiroyuki; Minamizawa, Takao; Jiang, Cheng; Ono, Maiko; Higuchi, Makoto; Suhara, Tetsuya; Yamada, Kazutaka; Ji, Bin

    2014-08-01

    Non-invasive detection for amyloid-β peptide (Aβ) deposition has important significance for the early diagnosis and medical intervention for Alzheimer's disease (AD). In this study, we developed a series of imidazopyridine derivatives as potential imaging agents for single-photon emission computed tomography (SPECT). Two of them, compounds DRK092 and DRM106, showed higher affinity for synthetic human Aβ 1-40 fibrils than did the well-known amyloid-imaging agent IMPY. A metabolite analysis revealed brain-permeable radioactive metabolites of (125)I-labeled DRK092 and IMPY; no radioactive metabolites from (125)I-labeled DRM106 ([(125)I]DRM106) were detected. In addition, in vitro autoradiography clearly demonstrated specific binding of [(125)I]DRM106 in the hippocampal region of AD enriched with Aβ plaques. Thus, our results strongly suggested that compound DRM106 can be used as an imaging agent for SPECT to detect Aβ deposition in AD brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Alzheimer disease : presenilin springs a leak

    NARCIS (Netherlands)

    Gandy, S.; Doeven, M.K.; Poolman, B.

    2006-01-01

    Presenilins are thought to contribute to Alzheimer disease through a protein cleavage reaction that produces neurotoxic amyloid-beta peptides. A new function for presenilins now comes to light - controlling the leakage of calcium out of the endoplasmic reticulum. Is this a serious challenge to the

  20. Immunotherapeutic Strategies for Alzheimer's Disease Treatment

    Directory of Open Access Journals (Sweden)

    Beka Solomon

    2009-01-01

    Full Text Available Naturally occurring antibodies against amyloid-β peptides have been found in human cerebrospinal fluid and in the plasma of healthy individuals, but were significantly lower in Alzheimer's disease (AD patients, suggesting that AD may be an immunodeficient disorder. The performance of anti-amyloid-β antibodies in transgenic mice models of AD showed that they are delivered to the central nervous system, preventing and dissolving amyloid-β plaques. Moreover, these antibodies protected the mice from learning and age-related memory deficits. Active and/or passive immunization against the amyloid-β peptide has been proposed as a method for preventing and/or treating AD. Immunotherapy represents fascinating ways to test the amyloid hypothesis and offers genuine opportunities for AD treatment, but requires careful antigen and antibody selection to maximize efficacy and minimize adverse events.

  1. Increasing the predictive accuracy of amyloid-β blood-borne biomarkers in Alzheimer's disease.

    Science.gov (United States)

    Watt, Andrew D; Perez, Keyla A; Faux, Noel G; Pike, Kerryn E; Rowe, Christopher C; Bourgeat, Pierrick; Salvado, Olivier; Masters, Colin L; Villemagne, Victor L; Barnham, Kevin J

    2011-01-01

    Diagnostic measures for Alzheimer's disease (AD) commonly rely on evaluating the levels of amyloid-β (Aβ) peptides within the cerebrospinal fluid (CSF) of affected individuals. These levels are often combined with levels of an additional non-Aβ marker to increase predictive accuracy. Recent efforts to overcome the invasive nature of CSF collection led to the observation of Aβ species within the blood cellular fraction, however, little is known of what additional biomarkers may be found in this membranous fraction. The current study aimed to undertake a discovery-based proteomic investigation of the blood cellular fraction from AD patients (n = 18) and healthy controls (HC; n = 15) using copper immobilized metal affinity capture and Surface Enhanced Laser Desorption/Ionisation Time-Of-Flight Mass Spectrometry. Three candidate biomarkers were observed which could differentiate AD patients from HC (ROC AUC > 0.8). Bivariate pairwise comparisons revealed significant correlations between these markers and measures of AD severity including; MMSE, composite memory, brain amyloid burden, and hippocampal volume. A partial least squares regression model was generated using the three candidate markers along with blood levels of Aβ. This model was able to distinguish AD from HC with high specificity (90%) and sensitivity (77%) and was able to separate individuals with mild cognitive impairment (MCI) who converted to AD from MCI non-converters. While requiring further characterization, these candidate biomarkers reaffirm the potential efficacy of blood-based investigations into neurodegenerative conditions. Furthermore, the findings indicate that the incorporation of non-amyloid markers into predictive models, function to increase the accuracy of the diagnostic potential of Aβ.

  2. Microsatellite D21D210 (GT-12) allele frequencies in sporadic Alzheimer's disease

    International Nuclear Information System (INIS)

    Lannfelt, L.; Lilius, L.; Viitanen, M.; Winblad, B.; Basun, H.; Houlden, H.; Rossor, M.; Hardy, J.

    1995-01-01

    Four disease-causing mutations have so far been described in the amyloid precursor protein gene on chromosome 21 in familial early-onset Alzheimer's disease. Linkage analysis with a fourteen-allele microsatellite at D21S210 named GT-12 has proven useful in the elucidation of amyloid presursor protein gene involvement in Alzheimer's disease families, as it is closely linked to the gene. Most cases of Alzheimer's disease are thought to be sporadic and not familial. However, evidence from earlier studies suggests an important genetic contribution also in sporadic cases, where gene-environment interaction may contribute to the disease. We have determined frequencies of the GT-12 alleles in 78 Swedish and 49 British sporadic Alzheimer's disease cases and 104 healthy elderly control subjects, to investigate if the disease associates with a particular genotype in GT-12. However, no differences in allele frequencies were observed between any of the groups. (au) (26 refs.)

  3. Spatial distribution of diffuse, primitive, and classic amyloid-beta deposits and blood vessels in the upper laminae of the frontal cortex in Alzheimer disease.

    Science.gov (United States)

    Armstrong, R A; Cairns, N J; Lantos, P L

    1998-12-01

    The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (upper cortical laminae.

  4. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  5. Evaluation of Amyloid Protective Factors and Alzheimer Disease Neurodegeneration Protective Factors in Elderly Individuals.

    Science.gov (United States)

    Vemuri, Prashanthi; Knopman, David S; Lesnick, Timothy G; Przybelski, Scott A; Mielke, Michelle M; Graff-Radford, Jonathan; Murray, Melissa E; Roberts, Rosebud O; Vassilaki, Maria; Lowe, Val J; Machulda, Mary M; Jones, David T; Petersen, Ronald C; Jack, Clifford R

    2017-06-01

    While amyloid and neurodegeneration are viewed together as Alzheimer disease pathophysiology (ADP), the factors that influence amyloid and AD-pattern neurodegeneration may be considerably different. Protection from these ADP factors may be important for aging without significant ADP. To identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration in a population-based sample and to test the hypothesis that "exceptional agers" with advanced ages do not have significant ADP because they have protective factors for amyloid and neurodegeneration. This cohort study conducted a prospective analysis of 942 elderly individuals (70-≥90 years) with magnetic resonance imaging and Pittsburgh compound B-positron emission tomography scans enrolled in the Mayo Clinic Study of Aging, a longitudinal population-based study of cognitive aging in Olmsted County, Minnesota. We operationalized "exceptional aging" without ADP by considering individuals 85 years or older to be without significant evidence of ADP. We evaluated predictors including demographics, APOE, intellectual enrichment, midlife risk factors (physical inactivity, obesity, smoking, diabetes, hypertension, and dyslipidemia), and the total number of late-life cardiac and metabolic conditions. We used multivariate linear regression models to identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration. Using a subsample of the cohort 85 years of age or older, we computed Cohen d-based effect size estimations to compare the quantitative strength of each predictor variable in their contribution with exceptional aging without ADP. The study participants included 423 (45%) women and the average age of participants was 79.7 (5.9) years. Apart from demographics and the APOE genotype, only midlife dyslipidemia was associated with amyloid deposition. Obesity, smoking, diabetes, hypertension, and cardiac and metabolic conditions, but not

  6. Amyloid PET in neurodegenerative diseases with dementia.

    Science.gov (United States)

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance.

    Science.gov (United States)

    Zhu, Zhiyuan; Yan, Jianming; Jiang, Wei; Yao, Xin-gang; Chen, Jing; Chen, Lili; Li, Chenjing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2013-08-07

    Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.

  8. Involvement of receptor tyrosine kinase Tyro3 in amyloidogenic APP processing and β-amyloid deposition in Alzheimer's disease models.

    Directory of Open Access Journals (Sweden)

    Yan Zheng

    Full Text Available Alzheimer's disease (AD is the most common progressive neurodegenerative disease known to humankind. It is characterized by brain atrophy, extracellular amyloid plaques, and intracellular neurofibril tangles. β-Amyloid cascade is considered the major causative player in AD. Up until now, the mechanisms underlying the process of Aβ generation and accumulation in the brain have not been well understood. Tyro3 receptor belongs to the TAM receptor subfamily of receptor protein tyrosine kinases (RPTKs. It is specifically expressed in the neurons of the neocortex and hippocampus. In this study, we established a cell model stably expressing APPswe mutants and producing Aβ. We found that overexpression of Tyro3 receptor in the cell model significantly decreased Aβ generation and also down-regulated the expression of β-site amyloid precursor protein cleaving enzyme (BACE1. However, the effects of Tyro3 were inhibited by its natural ligand, Gas6, in a concentration-dependent manner. In order to confirm the role of Tyro3 in the progression of AD development, we generated an AD transgenic mouse model accompanied by Tyro3 knockdown. We observed a significant increase in the number of amyloid plaques in the hippocampus in the mouse model. More plaque-associated clusters of astroglia were also detected. The present study may help researchers determine the role of Tyro3 receptor in the neuropathology of AD.

  9. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    Science.gov (United States)

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  10. The cell cycle in Alzheimer disease: a unique target for neuropharmacology.

    Science.gov (United States)

    Webber, Kate M; Raina, Arun K; Marlatt, Michael W; Zhu, Xiongwei; Prat, María I; Morelli, Laura; Casadesus, Gemma; Perry, George; Smith, Mark A

    2005-10-01

    Several hypotheses have been proposed attempting to explain the pathogenesis of Alzheimer disease including, among others, theories involving amyloid deposition, tau phosphorylation, oxidative stress, metal ion dysregulation and inflammation. While there is strong evidence suggesting that each one of these proposed mechanisms contributes to disease pathogenesis, none of these mechanisms are able to account for all the physiological changes that occur during the course of the disease. For this reason, we and others have begun the search for a causative factor that predates known features found in Alzheimer disease, and that might therefore be a fundamental initiator of the pathophysiological cascade. We propose that the dysregulation of the cell cycle that occurs in neurons susceptible to degeneration in the hippocampus during Alzheimer disease is a potential causative factor that, together with oxidative stress, would initiate all known pathological events. Neuronal changes supporting alterations in cell cycle control in the etiology of Alzheimer disease include the ectopic expression of markers of the cell cycle, organelle kinesis and cytoskeletal alterations including tau phosphorylation. Such mitotic alterations are not only one of the earliest neuronal abnormalities in the disease, but as discussed herein, are also intimately linked to all of the other pathological hallmarks of Alzheimer disease including tau protein, amyloid beta protein precursor and oxidative stress, and even risk factors such as mutations in the presenilin genes. Therefore, therapeutic interventions targeted toward ameliorating mitotic changes would be predicted to have a profound and positive impact on Alzheimer disease progression.

  11. Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Vega García-Escudero

    2013-01-01

    Full Text Available There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  12. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  13. Magnetoencephalography as a Putative Biomarker for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Edward Zamrini

    2011-01-01

    Full Text Available Alzheimer's Disease (AD is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease, the loss of dendritic spines and of synapses predate such changes. Popular preclinical detection strategies mainly involve cerebrospinal fluid biomarkers, magnetic resonance imaging, metabolic PET scans, and amyloid imaging. One strategy missing from this list involves neurophysiological measures, which might be more sensitive to detect alterations in brain function. The Magnetoencephalography International Consortium of Alzheimer's Disease arose out of the need to advance the use of Magnetoencephalography (MEG, as a tool in AD and pre-AD research. This paper presents a framework for using MEG in dementia research, and for short-term research priorities.

  14. [Antibody therapy for Alzheimer's disease].

    Science.gov (United States)

    Tabira, Takeshi; Matsumoto, Shin-Ei; Jin, Haifeng

    2011-11-01

    In order to avoid Abeta-induced autoimmune encephalitis, several monoclonal and polyclonal antibodies are in clinical trials. These are bapineuzumab, solanezumab, ponezumab, gantenerumab, BAN2401, gammaguard and octagam. Since each antibody has a different antigen epitope of Abeta, anti-amyloid activities are different. It is unknown which antibody is effective for Alzheimer disease, and we must wait for the result of clinical trials. Some patients who developed tissue amyloid plaque immuno-reactive (TAPIR) antibody showed slower decline after AN-1792 vaccination. We developed TAPIR-like monoclonal antibody, which was found to react with Abeta oligomers preferentially.

  15. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease

    Science.gov (United States)

    Downey, Matthew A.; Giammona, Maxwell J.; Lang, Christian A.; Buratto, Steven K.; Singh, Ambuj; Bowers, Michael T.

    2018-04-01

    Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development.

  16. Data-driven models of dominantly-inherited Alzheimer's disease progression.

    Science.gov (United States)

    Oxtoby, Neil P; Young, Alexandra L; Cash, David M; Benzinger, Tammie L S; Fagan, Anne M; Morris, John C; Bateman, Randall J; Fox, Nick C; Schott, Jonathan M; Alexander, Daniel C

    2018-03-22

    Dominantly-inherited Alzheimer's disease is widely hoped to hold the key to developing interventions for sporadic late onset Alzheimer's disease. We use emerging techniques in generative data-driven disease progression modelling to characterize dominantly-inherited Alzheimer's disease progression with unprecedented resolution, and without relying upon familial estimates of years until symptom onset. We retrospectively analysed biomarker data from the sixth data freeze of the Dominantly Inherited Alzheimer Network observational study, including measures of amyloid proteins and neurofibrillary tangles in the brain, regional brain volumes and cortical thicknesses, brain glucose hypometabolism, and cognitive performance from the Mini-Mental State Examination (all adjusted for age, years of education, sex, and head size, as appropriate). Data included 338 participants with known mutation status (211 mutation carriers in three subtypes: 163 PSEN1, 17 PSEN2, and 31 APP) and a baseline visit (age 19-66; up to four visits each, 1.1 ± 1.9 years in duration; spanning 30 years before, to 21 years after, parental age of symptom onset). We used an event-based model to estimate sequences of biomarker changes from baseline data across disease subtypes (mutation groups), and a differential equation model to estimate biomarker trajectories from longitudinal data (up to 66 mutation carriers, all subtypes combined). The two models concur that biomarker abnormality proceeds as follows: amyloid deposition in cortical then subcortical regions (∼24 ± 11 years before onset); phosphorylated tau (17 ± 8 years), tau and amyloid-β changes in cerebrospinal fluid; neurodegeneration first in the putamen and nucleus accumbens (up to 6 ± 2 years); then cognitive decline (7 ± 6 years), cerebral hypometabolism (4 ± 4 years), and further regional neurodegeneration. Our models predicted symptom onset more accurately than predictions that used familial estimates: root mean squared error of 1

  17. Personalized medicine in Alzheimer's disease and depression.

    Science.gov (United States)

    Souslova, Tatiana; Marple, Teresa C; Spiekerman, A Michael; Mohammad, Amin A

    2013-11-01

    Latest research in the mental health field brings new hope to patients and promises to revolutionize the field of psychiatry. Personalized pharmacogenetic tests that aid in diagnosis and treatment choice are now becoming available for clinical practice. Amyloid beta peptide biomarkers in the cerebrospinal fluid of patients with Alzheimer's disease are now available. For the first time, radiologists are able to visualize amyloid plaques specific to Alzheimer's disease in live patients using Positron Emission Tomography-based tests approved by the FDA. A novel blood-based assay has been developed to aid in the diagnosis of depression based on activation of the HPA axis, metabolic, inflammatory and neurochemical pathways. Serotonin reuptake inhibitors have shown increased remission rates in specific ethnic subgroups and Cytochrome P450 gene polymorphisms can predict antidepressant tolerability. The latest research will help to eradicate "trial and error" prescription, ushering in the most personalized medicine to date. Like all major medical breakthroughs, integration of new algorithms and technologies requires sound science and time. But for many mentally ill patients, diagnosis and effective therapy cannot happen fast enough. This review will describe the newest diagnostic tests, treatments and clinical studies for the diagnosis and treatment of Alzheimer's disease and unipolar, major depressive disorder. © 2013 Elsevier Inc. All rights reserved.

  18. Imaging of amyloid using [11C]-PIB PET in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Hatashita, Shizuo; Yamasaki, Hidetomo

    2010-01-01

    We investigated whether [N-methyl- 11 C]2-(4'-metylaminophenyl)-6-hydroxybenzothiazole ([11C]-PIB) positron emission tomography (PET) detects underlying amyloid deposition at clinically different stages of Alzheimer's disease (AD). Post-mortem study of typical AD brain has recently demonstrated that the in vivo retention of PIB is related directly to the amount of insoluble amyloid B peptides, including amyloid plaques. Fifty-six patients who met criteria for AD and 74 age-matched healthy controls (HC) were included. All subjects underwent cognitive testing and 60-min dynamic [11C]-PIB PET. [11C]-PIB data were acquired from 35-60 min after injection. Regions of interest were defined on co-registered MRI and applied to dynamic images. Distribution volume ratios (DVR) of PIB retention were determined using Logan graphical analysis (cerebellar gray as reference region). All 56 patients with AD showed robust increases in PIB retention in cingulate, precuneus, frontal, parietal, and lateral temporal cortical regions (typical PIB AD-pattern). In contrast, there was no PIB retention in cortical regions in all HC subjects. Mean DVR values in 11 patients with moderate AD (clinical dementia rating (CDR): 2.1±0.4) showed significantly higher PIB retention (2.38±0.42, P<0.01) than in HC subjects. The DVR values in 23 patients with very mild AD (CDR: 0.5) and 22 patients with mild AD (CDR: 1.0) were 2.32±0.45 and 2.34±0.42, respectively, and were similar to moderate AD. Mean DVR values in whole cortical regions did not significantly correlated with mini-mental state examination (MMSE) or CDR sum of boxes (SB) score in AD patients. The [11C]-PIB PET scan is potentially useful as a non-invasive method to determine brain amyloid deposition. In vivo PIB PET imaging is distinctive and reliable biomarkers of AD, even in early stage of AD. (author)

  19. Magnetoencephalography as a putative biomarker for Alzheimer's disease

    NARCIS (Netherlands)

    Zamrini, E.; Maestu, F.; Pekkonen, E.; Funke, M.; Makela, J.; Riley, M.; Bajo, R.; Sudre, G.; Fernandez, A.; Castellanos, N.; Del Pozo, F.; Stam, C.J.; van Dijk, B.W.; Bagic, A.; Becker, J.T.

    2011-01-01

    Alzheimer's Disease (AD) is the most common dementia in the elderly and is estimated to affect tens of millions of people worldwide. AD is believed to have a prodromal stage lasting ten or more years. While amyloid deposits, tau filaments, and loss of brain cells are characteristics of the disease,

  20. The sleep-wake cycle and Alzheimer's disease: what do we know?

    Science.gov (United States)

    Lim, Miranda M; Gerstner, Jason R; Holtzman, David M

    2014-01-01

    Sleep-wake disturbances are a highly prevalent and often disabling feature of Alzheimer's disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep-wake cycle, in that as Aβ accumulates, more sleep-wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep-wake cycle itself may influence Alzheimer's disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep-wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD.

  1. Effects of Physical Exercise on Alzheimer's Disease Biomarkers

    DEFF Research Database (Denmark)

    Frederiksen, Kristian Steen; Gjerum, Le; Waldemar, Gunhild

    2018-01-01

    Physical exercise may be an important adjunct to pharmacological treatment of Alzheimer's disease (AD). Animal studies indicate that exercise may be disease modifying through several mechanisms including reduction of AD pathology. We carried out a systematic review of intervention studies...... of physical exercise with hippocampal volume (on MRI), amyloid-β, total tau, phosphorylated tau in cerebrospinal fluid (CSF), 18F-FDG-PET or amyloid PET as outcome measures in healthy subjects, patients with subjective memory complaints, mild cognitive impairment, or AD. We identified a total of 8 studies...

  2. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  3. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Scott B Raymond

    Full Text Available Alzheimer's disease is a neurodegenerative disorder typified by the accumulation of a small protein, beta-amyloid, which aggregates and is the primary component of amyloid plaques. Many new therapeutic and diagnostic agents for reducing amyloid plaques have limited efficacy in vivo because of poor transport across the blood-brain barrier. Here we demonstrate that low-intensity focused ultrasound with a microbubble contrast agent may be used to transiently disrupt the blood-brain barrier, allowing non-invasive, localized delivery of imaging fluorophores and immunotherapeutics directly to amyloid plaques. We administered intravenous Trypan blue, an amyloid staining red fluorophore, and anti-amyloid antibodies, concurrently with focused ultrasound therapy in plaque-bearing, transgenic mouse models of Alzheimer's disease with amyloid pathology. MRI guidance permitted selective treatment and monitoring of plaque-heavy anatomical regions, such as the hippocampus. Treated brain regions exhibited 16.5+/-5.4-fold increase in Trypan blue fluorescence and 2.7+/-1.2-fold increase in anti-amyloid antibodies that localized to amyloid plaques. Ultrasound-enhanced delivery was consistently reproduced in two different transgenic strains (APPswe:PSEN1dE9, PDAPP, across a large age range (9-26 months, with and without MR guidance, and with little or no tissue damage. Ultrasound-mediated, transient blood-brain barrier disruption allows the delivery of both therapeutic and molecular imaging agents in Alzheimer's mouse models, which should aid pre-clinical drug screening and imaging probe development. Furthermore, this technique may be used to deliver a wide variety of small and large molecules to the brain for imaging and therapy in other neurodegenerative diseases.

  4. The Alzheimer's Amyloid-Degrading Peptidase, Neprilysin: Can We Control It?

    Directory of Open Access Journals (Sweden)

    N. N. Nalivaeva

    2012-01-01

    Full Text Available The amyloid cascade hypothesis of Alzheimer's disease (AD postulates that accumulation in the brain of amyloid β-peptide (Aβ is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs. During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance.

  5. From here to epilepsy: the risk of seizure in patients with Alzheimer's disease.

    Science.gov (United States)

    Nicastro, Nicolas; Assal, Frédéric; Seeck, Margitta

    2016-03-01

    To describe the association between Alzheimer's disease and seizures by reviewing epidemiological data from available literature and to assess the putative pathophysiological links between neurodegeneration and altered cortical excitability. We also discuss specific antiepileptic treatment strategies in patients with Alzheimer's disease, as well as transient epileptic amnesia as a possible crossroads between degeneration and epilepsy. Regarding epidemiology, we searched publications in Pubmed, Medline, Scopus and Web of Science (until September 2015) using the keywords "incidence", "prevalence" and "frequency", as well as "Alzheimer's disease" and "seizures". In addition, therapeutic aspects for seizures in Alzheimer's disease were searched using the key words "antiepileptic drugs", "seizure treatment" and "Alzheimer". The prevalence and incidence rates of seizures were found to be increased 2 to 6-fold in patients with Alzheimer's disease compared to age-adjusted control patients. Treatment strategies have mainly been extrapolated from elderly patients without dementia, except for one single randomised trial, in which levetiracetam, lamotrigine and phenobarbital efficacy and tolerance were investigated in patients with Alzheimer's disease. Mouse models appear to show a major role of amyloid precursor protein and its cleavage products in the generation of cortical hyperexcitability. A link between Alzheimer's disease and epilepsy has long been described and recent cohort studies have more clearly delineated risk factors associated with the genesis of seizures, such as early onset and possibly severity of dementia. As genetic forms of Alzheimer's disease and experimental mouse models suggest, beta-amyloid may play a prominent role in the propagation of synchronised abnormal discharges, perhaps more via an excitatory mode than a direct neurodegenerative effect.

  6. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

    Science.gov (United States)

    Kauwe, John S K; Bailey, Matthew H; Ridge, Perry G; Perry, Rachel; Wadsworth, Mark E; Hoyt, Kaitlyn L; Staley, Lyndsay A; Karch, Celeste M; Harari, Oscar; Cruchaga, Carlos; Ainscough, Benjamin J; Bales, Kelly; Pickering, Eve H; Bertelsen, Sarah; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2014-10-01

    Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (pprocessing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.

  7. Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla.

    Science.gov (United States)

    Arosio, Paolo

    2017-12-01

    An increasing amount of findings suggests that the aggregation of soluble peptides and proteins into amyloid fibrils is a relevant upstream process in the complex cascade of events leading to the pathology of Alzheimer's disease and several other neurodegenerative disorders. Nevertheless, several aspects of the correlation between the aggregation process and the onset and development of the pathology remain largely elusive. In this context, biophysical and biochemical studies in test tubes have proven extremely powerful in providing quantitative information about the structure and the reactivity of amyloids at the molecular level. In this review we use selected recent examples to illustrate the importance of such biophysical research to complement phenomenological studies based on cellular and molecular biology, and we discuss the implications for pharmaceutical applications associated with Alzheimer's disease and other neurodegenerative disorders in both academic and industrial contexts.

  8. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  9. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Hoglund, K; Thelen, K M; Syversen, S

    2005-01-01

    During the last years, several clinical studies have been published trying to elucidate the effect of statin treatment on amyloid precursor protein (APP) processing and metabolism of brain cholesterol in Alzheimer's disease (AD) in humans. We present an open biochemical study where 19 patients...... with AD have been treated with simvastatin (20 mg/day) for 12 months. The aim was to further investigate the effect of simvastatin treatment on cerebrospinal fluid (CSF) biomarkers of APP processing, AD biomarkers as total tau and tau phosphorylated at threonine 181, brain cholesterol metabolism as well...... as on cognitive decline in patients with AD. Despite biochemical data suggesting that treatment with 20 mg/day of simvastatin for 12 months does affect the brain cholesterol metabolism, we did not find any change in CSF or plasma levels of beta-amyloid (Abeta)(1-42). However, by analysis of APP isoforms, we found...

  10. Proposal for novel curcumin derivatives as potent inhibitors against Alzheimer's disease: Ab initio molecular simulations on the specific interactions between amyloid-beta peptide and curcumin

    Science.gov (United States)

    Ota, Shintaro; Fujimori, Mitsuki; Ishimura, Hiromi; Shulga, Sergiy; Kurita, Noriyuki

    2017-10-01

    Accumulation of amyloid-β (Aβ) peptides in a brain is closely related with the pathogenesis of Alzheimer's disease. To suppress the production of Aβ peptides, we propose novel curcumin derivatives and investigate their binding properties with the amyloid precursor protein (APP), using protein-ligand docking as well as ab initio molecular simulations. Our proposed derivative (curcumin XIV) is found to have a large binding energy with APP and interacts strongly with the cleavage site Ala19 by secretase. It is thus expected that curcumin XIV can protect APP from the secretase attack and be a potent inhibitor against the production of Aβ peptides.

  11. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease.

    Science.gov (United States)

    Cifuentes, Diana; Poittevin, Marine; Dere, Ekrem; Broquères-You, Dong; Bonnin, Philippe; Benessiano, Joëlle; Pocard, Marc; Mariani, Jean; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I

    2015-01-01

    Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm(2); P<0.05) and a 2-fold increase in soluble amyloid levels in the brain and in plasma. Hypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice; P<0.05). Our results indicate that hypertension accelerates the development of Alzheimer disease-related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production. © 2014 American Heart Association, Inc.

  12. Profile of gantenerumab and its potential in the treatment of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Novakovic D

    2013-11-01

    Full Text Available Dijana Novakovic,1 Marco Feligioni,2 Sergio Scaccianoce,1 Alessandra Caruso,1 Sonia Piccinin,2 Chiara Schepisi,1,2 Francesco Errico,3 Nicola B Mercuri,4 Ferdinando Nicoletti,1,5 Robert Nisticò1,41Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; 2European Brain Research Institute, Rome, Italy; 3Ceinge Biotecnologie Avanzate, Naples, Italy; 4Laboratory of Experimental Neurology, Istituto di Ricerca e Cura a Carattere Scientifico, Santa Lucia Foundation, Rome, Italy; 5Istituto di Ricerca e Cura a Carattere Scientifico, Neuromed, Pozzilli, ItalyAbstract: Alzheimer's disease, which is characterized by gradual cognitive decline associated with deterioration of daily living activities and behavioral disturbances throughout the course of the disease, is estimated to affect 27 million people around the world. It is expected that the illness will affect about 63 million people by 2030, and 114 million by 2050, worldwide. Current Alzheimer's disease medications may ease symptoms for a time but are not capable of slowing down disease progression. Indeed, all currently available therapies, such as cholinesterase inhibitors (donepezil, galantamine, rivastigmine, are primarily considered symptomatic therapies, although recent data also suggest possible disease-modifying effects. Gantenerumab is an investigational fully human anti-amyloid beta monoclonal antibody with a high capacity to bind and remove beta-amyloid plaques in the brain. This compound, currently undergoing Phase II and III clinical trials represents a promising agent with a disease-modifying potential in Alzheimer's disease. Here, we present an overview of gantenerumab ranging from preclinical studies to human clinical trials.Keywords: Alzheimer's disease, gantenerumab, monoclonal antibody, amyloid-β, clinical trialsCorrigendum for this paper has been published

  13. Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation

    DEFF Research Database (Denmark)

    Ochalek, Anna; Mihalik, Balázs; Avci, Hasan X.

    2017-01-01

    , our aim was to establish an in vitro cell model based on patient-specific human neurons to study the pathomechanism of sporadic AD. Methods: We compared neurons derived from induced pluripotent stem cell (iPSC) lines of patients with early-onset familial Alzheimer's disease (fAD), all caused...... blotting methods. Results: Neurons from patients with fAD and patients with sAD showed increased phosphorylation of TAU protein at all investigated phosphorylation sites. Relative to the control neurons, neurons derived from patients with fAD and patients with sAD exhibited higher levels of extracellular......, a physiological kinase of TAU, in neurons derived from AD iPSCs, as well as significant upregulation of amyloid precursor protein (APP) synthesis and APP carboxy-terminal fragment cleavage. Moreover, elevated sensitivity to oxidative stress, as induced by amyloid oligomers or peroxide, was detected in both f...

  14. Two memory associated genes regulated by amyloid precursor protein intracellular domain ovel insights into the pathogenesis of learning and memory impairment in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Chuandong Zheng; Xi Gu; Zhimei Zhong; Rui Zhu; Tianming Gao; Fang Wang

    2012-01-01

    In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease.

  15. Science Signaling Podcast for 10 May 2016: PKCα in Alzheimer's disease.

    Science.gov (United States)

    Newton, Alexandra C; Tanzi, Rudolph E; VanHook, Annalisa M

    2016-05-10

    This Podcast features an interview with Alexandra Newton and Rudolph Tanzi, authors of a Research Article that appears in the 10 May 2016 issue of Science Signaling, about activating mutations in protein kinase Cα that may promote the type of neural defects that characterize Alzheimer's disease. Alzheimer's disease is a progressive neurodegenerative disorder that causes cognitive loss and, eventually, death. Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ), synaptic depression, and synaptic degeneration. Alfonso et al found activating mutations in the gene encoding protein kinase Cα (PKCα) in some families with inherited Alzheimer's disease. Loss of PKCα function prevented Aβ-induced synaptic depression in brain tissue from mice, suggesting that activated forms of PKCα may contribute to Alzheimer's disease in some patients.Listen to Podcast. Copyright © 2016, American Association for the Advancement of Science.

  16. Deep brain two-photon NIR fluorescence imaging for study of Alzheimer's disease

    Science.gov (United States)

    Chen, Congping; Liang, Zhuoyi; Zhou, Biao; Ip, Nancy Y.; Qu, Jianan Y.

    2018-02-01

    Amyloid depositions in the brain represent the characteristic hallmarks of Alzheimer's disease (AD) pathology. The abnormal accumulation of extracellular amyloid-beta (Aβ) and resulting toxic amyloid plaques are considered to be responsible for the clinical deficits including cognitive decline and memory loss. In vivo two-photon fluorescence imaging of amyloid plaques in live AD mouse model through a chronic imaging window (thinned skull or craniotomy) provides a mean to greatly facilitate the study of the pathological mechanism of AD owing to its high spatial resolution and long-term continuous monitoring. However, the imaging depth for amyloid plaques is largely limited to upper cortical layers due to the short-wavelength fluorescence emission of commonly used amyloid probes. In this work, we reported that CRANAD-3, a near-infrared (NIR) probe for amyloid species with excitation wavelength at 900 nm and emission wavelength around 650 nm, has great advantages over conventionally used probes and is well suited for twophoton deep imaging of amyloid plaques in AD mouse brain. Compared with a commonly used MeO-X04 probe, the imaging depth of CRANAD-3 is largely extended for open skull cranial window. Furthermore, by using two-photon excited fluorescence spectroscopic imaging, we characterized the intrinsic fluorescence of the "aging pigment" lipofuscin in vivo, which has distinct spectra from CRANAD-3 labeled plaques. This study reveals the unique potential of NIR probes for in vivo, high-resolution and deep imaging of brain amyloid in Alzheimer's disease.

  17. Multiple Spontaneous Cerebral Microbleeds and Leukoencephalopathy in PSEN1-Associated Familial Alzheimer's Disease: Mirror of Cerebral Amyloid Angiopathy?

    Science.gov (United States)

    Floris, Gianluca; Di Stefano, Francesca; Cherchi, Maria Valeria; Costa, Gianna; Marrosu, Francesco; Marrosu, Maria Giovanna

    2015-01-01

    Cerebral microbleeds (CMB) might reflect specific underlying vascular pathologies like cerebral amyloid angiopathy (CAA). In the present study we report the gradient-echo MRI pattern of two siblings with P284S PSEN1 mutation. T2* gradient-echo images of the two subjects demonstrated multiple microbleeds in lobar regions. The role and causes of CMB in sporadic Alzheimer's disease (AD) patients have not been clearly established and useful contributions could derive from familial AD studies. Furthermore, since CAA is a potential risk factor for developing adverse events in AD immunization trials, the identification in vivo of CAA through non-invasive MRI methods could be useful to monitoring side effects.

  18. Levels of amyloid-beta-42 and CSF pressure are directly related in patients with Alzheimer's disease.

    Science.gov (United States)

    Schirinzi, Tommaso; Di Lazzaro, Giulia; Sancesario, Giulia Maria; Colona, Vito Luigi; Scaricamazza, Eugenia; Mercuri, Nicola Biagio; Martorana, Alessandro; Sancesario, Giuseppe

    2017-12-01

    Experimental data suggest that the cerebrospinal fluid (CSF) dynamic is involved in the clearance of beta-amyloid, a key event in the pathogenesis of Alzheimer's disease (AD). At this regard no evidence still exists in vivo. In this study we explored the relationships between CSF pressure and AD pathology, as measured with CSF core biomarkers. We enrolled 16 patients with probable AD and 21 controls, collecting demographics, clinical data, CSF opening pressure and CSF levels of beta-amyloid-42 fragment (Aβ42), total-tau (t-tau), phosphorylated-tau-181 (p-tau), albumin and albumin ratio. Differences between the groups were calculated with non-parametric tests, while correlations among all parameters were separately calculated with Spearman's test in each group. The groups significantly differed in biomarkers' concentration with lower Aβ42, and higher t-tau and p-tau in AD patients. Moreover, CSF pressure was significantly lower in AD group (11.0 ± 2.8 vs. 13.3 ± 3.0 mmHg, p < 0.05) and directly correlated with Aβ42 levels (R = 0.512; p < 0.05), but not with other biomarkers or parameters. No significant correlations emerged for biomarkers in control group. AD patients exhibit low CSF pressure whose values are directly and selectively related to CSF Aβ42 levels. This interesting correlation may confirm in vivo the association between CSF dynamic and beta-amyloid metabolism occurring in AD.

  19. Synthetic Curcumin Analogs as Inhibitors of β -Amyloid Peptide Aggregation: Potential Therapeutic and Diagnostic Agents for Alzheimer's Disease.

    Science.gov (United States)

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim

    2015-01-01

    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.

  20. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice.

    Science.gov (United States)

    Pan, Xiaoli; Gong, Neng; Zhao, Jing; Yu, Zhe; Gu, Fenghua; Chen, Jia; Sun, Xiaojing; Zhao, Lei; Yu, Meijing; Xu, Zhiru; Dong, Wenxin; Qin, Yan; Fei, Guoqiang; Zhong, Chunjiu; Xu, Tian-Le

    2010-05-01

    Reduction of glucose metabolism in brain is one of the main features of Alzheimer's disease. Thiamine (vitamin B1)-dependent processes are critical in glucose metabolism and have been found to be impaired in brains from patients with Alzheimer's disease. However, thiamine treatment exerts little beneficial effect in these patients. Here, we tested the effect of benfotiamine, a thiamine derivative with better bioavailability than thiamine, on cognitive impairment and pathology alterations in a mouse model of Alzheimer's disease, the amyloid precursor protein/presenilin-1 transgenic mouse. We show that after a chronic 8 week treatment, benfotiamine dose-dependently enhanced the spatial memory of amyloid precursor protein/presenilin-1 mice in the Morris water maze test. Furthermore, benfotiamine effectively reduced both amyloid plaque numbers and phosphorylated tau levels in cortical areas of the transgenic mice brains. Unexpectedly, these effects were not mimicked by another lipophilic thiamine derivative, fursultiamine, although both benfotiamine and fursultiamine were effective in increasing the levels of free thiamine in the brain. Most notably, benfotiamine, but not fursultiamine, significantly elevated the phosphorylation level of glycogen synthase kinase-3alpha and -3beta, and reduced their enzymatic activities in the amyloid precursor protein/presenilin-1 transgenic brain. Therefore, in the animal Alzheimer's disease model, benfotiamine appears to improve the cognitive function and reduce amyloid deposition via thiamine-independent mechanisms, which are likely to include the suppression of glycogen synthase kinase-3 activities. These results suggest that, unlike many other thiamine-related drugs, benfotiamine may be beneficial for clinical Alzheimer's disease treatment.

  1. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  2. Molecular subtypes of Alzheimer's disease.

    Science.gov (United States)

    Di Fede, Giuseppe; Catania, Marcella; Maderna, Emanuela; Ghidoni, Roberta; Benussi, Luisa; Tonoli, Elisa; Giaccone, Giorgio; Moda, Fabio; Paterlini, Anna; Campagnani, Ilaria; Sorrentino, Stefano; Colombo, Laura; Kubis, Adriana; Bistaffa, Edoardo; Ghetti, Bernardino; Tagliavini, Fabrizio

    2018-02-19

    Protein misfolding and aggregation is a central feature of several neurodegenerative disorders including Alzheimer's disease (AD), in which assemblies of amyloid β (Aβ) peptides accumulate in the brain in the form of parenchymal and/or vascular amyloid. A widely accepted concept is that AD is characterized by distinct clinical and neuropathological phenotypes. Recent studies revealed that Aβ assemblies might have structural differences among AD brains and that such pleomorphic assemblies can correlate with distinct disease phenotypes. We found that in both sporadic and inherited forms of AD, amyloid aggregates differ in the biochemical composition of Aβ species. These differences affect the physicochemical properties of Aβ assemblies including aggregation kinetics, resistance to degradation by proteases and seeding ability. Aβ-amyloidosis can be induced and propagated in animal models by inoculation of brain extracts containing aggregated Aβ. We found that brain homogenates from AD patients with different molecular profiles of Aβ are able to induce distinct patterns of Aβ-amyloidosis when injected into mice. Overall these data suggest that the assembly of mixtures of Aβ peptides into different Aβ seeds leads to the formation of distinct subtypes of amyloid having distinctive physicochemical and biological properties which result in the generation of distinct AD molecular subgroups.

  3. Impact of Cytokines and Chemokines on Alzheimer's Disease Neuropathological Hallmarks.

    Science.gov (United States)

    Domingues, Catarina; da Cruz E Silva, Odete A B; Henriques, Ana Gabriela

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, neuropathologically characterized by aggregates of β-amyloid peptides, which deposit as senile plaques, and of TAU protein, which forms neurofibrillary tangles. It is now widely accepted that neuroinflammation is implicated in AD pathogenesis. Indeed, inflammatory mediators, such as cytokines and chemokines (chemotactic cytokines) can impact on the Alzheimer´s amyloid precursor protein by affecting its expression levels and amyloidogenic processing and/or β -amyloid aggregation. Additionally, cytokines and chemokines can influence kinases' activities, leading to abnormal TAU phosphorylation. To date there is no cure for AD, but several therapeutic strategies have been directed to prevent neuroinflammation. Anti-inflammatory, but also anti-amyloidogenic compounds, such as flavonoids were shown to favourably modulate some pathological events associated with neurodegeneration. This review focuses on the role of cytokines and chemokines in AD-associated pathologies, and summarizes the potential anti-inflammatory therapeutic approaches aimed at preventing or slowing down disease progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Myeloid differentiation factor 88-deficient bone marrow cells improve Alzheimer's disease-related symptoms and pathology

    NARCIS (Netherlands)

    Hao, W.; Liu, Y.; Liu, S.; Walter, S.; Grimm, M.O.; Kiliaan, A.J.; Penke, B.; Hartmann, T.; Rube, C.E.; Menger, M.D.; Fassbender, K.

    2011-01-01

    Alzheimer's disease is characterized by extracellular deposits of amyloid beta peptide in the brain. Increasing evidence suggests that amyloid beta peptide injures neurons both directly and indirectly by triggering neurotoxic innate immune responses. Myeloid differentiation factor 88 is the key

  5. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  6. Alzheimer's disease: synaptic dysfunction and Abeta

    LENUS (Irish Health Repository)

    Shankar, Ganesh M

    2009-11-23

    Abstract Synapse loss is an early and invariant feature of Alzheimer\\'s disease (AD) and there is a strong correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has been proposed that synapse loss underlies the memory impairment evident in the early phase of AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic intervention.

  7. The role of beta amyloid in Alzheimer's disease: still a cause of everything or the only one who got caught?

    Science.gov (United States)

    Verdile, Giuseppe; Fuller, Stephanie; Atwood, Craig S; Laws, Simon M; Gandy, Samuel E; Martins, Ralph N

    2004-10-01

    The beta amyloid (A beta) protein is a key molecule in the pathogenesis of Alzheimer's disease (AD). The tendency of the A beta peptide to aggregate, its reported neurotoxicity, and genetic linkage studies, have led to a hypothesis of AD pathogenesis that many AD researchers term the amyloid cascade hypothesis. In this hypothesis, an increased production of A beta results in neurodegeneration and ultimately dementia through a cascade of events. In the past 15 years, debate amongst AD researchers has arisen as to whether A beta is a cause or an effect of the pathogenic process. Recent in vitro and in vivo research has consolidated the theory that A beta is the primary cause, initiating secondary events, culminating in the neuropathological hallmarks associated with AD. This research has led to the development of therapeutic agents, currently in human clinical trials, which target A beta.

  8. Does Caffeine Consumption Modify Cerebrospinal Fluid Amyloid-β Levels in Patients with Alzheimer's Disease?

    DEFF Research Database (Denmark)

    Travassos, Maria; Santana, Isabel; Baldeiras, Inês

    2015-01-01

    Caffeine may be protective against Alzheimer's disease (AD) by modulating amyloid-β (Aβ) metabolic pathways. The present work aimed to study a possible association of caffeine consumption with the cerebrospinal fluid (CSF) biomarkers, particularly Aβ. The study included 88 patients with AD or mild...... cognitive impairment. The consumption of caffeine and theobromine was evaluated using a validated food questionnaire. Quantification of caffeine and main active metabolites was performed with liquid chromatography coupled to tandem mass spectrometry. The levels of A(1-42), total tau, and phosphorylated tau...... in the CSF were determined using sandwich ELISA methods and other Aβ species, Aβ(X-38), Aβ(X-40), and Aβ(X-42), with the MSD Aβ Triplex assay. The concentration of caffeine was 0.79±1.15 μg/mL in the CSF and 1.20±1.88 μg/mL in the plasma. No correlation was found between caffeine consumption and Aβ42...

  9. Apolipoprotein J (clusterin) and Alzheimer's disease.

    Science.gov (United States)

    Calero, M; Rostagno, A; Matsubara, E; Zlokovic, B; Frangione, B; Ghiso, J

    2000-08-15

    Apolipoprotein J (clusterin) is a ubiquitous multifunctional glycoprotein capable of interacting with a broad spectrum of molecules. In pathological conditions, it is an amyloid associated protein, co-localizing with fibrillar deposits in systemic and localized amyloid disorders. In Alzheimer's disease, the most frequent form of amyloidosis in humans and the major cause of dementia in the elderly, apoJ is present in amyloid plaques and cerebrovascular deposits but is rarely seen in NFT-containing neurons. ApoJ expression is up-regulated in a wide variety of insults and may represent a defense response against local damage to neurons. Four different mechanisms of action could be postulated to explain the role of apoJ as a neuroprotectant during cellular stress: (1) function as an anti-apoptotic signal, (2) protection against oxidative stress, (3) inhibition of the membrane attack complex of complement proteins locally activated as a result of inflammation, and (4) binding to hydrophobic regions of partially unfolded, stressed proteins, and therefore avoiding aggregation in a chaperone-like manner. This review focuses on the association of apoJ in biological fluids with Alzheimer's soluble Abeta. This interaction prevents Abeta aggregation and fibrillization and modulates its blood-brain barrier transport at the cerebrovascular endothelium. Copyright 2000 Wiley-Liss, Inc.

  10. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies.

    Science.gov (United States)

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease.

    Science.gov (United States)

    Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catherine; Mitchell, Andrew; Tonk, Sahil; Kuruva, Chandra Sekhar; Bhatti, Jasvinder Singh; Kandimalla, Ramesh; Vijayan, Murali; Kumar, Subodh; Wang, Rui; Pradeepkiran, Jangampalli Adi; Ogunmokun, Gilbert; Thamarai, Kavya; Quesada, Kandi; Boles, Annette; Reddy, Arubala P

    2018-01-01

    The purpose of our article is to assess the current understanding of Indian spice, curcumin, against amyloid-β (Aβ)-induced toxicity in Alzheimer's disease (AD) pathogenesis. Natural products, such as ginger, curcumin, and gingko biloba have been used as diets and dietary supplements to treat human diseases, including cancer, cardiovascular, respiratory, infectious, diabetes, obesity, metabolic syndromes, and neurological disorders. Products derived from plants are known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions. In the last decade, several groups have designed and synthesized curcumin and its derivatives and extensively tested using cell and mouse models of AD. Recent research on Aβ and curcumin has revealed that curcumin prevents Aβ aggregation and crosses the blood-brain barrier, reach brain cells, and protect neurons from various toxic insults of aging and Aβ in humans. Recent research has also reported that curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD. Further, recent groups have initiated studies on elderly individuals and patients with AD and the outcome of these studies is currently being assessed. This article highlights the beneficial effects of curcumin on AD. This article also critically assesses the current limitations of curcumin's bioavailability and urgent need for new formulations to increase its brain levels to treat patients with AD.

  12. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease.

    Science.gov (United States)

    Menendez-Gonzalez, Manuel; Padilla-Zambrano, Huber S; Alvarez, Gabriel; Capetillo-Zarate, Estibaliz; Tomas-Zapico, Cristina; Costa, Agustin

    2018-01-01

    Although immunotherapies against the amyloid-β (Aβ) peptide tried so date failed to prove sufficient clinical benefit, Aβ still remains the main target in Alzheimer's disease (AD). This article aims to show the rationale of a new therapeutic strategy: clearing Aβ from the CSF continuously (the "CSF-sink" therapeutic strategy). First, we describe the physiologic mechanisms of Aβ clearance and the resulting AD pathology when these mechanisms are altered. Then, we review the experiences with peripheral Aβ-immunotherapy and discuss the related hypothesis of the mechanism of action of "peripheral sink." We also present Aβ-immunotherapies acting on the CNS directly. Finally, we introduce alternative methods of removing Aβ including the "CSF-sink" therapeutic strategy. As soluble peptides are in constant equilibrium between the ISF and the CSF, altering the levels of Aβ oligomers in the CSF would also alter the levels of such proteins in the brain parenchyma. We conclude that interventions based in a "CSF-sink" of Aβ will probably produce a steady clearance of Aβ in the ISF and therefore it may represent a new therapeutic strategy in AD.

  13. Amyloid Beta and Tau as Alzheimer's Disease Blood Biomarkers: Promise From New Technologies.

    Science.gov (United States)

    Lue, Lih-Fen; Guerra, Andre; Walker, Douglas G

    2017-07-01

    The utility of the levels of amyloid beta (Aβ) peptide and tau in blood for diagnosis, drug development, and assessment of clinical trials for Alzheimer's disease (AD) has not been established. The lack of availability of ultra-sensitive assays is one critical issue that has impeded progress. The levels of Aβ species and tau in plasma and serum are much lower than levels in cerebrospinal fluid. Furthermore, plasma or serum contain high levels of assay-interfering factors, resulting in difficulties in the commonly used singulex or multiplex ELISA platforms. In this review, we focus on two modern immune-complex-based technologies that show promise to advance this field. These innovative technologies are immunomagnetic reduction technology and single molecule array technology. We describe the technologies and discuss the published studies using these technologies. Currently, the potential of utilizing these technologies to advance Aβ and tau as blood-based biomarkers for AD requires further validation using already collected large sets of samples, as well as new cohorts and population-based longitudinal studies.

  14. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  15. A light therapy for treating Alzheimer's disease

    Science.gov (United States)

    Wang, Xue; Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2017-02-01

    It is generally believed that there are some connections between Alzheimer's disease and amyloid protein plaques in the brain. The typical symptoms of Alzheimer's disease are memory loss, language disorders, mood swings, loss of motivation and behavioral issues. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. Infrared light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research we have studied the effect of infrared light on Alzheimer's disease through transgenic mouse model. We designed an experimental apparatus for treating mice, which primarily included a therapeutic box and a LED array, which emitted infrared light. After the treatment, we assessed the effects of infrared light by performing two tests: cognitive performance of mice in Morris water maze, and plaque load by immunofluorescence analysis. Immunofluorescence analysis was based on measuring the quantity of plaques in mouse brain slices. Our results show that infrared therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  16. [The trend of developing new disease-modifying drugs in Alzheimer's disease].

    Science.gov (United States)

    Arai, Hiroyuki; Furukawa, Katsutoshi; Tomita, Naoki; Ishiki, Aiko; Okamura, Nobuyuki; Kudo, Yukitsuka

    2016-03-01

    Development of symptomatic treatment of Alzheimer s disease by cholinesterase inhibitors like donepezil was successful. However, it is a disappointment that development of disease-modifying drugs such as anti-amyloid drug based on amyloid-cascade theory has been interrupted or unsuccessful. Therefore, we have to be more cautious regarding inclusion criteria for clinical trials of new drugs. We agree that potentially curative drugs should be started before symptoms begin as a preemptive therapy or prevention trial. The concept of personalized medicine also is important when ApoE4-related amyloid reducing therapy is considered. Unfortunately, Japanese-ADNI has suffered a setback since 2014. However, Ministry of Health, Labour and Welfare gave a final remark that there was nothing wrong in the data managing process in the J-ADNI data center. We should pay more attention to worldwide challenges of speeding up new drug development.

  17. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease.

    Science.gov (United States)

    Cohen, Mark; Appleby, Brian; Safar, Jiri G

    2016-01-01

    Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.

  18. Classic beta-amyloid deposits cluster around large diameter blood vessels rather than capillaries in sporadic Alzheimer's disease.

    Science.gov (United States)

    Armstrong, Richard A

    2006-11-01

    Various hypotheses could explain the relationship between beta-amyloid (Abeta) deposition and the vasculature in Alzheimer's disease (AD). Amyloid deposition may reduce capillary density, affect endothelial cells of blood vessels, result in diffusion from blood vessels, or interfere with the perivascular clearance mechanism. Hence, the spatial pattern of the classic ('cored') type of Abeta deposit was studied in the upper laminae (I,II/III) of the superior frontal gyrus in nine cases of sporadic AD (SAD). Sections were immunostained with antibodies against Abeta and with collagen IV to study the relationships between the spatial distribution of the classic deposits and the blood vessel profiles. Both the classic deposits and blood vessel profiles were distributed in clusters. In all cases, there was a positive spatial correlation between the clusters of the classic deposits and the larger diameter (>10 microm) blood vessel profiles and especially the vertically penetrating arterioles. In only 1 case, was there a significant spatial correlation between the clusters of the classic deposits and the smaller diameter (upper laminae of the frontal cortex. This aggregation could result from diffusion of proteins from blood vessels or from overloading the system of perivascular clearance from the brain.

  19. Plasma amyloid levels within the Alzheimer's process and correlations with central biomarkers.

    Science.gov (United States)

    Hanon, Olivier; Vidal, Jean-Sébastien; Lehmann, Sylvain; Bombois, Stéphanie; Allinquant, Bernadette; Tréluyer, Jean-Marc; Gelé, Patrick; Delmaire, Christine; Blanc, Fredéric; Mangin, Jean-François; Buée, Luc; Touchon, Jacques; Hugon, Jacques; Vellas, Bruno; Galbrun, Evelyne; Benetos, Athanase; Berrut, Gilles; Paillaud, Elèna; Wallon, David; Castelnovo, Giovanni; Volpe-Gillot, Lisette; Paccalin, Marc; Robert, Philippe-Henri; Godefroy, Olivier; Dantoine, Thierry; Camus, Vincent; Belmin, Joël; Vandel, Pierre; Novella, Jean-Luc; Duron, Emmanuelle; Rigaud, Anne-Sophie; Schraen-Maschke, Suzanna; Gabelle, Audrey

    2018-02-17

    Diagnostic relevance of plasma amyloid β (Aβ) for Alzheimer's disease (AD) process yields conflicting results. The objective of the study was to assess plasma levels of Aβ 42 and Aβ 40 in amnestic mild cognitive impairment (MCI), nonamnestic MCI, and AD patients and to investigate relationships between peripheral and central biomarkers. One thousand forty participants (417 amnestic MCI, 122 nonamnestic MCI, and 501 AD) from the Biomarker of AmyLoïd pepTide and AlZheimer's diseAse Risk multicenter prospective study with cognition, plasma, cerebrospinal fluid (CSF), and magnetic resonance imaging assessments were included. Plasma Aβ 1-42 and Aβ 1-40 were lower in AD (36.9 [11.7] and 263 [80] pg/mL) than in amnestic MCI (38.2 [11.9] and 269 [68] pg/mL) than in nonamnestic MCI (39.7 [10.5] and 272 [52] pg/mL), respectively (P = .01 for overall difference between groups for Aβ 1-42 and P = .04 for Aβ 1-40 ). Globally, plasma Aβ 1-42 correlated with age, Mini-Mental State Examination, and APOE ε4 allele. Plasma Aβ 1-42 correlated with all CSF biomarkers in MCI but only with CSF Aβ 42 in AD. Plasma Aβ was associated with cognitive status and CSF biomarkers, suggesting the interest of plasma amyloid biomarkers for diagnosis purpose. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease.

    Science.gov (United States)

    Goyal, Deepti; Shuaib, Suniba; Mann, Sukhmani; Goyal, Bhupesh

    2017-02-13

    Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.

  1. Ten Challenges of the Amyloid Hypothesis of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    The inability to effectively halt or cure Alzheimer's disease (AD), exacerbated by the recent failures of high-profile clinical trials, emphasizes the urgent need to understand the complex biochemistry of this major neurodegenerative disease. In this paper, ten central, current challenges...... as a background model of the disease, unify our understanding of the interplay between genetic and non-genetic risk factors, and combine into one framework both the familial and sporadic forms of the disease....

  2. [Effects of grain-sized moxibustion on learning and memory ability and amyloid deposition of transgenic Alzheimer's disease mice].

    Science.gov (United States)

    Yu, Jing; Chu, Jia-Mei; Gao, Ling-Ai; Zhang, Yong-Sheng; Bao, Ye-Hua

    2014-02-01

    To observe the effect of grain-sized moxibustion at "Xinshu" (BL 15) and "Shenshu" (BL 23) on memory-learning ability and amyloid deposition in transgenic Alzheimer's disease (AD) mice. seventeen amyloid precursor protein (APP)/presenilin (PS)1 (APP+/PS 1+) double transgenic 6799 mice aged 3-4 weeks were randomly divided into model group (n = 9) and moxibustion group (n = 8). Nine wide-type (C 57 BL/6 J) female mice were used as the normal control group. Moxibustion (ignited grain-sized moxa cone) was applied to bilateral "Xinshu" (BL 15) and "Shenshu" (BL 23) for about 30 s, once a day for 9 courses (10 days constitute a therapeutic course, with 2 days' break between every two courses). Morris water maze tests were performed to detect the mice's learning-memory ability. The alterations of beta-amyloid deposition (number of the positive plaques) in the cerebral cortex and hippocampus were detected by using an imaging analysis system following Congo red staining of the cerebral tissue sections. Compared with the normal group, the average escape latency of place navigation tests was significantly increased (P memory ability after moxibustion. Results of Congo red staining of the cerebral tissue showed that there were many irregular, uneven staining positive plaques in the cerebral cortex and hippocampus of AD mice in the model group. Compared with the model group, the positive plaque numbers in both cerebral cortex and hippocampus were considerably reduced in the moxibustion group (P memory ability and restrain the formation of amyloid deposition in AD mice.

  3. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process.

    Science.gov (United States)

    De Strooper, Bart

    2010-04-01

    Alzheimer disease is characterized by the accumulation of abnormally folded protein fragments, i.e., amyloid beta peptide (Abeta) and tau that precipitate in amyloid plaques and neuronal tangles, respectively. In this review we discuss the complicated proteolytic pathways that are responsible for the generation and clearance of these fragments, and how disturbances in these pathways interact and provide a background for a novel understanding of Alzheimer disease as a multifactorial disorder. Recent insights evolve from the static view that the morphologically defined plaques and tangles are disease driving towards a more dynamic, biochemical view in which the intermediary soluble Abeta oligomers and soluble tau fragments are considered as the main mediators of neurotoxicity. The relevance of proteolytic pathways, centered on the generation and clearance of toxic Abeta, on the cleavage and nucleation of tau, and on the general proteostasis of the neurons, then becomes obvious. Blocking or stimulating these pathways provide, or have the potential to provide, interesting drug targets, which raises the hope that we will be able to provide a cure for this dreadful disorder.

  4. Pinpointing Synaptic Loss Caused by Alzheimer?s Disease with fMRI

    OpenAIRE

    Brickman, Adam M.; Small, Scott A.; Fleisher, Adam

    2009-01-01

    During its earliest stage, before cell loss and independent of amyloid plaques and neurofibrillary tangles, Alzheimer's disease (AD) causes synaptic loss affecting the basal functional properties of neurons. In principle, synaptic loss can be detected by measuring AD-induced changes in basal function, or by measuring stimulus-evoked responses on top of basal changes. Functional magnetic resonance imaging (fMRI) is sensitive to both basal changes and evoked-responses, and there are therefore t...

  5. Genetic Aspects of Alzheimer Disease

    Science.gov (United States)

    Williamson, Jennifer; Goldman, Jill; Marder, Karen S.

    2011-01-01

    Background Alzheimer disease (AD) is a genetically complex disorder. Mutations in 3 genes, presenilin 1, amyloid precursor protein, and presenilin 2, lead to early-onset familial AD in rare families with onset of disease occurring prior to age 65. Specific polymorphisms in apolipoprotein E are associated with the more common, late-onset AD occurring after age 65. In this review, we discuss current advances in AD genetics, the implications of the known AD genes, presenilin 1, presenilin 2, amyloid precursor protein, and apolipoprotein E, and other possible genes on the clinical diagnosis, treatment, and genetic counseling of patients and families with early- and late-onset AD. Review Summary In addition to the mutations in 4 known genes associated with AD, mutations in other genes may be implicated in the pathogenesis of the disease. Most recently, 2 different research groups have reported genetic association between 2 genes, sortilin-related receptor and GAB2, and AD. These associations have not changed the diagnostic and medical management of AD. Conclusions New research in the genetics of AD have implicated novel genes as having a role in the disease, but these findings have not been replicated nor have specific disease causing mutations been identified. To date, clinical genetic testing is limited to familial early-onset disease for symptomatic individuals and asymptomatic relatives and, although not recommended, amyloid precursor protein apolipoprotein E testing as an adjunct to diagnosis of symptomatic individuals. PMID:19276785

  6. High frequency NcoI RFLP detected in the Alzheimer amyloid peptide gene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y; Dobkin, C; Devine-Gage, E; Ramakrishna, N; Brown, W T; Wisniewski, H M; Robakis, N K

    1988-02-25

    Probe pAMB2.3 contains a 778bp cDNA fragment encoding the amyloid polypeptide of Alzheimer disease and Down Syndrome (beta protein) inserted into pUC18. The probe was sublocalized to chromosome 21q21. NcoI identifies a two allele polymorphism of a band at either 15 kb or 8.5 kb. Autosomal codominant inheritance was shown in five informative families. Two non polymorphic bands, 7.0kb and 6.0kb, are seen only occasionally. Their presence seems to depend on the particular DNA preparation.

  7. Cerebrospinal Fluid Biomarkers in Diagnosing Alzheimer's Disease in Clinical Practice

    DEFF Research Database (Denmark)

    Slats, Diane; Spies, Petra E; Sjögren, Magnus J C

    2010-01-01

    Analysis of the brain specific biomarkers amyloid beta(42) (Abeta(42)) and total tau (t-tau) protein in cerebrospinal fluid (CSF) has a sensitivity and specificity of more than 85% for differentiating Alzheimer's Disease (AD) from non-demented controls. International guidelines are contradictory...

  8. Atypical early-onset Alzheimer's disease caused by the Iranian APP mutation

    DEFF Research Database (Denmark)

    Lindquist, S.G.; Nielsen, J.E.; Stokholm, J.

    2008-01-01

    BACKGROUND: Approximately 1% of all cases of Alzheimer's disease are inherited autosomal dominantly, and to date, three causative genes have been found, the Presenilin 1 (PSEN1) gene, the Presenilin 2 (PSEN2) gene and the Amyloid precursor protein (APP) gene. We describe atypical phenotypic...... features in a family with a pathogenic APP gene mutation and discuss possible explanations for these atypical features. METHODS AND RESULTS: We report a family with a history of dementia compatible with autosomal dominant transmission. The disease course in the proband was not typical for Alzheimer......'s disease as the diagnosis was preceded by 8 years of an isolated amnesia. Further, the proband had epilepsy with complex partial seizures and central degenerative autonomic failure as determined by clinical physiology. Sequencing the three known causative Alzheimer genes revealed a pathogenic missense...

  9. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Stephanie J Soscia

    2010-03-01

    Full Text Available The amyloid beta-protein (Abeta is believed to be the key mediator of Alzheimer's disease (AD pathology. Abeta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Abeta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities.Here, we provide data supporting an in vivo function for Abeta as an antimicrobial peptide (AMP. Experiments used established in vitro assays to compare antimicrobial activities of Abeta and LL-37, an archetypical human AMP. Findings reveal that Abeta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Abeta levels. Consistent with Abeta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Abeta antibodies.Our findings suggest Abeta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Abeta-mediated pathology and has important implications for ongoing and future AD treatment strategies.

  11. IS BRAIN AMYLOID PRODUCTION A CAUSE OR A RESULT OF DEMENTIA OF THE ALZHEIMER TYPE?

    Science.gov (United States)

    Ala, Tom; Patrylo, Peter R.; Brewer, Gregory J.; Yan, Xiao-Xin

    2011-01-01

    The amyloid cascade hypothesis has guided much of research into Alzheimer disease (AD) over the last 25 years. We argue that the hypothesis of beta amyloid (Aβ) as the primary cause of dementia may not be fully correct. Rather, we propose that decline in brain metabolic activity, which is tightly linked to synaptic activity, actually underlies both the cognitive decline and the deposition of Aβ. Aβ may further exacerbate metabolic decline and result in a downward spiral of cognitive function, leading to dementia. This novel interpretation can tie the disparate risk factors for dementia to a unifying hypothesis and present a roadmap for interventions to decrease the prevalence of dementia in the elderly population. PMID:20847431

  12. Brain alpha-amylase - a novel energy regulator important in Alzheimer disease?

    NARCIS (Netherlands)

    Byman, Elin; Schultz, Nina; Huitinga, I.; Fex, Malin; Wennström, Malin

    2018-01-01

    Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well-known pathological findings associated with Alzheimer's disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen,

  13. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration

    NARCIS (Netherlands)

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2015-01-01

    Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously

  14. Beta-amyloidolysis and glutathione in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lasierra-Cirujeda J

    2013-04-01

    Full Text Available J Lasierra-Cirujeda,1 P Coronel,2 MJ Aza,3 M Gimeno2 1CM Hematológico SC, Logroño, La Rioja, Spain; 2Tedec-Meiji Farma, SA, Alcalá de Henares, Madrid, Spain; 3Pharmaceutical Act, Ministry of Health, Regional Government, La Rioja, Spain Abstract: In this review, we hypothesized the importance of the interaction between the brain glutathione (GSH system, the proteolytic tissue plasminogen activator (t-PA/plasminogen/plasmin system, regulated by plasminogen activator inhibitor (PAI-1, and neuroserpin in the pathogenesis of Alzheimer's disease. The histopathological characteristic hallmark that gives personality to the diagnosis of Alzheimer's disease is the accumulation of neurofibroid tangles located intracellularly in the brain, such as the protein tau and extracellular senile plaques made primarily of amyloidal substance. These formations of complex etiology are intimately related to GSH, brain protective antioxidants, and the proteolytic system, in which t-PA plays a key role. There is scientific evidence that suggests a relationship between aging, a number of neurodegenerative disorders, and the excessive production of reactive oxygen species and accompanying decreased brain proteolysis. The plasminogen system in the brain is an essential proteolytic mechanism that effectively degrades amyloid peptides ("beta-amyloidolysis" through action of the plasmin, and this physiologic process may be considered to be a means of prevention of neurodegenerative disorders. In parallel to the decrease in GSH levels seen in aging, there is also a decrease in plasmin brain activity and a progressive decrease of t-PA activity, caused by a decrease in the expression of the t-PA together with an increase of the PAI-1 levels, which rise to an increment in the production of amyloid peptides and a lesser clearance of them. Better knowledge of the GSH mechanism and cerebral proteolysis will allow us to hypothesize about therapeutic practices. Keywords: glutathione

  15. [In vitro early detection of amyloid plaques in Alzheimer's disease by Pittsburgh compound B-modified magnetic nanoparticles].

    Science.gov (United States)

    Zeng, J Q; Wu, J Q; Li, M H; Wang, P J

    2017-11-07

    Objective: To construct magnetic nanoparticles targeting β-amyloid (Aβ) plaques, the pathological biomarker of Alzheimer's disease (AD) and to study their binding capability in vitro . Methods: Superparamagnetic nanoparticles Mn(0.6)Zn(0.4)Fe(2)O(4) (MZF) were coated with amphiphilic star-block copolymeric micelles and modified with Aβ-specific probe Pittsburgh compound B (PiB) to construct a novel magnetic nanoparticle MZF-PiB, which specifically targeted amyloid plaques. Transmission electron microscope was used to study the morphological features of MZF-PiB. Superparamagnetism of MZF-PiB was assessed by its r(2) relaxation rate by using 3.0 T MRI scanner. Cytotoxic test was applied to determine biosafety of MZF-PiB nanoparticles in differentiated human neuroblastoma cells (SH-SY5Y) and Madin-Darby canine kidney (MDCK). In vitro binding tests were conducted via immunohistochemistry on 6-month old AD mice brain sections. Differences of cell viability between groups were compared with one-way analysis of variance. Results: MZF-PiB nanoparticles were successfully constructed. Transmission electron microscope images showed that the nanoparticles were about 100 nm in size. The r(2) relaxation rate was 163.11 mMS(-1). No differences were found in cell viability of SH-SY5Y and MDCK incubated with MZF-PiB suspension for 24 h or 48 h when compared with those of untreated cells ( F =2.336, 2.539, 0.293, 1.493, all P >0.05). In vitro binding tests indicated that the MZF-PiB were specifically bound to amyloid plaques. The smallest size of detected plaques was 27 μm. Conclusion: PiB-modified nanoparticles targeting Aβ are biologically safe and highly superparamagnetic, possessing the capability to detect amyloid plaques early in vitro and the potential for early diagnosis of AD.

  16. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang

    2016-01-01

    Objectives . To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods . In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results . The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and A β amyloid content in the frontal lobe, compared with the AD group ( P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion . MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice.

  17. [Aβ immunotherapy for Alzheimer's disease].

    Science.gov (United States)

    Sakai, Kenji; Yamada, Masahito

    2013-04-01

    Alzheimer's disease (AD) is one of the neurodegenerative diseases characterized by the deposition of amyloid-β-protein (Aβ) as senile plaques in the brain parenchyma and phosphorylated-tau accumulation as neurofibrillary tangles in the neurons. Although details of the disease pathomechanisms remain unclear, Aβ likely acts as a key protein for AD initiation and progression, followed by abnormal tau phosphorylation and neuronal death (amyloid-cascade hypothesis). According to this hypothesis, Aβ immunization therapies are created to eliminate Aβ from the brain, and to prevent the neurons from damage by these pathogenic proteins. There are two methods for Aβ immunotherapies: active and passive immunization. Previous studies have shown Aβ removal and improved cognitive function in animal models of AD. Clinical trials on various drugs, including AN1792, bapineuzumab, and solanezumab, have been carried out; however, all trials have failed to demonstrate apparent clinical benefits. On the contrary, side effects emerged, such as meningoencephalitis, vasogenic edema, which are currently called amyloid related imaging abnormalities (ARIA)-E and microhemorrhage (ARIA-H). In neuropathological studies of immunized cases, Aβ was removed from the brain parenchyma and phosphorylated-tau was reduced in the neuronal processes. Moreover, deterioration of the cerebral amyloid angiopathy (CAA) and an increase of microhemorrhages and microinfarcts were described. Aβ is cleared from the brain mainly via the lymphatic drainage pathway. ARIA could stem from severe CAA due to dysfunction of the drainage pathway after immunotherapy. Aβ immunization has a potential of cure for AD patients, although the above-described problems must be overcome before applying this therapy in clinical treatment.

  18. Regulation of sorLA in general and in Alzheimer's disease

    DEFF Research Database (Denmark)

    Andersen, Olav Michael; Poulsen, Annemarie Svane Aavild; Zole, Egija

    Background: The Sortillin-related receptor (sorLA) is involved in cellular trafficking and processing of the Amyloid precursor protein (APP). A decrease in sorLA expression has been identified in brain tissue from patients suffering from Alzheimer's disease (AD), suggesting that sorLA may be a key...... tissue from patients with Alzheimer's disease. Conclusions: We have investigated the regulation of sorLA expression and identified several cis - and trans -regulatory elements important for the proper expression of sorLA. These studies may help to elucidate the mechanisms underlying the observ ed down...... regulation of sorLA and the linkage to disease onset of SORL1 SNPs in AD patients....

  19. Brain amyloid β protein and memory disruption in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Weiming Xia

    2010-09-01

    Full Text Available Weiming XiaCenter for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USAAbstract: The development of amyloid-containing neuritic plaques is an invariable characteristic of Alzheimer’s diseases (AD. The conversion from monomeric amyloid β protein (Aβ to oligomeric Aβ and finally neuritic plaques is highly dynamic. The specific Aß species that is correlated with disease severity remains to be discovered. Oligomeric Aβ has been detected in cultured cells, rodent and human brains, as well as human cerebrospinal fluid. Synthetic, cell, and brain derived Aβ oligomers have been found to inhibit hippocampal long-term potentiation (LTP and this effect can be suppressed by the blockage of Aβ oligomer formation. A large body of evidence suggests that Aβ oligomers inhibit N-methyl-D-aspartate receptor dependent LTP; additional receptors have also been found to elicit downstream pathways upon binding to Aβ oligomers. Amyloid antibodies and small molecular compounds that reduce brain Aβ levels and block Aβ oligomer formation are capable of reversing synaptic dysfunction and these approaches hold a promising therapeutic potential to rescue memory disruption.Keywords: Alzheimer, amyloid, oligomer, long-term potentiation, NMDA

  20. Low background and high contrast PET imaging of amyloid-β with [11C]AZD2995 and [11C]AZD2184 in Alzheimer's disease patients

    International Nuclear Information System (INIS)

    Forsberg, Anton; Andersson, Jan; Varnaes, Katarina; Halldin, Christer; Jureus, Anders; Swahn, Britt-Marie; Sandell, Johan; Julin, Per; Svensson, Samuel; Cselenyi, Zsolt; Schou, Magnus; Johnstroem, Peter; Farde, Lars; Eriksdotter, Maria; Freund-Levi, Yvonne; Jeppsson, Fredrik

    2013-01-01

    The aim of this study was to evaluate AZD2995 side by side with AZD2184 as novel PET radioligands for imaging of amyloid-β in Alzheimer's disease (AD). In vitro binding of tritium-labelled AZD2995 and AZD2184 was studied and compared with that of the established amyloid-β PET radioligand PIB. Subsequently, a first-in-human in vivo PET study was performed using [ 11 C]AZD2995 and [ 11 C]AZD2184 in three healthy control subjects and seven AD patients. AZD2995, AZD2184 and PIB were found to share the same binding site to amyloid-β. [ 3 H]AZD2995 had the highest signal-to-background ratio in brain tissue from patients with AD as well as in transgenic mice. However, [ 11 C]AZD2184 had superior imaging properties in PET, as shown by larger effect sizes comparing binding potential values in cortical regions of AD patients and healthy controls. Nevertheless, probably due to a lower amount of nonspecific binding, the group separation of the distribution volume ratio values of [ 11 C]AZD2995 was greater in areas with lower amyloid-β load, e.g. the hippocampus. Both AZD2995 and AZD2184 detect amyloid-β with high affinity and specificity and also display a lower degree of nonspecific binding than that reported for PIB. Overall [ 11 C]AZD2184 seems to be an amyloid-β radioligand with higher uptake and better group separation when compared to [ 11 C]AZD2995. However, the very low nonspecific binding of [ 11 C]AZD2995 makes this radioligand potentially interesting as a tool to study minute levels of amyloid-β. This sensitivity may be important in investigating, for example, early prodromal stages of AD or in the longitudinal study of a disease modifying therapy. (orig.)

  1. Role of APOE Isforms in the Pathogenesis of TBI Induced Alzheimer’s Disease

    Science.gov (United States)

    2014-10-01

    the inheritance of APOe4 is the only proven genetic risk factor for sporadic Alzheimer disease (AD). Importantly, TBI is a risk factor for the...mediated through ABCA1. 2 Keywords Traumatic brain injury, APOE isoforms, ABCA1, Alzheimer disease, APPmice, amyloid beta, axonal injury, inflamma...and Anticipated problems 3 OVERALL PROJECT SUMMARY Trough activation of LXR/RXR transcription factors this ligand causes up regulation of Abca1 and

  2. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  3. β - amyloid imaging probes

    International Nuclear Information System (INIS)

    Jeong, Jae Min

    2007-01-01

    Imaging distribution of β - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the β -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral β - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging β - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for β - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for β - amyloid imaging agent

  4. Spatiotemporal Distribution of β-Amyloid in Alzheimer Disease Is the Result of Heterogeneous Regional Carrying Capacities.

    Science.gov (United States)

    Whittington, Alex; Sharp, David J; Gunn, Roger N

    2018-05-01

    β-amyloid (Aβ) accumulation in the brain is 1 of 2 pathologic hallmarks of Alzheimer disease (AD), and the spatial distribution of Aβ has been studied extensively ex vivo. Methods: We applied mathematical modeling to Aβ in vivo PET imaging data to investigate competing theories of Aβ spread in AD. Results: Our results provided evidence that Aβ accumulation starts in all brain regions simultaneously and that its spatiotemporal distribution is due to heterogeneous regional carrying capacities (regional maximum possible concentration of Aβ) for the aggregated protein rather than to longer-term spreading from seed regions. Conclusion: The in vivo spatiotemporal distribution of Aβ in AD can be mathematically modeled using a logistic growth model in which the Aβ carrying capacity is heterogeneous across the brain but the exponential growth rate and time of half maximal Aβ concentration are constant. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein.

    Science.gov (United States)

    Tien, Nguyen T; Karaca, Ilker; Tamboli, Irfan Y; Walter, Jochen

    2016-05-13

    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Astrogliosis : An integral player in the pathogenesis of Alzheimer's disease

    NARCIS (Netherlands)

    Osborn, Lana M.; Kamphuis, Willem; Wadman, Wytse J.; Hol, Elly M.

    Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta

  7. Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease

    NARCIS (Netherlands)

    Osborn, L.M.; Kamphuis, W.; Wadman, W.J.; Hol, E.M.

    2016-01-01

    Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta

  8. Astrogliosis : An integral player in the pathogenesis of Alzheimer's disease

    NARCIS (Netherlands)

    Osborn, Lana M; Kamphuis, W.; Wadman, Wytse J; Hol, Elly M

    2016-01-01

    Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta

  9. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Anila Mathew

    Full Text Available Alzheimer's disease is a growing concern in the modern world. As the currently available medications are not very promising, there is an increased need for the fabrication of newer drugs. Curcumin is a plant derived compound which has potential activities beneficial for the treatment of Alzheimer's disease. Anti-amyloid activity and anti-oxidant activity of curcumin is highly beneficial for the treatment of Alzheimer's disease. The insolubility of curcumin in water restricts its use to a great extend, which can be overcome by the synthesis of curcumin nanoparticles. In our work, we have successfully synthesized water-soluble PLGA coated- curcumin nanoparticles and characterized it using different techniques. As drug targeting to diseases of cerebral origin are difficult due to the stringency of blood-brain barrier, we have coupled the nanoparticle with Tet-1 peptide, which has the affinity to neurons and possess retrograde transportation properties. Our results suggest that curcumin encapsulated-PLGA nanoparticles are able to destroy amyloid aggregates, exhibit anti-oxidative property and are non-cytotoxic. The encapsulation of the curcumin in PLGA does not destroy its inherent properties and so, the PLGA-curcumin nanoparticles can be used as a drug with multiple functions in treating Alzheimer's disease proving it to be a potential therapeutic tool against this dreaded disease.

  10. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  11. Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer's disease

    International Nuclear Information System (INIS)

    Foerster, Stefan; Yousefi, Behrooz H.; Wester, Hans-Juergen; Klupp, Elisabeth; Rominger, Axel; Foerstl, Hans; Kurz, Alexander; Grimmer, Timo; Drzezga, Alexander

    2012-01-01

    Similar regional anatomical distributions were reported for fibrillary amyloid deposition [measured by 11 C-Pittsburgh compound B (PIB) positron emission tomography (PET)] and brain hypometabolism [measured by 18 F-fluorodeoxyglucose (FDG) PET] in numerous Alzheimer's disease (AD) studies. However, there is a lack of longitudinal studies evaluating the interrelationships of these two different pathological markers in the same AD population. Our most recent AD study suggested that the longitudinal pattern of hypometabolism anatomically follows the pattern of amyloid deposition with temporal delay, which indicates that neuronal dysfunction may spread within the anatomical pattern of amyloid pathology. Based on this finding we now hypothesize that in early AD patients quantitative longitudinal decline in hypometabolism may be related to the amount of baseline amyloid deposition during a follow-up period of 2 years. Fifteen patients with mild probable AD underwent baseline (T1) and follow-up (T2) examination after 24 ± 2.1 months with [ 18 F]FDG PET, [ 11 C]PIB PET, structural T1-weighted MRI and neuropsychological testing [Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery]. Longitudinal cognitive measures and quantitative PET measures of amyloid deposition and metabolism [standardized uptake value ratios (SUVRs)] were obtained using volume of interest (VOI)-based approaches in the frontal-lateral-retrosplenial (FLR) network and in predefined bihemispheric brain regions after partial volume effect (PVE) correction of PET data. Statistical group comparisons (SUVRs and cognitive measures) between patients and 15 well-matched elderly controls who had undergone identical imaging procedures once as well as Pearson's correlation analyses within patients were performed. Group comparison revealed significant cognitive decline and increased mean PIB/decreased FDG SUVRs in the FLR network as well as in several AD-typical regions in

  12. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.

    Science.gov (United States)

    Hsu, Ruei-Lin; Lee, Kung-Ta; Wang, Jung-Hao; Lee, Lily Y-L; Chen, Rita P-Y

    2009-01-28

    More than 20 unrelated proteins can form amyloid fibrils in vivo which are related to various diseases, such as Alzheimer's disease, prion disease, and systematic amyloidosis. Amyloid fibrils are an ordered protein aggregate with a lamellar cross-beta structure. Enhancing amyloid clearance is one of the targets of the therapy of these amyloid-related diseases. Although there is debate on whether the toxicity is due to amyloids or their precursors, research on the degradation of amyloids may help prevent or alleviate these diseases. In this study, we explored the amyloid-degrading ability of nattokinase, a fibrinolytic subtilisin-like serine protease, and determined the optimal conditions for amyloid hydrolysis. This ability is shared by proteinase K and subtilisin Carlsberg, but not by trypsin or plasmin.

  13. Alzheimer's disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing.

    Science.gov (United States)

    Javitt, Norman B

    2013-01-01

    Evidence is emerging that during the development of Alzheimer's disease (AD), changes in the synthesis and metabolism of cholesterol and progesterone are occurring that may or may not affect the progression of the disease. The concept arose from the recognition that dehydrocholesterol 24-reductase (DHCR24/Seladin-1), one of the nine enzymes in the endoplasmic reticulum that determines the transformation of lanosterol to cholesterol, is selectively reduced in late AD. As a consequence, the tissue level of desmosterol increases, affecting the expression of ABC transporters and the structure of lipid rafts, both determinants of amyloid-β processing. However, the former effect is considered beneficial and the latter detrimental to processing. Other determinants of desmosterol tissue levels are 24,25 epoxycholesterol and the ABCG1 and ABCG4 transporters. Progesterone and its metabolites are determinants of tissue levels of desmosterol and several other sterol intermediates in cholesterol synthesis. Animal models indicate marked elevations in the tissue levels of these sterols at early time frames in the progression of neurodegenerative diseases. The low level of neuroprogesterone and metabolites in AD are consonant with the low level of desmosterol and may have a role in amyloid-β processing. The sparse data that has accumulated appears to be a sufficient basis for proposing a systematic evaluation of the biologic roles of sterol intermediates in the slowly progressive neurodegeneration characteristic of AD.

  14. The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide

    Science.gov (United States)

    Soscia, Stephanie J.; Kirby, James E.; Washicosky, Kevin J.; Tucker, Stephanie M.; Ingelsson, Martin; Hyman, Bradley; Burton, Mark A.; Goldstein, Lee E.; Duong, Scott; Tanzi, Rudolph E.; Moir, Robert D.

    2010-01-01

    Background The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies. Conclusions/Significance Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies. PMID:20209079

  15. Beyond the neurotransmitter-focused approach in treating Alzheimer's disease: drugs targeting beta-amyloid and tau protein.

    Science.gov (United States)

    Panza, Francesco; Solfrizzi, Vincenzo; Frisardi, Vincenza; Imbimbo, Bruno P; Capurso, Cristiano; D'Introno, Alessia; Colacicco, Anna M; Seripa, Davide; Vendemiale, Gianluigi; Capurso, Antonio; Pilotto, Alberto

    2009-12-01

    Drugs currently used to treat Alzheimer's Disease (AD) have limited therapeutic value and do not affect the main neuropathological hallmarks of the disease, i.e., senile plaques and neurofibrillar tangles. Senile plaques are mainly formed of beta-amyloid (Abeta), a 42-aminoacid peptide. Neurofibrillar tangles are composed of paired helical filaments of hyperphosphorylated tau protein. New, potentially disease-modifying, therapeutic approaches are targeting Abeta and tau protein. Drugs directed against Abeta include active and passive immunization, that have been found to accelerate Abeta clearance from the brain. The most developmentally advanced monoclonal antibody directly targeting Abeta is bapineuzumab, now being studied in a large Phase III clinical trial. Compounds that interfere with proteases regulating Abeta formation from amyloid precursor protein (APP) are also actively pursued. The discovery of inhibitors of beta-secretase, the enzyme that regulates the first step of the amyloidogenic metabolism of APP, has been revealed to be particularly difficult due to inherent medicinal chemistry problems, and only one compound (CTS-21166) has reached clinical testing. Conversely, several compounds that inhibit gamma-secretase, the pivotal enzyme that generates Abeta, have been identified, the most advanced being LY-450139 (semagacestat), now in Phase III clinical development. Compounds that stimulate alpha-secretase, the enzyme responsible for the non-amyloidogenic metabolism of APP, are also being developed, and one of them, EHT-0202, has recently entered Phase II testing. Potent inhibitors of Abeta aggregation have also been identified, and one of such compounds, PBT-2, has provided encouraging neuropsychological results in a recently completed Phase II study. Therapeutic approaches directed against tau protein include inhibitors of glycogen synthase kinase- 3 (GSK-3), the enzyme responsible for tau phosphorylation and tau protein aggregation inhibitors. NP-12

  16. Neuronal Store-Operated Calcium Entry and Mushroom Spine Loss in Amyloid Precursor Protein Knock-In Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Zhang, Hua; Wu, Lili; Pchitskaya, Ekaterina; Zakharova, Olga; Saito, Takashi; Saido, Takaomi; Bezprozvanny, Ilya

    2015-09-30

    Alzheimer's disease (AD) is the most common reason for elderly dementia in the world. We proposed that memory loss in AD is related to destabilization of mushroom postsynaptic spines involved in long-term memory storage. We demonstrated previously that stromal interaction molecule 2 (STIM2)-regulated neuronal store-operated calcium entry (nSOC) in postsynaptic spines play a key role in stability of mushroom spines by maintaining activity of synaptic Ca(2+)/calmodulin kinase II (CaMKII). Furthermore, we demonstrated previously that the STIM2-nSOC-CaMKII pathway is downregulated in presenilin 1 M146V knock-in (PS1-M146V KI) mouse model of AD, leading to loss of hippocampal mushroom spines in this model. In the present study, we demonstrate that hippocampal mushroom postsynaptic spines are also lost in amyloid precursor protein knock-in (APPKI) mouse model of AD. We demonstrated that loss of mushroom spines occurs as a result of accumulation of extracellular β-amyloid 42 in APPKI culture media. Our results indicate that extracellular Aβ42 acts by overactivating mGluR5 receptor in APPKI neurons, leading to elevated Ca(2+) levels in endoplasmic reticulum, compensatory downregulation of STIM2 expression, impaired synaptic nSOC, and reduced CaMKII activity. Pharmacological inhibition of mGluR5 or overexpression of STIM2 rescued synaptic nSOC and prevented mushroom spine loss in APPKI hippocampal neurons. Our results indicate that downregulation of synaptic STIM2-nSOC-CaMKII pathway causes loss of mushroom synaptic spines in both presenilin and APPKI mouse models of AD. We propose that modulators/activators of this pathway may have a potential therapeutic value for treatment of memory loss in AD. Significance statement: A direct connection between amyloid-induced synaptic mushroom spine loss and neuronal store-operated calcium entry pathway is shown. These results provide strong support for the calcium hypothesis of neurodegeneration and further validate the synaptic

  17. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2017-04-01

    Full Text Available Summary: Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP processing and the accumulation of APP-derived amyloid β (Aβ peptides are key processes in Alzheimer's disease (AD. We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation. : In this article, Livesey and colleagues perform a phenotypic drug screen in a human stem cell model of Alzheimer's disease. The anthelminthic avermectins are identified as a family of compounds that increase the production of short Aβ peptides over longer more toxic Aβ forms. The effect is analogous to existing γ-secretase modulators, but is independent of the core γ-secretase complex. Keywords: neural stem cells, Alzheimer's disease, phenotypic screening, iPSCs, human neurons, dementia, Down syndrome, amyloid beta, ivermectin, selamectin

  18. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    Science.gov (United States)

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The prion protein as a receptor for amyloid-beta

    NARCIS (Netherlands)

    Kessels, Helmut W.; Nguyen, Louis N.; Nabavi, Sadegh; Malinow, Roberto

    2010-01-01

    Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic

  20. Amyloid plaque imaging in vivo: current achievement and future prospects

    International Nuclear Information System (INIS)

    Nordberg, Agneta

    2008-01-01

    Alzheimer's disease (AD) is a very complex neurodegenerative disorder, the exact cause of which is still not known. The major histopathological features, amyloid plaques and neurofibrillary tangles, already described by Alois Alzheimer, have been the focus in research for decades. Despite a probable whole cascade of events in the brain leading to impairment of cognition, amyloid is still the target for diagnosis and treatment. The rapid development of molecular imaging techniques now allows imaging of amyloid plaques in vivo in Alzheimer patients by PET amyloid ligands such as Pittsburgh compound B (PIB). Studies so far have revealed high 11 C-PIB retention in brain at prodromal stages of AD and a possibility to discriminate AD from other dementia disorders by 11 C-PIB. Ongoing studies are focussing to understand the relationship between brain and CSF amyloid processes and cognitive processes. In vivo imaging of amyloid will be important for early diagnosis and evaluation of new anti-amyloid therapies in AD. (orig.)

  1. Preclinical MRI and NMR Bio-markers of Alzheimer's Disease: Concepts and Applications

    International Nuclear Information System (INIS)

    Dhenain, M.; Dhenain, M.; Dhenain, M.

    2008-01-01

    Alzheimer's disease is an important social and economic issue for our societies. The development of therapeutics against this severe dementia requires assessing the effects of new drugs in animal models thanks to dedicated bio-markers. This review first overviews Alzheimer's disease and its models as well as the concept of bio-markers. It then focuses on MRI and NMR bio-markers of Alzheimer's disease in animals. Anatomical markers such as atrophy and angiography are useful to phenotype newly developed models of Alzheimer's disease, even if the alterations in these animals are not as severe as in humans. Amyloid plaques imaging is a promising marker of the pathology in animals, and is a rapidly evolving field of MRI. Functional methods such as perfusion and diffusion imaging or spectroscopy are able to detect alterations in transgenic mice mimicking Alzheimer and also to show similar alterations than in humans. They can thus be good translational markers of the disease. Manganese-Enhanced MRI shows a reduction of neuronal transportation in transgenic models of Alzheimer and it allows monitoring improvements induced by treatments of the disease. It is thus a promising bio-marker of the pathology in animals. (authors)

  2. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of {beta}-amyloid plaques in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Cui Mengchao [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Ono, Masahiro, E-mail: ono@pharm.kyoto-u.ac.j [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kimura, Hiroyuki; Kawashima, Hidekazu [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Liu Boli [Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Saji, Hideo, E-mail: hsaji@pharm.kyoto-u.ac.j [Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2011-04-15

    Five iodinated 2-phenyl-1H-benzo[d]imidazole derivatives were synthesized and evaluated as potential probes for {beta}-amyloid (A{beta}) plaques. One of the compounds, 4-(6-iodo-1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline (12), showed excellent affinity for A{beta}{sub 1-42} aggregates (K{sub i}=9.8 nM). Autoradiography with sections of postmortem Alzheimer's disease (AD) brain revealed that a radioiodinated probe [{sup 125}I]12, labeled A{beta} plaques selectively with low nonspecific binding. Biodistribution experiments with normal mice injected intravenously with [{sup 125}I]12 showed high uptake [4.14 percent injected dose per gram (% ID/g) at 2 min] into and rapid clearance (0.15% ID/g at 60 min) from the brain, which may bring about a good signal-to-noise ratio and therefore achieve highly sensitive detection of A{beta} plaques. In addition, [{sup 125}I]12 labeled amyloid plaques in vivo in an AD transgenic model. The preliminary results strongly suggest that [{sup 125}I]12 bears characteristics suitable for detecting amyloid plaques in vivo. When labeled with {sup 123}I, it may be a useful SPECT imaging agent for A{beta} plaques in the brain of living AD patients.

  3. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    Science.gov (United States)

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  4. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Directory of Open Access Journals (Sweden)

    Anna E. Blanken

    2017-01-01

    Full Text Available Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD and 7 cognitively normal (NC subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ, tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP.

  5. Calcium channel blockers and Alzheimer's disease★

    Science.gov (United States)

    Tan, Yi; Deng, Yulin; Qing, Hong

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers involved in Alzheimer's disease therapy. PMID:25767489

  6. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease.

    Science.gov (United States)

    Santangelo, Roberto; Cecchetti, Giordano; Bernasconi, Maria Paola; Cardamone, Rosalinda; Barbieri, Alessandra; Pinto, Patrizia; Passerini, Gabriella; Scomazzoni, Francesco; Comi, Giancarlo; Magnani, Giuseppe

    2017-01-01

    Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.

  7. The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation*

    Science.gov (United States)

    Benilova, Iryna; Gallardo, Rodrigo; Ungureanu, Andreea-Alexandra; Castillo Cano, Virginia; Snellinx, An; Ramakers, Meine; Bartic, Carmen; Rousseau, Frederic; Schymkowitz, Joost; De Strooper, Bart

    2014-01-01

    Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously. PMID:25253695

  8. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ilaria eCanobbio

    2015-03-01

    Full Text Available Alzheimer’s disease (AD is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of the AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD. According to the vascular hypothesis, AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorragic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review we analyse the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.

  9. Memantine Attenuates Alzheimer's Disease-Like Pathology and Cognitive Impairment.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Wang

    Full Text Available Deficiency of protein phosphatase-2A is a key event in Alzheimer's disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer's disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer's disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer's disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer's disease patients.

  10. Motor impulsivity in APP-SWE mice: a model of Alzheimer's disease.

    Science.gov (United States)

    Adriani, Walter; Ognibene, Elisa; Heuland, Emilie; Ghirardi, Orlando; Caprioli, Antonio; Laviola, Giovanni

    2006-09-01

    Among transgenic mouse models of Alzheimer's disease, APP-SWE mice have been shown to develop beta-amyloid plaques and to exhibit progressive impairment of cognitive function. Human Alzheimer's disease, however, also includes secondary clinical manifestations, spanning from hyperactivity to agitation. The aim of this study was a better characterization of motor impulsivity in APP-SWE mice, observed at 12 months of age, when levels of soluble beta-amyloid are elevated and beta-amyloid neuritic plaques start to appear. Mice were tested for spatial learning abilities in the Morris water maze (seven daily sessions, four trials per day). The distance traveled to reach the hidden platform showed a learning curve in both groups. This profile, however, was somewhat delayed in APP-SWE mice, thus confirming slightly impaired spatial capacities. To evaluate motor impulsivity, animals were trained to nose-poke for a food reward, which was delivered after a waiting interval that increased over days (15-60 s). Further nose-poking during this signaled waiting interval resulted in food-reward loss and electric-shock punishment. APP-SWE mice received an increased quantity of punishment and were able to earn fewer food rewards, suggesting inability to wait already at the lowest delay. After the animals were killed, prefrontal cortex samples were assessed for neurochemical parameters. Serotonin turnover was elevated in the prefrontal cortex of APP-SWE mice compared with controls. The results clearly confirm cognitive deficits, and are consistent with the hypothesis of reduced behavioral-inhibition abilities. Together with recent findings, APP-SWE mice emerge as a suitable animal model, characterized by a number of specific behavioral alterations, resembling primary and secondary symptoms of human Alzheimer's disease.

  11. Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease.

    Science.gov (United States)

    Becerril-Ortega, Javier; Bordji, Karim; Fréret, Thomas; Rush, Travis; Buisson, Alain

    2014-10-01

    Iron dyshomeostasis is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD); yet, its mechanism is not well understood. Here, we investigated the AD-related mechanism(s) of iron-sulfate exposure in vitro and in vivo, using cultured primary cortical neurons and APP/PS1 AD-model mice, respectively. In both systems, we observed iron-induced disruptions of amyloid precursor protein (APP) processing, neuronal signaling, and cognitive behavior. Iron overload increased production of amyloidogenic KPI-APP and amyloid beta. Further, this APP misprocessing was blocked by MK-801 in vitro, suggesting the effect was N-methyl-D-aspartate receptor (NMDAR) dependent. Calcium imaging confirmed that 24 hours iron exposure led to disrupted synaptic signaling by augmenting GluN2B-containing NMDAR expression-GluN2B messenger RNA and protein levels were increased and promoting excessing extrasynaptic NMDAR signaling. The disrupted GluN2B expression was concurrent with diminished expression of the splicing factors, sc35 and hnRNPA1. In APP/PS1 mice, chronic iron treatment led to hastened progression of cognitive impairment with the novel object recognition discrimination index, revealing a deficit at the age of 4 months, concomitant with augmented GluN2B expression. Together, these data suggest iron-induced APP misprocessing and hastened cognitive decline occur through inordinate extrasynaptic NMDAR activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin

    2016-01-01

    One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD

  13. CSF and MRI markers independently contribute to the diagnosis of Alzheimer's disease

    NARCIS (Netherlands)

    Schoonenboom, N.S.M.; van der Flier, W.M.; Blankenstein, M.A.; Bouwman, F.H.; van Kamp, G.J.; Barkhof, F.; Scheltens, P.

    2008-01-01

    Background: Decreased amyloid β (1-42) (Aβ42) and increased (phosphorylated) tau in cerebrospinal fluid (CSF) are considered to be a reflection of plaques, tangles, and neuronal degeneration in Alzheimer's disease (AD). Atrophy of the medial temporal lobe (MTA) on magnetic resonance imaging (MRI)

  14. Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease.

    Science.gov (United States)

    Lefort, Roger; Pozueta, Julio; Shelanski, Michael

    2012-08-01

    The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.

  15. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    Directory of Open Access Journals (Sweden)

    Rosengren Lars

    2009-12-01

    Full Text Available Abstract Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ, amyloid beta fragment 1-42 (Aβ1-42, and total and hyperphosphorylated tau (t-tau and p-tau in CSF of 86 HIV-infected (HIV+ subjects, including 21 with AIDS dementia complex (ADC, 25 with central nervous system (CNS opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV- subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those

  16. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    Science.gov (United States)

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  17. Expression of metallothionein-I, -II, and -III in Alzheimer disease and animal models of neuroinflammation

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Penkowa, Milena; Espejo, Carmen

    2006-01-01

    . In Alzheimer disease (AD), a major neurodegenerative disease, clear signs of inflammation and oxidative stress were detected associated with amyloid plaques. Furthermore, the number of cells expressing apoptotic markers was also significantly increased in these plaques. As expected, MT-I and MT...

  18. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Joanna L Jankowsky

    2005-12-01

    Full Text Available The proteases (secretases that cleave amyloid-beta (Abeta peptide from the amyloid precursor protein (APP have been the focus of considerable investigation in the development of treatments for Alzheimer disease. The prediction has been that reducing Abeta production in the brain, even after the onset of clinical symptoms and the development of associated pathology, will facilitate the repair of damaged tissue and removal of amyloid lesions. However, no long-term studies using animal models of amyloid pathology have yet been performed to test this hypothesis.We have generated a transgenic mouse model that genetically mimics the arrest of Abeta production expected from treatment with secretase inhibitors. These mice overexpress mutant APP from a vector that can be regulated by doxycycline. Under normal conditions, high-level expression of APP quickly induces fulminant amyloid pathology. We show that doxycycline administration inhibits transgenic APP expression by greater than 95% and reduces Abeta production to levels found in nontransgenic mice. Suppression of transgenic Abeta synthesis in this model abruptly halts the progression of amyloid pathology. However, formation and disaggregation of amyloid deposits appear to be in disequilibrium as the plaques require far longer to disperse than to assemble. Mice in which APP synthesis was suppressed for as long as 6 mo after the formation of Abeta deposits retain a considerable amyloid load, with little sign of active clearance.This study demonstrates that amyloid lesions in transgenic mice are highly stable structures in vivo that are slow to disaggregate. Our findings suggest that arresting Abeta production in patients with Alzheimer disease should halt the progression of pathology, but that early treatment may be imperative, as it appears that amyloid deposits, once formed, will require additional intervention to clear.

  19. Neurine, an acetylcholine autolysis product, elevates secreted amyloid-beta protein precursor and amyloid-beta peptide levels, and lowers neuronal cell viability in culture: a role in Alzheimer's disease?

    Science.gov (United States)

    Tweedie, David; Brossi, Arnold; Chen, DeMoa; Ge, Yuan-Wen; Bailey, Jason; Yu, Qian-Sheng; Kamal, Mohammad A; Sambamurti, Kumar; Lahiri, Debomoy K; Greig, Nigel H

    2006-09-01

    Classical hallmarks of Alzheimer's disease (AD) are a synaptic loss, cholinergic neuron death, and abnormal protein deposition, particularly of toxic amyloid-beta peptide (Abeta) that is derived from amyloid-beta protein precursor (AbetaPP) by the action of beta- and gamma-secretases. The trigger(s) initiating the biochemical cascades that underpin these hallmarks have yet to be fully elucidated. The typical forebrain cholinergic cell demise associated with AD brain results in a loss of presynaptic cholinergic markers and acetylcholine (ACh). Neurine (vinyl-trimethyl-ammonium hydroxide) is a breakdown product of ACh, consequent to autolysis and is an organic poison found in cadavre brain. The time- and concentration-dependent actions of neurine were assessed in human neuroblastoma (NB, SK-N-SH) cells in culture by quantifying cell viability by lactate dehydrogenase (LDH) and MTS assay, and AbetaPP and Abeta levels by Western blot and ELISA. NB cells displayed evidence of toxicity to neurine at > or = 3 mg/ml, as demonstrated by elevated LDH levels in the culture media and a reduced cell viability shown by the MTS assay. Using subtoxic concentrations of neurine, elevations in AbetaPP and Abeta1-40 peptide levels were detected in conditioned media samples.

  20. miRNA-431 Prevents Amyloid-β-Induced Synapse Loss in Neuronal Cell Culture Model of Alzheimer's Disease by Silencing Kremen1.

    Science.gov (United States)

    Ross, Sean P; Baker, Kelly E; Fisher, Amanda; Hoff, Lee; Pak, Elena S; Murashov, Alexander K

    2018-01-01

    Synapse loss is well regarded as the underlying cause for the progressive decline of memory function over the course of Alzheimer's disease (AD) development. Recent observations suggest that the accumulation of the Wnt antagonist Dickkopf-1 (Dkk1) in the AD brain plays a critical role in triggering synaptic degeneration. Mechanistically, Dkk1 cooperates with Kremen1 (Krm1), its transmembrane receptor, to block the Wnt/β-catenin signaling pathway. Here, we show that silencing Krm1 with miR-431 prevents amyloid-β-mediated synapse loss in cortico-hippocampal cultures isolated from triple transgenic 3xTg-AD mice. Exposure to AβDDL (an amyloid-β derived diffusive ligand) or Dkk1 reduced the number of pre- and post-synaptic puncta in primary neuronal cultures, while treatment with miR-431 prevented synapse loss. In addition, treatment with miR-431 also prevented neurite degeneration. Our findings demonstrate that miR-431 protects synapses and neurites from Aβ-toxicity in an AD cell culture model and may be a promising therapeutic target.

  1. Novel potential for the management of Alzheimer disease.

    Science.gov (United States)

    Ginter, E; Simko, V; Weinrebova, D; Ladecka, Z

    2015-01-01

    Pathologic characteristics of Alzheimer disease (AD) are β-amyloid (Aβ) plaques, neurofibrillary tangles (NFT) and neurodegeneration. Currently, there is no cure for AD. Cilostazol, a selective inhibitor of type 3 phosphodiesterase, is likely to be a promising agent for AD. In the brain of the experimental animals it significantly reduced the Aβ amyloid plaques. Initial clinical reports on the effect of Cilostazol in AD patients are promising. In mice, stem cells favourably influence the pathogenetic process critical in AD, by reducing deposits of Aβ plaques. Clinical trials of the drug, called Betablock, are already underway in Britain. Successful management and resolution of AD in man will still require further intensive research (Fig. 4, Ref. 11).

  2. In silico modeling of the specific inhibitory potential of thiophene-2,3-dihydro-1,5-benzothiazepine against BChE in the formation of β-amyloid plaques associated with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Kalsoom Saima

    2010-06-01

    Full Text Available Abstract Background Alzheimer's disease, known to be associated with the gradual loss of memory, is characterized by low concentration of acetylcholine in the hippocampus and cortex part of the brain. Inhibition of acetylcholinesterase has successfully been used as a drug target to treat Alzheimer's disease but drug resistance shown by butyrylcholinesterase remains a matter of concern in treating Alzheimer's disease. Apart from the many other reasons for Alzheimer's disease, its association with the genesis of fibrils by β-amyloid plaques is closely related to the increased activity of butyrylcholinesterase. Although few data are available on the inhibition of butyrylcholinesterase, studies have shown that that butyrylcholinesterase is a genetically validated drug target and its selective inhibition reduces the formation of β-amyloid plaques. Rationale We previously reported the inhibition of cholinesterases by 2,3-dihydro-1, 5-benzothiazepines, and considered this class of compounds as promising inhibitors for the cure of Alzheimer's disease. One compound from the same series, when substituted with a hydroxy group at C-3 in ring A and 2-thienyl moiety as ring B, showed greater activity against butyrylcholinesterase than to acetylcholinesterase. To provide insight into the binding mode of this compound (Compound A, molecular docking in combination with molecular dynamics simulation of 5000 ps in an explicit solvent system was carried out for both cholinesterases. Conclusion Molecular docking studies revealed that the potential of Compound A to inhibit cholinesterases was attributable to the cumulative effects of strong hydrogen bonds, cationic-π, π-π interactions and hydrophobic interactions. A comparison of the docking results of Compound A against both cholinesterases showed that amino acid residues in different sub-sites were engaged to stabilize the docked complex. The relatively high affinity of Compound A for butyrylcholinesterase was

  3. Advances in Raman spectroscopy for the diagnosis of Alzheimer's disease

    Science.gov (United States)

    Sudworth, Caroline D.; Archer, John K. J.; Black, Richard A.; Mann, David

    2006-02-01

    Within the next 50 years Alzheimer's disease is expected to affect 100 million people worldwide. The progressive decline in the mental health of the patient is caused by severe brain atrophy generated by the breakdown and aggregation of proteins, resulting in β-amyloid plaques and neurofibrillary tangles. The greatest challenge to Alzheimer's disease lies in the pursuit of an early and definitive diagnosis, in order that suitable treatment can be administered. At the present time, definitive diagnosis is restricted to post-mortem examination. Alzheimer's disease also remains without a long-term cure. This research demonstrates the potential role of Raman spectroscopy, combined with principle components analysis (PCA), as a diagnostic method. Analyses of ethically approved ex vivo post-mortem brain tissues (originating from frontal and occipital lobes) from control (3 normal elderly subjects and 3 Huntingdon's disease subjects) and Alzheimer's disease (12 subjects) brain sections, and a further set of 12 blinded samples are presented. Spectra originating from these tissues are highly reproducible, and initial results indicate a vital difference in protein content and conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Further examination of these spectra using PCA allows for the separation of control from diseased tissues. The validation of the PCA models using blinded samples also displays promise for the identification of Alzheimer's disease, in conjunction with secondary information regarding other brain diseases and dementias. These results provide a route for Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.

  4. A review on cholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Anand, Preet; Singh, Baldev

    2013-04-01

    Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by the deficits in the cholinergic system and deposition of beta amyloid (Aβ) in the form of neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes, it has been targetted for the design of anti-Alzheimer's drugs. Cholinesterase inhibitors enhance cholinergic transmission directly by inhibiting the enzyme acetylcholinesterase (AChE) which hydrolyses acetylcholine. Furthermore, it has been also demonstrated that both acetylcholinesterase and butrylcholinesterase (BuChE) play an important role in Aβ-aggregation during the early stages of senile plaque formation. Therefore, AChE and BuChE inhibition have been documented as critical targets for the effective management of AD by an increase in the availability of acetylcholine in the brain regions and decrease in the Aβ deposition. This review discusses the different classes of cholinesterase inhibitors including tacrine, donepezil, rivastigmine, galantamine, xanthostigmine, para-aminobenzoic acid, coumarin, flavonoid, and pyrrolo-isoxazole analogues developed for the treatment of AD.

  5. The nootropic and neuroprotective proline-containing dipeptide noopept restores spatial memory and increases immunoreactivity to amyloid in an Alzheimer's disease model.

    Science.gov (United States)

    Ostrovskaya, Rita U; Gruden, Marina A; Bobkova, Natalya A; Sewell, Robert D E; Gudasheva, Tatyana A; Samokhin, Alexander N; Seredinin, Sergey B; Noppe, Wim; Sherstnev, Vladimir V; Morozova-Roche, Ludmilla A

    2007-08-01

    The effects of the novel proline-containing nootropic and neuroprotective dipeptide, noopept (GVS-111, N-phenylacetyl-L-prolylglycine ethyl ester) were investigated in NMRI mice following olfactory bulbectomy. We have shown previously that these animals developed Alzheimer's disease (AD)-like behaviour, morphology and biochemistry including impairment of spatial memory, regional neuronal degeneration and elevated Abeta peptide brain levels. In the current investigation, spatial memory was assessed using the Morris water maze and serum antibodies to in vitro morphologically characterized amyloid structures of both Abeta((25-35)) peptide and equine lysozyme, as well as to neurotrophic glial factor S100b, were analyzed by enzyme-linked immunosorbent assay (ELISA). Noopept (administered at a dose of 0.01 mg/kg for a period of 21 days and during a further 5 days training) restored spatial memory and increased serum antibody levels to oligomers of Abeta((25-35)) peptide but not to equine lysozyme amyloid or S100b protein in bulbectomized animals. The positive immunotropic effect of noopept to Abeta((25-35)) peptide prefibrillar aggregates was more marked in sham-operated compared to the bulbectomized subjects which were characterized by an overall suppression of immunoreactivity. Enhancement of the immune response to Abeta((25-35)) peptide prefibrils caused by noopept may attenuate the neurotoxic consequences of amyloid fibrillization and also be associated with an improvement in spatial memory in bulbectomized mice. These actions of noopept, combined with its previously reported neuroprotective and cholinomimetic properties, suggests that this dipeptide may well be useful for improving cognitive deficits induced by neurodegenerative diseases.

  6. Autobiographical narratives relate to Alzheimer's disease biomarkers in older adults.

    Science.gov (United States)

    Buckley, Rachel F; Saling, Michael M; Irish, Muireann; Ames, David; Rowe, Christopher C; Villemagne, Victor L; Lautenschlager, Nicola T; Maruff, Paul; Macaulay, S Lance; Martins, Ralph N; Szoeke, Cassandra; Masters, Colin L; Rainey-Smith, Stephanie R; Rembach, Alan; Savage, Greg; Ellis, Kathryn A

    2014-10-01

    Autobiographical memory (ABM), personal semantic memory (PSM), and autonoetic consciousness are affected in individuals with mild cognitive impairment (MCI) but their relationship with Alzheimer's disease (AD) biomarkers are unclear. Forty-five participants (healthy controls (HC) = 31, MCI = 14) completed the Episodic ABM Interview and a battery of memory tests. Thirty-one (HC = 22, MCI = 9) underwent β-amyloid positron emission tomography (PET) and magnetic resonance (MR) imaging. Fourteen participants (HC = 9, MCI = 5) underwent one imaging modality. Unlike PSM, ABM differentiated between diagnostic categories but did not relate to AD biomarkers. Personal semantic memory was related to neocortical β-amyloid burden after adjusting for age and apolipoprotein E (APOE) ɛ4. Autonoetic consciousness was not associated with AD biomarkers, and was not impaired in MCI. Autobiographical memory was impaired in MCI participants but was not related to neocortical amyloid burden, suggesting that personal memory systems are impacted by differing disease mechanisms, rather than being uniformly underpinned by β-amyloid. Episodic and semantic ABM impairment represent an important AD prodrome.

  7. Study on radioactive labeling of molecular probes for Alzheimer's disease

    International Nuclear Information System (INIS)

    Guo Zhe; Zhang Jinming

    2006-01-01

    Alzheimer's disease (AD) is the most common form of dementia, the pathological features of AD include neuritic plaques composed of beta-amyloid protein, neurofibrillary tangles. Direct imaging of amyloid load in patients with AD in vivo would be useful for the early diagnosis of AD and the development and assessment of new treatment strategies. Different strategies are being used to develop compounds suitable for in vivo imaging of amyloid deposits in human brains. Two compounds, 18 F-FDDNP and 11 C-PIB, both show more binding in the brains of patients with AD than in those of healthy people. Additional compounds will probably be developed that are suitable not only for PET but also for single photon emission CT(SPECT). (authors)

  8. Amyloid-beta immunotherapy: the hope for Alzheimer disease?

    Science.gov (United States)

    Barrera-Ocampo, Alvaro; Lopera, Francisco

    2016-12-30

    Alzheimer disease (AD) is the most prevalent form of dementia of adult-onset, characterized by progressive impairment in cognition and memory. There is no cure for the disease and the current treatments are only symptomatic. Drug discovery is an expensive and time-consuming process; in the last decade no new drugs have been found for AD despite the efforts of the scientific community and pharmaceutical companies. The Aβ immunotherapy is one of the most promising approaches to modify the course of AD. This therapeutic strategy uses synthetic peptides or monoclonal antibodies (mAb) to decrease the Aβ load in the brain and slow the progression of the disease. Therefore, this article will discuss the main aspects of AD neuropathogenesis, the classical pharmacologic treatment, as well as the active and passive immunization describing drug prototypes evaluated in different clinical trials.

  9. Importance and Impact of Preanalytical Variables on Alzheimer Disease Biomarker Concentrations in Cerebrospinal Fluid

    NARCIS (Netherlands)

    Le Bastard, Nathalie; De Deyn, Peter Paul; Engelborghs, Sebastiaan

    BACKGROUND: Analyses of cerebrospinal fluid (CSF) biomarkers (beta-amyloid protein, total tau protein, and hyperphosphorylated tau protein) are part of the diagnostic criteria of Alzheimer disease. Different preanalytical sample procedures contribute to variability of CSF biomarker concentrations,

  10. Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents.

    NARCIS (Netherlands)

    Amiri, H.; Saeidi, K.; Borhani, P.; Manafirad, A.; Ghavami, M.; Zerbi, V.

    2013-01-01

    Alzheimer's disease (AD) is the most common form of dementia. During the recent decade, nanotechnology has been widely considered, as a promising tool, for theranosis (diagnosis and therapy) of AD. Here we first discuss pathophysiology and characteristics of AD with a focus on the amyloid cascade

  11. Prevalence of amyloid PET positivity in dementia syndromes

    DEFF Research Database (Denmark)

    Ossenkoppele, Rik; Jansen, Willemijn J; Rabinovici, Gil D

    2015-01-01

    IMPORTANCE: Amyloid-β positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non-AD dementia. OBJECTIVE: To use...

  12. Estrogen has anti-amyloidogenic effects on Alzheimer's β-amyloid fibrils in vitro

    International Nuclear Information System (INIS)

    Morinaga, Akiyoshi; Hirohata, Mie; Ono, Kenjiro; Yamada, Masahito

    2007-01-01

    Inhibition of the assembly of amyloid β-peptide (Aβ) as well as the destabilization of preformed β-amyloid fibrils (fAβ) in the central nervous system could be valuable therapeutics of patients with Alzheimer's disease (AD). Epidemiological studies have indicated that estrogen therapy reduced the risk of developing AD in women. Here, we examined the effects of estrogen (estrone (E1), estradiol (E2), and estriol (E3)) and related sexual steroids (androstenedione (AND) and testosterone (TES)) on the polymerization, extension and destabilization of fAβ(1-42) and fAβ(1-40) at pH 7.5 at 37 o C in vitro, using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies. E1, E2, and E3 dose-dependently inhibited the formation, as well as destabilization of fAβs. The overall anti-amyloidogenic activity of these molecules was in the order of: E3 > E2 = E1 >>AND = TES. Estrogen could be a potential therapeutic agent to prevent or delay AD progression

  13. Pittsburgh Compound B and AV-1451 positron emission tomography assessment of molecular pathologies of Alzheimer's disease in progressive supranuclear palsy.

    Science.gov (United States)

    Whitwell, Jennifer L; Ahlskog, J Eric; Tosakulwong, Nirubol; Senjem, Matthew L; Spychalla, Anthony J; Petersen, Ronald C; Jack, Clifford R; Lowe, Val J; Josephs, Keith A

    2018-03-01

    Little is known about Alzheimer's disease molecular proteins, beta-amyloid and paired helical filament (PHF) tau, in progressive supranuclear palsy (PSP). Recent techniques have been developed to allow for investigations of these proteins in PSP. We determined the frequency of beta-amyloid deposition in PSP, and whether beta-amyloid deposition in PSP is associated with PHF-tau deposition pattern, or clinical features. Thirty probable PSP participants underwent MRI, [ 18 F]AV-1451 PET and Pittsburgh compound B (PiB) PET. Apolipoprotein (APOE) genotyping was also performed. A global PiB standard-uptake value ratio (SUVR) was calculated. AV-1451 SUVRs were calculated for a set of Alzheimer's disease (AD)-related regions and a set of PSP-related regions. Voxel-level analyses were conducted to assess for differences in AV-1451 uptake patterns and MRI atrophy between PiB(+) and PiB(-) cases compared to 60 normal PiB(-) controls. Statistical testing for correlations and associations between variables of interest were also performed. Twelve subjects (40%) showed beta-amyloid deposition. Higher PiB SUVR correlated with older age but not with AV-1451 SUVR in the AD- or PSP-related regions. Higher AV-1451 SUVR in AD-related regions was associated with higher AV-1451 SUVR in PSP-related regions. We found little evidence for beta-amyloid related differences in clinical metrics, proportion of APOE e4 carriers, pattern of AV-1451 uptake, or pattern of atrophy. Beta-amyloid deposition occurs in a relatively high proportion of PSP subjects. Unlike in Alzheimer's disease, however, there is little evidence that beta-amyloid, and PHF-tau, play a significant role in neurodegeneration in PSP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pleomorphic copper coordination by Alzheimer's disease amyloid-beta peptide.

    Science.gov (United States)

    Drew, Simon C; Noble, Christopher J; Masters, Colin L; Hanson, Graeme R; Barnham, Kevin J

    2009-01-28

    Numerous conflicting models have been proposed regarding the nature of the Cu(2+) coordination environment of the amyloid beta (Abeta) peptide, the causative agent of Alzheimer's disease. This study used multifrequency CW-EPR spectroscopy to directly resolve the superhyperfine interactions between Cu(2+) and the ligand nuclei of Abeta, thereby avoiding ambiguities associated with introducing point mutations. Using a library of Abeta16 analogues with site-specific (15)N-labeling at Asp1, His6, His13, and His14, numerical simulations of the superhyperfine resonances delineated two independent 3N1O Cu(2+) coordination modes, {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H13)} (component Ia) and {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H14)} (component Ib), between pH 6-7. A third coordination mode (component II) was identified at pH 8.0, and simulation of the superhyperfine resonances indicated a 3N1O coordination sphere involving nitrogen ligation by His6, His13, and His14. No differences were observed upon (17)O-labeling of the phenolic oxygen of Tyr10, confirming it is not a key oxygen ligand in the physiological pH range. Hyperfine sublevel correlation (HYSCORE) spectroscopy, in conjunction with site-specific (15)N-labeling, provided additional support for the common role of His6 in components Ia and Ib, and for the assignment of a {O, N(epsilon)(H6), N(epsilon)(H13), N(epsilon)(H14)} coordination sphere to component II. HYSCORE studies of a peptide analogue with selective (13)C-labeling of Asp1 revealed (13)C cross-peaks characteristic of equatorial coordination by the carboxylate oxygen of Asp1 in component Ia/b coordination. The direct resolution of Cu(2+) ligand interactions, together with the key finding that component I is composed of two distinct coordination modes, provides valuable insight into a range of conflicting ligand assignments and highlights the complexity of Cu(2+)/Abeta interactions.

  15. Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance.

    Science.gov (United States)

    Charidimou, Andreas; Farid, Karim; Tsai, Hsin-Hsi; Tsai, Li-Kai; Yen, Rouh-Fang; Baron, Jean-Claude

    2018-04-01

    We performed a meta-analysis to synthesise current evidence on amyloid-positron emission tomography (PET) burden and presumed preferential occipital distribution in sporadic cerebral amyloid angiopathy (CAA). In a PubMed systematic search, we identified case-control studies with extractable data on global and occipital-to-global amyloid-PET uptake in symptomatic patients with CAA (per Boston criteria) versus control groups (healthy participants or patients with non-CAA deep intracerebral haemorrhage) and patients with Alzheimer's disease. To circumvent PET studies' methodological variation, we generated and used 'fold change', that is, ratio of mean amyloid uptake (global and occipital-to-global) of CAA relative to comparison groups. Amyloid-PET uptake biomarker performance was then quantified by random-effects meta-analysis on the ratios of the means. A ratio >1 indicates that amyloid-PET uptake (global or occipital/global) is higher in CAA than comparison groups, and a ratio 90% with probable CAA) and 138 controls (96 healthy elderly, 42 deep intracerebral haemorrhage controls) and 72 patients with Alzheimer's disease, were included. Global amyloid-PET ratio between patients with CAA and controls was above 1, with an average effect size of 1.18 (95% CI 1.08 to 1.28; pPET uptake ratio did not differ between patients with CAA versus patients with deep intracerebral haemorrhage or healthy controls. By contrast, occipital-to-global amyloid-PET uptake ratio was above 1 in patients with CAA versus those with Alzheimer's disease, with an average ratio of 1.10 (95% CI 1.03 to 1.19; p=0.009) and high statistical heterogeneity. Our analysis provides exploratory actionable data on the overall effect sizes and strength of amyloid-PET burden and distribution in patients with CAA, useful for future larger studies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless

  16. Blood platelets in the progression of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nina S Gowert

    Full Text Available Alzheimer's disease (AD is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA. Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.

  17. Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer's disease.

    Science.gov (United States)

    Vassar, Robert

    2007-06-07

    BACE initiates the production of beta-amyloid (Abeta), the likely cause of Alzheimer's disease (AD). In this issue of Neuron, Tesco et al. show that during apoptosis caspase-3 cleaves the adaptor protein GGA3, which is required for BACE lysosomal degradation, consequently stabilizing BACE and elevating Abeta generation.

  18. CSF biomarkers of Alzheimer's disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts.

    Science.gov (United States)

    Hansson, Oskar; Seibyl, John; Stomrud, Erik; Zetterberg, Henrik; Trojanowski, John Q; Bittner, Tobias; Lifke, Valeria; Corradini, Veronika; Eichenlaub, Udo; Batrla, Richard; Buck, Katharina; Zink, Katharina; Rabe, Christina; Blennow, Kaj; Shaw, Leslie M

    2018-03-01

    We studied whether fully automated Elecsys cerebrospinal fluid (CSF) immunoassay results were concordant with positron emission tomography (PET) and predicted clinical progression, even with cutoffs established in an independent cohort. Cutoffs for Elecsys amyloid-β 1-42 (Aβ), total tau/Aβ(1-42), and phosphorylated tau/Aβ(1-42) were defined against [ 18 F]flutemetamol PET in Swedish BioFINDER (n = 277) and validated against [ 18 F]florbetapir PET in Alzheimer's Disease Neuroimaging Initiative (n = 646). Clinical progression in patients with mild cognitive impairment (n = 619) was studied. CSF total tau/Aβ(1-42) and phosphorylated tau/Aβ(1-42) ratios were highly concordant with PET classification in BioFINDER (overall percent agreement: 90%; area under the curve: 94%). The CSF biomarker statuses established by predefined cutoffs were highly concordant with PET classification in Alzheimer's Disease Neuroimaging Initiative (overall percent agreement: 89%-90%; area under the curves: 96%) and predicted greater 2-year clinical decline in patients with mild cognitive impairment. Strikingly, tau/Aβ ratios were as accurate as semiquantitative PET image assessment in predicting visual read-based outcomes. Elecsys CSF biomarker assays may provide reliable alternatives to PET in Alzheimer's disease diagnosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center (TUM-NIC), Munich (Germany); Technische Universitaet Muenchen (TUM), Klinik und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Munich (Germany); Yousefi, Behrooz H.; Wester, Hans-Juergen; Klupp, Elisabeth [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Rominger, Axel [Ludwig Maximilians Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Foerstl, Hans; Kurz, Alexander; Grimmer, Timo [Technische Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Drzezga, Alexander [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center (TUM-NIC), Munich (Germany)

    2012-12-15

    Similar regional anatomical distributions were reported for fibrillary amyloid deposition [measured by {sup 11}C-Pittsburgh compound B (PIB) positron emission tomography (PET)] and brain hypometabolism [measured by {sup 18}F-fluorodeoxyglucose (FDG) PET] in numerous Alzheimer's disease (AD) studies. However, there is a lack of longitudinal studies evaluating the interrelationships of these two different pathological markers in the same AD population. Our most recent AD study suggested that the longitudinal pattern of hypometabolism anatomically follows the pattern of amyloid deposition with temporal delay, which indicates that neuronal dysfunction may spread within the anatomical pattern of amyloid pathology. Based on this finding we now hypothesize that in early AD patients quantitative longitudinal decline in hypometabolism may be related to the amount of baseline amyloid deposition during a follow-up period of 2 years. Fifteen patients with mild probable AD underwent baseline (T1) and follow-up (T2) examination after 24 {+-} 2.1 months with [{sup 18}F]FDG PET, [{sup 11}C]PIB PET, structural T1-weighted MRI and neuropsychological testing [Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery]. Longitudinal cognitive measures and quantitative PET measures of amyloid deposition and metabolism [standardized uptake value ratios (SUVRs)] were obtained using volume of interest (VOI)-based approaches in the frontal-lateral-retrosplenial (FLR) network and in predefined bihemispheric brain regions after partial volume effect (PVE) correction of PET data. Statistical group comparisons (SUVRs and cognitive measures) between patients and 15 well-matched elderly controls who had undergone identical imaging procedures once as well as Pearson's correlation analyses within patients were performed. Group comparison revealed significant cognitive decline and increased mean PIB/decreased FDG SUVRs in the FLR network as well as

  20. Prevalence of cerebral amyloid pathology in persons without dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Knol, Dirk L

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies...

  1. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Ping He

    Full Text Available Thalidomide is a tumor necrosis factor alpha (TNFα inhibitor which has been found to have abilities against tumor growth, angiogenesis and inflammation. Recently, it has been applied in clinic for the treatment of multiple myeloma as well as some inflammatory diseases. However, whether thalidomide has any therapeutic effects on neurodegenerative disorders, i.e. Alzheimer's disease (AD is not clear. AD is characterized by excessive amount of amyloid β peptides (Aβ, which results in a significant release of inflammatory factors, including TNFα in the brain. Studies have shown that inhibition of TNFα reduces amyloid-associated pathology, prevents neuron loss and improves cognition. Our recent report showed that genetic inhibition of TNFα/TNF receptor signal transduction down-regulates β amyloid cleavage enzyme 1 (BACE1 activity, reduces Aβ generation and improves learning and memory deficits. However, the mechanism of thalidomide involving in the mitigation of AD neuropathological features remains unclear. Here, we chronically administrated thalidomide on human APPswedish mutation transgenic (APP23 mice from 9 months old (an onset of Aβ deposits and early stage of AD-like changes to 12 months old. We found that, in addition of dramatic decrease in the activation of both astrocytes and microglia, thalidomide significantly reduces Aβ load and plaque formation. Furthermore, we found a significant decrease in BACE1 level and activity with long-term thalidomide application. Interestingly, these findings cannot be observed in the brains of 12-month-old APP23 mice with short-term treatment of thalidomide (3 days. These results suggest that chronic thalidomide administration is an alternative approach for AD prevention and therapeutics.

  2. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Holly M. Brothers

    2018-04-01

    Full Text Available Amyloid-ß (Aß is best known as the misfolded peptide that is involved in the pathogenesis of Alzheimer's disease (AD, and it is currently the primary therapeutic target in attempts to arrest the course of this disease. This notoriety has overshadowed evidence that Aß serves several important physiological functions. Aß is present throughout the lifespan, it has been found in all vertebrates examined thus far, and its molecular sequence shows a high degree of conservation. These features are typical of a factor that contributes significantly to biological fitness, and this suggestion has been supported by evidence of functions that are beneficial for the brain. The putative roles of Aß include protecting the body from infections, repairing leaks in the blood-brain barrier, promoting recovery from injury, and regulating synaptic function. Evidence for these beneficial roles comes from in vitro and in vivo studies, which have shown that the cellular production of Aß rapidly increases in response to a physiological challenge and often diminishes upon recovery. These roles are further supported by the adverse outcomes of clinical trials that have attempted to deplete Aß in order to treat AD. We suggest that anti-Aß therapies will produce fewer adverse effects if the known triggers of Aß deposition (e.g., pathogens, hypertension, and diabetes are addressed first.

  3. A culture-brain link: Negative age stereotypes predict Alzheimer's disease biomarkers.

    Science.gov (United States)

    Levy, Becca R; Ferrucci, Luigi; Zonderman, Alan B; Slade, Martin D; Troncoso, Juan; Resnick, Susan M

    2016-02-01

    Although negative age stereotypes have been found to predict adverse outcomes among older individuals, it was unknown whether the influence of stereotypes extends to brain changes associated with Alzheimer's disease. To consider this possibility, we drew on dementia-free participants, in the Baltimore Longitudinal Study of Aging, whose age stereotypes were assessed decades before yearly magnetic resonance images and brain autopsies were performed. Those holding more-negative age stereotypes earlier in life had significantly steeper hippocampal-volume loss and significantly greater accumulation of neurofibrillary tangles and amyloid plaques, adjusting for relevant covariates. These findings suggest a new pathway to identifying mechanisms and potential interventions related to the pathology of Alzheimer's disease. (c) 2016 APA, all rights reserved).

  4. Structural Mechanism of the Interaction of Alzheimer Disease Aβ Fibrils with the Non-steroidal Anti-inflammatory Drug (NSAID) Sulindac Sulfide.

    Science.gov (United States)

    Prade, Elke; Bittner, Heiko J; Sarkar, Riddhiman; Lopez Del Amo, Juan Miguel; Althoff-Ospelt, Gerhard; Multhaup, Gerd; Hildebrand, Peter W; Reif, Bernd

    2015-11-27

    Alzheimer disease is the most severe neurodegenerative disease worldwide. In the past years, a plethora of small molecules interfering with amyloid-β (Aβ) aggregation has been reported. However, their mode of interaction with amyloid fibers is not understood. Non-steroidal anti-inflammatory drugs (NSAIDs) are known γ-secretase modulators; they influence Aβ populations. It has been suggested that NSAIDs are pleiotrophic and can interact with more than one pathomechanism. Here we present a magic angle spinning solid-state NMR study demonstrating that the NSAID sulindac sulfide interacts specifically with Alzheimer disease Aβ fibrils. We find that sulindac sulfide does not induce drastic architectural changes in the fibrillar structure but intercalates between the two β-strands of the amyloid fibril and binds to hydrophobic cavities, which are found consistently in all analyzed structures. The characteristic Asp(23)-Lys(28) salt bridge is not affected upon interacting with sulindac sulfide. The primary binding site is located in the vicinity of residue Gly(33), a residue involved in Met(35) oxidation. The results presented here will assist the search for pharmacologically active molecules that can potentially be employed as lead structures to guide the design of small molecules for the treatment of Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Low background and high contrast PET imaging of amyloid-{beta} with [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in Alzheimer's disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Anton; Andersson, Jan; Varnaes, Katarina; Halldin, Christer [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Jureus, Anders; Swahn, Britt-Marie; Sandell, Johan; Julin, Per; Svensson, Samuel [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Cselenyi, Zsolt; Schou, Magnus; Johnstroem, Peter; Farde, Lars [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska Hospital, AstraZeneca Translational Sciences Centre, PET CoE, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (Sweden); Eriksdotter, Maria; Freund-Levi, Yvonne [Karolinska Institutet, Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Karolinska University Hospital, Department of Geriatric Medicine, Stockholm (Sweden); Jeppsson, Fredrik [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Karolinska Institutet, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Stockholm (Sweden)

    2013-04-15

    The aim of this study was to evaluate AZD2995 side by side with AZD2184 as novel PET radioligands for imaging of amyloid-{beta} in Alzheimer's disease (AD). In vitro binding of tritium-labelled AZD2995 and AZD2184 was studied and compared with that of the established amyloid-{beta} PET radioligand PIB. Subsequently, a first-in-human in vivo PET study was performed using [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in three healthy control subjects and seven AD patients. AZD2995, AZD2184 and PIB were found to share the same binding site to amyloid-{beta}. [{sup 3}H]AZD2995 had the highest signal-to-background ratio in brain tissue from patients with AD as well as in transgenic mice. However, [{sup 11}C]AZD2184 had superior imaging properties in PET, as shown by larger effect sizes comparing binding potential values in cortical regions of AD patients and healthy controls. Nevertheless, probably due to a lower amount of nonspecific binding, the group separation of the distribution volume ratio values of [{sup 11}C]AZD2995 was greater in areas with lower amyloid-{beta} load, e.g. the hippocampus. Both AZD2995 and AZD2184 detect amyloid-{beta} with high affinity and specificity and also display a lower degree of nonspecific binding than that reported for PIB. Overall [{sup 11}C]AZD2184 seems to be an amyloid-{beta} radioligand with higher uptake and better group separation when compared to [{sup 11}C]AZD2995. However, the very low nonspecific binding of [{sup 11}C]AZD2995 makes this radioligand potentially interesting as a tool to study minute levels of amyloid-{beta}. This sensitivity may be important in investigating, for example, early prodromal stages of AD or in the longitudinal study of a disease modifying therapy. (orig.)

  6. Towards an All-Polymer Biosensor for Early Alzheimer's Disease

    DEFF Research Database (Denmark)

    Christiansen, Nikolaj Ormstrup; Heegaard, Niels

    Alzheimer's disease (AD) is quickly evolving into one of the biggest and most costly health issues in Europe and the United States. AD is a protein misfolding disease, caused by accumulation of abnormally folded β-amyloid and tau protein in the brain. The build-up of protein is believed...... to degenerate the brain tissue literally shrinking the brain. This slowly destroys function of these parts of the brain. It has been discovered that the concentration of A42 in cerebrospinal fluid (CSF) is a biomarker for this disease. It is therefor of great interest to develop quick and low cost methods...

  7. Using Multifunctional Peptide Conjugated Au Nanorods for Monitoring β-amyloid Aggregation and Chemo-Photothermal Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Li, Meng; Guan, Yijia; Zhao, Andong; Ren, Jinsong; Qu, Xiaogang

    2017-01-01

    Development of sensitive detectors of Aβ aggregates and effective inhibitors of Aβ aggregation are of diagnostic importance and therapeutic implications for Alzheimer's disease (AD) treatment. Herein, a novel strategy has been presented by self-assembly of peptide conjugated Au nanorods (AuP) as multifunctional Aβ fibrillization detectors and inhibitors. Our design combines the unique high NIR absorption property of AuNRs with two known Aβ inhibitors, Aβ15-20 and polyoxometalates (POMs). The synthesized AuP can effectively inhibit Aβ aggregation and dissociate amyloid deposits with NIR irradiation both in buffer and in mice cerebrospinal fluid (CSF), and protect cells from Aβ-related toxicity upon NIR irradiation. In addition, with the shape and size-dependent optical properties, the nanorods can also act as effective diagnostic probes to sensitively detect the Aβ aggregates. This is the first report to integrate 3 segments, an Aβ-targeting element, a reporter and inhibitors, in one drug delivery system for AD treatment.

  8. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases.

    Science.gov (United States)

    Alam, Parvez; Chaturvedi, Sumit Kumar; Siddiqi, Mohammad Khursheed; Rajpoot, Ravi Kant; Ajmal, Mohd Rehan; Zaman, Masihuz; Khan, Rizwan Hasan

    2016-05-27

    Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer's, Parkinson's and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases.

  9. Neurogenesis and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.

  10. [Alzheimer's disease cerebro-spinal fluid biomarkers: A clinical research tool sometimes useful in daily clinical practice of memory clinics for the diagnosis of complex cases].

    Science.gov (United States)

    Magnin, E; Dumurgier, J; Bouaziz-Amar, E; Bombois, S; Wallon, D; Gabelle, A; Lehmann, S; Blanc, F; Bousiges, O; Hannequin, D; Jung, B; Miguet-Alfonsi, C; Quillard, M; Pasquier, F; Peoc'h, K; Laplanche, J-L; Hugon, J; Paquet, C

    2017-04-01

    The role of biomarkers in clinical research was recently highlighted in the new criteria for the diagnosis of Alzheimer's disease. Cerebro-spinal fluid (CSF) biomarkers (total Tau protein, threonine 181 phosphorylated Tau protein and amyloid Aβ1-42 peptide) are associated with cerebral neuropathological lesions observed in Alzheimer's disease (neuronal death, neurofibrillary tangle with abnormal Tau deposits and amyloid plaque). Aβ1-40 amyloid peptide dosage helps to interpret Aβ1-42 results. As suggested in the latest international criteria and the French HAS (Haute Autorité de santé) recommendations, using theses CSF biomarkers should not be systematic but sometimes could be performed to improve confidence about the diagnostic of Alzheimer's disease in young subjects or in complex clinical situations. Future biomarkers actually in development will additionally help in diagnostic process (differential diagnosis) and in prognostic evaluation of neurodegenerative diseases. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  11. miRNAs in Alzheimer Disease - A Therapeutic Perspective.

    Science.gov (United States)

    Gupta, Priya; Bhattacharjee, Surajit; Sharma, Ashish Ranjan; Sharma, Garima; Lee, Sang-Soo; Chakraborty, Chiranjib

    2017-01-01

    Alzheimer's disease is a neurodegenerative disorder which generally affects people who are more than 60 years of age. The disease is clinically characterised by dementia, loss of cognitive functions and massive neurodegeneration. The presence of neurofibrilary tangles and amyloid plaques in the hippocampal region of the brain are the hallmarks of the disease. Current therapeutic approaches for the treatment of Alzheimer's disease are symptomatic and disease modifying, none of which provide any permanent solution or cure for the disease. Dysregulation of miRNAs is one of the major causes of neurodegeneration. In the present review, the roles of different miRNAs such as miR-9, miR-107, miR-29, miR-34, miR-181, miR-106, miR-146a, miR132, miR124a, miR153 has been discussed in detail in the pathogenesis of various neurodegenerative diseases with special focus on AD. The probability of miRNAs as an alternative and more sensitive approach for detection and management of the AD has also been discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Distribution of precursor amyloid-β-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    International Nuclear Information System (INIS)

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.

    1988-01-01

    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid β protein. However, the nature of the relationship between NFT and NP and the source of the amyloid β proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-β-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-β-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid β protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein

  13. Longitudinal Modeling of Functional Decline Associated with Pathologic Alzheimer's Disease in Older Persons without Cognitive Impairment.

    Science.gov (United States)

    Wang, Dai; Schultz, Tim; Novak, Gerald P; Baker, Susan; Bennett, David A; Narayan, Vaibhav A

    2018-01-01

    Therapeutic research on Alzheimer's disease (AD) has moved to intercepting the disease at the preclinical phase. Most drugs in late development have focused on the amyloid hypothesis. To understand the magnitude of amyloid-related functional decline and to identify the functional domains sensitive to decline in a preclinical AD population. Data were from the Religious Orders Study and the Rush Memory and Aging Project. Cognitive decline was measured by a modified version of the Alzheimer's Disease Cooperative Study Preclinical Alzheimer Cognitive Composite. The trajectories of functional decline, as measured by the instrumental and basic activities of daily living, were longitudinally modeled in 484 participants without cognitive impairment at baseline and having both a final clinical and a postmortem neuropathology assessment of AD. Individuals with different final clinical diagnoses had different trajectories of cognitive and functional decline. Individuals with AD dementia, minor cognitive impairment, and no cognitive impairment had the most, intermediate, and least declines. While individuals with pathologic AD had significantly more cognitive decline over time than those without, the magnitude of difference in functional decline between these two groups was small. Functional domains such as handling finance and handling medications were more sensitive to decline. Demonstrating the functional benefit of an amyloid-targeting drug represents a significant challenge as elderly people experience functional decline due to a wide range of reasons with limited manifestation attributable to AD neuropathology. More sensitive functional scales focusing on the functional domains sensitive to decline in preclinical AD are needed.

  14. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker

    NARCIS (Netherlands)

    van Rooden, S.; Versluis, M.J.; Liem, M.K.; Milles, J.; Maier, A.B.; Oleksik, A.M.; Webb, A.G.; van Buchem, M.A.; van der Grond, J.

    2014-01-01

    Background: Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). Methods: T2*-weighted MRI was performed in

  15. Dissecting the role of non-coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer's disease.

    Science.gov (United States)

    Patrick, Ellis; Rajagopal, Sathyapriya; Wong, Hon-Kit Andus; McCabe, Cristin; Xu, Jishu; Tang, Anna; Imboywa, Selina H; Schneider, Julie A; Pochet, Nathalie; Krichevsky, Anna M; Chibnik, Lori B; Bennett, David A; De Jager, Philip L

    2017-07-01

    Given multiple studies of brain microRNA (miRNA) in relation to Alzheimer's disease (AD) with few consistent results and the heterogeneity of this disease, the objective of this study was to explore their mechanism by evaluating their relation to different elements of Alzheimer's disease pathology, confounding factors and mRNA expression data from the same subjects in the same brain region. We report analyses of expression profiling of miRNA (n = 700 subjects) and lincRNA (n = 540 subjects) from the dorsolateral prefrontal cortex of individuals participating in two longitudinal cohort studies of aging. We confirm the association of two well-established miRNA (miR-132, miR-129) with pathologic AD in our dataset and then further characterize this association in terms of its component neuritic β-amyloid plaques and neurofibrillary tangle pathologies. Additionally, we identify one new miRNA (miR-99) and four lincRNA that are associated with these traits. Many other previously reported associations of microRNA with AD are associated with the confounders quantified in our longitudinal cohort. Finally, by performing analyses integrating both miRNA and RNA sequence data from the same individuals (525 samples), we characterize the impact of AD associated miRNA on human brain expression: we show that the effects of miR-132 and miR-129-5b converge on certain genes such as EP300 and find a role for miR200 and its target genes in AD using an integrated miRNA/mRNA analysis. Overall, miRNAs play a modest role in human AD, but we observe robust evidence that a small number of miRNAs are responsible for specific alterations in the cortical transcriptome that are associated with AD.

  16. The genetics of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Bagyinszky E

    2014-04-01

    Full Text Available Eva Bagyinszky,1 Young Chul Youn,2 Seong Soo A An,1,* SangYun Kim3,*1Department of BioNano Technology Gachon University, Gyeonggi-do, 2Department of Neurology, Chung-Ang University College of Medicine, Seoul, 3Department of Neurology, Seoul National University Budang Hospital, Gyeonggi-do, South Korea*These authors contributed equally to this workAbstract: Alzheimer's disease (AD is a complex and heterogeneous neurodegenerative disorder, classified as either early onset (under 65 years of age, or late onset (over 65 years of age. Three main genes are involved in early onset AD: amyloid precursor protein (APP, presenilin 1 (PSEN1, and presenilin 2 (PSEN2. The apolipoprotein E (APOE E4 allele has been found to be a main risk factor for late-onset Alzheimer's disease. Additionally, genome-wide association studies (GWASs have identified several genes that might be potential risk factors for AD, including clusterin (CLU, complement receptor 1 (CR1, phosphatidylinositol binding clathrin assembly protein (PICALM, and sortilin-related receptor (SORL1. Recent studies have discovered additional novel genes that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 2 (TREM2 and cluster of differentiation 33 (CD33. Identification of new AD-related genes is important for better understanding of the pathomechanisms leading to neurodegeneration. Since the differential diagnoses of neurodegenerative disorders are difficult, especially in the early stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies have been successfully used for detecting mutations, monitoring the epigenetic changes, and analyzing transcriptomes. These studies may be a promising approach toward understanding the complete genetic mechanisms of diverse genetic disorders such as AD.Keywords: dementia, amyloid precursor protein, presenilin 1, presenilin 2, APOE, mutation, diagnosis, genetic testing

  17. Sleep Disorders Associated With Alzheimer's Disease: A Perspective

    Directory of Open Access Journals (Sweden)

    Anna Brzecka

    2018-05-01

    Full Text Available Sleep disturbances, as well as sleep-wake rhythm disturbances, are typical symptoms of Alzheimer's disease (AD that may precede the other clinical signs of this neurodegenerative disease. Here, we describe clinical features of sleep disorders in AD and the relation between sleep disorders and both cognitive impairment and poor prognosis of the disease. There are difficulties of the diagnosis of sleep disorders based on sleep questionnaires, polysomnography or actigraphy in the AD patients. Typical disturbances of the neurophysiological sleep architecture in the course of the AD include deep sleep and paradoxical sleep deprivation. Among sleep disorders occurring in patients with AD, the most frequent disorders are sleep breathing disorders and restless legs syndrome. Sleep disorders may influence circadian fluctuations of the concentrations of amyloid-β in the interstitial brain fluid and in the cerebrovascular fluid related to the glymphatic brain system and production of the amyloid-β. There is accumulating evidence suggesting that disordered sleep contributes to cognitive decline and the development of AD pathology. In this mini-review, we highlight and discuss the association between sleep disorders and AD.

  18. FKBP12 regulates the localization and processing of amyloid ...

    Indian Academy of Sciences (India)

    2014-01-27

    Jan 27, 2014 ... One of the pathological hallmarks of Alzheimer's disease is the presence of insoluble extracellular amyloid plaques. These plaques ... The proteolytic cleavage of amyloid precursor protein (APP) ..... lower sAPPα/sAPPs ratio, which may lead to an increase in ..... spine density in healthy adult mouse brain.

  19. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  20. Preclinical MRI and NMR Bio-markers of Alzheimer's Disease: Concepts and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dhenain, M. [CEA, DSV, I2BM, SHFJ, F-91401 Orsay (France); Dhenain, M. [CNRS, URA 2210, F-91401 Orsay (France); Dhenain, M. [CEA, DSV, I2BM, Neurospin, F-91191 Gif sur Yvette(France)

    2008-07-01

    Alzheimer's disease is an important social and economic issue for our societies. The development of therapeutics against this severe dementia requires assessing the effects of new drugs in animal models thanks to dedicated bio-markers. This review first overviews Alzheimer's disease and its models as well as the concept of bio-markers. It then focuses on MRI and NMR bio-markers of Alzheimer's disease in animals. Anatomical markers such as atrophy and angiography are useful to phenotype newly developed models of Alzheimer's disease, even if the alterations in these animals are not as severe as in humans. Amyloid plaques imaging is a promising marker of the pathology in animals, and is a rapidly evolving field of MRI. Functional methods such as perfusion and diffusion imaging or spectroscopy are able to detect alterations in transgenic mice mimicking Alzheimer and also to show similar alterations than in humans. They can thus be good translational markers of the disease. Manganese-Enhanced MRI shows a reduction of neuronal transportation in transgenic models of Alzheimer and it allows monitoring improvements induced by treatments of the disease. It is thus a promising bio-marker of the pathology in animals. (authors)

  1. Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: implications in cytotoxicity and amyloid-β peptide aggregation.

    Science.gov (United States)

    Ramos-Fernández, Eva; Tajes, Marta; Palomer, Ernest; Ill-Raga, Gerard; Bosch-Morató, Mònica; Guivernau, Biuse; Román-Dégano, Irene; Eraso-Pichot, Abel; Alcolea, Daniel; Fortea, Juan; Nuñez, Laura; Paez, Antonio; Alameda, Francesc; Fernández-Busquets, Xavier; Lleó, Alberto; Elosúa, Roberto; Boada, Mercé; Valverde, Miguel A; Muñoz, Francisco J

    2014-01-01

    Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

  2. Platelet amyloid precursor protein isoform expression in Alzheimer's disease: evidence for peripheral marker.

    Science.gov (United States)

    Vignini, A; Sartini, D; Morganti, S; Nanetti, L; Luzzi, S; Provinciali, L; Mazzanti, L; Emanuelli, M

    2011-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by a progressive cognitive and memory decline. Among peripheral markers of AD, great interest has been focused on the amyloid precursor protein (APP). In this regard, platelets represent an important peripheral source of APP since it has been demonstrated that the three major isoforms, that are constituted of 770, 751 and 695 aa residues, are inserted in the membrane of resting platelets. APP 751 and APP 770 contain a Kunitz-type serine protease inhibitor domain (APP KPI) and APP 695 lacks this domain. To address this issue, we first examined the platelet APP isoform mRNAs prospectively as biomarker for the diagnosis of AD by means of real-time quantitative PCR, and then evaluated the correlation between APP mRNA expression levels and cognitive impairment of enrolled subjects. Differential gene expression measurements in the AD patient group (n=18) revealed a significant up-regulation of APP TOT (1.52-fold), APP KPI (1.32-fold), APP 770 (1.33-fold) and APP 751 (1.26-fold) compared to controls (n=22). Moreover, a statistically significant positive correlation was found between APP mRNA levels (TOT, KPI, 770 and 751) and cognitive impairment. Since AD definitive diagnosis still relies on pathological evaluation at autopsy, the present results are consistent with the hypothesis that platelet APP could be considered a potential reliable peripheral marker for studying AD and could contribute to define a signature for the presence of AD pathology.

  3. Transthyretin neuroprotection in Alzheimer's disease is dependent on proteolysis.

    Science.gov (United States)

    Silva, Catarina S; Eira, Jessica; Ribeiro, Carlos A; Oliveira, Ângela; Sousa, Mónica M; Cardoso, Isabel; Liz, Márcia A

    2017-11-01

    The deposition of amyloid β peptide (Aβ) in the hippocampus is one of the major hallmarks of Alzheimer's disease, a neurodegenerative disorder characterized by memory loss and cognitive impairment. The modulation of Aβ levels in the brain results from an equilibrium between its production from the amyloid precursor protein and removal by amyloid clearance proteins, which might occur via enzymatic (Aβ-degrading enzymes) or nonenzymatic (binding/transport proteins) reactions. Transthyretin (TTR) is one of the major Aβ-binding proteins acting as a neuroprotector in AD. In addition, TTR cleaves Aβ peptide in vitro. In this work, we show that proteolytically active TTR, and not the inactive form of the protein, impacts on Aβ fibrillogenesis, degrades neuronal-secreted Aβ, and reduces Aβ-induced toxicity in hippocampal neurons. Our data demonstrate that TTR proteolytic activity is required for the neuroprotective effect of the protein constituting a putative novel therapeutic target for AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Association between hypocretin-1 and amyloid-β42 cerebrospinal fluid levels in Alzheimer's disease and healthy controls.

    Science.gov (United States)

    Slats, Diane; Claassen, Jurgen A H R; Lammers, Gert Jan; Melis, René J; Verbeek, Marcel M; Overeem, Sebastiaan

    2012-12-01

    Alzheimer's disease is associated with sleep disorders. Recently, animal studies demonstrated a link between hypocretin, a sleep-regulation neurotransmitter, and AD pathology. In this study, we investigated the circadian rhythm of hypocretin-1 in Alzheimer's Disease (AD) patients and controls. Moreover, we assessed the relation between CSF hypocretin-1 and amyloid-β. A continuous CSF sampling study via indwelling intrathecal catheter was performed to collect hourly CSF samples of six patients with AD (59-85 yrs, MMSE 16-26) and six healthy volunteers (64-77 yrs). CSF hypocretin-1 and Aβ42 concentrations were determined at 8 individual time points over 24 hours. A circadian pattern was assessed by fitting a 24 hour sine curve to the hypocretin-1 data using mixed model analysis. Clinical diagnosis and Aβ42 were entered into the model as time invariant covariates to determine differences between AD and controls, and correlate Aβ42 to hypocretin-1 levels. A hypocretin-1 circadian rhythm with an amplitude of 11.5 pg/ml was found in clinical AD patients, which did not differ from the control group (7.15 pg/ml). Lower mean CSF Aβ42 levels were related to lower hypocretin-1 levels; 1.6 pg/ml hypocretin-1 per 10 pg/ml Aβ42 (p=0.03), and a higher amplitude of the hypocretin-1 circadian rhythm (0.4 pg/ml, p=0.03). CSF hypocretin-1 has a circadian rhythm for which we could show no difference between AD and controls. However, the association between mean Aβ42 levels and mean hypocretin-1 levels and amplitude may suggest a relationship between AD pathology and hypocretin disturbance, which could hold possibilities for treatment of AD related sleep disorders.

  5. Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's Disease induced Albino Rats.

    Science.gov (United States)

    Nimgampalle, Mallikarjuna; Kuna, Yellamma

    2017-08-01

    Alzheimer's disease is a type of dementia, and till now there is no suitable drug available for the complete cure of this disease. Now-a-days Probiotics, Lactobacillus strains play a therapeutic role in cognitive disorders through Gut-Brain Axis communication. The present study was aimed to evaluate the anti-Alzheimer properties of Lactobacillus plantarum MTCC1325 against D-Galactose-induced Alzheimer's disease in albino rats. Healthy rats (48) of wistar strain were divided into four groups viz., Group-I: control rats received saline, Group-II: rats received intraperitoneal injection of D-Galactose (120 mg/kg body weight) throughout experiment, Group-III: initially animals were subjected to D-Galactose injection for six weeks, then followed by simultaneously received both D-Galactose and L. plantarum MTCC1325 (12×10 8 CFU/ml; 10 ml/kg body weight) for 60 days and Group-IV: rats which were orally administered only with Lactobacillus plantarum MTCC1325 for 60 days. During the experimentation, both morphometric and behavioural aspects were studied. Later we have examined histopathological changes and estimated cholinergic levels in selected brain regions of all experimental groups of rats including control on selected days. Morphometric, behavioural changes, ACh levels were significantly decreased and pathological hallmarks such as amyloid plaques and tangles were also observed in AD model group. Treatment of AD-group with L. plantarum MTCC1325 for 60 days, not only ameliorated cognition deficits but also restored ACh and the histopathological features to control group. However, no significant effects have been observed in the group treated with L. plantarum alone. The study revealed that, L. plantarum MTCC1325 might have anti-Alzheimer properties against D-Galactose induced Alzheimer's disease.

  6. Multitarget Therapeutic Leads for Alzheimer's Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and β-Amyloid (Aβ) Aggregation.

    Science.gov (United States)

    Tonelli, Michele; Catto, Marco; Tasso, Bruno; Novelli, Federica; Canu, Caterina; Iusco, Giovanna; Pisani, Leonardo; Stradis, Angelo De; Denora, Nunzio; Sparatore, Anna; Boido, Vito; Carotti, Angelo; Sparatore, Fabio

    2015-06-01

    Multitarget therapeutic leads for Alzheimer's disease were designed on the models of compounds capable of maintaining or restoring cell protein homeostasis and of inhibiting β-amyloid (Aβ) oligomerization. Thirty-seven thioxanthen-9-one, xanthen-9-one, naphto- and anthraquinone derivatives were tested for the direct inhibition of Aβ(1-40) aggregation and for the inhibition of electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBChE). These compounds are characterized by basic side chains, mainly quinolizidinylalkyl moieties, linked to various bi- and tri-cyclic (hetero)aromatic systems. With very few exceptions, these compounds displayed inhibitory activity on both AChE and BChE and on the spontaneous aggregation of β-amyloid. In most cases, IC50 values were in the low micromolar and sub-micromolar range, but some compounds even reached nanomolar potency. The time course of amyloid aggregation in the presence of the most active derivative (IC50 =0.84 μM) revealed that these compounds might act as destabilizers of mature fibrils rather than mere inhibitors of fibrillization. Many compounds inhibited one or both cholinesterases and Aβ aggregation with similar potency, a fundamental requisite for the possible development of therapeutics exhibiting a multitarget mechanism of action. The described compounds thus represent interesting leads for the development of multitarget AD therapeutics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease

    Directory of Open Access Journals (Sweden)

    Emilie Beaufils

    2014-11-01

    Full Text Available Background: Posterior cortical atrophy (PCA is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD. The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET between PCA and AD subjects. Methods: We performed 18F-AV45 PET, cerebrospinal fluid (CSF biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results: The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion: This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution.

  8. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease?

    Science.gov (United States)

    Beaufils, Emilie; Ribeiro, Maria Joao; Vierron, Emilie; Vercouillie, Johnny; Dufour-Rainfray, Diane; Cottier, Jean-Philippe; Camus, Vincent; Mondon, Karl; Guilloteau, Denis; Hommet, Caroline

    2014-01-01

    Background Posterior cortical atrophy (PCA) is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD). The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET) between PCA and AD subjects. Methods We performed 18F-AV45 PET, cerebrospinal fluid (CSF) biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution. PMID:25538727

  9. The Value of Pre-Screening in the Alzheimer's Prevention Initiative (API) Autosomal Dominant Alzheimer's Disease Trial.

    Science.gov (United States)

    Rios-Romenets, S; Giraldo-Chica, M; López, H; Piedrahita, F; Ramos, C; Acosta-Baena, N; Muñoz, C; Ospina, P; Tobón, C; Cho, W; Ward, M; Langbaum, J B; Tariot, P N; Reiman, E M; Lopera, F

    2018-01-01

    The Alzheimer's Prevention Initiative (API) Autosomal Dominant Alzheimer's Disease (ADAD) trial evaluates the anti-amyloid-β antibody crenezumab in cognitively unimpaired persons who, based on genetic background and age, are at high imminent risk of clinical progression, and provides a powerful test of the amyloid hypothesis. The Neurosciences Group of Antioquia implemented a pre-screening process with the goals of decreasing screen failures and identifying participants most likely to adhere to trial requirements of the API ADAD trial in cognitively unimpaired members of Presenilin1 E280A mutation kindreds. The pre-screening failure rate was 48.2%: the primary reason was expected inability to comply with the protocol, chiefly due to work requirements. More carriers compared to non-carriers, and more males compared to females, failed pre-screening. Carriers with illiteracy or learning/comprehension difficulties failed pre-screening more than non-carriers. With the Colombian API Registry and our prescreening efforts, we randomized 169 30-60 year-old cognitively unimpaired carriers and 83 non-carriers who agreed to participate in the trial for at least 60 months. Our findings suggest multiple benefits of implementing a pre-screening process for enrolling prevention trials in ADAD.

  10. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer's disease.

    Science.gov (United States)

    Bagheri, Maryam; Joghataei, Mohammad-Taghi; Mohseni, Simin; Roghani, Mehrdad

    2011-03-01

    Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by increased β-amyloid (Aβ) deposition and neuronal dysfunction leading to impaired learning and recall. Ageing, heredity, and induced oxidative stress are among proposed risk factors. The increased frequency of the disease in women also suggests a role for estrogen in development of AD. In the present study, effects of the phytoestrogen genistein (10mg/kg) on learning and memory impairments was assessed in intrahippocampal Aβ(1-40)-injected rats. The estrogen receptor antagonist fulvestrant was injected intracerebroventricularly in a group of Aβ-lesioned rats. The Aβ-injected animals exhibited the following: lower spontaneous alternation score in Y-maze tasks, impaired retention and recall capability in the passive avoidance test, and fewer correct choices and more errors in the RAM task. Genistein, but not genistein and fulvestrant, significantly improved most of these parameters. Measurements of oxidative stress markers in hippocampal tissue of Aβ-injected rats showed an elevation of malondialdehyde (MDA) and nitrite content, and a reduction of superoxide dismutase (SOD) activity. Genistein significantly attenuated the increased MDA content but did not affect the nitrite content or SOD activity. These results indicate that genistein pretreatment ameliorates Aβ-induced impairment of short-term spatial memory in rats through an estrogenic pathway and by inducing attenuation of oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Minocycline does not affect amyloid beta phagocytosis by human microglial cells

    NARCIS (Netherlands)

    Familian, Atoosa; Eikelenboom, Piet; Veerhuis, Robert

    2007-01-01

    Activated microglia accumulate in amyloid beta (Abeta) plaques containing amyloid associated factors SAP and C1q in Alzheimer's disease (AD) brain. Microglia are involved in AD pathogenesis by promoting Abeta plaque formation and production of pro-inflammatory cytokines. On the other hand,

  12. Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    Directory of Open Access Journals (Sweden)

    Langen Ralf

    2008-10-01

    Full Text Available Abstract Background The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD, age-related macular degeneration (AMD, atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins. Results We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation. Conclusion These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases.

  13. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer's disease-induced estrogen deficient rats.

    Science.gov (United States)

    Shin, Bae Kun; Kang, Suna; Kim, Da Sol; Park, Sunmin

    2018-02-01

    Intermittent fasting may be an effective intervention to protect against age-related metabolic disturbances, although it is still controversial. Here, we investigated the effect of intermittent fasting on the deterioration of the metabolism and cognitive functions in rats with estrogen deficiency and its mechanism was also explored. Ovariectomized rats were infused with β-amyloid (25-35; Alzheimer's disease) or β-amyloid (35-25, Non-Alzheimer's disease; normal cognitive function) into the hippocampus. Each group was randomly divided into two sub-groups: one with intermittent fasting and the other fed ad libitum: Alzheimer's disease-ad libitum, Alzheimer's disease-intermittent fasting, Non-Alzheimer's disease-ad libitum, and Non-Alzheimer's disease-intermittent fasting. Rats in the intermittent fasting groups had a restriction of food consumption to a 3-h period every day. Each group included 10 rats and all rats fed a high-fat diet for four weeks. Interestingly, Alzheimer's disease increased tail skin temperature more than Non-Alzheimer's disease and intermittent fasting prevented the increase. Alzheimer's disease reduced bone mineral density in the spine and femur compared to the Non-Alzheimer's disease, whereas bone mineral density in the hip and leg was reduced by intermittent fasting. Fat mass only in the abdomen was decreased by intermittent fasting. Intermittent fasting decreased food intake without changing energy expenditure. Alzheimer's disease increased glucose oxidation, whereas intermittent fasting elevated fat oxidation as a fuel source. Alzheimer's disease and intermittent fasting deteriorated insulin resistance in the fasting state but intermittent fasting decreased serum glucose levels after oral glucose challenge by increasing insulin secretion. Alzheimer's disease deteriorated short and spatial memory function compared to the Non-Alzheimer's disease, whereas intermittent fasting prevented memory loss in comparison to ad libitum. Unexpectedly

  14. Presenilins and γ-Secretase: Structure, Function, and Role in Alzheimer Disease

    Science.gov (United States)

    De Strooper, Bart; Iwatsubo, Takeshi; Wolfe, Michael S.

    2012-01-01

    Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline. PMID:22315713

  15. Demencia en la enfermedad de Alzheimer: un enfoque integral Dementia in Alzheimer's disease: a comprehensive approach

    Directory of Open Access Journals (Sweden)

    Víctor T. Pérez Martínez

    2005-08-01

    Full Text Available El substrato patológico de la principal de las demencias, lo constituyen las siguientes lesiones: la degeneración neurofibrilar abundante y difusa, las placas neuríticas y el depósito anormal de sustancia amiloide en el cerebro, causante de la toxicidad cerebral. La demencia en la enfermedad de Alzheimer cumple con un patrón clínico-topográfico de tipo cortical característico. Su diagnóstico definitivo es anatomopatológico, pero se puede establecer un diagnóstico probable basado en la clínica y en la evaluación neuropsicológica. No existe tratamiento efectivo concluyente para el deterioro cognitivo de la enfermedad de Alzheimer.The pathological substrate of the main dementia is composed of the following lesions: the diffuse and abundant neurofibrillar degeneration, the neuritic plaques and the abnormal deposit of amyloid substance in the brain, causing cerebral toxicity. Dementia in Alzheimer's disease accomplishes a clinicotopographic pattern of characteristic cortical type. Its definitive diagnosis is anatomopathological, but a probable diagnosis based on the clinic and the neuropsychological evaluation can be established. There is no a concluding effective treatment for the cognitive deterioration of Alzheimer's disease.

  16. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm

    International Nuclear Information System (INIS)

    Chiotis, Konstantinos; Saint-Aubert, Laure; Savitcheva, Irina; Jelic, Vesna; Andersen, Pia; Jonasson, My; Eriksson, Jonas; Antoni, Gunnar; Lubberink, Mark; Almkvist, Ove; Wall, Anders; Nordberg, Agneta

    2016-01-01

    The aim of this study was to explore the cerebral distribution of the tau-specific PET tracer [ 18 F]THK5317 (also known as (S)-[ 18 F]THK5117) retention in different stages of Alzheimer's disease; and study any associations with markers of hypometabolism and amyloid-beta deposition. Thirty-three individuals were enrolled, including nine patients with Alzheimer's disease dementia, thirteen with mild cognitive impairment (MCI), two with non-Alzheimer's disease dementia, and nine healthy controls (five young and four elderly). In a multi-tracer PET design [ 18 F]THK5317, [ 11 C] Pittsburgh compound B ([ 11 C]PIB), and [ 18 F]FDG were used to assess tau pathology, amyloid-beta deposition and cerebral glucose metabolism, respectively. The MCI patients were further divided into MCI [ 11 C]PIB-positive (n = 11) and MCI [ 11 C]PIB-negative (n = 2) groups. Test-retest variability for [ 18 F]THK5317-PET was very low (1.17-3.81 %), as shown by retesting five patients. The patients with prodromal (MCI [ 11 C]PIB-positive) and dementia-stage Alzheimer's disease had significantly higher [ 18 F]THK5317 retention than healthy controls (p = 0.002 and p = 0.001, respectively) in areas exceeding limbic regions, and their discrimination from this control group (using the area under the curve) was >98 %. Focal negative correlations between [ 18 F]THK5317 retention and [ 18 F]FDG uptake were observed mainly in the frontal cortex, and focal positive correlations were found between [ 18 F]THK5317 and [ 11 C]PIB retentions isocortically. One patient with corticobasal degeneration syndrome and one with progressive supranuclear palsy showed no [ 11 C]PIB but high [ 18 F]THK5317 retentions with a different regional distribution from that in Alzheimer's disease patients. The tau-specific PET tracer [ 18 F]THK5317 images in vivo the expected regional distribution of tau pathology. This distribution contrasts with the different patterns of hypometabolism and amyloid

  17. Therapeutics of Neurotransmitters in Alzheimer's Disease.

    Science.gov (United States)

    Kandimalla, Ramesh; Reddy, P Hemachandra

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.

  18. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.

    Science.gov (United States)

    Honda, Ryo

    2018-04-12

    Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  20. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  1. A Novel Small Molecule Modulator of Amyloid Pathology.

    Science.gov (United States)

    Lovell, Mark A; Lynn, Bert C; Fister, Shuling; Bradley-Whitman, Melissa; Murphy, M Paul; Beckett, Tina L; Norris, Christopher M

    2016-05-04

    Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.

  2. Role of the peripheral innate immune system in the development of Alzheimer's disease.

    Science.gov (United States)

    Le Page, Aurélie; Dupuis, Gilles; Frost, Eric H; Larbi, Anis; Pawelec, Graham; Witkowski, Jacek M; Fulop, Tamas

    2017-12-21

    Alzheimer's disease is one of the most devastating neurodegenerative diseases. The exact cause of the disease is still not known although many scientists believe in the beta amyloid hypothesis which states that the accumulation of the amyloid peptide beta (Aβ) in brain is the initial cause which consequently leads to pathological neuroinflammation. However, it was recently shown that Aβ may have an important role in defending the brain against infections. Thus, the balance between positive and negative impact of Aβ may determine disease progression. Microglia in the brain are innate immune cells, and brain-initiated inflammatory responses reflected in the periphery suggests that Alzheimer's disease is to some extent also a systemic inflammatory disease. Greater permeability of the blood brain barrier facilitates the transport of peripheral immune cells to the brain and vice versa so that a vicious circle originating on the periphery may contribute to the development of overt clinical AD. Persistent inflammatory challenges by pathogens in the periphery, increasing with age, may also contribute to the central propagation of the pathological changes seen clinically. Therefore, the activation status of peripheral innate immune cells may represent an early biomarker of the upcoming impact on the brain. The modulation of these cells may thus become a useful mechanism for modifying disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Monoacylglycerol Lipase Is a Therapeutic Target for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Rongqing Chen

    2012-11-01

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia among older people. There are no effective medications currently available to prevent and treat AD and halt disease progression. Monoacylglycerol lipase (MAGL is the primary enzyme metabolizing the endocannabinoid 2-arachidonoylglycerol in the brain. We show here that inactivation of MAGL robustly suppressed production and accumulation of β-amyloid (Aβ associated with reduced expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1 in a mouse model of AD. MAGL inhibition also prevented neuroinflammation, decreased neurodegeneration, maintained integrity of hippocampal synaptic structure and function, and improved long-term synaptic plasticity, spatial learning, and memory in AD animals. Although the molecular mechanisms underlying the beneficial effects produced by MAGL inhibition remain to be determined, our results suggest that MAGL, which regulates endocannabinoid and prostaglandin signaling, contributes to pathogenesis and neuropathology of AD, and thus is a promising therapeutic target for the prevention and treatment of AD.

  4. BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease.

    Science.gov (United States)

    Barão, Soraia; Moechars, Diederik; Lichtenthaler, Stefan F; De Strooper, Bart

    2016-03-01

    The protease β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is required for the production of the amyloid-β (Aβ) peptide, which is central to the pathogenesis of Alzheimer's disease (AD). Chronic inhibition of this protease may temper amyloid production and cure or prevent AD. However, while BACE1 inhibitors are being pushed forward as drug candidates, a remarkable gap in knowledge on the physiological functions of BACE1 and its close homolog BACE2 becomes apparent. Here we discuss the major discoveries of the past 3 years concerning BACE1 biology and to what extent these could limit the use of BACE1 inhibitors in the clinic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bidirectional Regulation of Amyloid Precursor Protein-Induced Memory Defects by Nebula/DSCR1: A Protein Upregulated in Alzheimer's Disease and Down Syndrome.

    Science.gov (United States)

    Shaw, Jillian L; Zhang, Shixing; Chang, Karen T

    2015-08-12

    Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functional interactions between Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. Using Drosophila as a model, we find that overexpression of nebula (fly homolog of DSCR1) initially protects against APP-induced memory defects by correcting calcineurin and cAMP signaling pathways but accelerates the rate of memory loss and exacerbates mitochondrial dysfunction in older animals. We report that transient upregulation of Nebula/DSCR1 or acute pharmacological inhibition of calcineurin in aged flies protected against APP-induced memory loss. Our data suggest that calcineurin dyshomeostasis underlies age-dependent memory impairments and further imply that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory impairments in AD in DS. Most Down syndrome (DS) individuals eventually develop Alzheimer's disease (AD)-like dementia, but mechanisms underlying this age-dependent memory impairment remain poorly understood. This study examines Nebula/Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. We uncover a previously unidentified role for Nebula/DSCR1 in modulating APP-induced memory defects during aging. We show that upregulation of Nebula/DSCR1, an inhibitor of calcineurin, rescues APP-induced memory defects in young flies but enhances memory loss of older flies. Excitingly, transient Nebula/DSCR1 overexpression or calcineurin inhibition in aged flies ameliorates APP-mediated memory problems. These results

  6. Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer's disease

    DEFF Research Database (Denmark)

    Madsen, Karine; Neumann, Wolf-Julian; Holst, Klaus Kähler

    2011-01-01

    Alzheimer disease (AD) patients in relation to cortical Aß burden. Eleven newly diagnosed untreated AD patients (mean MMSE 24, range 19–27) and twelve age- and gender-matched healthy controls underwent a two-hour dynamic [11C]SB207145 PET scan to measure the binding potential of the 5-HT4 receptor. All AD...

  7. Vascular Factors and Markers of Inflammation in Offspring With a Parental History of Late-Onset Alzheimer Disease

    NARCIS (Netherlands)

    van Exel, Eric; Eikelenboom, Piet; Comijs, Hannie; Frölich, Marijke; Smit, Johannes H.; Stek, Max L.; Scheltens, Philip; Eefsting, Jan E.; Westendorp, Rudi G. J.

    2009-01-01

    Context: Alzheimer disease (AD) is a complex disorder with a strong heritable component. Amyloid pathology, vascular factors, and inflammation are postulated to be involved in its pathogenesis, but causality has not been established unequivocally. Objective: To identify heritable traits in middle

  8. ER stress signaling and neurodegeneration: At the intersection between Alzheimer's disease and Prion-related disorders.

    Science.gov (United States)

    Torres, Mauricio; Matamala, José Manuel; Duran-Aniotz, Claudia; Cornejo, Victor Hugo; Foley, Andrew; Hetz, Claudio

    2015-09-02

    Alzheimer's and Prion diseases are two neurodegenerative conditions sharing different pathophysiological characteristics. Disease symptoms are associated with the abnormal accumulation of protein aggregates, which are generated by the misfolding and oligomerization of specific proteins. Recent functional studies uncovered a key role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in the occurrence of synaptic dysfunction and neurodegeneration in Prion-related disorders and Alzheimer's disease. Here we review common pathological features of both diseases, emphasizing the link between amyloid formation, its pathogenesis and alterations in ER proteostasis. The potential benefits of targeting the UPR as a therapeutic strategy is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Alzheimer\\'s Disease: Yesterday, Today, Tomorrow

    Directory of Open Access Journals (Sweden)

    Farid Fadaei

    2007-04-01

    Full Text Available Alzheimer's disease is the most common and well - known cause of dementia, as a progressive, irreversible brain disorder that affects cognitive function, personality, thought, perception and behaviour. Alzheimer's disease is the fourth leading cause of death in western countries. Interesting to know that this disease was unknown in medical community till 100 years ago and had no name. Dr. Alois Alzheimer, a German psychiatrist was the person who suspected the presence of this new illness and by succinct clinical, neuroanatomic, and neuropathologic examination of some cases; including the first known case of this disease- a woman named Auguste Deter- documented it. In further Emil Kraepe1inby knowing about the cases that Dr. Alzheimer reported, and another reports of this disease that were published in the first decade of the twentieth century, set the name of Alzbeimer on this new disease. Descriptions of Dr. Alzheimer and Kraepelin are the same as the present day descriptions of this disease. Electron microscopy, quantitative morphology and modem biochemistry emerging in the second half of the twentieth century opened a new era in dementia research with description of the ultra structure and biochemistry of senileplaques and neuronfibrillary tangles, the major disease markers of Alzheimer's disease. Basic research gave insight into the molecular genetics and pathophysiology of Alzheimers disease and based on the biochemical findings, new pharmacological treatment options were opened. The future attempts will probably be concentrated on the prevention of this disease. Oxidative stress, excessive transition metal ions, and misfolded / aggregated proteins and inflammation are among the probable causes of Alzheimer's disease and the future research will focus on their better understanding and prevention of their occurrence. As the last word, stem cells grafts that in animals have led to remarkable improvement of brain function may also be a

  10. Whole-food diet worsened cognitive dysfunction in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Parrott, Matthew D; Winocur, Gordon; Bazinet, Richard P; Ma, David W L; Greenwood, Carol E

    2015-01-01

    Food combinations have been associated with lower incidence of Alzheimer's disease. We hypothesized that a combination whole-food diet containing freeze-dried fish, vegetables, and fruits would improve cognitive function in TgCRND8 mice by modulating brain insulin signaling and neuroinflammation. Cognitive function was assessed by a comprehensive battery of tasks adapted to the Morris water maze. Unexpectedly, a "Diet × Transgene" interaction was observed in which transgenic animals fed the whole-food diet exhibited even worse cognitive function than their transgenic counterparts fed the control diet on tests of spatial memory (p < 0.01) and strategic rule learning (p = 0.034). These behavioral deficits coincided with higher hippocampal gene expression of tumor necrosis factor-α (p = 0.013). There were no differences in cortical amyloid-β peptide species according to diet. These results indicate that a dietary profile identified from epidemiologic studies exacerbated cognitive dysfunction and neuroinflammation in a mouse model of familial Alzheimer's disease. We suggest that normally adaptive cellular responses to dietary phytochemicals were impaired by amyloid-beta deposition leading to increased oxidative stress, neuroinflammation, and behavioral deficits. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease.

    Science.gov (United States)

    Xia, Chenjie; Makaretz, Sara J; Caso, Christina; McGinnis, Scott; Gomperts, Stephen N; Sepulcre, Jorge; Gomez-Isla, Teresa; Hyman, Bradley T; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C

    2017-04-01

    Previous postmortem studies have long demonstrated that neurofibrillary tangles made of hyperphosphorylated tau proteins are closely associated with Alzheimer disease clinical phenotype and neurodegeneration pattern. Validating these associations in vivo will lead to new diagnostic tools for Alzheimer disease and better understanding of its neurobiology. To examine whether topographical distribution and severity of hyperphosphorylated tau pathologic findings measured by fluorine 18-labeled AV-1451 ([18F]AV-1451) positron emission tomographic (PET) imaging are linked with clinical phenotype and cortical atrophy in patients with Alzheimer disease. This observational case series, conducted from July 1, 2012, to July 30, 2015, in an outpatient referral center for patients with neurodegenerative diseases, included 6 patients: 3 with typical amnesic Alzheimer disease and 3 with atypical variants (posterior cortical atrophy, logopenic variant primary progressive aphasia, and corticobasal syndrome). Patients underwent [18F]AV-1451 PET imaging to measure tau burden, carbon 11-labeled Pittsburgh Compound B ([11C]PiB) PET imaging to measure amyloid burden, and structural magnetic resonance imaging to measure cortical thickness. Seventy-seven age-matched controls with normal cognitive function also underwent structural magnetic resonance imaging but not tau or amyloid PET imaging. Tau burden, amyloid burden, and cortical thickness. In all 6 patients (3 women and 3 men; mean age 61.8 years), the underlying clinical phenotype was associated with the regional distribution of the [18F]AV-1451 signal. Furthermore, within 68 cortical regions of interest measured from each patient, the magnitude of cortical atrophy was strongly correlated with the magnitude of [18F]AV-1451 binding (3 patients with amnesic Alzheimer disease, r = -0.82; P localizing and quantifying hyperphosphorylated tau in vivo, results of tau PET imaging will likely serve as a key biomarker that links a

  12. Nucleic Acid Aptamers as Novel Class of Therapeutics to Mitigate Alzheimer's Disease Pathology

    DEFF Research Database (Denmark)

    K. Tannenberg, Rudi; Al. Shamaileh, Hadi; Lauridsen, Lasse Holm

    2013-01-01

    Deposition of amyloid-beta (A beta) peptides in the brain is a central event in the pathogenesis of Alzheimer's disease (AD), which makes A beta peptides a crucial target for therapeutic intervention. Significant efforts have been made towards the development of ligands that bind to A beta peptides...... with a goal of early detection of amyloid aggregation and the neutralization of A toxicity. Short single-stranded oligonucleotide aptamers bind with high affinity and specificity to their targets. Aptamers that specifically bind to A beta monomers, specifically the 40 and 42 amino acid species (A beta(1...

  13. Cerebral amyloid-beta protein accumulation with aging in cotton-top tamarins: a model of early Alzheimer's disease?

    Science.gov (United States)

    Lemere, Cynthia A; Oh, Jiwon; Stanish, Heather A; Peng, Ying; Pepivani, Imelda; Fagan, Anne M; Yamaguchi, Haruyasu; Westmoreland, Susan V; Mansfield, Keith G

    2008-04-01

    Alzheimer's disease (AD) is the most common progressive form of dementia in the elderly. Two major neuropathological hallmarks of AD include cerebral deposition of amyloid-beta protein (Abeta) into plaques and blood vessels, and the presence of neurofibrillary tangles in brain. In addition, activated microglia and reactive astrocytes are often associated with plaques and tangles. Numerous other proteins are associated with plaques in human AD brain, including Apo E and ubiquitin. The amyloid precursor protein and its shorter fragment, Abeta, are homologous between humans and non-human primates. Cerebral Abeta deposition has been reported previously for rhesus monkeys, vervets, squirrel monkeys, marmosets, lemurs, cynomologous monkeys, chimpanzees, and orangutans. Here we report, for the first time, age-related neuropathological changes in cotton-top tamarins (CTT, Saguinus oedipus), an endangered non-human primate native to the rainforests of Colombia and Costa Rica. Typical lifespan is 13-14 years of age in the wild and 15-20+ years in captivity. We performed detailed immunohistochemical analyses of Abeta deposition and associated pathogenesis in archived brain sections from 36 tamarins ranging in age from 6-21 years. Abeta plaque deposition was observed in 16 of the 20 oldest tamarins (>12 years). Plaques contained mainly Abeta42, and in the oldest animals, were associated with reactive astrocytes, activated microglia, Apo E, and ubiquitin-positive dystrophic neurites, similar to human plaques. Vascular Abeta was detected in 14 of the 20 aged tamarins; Abeta42 preceded Abeta40 deposition. Phospho-tau labeled dystrophic neurites and tangles, typically present in human AD, were absent in the tamarins. In conclusion, tamarins may represent a model of early AD pathology.

  14. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    International Nuclear Information System (INIS)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko; Yagi, Shunsuke; Ouchi, Yasuomi; Yoshikawa, Etsuji; Kikuchi, Mitsuru; Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki; Ueki, Takatoshi

    2011-01-01

    Amyloid β protein (Aβ) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between Aβ accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [ 11 C](R)PK11195, [ 11 C]PIB and [ 18 F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [ 11 C](R)PK11195 were directly compared with those of [ 11 C]PIB in the brain regions with reduced glucose metabolism. BPs of [ 11 C](R)PK11195 and [ 11 C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [ 11 C](R)PK11195 BPs, but not [ 11 C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [ 11 C](R)PK11195 and [ 11 C]PIB BPs in the posterior cingulate cortex (PCC) (p 18 F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that Aβ accumulation shown by [ 11 C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of Aβ in early AD. (orig.)

  15. Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia A Meta-analysis

    NARCIS (Netherlands)

    Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies.

  16. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis

    NARCIS (Netherlands)

    Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.J.; Verhey, F.R.J.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D.; Alexander, M.; Almdahl, I.S.; Arnold, S.E.; Baldeiras, I.; Barthel, H.; Berckel, B.N. van; Bibeau, K.; Blennow, K.; Brooks, D.J.; Buchem, M.A. van; Camus, V.; Cavedo, E.; Chen, K.; Chetelat, G.; Cohen, A.D.; Drzezga, A.; Engelborghs, S.; Fagan, A.M.; Fladby, T.; Fleisher, A.S.; Flier, W.M. van der; Ford, L.; Forster, S.; Fortea, J.; Foskett, N.; Frederiksen, K.S.; Freund-Levi, Y.; Frisoni, G.B.; Froelich, L.; Gabryelewicz, T.; Gill, K.D.; Gkatzima, O.; Gomez-Tortosa, E.; Gordon, M.F.; Grimmer, T.; Hampel, H.; Hausner, L.; Hellwig, S.; Herukka, S.K.; Hildebrandt, H.; Ishihara, L.; Ivanoiu, A.; Jagust, W.J.; Johannsen, P.; Kandimalla, R.; Kapaki, E.; Klimkowicz-Mrowiec, A.; Klunk, W.E.; Kohler, S.; Koglin, N.; Kornhuber, J.; Kramberger, M.G.; Laere, K. Van; Landau, S.M.; Lee, D.Y.; Leon, M.; Lisetti, V.; Lleo, A.; Madsen, K.; Maier, W.; Marcusson, J.; Mattsson, N.; Mendonca, A. de; Meulenbroek, O.V.; Meyer, P.T.; Mintun, M.A.; Mok, V.; Molinuevo, J.L.; Mollergard, H.M.; Morris, J.C.; Mroczko, B.; Mussele, S. Van der; Na, D.L.; Newberg, A.; Nordberg, A.; Nordlund, A.; Novak, G.P.; Paraskevas, G.P.; Parnetti, L.; Perera, G.; Peters, O.; Popp, J.; Prabhakar, S.; Rabinovici, G.D.; Ramakers, I.H.; Rami, L.; Oliveira, C.R.; Rinne, J.O.; Rodrigue, K.M.; Rodriguez-Rodriguez, E.; Verbeek, M.M.; et al.,

    2015-01-01

    IMPORTANCE: Cerebral amyloid-beta aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention

  17. Why have we failed to cure Alzheimer's disease?

    Science.gov (United States)

    Korczyn, Amos D

    2012-01-01

    There is widespread recognition in the urgency to understand the causes and mechanisms of senile dementia. Attempts to find cures for Alzheimer's disease (AD) have, however, failed so far, in spite of enormous investments, intellectual and financial. We therefore have to reconsider the problem from new angles. AD is regarded as a disease because of its clinical manifestations and underlying pathology. However, this combination does not define a disease but rather a syndrome, just like hepatic cirrhosis in which liver pathology causes metabolic changes, but which can result from many different etiologies. It is unlikely that attacking a downstream phenomenon, like apoptosis or amyloid-β accumulation, can cure AD, or prevent the progression of the disease. It is probable that senile dementia is the result of a combination of several processes, working differently in each person. Epidemiological studies have identified many risk factors for "senile dementia of the Alzheimer type", some genetic but most environmental and therefore modifiable. Thus, a concerted action to fight the dementia epidemic must be made by aggressive action against its risk factors, and this battle must begin in midlife, not in old age.

  18. Florbetapir F18 PET Amyloid Neuroimaging and Characteristics in Patients With Mild and Moderate Alzheimer Dementia.

    Science.gov (United States)

    Degenhardt, Elisabeth K; Witte, Michael M; Case, Michael G; Yu, Peng; Henley, David B; Hochstetler, Helen M; D'Souza, Deborah N; Trzepacz, Paula T

    2016-01-01

    Clinical diagnosis of Alzheimer disease (AD) is challenging, with a 70.9%-87.3% sensitivity and 44.3%-70.8% specificity, compared with autopsy diagnosis. Florbetapir F18 positron emission tomography (FBP-PET) estimates beta-amyloid plaque density antemortem. Of 2052 patients (≥55 years old) clinically diagnosed with mild or moderate AD dementia from 2 solanezumab clinical trials, 390 opted to participate in a FBP-PET study addendum. We analyzed baseline prerandomization characteristics. A total of 22.4% had negative FBP-PET scans, whereas 72.5% of mild and 86.9% of moderate AD patients had positive results. No baseline clinical variable reliably differentiated negative from positive FBP-PET scan groups. These data confirm the challenges of correctly diagnosing AD without using biomarkers. FBP-PET can aid AD dementia differential diagnosis by detecting amyloid pathology antemortem, even when the diagnosis of AD is made by expert clinicians. Copyright © 2016 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  19. Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer's mouse model.

    Science.gov (United States)

    Chu, Yi-Fang; Chang, Wen-Han; Black, Richard M; Liu, Jia-Ren; Sompol, Pradoldej; Chen, Yumin; Wei, Huilin; Zhao, Qiuyan; Cheng, Irene H

    2012-12-01

    Alzheimer's disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Axon-glial disruption: the link between vascular disease and Alzheimer's disease?

    Science.gov (United States)

    Horsburgh, Karen; Reimer, Michell M; Holland, Philip; Chen, Guiquan; Scullion, Gillian; Fowler, Jill H

    2011-08-01

    Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.

  1. Choroba Alzheimera – rola badań immunohistochemicznych w diagnostyce choroby = Alzheimer's disease - the role of immunohistochemistry in the diagnosis of disease

    Directory of Open Access Journals (Sweden)

    Beata Cichacz-Kwiatkowska

    2016-02-01

    Authors’ Contribution: A Study Design B Data Collection C Statistical Analysis D Manuscript Preparation E Funds Collection   Słowa kluczowe: badania immunohistochemiczne, choroba Alzheimera, wewnątrzkomórkowe zwyrodnienia włókienkowe typu Alzheimera, białkowe prekursor amyloidu.   Key words: immunohistochemistry, Alzheimer's disease, neurofibrillary tangles, amyloid precursor protein.   Glosariusz: Choroba Alzheimera – najczęstsza postać otępienia, nieuleczalna i postępująca choroba neurodegeneracyjna, po raz pierwszy opisana w 1906 przez Alois Alzheimer [1]   Glossary:  Alzheimer's disease (AD, also known as Alzheimer disease, the most common form of dementia, progressive neurodegenerative disease, first described by Alois Alzheimer in 1906 [1]   Streszczenie Choroba Alzheimera jest przewlekłą i postępującą chorobą neurodegeneracyjną, będącą zarazem najczęstszą przyczyną zespołu otępiennego. Skutki tej choroby dotykają zarówno samego pacjenta i jego otoczenie, przybierając wymiar zarówno społeczny jak i ekonomiczny. Częstość występowania otępienia towarzyszącego chorobie Alzheimera podwaja się co 4,5 roku u osób po 65. roku życia. U podłoża tego schorzenia leży zróżnicowana grupa zaburzeń związanych ze starzeniem się organizmu oraz interakcjami genetycznymi i środowiskowymi. Procesy neurodegeneracyjne obserwowane w przebiegu choroby Alzheimera prowadzą do upośledzenia morfologicznego i fizjologicznego neuronów oraz w konsekwencji ich śmierci. Doprowadza to bezpośrednio do upośledzenia kontroli poznawczej. W zmienionej patologicznie tkance nerwowej chorych stwierdzono obecność nieprawidłowych struktur, takich jak blaszki amyloidowe i zwyrodnienia włókienkowe (splątki neurofibrylarne. Sformułowano wiele hipotez starających się wyjaśnić procesy prowadzące do neurodegeneracji, najczęściej wymieniana jest teoria kaskady amyloidowej. Metody immunohistochemiczne pozwalają na wykrycie

  2. Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko; Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Maruyama, Masahiro; Higuchi, Makoto; Arai, Hiroyuki; Kudo, Yukitsuka

    2013-01-01

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [ 18 F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [ 18 F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid β 42 and K18ΔK280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 μM. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [ 18 F]THK-523 showed higher affinity for tau fibrils than for Aβ fibrils, whereas the other probes showed a higher affinity for Aβ fibrils. The autoradiographic analysis indicated that [ 18 F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of Aβ plaques. These findings suggest that the unique binding profile of [ 18 F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  3. The pathogenic implication of abnormal interaction between apolipoprotein E isoforms, amyloid-beta peptides, and sulfatides in Alzheimer's disease.

    Science.gov (United States)

    Han, Xianlin

    2010-06-01

    Alzheimer's disease (AD) is the most common cause of dementia in the aging population. Prior work has shown that the epsilon4 allele of apolipoprotein E (apoE4) is a major risk factor for "sporadic" AD, which accounts for >99% of AD cases without a defined underlying mechanism. Recently, we have demonstrated that sulfatides are substantially and specifically depleted at the very early stage of AD. To identify the mechanism(s) of sulfatide loss concurrent with AD onset, we have found that: (1) sulfatides are specifically associated with apoE-associated particles in cerebrospinal fluid (CSF); (2) apoE modulates cellular sulfatide levels; and (3) the modulation of sulfatide content is apoE isoform dependent. These findings not only lead to identification of the potential mechanisms underlying sulfatide depletion at the earliest stages of AD but also serve as mechanistic links to explain the genetic association of apoE4 with AD. Moreover, our recent studies further demonstrated that (1) apoE mediates sulfatide depletion in amyloid-beta precursor protein transgenic mice; (2) sulfatides enhance amyloid beta (Abeta) peptides binding to apoE-associated particles; (3) Abeta42 content notably correlates with sulfatide content in CSF; (4) sulfatides markedly enhance the uptake of Abeta peptides; and (5) abnormal sulfatide-facilitated Abeta uptake results in the accumulation of Abeta in lysosomes. Collectively, our studies clearly provide a link between apoE, Abeta, and sulfatides in AD and establish a foundation for the development of effective therapeutic interventions for AD.

  4. Plasma based markers of [11C] PiB-PET brain amyloid burden.

    Directory of Open Access Journals (Sweden)

    Steven John Kiddle

    Full Text Available Changes in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [(11C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden--c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E--were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE [Symbol: see text] 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.

  5. Quiz: Alzheimer's Disease

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Past Issues / Winter 2015 Table of Contents ... How many Americans over age 65 may have Alzheimer's disease? as many as 5 million as many ...

  6. Research progress in early diagnosis of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Meng-sha SUN

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a kind of central nervous system degenerative disease with higher incidence, which has been paid increasing attention. The pathogenesis is not yet clear though it has been studied a lot. The existing theories focused on amyloid β-protein (Aβ deposit, hyperphosphorylation of tau and cholinergic neuronal loss. There is mainly symptomatic treatment which cannot reverse disease course. So early diagnosis is particularly important for prevention and treatment of AD. The article will review recent advances in the studies of early diagnosis of AD. It may help accurately diagnose the process from mild cognitive impairment (MCI to early AD and give advice on prevention and treatment. DOI: 10.3969/j.issn.1672-6731.2018.03.011

  7. Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease

    Science.gov (United States)

    Stefan, V. Alexander

    2014-03-01

    The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.

  8. Quiz: Alzheimer's Disease Quiz | Alzheimer's disease | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Alzheimer's Disease Quiz: Alzheimer's Disease Quiz Past Issues / Fall 2010 Table of ... How many people in the United States have Alzheimer's disease? as many as 5.1 million as ...

  9. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that

  10. Terapeutika amyloidóz

    Czech Academy of Sciences Publication Activity Database

    Holubová, Monika; Hrubý, Martin

    2016-01-01

    Roč. 110, č. 12 (2016), s. 851-859 ISSN 0009-2770 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : amyloidosis * amyloid * Alzheimer's disease Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.387, year: 2016 http://www.chemicke-listy.cz/common/article-vol_110-issue_12-page_851.html

  11. Design, Synthesis, and Preliminary Evaluation of SPECT Probes for Imaging β-Amyloid in Alzheimer's Disease Affected Brain.

    Science.gov (United States)

    Okumura, Yuki; Maya, Yoshifumi; Onishi, Takako; Shoyama, Yoshinari; Izawa, Akihiro; Nakamura, Daisaku; Tanifuji, Shigeyuki; Tanaka, Akihiro; Arano, Yasushi; Matsumoto, Hiroki

    2018-04-06

    In this study, we synthesized of a series of 2-phenyl- and 2-pyridyl-imidazo[1,2- a]pyridine derivatives and examine their suitability as novel probes for single-photon emission computed tomography (SPECT)-based imaging of β-amyloid (Aβ). Among the 11 evaluated compounds, 10 showed moderate affinity to Aβ(1-42) aggregates, exhibiting half-maximal inhibitory concentrations (IC 50 ) of 14.7 ± 6.07-87.6 ± 39.8 nM. In vitro autoradiography indicated that 123 I-labeled triazole-substituted derivatives displayed highly selective binding to Aβ plaques in the hippocampal region of Alzheimer's disease (AD)-affected brain. Moreover, biodistribution studies performed on normal rats demonstrated that all 123 I-labeled probes featured high initial uptake into the brain followed by a rapid washout and were thus well suited for imaging Aβ plaques, with the highest selectivity observed for a 1 H-1,2,3-triazole-substituted 2-pyridyl-imidazopyridine derivative, [ 123 I]ABC577. This compound showed good kinetics in rat brain as well as moderate in vivo stability in rats and is thus a promising SPECT imaging probe for AD in clinical settings.

  12. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal models.

    Directory of Open Access Journals (Sweden)

    Anat Frydman-Marom

    Full Text Available An increasing body of evidence indicates that accumulation of soluble oligomeric assemblies of β-amyloid polypeptide (Aβ play a key role in Alzheimer's disease (AD pathology. Specifically, 56 kDa oligomeric species were shown to be correlated with impaired cognitive function in AD model mice. Several reports have documented the inhibition of Aβ plaque formation by compounds from natural sources. Yet, evidence for the ability of common edible elements to modulate Aβ oligomerization remains an unmet challenge. Here we identify a natural substance, based on cinnamon extract (CEppt, which markedly inhibits the formation of toxic Aβ oligomers and prevents the toxicity of Aβ on neuronal PC12 cells. When administered to an AD fly model, CEppt rectified their reduced longevity, fully recovered their locomotion defects and totally abolished tetrameric species of Aβ in their brain. Furthermore, oral administration of CEppt to an aggressive AD transgenic mice model led to marked decrease in 56 kDa Aβ oligomers, reduction of plaques and improvement in cognitive behavior. Our results present a novel prophylactic approach for inhibition of toxic oligomeric Aβ species formation in AD through the utilization of a compound that is currently in use in human diet.

  13. Melanosomal formation of PMEL core amyloid is driven by aromatic residues.

    Science.gov (United States)

    Hee, Jia Shee; Mitchell, Susan M; Liu, Xinran; Leonhardt, Ralf M

    2017-03-08

    PMEL is a pigment cell protein that forms physiological amyloid in melanosomes. Many amyloids and/or their oligomeric precursors are toxic, causing or contributing to severe, incurable diseases including Alzheimer's and prion diseases. Striking similarities in intracellular formation pathways between PMEL and various pathological amyloids including Aβ and PrP Sc suggest PMEL is an excellent model system to study endocytic amyloid. Learning how PMEL fibrils assemble without apparent toxicity may help developing novel therapies for amyloid diseases. Here we identify the critical PMEL domain that forms the melanosomal amyloid core (CAF). An unbiased alanine-scanning screen covering the entire region combined with quantitative electron microscopy analysis of the full set of mutants uncovers numerous essential residues. Many of these rely on aromaticity for function suggesting a role for π-stacking in melanosomal amyloid assembly. Various mutants are defective in amyloid nucleation. This extensive data set informs the first structural model of the CAF and provides insights into how the melanosomal amyloid core forms.

  14. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling.

    Science.gov (United States)

    Hashimoto, Yuichi; Toyama, Yuka; Kusakari, Shinya; Nawa, Mikiro; Matsuoka, Masaaki

    2016-06-03

    A missense mutation (T835M) in the uncoordinated-5C (UNC5C) netrin receptor gene increases the risk of late-onset Alzheimer disease (AD) and also the vulnerability of neurons harboring the mutation to various insults. The molecular mechanisms underlying T835M-UNC5C-induced death remain to be elucidated. In this study, we show that overexpression of wild-type UNC5C causes low-grade death, which is intensified by an AD-linked mutation T835M. An AD-linked survival factor, calmodulin-like skin protein (CLSP), and a natural ligand of UNC5C, netrin1, inhibit this death. T835M-UNC5C-induced neuronal cell death is mediated by an intracellular death-signaling cascade, consisting of death-associated protein kinase 1/protein kinase D/apoptosis signal-regulating kinase 1 (ASK1)/JNK/NADPH oxidase/caspases, which merges at ASK1 with a death-signaling cascade, mediated by amyloid β precursor protein (APP). Notably, netrin1 also binds to APP and partially inhibits the death-signaling cascade, induced by APP. These results may provide new insight into the amyloid β-independent pathomechanism of AD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Modulation of Gamma-Secretase for the Treatment of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Barbara Tate

    2012-01-01

    Full Text Available The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD—formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline—are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005. Since γ-secretase is critical for Aβ production, many in the biopharmaceutical community focused on γ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to control γ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aβ peptides without affecting other γ-secretase substrates, the epsilon (ε cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators of γ-secretase activity have been discovered that spare the ε cleavage of APP and other substrates while decreasing the production of Aβ42. Multiple chemical classes of γ-secretase modulators have been identified which differ in the pattern of Aβ peptides produced. Ideally, modulators will allow the ε cleavage of all substrates while shifting APP cleavage from Aβ42 and other highly amyloidogenic Aβ peptides to shorter and less neurotoxic forms of the peptides without altering the total Aβ pool. Here, we compare chemically distinct modulators for effects on APP processing and in vivo activity.

  16. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Directory of Open Access Journals (Sweden)

    N V Bobkova

    Full Text Available The Y-box binding protein 1 (YB-1 is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42 inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  17. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2015-04-01

    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  18. Oligonol improves memory and cognition under an amyloid β(25-35)-induced Alzheimer's mouse model.

    Science.gov (United States)

    Choi, Yoon Young; Maeda, Takahiro; Fujii, Hajime; Yokozawa, Takako; Kim, Hyun Young; Cho, Eun Ju; Shibamoto, Takayuki

    2014-07-01

    Alzheimer's disease is an age-dependent progressive neurodegenerative disorder that results in impairments of memory and cognitive function. It is hypothesized that oligonol has ameliorative effects on memory impairment and reduced cognitive functions in mice with Alzheimer's disease induced by amyloid β(25-35) (Aβ(25-35)) injection. The protective effect of an oligonol against Aβ(25-35)-induced memory impairment was investigated in an in vivo Alzheimer's mouse model. The aggregation of Aβ25-35 was induced by incubation at 37°C for 3 days before injection into mice brains (5 nmol/mouse), and then oligonol was orally administered at 100 and 200 mg/kg of body weight for 2 weeks. Memory and cognition were observed in T-maze, object recognition, and Morris water maze tests. The group injected with Aβ(25-35) showed impairments in both recognition and memory. However, novel object recognition and new route awareness abilities were dose dependently improved by the oral administration of oligonol. In addition, the results of the Morris water maze test indicated that oligonol exerted protective activity against cognitive impairment induced by Aβ(25-35). Furthermore, nitric oxide formation and lipid peroxidation were significantly elevated by Aβ(25-35), whereas oligonol treatment significantly decreased nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys. The present results suggest that oligonol improves Aβ(25-35)-induced memory deficit and cognition impairment. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A comparative analysis of the aggregation behavior of amyloid-β peptide variants

    NARCIS (Netherlands)

    Vandersteen, Annelies; Hubin, Ellen; Sarroukh, Rabia; De Baets, Greet; Schymkowitz, Joost; Rousseau, Frederic; Subramaniam, Vinod; Raussens, Vincent; Wenschuh, Holger; Wildemann, Dirk; Broersen, Kerensa

    2012-01-01

    Aggregated forms of the amyloid-β peptide are hypothesized to act as the prime toxic agents in Alzheimer disease (AD). The in vivo amyloid-β peptide pool consists of both C- and N-terminally truncated or mutated peptides, and the composition thereof significantly determines AD risk. Other

  20. Alzheimer's disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-β peptide injection in rats.

    Directory of Open Access Journals (Sweden)

    Charleine Zussy

    Full Text Available Alzheimer's disease (AD is a neurodegenerative pathology associated with aging characterized by the presence of senile plaques and neurofibrillary tangles that finally result in synaptic and neuronal loss. The major component of senile plaques is an amyloid-β protein (Aβ. Recently, we characterized the effects of a single intracerebroventricular (icv injection of Aβ fragment (25-35 oligomers (oAβ(25-35 for up to 3 weeks in rats and established a clear parallel with numerous relevant signs of AD. To clarify the long-term effects of oAβ(25-35 and its potential role in the pathogenesis of AD, we determined its physiological, behavioral, biochemical and morphological impacts 6 weeks after injection in rats. oAβ(25-35 was still present in the brain after 6 weeks. oAβ(25-35 injection did not affect general activity and temperature rhythms after 6 weeks, but decreased body weight, induced short- and long-term memory impairments, increased corticosterone plasma levels, brain oxidative (lipid peroxidation, mitochondrial (caspase-9 levels and reticulum stress (caspase-12 levels, astroglial and microglial activation. It provoked cholinergic neuron loss and decreased brain-derived neurotrophic factor levels. It induced cell loss in the hippocampic CA subdivisions and decreased hippocampic neurogenesis. Moreover, oAβ(25-35 injection resulted in increased APP expression, Aβ(1-42 generation, and increased Tau phosphorylation. In conclusion, this in vivo study evidenced that the soluble oligomeric forms of short fragments of Aβ, endogenously identified in AD patient brains, not only provoked long-lasting pathological alterations comparable to the human disease, but may also directly contribute to the progressive increase in amyloid load and Tau pathology, involved in the AD physiopathology.

  1. Alzheimer biomarkers and clinical Alzheimer disease were not associated with increased cerebrovascular disease in a memory clinic population.

    Science.gov (United States)

    Spies, Petra E; Verbeek, Marcel M; Sjogren, Magnus J C; de Leeuw, Frank-Erik; Claassen, Jurgen A H R

    2014-01-01

    Preclinical and post-mortem studies suggest that Alzheimer disease (AD) causes cerebrovascular dysfunction, and therefore may enhance susceptibility to cerebrovascular disease (CVD). The objective of this study was to investigate this association in a memory clinic population. The AD biomarkers CSF amyloid β42, amyloid β40 and APOE-ε4 status have all been linked to increased CVD risk in AD, and therefore the first aim of this study was to analyze the association between these biomarkers and CVD. In 92 memory clinic patients the cross-sectional association between AD biomarkersand the severity of CVD was investigated with linear regression analysis. Additionally, we studied whether AD biomarkers modified the relation between vascular risk factors and CVD. CVD was assessed on MRI through a visual rating scale.Analyses were adjusted for age. The second aim of this study was to investigate the association between clinical AD and CVD, where 'clinical AD' was defined as follows: impairment in episodic memory, hippocampal atrophy and an aberrant concentration of cerebrospinal fluid (CSF) biomarkers. 47 of the 92 patients had AD. No association between CSF amyloid β42, amyloid β40 or APOE-ε4 status and CVD severity was found, nor did these AD biomarkers modify the relation between vascular risk factors and CVD. Clinical AD was not associated with CVD severity (p=0.83). Patients with more vascular risk factors had more CVD, but this relationship was not convincingly modified by AD (p=0.06). In this memory clinic population, CVD in patients with AD was related to vascular risk factors and age, comparable to patients without AD. Therefore, in our study, the preclinical and post-mortem evidence that AD would predispose to CVD could not be translated clinically. Further work, including replication of this work in a different and larger sample, is warranted.

  2. Effects of breviscapine on amyloid beta 1-42 induced Alzheimer's disease mice: A HPLC-QTOF-MS based plasma metabonomics study.

    Science.gov (United States)

    Xia, Hongjun; Wu, Lingling; Chu, Mengying; Feng, Huimin; Lu, Chunliang; Wang, Qinghe; He, Minghai; Ge, Xiaoqun

    2017-07-01

    Herba Erigerontis has long been used to cure apoplexy hemiplegia and precordial pain in China. In addition, the bioactivities of its total flavonoids-breviscapine included inhibiting amyloid beta (Aβ) fibril formation, antioxidation and metal chelating, which are beneficial to treat Alzheimer's disease (AD). Hence, A HPLC-QTOF-MS based plasma metabonomics approach was applied to investigate the neuroprotective effects of breviscapine on intracerebroventricular injection of aggregated Aβ 1-42 induced AD mice for the first time in the study. Ten potential biomarkers were screened out by multivariate statistical analysis, eight of which were further identified as indoleacrylic acid, C16 sphinganine, LPE (22:6), sulfolithocholic acid, LPC (16:0), PA (22:1/0:0), taurodeoxycholic acid, and PC (0:0/18:0). According to their metabolic pathways, it was supposed that breviscapine ameliorated the learning and memory deficits of AD mice predominantly by regulating phospholipids metabolism, elevating serotonin level and lowering cholesterols content in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Therapeutic role of rifampicin in Alzheimer's disease.

    Science.gov (United States)

    Yulug, Burak; Hanoglu, Lütfü; Ozansoy, Mehmet; Isık, Dogan; Kilic, Ulkan; Kilic, Ertugrul; Schabitz, Wolf Rüdiger

    2018-03-01

    Rifampicin exerts significant brain protective functions in multiple experimental models. Here we summarize the underlying mechanisms of the neuroprotective and pro-cognitive effects of rifampicin that are mediated by its anti-inflammatory, anti-tau, anti-amyloid, and cholinergic effects. Beyond suggesting that rifampicin shows strong brain protective effects in preclinical models of Alzheimer's disease, we also provide substantial clinical evidence for the neuroprotective and pro-cognitive effects of rifampicin. Future neuroimaging studies combined with clinical assessment scores are the following steps to be taken in this field of research. © 2018 The Authors. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  4. Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice

    NARCIS (Netherlands)

    McBride, P. A.; Wilson, M. I.; Eikelenboom, P.; Tunstall, A.; Bruce, M. E.

    1998-01-01

    Heparan sulfate proteoglycan (HSPG) has been found to be associated with amyloid deposits in a number of diseases including the cerebral amyloid plaques of Alzheimer's disease and the transmissible spongiform encephalopathies (TSEs). The role of HSPG in amyloid formation and the neurodegenerative

  5. Dissociation of Down syndrome and Alzheimer's disease effects with imaging.

    Science.gov (United States)

    Matthews, Dawn C; Lukic, Ana S; Andrews, Randolph D; Marendic, Boris; Brewer, James; Rissman, Robert A; Mosconi, Lisa; Strother, Stephen C; Wernick, Miles N; Mobley, William C; Ness, Seth; Schmidt, Mark E; Rafii, Michael S

    2016-06-01

    Down Syndrome (DS) adults experience accumulation of Alzheimer's disease (AD)-like amyloid plaques and tangles and a high incidence of dementia and could provide an enriched population to study AD-targeted treatments. However, to evaluate effects of therapeutic intervention, it is necessary to dissociate the contributions of DS and AD from overall phenotype. Imaging biomarkers offer the potential to characterize and stratify patients who will worsen clinically but have yielded mixed findings in DS subjects. We evaluated 18F fluorodeoxyglucose positron emission tomography (PET), florbetapir PET, and structural magnetic resonance (sMR) image data from 12 nondemented DS adults using advanced multivariate machine learning methods. Our results showed distinctive patterns of glucose metabolism and brain volume enabling dissociation of DS and AD effects. AD-like pattern expression corresponded to amyloid burden and clinical measures. These findings lay groundwork to enable AD clinical trials with characterization and disease-specific tracking of DS adults.

  6. Rates of Amyloid Imaging Positivity in Patients With Primary Progressive Aphasia

    Science.gov (United States)

    Santos-Santos, Miguel A.; Rabinovici, Gil D.; Iaccarino, Leonardo; Ayakta, Nagehan; Tammewar, Gautam; Lobach, Iryna; Henry, Maya L.; Hubbard, Isabel; Mandelli, Maria Luisa; Spinelli, Edoardo; Miller, Zachary A.; Pressman, Peter S.; O’Neil, James P.; Ghosh, Pia; Lazaris, Andreas; Meyer, Marita; Watson, Christa; Yoon, Soo Jin; Rosen, Howard J.; Grinberg, Lea; Seeley, William W.; Miller, Bruce L.; Jagust, William J.; Gorno-Tempini, Maria Luisa

    2018-01-01

    with available autopsy data (2 of 4 and 2 of 3, respectively) all had a primary frontotemporal lobar degeneration and secondary Alzheimer disease pathologic diagnoses, whereas autopsy of 2 patients with amyloid PET–positive logopenic variant PPA confirmed Alzheimer disease. One mixed PPA patient with a negative amyloid PET scan had Pick disease at autopsy. CONCLUSIONS AND RELEVANCE Primary progressive aphasia variant diagnosis according to the current classification scheme is associated with Alzheimer disease biomarker status, with the logopenic variant being associated with carbon 11–labeled Pittsburgh Compound-B positivity in more than 95% of cases. Furthermore, in the presence of a clinical syndrome highly predictive of frontotemporal lobar degeneration pathology, biomarker positivity for Alzheimer disease may be associated more with mixed pathology rather than primary Alzheimer disease. PMID:29309493

  7. Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    OBJECTIVE: Lithium, a first-line drug for the treatment of bipolar depression, has recently been shown to regulate glycogen synthase kinase-3 (GSK-3), a kinase that is involved in the phosphorylation of the tau protein. Since hyperphosphorylation of tau is a core pathological feature in Alzheimer\\'s disease, lithium-induced inhibition of GSK-3 activity may have therapeutic effects in Alzheimer\\'s disease. In the current study, we tested the effect of short-term lithium treatment in patients with Alzheimer\\'s disease. METHOD: A total of 71 patients with mild Alzheimer\\'s disease (Mini-Mental State Examination score > or = 21 and < or = 26) were successfully randomly assigned to placebo (N = 38) or lithium treatment (N = 33) at 6 academic expert memory clinics. The 10-week treatment included a 6-week titration phase to reach the target serum level of lithium (0.5-0.8 mmol\\/L). The primary outcome measures were cerebrospinal fluid (CSF) levels of phosphorylated tau (p-tau) and GSK-3 activity in lymphocytes. Secondary outcome measures were CSF concentration of total tau and beta-amyloid(1-42) (Abeta(1-42)), plasma levels of Abeta(1-42), Alzheimer\\'s Disease Assessment Scale (ADAS)-Cognitive summary scores, MMSE, and Neuropsychiatric Inventory (NPI). Patients were enrolled in the study from November 2004 to July 2005. RESULTS: No treatment effect on GSK-3 activity or CSF-based biomarker concentrations (P > .05) was observed. Lithium treatment did not lead to change in global cognitive performance as measured by the ADAS-Cog subscale (P = .11) or in depressive symptoms. CONCLUSIONS: The current results do not support the notion that lithium treatment may lead to reduced hyperphosphorylation of tau protein after a short 10-week treatment in the Alzheimer\\'s disease target population. TRIAL REGISTRATION: (Controlled-Trials.com) Identifier: ISRCTN72046462.

  8. Association of Cerebral Amyloid-β Aggregation With Cognitive Functioning in Persons Without Dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Tijms, Betty M

    2018-01-01

    Importance: Cerebral amyloid-β aggregation is an early event in Alzheimer disease (AD). Understanding the association between amyloid aggregation and cognitive manifestation in persons without dementia is important for a better understanding of the course of AD and for the design of prevention tr...

  9. Multielement analysis of swiss mice brains with Alzheimer's disease induced by beta amyloid oligomers using a portable total reflection X-ray fluorescence system

    International Nuclear Information System (INIS)

    Almeida, Danielle S.; Brigido, Matheus M.; Anjos, Marcelino J.; Ferreira, Sergio S.; Souza, Amanda S.; Lopes, Ricardo T.

    2017-01-01

    Alzheimer's disease (AD) is a progressive dementia that, in early stages, manifests as a profound inability to form new memories. The pathological features of AD include β-amyloid (Aβ) plaques, intracellular neurofibrillary tangles, loss of neurons and synapses, and activation of glia cells. Recently, several groups have raised the 'metal hypothesis' of AD. Metal ions, such as Cu and Zn, have been demonstrated to modulate amyloid aggregation along different pathways. Extensive research has been conducted on the effects of metals on Aβ aggregation and all of them have shown that both Cu and Zn accelerate the aggregation by shortening, or eliminating, the lag phase associated with the amyloid fibrillation process. The metal ions mentioned previously may have an important impact on the protein misfolding and the progression of the neurodegenerative process. The TXRF technique is very important, because can be used to identify and quantify trace elements present in the sample at very low concentrations (μg.g"-"1). In this work, three groups of females were studied: control, AD10 and AD100. The groups AD10 and AD100 were given a single intracerebroventricular injection of 10 pmol and 100 pmol of oligomers of β-amyloid peptide respectively to be induced AD. The TXRF measurements were performed using a portable total reflection X-ray fluorescence system developed in the Laboratory of Nuclear Instrumentation (LIN/UFRJ) that uses an X-ray tube with a molybdenum anode operating at 40 kV and 500 mA used for the excitation and a detector Si-PIN with energy resolution of 145 eV at 200 eV. It was possible to determine the concentrations of the following elements: P, S, K, Fe, Cu, Zn and Rubidium. Results showed differences in the elemental concentration in some brain regions between the AD groups and the control group. (author)

  10. Alzheimer Disease: Scientific Breakthroughs and Translational Challenges.

    Science.gov (United States)

    Caselli, Richard J; Beach, Thomas G; Knopman, David S; Graff-Radford, Neill R

    2017-06-01

    Alzheimer disease (AD) was originally conceived as a rare disease that caused presenile dementia but has come to be understood as the most prevalent cause of dementia at any age worldwide. It has an extended preclinical phase characterized by sequential changes in imaging and cerebrospinal fluid biomarkers with subtle memory decline beginning more than a decade before the emergence of symptomatic memory loss heralding the beginning of the mild cognitive impairment stage. The apolipoprotein E ε4 allele is a prevalent and potent risk factor for AD that has facilitated research into its preclinical phase. Cerebral Aβ levels build from preclinical through early dementia stages followed by hyperphosphorylated tau-related pathology, the latter driving cognitive deficits and dementia severity. Structural and molecular imaging can now recapitulate the neuropathology of AD antemortem. Autosomal dominant forms of early-onset familial AD gave rise to the amyloid hypothesis of AD, which, in turn, has led to therapeutic trials of immunotherapy designed to clear cerebral amyloid, but to date results have been disappointing. Genome-wide association studies have identified multiple additional risk factors, but to date none have yielded an effective alternate therapeutic target. Current and future trials aimed at presymptomatic individuals either harboring cerebral amyloid or at genetically high risk offer the hope that earlier intervention might yet succeed where trials in patients with established dementia have failed. A major looming challenge will be that of expensive, incompletely effective disease-modifying therapy: who and when to treat, and how to pay for it. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. Alzheimer's Disease: Lessons Learned from Amyloidocentric Clinical Trials.

    Science.gov (United States)

    Soejitno, Andreas; Tjan, Anastasia; Purwata, Thomas Eko

    2015-06-01

    Alzheimer's disease (AD) is one of the most debilitating neurodegenerative diseases and is predicted to affect 1 in 85 people by 2050. Despite much effort to discover a therapeutic strategy to prevent progression or to cure AD, to date no effective disease-modifying agent is available that can prevent, halt, or reverse the cognitive and functional decline of patients with AD. Several underlying etiologies to this failure are proposed. First, accumulating evidence from past trials suggests a preventive as opposed to therapeutic paradigm, and the precise temporal and mechanistic relationship of β-amyloid (Aβ) and tau protein should be elucidated to confirm this hypothesis. Second, we are in urgent need of revised diagnostic criteria to support future trials. Third, various technical and methodological improvements are required, based on the lessons learned from previous failed trials.

  12. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research.

    Science.gov (United States)

    Zimmer, Eduardo R; Parent, Maxime J; Cuello, A Claudio; Gauthier, Serge; Rosa-Neto, Pedro

    2014-11-01

    Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Immunterapi mod Alzheimers sygdom

    DEFF Research Database (Denmark)

    Falkentoft, Alexander Christian; Hasselbalch, Steen Gregers

    2016-01-01

    Passive anti-beta-amyloid (Aß) immunotherapy has been shown to clear brain Aß deposits. Results from phase III clinical trials in mild-to-moderate Alzheimer's disease (AD) patients with two monoclonal antibodies bapineuzumab and solanezumab and intravenous immunoglobulin have been disappointing...

  14. Protective effect of Nelumbo nucifera extracts on beta amyloid protein induced apoptosis in PC12 cells, in vitro model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Alaganandam Kumaran

    2018-01-01

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia in the elderly. β-Amyloid (Aβ has been proposed to play a role in the pathogenesis of AD. Deposits of insoluble Aβ are found in the brains of patients with AD and are one of the pathological hallmarks of the disease, but the underlying signaling pathways are poorly understood. In order to develop antidementia agents with potential therapeutic value, we examined the inhibitory effect of the Nelumbo nucifera seed embryo extracts on to the aggregated amyloid β peptide (agg Aβ1–40-induced damage of differentiated PC-12 cells (dPC-12, a well-known cell model for AD. In the present study, seed embryos of N. nucifera were extracted with 70% methanol in water and then separated into hexane, ethyl acetate, n-butanol, and water layers. Among them, only the n-butanol layer showed strong activity and was therefore subjected to separation on Sephadex LH-20 chromatography. Two fractions showing potent activity were found to significantly inhibit Aβ1–40 toxicity on dPC-12 cells in increasing order of concentration (10–50 μg/mL. Further purification and characterization of these active fractions identified them to be flavonoids such as rutin, orientin, isoorientin, isoquercetrin, and hyperoside. 2,2-Diphenyl-1-picrylhydrazyl hydrate scavenging activity of the extracts was also carried out to ascertain the possible mechanism of the activity.

  15. Individualized quantification of brain β-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls

    International Nuclear Information System (INIS)

    Barthel, Henryk; Luthardt, Julia; Becker, Georg; Patt, Marianne; Sattler, Bernhard; Schildan, Andreas; Hesse, Swen; Meyer, Philipp M.; Sabri, Osama; Hammerstein, Eva; Hartwig, Kristin; Gertz, Hermann-Josef; Eggers, Birk; Wolf, Henrike; Zimmermann, Torsten; Reischl, Joachim; Rohde, Beate; Reininger, Cornelia

    2011-01-01

    Complementing clinical findings with those generated by biomarkers - such as β-amyloid-targeted positron emission tomography (PET) imaging - has been proposed as a means of increasing overall accuracy in the diagnosis of Alzheimer's disease (AD). Florbetaben ([ 18 F]BAY 94-9172) is a novel β-amyloid PET tracer currently in global clinical development. We present the results of a proof of mechanism study in which the diagnostic efficacy, pharmacokinetics, safety and tolerability of florbetaben were assessed. The value of various quantitative parameters derived from the PET scans as potential surrogate markers of cognitive decline was also investigated. Ten patients with mild-moderate probable AD (DSM-IV and NINCDS-ADRDA criteria) and ten age-matched (≥ 55 years) healthy controls (HCs) were administered a single dose of 300 MBq florbetaben, which contained a tracer mass dose of < 5 μg. The 70-90 min post-injection brain PET data were visually analysed by three blinded experts. Quantitative assessment was also performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of standardized uptake value (SUV) ratios (SUVRs, cerebellar cortex as reference region). Furthermore, single-case, voxelwise analysis was used to calculate individual ''whole brain β-amyloid load''. Visual analysis of the PET data revealed nine of the ten AD, but only one of the ten HC brains to be β-amyloid positive (p = 0.001), with high inter-reader agreement (weighted kappa ≥ 0.88). When compared to HCs, the neocortical SUVRs were significantly higher in the ADs (with descending order of effect size) in frontal cortex, lateral temporal cortex, occipital cortex, anterior and posterior cingulate cortices, and parietal cortex (p = 0.003-0.010). Voxel-based group comparison confirmed these differences. Amongst the PET-derived parameters, the Statistical Parametric Mapping-based whole brain β-amyloid load yielded the closest correlation with

  16. Why musical memory can be preserved in advanced Alzheimer's disease.

    Science.gov (United States)

    Jacobsen, Jörn-Henrik; Stelzer, Johannes; Fritz, Thomas Hans; Chételat, Gael; La Joie, Renaud; Turner, Robert

    2015-08-01

    Musical memory is considered to be partly independent from other memory systems. In Alzheimer's disease and different types of dementia, musical memory is surprisingly robust, and likewise for brain lesions affecting other kinds of memory. However, the mechanisms and neural substrates of musical memory remain poorly understood. In a group of 32 normal young human subjects (16 male and 16 female, mean age of 28.0 ± 2.2 years), we performed a 7 T functional magnetic resonance imaging study of brain responses to music excerpts that were unknown, recently known (heard an hour before scanning), and long-known. We used multivariate pattern classification to identify brain regions that encode long-term musical memory. The results showed a crucial role for the caudal anterior cingulate and the ventral pre-supplementary motor area in the neural encoding of long-known as compared with recently known and unknown music. In the second part of the study, we analysed data of three essential Alzheimer's disease biomarkers in a region of interest derived from our musical memory findings (caudal anterior cingulate cortex and ventral pre-supplementary motor area) in 20 patients with Alzheimer's disease (10 male and 10 female, mean age of 68.9 ± 9.0 years) and 34 healthy control subjects (14 male and 20 female, mean age of 68.1 ± 7.2 years). Interestingly, the regions identified to encode musical memory corresponded to areas that showed substantially minimal cortical atrophy (as measured with magnetic resonance imaging), and minimal disruption of glucose-metabolism (as measured with (18)F-fluorodeoxyglucose positron emission tomography), as compared to the rest of the brain. However, amyloid-β deposition (as measured with (18)F-flobetapir positron emission tomography) within the currently observed regions of interest was not substantially less than in the rest of the brain, which suggests that the regions of interest were still in a very early stage of the expected course of

  17. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker.

    Science.gov (United States)

    van Rooden, Sanneke; Versluis, Maarten J; Liem, Michael K; Milles, Julien; Maier, Andrea B; Oleksik, Ania M; Webb, Andrew G; van Buchem, Mark A; van der Grond, Jeroen

    2014-01-01

    Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). T2*-weighted MRI was performed in 16 AD patients and 15 control subjects. All magnetic resonance images were scored qualitatively by visual assessment, and quantitatively by measuring phase shifts in the cortical gray matter and hippocampus. Statistical analysis was performed to assess differences between groups. Patients with AD demonstrated an increased phase shift in the cortex in the temporoparietal, frontal, and parietal regions (P < .005), and this was associated with individual Mini-Mental State Examination scores (r = -0.54, P < .05). Increased cortical phase shift in AD patients demonstrated on 7-tesla T2*-weighted MRI is a potential new biomarker for AD, which may reflect amyloid pathology in the early stages. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  18. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease.

    Science.gov (United States)

    Huang, Xiao-Tian; Qian, Zhong-Ming; He, Xuan; Gong, Qi; Wu, Ka-Chun; Jiang, Li-Rong; Lu, Li-Na; Zhu, Zhou-Jing; Zhang, Hai-Yan; Yung, Wing-Ho; Ke, Ya

    2014-05-01

    Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Different Populations of Human Locus Ceruleus Neurons Contain Heavy Metals or Hyperphosphorylated Tau: Implications for Amyloid-β and Tau Pathology in Alzheimer's Disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2015-01-01

    A marked loss of locus ceruleus (LC) neurons is a striking pathological feature of Alzheimer's disease (AD). LC neurons are particularly prone to taking up circulating toxicants such as heavy metals, and hyperphosphorylated tau (tau(HYP)) appears early in these neurons. In an attempt to find out if both heavy metals and tau(HYP) could be damaging LC neurons, we looked in the LC neurons of 21 sporadic AD patients and 43 non-demented controls for the heavy metals mercury, bismuth, and silver using autometallography, and for tau(HYP) using AT8 immunostaining. Heavy metals or tau(HYP) were usually seen in separate LC neurons, and rarely co-existed within the same neuron. The number of heavy metal-containing LC neurons did not correlate with the number containing tau(HYP). Heavy metals therefore appear to occupy a mostly different population of LC neurons to those containing tau(HYP), indicating that the LC in AD is vulnerable to two different assaults. Reduced brain noradrenaline from LC damage is linked to amyloid-β deposition, and tau(HYP) in the LC may seed neurofibrillary tangles in other neurons. A model is described, incorporating the present findings, that proposes that the LC plays a part in both the amyloid-β and tau pathologies of AD.

  20. [How to define Alzheimer's disease].

    Science.gov (United States)

    Poncet, Michel

    2011-09-01

    Alzheimer's disease, which was considered to be a rare disease in subjects aged under 65 until the seventies/eighties, has become a very common disease affecting mostly older subjects. Many consider that it is important to review the meaning of the eponym "Alzheimer's disease", and a revolution, quite literally, is likely to occur. The role of vascular lesions in the onset of dementias among older subjects is widely acknowledged; considering those dementias as Alzheimer's disease may have negative consequences for patient management. Indeed, vascular lesions can be prevented and treated, while Alzheimer's lesions cannot. It may be justified to use "Alzheimer syndrome" instead of "Alzheimer's disease" when vascular risk factors and, all the more so, vascular lesions are present. Significant progress has been made in the understanding of the pathological proteins involved in Alzheimer's disease, as well as their effects on neurons and synapses. However, the etiology of the disease is still unknown, except in the rare hereditary cases, and there is no cure for Alzheimer's disease at present. Clinical research is progressing, and diagnostic criteria for the pre-dementia stage of Alzheimer's disease were suggested. In France, the outstanding Alzheimer plan 2008-2012 should play an important role in enhancing the understanding of Alzheimer's disease, Alzheimer's syndromes and related disorders.

  1. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease.

    Science.gov (United States)

    Dewji, Nazneen N; Singer, S Jonathan; Masliah, Eliezer; Rockenstein, Edward; Kim, Mihyun; Harber, Martha; Horwood, Taylor

    2015-01-01

    β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.

  2. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nazneen N Dewji

    Full Text Available β-Amyloid (Aβ accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD. Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP and Presenilin (PS, as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.

  3. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  4. Royal jelly promotes DAF-16-mediated proteostasis to tolerate β-amyloid toxicity in C. elegans model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Xiaoxia; Cao, Min; Dong, Yuqing

    2016-08-23

    Numerous studies have demonstrated that dietary intervention may promote health and help prevent Alzheimer's disease (AD). We recently reported that bee products of royal jelly (RJ) and enzyme-treated royal jelly (eRJ) were potent to promote healthy aging in C. elegans. Here, we examined whether RJ/eRJ consumption may benefit to mitigate the AD symptom in the disease model of C. elegans. Our results showed that RJ/eRJ supplementation significantly delayed the body paralysis in AD worms, suggesting the β-amyloid (Aβ) toxicity attenuation effects of RJ/eRJ. Genetic analyses suggested that RJ/eRJ-mediated alleviation of Aβ toxicity in AD worms required DAF-16, rather than HSF-1 and SKN-1, in an insulin/IGF signaling dependent manner. Moreover, RJ/eRJ modulated the transactivity of DAF-16 and dramatically improved the protein solubility in aged worms. Given protein solubility is a hallmark of healthy proteostasis, our findings demonstrated that RJ/eRJ supplementation improved proteostasis, and this promotion depended on the transactivity of DAF-16. Collectively, the present study not only elucidated the possible anti-AD mechanism of RJ/eRJ, but also provided evidence from a practical point of view to shed light on the extensive correlation of proteostasis and the prevention of neurodegenerative disorders.

  5. Beta-amyloid and cholinergic neurons

    Czech Academy of Sciences Publication Activity Database

    Doležal, Vladimír; Kašparová, Jana

    2003-01-01

    Roč. 28, 3-4 (2003), s. 499-506 ISSN 0364-3190 R&D Projects: GA ČR GA305/01/0283; GA AV ČR IAA5011206 Institutional research plan: CEZ:AV0Z5011922 Keywords : cholinergic neurons * AlzheimerŽs disease * beta-amyloid Subject RIV: FH - Neurology Impact factor: 1.511, year: 2003

  6. A Binding-Site Barrier Affects Imaging Efficiency of High Affinity Amyloid-Reactive Peptide Radiotracers In Vivo

    OpenAIRE

    Wall, Jonathan S.; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B.; Kennel, Stephen J.

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selecti...

  7. Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: associations and a hypothesis.

    Science.gov (United States)

    Domínguez, R O; Pagano, M A; Marschoff, E R; González, S E; Repetto, M G; Serra, J A

    2014-01-01

    Epidemiological studies have demonstrated that patients with diabetes mellitus have an increased risk of developing Alzheimer disease, but the relationship between the 2 entities is not clear. Both diseases exhibit similar metabolic abnormalities: disordered glucose metabolism, abnormal insulin receptor signalling and insulin resistance, oxidative stress, and structural abnormalities in proteins and β-amyloid deposits. Different hypotheses have emerged from experimental work in the last two decades. One of the most comprehensive relates the microvascular damage in diabetic polyneuritis with the central nervous system changes occurring in Alzheimer disease. Another hypothesis considers that cognitive impairment in both diabetes and Alzheimer disease is linked to a state of systemic oxidative stress. Recently, attenuation of cognitive impairment and normalisation of values in biochemical markers for oxidative stress were found in patients with Alzheimer disease and concomitant diabetes. Antidiabetic drugs may have a beneficial effect on glycolysis and its end products, and on other metabolic alterations. Diabetic patients are at increased risk for developing Alzheimer disease, but paradoxically, their biochemical alterations and cognitive impairment are less pronounced than in groups of dementia patients without diabetes. A deeper understanding of interactions between the pathogenic processes of both entities may lead to new therapeutic strategies that would slow or halt the progression of impairment. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  8. Functional correlates of t-Tau, p-Tau and Aβ₁₋₄₂ amyloid cerebrospinal fluid levels in Alzheimer's disease: a ¹⁸F-FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Martorana, Alessandro; Koch, Giacomo; Toniolo, Sofia; di Biagio, Daniele; di Pietro, Barbara; Schillaci, Orazio

    2015-05-01

    The aim of the study was to investigate the relationships between cerebrospinal fluid (CSF) levels of t-Tau, p-Tau and amyloid-β (Aβ₁₋₄₂) amyloid peptide and fluorine-18 fluorodeoxyglucose (¹⁸F-FDG) brain distribution in a group of patients with Alzheimer's disease. The study included 81 newly diagnosed Alzheimer's disease patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 44 were male and 37 were female. All patients underwent a CSF assay and MRI before ¹⁸F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). Increased t-Tau CSF levels were related to reduced glucose consumption in a wide portion of the right frontal lobe [Brodmann area (BA 47)] and limbic lobe bilaterally (BA 31,32), whereas no areas of increased ¹⁸F-FDG uptake related to t-Tau levels were detected. Elevated p-Tau concentrations in CSF were related to increased glucose consumption in both the right and the left limbic lobe and in the left frontal lobe (BA 32 and 8). We did not find any specific cortical area of reduced glucose consumption being related to low levels of Aβ₁₋₄₂ in CSF, whereas a spawn of ¹⁸F-FDG uptake was detectable in BA 18,19 and in the right cerebellum. The results of our study suggest that reduced Aβ₁₋₄₂ concentrations in CSF are related to a wide cortical dysfunction, whereas t-Tau and p-Tau are related to more selective cortical metabolic patterns that mainly involve the cingulate cortex.

  9. Correlations between serum levels of beta amyloid, cerebrospinal levels of tau and phospho tau, and delayed response tasks in young and aged cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, Huda Shalahudin; Sajuthi, D; Kalliokoski, O

    2013-01-01

    In an attempt to explore cynomolgus monkeys as an animal model for Alzheimer's disease, the present study focused on the Alzheimer's biomarkers beta amyloid 1-42 (Aβ42 ) in serum, and total tau (t-tau) and phosphorylated tau (p-tau) levels in cerebrospinal fluid.......In an attempt to explore cynomolgus monkeys as an animal model for Alzheimer's disease, the present study focused on the Alzheimer's biomarkers beta amyloid 1-42 (Aβ42 ) in serum, and total tau (t-tau) and phosphorylated tau (p-tau) levels in cerebrospinal fluid....

  10. PET and SPECT investigations in Alzheimer's disease

    International Nuclear Information System (INIS)

    Asenbaum, S.

    2003-01-01

    Nuclear medicine offers a wide range of possibilities to investigate dementia. Various SPECT and PET tracers will be introduced in this article first. Different questions concerning evaluation of dementia are discussed taking Alzheimer's disease (AD) as an example. It is important to perform nuclear medicine investigations on high technical level, using standardized methods as statistical parametric mapping (SPM) for evaluation. If neuroprotective therapies are available, an early diagnosis, the determination of risk factors and longitudinal investigations will be the focus of interest and the main goal of nuclear medicine. Apart from measuring cerebral perfusion and glucose metabolism the development of new ligands, concerning the cholinergic system and the visualization of amyloid plaques, is of great importance. (orig.) [de

  11. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment

    NARCIS (Netherlands)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A.; Jagust, William; Weiner, Michael W.; Saradha, A.; Abdi, Herve; Abdulkadir, Ahmed; Abeliovich, Asa; Abellan van Kan, Gabor; Abner, Erin; Acharya, Deepa; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmed, Shiek; Ahn, Jae Eun; Aisen, Paul; Aksu, Yaman; Al-Akhras, Mousa; Alarcon, Marcelo; Alberca, Roman; Alexander, Gene; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Andrew, Marilee; Angersbach, Steve; Anjum, Ayesha; Aoyama, Eiji; Arfanakis, Konstantinos; Armor, Tom; Arnold, Steven; Arunagiri, Vidhya; Asatryan, Albert; Ashe-McNalley, Cody; Ashiga, Hirokazu; Assareh, Arezoo; Le Page, Aurelie; Avants, Brian; Avinash, Gopal; Aviv, Richard; Awasthi, Sukrati; Ayan-Oshodi, Mosun; Babic, Tomislav; Baek, Young; Bagci, Ulas; Bai, Shuyang; Baird, Geoffrey; Baker, John; Banks, Sarah; Bard, Jonathan; Barnes, Josephine; Bartlett, Jonathan; Bartzokis, George; Barua, Neil; Bauer, Corinna; Bayley, Peter; Beck, Irene; Becker, James; Becker, J. Alex; Beckett, Laurel; Bednar, Martin; Beg, Mirza Faisal; Bek, Stephan; Belaroussi, Boubakeur; Belmokhtar, Nabil; Bernard, Charlotte; Bertram, Lars; Bhaskar, Uday; Biffi, Alessandro; Bigler, Erin; Bilgic, Basar; Bishop, Courtney; Bittner, Daniel; Black, Ronald; Bogorodzki, Piotr; Bokde, Arun; Bonner-Jackson, Aaron; Boppana, Madhu; Bourgeat, Pierrick; Bowes, Mike; Bowman, DuBois; Bowman, Gene; Braskie, Meredith; Braunewell, Karl; Breitner, Joihn; Bresell, Anders; Brewer, James; Brickman, Adam; Britschgi, Markus; Broadbent, Steve; Brogren, Jacob; Brooks, David; Browndyke, Jeffrey; Brunton, Simon; Buchert, Ralph; Buchsbaum, Monte; Buckley, Chris; Buerger, Katharina; Burger, Cyrill; Burnham, Samantha; Burns, Jeffrey; Burton, David; Butman, John; Cabeza, Rafael; Cairns, Nigel; Callhoff, Johanna; Calvini, Piero; Cantillon, Marc; Capella, Heraldo; Carbotti, Angela; Cardona-Sanclemente, Luis Eduardo; Carle, Adam; Carmasin, Jeremy; Carranza-Ath, Fredy; Casabianca, Jodi; Casanova, Ramon; Cash, David; Cedarbaum, Jesse; Cella, Massimo; Celsis, Pierre; Chanu, Pascal; Chao, Linda; Charil, Arnaud; Chemali, Zeina; Chen, Rong; Chen, Jake; Chen, Gennan; Chen, Wei; Chen, Kewei; Chen, Shuzhong; Chen, Minhua; Cheng, Wei-Chen; Cherkas, Yauheniya; Chertkow, Howard; Cheung, Charlton; Cheung, Vinci; Chiang, Gloria; Chiba, Koji; Chin, Simon; Chisholm, Jane; Cho, Youngsang; Choe, John; Choubey, Suresh; Chowbina, Sudhir; Christensen, Anette Luther; Clark, David; Clark, Chris; Clarkson, Matt; Clayton, David; Clunie, David; Coen, Michael; Coimbra, Alexandre; Compton, David; Coppola, Giovanni; Coulin, Samuel; Cover, Keith S.; Crane, Paul; Crans, Gerald; Croop, Robert; Crowther, Daniel; Crum, William; Cui, Yue; Curry, Charles; Curtis, Steven; Cutter, Gary; Daiello, Lori; Dake, Michael; Dale, Anders; Daliri, Mohammad Reza; Damato, Vito Domenico; Darby, Eveleen; Darkner, Sune; Davatzikos, Christos; Dave, Jay; David, Renaud; DavidPrakash, Bhaskaran; Davidson, Julie; de Bruijne, Marleen; de Meyer, Geert; de Nunzio, Giorgio; Decarli, Charles; Dechairo, Bryan; DeDuck, Kristina; Dehghan, Hossein; Dejkam, Arsalan; Delfino, Manuel; Della Rosa, Pasquale Anthony; Dellavedova, Luca; Delpassand, Ebrahim; Delrieu, Julien; DeOrchis, Vincent; Depy Carron, Delphine; deToledo-Morrell, Leyla; Devanand, Davangere; Devanarayan, Viswanath; DeVous, Michael; Diaz-Arrastia, Ramon; Bradford, Dickerson; Ding, Xiaobo; Dinov, Ivo; Dobson, Howard; Dodge, Hiroko; Donohue, Michael; Dore, Vincent; Dorflinger, Ernest; Dowling, Maritza; Duan, Xujun; Dubal, Dena; Duchesne, Simon; Duff, Kevin; Dukart, Jrgen; Durazzo, Timothy; Dykstra, Kevin; Earl, Nancy; Edula, Goutham; Ekin, Ahmet; Elcoroaristizabal, Xabier; Emahazion, Tesfai; Engelman, Corinne; Epstein, Noam; Erten-Lyons, Deniz; Eskildsen, Simon; Falcone, Guido; Fan, Lingzhong; Fan, Yong; Farahibozorg, Seyedehrezvan; Farb, Norman; Farnum, Michael; Farrer, Lindsay; Farzan, Ali; Faux, Noel; Feldman, Betsy; Feldman, Howard; Feldman, Susan; Fennema-Notestine, Christine; Fernandes, Michel; Fernandez, Elsa; Ferrarini, Luca; Ferreira, Manuel Joao; Ferrer, Eugene; Figurski, Michal; Filipovych, Roman; Fillit, Howard; Finch, Stephen; Finlay, Daniel; Fiot, Jean-Baptiste; Flenniken, Derek; Fletcher, P. Thomas; Fletcher, Evan; Flynn Longmire, Crystal; Focke, Niels; Forman, Mark; Forsythe, Alan; Fox, Steven; Fox-Bosetti, Sabrina; Francis, Alexander L.; Franco-Villalobos, Conrado; Franko, Edit; Freeman, Stefanie; Friedrich, Christoph M.; Friesenhahn, Michel; Frings, Lars; Frisoni, Giovanni; Fritzsche, Klaus; Fujimoto, Yoko; Fujiwara, Ken; Fullerton, Terence; Furney, Simon; Gallins, Paul; Galvin, Ben; Gamst, Anthony; Gan, Ke; Garcia, Maria Teresa; Garg, Gaurav; Gaser, Christian; Gastineau, Edward; Gauthier, Serge; Gavett, Brandon; Gavidia, Giovana; Gazdzinski, Stefan; Ge, Qi; Ge, Tian; Gemme, Gianluca; Geraci, Joseph; Ghassabi, Zeinab; Gieschke, Ronald; Gil, Juan E.; Gill, Ryan; Gitelman, Darren; Gleason, Carey; Glymour, M. Maria; Godbey, Michael; Goghari, Vina; Gold, Michael; Goldberg, Terry; Goldman, Jennifer; Gomeni, Roberto; Gong, Shangwenyan; Gonzales, Celedon; Goodro, Robert; Gordon, Brian; Gore, Chris; Gorriz, Juan Manuel; Grachev, Igor; Grandey, Emily; Grasela, Thaddeus; Gratt, Jeremy; Gray, Katherine; Greenberg, Barry; Gregg, Keith; Gregory, Erik; Greicius, Michael; Greve, Douglas; Grill, Joshua; Gross, Alden; Gross, Alan; Guignot, Isabelle; Guo, Jeffrey; Guo, Qimiao; Guo, Hongbin; Guo, Lianghao; Habeck, Christian; Hai, Yizhen; Haight, Thaddeus; Hammarstrom, Per; Hampel, Harald; Han, Duke; Han, Jian; Han, Tony; Hanif, Muhammad; Hanna, Yousef; Hardy, Peter; Harvey, Danielle; Hasan, Md Kamrul; Hayashi, Toshihiro; Hazart, Aurelien; He, Huiguang; He, Yong; Head, Denise; Heckemann, Rolf; Heidebrink, Judith; Henderson, David; Henrard, Sebastien; Herholz, Karl; Hernandez, Monica; Herskovits, A. Zara; Hess, Christopher; Hildenbrand, Maike; Hobart, Jeremy; Hoffman, John; Holder, Daniel; Hollingworth, Paul; Holmes, Robin; Honigberg, Lee; Hoppin, Jack; Hou, Yangyang; Hsu, Ailing; Hsu, Wei-Wen; Hu, Xiaolan; Hu, Zhiwei; Hu, William; Huang, Juebin; Huang, Chien-Chih; Huang, Chingwen; Huang, Shuai; Huang, Yifan; Huang, Fude; Huang, Chun-Jung; Huang, Shu-Pang; Hubbard, Rebecca; Huentelman, Matthew; Hui, Shen; Huppertz, Hans-Jürgen; Hurko, Orest; Hurt, Stephen; Huyck, Susan; Hwang, Scott; Hyun, JungMoon; Ifeachor, Emmanuel; Iglesias, Martina; Ikari, Yasuhiko; Ikonomidou, Vasiliki; Imani, Farzin; Immermann, Fred; Inlow, Mark; Inoue, Lurdes; Insel, Philip; Irizarry, Michael; Irungu, Benson mwangi; Ishibashi, Taro; Ishii, Kenji; Ismail, Sara; Ismail, Shahina; Ito, Kaori; Iturria-Medina, Yasser; Iwatsubo, Takeshi; Jacobson, Mark; Jacqmin, Philippe; Jafari, Aria; Jafari-Khouzani, Kourosh; Jaffe, Carl; Jara, Hernan; Jasperse, Bas; Jedynak, Bruno; Jefferson, Angela; Jennings, J. Richard; Jessen, Walter; Jia, Fucang; Jiang, Tianzi; Jing, Huang; Johnson, Julene; Johnson, Sterling; Johnson, David K.; Jones, Richard; Juengling, Freimut; Juh, Rahyeong; Julin, Per; Kadish, Bill; Kahle-Wrobleski, Kristin; Kallam, Hanimi Reddy; Kamboh, M. Ilyas; Kaneko, Tomoki; Kaneta, Tomohiro; Kang, Ju Hee; Karageorgiou, Elissaios; Karantzoulis, Stella; Karlawish, Jason; Katz, Elyse; Kaushik, Sandeep S.; Kauwe, John; Kawakami, Hirofumi; Kazimipoor, Borhan; Kelleher, Thomas; Kennedy, Richard; Kerchner, Geoffrey; Kerrouche, Nacer; Khalil, Iya; Khalil, Andre; Killeen, Neil; Killiany, Ron; Kim, Jong Hun; Kim, Heeyoung; Kim, Ana; Kim, Yeonhee; Kim, Hyoungkyu; Kim, Seongkyun; Kim, Hyewon; Kimberg, Daniel; Kimura, Tokunori; King, Richard; Kirby, Justin; Kirsch, Wolff; Klimas, Michael; Kline, Richard; Kling, Mitchel; Klopfenstein, Erin; Koikkalainen, Juha; Kokomoor, Anders; Kolasny, Anthony; Koppel, Jeremy; Korolev, Igor; Kotran, Nickolas; Kouassi, Alex; Kowalczyk, Adam; Kozma, Lynn; Krams, Michael; Kratzer, Martina; Kuceyeski, Amy; Kuhn, Felix Pierre; Kumar, Sreedhar; Kuo, Hsun Ting; Kuo, Julie; Kurosawa, Ken; Kwon, Oh Hun; Labrish, Catherine; Laforet, Genevieve; Lai, Song; Lakatos, Anita; Lam, On Ki; Lampron, Antoine; Landau, Susan; Landen, Jaren; Lane, Richard; Langbaum, Jessica; Langford, Dianne; Lanius, Vivian; Laxamana, Joel; Le, Trung; Leahy, Richard; Lee, Jong-Min; Lee, Vita; Lee, Joseph H.; Lee, Grace; Lee, Dongsoo; Lee, Noah; Lefkimmiatis, Stamatis; Lemaitre, Herve; Lenfant, Pierre; Lenz, Robert; Leoutsakos, Jeannie-Marie; Lester, Gayle; Levey, Allan; Li, Shi-jiang; Li, Shanshan; Li, Wenjun; Li, Chin-Shang; Li, Xiaodong; Li, Rui; Li, Ming; Li, Lexin; Li, Jinhe; Li, Yi; Li, Quanzheng; Li, Gang; Liang, Kuchang; Liang, Peipeng; Liang, Lichen; Liao, Yuan-Lin; Lin, Ling-chih; Lin, Lan; Lin, Mingkuan; Lin, Ai-Ling; Liu, Songling; Liu, Yuan; Liu, Tianming; Liu, Meijie; Liu, Xiuwen; Liu, Li; Liu, Honggang; Liu, Pu; Liu, Tao; Liu, Sophia; Liu, Dazhong; Lo, Raymond; Lobanov, Victor; Loewenstein, David; Logovinsky, Veronika; Long, Xiaojing; Long, Ziyi; Looi, Jeffrey; Lu, Po-Haong; Lukic, Ana; Lull, Juan J.; Luo, Xiongjian; Lynch, John; Ma, Lei; Mackin, Scott; Mada, Marius; Magda, Sebastian; Maglio, Silvio; Maikusa, Norihide; Mak, Henry Ka-Fung; Malave, Vicente; Maldjian, Joseph; Mandal, Pravat; Mangin, Jean-Francois; Manjon, Jose; Mantri, Ninad; Manzour, Amir; Marambaud, Philippe; Marchewka, Artur; Marek, Kenneth; Markind, Samuel; Marshall, Gad; Martinez Torteya, Antonio; Mather, Mara; Mathis, Chester; Matoug, Sofia; Matsuo, Yoshiyuki; Mattei, Peter; Matthews, Dawn; McArdle, John; McCarroll, Steven; McEvoy, Linda; McGeown, William; McGonigle, John; McIntyre, John; McLaren, Donald; McQuail, Joseph; Meadowcroft, Mark; Meda, Shashwath; Mehta, Nirav; Melie-Garcia, Lester; Melrose, Rebecca; Mendonca, Brian; Menendez, Manuel; Meredith, Jere; Merrill, David; Mesulam, Marek-Marsel; Metti, Andrea; Meyer, Carsten; Mez, Jesse; Mickael, Guedj; Miftahof, Roustem; Mikhno, Arthur; Miller, David; Millikin, Colleen; Min, Ye; Mirza, Mubeena; Mistridis, Panagiota; Mitchell, Meghan; Mitsis, Effie; Mohan, Ananth; Moore, Dana; Moradi Birgani, Parmida; Moratal, David; Morimoto, Bruce; Mormino, Elizabeth; Mortamet, Benedicte; Moscato, Pablo; Mueller, Kathyrne; Mueller, Susanne; Mueller, Notger; Mukherjee, Shubhabrata; Mulder, Emma; Murayama, Shigeo; Murphy, Michael; Murray, Brian; Musiek, Erik; Myers, Amanda; Najafi, Shahla; Nazarparvar, Babak; Nazeri, Arash; Nettiksimmons, Jasmine; Neu, Scott; Ng, Yen-Bee; Nguyen, Nghi; Nguyen Xuan, Tuong; Nichols, Thomas; Nicodemus, Kristin; Niecko, Timothy; Nielsen, Casper; Notomi, Keiji; Nutakki, Gopi Chand; O'Bryant, Sid; O'Neil, Alison; Obisesan, Thomas; Oh, Dong Hoon; Oh, Joonmi; Okonkwo, Ozioma; Olde Rikkert, Marcel; Olmos, Salvador; Ortner, Marion; Ostrowitzki, Susanne; Oswald, Annahita; Ott, Brian; Ourselin, Sebastien; Ouyang, Gaoxiang; Paiva, Renata; Pan, Zhifang; Pande, Yogesh; Pardo, Jose; Pardoe, Heath; Park, Hyunjin; Park, Lovingly; Park, Moon Ho; Park, Sang hyun; Park, Kee Hyung; Park, Sujin; Parsey, Ramin; Parveen, Riswana; Paskavitz, James; Patel, Yogen; Patil, Manasi; Pawlak, Mikolaj; Payoux, Pierre; Pearson, Jim; Peavy, Guerry; Pell, Gaby; Peng, Yahong; Pennec, Xavier; Pepin, Jean louis; Perea, Rodrigo; Perneczky, Robert; Petitti, Diana; Petrella, Jeffrey; Peyrat, Jean-Marc; Pezoa, Jorge; Pham, Chi-Tuan; Phillips, Justin; Phillips, Nicole; Pierson, Ronald; Piovezan, Mauro; Podhorski, Adam; Pollari, Mika; Pontecorvo, Michael; Poppenk, Jordan; Posner, Holly; Potkin, Steven; Potter, Guy; Potter, Elizabeth; Poulin, Stephane; Prasad, Gautam; Prenger, Kurt; Prince, Jerry; Priya, Anandh; Puchakayala, Shashidhar Reddy; Qiu, Ruolun; Qiu, Anqi; Qiu, Wendy; Qualls, Constance Dean; Rabie, Huwaida; Rajeesh, Rajeesh; Rallabandi, V. P. Subramanyam; Ramage, Amy; Randolph, Christopher; Rao, Anil; Rao, Divya; Raubertas, Richard; Ray, Debashis; Razak, Hana; Redolfi, Alberto; Reed, Bruce; Reid, Andrew; Reilhac, Anthonin; Reinsberger, Claus; Restrepo, Lucas; Retico, Alessandra; Richards, John; Riddle, William; Ries, Michele; Rincon, Mariano; Rischall, Matt; Rizk-Jackson, Angela; Robieson, Weining; Rocha-Rego, Vanessa; Rogalski, Emily; Rogers, Elizabeth; Rojas, Ignacio; Rojas Balderrama, Javier; Romero, Klaus; Rorden, Chris; Rosand, Jonathan; Rosen, Allyson; Rosen, Ori; Rosenberg, Paul; Ross, David; Roubini, Eli; Rousseau, François; Rowe, Christopher; Rubin, Daniel; Rubright, Jonathan; Ruiz, Agustin; Rusinek, Henry; Ryan, Laurie; Saad, Ahmed; Sabbagh, Marway; Sabuncu, Mert; Sachs, Michael; Sadeghi, Ali; Said, Yasmine; Saint-Aubert, Laure; Sakata, Muneyuki; Salat, David; Salmon, David; Salter, Hugh; Samwald, Matthias; Sanchez, Luciano; Sanders, Elizabeth; Sanjo, Nobuo; Sarnel, Haldun; Sato, Hajime; Sato, Shinji; Saumier, Daniel; Savio, Alexandre; Sawada, Ikuhisa; Saykin, Andrew; Schaffer, J. David; Scharre, Douglas; Schegerin, Marc; Schlosser, Gretchen; Schmand, Ben; Schmansky, Nick; Schmidt, Mark; Schmidt-Wilcke, Tobias; Schneider, Lon; Schramm, Hauke; Schuerch, Markus; Schwartz, Eben; Schwartz, Craig; Schwarz, Adam; Seethamraju, Ravi; Seixas, Flavio; Selnes, Per; Senjem, Matthew; Senlin, Wang; Seo, Sang Won; Sethuraman, Gopalan; Sevigny, Jeffrey; Sfikas, Giorgos; Sghedoni, Roberto; Shah, Said Khalid; Shahbaba, Babak; Shams, Soheil; Shattuck, David; Shaw, Leslie; Sheela, Jaba; Shen, Weijia; Shen, Qian; Shera, David; Sherman, John; Sherva, Richard; Shi, Feng; Shukla, Vinay; Shuler, Catherine; Shulman, Joshua; Siegel, Rene; Siemers, Eric; Silveira, Margarida; Silver, Michael; Silverman, Daniel; Sim, Ida; Simmons, Andy; Simoes, Rita; Simon, Melvin; Simpson, Ivor; Singh, Simer Preet; Singh, Nikhil; Siuciak, Judy; Sjogren, Niclas; Skinner, Jeannine; Skup, Martha; Small, Gary; Smith, Michael; Smith, Benjamin; Smith, Charles; Smyth, Timothy; Snow, Sarah; Soares, Holly; Soldea, Octavian; Solomon, Paul; Solomon, Alan; Som, Subhojit; Song, Changhong; Song, Mingli; Sosova, Iveta; Soudah, Eduardo; Soydemir, Melih; Spampinato, Maria Vittoria; Spenger, Christian; Sperling, Reisa; Spiegel, Rene; Spies, Lothar; Squarcia, Sandro; Squire, Larry; Staff, Roger; Stern, Yaakov; Straw, Jack; Stricker, Nikki; Strittmatter, Stephen; Stühler, Elisabeth; Styren, Scot; Subramanian, Vijayalakshmi; Sugishita, Morihiro; Sukkar, Rafid; Sun, Jia; Sun, Ying; Sun, Yu; Sundell, Karen; Suri, Muhammad; Suzuki, Akiyuki; Svetnik, Vladimir; Swan, Melanie; Takahasi, Tetsuhiko; Takeuchi, Tomoko; Tanaka, Shoji; Tanchi, Chaturaphat; Tancredi, Daniel; Tao, Wenwen; Tao, Dacheng; Taylor-Reinwald, Lisa; Teng, Edmond; Terlizzi, Rita; Thames, April; Thiele, Frank; Thomas, Benjamin; Thomas, Ronald; Thompson, Paul; Thompson, Wesley; Thornton-Wells, Tricia; Thorvaldsson, Valgeir; Thurfjell, Lennart; Titeux, Laurence; Tokuda, Takahiko; Toledo, Juan B.; Tolli, Tuomas; Toma, Ahmed; Tomita, Naoki; Toro, Roberto; Torrealdea, Patxi; Tousian, Mona; Toussaint, Paule; Toyoshiba, Hiroyoshi; Tractenberg, Rochelle E.; Trittschuh, Emily; Trojanowski, John; Truran, Diana; Tsechpenakis, Gavriil; Tucker-Drob, Elliot; Tufail, Ahsan; Tung, Joyce; Turken, And; Ueda, Yoji; Ullrich, Lauren; Umadevi Venkataraju, Kannan; Umar, Nisser; Uzunbas, Gokhan; van de Nes, Joseph; van der Brug, Marcel; van Horn, John; van Leemput, Koen; van Train, Kenneth; van Zeeland, Ashley; Vasanawala, Minal; Vemuri, Prashanthi; Verwaerde, Philippe; Videbaek, Charlotte; Vidoni, Eric; Villanueva-Meyer, Javier; Visser, Pieter Jelle; Vitolo, Ottavio; Vounou, Maria; Wade, Sara; Walhovd, Kristine B.; Wan, Hong; Wang, Huanli; Wang, Yongmei Michelle; Wang, Yalin; Wang, Angela; Wang, Lei; Wang, Yue; Wang, Xu; Wang, Ze; Wang, Yaping; Wang, Tiger; Wang, Alex; Wang, Huali; Wang, Li-San; Wang, Wei; Wang, Li; Ward, Michael; Warfield, Simon; Waring, Stephen; Watanabe, Toshiyuki; Webb, David; Wei, Lili; Weiner, Michael; Wen, Shu-Hui; Wenjing, Li; Wenzel, Fabian; Westlye, Lars T.; Whitcher, Brandon; Whitlow, Christopher; Whitwell, Jennifer; Wilhelmsen, Kirk; Williams, David; Wilmot, Beth; Wimsatt, Matt; Wingo, Thomas; Wiste, Heather; Wolfson, Tanya; Wolke, Ira; Wolz, Robin; Woo, Jongwook; Woo, Ellen; Woods, Lynn; Worth, Andrew; Worth, Eric; Wouters, Hans; Wu, Teresa; Wu, Yi-Gen; Wu, Liang; Wu, Xiaoling; Wyman, Bradley; Wyss-Coray, Tony; Xiao, Guanghua; Xiao, Liu; Xie, Sharon; Xu, Shunbin; Xu, Ye; Xu, Yi-Zheng; Xu, Guofan; Xu, Jun; Yamane, Tomohiko; Yamashita, Fumio; Yan, Yunyi; Yan, Pingkun; Yang, Eric; Yang, Jinzhong; Yang, Qing X.; Yang, Zijiang; Yang, Guang; Yang, Zhitong; Yang, Wenlu; Ye, Liang; Ye, Byoung Seok; Ye, Jieping; Ye, Jong; Yee, Laura; Yesavage, Jerome; Ying, Song; Yoo, Bongin; Young, Jonathan; Yu, Shiwei; Yu, Dongchuan; Yuan, Guihong; Yuan, Kai; Yushkevich, Paul; Zaborszky, Laszlo; Zagorodnov, Vitali; Zagorski, Michael; Zawadzki, Rezi; Zeitzer, Jamie; Zelinski, Elizabeth; Zhang, Kurt; Zhang, Huixiong; Zhang, Tianhao; Zhang, Xin; Zhang, Ping; Zhang, Bin; Zhang, Jing; Zhang, Linda; Zhang, Lijun; Zhang, Zhiguo; Zhao, Qinying; Zhao, Jim; Zhao, Peng; Zhen, Xiantong; Zheng, Yuanjie; Zhijun, Yao; Zhou, Bin; Zhou, Sheng; Zhu, Wen; Zhu, Hongtu; Zhu, Wanlin; Zilka, Samantha; Zito, Giancarlo; Zou, Heng

    2011-01-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by

  12. Quantification of amyloid deposits and oxygen extraction fraction in the brain with multispectral optoacoustic imaging in arcAβ mouse model of Alzheimer's disease

    Science.gov (United States)

    Ni, Ruiqing; Vaas, Markus; Rudin, Markus; Klohs, Jan

    2018-02-01

    Beta-amyloid (Aβ) deposition and vascular dysfunction are important contributors to the pathogenesis in Alzheimer's disease (AD). However, the spatio-temporal relationship between an altered oxygen metabolism and Aβ deposition in the brain remains elusive. Here we provide novel in-vivo estimates of brain Aβ load with Aβ-binding probe CRANAD-2 and measures of brain oxygen saturation by using multi-spectral optoacoustic imaging (MSOT) and perfusion imaging with magnetic resonance imaging (MRI) in arcAβ mouse models of AD. We demonstrated a decreased cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in the cortical region of the arcAβ mice compared to wildtype littermates at 24 months. In addition, we showed proof-of-concept for the detection of cerebral Aβ deposits in brain from arcAβ mice compared to wild-type littermates.

  13. Bone marrow amyloid spherulites in a case of AL amyloidosis.

    Science.gov (United States)

    Bommannan B K, Karthik; Sonai, Mukinkumar; Sachdeva, Man Updesh Singh

    2016-05-01

    Parallel arrangement of β-pleated sheets by amyloidogenic proteins is a well known phenomenon. Rarely, amyloid fibrils undergo radial orientation to form globular structures called spherulites. These amyloid spherulites show Maltese cross pattern under polarized microscopy. The clinical significance of amyloid spherulites is undetermined. Amyloidogenic proteins like insulin and β-lactoglobulin form spherulites in vitro. The senile plaques of Alzheimer's disease rarely form in vivo spherulites. Amyloid spherulites have been described in the liver and small intestine. For the first time, we document amyloid spherulite formation in the bone marrow biopsy of an AL amyloidosis patient. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Jackson, Harriet M; Soto, Ileana; Graham, Leah C; Carter, Gregory W; Howell, Gareth R

    2013-11-25

    Alzheimer's disease affects more than 35 million people worldwide but there is no known cure. Age is the strongest risk factor for Alzheimer's disease but it is not clear how age-related changes impact the disease. Here, we used a mouse model of Alzheimer's disease to identify age-specific changes that occur prior to and at the onset of traditional Alzheimer-related phenotypes including amyloid plaque formation. To identify these early events we used transcriptional profiling of mouse brains combined with computational approaches including singular value decomposition and hierarchical clustering. Our study identifies three key events in early stages of Alzheimer's disease. First, the most important drivers of Alzheimer's disease onset in these mice are age-specific changes. These include perturbations of the ribosome and oxidative phosphorylation pathways. Second, the earliest detectable disease-specific changes occur to genes commonly associated with the hypothalamic-adrenal-pituitary (HPA) axis. These include the down-regulation of genes relating to metabolism, depression and appetite. Finally, insulin signaling, in particular the down-regulation of the insulin receptor substrate 4 (Irs4) gene, may be an important event in the transition from age-related changes to Alzheimer's disease specific-changes. A combination of transcriptional profiling combined with computational analyses has uncovered novel features relevant to Alzheimer's disease in a widely used mouse model and offers avenues for further exploration into early stages of AD.

  15. Effectiveness of Music Therapy in Alzheimer Patients: Systematic Review

    Directory of Open Access Journals (Sweden)

    Neslihan Lok

    Full Text Available The incidence of Alzheimers disease increases with advancing age. This increase cause significant economic and emotional burden on family and national health care system which makes Alzheimers disease a national issue to be considered. Music therapy could be an alternative treatment approach in Alzheimer's disease. Especially in the second stage of Alzheimers disease, growth and expansion of amyloid plaques results in anger and aggression among patients. Calming effects of music might be beneficial in management of patients during this period. This study is a systematic review of researches conducted to determine the effects of music therapy in Alzheimer's diseases. In sum results have supported possible positive effects of music therapy on Alzheimer patients. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(3.000: 266-274

  16. Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-β production.

    Science.gov (United States)

    Lin, Yen-Chen; Wang, Jia-Yi; Wang, Kai-Chen; Liao, Jhih-Ying; Cheng, Irene H

    2014-11-01

    The deposition of amyloid-β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal-lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis. The internalization of amyloid precursor protein (APP) increases its opportunity to be processed by β-secretase and to produce Amyloid-β (Aβ) that causes Alzheimer's disease (AD). We report a pathogenic APPD678H mutant that enhances APP internalization into the endosomal-lysosomal pathway and thus promotes the β-secretase cleavage and Aβ production. This study provides genetic evidence for the importance of APP sorting in AD pathogenesis. © 2014 International Society for Neurochemistry.

  17. Conformational dynamics of amyloid proteins at the aqueous interface

    Science.gov (United States)

    Armbruster, Matthew; Horst, Nathan; Aoki, Brendy; Malik, Saad; Soto, Patricia

    2013-03-01

    Amyloid proteins is a class of proteins that exhibit distinct monomeric and oligomeric conformational states hallmark of deleterious neurological diseases for which there are not yet cures. Our goal is to examine the extent of which the aqueous/membrane interface modulates the folding energy landscape of amyloid proteins. To this end, we probe the dynamic conformational ensemble of amyloids (monomer prion protein and Alzheimer's Ab protofilaments) interacting with model bilayers. We will present the results of our coarse grain molecular modeling study in terms of the existence of preferential binding spots of the amyloid to the bilayer and the response of the bilayer to the interaction with the amyloid. NSF Nebraska EPSCoR First Award

  18. Microglia kill amyloid-beta1-42 damaged neurons by a CD14-dependent process

    NARCIS (Netherlands)

    Bate, Clive; Veerhuis, Robert; Eikelenboom, Piet; Williams, Alun

    2004-01-01

    Activated microglia are closely associated with neuronal damage in Alzheimer's disease. In the present study, neurons exposed to low concentrations of amyloid-beta1-42, a toxic fragment of the amyloid-beta protein, were killed by microglia in a process that required cell-cell contact. Pre-treating

  19. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    Science.gov (United States)

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  20. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Raymond, Scott B.; Bacskai, Brian J.; Skoch, Jesse; Hills, Ivory D.; Swager, Timothy M.; Nesterov, Evgueni E.

    2008-01-01

    Near-infrared fluorescent probes for amyloid-beta (Aβ) are an exciting option for molecular imaging in Alzheimer's disease research and may translate to clinical diagnostics. However, Aβ-targeted optical probes often suffer from poor specificity and slow clearance from the brain. We are designing smart optical probes that emit characteristic fluorescence signal only when bound to Aβ. We synthesized a family of dyes and tested Aβ-binding sensitivity with fluorescence spectroscopy and tissue-staining. Select compounds exhibited Aβ-dependent changes in fluorescence quantum yield, lifetime, and emission spectra that may be imaged microscopically or in vivo using new lifetime and spectral fluorescence imaging techniques. Smart optical probes that turn on when bound to Aβ will improve amyloid detection and may enable quantitative molecular imaging in vivo. (orig.)

  1. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  2. Functional amyloid formation within mammalian tissue.

    Directory of Open Access Journals (Sweden)

    Douglas M Fowler

    2006-01-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  3. Dental X-ray exposure and Alzheimer's disease: a hypothetical etiological association.

    Science.gov (United States)

    Rodgers, Caroline C

    2011-07-01

    Despite the fact that Alzheimer's disease was identified more than 100 years ago, its cause remains elusive. Although the chance of developing Alzheimer's disease increases with age, it is not a natural consequence of aging. This article proposes that dental X-rays can damage microglia telomeres - the structures at the end of chromosomes that determine how many times cells divide before they die - causing them to age prematurely. Degenerated microglia lose their neuroprotective properties, resulting in the formation of neurofibrillary tau tangles and consequently, the neuronal death that causes Alzheimer's dementia. The hypothesis that Alzheimer's is caused specifically by microglia telomere damage would explain the delay of one decade or longer between the presence of Alzheimer's brain pathology and symptoms; telomere damage would not cause any change in microglial function, it would just reset the countdown clock so that senescence and apoptosis occurred earlier than they would have without the environmental insult. Once microglia telomere damage causes premature aging and death, the adjacent neurons are deprived of the physical support, maintenance and nourishment they require to survive. This sequence of events would explain why therapies and vaccines that eliminate amyloid plaques have been unsuccessful in stopping dementia. Regardless of whether clearing plaques is beneficial or harmful - which remains a subject of debate - it does not address the failing microglia population. If microglia telomere damage is causing Alzheimer's disease, self-donated bone marrow or dental pulp stem cell transplants could give rise to new microglia populations that would maintain neuronal health while the original resident microglia population died. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Age-specific epigenetic drift in late-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sun-Chong Wang

    Full Text Available Despite an enormous research effort, most cases of late-onset Alzheimer's disease (LOAD still remain unexplained and the current biomedical science is still a long way from the ultimate goal of revealing clear risk factors that can help in the diagnosis, prevention and treatment of the disease. Current theories about the development of LOAD hinge on the premise that Alzheimer's arises mainly from heritable causes. Yet, the complex, non-Mendelian disease etiology suggests that an epigenetic component could be involved. Using MALDI-TOF mass spectrometry in post-mortem brain samples and lymphocytes, we have performed an analysis of DNA methylation across 12 potential Alzheimer's susceptibility loci. In the LOAD brain samples we identified a notably age-specific epigenetic drift, supporting a potential role of epigenetic effects in the development of the disease. Additionally, we found that some genes that participate in amyloid-beta processing (PSEN1, APOE and methylation homeostasis (MTHFR, DNMT1 show a significant interindividual epigenetic variability, which may contribute to LOAD predisposition. The APOE gene was found to be of bimodal structure, with a hypomethylated CpG-poor promoter and a fully methylated 3'-CpG-island, that contains the sequences for the epsilon4-haplotype, which is the only undisputed genetic risk factor for LOAD. Aberrant epigenetic control in this CpG-island may contribute to LOAD pathology. We propose that epigenetic drift is likely to be a substantial mechanism predisposing individuals to LOAD and contributing to the course of disease.

  5. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease?

    Science.gov (United States)

    Whyte, Lauren S; Lau, Adeline A; Hemsley, Kim M; Hopwood, John J; Sargeant, Timothy J

    2017-03-01

    Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD. © 2016 International Society for Neurochemistry.

  6. Human tau increases amyloid β plaque size but not amyloid β-mediated synapse loss in a novel mouse model of Alzheimer's disease.

    Science.gov (United States)

    Jackson, Rosemary J; Rudinskiy, Nikita; Herrmann, Abigail G; Croft, Shaun; Kim, JeeSoo Monica; Petrova, Veselina; Ramos-Rodriguez, Juan Jose; Pitstick, Rose; Wegmann, Susanne; Garcia-Alloza, Monica; Carlson, George A; Hyman, Bradley T; Spires-Jones, Tara L

    2016-12-01

    Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aβ and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aβ-plaques and synapse loss, with rTg21221 mice, which overexpress wild-type human tau. When compared to the APP/PS1 mice without human tau, the cross-sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque-associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aβ at synapses. Together, these results indicate that adding human wild-type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque-associated synapse loss. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Mancini, Simona; Minniti, Stefania; Gregori, Maria; Sancini, Giulio; Cagnotto, Alfredo; Couraud, Pierre-Olivier; Ordóñez-Gutiérrez, Lara; Wandosell, Francisco; Salmona, Mario; Re, Francesca

    2016-01-01

    We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aβ in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aβ peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aβ oligomers (Aβo), but not of Aβ fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aβo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aβo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aβ level, suggesting that Aβ-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-β (Aβ) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Association between mitochondrial DNA variations and Alzheimer's Disease in the ADNI cohort

    Science.gov (United States)

    Lakatos, Anita; Derbeneva, Olga; Younes, Danny; Keator, David; Bakken, Trygve; Lvova, Maria; Brandon, Marty; Guffanti, Guia; Reglodi, Dora; Saykin, Andrew; Weiner, Michael; Macciardi, Fabio; Schork, Nicholas; Wallace, Douglas C.; Potkin, Steven G.

    2010-01-01

    Despite the central role of amyloid deposition in the development of Alzheimer's disease (AD), the pathogenesis of AD still remains elusive at the molecular level. Increasing evidence suggests that compromised mitochondrial function contributes to the aging process and thus may increase the risk of AD. Dysfunctional mitochondria contribute to reactive oxygen species (ROS) which can lead to extensive macromolecule oxidative damage and the progression of amyloid pathology. Oxidative stress and amyloid toxicity leave neurons chemically vulnerable. Because the brain relies on aerobic metabolism, it is apparent that mitochondria are critical for the cerebral function. Mitochondrial DNA sequence-changes could shift cell dynamics and facilitate neuronal vulnerability. Therefore we postulated that mitochondrial DNA sequence polymorphisms may increase the risk of AD. We evaluated the role of mitochondrial haplogroups derived from 138 mitochondrial polymorphisms in 358 Caucasian ADNI subjects. Our results indicate that the mitochondrial haplogroup UK may confer genetic susceptibility to AD independently of the APOE4 allele. PMID:20538375

  9. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer's Disease.

    Science.gov (United States)

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer's disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD.

  10. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa

    2007-01-01

    In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor...... in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice....

  11. Cerebrospinal Fluid Biomarkers in Familial Forms of Alzheimer's Disease and Frontotemporal Dementia

    DEFF Research Database (Denmark)

    Rostgaard, Nina; Waldemar, Gunhild; Nielsen, Jørgen Erik

    2015-01-01

    As dementia is a fast-growing health care problem, it is becoming an increasingly urgent need to provide an early diagnosis in order to offer patients the best medical treatment and care. Validated biomarkers which reflect the pathology and disease progression are essential for diagnosis and are ......As dementia is a fast-growing health care problem, it is becoming an increasingly urgent need to provide an early diagnosis in order to offer patients the best medical treatment and care. Validated biomarkers which reflect the pathology and disease progression are essential for diagnosis...... and are important when developing new therapies. Today, the core protein biomarkers amyloid-β42, total tau and phosphorylated tau in the cerebrospinal fluid (CSF) are used to diagnose Alzheimer's disease (AD), because these biomarkers have shown to reflect the underlying amyloid and tau pathology. However......, the biomarkers have proved insufficient predictors of dementias with a different pathology, e.g. frontotemporal dementia (FTD); furthermore, the biomarkers are not useful for early AD diagnosis. Familial dementias with a known disease-causing mutation can be extremely valuable to study; yet the biomarker...

  12. Mild to Moderate Alzheimer Dementia with Insufficient Neuropathological Changes

    Science.gov (United States)

    Serrano-Pozo, Alberto; Qian, Jing; Monsell, Sarah E.; Blacker, Deborah; Gómez-lsla, Teresa; Betensky, Rebecca A.; Growdon, John H.; Johnson, Keith; Frosch, Matthew P.; Sperling, Reisa A.; Hyman, Bradley T.

    2014-01-01

    Recently, ∼16% of participants in an anti-Aβ passive immunotherapy trial for mild-to-moderate Alzheimer disease (AD) had a negative baseline amyloid positron emission tomography (PET) scan. Whether they have AD or are AD clinical phenocopies remains unknown. We examined the 2005-2013 National Alzheimer's Coordinating Center autopsy database and found that ∼14% of autopsied subjects clinically diagnosed with mild-to-moderate probable AD have no or sparse neuritic plaques, which would expectedly yield a negative amyloid PET scan. More than half of these “Aβ-negative” subjects have low neurofibrillary tangle Braak stages. These findings support the implementation of a positive amyloid biomarker as an inclusion criterion in future anti-Aβ drug trials. PMID:24585367

  13. Effects of Neurotrophic Support and Amyloid-Targeted Combined Therapy on Adult Hippocampal Neurogenesis in a Transgenic Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Christopher D Morrone

    Full Text Available Although it is recognized that multi-drug therapies may be necessary to combat AD, there is a paucity of preclinical proof of concept studies. We present a combination treatment paradigm, which temporally affects different aspects of Alzheimer's disease (AD-like pathology, specifically Aβ-toxicity and neurogenesis. At early stages of AD-like pathology, in TgCRND8 mice, we found that combating Aβ pathology with scyllo-inositol ameliorated deficits in neurogenesis. Older TgCRND8 mice with established amyloid load had decreased progenitor cell proliferation and survival compared to non-transgenic mice, regardless of scyllo-inositol treatment. The prolonged exposure to Aβ-pathology leads to deficits in the neurogenic niche, thus targeting Aβ alone is insufficient to rescue neurogenesis. To support the neurogenic niche, we combined scyllo-inositol treatment with leteprinim potassium (neotrofin, the latter of which stimulates neurotrophin expression. We show that the combination treatment of scyllo-inositol and neotrofin enhances neuronal survival and differentiation. We propose this proof of concept combination therapy of targeting Aβ-pathology and neurotrophin deficits as a potential treatment for AD.

  14. Biomarkers, ketone bodies, and the prevention of Alzheimer's disease.

    Science.gov (United States)

    VanItallie, Theodore B

    2015-03-01

    Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    Science.gov (United States)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  16. Toward the treatment and prevention of Alzheimer's disease: rational strategies and recent progress.

    Science.gov (United States)

    Gandy, Sam; DeKosky, Steven T

    2013-01-01

    Alzheimer's disease (AD) is the major cause of late-life brain failure. In the past 25 years, autosomal dominant forms of AD were found to be primariy attributable to mutations in one of two presenilins, polytopic proteins that contain the catalytic site of the γ-secretase protease that releases the amyloid beta (Aβ) peptide. Some familial AD is also due to mutations in the amyloid precursor protein (APP), but recently a mutation in APP was discovered that reduces Aβ generation and is protective against AD, further implicating amyloid metabolism. Prion-like seeding of amyloid fibrils and neurofibrillary tangles has been invoked to explain the stereotypical spread of AD within the brain. Treatment trials with anti-Aβ antibodies have shown target engagement, if not significant treatment effects. Attention is increasingly focused on presymptomatic intervention, because Aβ mismetabolism begins up to 25 years before symptoms begin. AD trials deriving from new biological information involve extraordinary international collaboration and may hold the best hope for success in the fight against AD.

  17. Detection of Alzheimer's amyloid beta aggregation by capturing molecular trails of individual assemblies

    International Nuclear Information System (INIS)

    Vestergaard, Mun'delanji; Hamada, Tsutomu; Saito, Masato; Yajima, Yoshifumi; Kudou, Monotori; Tamiya, Eiichi; Takagi, Masahiro

    2008-01-01

    Assembly of Amyloid beta (Aβ) peptides, in particular Aβ-42 is central to the formation of the amyloid plaques associated with neuro-pathologies such as Alzheimer's disease (AD). Molecular assembly of individual Aβ-42 species was observed using a simple fluorescence microscope. From the molecular movements (aka Brownian motion) of the individual peptide assemblies, we calculated a temporal evolution of the hydrodynamic radius (R H ) of the peptide at physiological temperature and pH. The results clearly show a direct relationship between R H of Aβ-42 and incubation period, corresponding to the previously reported peptide's aggregation kinetics. The data correlates highly with in solution-based label-free electrochemical detection of the peptide's aggregation, and Aβ-42 deposited on a solid surface and analysed using atomic force microscopy (AFM). To the best of our knowledge, this is the first analysis and characterisation of Aβ aggregation based on capturing molecular trails of individual assemblies. The technique enables both real-time observation and a semi-quantitative distribution profile of the various stages of Aβ assembly, at microM peptide concentration. Our method is a promising candidate for real-time observation and analysis of the effect of other pathologically-relevant molecules such as metal ions on pathways to Aβ oligomerisation and aggregation. The method is also a promising screening tool for AD therapeutics that target Aβ assembly.

  18. Interaction of the amyloid β peptide with sodium dodecyl sulfate as a membrane-mimicking detergent.

    NARCIS (Netherlands)

    Hashemi, Shabestari M.; Meeuwenoord, N.J.; Filippov, D.V.; Huber, M.I.

    2016-01-01

    The amyloid β (A β) peptide is important in the context of Alzheimer's disease, since it is one of the major components of the fibrils that constitute amyloid plaques. Agents that can influence fibril formation are important, and of those, membrane mimics are particularly relevant, because the

  19. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.

    2008-01-01

    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  20. Alterations in endocytic protein expression with increasing age in the transgenic APP695 V717I London mouse model of amyloid pathology: implications for Alzheimer's disease.

    Science.gov (United States)

    Thomas, Rhian S; Alsaqati, Mouhamed; Bice, Justin S; Hvoslef-Eide, Martha; Good, Mark A; Kidd, Emma J

    2017-10-18

    A major risk factor for the development of Alzheimer's disease (AD) is increasing age, but the reason behind this association has not been identified. It is thought that the changes in endocytosis seen in AD patients are causal for this condition. Thus, we hypothesized that the increased risk of developing AD associated with ageing may be because of changes in endocytosis. We investigated using Western blotting whether the expression of endocytic proteins involved in clathrin-mediated and clathrin-independent endocytosis are altered by increasing age in a mouse model of amyloid pathology. We used mice transgenic for human amyloid precursor protein containing the V717I London mutation. We compared the London mutation mice with age-matched wild-type (WT) controls at three ages, 3, 9 and 18 months, representing different stages in the development of pathology in this model. Having verified that the London mutation mice overexpressed amyloid precursor protein and β-amyloid, we found that the expression of the smallest isoform of PICALM, a key protein involved in the regulation of clathrin-coated pit formation, was significantly increased in WT mice, but decreased in the London mutation mice with age. PICALM levels in WT 18-month mice and clathrin levels in WT 9-month mice were significantly higher than those in the London mutation mice of the same ages. The expression of caveolin-1, involved in clathrin-independent endocytosis, was significantly increased with age in all mice. Our results suggest that endocytic processes could be altered by the ageing process and such changes could partly explain the association between ageing and AD.

  1. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E

    2010-02-01

    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  2. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models

    Science.gov (United States)

    Shin, Jin Young; Park, Hyun Jung; Kim, Ha Na; Oh, Se Hee; Bae, Jae-Sung; Ha, Hee-Jin; Lee, Phil Hyu

    2014-01-01

    Current evidence suggests a central role for autophagy in Alzheimer disease (AD), and dysfunction in the autophagic system may lead to amyloid-β (Aβ) accumulation. Using in vitro and in vivo AD models, the present study investigated whether mesenchymal stem cells (MSCs) could enhance autophagy and thus exert a neuroprotective effect through modulation of Aβ clearance In Aβ-treated neuronal cells, MSCs increased cellular viability and enhanced LC3-II expression compared with cells treated with Aβ only. Immunofluorescence revealed that MSC coculture in Aβ-treated neuronal cells increased the number of LC3-II-positive autophagosomes that were colocalized with a lysosomal marker. Ultrastructural analysis revealed that most autophagic vacuoles (AVs) in Aβ-treated cells were not fused with lysosomes, whereas a large portion of autophagosomes were conjoined with lysosomes in MSCs cocultured with Aβ-treated neuronal cells. Furthermore, MSC coculture markedly increased Aβ immunoreactivity colocalized within lysosomes and decreased intracellular Aβ levels compared with Aβ-treated cells. In Aβ-treated animals, MSC administration significantly increased autophagosome induction, final maturation of late AVs, and fusion with lysosomes. Moreover, MSC administration significantly reduced the level of Aβ in the hippocampus, which was elevated in Aβ-treated mice, concomitant with increased survival of hippocampal neurons. Finally, MSC coculture upregulated BECN1/Beclin 1 expression in AD models. These results suggest that MSCs significantly enhance autolysosome formation and clearance of Aβ in AD models, which may lead to increased neuronal survival against Aβ toxicity. Modulation of the autophagy pathway to repair the damaged AD brain using MSCs would have a significant impact on future strategies for AD treatment. PMID:24149893

  3. Does Caffeine Consumption Modify Cerebrospinal Fluid Amyloid-β Levels in Patients with Alzheimer's Disease?

    Science.gov (United States)

    Travassos, Maria; Santana, Isabel; Baldeiras, Inês; Tsolaki, Magda; Gkatzima, Olymbia; Sermin, Genc; Yener, Görsev G; Simonsen, Anja; Hasselbalch, Steen G; Kapaki, Elisabeth; Mara, Bourbouli; Cunha, Rodrigo A; Agostinho, Paula; Blennow, Kaj; Zetterberg, Henrik; Mendes, Vera M; Manadas, Bruno; de Mendon, Alexandreça

    2015-01-01

    Caffeine may be protective against Alzheimer's disease (AD) by modulating amyloid-β (Aβ) metabolic pathways. The present work aimed to study a possible association of caffeine consumption with the cerebrospinal fluid (CSF) biomarkers, particularly Aβ. The study included 88 patients with AD or mild cognitive impairment. The consumption of caffeine and theobromine was evaluated using a validated food questionnaire. Quantification of caffeine and main active metabolites was performed with liquid chromatography coupled to tandem mass spectrometry. The levels of A(1-42), total tau, and phosphorylated tau in the CSF were determined using sandwich ELISA methods and other Aβ species, Aβ(X-38), Aβ(X-40), and Aβ(X-42), with the MSD Aβ Triplex assay. The concentration of caffeine was 0.79±1.15 μg/mL in the CSF and 1.20±1.88 μg/mL in the plasma. No correlation was found between caffeine consumption and Aβ42 in the CSF. However, a significant positive correlation was found between the concentrations of theobromine, both in the CSF and in the plasma, with Aβ42 in the CSF. Theobromine in the CSF was positively correlated with the levels of other xanthines in the CSF, but not in the plasma, suggesting that it may be formed by central metabolic pathways. In conclusion, caffeine consumption does not modify the levels of CSF biomarkers, and does not require to be controlled for when measuring CSF biomarkers in a clinical setting. Since theobromine is associated with a favorable Aβ profile in the CSF, the possibility that it might have a protective role in AD should be further investigated.

  4. Multielement analysis of swiss mice brains with Alzheimer's disease induced by beta amyloid oligomers using a portable total reflection X-ray fluorescence system

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Danielle S.; Brigido, Matheus M.; Anjos, Marcelino J.; Ferreira, Sergio S.; Souza, Amanda S.; Lopes, Ricardo T., E-mail: ricardo@lin.ufrj.br, E-mail: marcelin@uerj.br, E-mail: amandass@bioqmed.ufrj.br, E-mail: ferreira@bioqmed.ufrj.br, E-mail: amandass@bioqmed.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Instituto de Fisica Armando Dias Tavares (Brazil)

    2017-11-01

    Alzheimer's disease (AD) is a progressive dementia that, in early stages, manifests as a profound inability to form new memories. The pathological features of AD include β-amyloid (Aβ) plaques, intracellular neurofibrillary tangles, loss of neurons and synapses, and activation of glia cells. Recently, several groups have raised the 'metal hypothesis' of AD. Metal ions, such as Cu and Zn, have been demonstrated to modulate amyloid aggregation along different pathways. Extensive research has been conducted on the effects of metals on Aβ aggregation and all of them have shown that both Cu and Zn accelerate the aggregation by shortening, or eliminating, the lag phase associated with the amyloid fibrillation process. The metal ions mentioned previously may have an important impact on the protein misfolding and the progression of the neurodegenerative process. The TXRF technique is very important, because can be used to identify and quantify trace elements present in the sample at very low concentrations (μg.g{sup -1}). In this work, three groups of females were studied: control, AD10 and AD100. The groups AD10 and AD100 were given a single intracerebroventricular injection of 10 pmol and 100 pmol of oligomers of β-amyloid peptide respectively to be induced AD. The TXRF measurements were performed using a portable total reflection X-ray fluorescence system developed in the Laboratory of Nuclear Instrumentation (LIN/UFRJ) that uses an X-ray tube with a molybdenum anode operating at 40 kV and 500 mA used for the excitation and a detector Si-PIN with energy resolution of 145 eV at 200 eV. It was possible to determine the concentrations of the following elements: P, S, K, Fe, Cu, Zn and Rubidium. Results showed differences in the elemental concentration in some brain regions between the AD groups and the control group. (author)

  5. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    Science.gov (United States)

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  6. Biomarkers in the Diagnosis and Prognosis of Alzheimer's Disease.

    Science.gov (United States)

    Schaffer, Cole; Sarad, Nakia; DeCrumpe, Ashton; Goswami, Disha; Herrmann, Sara; Morales, Jose; Patel, Parth; Osborne, Jim

    2015-10-01

    Alzheimer's disease (AD) is a neurodegenerative disease that inhibits cognitive functions and has no cure. This report reviews the current diagnostic standards for AD with an emphasis on early diagnosis using the cerebrospinal fluid (CSF) biomarkers amyloid-beta, t-tau, and p-tau and fluorodeoxyglucose positron emission tomography imaging. Abnormal levels of these CSF biomarkers and decreased cerebral uptake of glucose have recently been used in the early diagnosis of AD in experimental studies. These promising biomarkers can be measured using immunoassays performed in singleplex or multiplex formats. Although presently, there are no Food and Drug Administration-approved in vitro diagnostics (IVDs) for early detection of AD, a multiplex immunoassay measuring a panel of promising AD biomarkers in CSF may be a likely IVD candidate for the clinical AD diagnostic market. Specifically, the INNO-BIA AlzBio3 immunoassay kit, performed using bead arrays on the xMAP Luminex analyzer, allows simultaneous quantification of amyloid-beta, t-tau, and p-tau biomarkers. AD biomarkers can also be screened using enzyme-linked immunosorbent assays that are offered as laboratory-developed tests. © 2014 Society for Laboratory Automation and Screening.

  7. Genetics Home Reference: Alzheimer disease

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Alzheimer disease Alzheimer disease Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Alzheimer disease is a degenerative disease of the brain ...

  8. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  9. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  10. A review on Alzheimer's disease pathophysiology and its management: an update.

    Science.gov (United States)

    Kumar, Anil; Singh, Arti; Ekavali

    2015-04-01

    Alzheimer's disease acknowledged as progressive multifarious neurodegenerative disorder, is the leading cause of dementia in late adult life. Pathologically it is characterized by intracellular neurofibrillary tangles and extracellular amyloidal protein deposits contributing to senile plaques. Over the last two decades, advances in the field of pathogenesis have inspired the researchers for the investigation of novel pharmacological therapeutics centered more towards the pathophysiological events of the disease. Currently available treatments i.e. acetylcholinesterase inhibitors (rivastigmine, galantamine, donepezil) and N-methyl d-aspartate receptor antagonist (memantine) contribute minimal impact on the disease and target late aspects of the disease. These drugs decelerate the progression of the disease, provide symptomatic relief but fail to achieve a definite cure. While the neuropathological features of Alzheimer's disease are recognized but the intricacies of the mechanism have not been clearly defined. This lack of understanding regarding the pathogenic process may be the likely reason for the non-availability of effective treatment which can prevent onset and progression of the disease. Owing to the important progress in the field of pathophysiology in the last couple of years, new therapeutic targets are available that should render the underlying disease process to be tackled directly. In this review, authors will discusses the different aspects of pathophysiological mechanisms behind Alzheimer's disease and its management through conventional drug therapy, including modern investigational therapeutic strategies, recently completed and ongoing. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Why pleiotropic interventions are needed for Alzheimer's disease.

    Science.gov (United States)

    Frautschy, Sally A; Cole, Greg M

    2010-06-01

    Alzheimer's disease (AD) involves a complex pathological cascade thought to be initially triggered by the accumulation of beta-amyloid (Abeta) peptide aggregates or aberrant amyloid precursor protein (APP) processing. Much is known of the factors initiating the disease process decades prior to the onset of cognitive deficits, but an unclear understanding of events immediately preceding and precipitating cognitive decline is a major factor limiting the rapid development of adequate prevention and treatment strategies. Multiple pathways are known to contribute to cognitive deficits by disruption of neuronal signal transduction pathways involved in memory. These pathways are altered by aberrant signaling, inflammation, oxidative damage, tau pathology, neuron loss, and synapse loss. We need to develop stage-specific interventions that not only block causal events in pathogenesis (aberrant tau phosphorylation, Abeta production and accumulation, and oxidative damage), but also address damage from these pathways that will not be reversed by targeting prodromal pathways. This approach would not only focus on blocking early events in pathogenesis, but also adequately correct for loss of synapses, substrates for neuroprotective pathways (e.g., docosahexaenoic acid), defects in energy metabolism, and adverse consequences of inappropriate compensatory responses (aberrant sprouting). Monotherapy targeting early single steps in this complicated cascade may explain disappointments in trials with agents inhibiting production, clearance, or aggregation of the initiating Abeta peptide or its aggregates. Both plaque and tangle pathogenesis have already reached AD levels in the more vulnerable brain regions during the "prodromal" period prior to conversion to "mild cognitive impairment (MCI)." Furthermore, many of the pathological events are no longer proceeding in series, but are going on in parallel. By the MCI stage, we stand a greater chance of success by considering pleiotropic

  12. Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment

    Czech Academy of Sciences Publication Activity Database

    Gažová, Z.; Soukup, O.; Šepsová, V.; Šipošová, K.; Drtinová, L.; Jošt, P.; Spilovská, K.; Korábečný, J.; Nepovímová, E.; Fedunová, D.; Horák, Martin; Kaniaková, Martina; Wang, Z. J.; Hamouda, A. K.; Kuča, K.

    2017-01-01

    Roč. 1863, č. 2 (2017), s. 607-619 ISSN 0925-4439 R&D Projects: GA ČR(CZ) GA16-08554S Institutional support: RVO:67985823 Keywords : amyloid * aggregation * muscarinic/nicotinic acetylcholine receptor antagonist * N-Methyl-d-aspartate receptor antagonist * Alzheimer's disease * A beta peptide * beta-secretase inhibitor Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 5.476, year: 2016

  13. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease

    Science.gov (United States)

    Deane, Rashid; Singh, Itender; Sagare, Abhay P.; Bell, Robert D.; Ross, Nathan T.; LaRue, Barbra; Love, Rachal; Perry, Sheldon; Paquette, Nicole; Deane, Richard J.; Thiyagarajan, Meenakshisundaram; Zarcone, Troy; Fritz, Gunter; Friedman, Alan E.; Miller, Benjamin L.; Zlokovic, Berislav V.

    2012-01-01

    In Alzheimer disease (AD), amyloid β peptide (Aβ) accumulates in plaques in the brain. Receptor for advanced glycation end products (RAGE) mediates Aβ-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a high-affinity RAGE-specific inhibitor (FPS-ZM1) that blocked Aβ binding to the V domain of RAGE and inhibited Aβ40- and Aβ42-induced cellular stress in RAGE-expressing cells in vitro and in the mouse brain in vivo. FPS-ZM1 was nontoxic to mice and readily crossed the blood-brain barrier (BBB). In aged APPsw/0 mice overexpressing human Aβ-precursor protein, a transgenic mouse model of AD with established Aβ pathology, FPS-ZM1 inhibited RAGE-mediated influx of circulating Aβ40 and Aβ42 into the brain. In brain, FPS-ZM1 bound exclusively to RAGE, which inhibited β-secretase activity and Aβ production and suppressed microglia activation and the neuroinflammatory response. Blockade of RAGE actions at the BBB and in the brain reduced Aβ40 and Aβ42 levels in brain markedly and normalized cognitive performance and cerebral blood flow responses in aged APPsw/0 mice. Our data suggest that FPS-ZM1 is a potent multimodal RAGE blocker that effectively controls progression of Aβ-mediated brain disorder and that it may have the potential to be a disease-modifying agent for AD. PMID:22406537

  14. Subtle learning and memory impairment in an idiopathic rat model of Alzheimer's disease utilizing cholinergic depletions and β-amyloid.

    Science.gov (United States)

    Deibel, S H; Weishaupt, N; Regis, A M; Hong, N S; Keeley, R J; Balog, R J; Bye, C M; Himmler, S M; Whitehead, S N; McDonald, R J

    2016-09-01

    Alzheimer's disease (AD) is a disease of complex etiology, involving multiple risk factors. When these risk factors are presented concomitantly, cognition and brain pathology are more severely compromised than if those risk factors were presented in isolation. Reduced cholinergic tone and elevated amyloid-beta (Aβ) load are pathological hallmarks of AD. The present study sought to investigate brain pathology and alterations in learning and memory when these two factors were presented together in rats. Rats received either sham surgeries, cholinergic depletions of the medial septum, intracerebroventricular Aβ25-35 injections, or both cholinergic depletion and Aβ25-35 injections (Aβ+ACh group). The Aβ+ACh rats were unimpaired in a striatal dependent visual discrimination task, but had impaired acquisition in the standard version of the Morris water task. However, these rats displayed normal Morris water task retention and no impairment in acquisition of a novel platform location during a single massed training session. Aβ+ACh rats did not have exacerbated brain pathology as indicated by activated astroglia, activated microglia, or accumulation of Aβ. These data suggest that cholinergic depletions and Aβ injections elicit subtle cognitive deficits when behavioural testing is conducted shortly after the presentation of these factors. These factors might have altered hippocampal synaptic plasticity and thus resemble early AD pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Curcumin Decreases Amyloid-β Peptide Levels by Attenuating the Maturation of Amyloid-β Precursor Protein*

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E.

    2010-01-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-β (Aβ), the principal component of senile plaques. Aβ is an ∼4-kDa peptide generated via cleavage of the amyloid-β precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Aβ-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Aβ levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Aβ levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-β pathology. PMID:20622013

  16. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E

    2010-09-10

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-beta (Abeta), the principal component of senile plaques. Abeta is an approximately 4-kDa peptide generated via cleavage of the amyloid-beta precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Abeta-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Abeta levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Abeta levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-beta pathology.

  17. Metabolomics-based promising candidate biomarkers and pathways in Alzheimer's disease.

    Science.gov (United States)

    Kang, Jian; Lu, Jingli; Zhang, Xiaojian

    2015-05-01

    Pathologically, loss of synapses and neurons, extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) are observed in the brains of patients with Alzheimer's disease (AD). These features are associated with changes Aβ (amyloid β) 40, Aβ42, total tau and phosphorylated tau (p-tau), which are as definitely biomarkers for severe AD state. However, biomarkers for effectively diagnosing AD in the pre-clinical state for directing therapeutic strategies are lacking. Metabolic profiling as a powerful tool to identify new biomarkers is receiving increasing attention in AD. This review will focus on metabolomics-based detection of promising candidate biomarkers and pathways in AD to facilitate the discovery of new medicines and disease pathways.

  18. Effects of diet-induced hypercholesterolemia on amyloid ...

    Indian Academy of Sciences (India)

    2012-10-27

    Oct 27, 2012 ... A central hypothesis in the study of Alzheimer's disease (AD) is the accumulation and aggregation of β-amyloid ... protein (APP) and estrogen has been implicated in the pre- .... inant in HCL in the intensity of the expression was lower ..... estrogen replacement therapy of the Women's Health Initiative.

  19. Individualized quantification of brain {beta}-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Henryk; Luthardt, Julia; Becker, Georg; Patt, Marianne; Sattler, Bernhard; Schildan, Andreas; Hesse, Swen; Meyer, Philipp M.; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Hammerstein, Eva; Hartwig, Kristin; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Eggers, Birk [Arzneimittelforschung Leipzig GmbH, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Psychiatry, Zurich (Switzerland); Zimmermann, Torsten; Reischl, Joachim; Rohde, Beate; Reininger, Cornelia [Bayer Healthcare, Berlin (Germany)

    2011-09-15

    Complementing clinical findings with those generated by biomarkers - such as {beta}-amyloid-targeted positron emission tomography (PET) imaging - has been proposed as a means of increasing overall accuracy in the diagnosis of Alzheimer's disease (AD). Florbetaben ([{sup 18}F]BAY 94-9172) is a novel {beta}-amyloid PET tracer currently in global clinical development. We present the results of a proof of mechanism study in which the diagnostic efficacy, pharmacokinetics, safety and tolerability of florbetaben were assessed. The value of various quantitative parameters derived from the PET scans as potential surrogate markers of cognitive decline was also investigated. Ten patients with mild-moderate probable AD (DSM-IV and NINCDS-ADRDA criteria) and ten age-matched ({>=} 55 years) healthy controls (HCs) were administered a single dose of 300 MBq florbetaben, which contained a tracer mass dose of < 5 {mu}g. The 70-90 min post-injection brain PET data were visually analysed by three blinded experts. Quantitative assessment was also performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of standardized uptake value (SUV) ratios (SUVRs, cerebellar cortex as reference region). Furthermore, single-case, voxelwise analysis was used to calculate individual ''whole brain {beta}-amyloid load''. Visual analysis of the PET data revealed nine of the ten AD, but only one of the ten HC brains to be {beta}-amyloid positive (p = 0.001), with high inter-reader agreement (weighted kappa {>=} 0.88). When compared to HCs, the neocortical SUVRs were significantly higher in the ADs (with descending order of effect size) in frontal cortex, lateral temporal cortex, occipital cortex, anterior and posterior cingulate cortices, and parietal cortex (p = 0.003-0.010). Voxel-based group comparison confirmed these differences. Amongst the PET-derived parameters, the Statistical Parametric Mapping-based whole brain

  20. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study.

    Science.gov (United States)

    Dubois, Bruno; Epelbaum, Stephane; Nyasse, Francis; Bakardjian, Hovagim; Gagliardi, Geoffroy; Uspenskaya, Olga; Houot, Marion; Lista, Simone; Cacciamani, Federica; Potier, Marie-Claude; Bertrand, Anne; Lamari, Foudil; Benali, Habib; Mangin, Jean-François; Colliot, Olivier; Genthon, Remy; Habert, Marie-Odile; Hampel, Harald

    2018-04-01

    Improved understanding is needed of risk factors and markers of disease progression in preclinical Alzheimer's disease. We assessed associations between brain β-amyloidosis and various cognitive and neuroimaging parameters with progression of cognitive decline in individuals with preclinical Alzheimer's disease. The INSIGHT-preAD is an ongoing single-centre observational study at the Salpêtrière Hospital, Paris, France. Eligible participants were age 70-85 years with subjective memory complaints but unimpaired cognition and memory (Mini-Mental State Examination [MMSE] score ≥27, Clinical Dementia Rating score 0, and Free and Cued Selective Reminding Test [FCSRT] total recall score ≥41). We stratified participants by brain amyloid β deposition on 18 F-florbetapir PET (positive or negative) at baseline. All patients underwent baseline assessments of demographic, cognitive, and psychobehavioural, characteristics, APOE ε4 allele carrier status, brain structure and function on MRI, brain glucose-metabolism on 18 F-fluorodeoxyglucose ( 18 F-FDG) PET, and event-related potentials on electroencephalograms (EEGs). Actigraphy and CSF investigations were optional. Participants were followed up with clinical, cognitive, and psychobehavioural assessments every 6 months, neuropsychological assessments, EEG, and actigraphy every 12 months, and MRI, and 18 F-FDG and 18 F-florbetapir PET every 24 months. We assessed associations of amyloid β deposition status with test outcomes at baseline and 24 months, and with clinical status at 30 months. Progression to prodromal Alzheimer's disease was defined as an amnestic syndrome of the hippocampal type. From May 25, 2013, to Jan 20, 2015, we enrolled 318 participants with a mean age of 76·0 years (SD 3·5). The mean baseline MMSE score was 28·67 (SD 0·96), and the mean level of education was high (score >6 [SD 2] on a scale of 1-8, where 1=infant school and 8=higher education). 88 (28%) of 318 participants showed amyloid

  1. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  2. Early-onset Alzheimer's disease: nonamnestic subtypes and type 2 AD.

    Science.gov (United States)

    Mendez, Mario F

    2012-11-01

    Patients with Alzheimer's disease (AD), the most prevalent neurodegenerative dementia, are usually elderly; however, ∼4-5% develop early-onset AD (EOAD) with onset before age 65. Most EOAD is sporadic, but about 5% of patients with EOAD have an autosomal dominant mutation such as Presenilin 1, Presenilin 2, or alterations in the Amyloid Precursor Protein gene. Although most Alzheimer's research has concentrated on older, late-onset AD (LOAD), there is much recent interest and research in EOAD. These recent studies indicate that EOAD is a heterogeneous disorder with significant differences from LOAD. From 22-64% of EOAD patients have a predominant nonamnestic syndrome presenting with deficits in language, visuospatial abilities, praxis, or other non-memory cognition. These nonamnestic patients may differ in several ways from the usual memory or amnestic patients. Patients with nonamnestic EOAD compared to typical amnestic AD have a more aggressive course, lack the apolipoprotein Eɛ4 (APOE ɛ4) susceptibility gene for AD, and have a focus and early involvement of non-hippocampal areas of brain, particularly parietal neocortex. These differences in the EOAD subtypes indicate differences in the underlying amyloid cascade, the prevailing pathophysiological theory for the development of AD. Together the results of recent studies suggest that nonamnestic subtypes of EOAD constitute a Type 2 AD distinct from the usual, typical disorder. In sum, the study of EOAD can reveal much about the clinical heterogeneity, predisposing factors, and neurobiology of this disease. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  3. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases.

    Science.gov (United States)

    Chiti, Fabrizio; Calamai, Martino; Taddei, Niccolo; Stefani, Massimo; Ramponi, Giampietro; Dobson, Christopher M

    2002-12-10

    Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.

  4. Neuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Jenny Dworzak

    Full Text Available Cx3cr1, the receptor for the chemokine Cx3cl1 (fractalkine, has been implicated in the progression and severity of Alzheimer's disease-like pathology in mice, but the underlying mechanisms remain unclear. A complicating factor is that Cx3cr1 has been demonstrated in both neurons and microglia. Here, we have dissected the differences between neuronal and microglial Cx3cr1, specifically by comparing direct amyloid-β-induced toxicity in cultured, mature, microglia-depleted hippocampal neurons from wild-type and Cx3cr1-/- mice. Wild-type neurons expressed both Cx3cl1 and Cx3cr1 and released Cx3cl1 in response to amyloid-β. Knockout of neuronal Cx3cr1 abated amyloid-β-induced lactate dehydrogenase release. Furthermore, amyloid-β differentially induced depression of pre- and postsynaptic components of miniature excitatory postsynaptic currents, in a peptide conformation-dependent manner. Knockout of neuronal Cx3cr1 abated effects of both amyloid-β conformational states, which were differentiable by aggregation kinetics and peptide morphology. We obtained similar results after both acute and chronic treatment of cultured neurons with the Cx3cr1 antagonist F1. Thus, neuronal Cx3cr1 may impact Alzheimer's disease-like pathology by modulating conformational state-dependent amyloid-β-induced synaptotoxicity.

  5. Vascular pathology: Cause or effect in Alzheimer disease?

    Science.gov (United States)

    Rius-Pérez, S; Tormos, A M; Pérez, S; Taléns-Visconti, R

    2018-03-01

    Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead to neuronal damage and dementia. Destruction of the organisation of the blood brain barrier, decreased cerebral blood flow, and the establishment of an inflammatory context would thus be responsible for any subsequent neuronal damage since these factors promote aggregation of β-amyloid peptide in the brain. The link between neurodegeneration and vascular dysfunction pathways has provided new drug targets and therapeutic approaches that will add to the treatments for AD. It is difficult to determine whether the vascular component in AD is the cause or the effect of the disease, but there is no doubt that vascular pathology has an important relationship with AD. Vascular dysfunction is likely to act synergistically with neurodegenerative changes in a cycle that exacerbates the cognitive impairment found in AD. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients

    Energy Technology Data Exchange (ETDEWEB)

    Brendel, Matthias; Xiong, Guoming; Delker, Andreas [University of Munich, Department of Nuclear Medicine, Munich (Germany); Pogarell, Oliver [University of Munich, Department of Psychiatry, Munich (Germany); Bartenstein, Peter; Rominger, Axel [University of Munich, Department of Nuclear Medicine, Munich (Germany); Munich Cluster for Systems Neurology (SyNergy), Munich (Germany); Collaboration: for the Alzheimer' s Disease Neuroimaging Initiative

    2015-04-01

    Late-life depression even in subsyndromal stages is strongly associated with Alzheimer's disease (AD). Furthermore, brain amyloidosis is an early biomarker in subjects who subsequently suffer from AD and can be sensitively detected by amyloid PET. Therefore, we aimed to compare amyloid load and glucose metabolism in subsyndromally depressed subjects with mild cognitive impairment (MCI). [{sup 18}F]AV45 PET, [{sup 18}F]FDG PET and MRI were performed in 371 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative Subjects were judged β-amyloid-positive (Aβ+; 206 patients) or β-amyloid-negative (Aβ-; 165 patients) according to [{sup 18}F]AV45 PET. Depressive symptoms were assessed by the Neuropsychiatric Inventory Questionnaire depression item 4. Subjects with depressive symptoms (65 Aβ+, 41 Aβ-) were compared with their nondepressed counterparts. Conversion rates to AD were analysed (mean follow-up time 21.5 ± 9.1 months) with regard to coexisting depressive symptoms and brain amyloid load. Aβ+ depressed subjects showed large clusters with a higher amyloid load in the frontotemporal and insular cortices (p < 0.001) with coincident hypermetabolism (p < 0.001) in the frontal cortices than nondepressed subjects. Faster progression to AD was observed in subjects with depressive symptoms (p < 0.005) and in Aβ+ subjects (p < 0.001). Coincident depressive symptoms additionally shortened the conversion time in all Aβ+ subjects (p < 0.005) and to a greater extent in those with a high amyloid load (p < 0.001). Our results clearly indicate that Aβ+ MCI subjects with depressive symptoms have an elevated amyloid load together with relative hypermetabolism of connected brain areas compared with cognitively matched nondepressed individuals. MCI subjects with high amyloid load and coexistent depressive symptoms are at high risk of faster conversion to AD. (orig.)

  7. Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients

    International Nuclear Information System (INIS)

    Brendel, Matthias; Xiong, Guoming; Delker, Andreas; Pogarell, Oliver; Bartenstein, Peter; Rominger, Axel

    2015-01-01

    Late-life depression even in subsyndromal stages is strongly associated with Alzheimer's disease (AD). Furthermore, brain amyloidosis is an early biomarker in subjects who subsequently suffer from AD and can be sensitively detected by amyloid PET. Therefore, we aimed to compare amyloid load and glucose metabolism in subsyndromally depressed subjects with mild cognitive impairment (MCI). [ 18 F]AV45 PET, [ 18 F]FDG PET and MRI were performed in 371 MCI subjects from the Alzheimer's Disease Neuroimaging Initiative Subjects were judged β-amyloid-positive (Aβ+; 206 patients) or β-amyloid-negative (Aβ-; 165 patients) according to [ 18 F]AV45 PET. Depressive symptoms were assessed by the Neuropsychiatric Inventory Questionnaire depression item 4. Subjects with depressive symptoms (65 Aβ+, 41 Aβ-) were compared with their nondepressed counterparts. Conversion rates to AD were analysed (mean follow-up time 21.5 ± 9.1 months) with regard to coexisting depressive symptoms and brain amyloid load. Aβ+ depressed subjects showed large clusters with a higher amyloid load in the frontotemporal and insular cortices (p < 0.001) with coincident hypermetabolism (p < 0.001) in the frontal cortices than nondepressed subjects. Faster progression to AD was observed in subjects with depressive symptoms (p < 0.005) and in Aβ+ subjects (p < 0.001). Coincident depressive symptoms additionally shortened the conversion time in all Aβ+ subjects (p < 0.005) and to a greater extent in those with a high amyloid load (p < 0.001). Our results clearly indicate that Aβ+ MCI subjects with depressive symptoms have an elevated amyloid load together with relative hypermetabolism of connected brain areas compared with cognitively matched nondepressed individuals. MCI subjects with high amyloid load and coexistent depressive symptoms are at high risk of faster conversion to AD. (orig.)

  8. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  9. Review of the Ethical Issues of a Biomarker-Based Diagnoses in the Early Stage of Alzheimer's Disease.

    Science.gov (United States)

    Vanderschaeghe, Gwendolien; Dierickx, Kris; Vandenberghe, Rik

    2018-03-12

    Today, many healthcare or dementia organizations, clinicians, and companies emphasize the importance of detection of Alzheimer's disease in an early phase. This idea has gained considerable momentum due to the development of biomarkers, the recent FDA and EMA approval of three amyloid tracers, and the failure of a number of recent therapeutic trials conducted in the early dementia phase. On the one hand, an early etiological diagnosis can lead to early and more efficacious intervention. On the other hand, it is questioned how early an etiological diagnosis is beneficial to the patient. Here we consider ethical issues related to the process of biomarker testing and the impact on the diagnostic disclosure to patients with mild cognitive impairment due to prodromal Alzheimer's disease. A systematic review of the theoretical bioethics literature was performed by using electronic databases. The review was limited to articles published in English between 2003 and 2016. A total of twenty articles were included in our effort to make an analysis of the ethical challenges. One of the biggest challenges was the uncertainty and the predictive value of the biomarker-based diagnosis where patients can be amyloid positive without full certainty whether or when they will develop symptomatic decline due to Alzheimer's disease. Another challenge was the tension between the right to know versus the wish not to know, the limited efficacy of currently available treatment options, and the opportunities and consequences after receiving such an early diagnosis. Based on the results and the additional comments in the discussion, several unanswered questions emerged. Therefore, careful consideration of all these ethical issues is required before the disclosure of a biomarker-based diagnosis to the patient with mild cognitive impairment due to Alzheimer's disease.

  10. Serotonin augmentation therapy by escitalopram has minimal effects on amyloid-β levels in early-stage Alzheimer's-like disease in mice.

    Science.gov (United States)

    von Linstow, Christian Ulrich; Waider, Jonas; Grebing, Manuela; Metaxas, Athanasios; Lesch, Klaus Peter; Finsen, Bente

    2017-09-12

    Dysfunction of the serotonergic (5-HTergic) system has been implicated in the cognitive and behavioural symptoms of Alzheimer's disease (AD). Accumulation of toxic amyloid-β (Aβ) species is a hallmark of AD and an instigator of pathology. Serotonin (5-HT) augmentation therapy by treatment with selective serotonin reuptake inhibitors (SSRIs) in patients with AD has had mixed success in improving cognitive function, whereas SSRI administration to mice with AD-like disease has been shown to reduce Aβ pathology. The objective of this study was to investigate whether an increase in extracellular levels of 5-HT induced by chronic SSRI treatment reduces Aβ pathology and whether 5-HTergic deafferentation of the cerebral cortex could worsen Aβ pathology in the APP swe /PS1 ΔE9 (APP/PS1) mouse model of AD. We administered a therapeutic dose of the SSRI escitalopram (5 mg/kg/day) in the drinking water of 3-month-old APP/PS1 mice to increase levels of 5-HT, and we performed intracerebroventricular injections of the neurotoxin 5,7-dihydroxytryptamine (DHT) to remove 5-HTergic afferents. We validated the effectiveness of these interventions by serotonin transporter autoradiography (neocortex 79.7 ± 7.6%) and by high-performance liquid chromatography for 5-HT (neocortex 64% reduction). After 6 months of escitalopram treatment or housing after DHT-induced lesion, we evaluated brain tissue by mesoscale multiplex analysis and sections by IHC analysis. Amyloid-β-containing plaques had formed in the neocortex and hippocampus of 9-month-old APP/PS1 mice after 6 months of escitalopram treatment and 5-HTergic deafferentation. Unexpectedly, levels of insoluble Aβ42 were unaffected in the neocortex and hippocampus after both types of interventions. Levels of insoluble Aβ40 increased in the neocortex of SSRI-treated mice compared with those treated with vehicle control, but they were unaffected in the hippocampus. 5-HTergic deafferentation was without effect on the levels of

  11. Influence of dendrimer's structure on its activity against amyloid fibril formation

    International Nuclear Information System (INIS)

    Klajnert, B.; Cortijo-Arellano, M.; Cladera, J.; Bryszewska, M.

    2006-01-01

    Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as prion and Alzheimer's diseases. Highly branched, globular polymers-dendrimers-are novel promising inhibitors of fibril formation. In this study, the effect of polyamidoamine (PAMAM) dendrimers (generations 3rd, 4th, and 5th) on amyloid aggregation of the prion peptide PrP 185-208 and the Alzheimer's peptide Aβ 1-28 was examined. Amyloid fibrils were produced in vitro and their formation was monitored using the dye thioflavin T (ThT). Fluorescence studies were complemented with electron microscopy. The results show that the higher the dendrimer generation, the larger the degree of inhibition of the amyloid aggregation process and the more effective are dendrimers in disrupting the already existing fibrils. A hypothesis on dendrimer-peptide interaction mechanism is presented based on the dendrimers' molecular structure

  12. The Alzheimer's Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Michael W. [Dept. of Veterans Affairs Medical Center, San Francisco, CA (United States); Univ. of California, San Francisco, CA (United States); Veitch, Dallas P. [Dept. of Veterans Affairs Medical Center, San Francisco, CA (United States); Aisen, Paul S. [Univ. of Southern California, San Diego, CA (United States); Beckett, Laurel A. [Univ. of California, Davis, CA (United States); Cairns, Nigel J. [Washington Univ. School of Medicine, St. Louis, MO (United States); Green, Robert C. [Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Harvey, Danielle [Univ. of California, Davis, CA (United States); Jack, Clifford R. [Mayo Clinic, Rochester, MN (United States); Jagust, William [Univ. of California, Berkeley, CA (United States); Morris, John C. [Univ. of Southern California, San Diego, CA (United States); Petersen, Ronald C. [Mayo Clinic, Rochester, MN (United States); Salazar, Jennifer [Univ. of Southern California, San Diego, CA (United States); Saykin, Andrew J. [Indiana Univ. School of Medicine, Indianapolis, IN (United States); Shaw, Leslie M. [Eli Lilly and Company, Indianapolis, IN (United States); Toga, Arthur W. [Univ.