WorldWideScience

Sample records for alveolar macrophage kinetics

  1. Kinetics of Interaction and Fate of Pasteurella hemolytica in Bovine Alveolar Macrophages

    OpenAIRE

    Maheswaran, S K; Berggren, K. A.; Simonson, R. R.; Ward, G E; Muscoplat, C C

    1980-01-01

    To study the role of pulmonary alveolar macrophages (PAMs) in phagocytizing Pasteurella hemolytica, we developed an in vitro cultivation method for preparing them. This procedure provided an adherent monolayer of PAMs which were nonspecific esterase-positive and phagocytized latex beads. The phagocytosis and fate of P. hemolytica (biotype A, serotype 1) by PAMs in suspension were studied. The kinetics of phagocytosis were determined by quantitatively measuring the uptake of 24-h [3H]thymidine...

  2. Alveolar Macrophage Polarisation in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Saleh A. Almatroodi

    2014-01-01

    Full Text Available The role of alveolar macrophages in lung cancer is multifaceted and conflicting. Alveolar macrophage secretion of proinflammatory cytokines has been found to enhance antitumour functions, cytostasis (inhibition of tumour growth, and cytotoxicity (macrophage-mediated killing. In contrast, protumour functions of alveolar macrophages in lung cancer have also been indicated. Inhibition of antitumour function via secretion of the anti-inflammatory cytokine IL-10 as well as reduced secretion of proinflammatory cytokines and reduction of mannose receptor expression on alveolar macrophages may contribute to lung cancer progression and metastasis. Alveolar macrophages have also been found to contribute to angiogenesis and tumour growth via the secretion of IL-8 and VEGF. This paper reviews the evidence for a dual role of alveolar macrophages in lung cancer progression.

  3. Identification of an Autophagy Defect in Smokers’ Alveolar Macrophages1

    OpenAIRE

    2010-01-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbial-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers’ lungs but they have a functional immune deficit. In this study, we identify for the first time an autophagy defect in smokers’ alveolar macrophages. Smokers’ alveolar macrophages accumulate both autophagosomes and p6...

  4. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity

    Science.gov (United States)

    Westphalen, Kristin; Gusarova, Galina A.; Islam, Mohammad N.; Subramanian, Manikandan; Cohen, Taylor S.; Prince, Alice S.; Bhattacharya, Jahar

    2014-02-01

    The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca2+ waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca2+-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.

  5. DMPD: Silica binding and toxicity in alveolar macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18226603 Silica binding and toxicity in alveolar macrophages. Hamilton RF Jr, Thaku...l) Show Silica binding and toxicity in alveolar macrophages. PubmedID 18226603 Title Silica binding and toxicity in alveolar macropha...ges. Authors Hamilton RF Jr, Thakur SA, Holian A. Public

  6. Identification of an autophagy defect in smokers' alveolar macrophages.

    Science.gov (United States)

    Monick, Martha M; Powers, Linda S; Walters, Katherine; Lovan, Nina; Zhang, Michael; Gerke, Alicia; Hansdottir, Sif; Hunninghake, Gary W

    2010-11-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbe-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers' lungs, but they have a functional immune deficit. In this study, we identify an autophagy defect in smokers' alveolar macrophages. Smokers' alveolar macrophages accumulate both autophagosomes and p62, a marker of autophagic flux. The decrease in the process of autophagy leads to impaired protein aggregate clearance, dysfunctional mitochondria, and defective delivery of bacteria to lysosomes. This study identifies the autophagy pathway as a potential target for interventions designed to decrease infection rates in smokers and possibly in individuals with high environmental particulate exposure.

  7. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  8. Granulocyte macrophage colony stimulating factor therapy for pulmonary alveolar proteinosis.

    Science.gov (United States)

    Shende, Ruchira P; Sampat, Bhavin K; Prabhudesai, Pralhad; Kulkarni, Satish

    2013-03-01

    We report a case of 58 year old female diagnosed with Pulmonary Alveolar Proteinosis (PAP) with recurrence of PAP after 5 repeated whole lung lavage, responding to subcutaneous injections of Granulocyte Macrophage Colony Stimulating Factor therapy (GM-CSF). Thus indicating that GM-CSF therapy is a promising alternative in those requiring repeated whole lung lavage

  9. Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2011-05-01

    Dissolution of a lung burden of poorly soluble beryllium particles is hypothesized to be necessary for development of chronic beryllium lung disease (CBD) in humans. As such, particle dissolution rate must be sufficient to activate the lung immune response and dissolution lifetime sufficient to maintain chronic inflammation for months to years to support development of disease. The purpose of this research was to investigate the hypothesis that poorly soluble beryllium compounds release ions via dissolution in lung fluid. Dissolution kinetics of 17 poorly soluble particulate beryllium materials that span extraction through ceramics machining (ores, hydroxide, metal, copper-beryllium [CuBe] fume, oxides) and three CuBe alloy reference materials (chips, solid block) were measured over 31 d using artificial lung alveolar macrophage phagolysosomal fluid (pH 4.5). Differences in beryllium-containing particle physicochemical properties translated into differences in dissolution rates and lifetimes in artificial phagolysosomal fluid. Among all materials, dissolution rate constant values ranged from 10(-5) to 10(-10)gcm(-2)d(-1) and half-times ranged from tens to thousands of days. The presence of magnesium trisilicate in some beryllium oxide materials may have slowed dissolution rates. Materials associated with elevated prevalence of CBD had faster beryllium dissolution rates [10(-7)-10(-8)gcm(-2)d(-1)] than materials not associated with elevated prevalence (p<0.05).

  10. Rituximab therapy in pulmonary alveolar proteinosis improves alveolar macrophage lipid homeostasis

    Directory of Open Access Journals (Sweden)

    Malur Anagha

    2012-06-01

    Full Text Available Abstract Rationale Pulmonary Alveolar Proteinosis (PAP patients exhibit an acquired deficiency of biologically active granulocyte-macrophage colony stimulating factor (GM-CSF attributable to GM-CSF specific autoantibodies. PAP alveolar macrophages are foamy, lipid-filled cells with impaired surfactant clearance and markedly reduced expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ and the PPARγ-regulated ATP binding cassette (ABC lipid transporter, ABCG1. An open label proof of concept Phase II clinical trial was conducted in PAP patients using rituximab, a chimeric murine-human monoclonal antibody directed against B lymphocyte specific antigen CD20. Rituximab treatment decreased anti-GM-CSF antibody levels in bronchoalveolar lavage (BAL fluid, and 7/9 patients completing the trial demonstrated clinical improvement as measured by arterial blood oxygenation. Objectives This study sought to determine whether rituximab therapy would restore lipid metabolism in PAP alveolar macrophages. Methods BAL samples were collected from patients pre- and 6-months post-rituximab infusion for evaluation of mRNA and lipid changes. Results Mean PPARγ and ABCG1 mRNA expression increased 2.8 and 5.3-fold respectively (p ≤ 0.05 after treatment. Lysosomal phospholipase A2 (LPLA2 (a key enzyme in surfactant degradation mRNA expression was severely deficient in PAP patients pre-treatment but increased 2.8-fold post-treatment. In supplemental animal studies, LPLA2 deficiency was verified in GM-CSF KO mice but was not present in macrophage-specific PPARγ KO mice compared to wild-type controls. Oil Red O intensity of PAP alveolar macrophages decreased after treatment, indicating reduced intracellular lipid while extracellular free cholesterol increased in BAL fluid. Furthermore, total protein and Surfactant protein A were significantly decreased in the BAL fluid post therapy. Conclusions Reduction in GM

  11. Role of alveolar macrophages in chronic obstructive pulmonary disease (COPD

    Directory of Open Access Journals (Sweden)

    Ross eVlahos

    2014-09-01

    Full Text Available Alveolar macrophages (AMs represent a unique leukocyte population that responds to airborne irritants and microbes. This distinct microenvironment coordinates the maturation of long-lived AMs, which originate from fetal blood monocytes and self-renew through mechanisms dependent on GM-CSF and CSF-1 signaling. Peripheral blood monocytes can also replenish lung macrophages; however this appears to occur in a stimuli specific manner. In addition to mounting an appropriate immune response during infection and injury, AMs actively coordinate the resolution of inflammation through efferocytosis of apoptotic cells. Any perturbation of this process can lead to deleterious responses. In chronic obstructive pulmonary disease (COPD, there is an accumulation of airway macrophages that do not conform to the classic M1/M2 paradigm. There is a skewed transciptome profile that favors expression of wound healing M2 markers, which is reflective of a deficiency to resolve inflammation. Endogenous mediators that promote distinct macrophage phenotypes are discussed, as are the plausible mechanisms underlying why AMs fail to effectively resolve inflammation and restore normal lung homeostasis in COPD.

  12. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chuan Junlan [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Li Yanzhen [Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics (China); Yang Likai; Sun Xun [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Zhang Qiang [Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences (China); Gong Tao, E-mail: gongtaoy@126.com; Zhang Zhirong, E-mail: zrzzl@vip.sina.com [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China)

    2013-05-15

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 {+-} 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  13. Expression of functions by normal sheep alveolar macrophages and their alteration by interaction with Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Niang, M; Rosenbusch, R F; Lopez-Virella, J; Kaeberle, M L

    1997-10-31

    Normal sheep alveolar macrophages collected by bronchial lavage were exposed to live or heat-killed Mycoplasma ovipneumoniae organisms, and their capability to ingest Staphylococcus aureus and to elicit antibody-dependent cellular cytotoxicity against sensitized chicken red blood cells was tested. Controls consisted of non-infected macrophages in M199 medium. In addition, the effect of M. ovipneumoniae on expression of surface molecules on these sheep alveolar macrophages was determined. The percentage of S. aureus ingested by nontreated sheep alveolar macrophages was significantly higher than that of infected macrophages. Live mycoplasmas were more effective in suppressing the ingestion of S. aureus by these macrophages than killed mycoplasmas. Both live and killed mycoplasmas suppressed the cytolytic effect of the sheep alveolar macrophages to a similar degree. About 78% and 45% of the normal sheep alveolar macrophages had IgG and complement receptors, respectively. Infection of these macrophages with M. ovipneumoniae decreased significantly the expression of IgG receptors but had no effects on complement receptors. There were substantial increases in the expression of both MHC class I and class II by the mycoplasma-induced macrophages as compared with unstimulated macrophages. Live mycoplasmas were more effective in inducing expression of both classes than killed mycoplasmas. The results, taken together, suggest that M. ovipneumoniae induced alterations in macrophage activities and this may be a contributing factor in the pathogenesis of respiratory disease induced by the organism.

  14. Refractory ceramic fibers activate alveolar macrophage eicosanoid and cytokine release.

    Science.gov (United States)

    Leikauf, G D; Fink, S P; Miller, M L; Lockey, J E; Driscoll, K E

    1995-01-01

    Refractory ceramic fiber has been developed for industrial processes requiring materials with high thermal and mechanical stability. To evaluate the biological activity of this fiber, rat alveolar macrophages were exposed for < or = 24 h to 0-1,000 micrograms/ml of refractory ceramic fiber, crocidolite asbestos, silica (fibrogenic particles), or titanium dioxide (a nonfibrogenic particle), and eicosanoid, tumor necrosis factor-alpha (TNF), and lactate dehydrogenase release were measured. Particle dimensions were determined by electron microscopy. Radioactivity coeluting with leukotriene B4 (LTB4) and immunoreactive LTB4 and TNF release increased after refractory ceramic fiber and were similar in magnitude after asbestos but less than after silica. For example, the total [3H]eicosanoid release increased 3.9-fold after refractory ceramic fiber, 4.6-fold after asbestos, and 8.7-fold after silica. Refractory ceramic fiber and asbestos also have similar particle dimensions (diameter, length, and surface area). Inasmuch as macrophage-derived LTB4 and TNF are potent mediators in inflammatory events, including migration and activation of neutrophils, these findings suggest that refractory ceramic fiber can activate macrophages in vitro to release mediators relevant to in vivo findings of inflammation and fibrotic lung disease in laboratory animals.

  15. Altered sialylation of alveolar macrophages in HIV-1-infected individuals.

    Science.gov (United States)

    Perrin, C; Giordanengo, V; Bannwarth, S; Blaive, B; Lefebvre, J C

    1997-10-01

    In previous studies, we have demonstrated that O-glycans at the surface of HIV-1-infected cell lines were hyposialylated. Moreover, we and others have shown that HIV+ individuals produced autoantibodies that react with hyposialylated CD43, on T cell lines. Since the autoantigen responsible for this abnormal immune response was not easily found in the peripheral blood cells of corresponding patients, we searched for its possible presence in other sites. Using fluorescence staining of alveolar macrophages with various lectins, we show that the binding of the PNA lectin specific for asialo O-glycans is much more efficient on cells from HIV-1-infected individuals. Moreover, the degree of reactivity of PNA is correlated with the clinical stage of the illness.

  16. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) on alveolar lung macrophage survival and function

    DEFF Research Database (Denmark)

    Oleksiewicz, Martin B.; Nielsen, Jens

    1999-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) recently emerged as an important cause of reproductive disorders and pneumonia in domestic pigs throughout the world. Acute cytocidal replication of PRRSV in alveolar lung macrophages causes the acute pneumonia; however, it remains largely...... infection in this system. In short, in our minimal system containing only a single cell type, phagocytosis-suppressive effects of PRRSV infection were detected, that acted at the culture level by reducing the total number of alveolar lung macrophages....

  17. Assessing Anti-fungal Activity of Isolated Alveolar Macrophages by Confocal Microscopy

    Science.gov (United States)

    Grimm, Melissa J.; D'Auria, Anthony C.; Segal, Brahm H.

    2014-01-01

    The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy. PMID:25045941

  18. Evidence for particle transport between alveolar macrophages in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Nikula, K.J.; Guilmette, R.A.

    1995-12-01

    Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.

  19. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance.

    Science.gov (United States)

    McCaslin, Charles A; Petrusca, Daniela N; Poirier, Christophe; Serban, Karina A; Anderson, Gregory G; Petrache, Irina

    2015-01-01

    Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate

  20. Killing of Klebsiella pneumoniae by human alveolar macrophages.

    Science.gov (United States)

    Hickman-Davis, Judy M; O'Reilly, Philip; Davis, Ian C; Peti-Peterdi, Janos; Davis, Glenda; Young, K Randall; Devlin, Robert B; Matalon, Sadis

    2002-05-01

    We investigated putative mechanisms by which human surfactant protein A (SP-A) effects killing of Klebsiella pneumoniae by human alveolar macrophages (AMs) isolated from bronchoalveolar lavagates of patients with transplanted lungs. Coincubation of AMs with human SP-A (25 microg/ml) and Klebsiella resulted in a 68% decrease in total colony forming units by 120 min compared with AMs infected with Klebsiella in the absence of SP-A, and this SP-A-mediated effect was abolished by preincubation with N(G)-monomethyl-L-arginine. Incubation of transplant AMs with SP-A increased intracellular Ca(2+) concentration ([Ca(2+)](i)) by 70% and nitrite and nitrate (NO(x)) production by 45% (from 0.24 +/- 0.02 to 1.3 +/- 0.21 nmol small middle dot 10(6) AMs(-1).h(-1)). Preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester inhibited the increase in [Ca(2+)](i) and abrogated the SP-A-mediated Klebsiella phagocytosis and killing. In contrast, incubation of AMs from normal volunteers with SP-A decreased both [Ca(2+)](i) and NO(x) production and did not result in killing of Klebsiella. Significant killing of Klebsiella was also seen in a cell-free system by sustained production of peroxynitrite (>1 microM/min) at pH 5 but not at pH 7.4. These findings indicate that SP-A mediates pathogen killing by AMs from transplant lungs by stimulating phagocytosis and production of reactive oxygen-nitrogen intermediates.

  1. Synergistic effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor by alveolar macrophages of rats.

    Science.gov (United States)

    Morimoto, Y; Kido, M; Tanaka, I; Fujino, A; Higashi, T; Yokosaki, Y

    1993-10-01

    The objective of this study was to evaluate the combined effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor (TNF) by alveolar macrophages. Rats were exposed to cigarette smoke in vivo, and production of TNF by alveolar macrophages was measured in the presence of mineral fibres in vitro. For smoke exposure, rats were divided into two groups. Five were exposed to a daily concentration of 10 mg/m3 of cigarette smoke for an eight hour period, and five rats (controls) were not exposed to smoke. Bronchoalveolar lavage was performed after exposure to smoke and the recovered alveolar macrophages were incubated with either chrysotile or ceramic fibres on a microplate for 24 hours. Activity of TNF in the supernatant was determined by the L-929 fibroblast cell bioassay. When alveolar macrophages were not stimulated by mineral fibres, production of TNF by rats exposed to smoke and unexposed rats was essentially the same. When alveolar macrophages were stimulated in vitro by chrysotile or ceramic fibres, production of TNF by alveolar macrophages from rats exposed to smoke was higher than that by alveolar macrophages from unexposed rats. The findings suggest that cigarette smoke and mineral fibres have a synergistic effect on TNF production by alveolar macrophages.

  2. Metabolism of (/sup 3/H)benzo(a)pyrene by cultured human bronchus and cultured human pulmonary alveolar macrophages

    DEFF Research Database (Denmark)

    1978-01-01

    The metabolism of (/sup 3/H)benzo(a)pyrene by cultured human bronchial epithelium and pulmonary alveolar macrophages was studied. Explants of bronchus were prepared and pulmonary alveolar macrophages were isolated from peripheral lung by trypsinization and by differential adhesion to plastic tissue...

  3. Suppression of lymphocyte proliferation by parainfluenza virus type 3-infected bovine alveolar macrophages.

    Science.gov (United States)

    Basaraba, R J; Brown, P R; Laegreid, W W; Silflow, R M; Evermann, J F; Leid, R W

    1993-06-01

    Lymphocytes stimulated with concanavalin A (Con A) or antigen in the presence of bovine parainfluenza virus type 3 (PIV-3) infected bovine alveolar macrophages (BAM) or monocytes, had depressed [3H]thymidine incorporation. This failure of lymphocytes to incorporate radiolabel required live virus, was time dependent and was most pronounced when BAM were infected for 48 hr prior to the addition of lymphocytes. The rate of infection of alveolar macrophages and the release of infectious virus into culture supernatants paralleled suppression of lymphocyte mitogenesis by PIV-3. However, the peak titre of exogenous, live or inactivated virus was not suppressive when added to lymphocyte macrophage cultures just prior to Con A stimulation. Neither the loss of viable alveolar macrophages nor a shift in antigen or mitogen dose response in virally infected cultures could account for the deficit in [3H]thymidine incorporation by lymphocytes. Despite the presence of lymphocyte-associated virus antigen detected by direct immunofluorescence, no increase in PIV-3 titre above baseline was seen from infected lymphocytes, irrespective of mitogen stimulation. Likewise, lymphocytes did not contribute to the extracellular virus pool in lymphocyte-macrophage cultures as the increases in viral titre above basal levels in supernatants were equal to levels released by macrophages alone. The expression of viral antigen on lymphocytes stimulated in the presence of PIV-3-infected BAM suggests a non-productive or abortive infection of lymphocytes mediated through contact with infected macrophages.

  4. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Moine, P; McIntyre, R; Schwartz, M D; Kaneko, D; Shenkar, R; Le Tulzo, Y; Moore, E E; Abraham, E

    2000-02-01

    Activation of the nuclear regulatory factor NF-kappaB occurs in the lungs of patients with the acute respiratory distress syndrome (ARDS) and may contribute to the increased expression of immunoregulatory cytokines and other proinflammatory mediators in this setting. Because of the important role that NF-kappaB activation appears to play in the development of acute lung injury, we examined cytoplasmic and nuclear NF-kapppaB counterregulatory mechanisms, involving IkappaB proteins, in alveolar macrophages obtained from 7 control patients without lung injury and 11 patients with established ARDS. Cytoplasmic levels of the NF-kappaB subunits p50, p65, and c-Rel were significantly decreased in alveolar macrophages from patients with ARDS, consistent with enhanced migration of liberated NF-kappaB dimers from the cytoplasm to the nucleus. Cytoplasmic and nuclear levels of IkappaBalpha were not significantly altered in alveolar macrophages from patients with established ARDS, compared with controls. In contrast, nuclear levels of Bcl-3 were significantly decreased in patients with ARDS compared with controls (P = 0.02). No IkappaBgamma, IkappaBbeta, or p105 proteins were detected in the cytoplasm of alveolar macrophages from control patients or patients with ARDS. The presence of activated NF-kappaB in alveolar macrophages from patients with established ARDS implies the presence of an ongoing stimulus for NF-kappaB activation. In this setting, appropriate counterregulatory mechanisms to normalize nuclear levels of NF-kappaB and to suppress NF-kappaB-mediated transcription, such as increased cytoplasmic and nuclear IkappaBalpha levels or decreased Bcl-3 levels, appeared to be induced. Nevertheless, even though counterregulatory mechanisms to NF-kappaB activation are activated in lung macrophages of patients with ARDS, NF-kappaB remains activated. These results suggest that fundamental abnormalities in transcriptional mechanisms involving NF-kappaB and important in the

  5. Identification of porcine alveolar macrophage glycoproteins involved in infection of porcine respiratory and reproductive syndrome virus.

    NARCIS (Netherlands)

    Wissink, E.H.J.; Wijk, van H.A.R.; Pol, J.M.A.; Godeke, G.J.; Rijn, van P.A.; Rottier, P.J.M.; Meulenberg, J.J.M.

    2003-01-01

    The aim of this study was to identify the receptor(s) for PRRSV on porcine alveolar macrophages (PAMs) by producing monoclonal antibodies (MAbs) against these cells. Hybridoma supernatants were selected for their ability to block PRRSV infection. Four MAbs, 1-8D2, 9.4C7, 9.9F2, and 3-3H2 inhibited i

  6. Cyclic AMP enhancing drugs modulate eicosanoid release from human alveolar macrophages

    NARCIS (Netherlands)

    F.D. Beusenberg; H.C. Hoogsteden (Henk); I.L. Bonta; J.G.C. van Amsterdam (Jan)

    1994-01-01

    textabstractThe effect of the phosphodiesterase inhibitor isobutyl-methylxanthine (IBMX), salbutamol and sodium nitroprusside was evaluated regarding PGE2 and LTB4 release and cAMP and cGMP level in human alveolar macrophages obtained from controls and COPD patients. Basal levels per five million co

  7. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    Energy Technology Data Exchange (ETDEWEB)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P. (Univ. of California-Los Angeles School of Medicine (USA))

    1991-05-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of ({sup 3}H)thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of ({sup 3}H)thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of ({sup 3}H)thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke.

  8. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials.

    Science.gov (United States)

    Marucco, Arianna; Gazzano, Elena; Ghigo, Dario; Enrico, Emanuele; Fenoglio, Ivana

    2016-01-01

    Many studies have shown that the composition of the protein corona dramatically affects the response of cells to nanomaterials (NMs). However, the role of each single protein is still largely unknown. Fibrinogen (FG), one of the most abundant plasma proteins, is believed to mediate foreign-body reactions. Since this protein is absent in cell media used in in vitro toxicological tests the possible FG-mediated effects have not yet been assessed. Here, the effect of FG on the toxicity of three different kinds of inorganic NMs (carbon, SiO2 and TiO2) on alveolar macrophages has been investigated. A set of integrated techniques (UV-vis spectroscopy, dynamic light scattering and sodium dodecyl sulphate-polyacrylamide gel electrophoresis) have been used to study the strength and the kinetics of interaction of FG with the NMs. The inflammatory response of alveolar macrophages (MH-S) exposed to the three NMs associated with FG has also been investigated. We found that FG significantly enhances the cytotoxicity (lactate dehydrogenase leakage) and the inflammatory response (increase in nitric oxide (NO) concentration and NO synthase activation) induced by SiO2, carbon and TiO2 NMs on alveolar macrophages. This effect appears related to the amount of FG interacting with the NMs. In the case of carbon NMs, the activation of fibrinolysis, likely related to the exposure of cryptic sites of FG, was also observed after 24 h. These findings underline the critical role played by FG in the toxic response to NMs.

  9. Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro.

    Science.gov (United States)

    Brown, D M; Donaldson, K

    1996-01-01

    OBJECTIVE: The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS). METHODS: Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay. RESULTS: Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HEJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders. CONCLUSIONS: LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain. PMID:8758033

  10. Activation of Alveolar Macrophages after Plutonium Oxide Inhalation in Rats: Involvement in the Early Inflammatory Response

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meeren, A.; Tourdes, F.; Gremy, O.; Grillon, G.; Abram, M.C.; Poncy, J.L.; Griffiths, N. [CEA, DSV, DRR, SRCA, Centre DAM Ile de France, F-91297 Bruyeres Le Chatel, Arpajon (France)

    2008-07-01

    Alveolar macrophages play an important role in the distribution, clearance and inflammatory reactions after particle inhalation, which may influence long-term events such as fibrosis and tumorigenesis. The objectives of the present study were to investigate the early inflammatory events after plutonium oxide inhalation in rats and involvement of alveolar macrophages. Lung changes were studied from 3 days to 3 months after inhalation of PuO{sub 2} or different isotopic compositions (70% or 97% {sup 239}Pu) and initial lung deposits (range 2.1 to 43.4 kBq/rat). Analyses of bronchoalveolar lavages showed early increases in the numbers of granulocytes, lymphocytes and multi-nucleated macrophages. The activation of macrophages was evaluated ex vivo by measurement of inflammatory mediator levels in culture supernatants. TNF-alpha and chemokine MCP-1, MIP-2 and CINC-1 production was elevated from 7 days after inhalation and remained so up to 3 months. In contrast, IL-1 beta, IL-6 and IL-10 production was unchanged. At 6 weeks, pulmonary macrophage numbers and activation state were increased as observed from an immunohistochemistry study of lung sections with anti-ED1. Similarly, histological analyses of lung sections also showed evidence of inflammatory responses. In conclusion, our results indicate early inflammatory changes in the lungs of PuO{sub 2}-contaminated animals and the involvement of macrophages in this process. A dose-effect relationship was observed between the amount of radionuclide inhaled or retained at the time of analysis and inflammatory mediator production by alveolar macrophages 14 days after exposure. For similar initial lung deposits, the inflammatory manifestation appears higher for 97% {sup 239}Pu than for 70% {sup 239}Pu. (authors)

  11. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury.

    NARCIS (Netherlands)

    Naidu, BV; Krishnadasan, B; Farivar, AS; Woolley, SM; Thomas, R; Rooijen, van N.; Verrier, ED; Mulligan, MS

    2003-01-01

    .006) and marked reductions in bronchoalveolar lavage fluid leukocyte accumulation. Alveolar macrophage-depleted animals also demonstrated marked reductions of the elaboration of multiple proinflammatory chemokines and cytokines in the lavage effluent and nuclear transcription factors in lung homoge

  12. Asbestos fibres and man made mineral fibres: induction and release of tumour necrosis factor-alpha from rat alveolar macrophages.

    OpenAIRE

    Ljungman, A G; Lindahl, M.; Tagesson, C

    1994-01-01

    OBJECTIVES--Mounting evidence suggests that asbestos fibres can stimulate alveolar macrophages to generate the potent inflammatory and fibrogenic mediator, tumour necrosis factor-alpha (TNF-alpha), and that this may play an important part in the onset and development of airway inflammation and lung fibrosis due to asbestos fibre inhalation. Little is known, however, about the ability of other mineral fibres to initiate formation and release of TNF-alpha by alveolar macrophages. Therefore the ...

  13. Intracellular pathogens within alveolar macrophages in a patient with HIV infection: diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Takashi Shinha

    2015-03-01

    Full Text Available In HIV-infected individuals, macrophages, the key defense effector cells, manifest defective activity in their interactions with a wide variety of opportunistic pathogens, including fungi and protozoa. Understanding the morphological characteristics of intracellular opportunistic pathogens in addition to their pathogenesis is of critical importance to provide optimal therapy, thereby decreasing morbidity and mortality in HIV-infected patients. We herein present a case of disseminated histoplasmosis confused with disseminated visceral leishmaniasis in an HIV-infected individual from Guyana who developed intracellular organisms within alveolar macrophages

  14. Actinobacillus pleuropneumoniae culture supernatants interfere with killing of Pasteurella multocida by swine pulmonary alveolar macrophages.

    OpenAIRE

    Chung, W. B.; Bäckström, L; McDonald, J.; Collins, M T

    1993-01-01

    The effect of Actinobacillus pleuropneumoniae culture supernatant on swine pulmonary alveolar macrophage (PAM) functions was studied. The A. pleuropneumoniae culture supernatant was toxic to PAMs when tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) release assays. Biological activity of the supernatant was ascribed to cytotoxins. Both the LDH and MTT assays were used for measurement of crude A. pleuropneumoniae cytotoxin concentrati...

  15. Biomonitoring of industrial dusts on animals. II. Bioindication on alveolar macrophages.

    Science.gov (United States)

    Kaváciková, Z

    1986-01-01

    Rats and rabbits were exposed through the respiratory system to industrial dusts (magnesite emissions, solid wastes from nickel refinery dump, cement emissions) at biomonitory stations or in experimental chamber. Following exposure the animals were killed, the alveolar macrophages isolated and acid phosphatase and beta-glucuronidase estimated in the isolated cells. The activity of both enzymes was enhanced in the exposed animals in all cases. The enhancement was dependent on the length of exposure and amount of inhaled particles.

  16. Study of changes in cellular surface glycoproteins of alveolar macrophages in fibrotic lung disorders

    Directory of Open Access Journals (Sweden)

    J McClure

    2006-04-01

    Full Text Available Introduction: The respiratory system is both a route of entry and exit for toxins and injurious agents, as well as being a target for chemical substances and pathogens. Therefore, an understanding of the structure and function of the migratory cell populations of pulmonary tissues including alveolar macrophages is central in a number of important disease processes. This study aimed to identify and specify the glycotypes of alveolar macrophages in fibrotic lung disorders. Methods: Sections of paraffin-embedded tissue from 40 cases in both normal human lung and fibrotic lung disorders were studied by immunohistology and by lectin histochemistry with a panel of 27 biotinylated lectins. Results: The findings of this study showed that ten lectins (AHA, PTL-II, AAA, , LTA, UEA-I, BSA-1B4, VVA, SBA, DBA, PTL-I did not bind to the alveolar macrophages in any of the cases, whereas 17 lectins (GNA, NPA, HHA, l-PHA, e-PHA, LCA, PSA, ConA, LEA, PAA, s-WGA, ECA, MPA,HPA, WFA, SNA, MAA( bound from moderately to strongly. In contrast, in fibrotic lung disorders some glycans were somewhat more marked or changed. Conclusion: Glycans terminating in -galactose, terminal Gal1,3GalNAc and subsets of GalNAc also appeared in alveolar macrophages of fibrotic lung disorders. L-fucosylated and terminal -linked galactosyl glycans were also detected in diseases states. Subsets of N-glycans were either changed minimally or not at all.

  17. Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3

    Institute of Scientific and Technical Information of China (English)

    Ji-Hui Yu; Li Long; Zhi-Xiao Luo; Lin-Man Li; Jie-Ru You

    2016-01-01

    Objective: To explore the expression of microRNA (miRNA) let-7c and its function in chronic obstructive pulmonary disease (COPD) and alveolar macrophage cells. Methods: Real time PCR was performed to detect the expression of miRNA let-7c in the lung tissue of COPD patients and COPD model in mice. MiRNA let-7c was overexpressed in alveolar macrophages isolated from mice and its effect was measured by the production of pro-inflammation cytokines and the protein level of signal transducer and activator of transcription 3 (STAT3) as well as phosphorylation level of STAT3 after LPS stimulation. Luciferase assay was used to detect the binding of miRNA let-7c and 3'UTR of STAT3. Results: MiRNA let-7c expression was significantly lower in patients with COPD compared with control group, and the similar result was found in COPD mice and LPS stimulated alveolar macrophages. Overexpression of miRNA let-7c in alveolar macrophages inhibited LPS-induced increasing of tumor necrosis factor alpha, interleukin-6 and interleukin-1β. Luciferase assay showed STAT3 was a targeting of miRNA let-7c in alveolar macrophages. Conclusions: MiRNA let-7c low expression in COPD can regulate inflammatory responses by targeting STAT3 in alveolar macrophage, which may provide a new target for COPD treatment strategies.

  18. Virus-induced enhancement of arachidonate metabolism by bovine alveolar macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.; Taylor, S.M.; Leid, R.W.; Silflow, R.M.; Evermann, J.R.; Breeze, R.G.; Liggitt, H.D.

    1989-04-01

    Virus infection of alveolar macrophages both in vivo and in vitro has been associated with a variety of changes in cellular function. Some of these changes are identical to the effects that arachidonate-derived mediators, prostaglandins, leukotrienes, and hydroxyeicosatetraenoic acids, have on macrophage function. Virus infection of macrophages has been previously shown to increase the output of some arachidonate metabolites, most notably PGE2. However, the effect of virus infection on arachidonate metabolism in general has not been well described. In our experiments, primary cultures of alveolar macrophages obtained from normal cattle by bronchoalveolar lavage, were infected in vitro with parainfluenza type 3 virus. At days 0 to 4 post-infection (p.i.) these cells were labelled with 3H-arachidonic acid and stimulated with either serum-coated zymosan, the calcium ionophore A23187, or phorbol myristate acetate. The complete spectrum of arachidonate-derived metabolites was determined by reverse-phase high performance liquid chromatography with UV and on-line radiometric monitoring of column eluant. The total output of metabolites of arachidonic acid by virus-infected alveolar macrophages was increased over that of noninfected controls (with all stimuli tested) by day 4 p.i. (P less than or equal to 0.05). The production of metabolites by the cyclooxygenase, 12- and 5-lipoxygenase enzyme systems was significantly increased, as was the release of 3H-arachidonate. The lack of stimulus specificity and the increases in arachidonate release suggest that greater substrate availability, due either to increased phospholipase activity or direct virus-membrane interaction, may be responsible for the virus-induced enhancement of metabolite output.

  19. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation.

    Science.gov (United States)

    Van der Meeren, Anne; Gremy, Olivier; Renault, Daniel; Miroux, Amandine; Bruel, Sylvie; Griffiths, Nina; Tourdes, Françoise

    2012-01-01

    The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.

  20. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  1. Involvement of NF-¿B and MAP-kinases in the transcriptional response of alveolar macrophages to Streptococcus suis

    NARCIS (Netherlands)

    Greeff, de A.; Benga, A.; Wichgers, P.J.; Valentin-Weigand, P.; Rebel, J.M.J.; Smith, H.E.

    2010-01-01

    Interaction of Streptococcus suis with primary porcine alveolar macrophages was Studied using transcriptomics. Transcriptional response of macrophages to two different S. suis strains was studied: wild-type S10 that is resistant to phagocytosis, and its non-encapsulated mutant that is phagocytosed e

  2. Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: Efficiency for alveolar macrophage targeting

    Directory of Open Access Journals (Sweden)

    J N Ravi Varma

    2015-01-01

    Full Text Available Pyrazinamide, a highly specific agent against Mycobacterium tuberculosis is used as first-line drug to treat tuberculosis. The current work aims to formulate polymeric nanoparticles based drug delivery system to sustain the release profile and reduce the dosing frequency of pyrazinamide. Further aim was to target the macrophages within body fluid. These polymeric nanoparticles were prepared by simultaneous double-emulsion (W/O/W solvent evaporation/diffusion technique. The prepared dispersions were characterized for various biopharmaceutical parameters such as particle size, zeta potential, polydispersity index, drug loading capacity, entrapment efficiency and targeting to alveolar macrophages. The formulated polymeric nanoparticles were in the particle size range of 45.51 to 300.4 nm with a maximum drug entrapment efficiency of 80.9%. The stability study of optimized batch conducted at 40±2°/75±5% relative humidity showed no significant changes up to 90 days. X-Ray Diffraction spectrum exhibits the transformation of crystalline form of drug to amorphous in the formulation. Scanning Electron Microscope image showed nanoparticles spherical in shape with smooth surface. In vitro release profiles were biphasic in nature with burst release followed by controlled release over a period of 24 h obeying diffusion mechanism. In vivo and ex vivo studies results of the study show significant uptake of the nanoparticles by alveolar macrophages through fluorescent micrograph. Polymeric nanoparticles formulation of pyrazinamide could encompass significant uptake by alveolar macrophages, the high first-pass metabolism, sustain the release of drug leading to reduction in dose, toxicity and improvement of patient compliance.

  3. Adenosine deaminase acting on RNA-1 (ADAR1 inhibits HIV-1 replication in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Michael D Weiden

    Full Text Available While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1 in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages.

  4. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  5. Alveolar macrophages play a key role in cockroach-induced allergic inflammation via TNF-α pathway.

    Directory of Open Access Journals (Sweden)

    Joo Young Kim

    Full Text Available The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF-α. We determined whether the serine protease in German cockroach extract (GCE enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR, inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model.

  6. The equine alveolar macrophage: Functional and phenotypic comparisons with peritoneal macrophages☆

    Science.gov (United States)

    Karagianni, Anna E.; Kapetanovic, Ronan; McGorum, Bruce C.; Hume, David A.; Pirie, Scott R.

    2013-01-01

    Alveolar macrophages (AMs) constitute the first line of defence in the lung of all species, playing a crucial role in the regulation of immune responses to inhaled pathogens. A detailed understanding of the function and phenotype of AMs is a necessary pre-requisite to both elucidating their role in preventing opportunistic bacterial colonisation of the lower respiratory tract and developing appropriate preventative strategies. The purpose of the study was to characterise this important innate immune cell at the tissue level by making functional and phenotypic comparisons with peritoneal macrophages (PMs). We hypothesised that the tissue of origin determines a unique phenotype of AMs, which may constitute an appropriate therapeutic target for certain equine respiratory diseases. Macrophages isolated from the lung and the peritoneal cavity of 9 horses were stimulated with various toll like receptor (TLR) ligands and the production of nitrite, tumour necrosis factor alpha (TNFα), interleukin (IL) 10 and indoleamine 2,3-dioxygenase (IDO) were measured by the Griess reaction and enzyme linked immunosorbent assay (ELISA) and/or quantitative polymerase chain reaction, respectively. Cells were also compared on the basis of phagocytic-capacity and the expression of several cell surface markers. AMs, but not PMs, demonstrated increased TNFα release following stimulation with LPS, polyinosinic polycytidylic acid (Poly IC) and heat-killed Salmonella typhinurium and increased TNFα and IDO mRNA expression when stimulated with LPS. AMs showed high expression of the specific macrophage markers cluster of differentiation (CD) 14, CD163 and TLR4, whereas PMs showed high expression of TLR4 only. AMs, but not PMs, demonstrated efficient phagocytic activity. Our results demonstrate that AMs are more active than PMs when stimulated with various pro-inflammatory ligands, thus supporting the importance of the local microenvironment in the activation status of the macrophage. This

  7. Cytotoxicity to alveolar macrophages of airborne particles and waste incinerator fly-ash fractions.

    Science.gov (United States)

    Gulyas, H; Gercken, G

    1988-01-01

    A waste incinerator fly ash was separated into different grain-size fractions by sieving and sedimentation in butanol. The element content of each fraction was determined by atomic absorption and emission spectrometry. The fly-ash fractions, an eluted fine fly-ash fraction and an eluted airborne dust were analysed microscopically for particle size and numbers, together with standard quartz DQ 12 and three element-analysed airborne dusts. Rabbit alveolar macrophages, isolated by lung lavage, were incubated for 24 h with the particulates, the two eluates and a mixed element compound solution corresponding to the element concentrations of one airborne dust. At the end of incubation, the activities of lactate dehydrogenase, N-acetyl-beta-glucosaminidase, beta-galactosidase and acid phosphatase were determined in medium and cell lysates. Cytotoxicity was expressed as ratio of extracellular to total LDH (lactate dehydrogenase) activity. Release of N-acetyl-beta-glucosaminidase and beta-galactosidase was correlated positively with LDH release, whereas the total activity of acid phosphatase decreased with increasing LDH release. Cytotoxicity of the dusts was correlated with particle numbers, and As, Sb and Pb contents. The contribution of As to particle toxicity is discussed. Eluates of dusts did not affect rabbit alveolar macrophage viability.

  8. Hydroxyl radicals induced by quartz particles in lung alveolar macrophages: the role of surface iron

    Institute of Scientific and Technical Information of China (English)

    LI Yi; ZHU Tong; GUO Xinbiao; SHANG Yu

    2006-01-01

    Previous studies have shown that hydroxyl radical generation is a key step in the mechanism of pathogenic process caused by airborne particles to the lung. However, there is no direct evidence for dose-response relationship between airborne particles and hydroxyl radical generation. In this study, hydroxyl radicals generated in lung alveolar macrophages exposed to quartz particles were measured using a highly sensitive capillary electrophoresis-fluorescence detection method. The results demonstrated that quartz particles induced the generation of hydroxyl radical in a dose-dependent manner, and the amount of the hydroxyl radicals was 10-10 mol/106 cells.The viability of alveolar macrophages exposed to quartz particles decreased with the increase of quartz concentration, showing a clear doseresponse relationship. Hydroxyl radical scavenger mannitol could increase the viability of quartz-treated cells, suggesting that hydroxyl radical contributed directly to cell death. In this study this contribution accounted for about 5%-20% of cell death. The hydroxyl radical generating potential was found to be related to surface iron content of the quartz particles.

  9. [A study on the activity of nitric oxide in alveolar macrophages from patients with lung cancer].

    Science.gov (United States)

    Hu, C; Li, G; Wu, E

    1998-01-01

    Nitrite and nitrate (NO2-/NO2-) in the bronchus alveolar lavage fluid (BALF) and the supernatants of incubated alveolar macrophages (AMs) from patients with primary lung cancer were measured by copper-coated cadmium reduction and Griess method. Mrna expression of AM induced nitric oxide synthase (iNOS) were analyzed by RT-PCR. There was NO2-/NO2- in BALF either from lung cancer patients or from control subjects. When compared with control group and the nontumor-bearing lung, the level of NO2-/NO2-was lower in BALF from the tumor-bearing lung [5.18+/-1.1 vs 2.47+/-0.67nmol x mg protein-1 (P65+/- 2.46 vs 2.47+/- 0.67nmol x mg protein-1(Pcancer patients than from control and nontumor-bearing lung [95.03+/- 21.76 vs 63.37+/- 17.58nmol (Pcancer patients (69%) and that of control subjects (91%). After the AMs were stimulated with granulocyte-macrophage colony stimulating factor (GM-CSF), the level of NO2-/NO2- in the supernatants was significantly increased (Pcancer resulted in an increase of 16.85+/- 7.58% vs 33.38+/- 8.21% of control group (P< 0.05). These observation suggest that some defects of antitumor function occur in the AMs at the tumor region. GM-CSF can stimulate AMs and thus potentiate their NO activity.

  10. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Quentin Philippot

    Full Text Available Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer's and Parkinson's diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2-3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL cells were obtained from non-smokers, healthy smokers, and GOLD 1-3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor, storage (ferritin and export (ferroportin genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1 and the ratio between FEV1 and forced vital capacity (FEV1/FVC. The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Furthermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively. In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative

  11. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes.

    Science.gov (United States)

    Gallagher, J E; George, G; Brody, A R

    1987-06-01

    Pulmonary macrophages phagocytize inhaled particles and are postulated to play a role in the development of pulmonary interstitial fibrogenesis. The basic biologic mechanisms through which inhaled particles bind to macrophage membranes and subsequently are phagocytized remain unclear. We hypothesize that positively charged particles bind to negatively charged sialic acid (SA) residues on macrophage membranes. Alveolar Macrophages (AM) were collected by saline lavage from normal rat lungs. The cells adhered to plastic coverslips in serum-free phosphate buffered saline at 37 degrees C for 45 min and then were maintained at 4 degrees C for the binding experiments. Even distribution of SA groups on AM surfaces was demonstrated by scanning electron microscopy of wheat germ agglutinin (WGA) conjugated to 50 nm gold spheres. The WGA is a lectin that binds specifically to sialic acid, and pretreatment of AM with this lectin prevented the binding of positively charged carbonyl iron (C-Fe) spheres, aluminum (Al) spheres, and chrysotile asbestos fibers to AM surfaces. Limulus protein, another lectin with binding specificity for SA, similarly blocked the binding of positively charged spheres and chrysotile asbestos fibers but not negatively charged glass spheres or crocidolite asbestos fibers. Con A and ricin, lectins that bind to mannose and galactose residues, respectively, did not block particle binding. When both positively charged iron spheres and negatively charged glass spheres were prebound to AM membranes, subsequent treatment with WGA displaced only the positively charged spheres from macrophage surfaces. Con A and ricin had no effect on prebound positively charged C-Fe and Al spheres.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  13. HUMAL ALVEOLAR MACROPHAGE RESPONSES TO AIR POLLUTION PARTICULATES ARE ASSOCIATED WITH INSOLUBLE OCMPONENTS OF COARSE MATERIAL, INCLUDING PARTICULATE ENDOTOXIN

    Science.gov (United States)

    Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...

  14. The role of arachidonic acid metabolism in virus-induced alveolar macrophage dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.

    1988-01-01

    Alveolar macrophages (AM) recovered from virus-infected lungs have decreased phagocytic, respiratory burst and bactericidal activities. The studies described below investigated the role of eicosanoids in virus induced AM bactericidal dysfunction. The spectrum of eicosanoid metabolites which bovine AM are capable of producing was determined. Cultured AM were exposed to {sup 3}H-arachidonate for 1 hour, stimulated for 4 hours with A23187, phorbol myristate acetate or zymosan and the supernatants extracted and analyzed by HPLC. All stimuli tested caused the release of these cyclooxygenase metabolites: thromboxane B{sub 2}, PGF{sub 2}, PGE{sub 2}, PGD{sub 2} and HHT. The effect of this enhanced release of arachidonate metabolites on the ability of AM to kill bacteria was evaluated. Preincubation with cyclooxygenase inhibitors or dual cyclooxygenase and lipoxygenase inhibitors resulted in partial reversal of the virus-induced bactericidal deficit in PI3 infected AM.

  15. Chronic cigarette smoking enhances spontaneous release of tumour necrosis factor-α from alveolar macrophages of rats

    Directory of Open Access Journals (Sweden)

    G. P. Pessina

    1993-01-01

    Full Text Available Some biological effects of chronic cigarette smoking (two cigarettes for 2 h, daily for 4 months in rats were evaluated. During the smoking period, body weight of smoker rats was always significantly lower than that of control rats. Immediately after the last smoking session the carboxyhaemoglobin concentration in the blood was about 8.5% and the polymorphonuclear cells in the bronchoalveolar fluid increased significantly. At the same time, enzymatic analyses on the supernatants of bronchoalveolar fluid revealed a significant increase of β-glucuronidase in the smoker group. Alveolar macrophages, collected 0, 8 and 24 h after the last smoking session, significantly increased the generation of superoxide anion and, after incubation for 24 h at 37° C in a humidified atmosphere, released significantly high amounts of TNF-α. When challenged with lipopolysaccharide, alveolar macrophages of smoker rats released much more TNF-α but, in such a case, TNF-α release was about one half of that observed in the control group. Peritoneal macrophages of both control and smoker rats were unable either to generate high levels of superoxide anion or to release significant amounts of TNF-α. The results clearly demonstrated the activated state of alveolar macrophages and the resting state of peritoneal macrophages.

  16. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    Science.gov (United States)

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  17. An intracellular arrangement of Histoplasma capsulatum yeast-aggregates generates nuclear damage to the cultured murine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Nayla De Souza Pitangui

    2016-01-01

    Full Text Available Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a crown. This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast’s persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms.

  18. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    Science.gov (United States)

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  19. Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts: correlation with antimony, lead, and arsenic contents.

    Science.gov (United States)

    Gulyas, H; Labedzka, M; Gercken, G

    1990-04-01

    Activated rabbit alveolar macrophages were incubated with airborne dusts from four West German sites (1 to 200 micrograms/10(6) cells) and waste incinerator fly ash fractions (50 to 500 micrograms/10(6) cells). Quartz dust DQ 12 (5 to 200 micrograms/10(6) cells) and Fe2O3 (0.05 to 50 micrograms/10(6) cells) were used as control dusts. The zymosan-stimulated hydrogen peroxide and superoxide anion release of the macrophages were not affected significantly by Fe2O3. All other investigated dusts decreased the two cell functions which were correlated negatively with surfaces, particle numbers, and antimony, lead, and arsenic contents of the dusts. The influence of heavy metal antagonisms and dust surfaces on dust toxicity against alveolar macrophages is discussed.

  20. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  1. Resident alveolar macrophages are susceptible to and permissive of Coxiella burnetii infection.

    Directory of Open Access Journals (Sweden)

    Matthew Calverley

    Full Text Available Coxiella burnetii, the causative agent of Q fever, is a zoonotic disease with potentially life-threatening complications in humans. Inhalation of low doses of Coxiella bacteria can result in infection of the host alveolar macrophage (AM. However, it is not known whether a subset of AMs within the heterogeneous population of macrophages in the infected lung is particularly susceptible to infection. We have found that lower doses of both phase I and phase II Nine Mile C. burnetii multiply and are less readily cleared from the lungs of mice compared to higher infectious doses. We have additionally identified AM resident within the lung prior to and shortly following infection, opposed to newly recruited monocytes entering the lung during infection, as being most susceptible to infection. These resident cells remain infected up to twelve days after the onset of infection, serving as a permissive niche for the maintenance of bacterial infection. A subset of infected resident AMs undergo a distinguishing phenotypic change during the progression of infection exhibiting an increase in surface integrin CD11b expression and continued expression of the surface integrin CD11c. The low rate of phase I and II Nine Mile C. burnetii growth in murine lungs may be a direct result of the limited size of the susceptible resident AM cell population.

  2. Modeling the cellular impact of nanoshell-based biosensors using mouse alveolar macrophage cultures.

    Science.gov (United States)

    Swarup, Vimal P; Huang, Yiming; Murillo, Genoveva; Saleiro, Diana; Mehta, Rajendra G; Bishnoi, Sandra Whaley

    2011-11-01

    In this study, the relative toxicity of native gold-silica nanoshells (NS) has been compared to nanoshells modified with poly(ethylene glycol)-thiol (PEG-SH) and a Raman-active PEG, p-mercaptoaniline-poly(ethylene glycol) (pMA-PEG), in mouse alveolar macrophage cell cultures (RAW 264.7). The results from toxicity profiling using an MTT assay demonstrate that cell viability post-particle exposure is a function of three factors: nanoshell concentration, surface functionalization, and incubation time. By minimizing particle concentrations and incubation times, cell cultures are able to recover within 24 h of nanoshell removal, indicative of nanoshells having more of a cytostatic versus cytotoxic effect on macrophage cells. The mechanism of the cytostatic effect has been investigated by imaging the presence of reactive oxygen species (ROS) using a fluorescence assay kit (Image-iT™ LIVE) after the introduction of NS to the cell cultures. Elevated ROS signals are seen in the cells containing higher concentration of NS, and indicate that the major reason of toxicity may due to the oxidative stress caused by excess NS particles. Raman imaging experiments with pMA-PEG coated nanoshells showed that cells exposed for even short exposure times (∼2 h) retained those particles up to 24 h after exposure, while migration experiments suggest that surviving cells retain their nanoshells and may reallocate them to progeny cells upon cell division.

  3. Trimellitic anhydride-conjugated serum albumin activates rat alveolar macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Bloksma Nanne

    2006-06-01

    Full Text Available Abstract Background Occupational exposure to airborne low molecular weight chemicals, like trimellitic anhydride (TMA, can result in occupational asthma. Alveolar macrophages (AMs are among the first cells to encounter these inhaled compounds and were previously shown to influence TMA-induced asthma-like symptoms in the Brown Norway rat. TMA is a hapten that will bind to endogenous proteins upon entrance of the body. Therefore, in the present study we determined if TMA and TMA conjugated to serum albumin induced the production of the macrophage mediators nitric oxide (NO, tumour necrosis factor (TNF, and interleukin 6 (IL-6 in vitro using the rat AM cell line NR8383 and primary AMs derived from TMA-sensitized and naïve Brown Norway rats. Methods Cells were incubated with different concentrations of TMA, TMA conjugated to bovine serum albumin (BSA, and BSA as a control for 24 h and the culture supernatant was analyzed for mediator content. Results TMA alone was not able to induce the production of mediators by NR8383 cells and primary AMs from sensitized and sham-treated rats. TMA-BSA, on the contrary, dose-dependently stimulated the production of NO, TNF, and IL-6 by NR8383 cells and of NO and TNF, but not IL-6, by primary AMs independent of sensitization. Conclusion Results suggest that although TMA is a highly reactive compound, conjugation to a suitable protein is necessary to induce mediator production by AMs. Furthermore, the observation that effects of TMA-BSA were independent of sensitization suggests involvement of an immunologically non-specific receptor. In the discussion it is argued that a macrophage scavenger receptor is a likely candidate.

  4. ROS-mediated TNF-α and MIP-2 gene expression in alveolar macrophages exposed to pine dust

    Directory of Open Access Journals (Sweden)

    Husgafvel-Pursiainen Kirsti

    2004-12-01

    Full Text Available Abstract Background Respiratory symptoms, impaired lung function, and asthma have been reported in workers exposed to wood dust in a number of epidemiological studies. The underlying pathomechanisms, however, are not well understood. Here, we studied the effects of dust from pine (PD and heat-treated pine (HPD on the release of reactive oxygen species (ROS and inflammatory mediators in rat alveolar macrophages. Methods Tumour necrosis factor-alpha (TNF-α and macrophage inflammatory protein-2 (MIP-2 protein release, TNF-α and MIP-2 mRNA expression, and generation of ROS were studied as end points after treatment of rat alveolar macrophages with PD or HPD. In a separate series of experiments, the antioxidants glutathione and N-acetyl-L-cysteine were included in combination with wood dust. To determine the endogenous oxidative and antioxidant capacity of wood dusts, electron spin resonance (ESR spectroscopy was used. Results After 4 h incubation, both PD and HPD elicited a significantly (p Conclusion These results indicate that pine dust is able to induce expression of TNF-α and MIP-2 in rat alveolar macrophages by a mechanism that is, at least in part, mediated by ROS.

  5. ROS-mediated TNF-alpha and MIP-2 gene expression in alveolar macrophages exposed to pine dust.

    Science.gov (United States)

    Long, Huayan; Shi, Tingming; Borm, Paul J; Määttä, Juha; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai; Krombach, Fritz

    2004-12-13

    BACKGROUND: Respiratory symptoms, impaired lung function, and asthma have been reported in workers exposed to wood dust in a number of epidemiological studies. The underlying pathomechanisms, however, are not well understood. Here, we studied the effects of dust from pine (PD) and heat-treated pine (HPD) on the release of reactive oxygen species (ROS) and inflammatory mediators in rat alveolar macrophages. METHODS: Tumour necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 (MIP-2) protein release, TNF-alpha and MIP-2 mRNA expression, and generation of ROS were studied as end points after treatment of rat alveolar macrophages with PD or HPD. In a separate series of experiments, the antioxidants glutathione and N-acetyl-L-cysteine were included in combination with wood dust. To determine the endogenous oxidative and antioxidant capacity of wood dusts, electron spin resonance (ESR) spectroscopy was used. RESULTS: After 4 h incubation, both PD and HPD elicited a significantly (p dust sample. CONCLUSION: These results indicate that pine dust is able to induce expression of TNF-alpha and MIP-2 in rat alveolar macrophages by a mechanism that is, at least in part, mediated by ROS.

  6. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    Science.gov (United States)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  7. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    Science.gov (United States)

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-06-25

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function.

  8. In utero infection with PRRS virus modulates cellular functions of blood monocytes and alveolar lung macrophages in piglets

    DEFF Research Database (Denmark)

    Riber, Ulla; Nielsen, Jens; Lind, Peter

    2004-01-01

    . Phagocytic capacity of blood monocytes against Salmonella bacteria was investigated by flow cytometry. Oxidative burst in blood monocytes and in alveolar lung macrophages was investigated by luminol- and lucigenin-enhanced chemiluminescence, respectively. Decreased phagocytosis against Salmonella was found...... burst capacity of alveolar lung macrophages was decreased, especially in 2- and 4-week-old piglets, compared to age-matched control piglets. The present results indicate that in utero infection with PRRSV inhibits phagocytosis against Salmonella in blood monocytes as well as the oxidative burst capacity...... in blood monocytes from 4- and 6-week-old infected piglets compared to controls. In contrast, 2-week-old infected piglets showed phagocytic responses comparable to age matched control piglets. While oxidative burst capacity was increased in blood (PBMC) from in utero PRRSV infected piglets, the oxidative...

  9. Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis

    Directory of Open Access Journals (Sweden)

    Wang Yang

    2012-02-01

    Full Text Available Abstract Background Haemophilus parasuis (H. parasuis is the etiological agent of Glässer's disease in pigs. Currently, the molecular basis of this infection is largely unknown. The innate immune response is the first line of defense against the infectious disease. Systematical analysis on host innate immune response to the infection is important for understanding the pathogenesis of the infectious microorganisms. Results A total of 428 differentially expressed (DE genes were identified in the porcine alveolar macrophages (PAMs 6 days after H. parasuis infection. These genes were principally related to inflammatory response, immune response, microtubule polymerization, regulation of transcript and signal transduction. Through the pathway analysis, the significant pathways mainly concerned with cell adhesion molecules, cytokine-cytokine receptor interaction, complement and coagulation cascades, toll-like receptor signaling pathway, MAPK signaling pathway, suggesting that the host took different strategies to activate immune and inflammatory response upon H. parasuis infection. The global interactions network and two subnetworks of the proteins encoded by DE genes were analyzed by using STRING. Further immunostimulation analysis indicated that mRNA levels of S100 calcium-binding protein A4 (S100A4 and S100 calcium-binding protein A6 (S100A6 in porcine PK-15 cells increased within 48 h and were sustained after administration of lipopolysaccharide (LPS and Poly (I:C respectively. The s100a4 and s100a6 genes were found to be up-regulated significantly in lungs, spleen and lymph nodes in H. parasuis infected pigs. We firstly cloned and sequenced the porcine coronin1a gene. Phylogenetic analysis showed that poCORONIN 1A belonged to the group containing the Bos taurus sequence. Structural analysis indicated that the poCORONIN 1A contained putative domains of Trp-Asp (WD repeats signature, Trp-Asp (WD repeats profile and Trp-Asp (WD repeats circular

  10. Response activity of alveolar macrophages in pulmonary dysfunction caused by Leptospira infection

    Directory of Open Access Journals (Sweden)

    M. Marinho

    2008-01-01

    Full Text Available Leptopspirosis is a syndrome with different clinical manifestations including the most severe and often fatal forms of pulmonary disease of unknown etiology. Pulmonary injury during the inflammatory process has been associated with the excessive number of alveolar macrophages (AMs and polymorphonuclear leukocytes stimulated in the lungs and with the production of reactive oxygen and nitrogen intermediates and other inflammatory mediators. The aim of the present work was to evaluate the cellular immune response of AMs or inflammatory cells of hamsters during leptospirosis. The activity of AMs was determined by measuring nitric oxide (NO and protein production as well as inflammatory cell infiltration in bronchoalveolar lavage (BAL fluid. Pulmonary activity during infection was monitored by measuring pH, pressure of oxygen (PaO2, and pressure of carbon dioxide (PaCO2 in blood samples. Cellular immune response and its role in the genesis of leptospirosis have been incriminated as the main causes of tissue and pulmonary injuries, which consequently lead to the pulmonary dysfunction in severe cases of leptospirosis. The present results show a low production of NO in both supernatant of alveolar macrophage culture and BAL. In the latter, protein production was high and constant, especially during acute infection. Total and differential cell count values were 2.5X10(6 on day 4; 7.3X10(6 on day 21; and 2.3X10(6 on day 28 after infection, with lymphocytes (84.04% predominating over neutrophils (11.88% and monocytes (4.07%. Arterial blood gas analysis showed pulmonary compromising along with the infectious process, as observed in parameter values (mean±SD evidenced in the infected versus control group: PaO2 (60.47mmHg±8.7 vs. 90.09mmHg±9.18, PaCO2 (57.01mmHg±7.87 vs. 47.39mmHg±4.5 and pH (7.39±0.03 vs. 6.8±1.3. Results indicated that Leptospira infection in hamsters is a good experimental model to study leptospirosis. However, some of the immune

  11. Effect of porcine reproductive and respiratory syndrome virus infection on the clearance of Haemophilus parasuis by porcine alveolar macrophages.

    OpenAIRE

    Solano, G I; Bautista, E.; Molitor, T W; Segales, J.; Pijoan, C

    1998-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection in young piglets is frequently associated with secondary infection due to various pathogens, especially those of the respiratory tract. One of the most important mechanisms in respiratory diseases is related to the alteration of function of porcine alveolar macrophages (PAMs). The objective of this study was to determine how PRRS virus infection affects the capabilities of PAMs in the phagocytosis and destruction of Haemoph...

  12. Identification of β2-adrenoceptors on guinea pig alveolar macrophages using (-)-3-[125I]iodocyanopindolol

    NARCIS (Netherlands)

    R. Leurs (R.); F.D. Beusenberg; R.C. Bast (Robert); J.G.C. van Amsterdam (Jan); H. Timmerman (H.)

    1990-01-01

    textabstractThe β-adrenoceptor antagonist (-)-3-[125I]iodocyanopindolol ([125I]ICYP) binds with high affinity and in a saturable way to membranes of guinea pig alveolar macrophages. The equilibrium dissociation constant for [125I]ICYP is 24.3 ± 1.2 pM, and the number of binding sites is 166.3 ± 13.7

  13. Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV, which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression libraries derived from 0 hour mock-infected and 6, 12, 16 and 24 hours PRRSV-infected porcine alveolar macrophages (PAMs produced a total 643,255 sequenced tags with 91,807 unique tags. Differentially expressed (DE tags were then detected using the Bayesian framework followed by gene/mRNA assignment, arbitrary selection and manual annotation, which determined 699 DE genes for reactome analysis. The DAVID, KEGG and REACTOME databases assigned 573 of the DE genes into six biological systems, 60 functional categories and 504 pathways. The six systems are: cellular processes, genetic information processing, environmental information processing, metabolism, organismal systems and human diseases as defined by KEGG with modification. Self-organizing map (SOM analysis further grouped these 699 DE genes into ten clusters, reflecting their expression trends along these five time points. Based on the number one functional category in each system, cell growth and death, transcription processes, signal transductions, energy metabolism, immune system and infectious diseases formed the major reactomes of PAMs responding to PRRSV infection. Our investigation also focused on dominant pathways that had at least 20 DE genes identified, multi-pathway genes that were involved in 10 or more pathways and exclusively-expressed genes that were included in one system. Overall, our present study reported a large set of DE genes, compiled a comprehensive coverage of pathways, and revealed system-based reactomes of PAMs infected with PRRSV. We believe that our reactome data provides new insight into molecular mechanisms involved in host genetic complexity of antiviral activities against PRRSV and

  14. Nrf2 regulates PU.1 expression and activity in the alveolar macrophage.

    Science.gov (United States)

    Staitieh, Bashar S; Fan, Xian; Neveu, Wendy; Guidot, David M

    2015-05-15

    Alveolar macrophage (AM) immune function depends on the activation of the transcription factor PU.1 by granulocyte macrophage colony-stimulating factor. We have determined that chronic alcohol ingestion dampens PU.1 signaling via an unknown zinc-dependent mechanism; specifically, although PU.1 is not known to be a zinc-dependent transcription factor, zinc treatment reversed alcohol-mediated dampening of PU.1 signaling. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a zinc-dependent basic leucine zipper protein essential for antioxidant defenses, is also impaired by chronic alcohol ingestion and enhanced by zinc treatment. We hypothesized that the response of PU.1 to zinc treatment may result from the action of Nrf2 on PU.1. We first performed Nrf2/PU.1 protein coimmunoprecipitation on a rat AM cell line (NR8383) and found no evidence of protein-protein interactions. We then found evidence of increased Nrf2 binding to the PU.1 promoter region by chromatin immunoprecipitation. We next activated Nrf2 using either sulforaphane or an overexpression vector and inhibited Nrf2 with silencing RNA to determine whether Nrf2 could actively regulate PU.1. Nrf2 activation increased protein expression of both factors as well as gene expression of their respective downstream effectors, NAD(P)H dehydrogenase[quinone] 1 (NQO1) and cluster of differentiation antigen-14 (CD14). In contrast, Nrf2 silencing decreased the expression of both proteins, as well as gene expression of their effectors. Activating and inhibiting Nrf2 in primary rat AMs resulted in similar effects. Taken together, these findings suggest that Nrf2 regulates the expression and activity of PU.1 and that antioxidant response and immune activation are coordinately regulated within the AM.

  15. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Christoph Schneider

    2014-04-01

    Full Text Available Alveolar macrophages (AM are critical for defense against bacterial and fungal infections. However, a definitive role of AM in viral infections remains unclear. We here report that AM play a key role in survival to influenza and vaccinia virus infection by maintaining lung function and thereby protecting from asphyxiation. Absence of AM in GM-CSF-deficient (Csf2-/- mice or selective AM depletion in wild-type mice resulted in impaired gas exchange and fatal hypoxia associated with severe morbidity to influenza virus infection, while viral clearance was affected moderately. Virus-induced morbidity was far more severe in Csf2-/- mice lacking AM, as compared to Batf3-deficient mice lacking CD8α+ and CD103+ DCs. Csf2-/- mice showed intact anti-viral CD8+ T cell responses despite slightly impaired CD103+ DC development. Importantly, selective reconstitution of AM development in Csf2rb-/- mice by neonatal transfer of wild-type AM progenitors prevented severe morbidity and mortality, demonstrating that absence of AM alone is responsible for disease severity in mice lacking GM-CSF or its receptor. In addition, CD11c-Cre/Ppargfl/fl mice with a defect in AM but normal adaptive immunity showed increased morbidity and lung failure to influenza virus. Taken together, our results suggest a superior role of AM compared to CD103+ DCs in protection from acute influenza and vaccinia virus infection-induced morbidity and mortality.

  16. Cytotoxicity of dust constituents towards alveolar macrophages: interactions of heavy metal compounds.

    Science.gov (United States)

    Geertz, R; Gulyas, H; Gercken, G

    1994-01-26

    The interactions between different heavy metal compounds which affect their cytotoxicity towards rabbit alveolar macrophages were investigated. The cells were exposed in vitro to combinations of As3+, Cd2+, Hg2+, Ni2+, or V5+ with different concentrations of another heavy metal compound. Toxicity was determined as the depression of zymosan-induced release of superoxide anion radicals. Significant antagonisms occurred in the combinations Cd2+/Zn2+, Hg2+/As3+, and Hg2+/Se4+, while significant synergisms were exhibited by the combinations Cd2+/Cu2+, Cd2+/Sn2+, Hg2+/Cu2+, Ni2+/Cd2+, Ni2+/Cu2+, Ni2+/Sn2+ and V5+/Cu2+. In the combinations As3+/Zn2+, Hg2+/Cd2+ and Hg2+/Zn2+, both kinds of interactions were observed depending on the concentrations of the heavy metal compounds. An interpretation of the measured heavy metal interactions with reference to the toxicity of heavy metal-containing dusts is attempted.

  17. Proinflammatory Responses of Heme in Alveolar Macrophages: Repercussion in Lung Hemorrhagic Episodes

    Directory of Open Access Journals (Sweden)

    Rafael L. Simões

    2013-01-01

    Full Text Available Clinical and experimental observations have supported the notion that free heme released during hemorrhagic and hemolytic episodes may have a major role in lung inflammation. With alveolar macrophages (AM being the main line of defense in lung environments, the influence of free heme on AM activity and function was investigated. We observed that heme in a concentration range found during hemolytic episodes (3–30 μM elicits AM to present a proinflammatory profile, stimulating reactive oxygen species (ROS and nitric oxide (NO generation and inducing IL-1β, IL-6, and IL-10 secretion. ROS production is NADPH oxidase-dependent, being inhibited by DPI and apocynin, and involves p47 subunit phosphorylation. Furthermore, heme induces NF-κB nuclear translocation, iNOS, and also HO-1 expression. Moreover, AM stimulated with free heme show enhanced phagocytic and bactericidal activities. Taken together, the data support a dual role for heme in the inflammatory response associated with lung hemorrhage, acting as a proinflammatory molecule that can either act as both an adjuvant of the innate immunity and as an amplifier of the inflammatory response, leading tissue injury. The understanding of heme effects on pulmonary inflammatory processes can lead to the development of new strategies to ameliorate tissue damage associated with hemorrhagic episodes.

  18. Three-dimensional characteristics of alveolar macrophages in vitro observed by dark field microscopy

    Science.gov (United States)

    Swarat, Dominic; Wiemann, Martin; Lipinski, Hans-Gerd

    2014-05-01

    Alveolar macrophages (AM) are cells from immune defense inside the lung. They engulf particles in vacuoles from the outer membrane. Volume and surface are important parameters to characterize the particle uptake. AM change their shape within a few seconds, therefore it is hard to obtain by confocal laser scanning microscopy, which is commonly used to generate 3D-images. So we used an intensified dark field microscopy (DFM) as an alternative method to generate contrast rich AM gray tone image slices used for 3D-reconstructions of AM cells by VTK software applications. From these 3D-reconstructions approximate volume and surface data of the AM were obtained and compared to values found in the literature. Finally, simple geometrical 3D-models of the AM were created and compared to real data. Averaged volume and surface data from the DFM images are close to values found in the literature. Furthermore, calculation of volume and surface data from DFM images could be done faster if simplified geometrical 3D-models of the cells were used.

  19. Suppression of NK cell-mediated cytotoxicity against PRRSV-infected porcine alveolar macrophages in vitro.

    Science.gov (United States)

    Cao, Jun; Grauwet, Korneel; Vermeulen, Ben; Devriendt, Bert; Jiang, Ping; Favoreel, Herman; Nauwynck, Hans

    2013-06-28

    The adaptive immunity against PRRSV has already been studied in depth, but only limited data are available on the innate immune responses against this pathogen. In the present study, we analyzed the interaction between porcine natural killer (NK) cells and PRRSV-infected primary porcine alveolar macrophages (PAMs), since NK cells are one of the most important components of innate immunity and PAMs are primary target cells of PRRSV infection. NK cytotoxicity assays were performed using enriched NK cells as effector cells and virus-infected or mock-inoculated PAMs as target cells. The NK cytotoxicity against PRRSV-infected PAMs was decreased starting from 6h post inoculation (hpi) till the end of the experiment (12 hpi) and was significantly lower than that against pseudorabies virus (PrV)-infected PAMs. UV-inactivated PRRSV also suppressed NK activity, but much less than infectious PRRSV. Furthermore, co-incubation with PRRSV-infected PAMs inhibited degranulation of NK cells. Finally, using the supernatant of PRRSV-infected PAMs collected at 12 hpi showed that the suppressive effect of PRRSV on NK cytotoxicity was not mediated by soluble factors. In conclusion, PRRSV-infected PAMs showed a reduced susceptibility toward NK cytotoxicity, which may represent one of the multiple evasion strategies of PRRSV.

  20. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages.

    Science.gov (United States)

    Chien, Maw-Sheng; Chan, You-Yu; Chen, Zeng-Weng; Wu, Chi-Ming; Liao, Jiunn-Wang; Chen, Ter-Hsin; Lee, Wei-Cheng; Yeh, Kuang-Sheng; Hsuan, Shih-Ling

    2009-03-30

    Actinobacillus pleuropneumoniae (AP) is the causative agent of swine pleuropneumonia, a fibrinous, exudative, hemorrhagic, necrotizing pleuropneumonia affecting all ages of pigs. Actinobacillus pleuropneumoniae exotoxins (Apx) are one of the major virulence factors of AP. Due to the complex nature of Apx toxins produced by AP, little is known regarding the interactions of individual species of Apx toxin with target cells. The objective of this study was to examine whether AP serotype 10-derived exotoxin, ApxI, caused apoptosis in porcine alveolar macrophages (PAMs) and to delineate the underlying signaling pathways. Isolated PAMs were stimulated with different concentrations of native ApxI and monitored for apoptosis using Hoechst staining, TUNEL, and DNA laddering assays. The ApxI-stimulated PAMs exhibited typical morphological features of apoptosis, including condensation of chromatin, formation of apoptotic bodies and DNA laddering. ApxI-induced apoptosis in a concentration- and time-dependent manner. Furthermore, to delineate the signaling events involved in ApxI-induced apoptosis, it was observed that caspase 3 was activated in ApxI-stimulated PAMs. Ablation of caspase 3 activity via specific inhibitors protected PAMs from apoptosis by ApxI. This study is the first to demonstrate that native ApxI causes apoptosis in PAMs at low concentrations and that these apoptotic events are mediated via a caspase 3-dependent pathway. These findings suggest a role of ApxI in AP infection as it might impair the host defense system through the induction of apoptosis in PAMs.

  1. Influence of mineral dusts on metabolism of arachidonic acid by alveolar macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Demers, L.M.; Kuhn, D.C. [Pennsylvania State University, Hershey, PA (United States). Dept. of Pathology

    1994-12-01

    The alveolar macrophage (AM) responds to stimuli such as coal mine dust by releasing inflammatory mediators such as cytokines, growth factors, reactive oxygen species, and eicosanoids. In this report, the authors examined the effects of an antioxidant, vitamin E, on dust-induced synthesis of PGE(2) and TXB(2) in vitro and in vivo by AM obtained by bronchoalveolar lavage from rats. They also looked at the effects of the surface of silica particles on AM eicosanoid biosynthesis under conditions of calcination, a process that removes exposed hydroxyl groups from the surface of silica particles, thus reducing the likelihood of soluble hydroxyl radical formation. Treatment of AM with vitamin E in vivo and in vitro reduced the augmentation in eicosanoid production usually observed when AM are exposed to mine dusts. These results suggest that vitamin E may effectively reduce the inflammatory and fibrotic response produced by inhalation of mineral dust through an antioxidant mechanism. Silica that has been chemically altered by calcination was unable to activate AM eicosanoid production in vitro when compared to untreated, freshly fractured silica. These findings suggest that the mechanism by which dust particles can activate AM eicosanoid release may involve interaction of surface and/or soluble factors with the cell membrane. Taken together, these studies point to the involvement of Am eicosanoid production as part of the proinflammatory response of this cell to occupational inhalation of mineral dust.

  2. Inhibition of HIV-1 replication in alveolar macrophages by adenovirus gene transfer vectors.

    Science.gov (United States)

    Rice, Joshua; Connor, Ruth; Worgall, Stefan; Moore, John P; Leopold, Philip L; Kaner, Robert J; Crystal, Ronald G

    2002-08-01

    To assess the hypothesis that infection of alveolar macrophages (AM) with adenovirus (Ad) gene transfer vectors might prevent subsequent human immunodeficiency virus (HIV)-1 replication in AM, AM isolated from normal volunteers were infected with increasing doses of first generation (E1(-)) Ad vectors, followed 72 h later by infection with HIV-1(JRFL), an R5/M-tropic strain that preferentially uses the CCR5 coreceptor. As a measure of HIV-1 replication, p24 Ag was quantified by enzyme-linked imunosorbent assay in supernatants on Days 4 to 14 after HIV-1infection. Pretreatment of the AM with an Ad vector resulted in a dose- and time-dependent suppression of subsequent HIV-1 replication. The Ad vector inhibition of HIV-1 replication was independent of the transgene in the Ad vector expression cassette and E4 genes in the Ad backbone. Moreover, it did not appear to be secondary to a soluble factor released by the AM, nor was it overridden by the concomitant transfer of the CCR5 or CXCR4 receptors to the AM before HIV-1 infection. These observations have implications regarding pulmonary host responses associated with HIV-1 infection, as well as possibly uncovering new therapeutic strategies against HIV-1 infection.

  3. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2007-01-01

    The influence of particle size and surface mannose modification on the uptake of liposomes by alveolar macrophages (AMs) was investigated in-vitro and in-vivo. Non-modified liposomes of five different particle sizes (100, 200, 400, 1000 and 2000 nm) and mannosylated liposomes with 4-aminophenyl-alpha-D-mannopyranoside (particle size 1000 nm) were prepared, and the uptake characteristics by rat AMs in-vitro and in-vivo were examined. The uptake of non-modified liposomes by rat AMs in-vitro increased with an increase in particle size over the range of 100-1000 nm, and became constant at over 1000 nm. The uptake of non-modified liposomes by AMs after pulmonary administration to rats in-vivo increased with an increase in particle size in the range 100-2000 nm. The uptake of mannosylated liposomes (particle size 1000 nm) by rat AMs both in-vitro and in-vivo was significantly greater than that of non-modified liposomes (particle size 1000 nm). The results indicate that the uptake of liposomes by rat AMs is dependent on particle size and is increased by surface mannose modification.

  4. Subcellular distribution of azithromycin and clarithromycin in rat alveolar macrophages (NR8383) in vitro.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Morimoto, Kazuhiro

    2013-01-01

    Azithromycin (AZM), a 15-membered ring macrolide antimicrobial agent, has an antibacterial spectrum that includes intracellular parasitic pathogens that survive or intracellularly multiply in alveolar macrophages (AMs). The subcellular distribution of AZM in AMs was evaluated in vitro in comparison with clarithromycin (CAM). AZM and CAM (50 µM) were applied to the NR8383 cells, used as an in vitro model of AMs, followed by incubation at 37°C or 4°C. The total amount of AZM in cells and subcellular distribution (cell fractionation) was determined after incubation. High level of AZM accumulation was observed in the NR8383 cells at 37°C, and the equilibrium intracellular to extracellular concentration ratio (I/E ratio) was approximately 680, which was remarkably higher than that of CAM (equilibrium I/E ratio=28). The intracellular accumulation of AZM and CAM was temperature dependent. In addition, AZM distributed to the granules fraction including organelles and soluble fraction including cytosol in the NR8383 cells, whereas CAM mainly distributed in soluble fraction. The amount of AZM in the granules fraction was markedly reduced in the presence of ammonium chloride for increase in intracellular pH. These results indicate that AZM is distributed in acidic compartment in AMs. This study suggests that high AZM accumulation in the NR8383 cells is due to the trapping and/or binding in acidic organelles, such as lysosomes.

  5. Aerosol-based efficient delivery of azithromycin to alveolar macrophages for treatment of respiratory infections.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Morimoto, Kazuhiro

    2013-01-01

    The efficacy of aerosol-based delivery of azithromycin (AZM) for the treatment of respiratory infections caused by pathogenic microorganisms infected in alveolar macrophages (AMs) was evaluated by comparison with oral administration. The aerosol formulation of AZM (0.2 mg/kg) was administered to rat lungs using a Liquid MicroSprayer(®). The oral formulation of AZM (50 mg/kg) was used for comparison. Time-courses of concentrations of AZM in AMs following administration were obtained, and then the therapeutic availability (TA) was calculated. In addition, the area under the concentrations of AZM in AMs - time curve/minimum inhibitory concentration at which 90% of isolates ratio (AUC/MIC90) were calculated to estimate the antibacterial effects in AMs. The TA of AZM in AMs following administration of aerosol formulation was markedly greater than that following administration of oral formulation. In addition, the AUC/MIC90 of AZM in AMs was markedly higher than the effective values. This indicates that the aerosol formulation could be useful for the treatment of respiratory infections caused by pathogenic microorganisms infected in AMs. This study suggests that aerosolized AZM is an effective pulmonary drug delivery system for the treatment of respiratory infections.

  6. An In Vitro Investigation of Pulmonary Alveolar Macrophage Cytotoxicity Introduced by Fibrous and Grainy Mineral Dusts

    Institute of Scientific and Technical Information of China (English)

    DONG Faqin; DENG Jianjun; WU Fengchun; PU Xiaoyong; John HUANG; FENG Qiming; HE Xiaochun

    2006-01-01

    In order to study the damage mechanism of mineral dusts on the pulmonary alveolar macrophage (AM), the changes in their death ratio, malandialdthyde (MDA) content and activities of lactate dehydrogenase (LDH) and superoxide dismutase (SOD) were measured, and the technique of cell culture in vitro was used to investigate the cytotoxicity of six mineral dusts (twelve crystal habits)from twelve mineral deposits. The results show that wollastonite and clinoptilolite have no AM cytotoxicity, while other fibrous and grainy mineral dusts damage pulmonary AM in various degrees.The cytotoxicity of fibrous mineral dusts was greater than that of the grainy ones, and the cytotoxicity of dusts was positively correlated with the active OH- content in dusts, but not necessarily so with its SiO2 content. The high pH values produced by dust was unfavorable for the survival of cells and the dusts with low bio-resistance were safe for cells. The content of variable valence elements in dusts might influence their cytotoxicity and the surface charge of dusts was not a stable factor for their toxicity. It is demonstrated that the shape of mineral dusts was one of the factors affecting cytotoxicity, and that the cytotoxicity of mineral dusts depends mainly on their properties.

  7. Measurement of beta-glucuronidase in effluent of perifused alveolar macrophages challenged with chemically modified chrysotile asbestos.

    Science.gov (United States)

    Forget, G; Lacroix, M J; Calvert, R; Sirois, P

    1984-06-01

    Chrysotile asbestos has been implicated with lung disorders, notably fibrotic lesions and cancer. In vitro, chrysotile fibers are cytotoxic to lung macrophages and stimulate the release of inflammatory mediators. Reports to the effect that chemical modifications of asbestos fibers reduce their cytotoxic and inflammatory potential initiated the present study of three fiber modifications. The cytotoxic and inflammatory effects of magnesium-leached chrysotile, POCL3-treated chrysotile, and CaO-treated chrysotile were studied in a perifused rat alveolar macrophage culture system, relative to untreated fibers. Natural Canadian chrysotile (UICC "B") caused dose-dependent cell mortality and clumping. The release of beta-glucuronidase (beta-Glu), a lysosomal enzyme, was also dose dependent. Rhodesian chrysotile (UICC "A") caused similar cytotoxic and inflammatory effects. However, magnesium-leached chrysotile was less cytotoxic (39% less) and had a lesser clumping capacity (31% less) than untreated chrysotile. Total secretion of beta-Glu elicited by magnesium-leached chrysotile was reduced by 43% from the untreated sample, but kinetic monitoring indicates that this reduction in inflammatory potential is only significant during the first 12 h of an 18-h culture period. POCl3 treatment of chrysotile fibers produced differing effects depending on the length of the fibers under study. Treating fibers with a mean length of 8 micron produced a secretion pattern similar to that produced by acid leaching. The total output for the treated sample was 44% lower than with untreated chrysotile; the difference was only significant during the first 12 h of perifusion. Cell mortality and aggregation were not reduced in any important way with POCl3 treatment of these longer fibers. When ultra-short fibers (mean length = 0.8 micron) were treated with POCl3, the total decrease in beta-Glu output was equal to 41%, and the release of enzyme was significantly lower during the whole 18-h

  8. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII and macrophages.

    Directory of Open Access Journals (Sweden)

    Richard eLu

    2012-12-01

    Full Text Available Alveolar type II pneumocytes (ATII and alveolar macrophages (AM play a crucial role in the lung’s innate immune response. Burkholderia pseudomallei (BP and Burkholderia mallei (BM are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM. We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8 and macrophages (IL-6, TNFα at 6h post-infection compared to BM (p<0.05. Interestingly, BM induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6h post-infection, with delayed induction of inflammatory cytokines at 24h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.

  9. No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis

    Directory of Open Access Journals (Sweden)

    Wikén Maria

    2010-09-01

    Full Text Available Abstract Background Sarcoidosis is a granulomatous inflammatory disease, possibly of infectious aetiology. We aimed to investigate whether the degree of functional polarization of alveolar macrophages (AMs, or Toll-like receptor (TLR expression, is associated with sarcoidosis or with distinct clinical manifestations of this disease. Methods Total BAL cells (cultured four or 24 h in medium, or stimulated 24 h with LPS from 14 patients and six healthy subjects, sorted AMs from 22 patients (Löfgren's syndrome n = 11 and 11 healthy subjects, and sorted CD4+ T cells from 26 patients (Löfgren's syndrome n = 13 and seven healthy subjects, were included. Using real-time PCR, the relative gene expression of IL-10, IL-12p35, IL-12p40, IL-23p19, CCR2, CCR7, iNOS, CXCL10, CXCL11, CXCL16, CCL18, CCL20, CD80, and CD86, and innate immune receptors TLR2, TLR4, and TLR9, was quantified in sorted AMs, and for selected genes in total BAL cells, while IL-17A was quantified in T cells. Results We did not find evidence of a difference with regard to alveolar macrophage M1/M2 polarization between sarcoidosis patients and healthy controls. TLR2 gene expression was significantly lower in sorted AMs from patients, particular in Löfgren's patients. CCL18 gene expression in AMs was significantly higher in patients compared to controls. Additionally, the IL-17A expression was lower in Löfgren's patients' CD4+ T cells. Conclusions Overall, there was no evidence for alveolar macrophage polarization in sarcoidosis. However, there was a reduced TLR2 mRNA expression in patients with Löfgren's syndrome, which may be of relevance for macrophage interactions with a postulated sarcoidosis pathogen, and for the characteristics of the ensuing T cell response.

  10. Comparison of arachidonate metabolism by alveolar macrophages from bighorn and domestic sheep.

    Science.gov (United States)

    Silflow, R M; Foreyt, W J; Taylor, S M; Laegreid, W W; Liggitt, H D; Leid, R W

    1991-02-01

    We have defined the metabolites of arachidonic acid (AA) secreted by alveolar macrophages (AMs) of bighorn sheep and domestic sheep in response to three agents: calcium ionophore A23187, phorbol myristate acetate (PMA), and opsonized zymosan. Cells were labeled with [3H]AA prior to stimulation and 11 tritiated metabolites, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and hydroxyeicosatetraenoic acids (HETEs), were detected and quantitated by high-performance liquid chromotography and radiometry. Zymosan stimulation resulted in the release of significantly elevated quantities (P less than 0.05), of LTB4, [5(S), 12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid], 5-HETE, [5(S)-hydroxyeicosatetraenoic acid], and the nonenzymatic isomers of LTB4, [LTB I, 5(S),12(R)-6-trans-LTB4] and LTB II, [5(S), 12(S)-6-trans-LTB4], from domestic sheep AM when compared to bighorn sheep AM. Phorbol myristate acetate (PMA) stimulation released significantly elevated quantities (P less than 0.04), of TXB2, (thromboxane B2), HHT, [12(S)-12-hydroxy-5,8,10-heptadecaenoic acid], LTB I, LTB II, and 15-HETE, [15(S)-hydroxyeicosatetraenoic acid] from domestic sheep AMs when compared to bighorn sheep AMs. However, after A23187 challenge, only 15-HETE was significantly elevated (P less than 0.04) in domestic sheep AMs when compared to bighorn sheep AMs. These clear differences in AA metabolism of AMs obtained from bighorn and domestic sheep in response to three different agonists suggest not only different control mechanisms for lung metabolism of AA in the two species, but also suggest that differences in the metabolites released may lead to quite different regulation of lung defense mechanisms in the two sheep species.

  11. Surface iron inhibits quartz-induced cytotoxic and inflammatory responses in alveolar macrophages.

    Science.gov (United States)

    Ghiazza, Mara; Scherbart, Agnes M; Fenoglio, Ivana; Grendene, Francesca; Turci, Francesco; Martra, Gianmario; Albrecht, Catrin; Schins, Roel P F; Fubini, Bice

    2011-01-14

    The mechanism of enhancement/inhibition of quartz toxicity induced by iron is still unclear. Here the amount of iron on a fibrogenic quartz (Qz) was increased by wet impregnation (Fe(NO(3))(3) 0.67 and 6.7 wt %). X-ray diffraction (XRD), XRF diffuse reflectance, UV-vis, and infrared (IR) spectroscopies revealed dispersed ferric ions, and hematite aggregates at the higher loading. Surface features relevant to pathogenicity and cell responses were compared not only to the original quartz but also to reference quartz DQ12. Surface charge (ζ-potential) was more negative on the original and low-loaded specimen than on the high-loaded one. DQ12 had a less negative ζ-potential than Qz, ascribed to the absence of aluminium present in Qz (1.7 wt %). All quartz specimens were able to generate HO(•) radicals, iron-loaded samples being more reactive than original quartz. Iron deposition inhibited the rupture of a C-H bond. All quartzes were phagocytized by alveolar macrophages (AMΦ cell line NR8383) to the same extent, irrespective of their surface state. Conversely, iron loading increased AMΦ viability (evaluated by cytotoxicity and induction of apoptosis). Qz was found to be much less cytotoxic than DQ12. The induction of oxidative stress and inflammatory responses (evaluated by HO-1 mRNA expression and TNF-α mRNA and protein expression) revealed a reduction in inflammogenicity upon iron loading and a more inflammogenic potency of DQ12 ascribed to undissociated SiOH interacting via H-bonding with cell membrane components. The results suggest that besides aluminium also iron at the quartz surface may have an inhibitory effect on adverse health responses.

  12. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  13. Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets.

    Science.gov (United States)

    Wang, Lei; Qin, Wanhai; Ruidong, Zhai; Liu, Shiting; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-01-01

    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified, suggesting new strategies for the

  14. Inflammatory and fibrotic mediator release by alveolar macrophages from coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, D.C.; Stauffer, J.L.; Gaydos, L.J.; Demers, L.M. [Pennsylvania State University, Hershey, PA (United States). Milton S. Hershey Medical Center, Dept. of Pathology

    1995-09-01

    Eicosanoids and cytokines produced by alveolar macrophages (AM) are key mediators of pulmonary inflammation and fibrosis. In order to determine if eicosanoid production and cytokine production are altered in AM obtained from coal miners, we compared production of prostaglandin E(2) (PGE (2)), thromboxane A(2) (TXA(2)), leukotriene B-4 (LTB(4)), interleukin-1 beta (IL-1 beta), and tumor necrosis factor alpha (TNF alpha) by cultured AM from normal human subjects and coal miners. The recovery of AM from miners` lungs by bronchoalveolar lavage was significantly greater than that from control subjects. Mean eicosanoid and cytokine production by AM from active miners was also increased compared to AM from control subjects, but this increase was not statistically significant. AM from control subjects produced significantly more TXA (2) and TNF alpha when exposed to lipopolysaccharide than did AM from miners. The cyclooxygenase inhibitor suprofen reduced PGE(2) and TXA(2) production and TNF alpha release but had no effect on LTB (4) production or IL-1 beta release by miners` AM. The lipoxygenase inhibitor nordihydroguaiaretic acid attenuated TNF alpha release, as well as that of LTB(4), but had no effect on IL-1 beta release. Inhibition of thromboxane synthase by UK 38,485 also reduced TNF alpha release by active miners` AM but had no effect on PGE(2), LTB(4) production, or IL-1 beta release. The results of these studies suggest that occupational inhalation of coal dust may increase total lung eicosanoid and cytokine levels and reduce the reactivity of AM to bacterial endotoxin. Furthermore, coal dust-induced changes in both eicosanoid and cytokine release may be subject to pharmacological modulation.

  15. Modulation of alveolar macrophage lipoxygenase metabolism by the sulfhydryl-reactive compound

    Energy Technology Data Exchange (ETDEWEB)

    Peters-Golden, M.; Thebert, P.

    1986-03-01

    N-ethylmaleimide (NEM), a sulfhydryl(SH)-reactive compound, has been previously shown to trigger arachidonic acid (AA) release and thromboxane (TxB/sub 2/) synthesis in alveolar macrophages (AMs). The present study was undertaken to characterize the effects of this agent on rat AM lipoxygenase metabolism. NEM caused dose-dependent stimulation of TxB/sub 2/ and, to a lesser extent, PGE/sub 2/ synthesis. However, NEM at either 5 or 10 ..mu..M failed to stimulate production of LTB/sub 4/ (control= 31 + 6, 5 ..mu..M = 36 + 8, 10 ..mu..M = 39 +/- 14 pg/ml; mean + SEM, n = 3) or LTC/sub 4/ (control = 109 +/- 29, 5 ..mu..M = 111 + 27, 10 ..mu..M = 113 +/- 40 pg/ml; n = 4). Indomethacin (5 ..mu..M) failed to shunt AA towards LTB/sub 4/ or LTC/sub 4/ synthesis in response to 10 ..mu..M NEM. In addition, /sup 14/C-5-HETE production by /sup 14/C-AA prelabeled AMs was no greater in NEM-treated cultures (308 +/- 96 cpm) than in control cultures (321 +/- 159 cpm/4 x 10/sup 6/ cells). The effect of NEM on zymosan-induced eicosanoid synthesis was examined by incubating AMs with zymosan (100 ..mu..g/ml) for 1 hour + NEM. NEM (10 ..mu..M) inhibited zymosan-induced LTC/sub 4/ synthesis (control = 122 +/- 43, zymosan = 266 +/- 35, zymosan + NEM = 105 +/- 38 pg/ml; n = 3; p = .05) without cytotoxicity, and while yielding additive increments in TxB/sub 2/ and PGE/sub 2/. Since the actions of both 5-lipoxygenase and glutathione transferase represent SH-dependent steps in the synthesis of LTs, it is postulated that the SH reactivity of NEM explains both its inability to stimulate LT synthesis and its ability to inhibit zymosan-induced LTC/sub 4/ synthesis.

  16. Effect of in vivo coal dust exposure on arachidonic acid metabolism in the rat alveolar macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, D.C.; Stanley, C.F.; El-Ayouby, N.; Demers, L.M. (Pennsylvania State Univ., Hershey, PA (USA). M.S. Hershey Medical Center, Dept. of Pathology)

    1990-01-01

    Oxygenated metabolites of arachidonic acid (AA) are produced by the alveolar macrophage (AM) and have been shown to mediate inflammatory reactions. We therefore assessed the production of eicosanoids by AM harvested from the lungs of rats exposed to a bituminous coal dust for 2 wk in an inhalation chamber in order to determine if AA metabolism was altered in a manner that may promote an inflammatory response in the lung. Exposure to coal dust resulted in a 66% increase in the number of AM harvested, an increase in thromboxane A{sub 2}(TxA{sub 2}) and leukotriene B{sub 4} (LTB{sub 4}) production to 222% and 181% of control values, respectively, and a decrease in prostaglandin E{sub 2} (PGE{sub 2}) production to 62% of control values. In AM harvested from rats allowed to breathe clean air for 2 wk following coal dust exposure, PGE{sub 2} production returned to control levels but TxA{sub 2} and LTB{sub 4} production remained elevated. The TxA{sub 2} synthesis inhibitor UK 38,485 reduced TxA{sub 2} production in dust-exposed AM both immediately and 2 wk following exposure. Thus, exposure of rats to coal dust significantly alters the metabolism of AA in AM, with potentially important aspects of AA metabolism remaining altered even after a 2-wk recovery period. Based on the established role of eicosanoids in inflammatory and fibrotic processes, these results suggest that the alteration of AM eicosanoid production as a result of the inhalation of coal mine dust may be an important factor in the pathophysiology of coal workers' pneumoconiosis. 26 refs., 4 figs.

  17. Alveolar macrophages infected with Ames or Sterne strain of Bacillus anthracis elicit differential molecular expression patterns.

    Directory of Open Access Journals (Sweden)

    Felicia D Langel

    Full Text Available Alveolar macrophages (AMs phagocytose Bacillus anthracis following inhalation and induce the production of pro-inflammatory cytokines and chemokines to mediate the activation of innate immunity. Ames, the virulent strain of B. anthracis, contains two plasmids that encode the antiphagocytic poly-γ-d-glutamic acid capsule and the lethal toxin. The attenuated Sterne strain of B. anthracis, which lacks the plasmid encoding capsule, is widely adapted as a vaccine strain. Although differences in the outcome of infection with the two strains may have originated from the presence or absence of an anti-phagocytic capsule, the disease pathogenesis following infection will be manifested via the host responses, which is not well understood. To gain understanding of the host responses at cellular level, a microarray analysis was performed using primary rhesus macaque AMs infected with either Ames or Sterne spores. Notably, 528 human orthologs were identified to be differentially expressed in AMs infected with either strain of the B. anthracis. Meta-analyses revealed genes differentially expressed in response to B. anthracis infection were also induced upon infections with multiple pathogens such as Francisella Novicida or Staphylococcus aureus. This suggests the existence of a common molecular signature in response to pathogen infections. Importantly, the microarray and protein expression data for certain cytokines, chemokines and host factors provide further insights on how cellular processes such as innate immune sensing pathways, anti-apoptosis versus apoptosis may be differentially modulated in response to the virulent or vaccine strain of B. anthracis. The reported differences may account for the marked difference in pathogenicity between these two strains.

  18. Ovine progressive pneumonia virus capsid antigen as found in CD163- and CD172a-positive alveolar macrophages of persistently infected sheep.

    Science.gov (United States)

    Herrmann-Hoesing, L M; Noh, S M; Snekvik, K R; White, S N; Schneider, D A; Truscott, T; Knowles, D P

    2010-05-01

    In situ detection of ovine progressive pneumonia virus (OPPV) and the phenotypic identification of the cells that harbor OPPV have not been described for the OPPV-affected tissues, which include lung, mammary gland, synovial membranes of the carpal joint, and choroid plexus of the brain. In this study, the authors first developed a single enzyme-based automated immunohistochemical (IHC) analysis for detection of OPPV capsid antigen (CA) on OPPV-affected tissues, using 2 anti-CAEV CA monoclonal antibodies, 5A1 and 10A1, and 2 enzyme-based IHC systems. Out of 10 naturally and persistently OPPV-infected ewes, OPPV CA was detected in intercellular regions of the carpal synovial membrane of 1 ewe, in cells resembling alveolar macrophages and pulmonary interstitial macrophages in lung tissue of 3 ewes, and in mammary alveolar cells of 1 ewe. Furthermore, dual enzyme-based automated IHC analyses revealed that OPPV CA was predominantly detected in CD172a- or CD163-positive alveolar macrophages of the lungs and mammary gland. That anti-inflammatory (CD163) and downregulatory (CD172a) types of alveolar macrophage harbor OPPV CA leads to the possibility that during persistent infection with OPPV, the host alveolar macrophage might serve to limit inflammation while OPPV persists undetected by the host adaptive immune response in the lung and mammary gland.

  19. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanling; Xu, Sanpeng; Xiao, Fei; Xiong, Yan; Wang, Xiaojin; Gao, Sui; Yan, Weiming [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Ning, Qin, E-mail: qning@tjh.tjmu.edu.cn [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2010-05-28

    Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.

  20. Role of ICAM-1 in the aggregation and adhesion of human alveolar macrophages in response to TNF-α and INF-γ

    Directory of Open Access Journals (Sweden)

    Masahiro Sasaki

    2001-01-01

    Full Text Available Intracellular adhesion molecule-1 (ICAM-1-mediated cell-cell adhesion is thought to play an important role at sites of inflammation. Recent evidence suggests that ICAM-1 surface expression on alveolar macrophages is increased in pulmonary sarcoidosis and that inflammatory granuloma formation is characterized by the aggregation of macrophages. The present study shows that ICAM-1 expression is significantly elevated on alveolar macrophages from patients with sarcoidosis in response to tumor necrosis factor-α (TNF-α and interferon- γ (INF-γ compared with healthy controls. Aggregation and adhesion were significantly increased in alveolar macrophages treated with TNF-α and INF-γ, and significantly inhibited in those pretreated with a monoclonal antibody to ICAM-1. Similarly, aggregation and adhesion were inhibited in macrophages treated with heparin, which then exhibited a wide range of biological activities relevant to inflammation. These results suggested that the surface expression of ICAM-1 on alveolar macrophages in response to TNF-α and INF-γ is important in mediating aggregation and adhesion. Additionally, heparin may be useful for developing novel therapeutic agents for fibrotic lung disease.

  1. Granulocyte macrophage colony stimulating factor is elevated in alveolar macrophages from sheep naturally infected with maedi-visna virus and stimulates maedi-visna virus replication in macrophages in vitro.

    Science.gov (United States)

    Zhang, Z; Harkiss, G D; Hopkins, J; Woodall, C J

    2002-08-01

    Infection by maedi-visna virus, a lentivirus of sheep, leads to chronic inflammatory reactions of various tissues. In this report we have analysed the role of specific cytokines in the disease process. A significant increase in expression of interleukin-6, interleukin-10, granulocyte macrophage-colony stimulating factor (GM-CSF) and transforming growth factor-beta1 mRNA was observed in alveolar macrophages isolated from the lungs of naturally infected animals when compared with lungs of seronegative controls. Levels of GM-CSF mRNA expression in alveolar macrophages correlated with the presence of lung lesions, but there was no correlation of interleukin-10, interleukin-6, tumour necrosis factor-alpha and transforming growth factor-beta1 mRNA levels in alveolar macrophages from animals with pulmonary lesions. In vitro investigation showed that GM-CSF in the range 0.1-10 ng/ml induced a significant increase in viral p25 production after 7 days in acutely infected blood monocyte-derived macrophages. The production of p25 peaked between 7 and 14 days exposure to 10 ng/ml of GM-CSF. Quantitative polymerase chain reaction showed that the level of viral DNA in monocyte-derived macrophages was dose-dependent following GM-CSF treatment in the range 0.1-100 ng/ml after 7 days. Viral mRNA expression was also enhanced. These findings indicate a role for GM-CSF in the pathogenesis of lymphoid interstitial pneumonia in infected animals.

  2. CX3CL1(+ Microparticles Mediate the Chemoattraction of Alveolar Macrophages toward Apoptotic Acute Promyelocytic Leukemic Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hui Tsai

    2014-02-01

    Full Text Available Background/Aims: During the resolution phase of inflammation, release of “find-me” signals by apoptotic cells is crucial in the chemoattraction of macrophages toward apoptotic cells for subsequent phagocytosis, in which microparticles derived from apoptotic cells (apo-MPs are involved. A recent study reports that CX3CL1 is released from apoptotic cells to stimulate macrophages chemotaxis. In this study, we investigated the role of CX3CL1 in the apo-MPs in the cell-cell interaction between alveolar macrophage NR8383 cells and apoptotic all-trans retinoic acid-treated NB4 (ATRA-NB4 cells. Methods/Results: Apoptotic ATRA-NB4 cells and their conditioning medium (CM enhanced the chemoattraction of NR8383 cells as well as their phagocytosis activity in engulfing apoptotic ATRA-NB4 cells. The levels of CX3CL1(+ apo-MPs and CX3CL1 were rapidly elevated in the CM of ATRA-NB4 cell culture after induction of apoptosis. Both exogenous CX3CL1 and apo-MPs enhanced the transmigration of NR8383 cells toward apoptotic ATRA-NB4 cells. This pro-transmigratory activity was able to be partially inhibited either by blocking the CX3CR1 (CX3CL1 receptor of NR8383 cells with its specific antibody or by blocking the surface CX3CL1 of apo-MPs with its specific antibody before incubating these apo-MPs with NR8383 cells. Conclusion: CX3CL1(+ apo-MPs released by apoptotic cells mediate the chemotactic transmigration of alveolar macrophages.

  3. Klotho Reduction in Alveolar Macrophages Contributes to Cigarette Smoke Extract-induced Inflammation in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Li, Lingling; Wang, Yujie; Gao, Wei; Yuan, Cheng; Zhang, Sini; Zhou, Hong; Huang, Mao; Yao, Xin

    2015-11-13

    Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Klotho, an anti-aging protein, has an anti-inflammatory function. However, the role of Klotho has never been investigated in COPD. The aim of this study is to investigate the possible role of Klotho by alveolar macrophages in airway inflammation in COPD. Klotho levels were assessed in the lung samples and peripheral blood mononuclear cells of non-smokers, smokers, and patients with COPD. The regulation of Klotho expression by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced inflammation. Klotho expression was reduced in alveolar macrophages in the lungs and peripheral blood mononuclear cells of COPD patients. CSE decreased Klotho expression and release from MH-S cells. Knockdown of endogenous Klotho augmented the expression of the inflammatory mediators, such as MMP-9, IL-6, and TNF-α, by MH-S cells. Exogenous Klotho inhibited the expression of CSE-induced inflammatory mediators. Furthermore, we showed that Klotho interacts with IκBα of the NF-κB pathway. Dexamethasone treatment increased the expression and release level of Klotho in MH-S cells. Our findings suggest that Klotho plays a role in sustained inflammation of the lungs, which in turn may have therapeutic implications in COPD.

  4. Depressant effects of ambroxol and erdosteine on cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide.

    Science.gov (United States)

    Jang, Yoon Young; Song, Jin Ho; Shin, Yong Kyoo; Han, Eun Sook; Lee, Chung Soo

    2003-04-01

    The present study examined the effects of ambroxol and erdosteine, bronchial expectorants, on the cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide. Ambroxol and erdosteine significantly decreased the production of tumour necrosis factors-alpha, interleukin-1beta, and interleukin-6 in alveolar macrophages activated by lipopolysaccharide. These drugs significantly reduced the production of superoxide anion, hydrogen peroxide, and nitric oxide and the release of acid phosphatase and lysozyme in lipopolysaccharide-activated macrophages. Ambroxol and erdosteine showed no scavenging effect on superoxide anion and hydrogen peroxide, whereas both drugs effectively decomposed nitric oxide. The results show that ambroxol and erdosteine may inhibit the responses, including cytokine synthesis and free radical production, in rat alveolar macrophages activated by lipopolysaccharide. Unlike the production of reactive oxygen species, the inhibitory effect of ambroxol and erdosteine on the production of nitric oxide in lipopolysaccharide-activated alveolar macrophages may be accomplished by a scavenging action on the species and inhibition of the respiratory burst.

  5. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment

    Directory of Open Access Journals (Sweden)

    Mukae Hiroshi

    2005-08-01

    Full Text Available Abstract Background Studies from our laboratory have shown that human alveolar macrophages (AM and bronchial epithelial cells (HBEC exposed to ambient particles (PM10 in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation. Methods The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93 and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM-1 in the production of these mediators. Results AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF, M-CSF, macrophage inflammatory protein (MIP-1β, monocyte chemotactic protein (MCP-1, interleukin (IL-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p 10-induced increase in co-culture mRNA expression. Conclusion We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.

  6. Electron microscope study on the relationship between macrophages of the alevolar space and spheroid alveolar epithelial cells on mice after injection of squid-ink (sepia-melanin solution into the trachea

    Directory of Open Access Journals (Sweden)

    Suwa,Kiichi

    1977-02-01

    Full Text Available The relationship between alveolar macrophages and spheroid alveolar epithelial cells was studied with the electron microscope after injection of squid-ink solution into the trachea of the mouse. At 20 hours after injection of squid-ink solution slight degeneration was evident in alveolar macrophages with sepia-melanin particles being phagocytized with partial digestion by lysosmes. Furthermore, hardly any changes were seen in mitochondria and inclusion bodies of the spheroid alveolar epithelial cells. In contrast, at one week after injection of squid-ink solution, almost all alveolar macrophages were degenerated with destruction of the ectoplasm in which the ingested sepia-melanin particles were digested by lysosomes into fine particles, and the mitochondria of spheroid alveolar epithelial cells were degenerated and the inclusion bodies were hardly formed. At three weeks after injection of squid-ink solution, alveolar macrophages as well as speroid alveolar epithelial cells showed almost complete recovery of functional structure. As the phagocyte in the alveolar space, neutrophile leucocytes were also observed in addition to the so-called alveolar macrophage.

  7. Lower expression of inducible nitric oxide synthase and higher expression of arginase in rat alveolar macrophages are linked to their susceptibility to Toxoplasma gondii infection.

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Zhao

    Full Text Available Rats are naturally resistant to Toxoplasma gondii infection, particularly the RH strain, while mice are not. Previous studies have demonstrated that inducible nitric oxide synthase (iNOS and arginase-1 of rodent peritoneal macrophages are linked to the mechanism of resistance. As an increasing number of studies on human and animal infections are showing that pulmonary toxoplasmosis is one of the most severe clinical signs from T. gondii infection, we are interested to know whether T. gondii infection in alveolar macrophages of rats is also linked to the levels of iNOS and arginase-1 activity. Our results demonstrate that T. gondii could grow and proliferate in rat alveolar macrophages, both in vitro and in vivo, at levels higher than resistant rat peritoneal macrophages and at comparable levels to sensitive mouse peritoneal macrophages. Lower activity and expression levels of iNOS and higher activity and expression levels of arginase-1 in rat alveolar macrophages were found to be linked to the susceptibility of T. gondii infection in these cells. These novel findings could aid a better understanding of the pathogenesis of clinical pulmonary toxoplasmosis in humans and domestic animals.

  8. Effect of kerosene and its soot on the chrysotile-mediated toxicity to the rat alveolar macrophages.

    Science.gov (United States)

    Arif, J M; Khan, S G; Ahmad, I; Joshi, L D; Rahman, Q

    1997-02-01

    In order to examine the pulmonary toxicity of kerosene oil and its combustion product (soot) in asbestos-exposed rats, various biochemical and chemical parameters were assayed. Treatment of rats with a single intratracheal dose of chrysotile asbestos (5 mg) and kerosene (50 microliters) or its soot (5 mg) in combination led to an increased number of pulmonary alveolar macrophages (PAM), elevated levels of hydrogen peroxide, and thiobarbituric acid-reacting substances, alterations in the activities of primary (glutathione peroxidase and catalase) and secondary (glutathione reductase and glucose-6-phosphate dehydrogenase) endogenous antioxidant enzymes, and depletion in the levels of glutathione in PAM compared to the chrysotile, kerosene, or soot alone. These changes may indicate the generation of oxidative stress in the macrophages. The resulting oxidative stress may be subsequently critical in collapsing the cellular membrane, which may change the cell membrane permeability and may also damage the phagolysosomal membrane, thereby releasing the membrane bound enzymes as indicated by an increased leakage of intracellular acid phosphatase and lactate dehydrogenase. The injury to macrophages may trigger events that lead to lung fibrosis and/or malignancies in the exposed animals. This study may be helpful in understanding the etiology of certain clinical and pathological disorders in the population exposed simultaneously to both asbestos and kerosene or its combustion products.

  9. 64. Study on the DNA damage induced by coal tar pitch fume extracts in rat alveolar macrophage and it's mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The carcinogenic mechanism of coal tar pitch (CTP) as a recognized carcinogen has been studying. It is widely believed that the carcinogenicity of CTP is based on the genotoxicity of CTP. In the process of carcinogenesis caused by extrinsic chemical substance, the DNA damage mainly occurred in the initiation phase. UP to now, the most sensitive detecting endpoint for DNA damage is to detect DNA single strand breaks. The single cell gel electrophoresis has been rapidly becoming a widely used analytical procedure during the last few years, which can detect DNA strand breaks. The method is a fast, relatively inexpensive, easy to perform, non-radioactive, and very sensitive method. This method suits to different tests in vitro or in vivo. Virtually any eukaryotic cell, which could be made into single cell suspensions, can be processed for analysis of DNA damage using the single cell gel electrophoresis. The aim of the study is to investigate the role of DNA damage induced by CTP fume in rat AM, to examine the changes of ROS, MDA and SOD, and to explore the mechanism of DNA damage by CTP fume. The present study is in favor of studying the mechanism of mutagenesis and carcinogenesis induced by CTP. Method: The healthy male Wistar rats were anesthetized intraperitoneally with 40 mg pentobarbital sodium per kilogram of body weight. The animals were exanguinated by excising femoral, and collected the rat alveolar macrophage by Joseph's method. The concentration of AM had been regulated to 1.5×106 cell/ml. AMs, which had been cultured in 24-well culture plate, were divided into 4 groups. These cells were exposured to 5.0 μg/ml extracts of coal tar pitch fume, and contacted with 500 μM, 1 000 μM, and 2 000 μM of GSH respectively. These cells were divided into 4 groups. After incubation 24 hours, the indexes that had been used above were measured. Results: ①The DNA strand breaks induced by coal tar pitch fume extracts: After undergoing electrophoresis, the

  10. In depth global analysis of gene expression levels in porcine alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus

    Science.gov (United States)

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Infection of the preferential target cells, porcine alveolar macrophages (PAMs), by PRRSV causes significant changes in their function by mechanisms that are not understood. Serial Analysis of Gene Ex...

  11. In depth global analysis of transcript abundance levels in porcine alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus

    Science.gov (United States)

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide and causes considerable economic loss. Infection of the primary target cells, porcine alveolar macrophages (PAMs), by PRRSV causes significant changes in their function by mechanisms that are not under...

  12. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    Directory of Open Access Journals (Sweden)

    J. L. Pérez-Arellano

    1995-01-01

    Full Text Available Hydrolytic enzymes are the major constituents of alveolar macrophages (AM and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs. An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF protein concentration, BALF LDH and BALF alkaline phosphatase activities. All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease.

  13. Stimulation of alveolar macrophages by BCG vaccine enhances the process of lung fibrosis induced by bleomycin.

    Science.gov (United States)

    Chyczewska, E; Chyczewski, L; Bańkowski, E; Sułkowski, S; Nikliński, J

    1993-01-01

    It was found that the BCG vaccine injected subcutaneously to the rats enhances the process of lung fibrosis induced by bleomycin. Pretreatment of rats with this vaccine results in accumulation of activated macrophages in lung interstitium and in the bronchoalveolar spaces. It may be suggested that the activated macrophages release various cytokines which may stimulate the proliferation of fibroblasts and biosynthesis of extracellular matrix components.

  14. In vitro biodegradation of chrysotile fibres by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect.

    Science.gov (United States)

    Jaurand, M C; Gaudichet, A; Halpern, S; Bignon, J

    1984-08-01

    The modification of the chemistry of asbestos chrysotile fibres (Mg3(Si2O5)(OH)4) after their ingestion by cultured cells has been studied. Two types of cells involved in asbestos related pulmonary disease were used, rabbit alveolar macrophages (AM), recovered by bronchoalveolar lavage, and pleural mesothelial cells (PMC) obtained from the rat parietal pleura. Chemical characterisation of intracellular fibres was performed on unstained ultrathin sections by electron probe microanalysis. The results showed a progressive leaching of Mg, characterised by a time dependent decrease of Mg/Si. AM were more efficient than PMC at leaching intracellular chrysotile fibres since it took longer to obtain the same proportion of leached fibres with PMC than with AM. As in vitro Mg-leaching can be obtained by acid treatment, chrysotile fibres were incubated, either untreated or pretreated with cell membranes, at pH 4 or 7 for various times. The data show that the kinetic of leaching by AM was comparable with leaching at pH 4. The leaching by PMC was of the same order as leaching at pH 7. When membranes were adsorbed on to the fibres, a delayed leaching was observed. The results indicate that the solubilisation of chrysotile by AM could be an intraphagolysosomal event due to a pH effect. With PMC, however, it is not possible to draw this conclusion since nothing is known about the intracellular pH.

  15. Single-Cell Mechanics Provides an Effective Means To Probe in Vivo Interactions between Alveolar Macrophages and Silver Nanoparticles.

    Science.gov (United States)

    Liu, Ying X; Karsai, Arpad; Anderson, Donald S; Silva, Rona M; Uyeminami, Dale L; Van Winkle, Laura S; Pinkerton, Kent E; Liu, Gang-yu

    2015-12-10

    Single-cell mechanics, derived from atomic force microscopy-based technology, provides a new and effective means to investigate nanomaterial-cell interactions upon in vivo exposure. Lung macrophages represent initial and important responses upon introducing nanoparticles into the respiratory tract, as well as particle clearance with time. Cellular mechanics has previously proven effective to probe in vitro nanomaterial-cell interactions. This study extends technology further to probe the interactions between primary alveolar macrophages (AM) and silver nanoparticles (AgNPs) upon in vivo exposure. Two types of AgNPs, 20 and 110 nm, were instilled to rat lung at 0.5 mg AgNPs/kg body weight, and allowed 24 h interaction. The consequences of these interactions were investigated by harvesting the primary AMs while maintaining their biological status. Cellular mechanics measurements revealed the diverse responses among AM cells, due to variations in AgNP uptake and oxidative dissolving into Ag(+). Three major responses are evident: zero to low uptake that does not alter cellular mechanics, intracellular accumulation of AgNPs trigger cytoskeleton rearrangement resulting in the stiffening of mechanics, and damage of cytoskeleton that softens the mechanical profile. These effects were confirmed using confocal imaging of F-actin and measurements of reactive oxygen species production. More detailed intracellular interactions will also be discussed on the basis of this study in conjunction with prior knowledge of AgNP toxicity.

  16. The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure.

    Science.gov (United States)

    Liu, Ran; Yin, Li-hong; Pu, Yue-pu; Li, Yun-hui; Zhang, Xiao-qiang; Liang, Ge-yu; Li, Xiao-bo; Zhang, Juan; Li, Yan-fen; Zhang, Xue-yan

    2010-12-01

    Surface properties are critical to assess effects of titanium dioxide (TiO2) primary nanoparticles on the immune function of pulmonary alveolar macrophage (PAMs). In this study the immune toxicity of TiO2 primary nanoparticles on PAMs relies on their surface area and crystal structure were determined. The primary PAMs of rats exposed to different sizes and crystal structure of TiO2 particles at different dosages for 24 hrs were evaluated for cytokines, phagocytosis, chemotaxis and surface molecules expression. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) level of PAMs significantly increased when exposed to TiO2 primary particles and there were significant association with the exposure total surface area and crystal structure of TiO2 particles in the former. TiO2 particles showed significant inhibiting effects on phagocytotic ability, chemotactic ability, Fc receptors and MHC-II molecular expression of macrophages compared with control. Exposure dosage and crystal structure of TiO2 particles play effects on phagocytotic ability and chemotactic ability of PAMs. These results suggested that TiO2 nanoparticles could induce the release of inflammatory mediators, initiate the inflammation development and inhibit the immune function of PAMs associated with non-specific immunity and specific immunity relies on surface area and crystal structure. NO activity might be a candidate marker indicating the TiO2 exposure burden and cell damage in PAMs.

  17. Viable but not culturable forms of Legionella pneumophila generated after heat shock treatment are infectious for macrophage-like and alveolar epithelial cells after resuscitation on Acanthamoeba polyphaga.

    Science.gov (United States)

    Epalle, Thibaut; Girardot, Françoise; Allegra, Séverine; Maurice-Blanc, Cécile; Garraud, Olivier; Riffard, Serge

    2015-01-01

    Legionella pneumophila, the causative agent of legionellosis is transmitted to human through aerosols from environmental sources and invades lung's macrophages. It also can invade and replicate within various protozoan species in environmental reservoirs. Following exposures to various stresses, L. pneumophila enters a non-replicative viable but non-culturable (VBNC) state. Here, we evaluated whether VBNC forms of three L. pneumophila serogroup 1 strains (Philadelphia GFP 008, clinical 044 and environmental RNN) infect differentiated macrophage-like cell lines (U937 and HL-60), A549 alveolar cells and Acanthamoeba polyphaga. VBNC forms obtained following shocks at temperatures ranging from 50 to 70 °C for 5 to 60 min were quantified using a flow cytometric assay (FCA). Their loss of culturability was checked on BCYE agar medium. VBNC forms were systematically detected upon a 70 °C heat shock for 30 min. When testing their potential to resuscitate upon amoebal infection, VBNC forms obtained after 30 min at 70 °C were re-cultivated except for the clinical strain. No resuscitation or cell lysis was evidenced when using U937, HL-60, or A549 cells despite the use of various contact times and culture media. None of the strains tested could infect A. polyphaga, macrophage-like or alveolar epithelial cells after a 60-min treatment at 70 °C. However, heat-treated VBNC forms were able to infect macrophage-like or alveolar epithelial cells following their resuscitation on A. polyphaga. These results suggest that heat-generated VBNC forms of L. pneumophila (i) are not infectious for macrophage-like or alveolar epithelial cells in vitro although resuscitation is still possible using amoeba, and (ii) may become infectious for human cell lines following a previous interaction with A. polyphaga.

  18. Effects of Bilirubin on Alveolar Macrophages in Rats with Emphysema and Expression of iNOS and NO in Them

    Institute of Scientific and Technical Information of China (English)

    李建强; 赵卉; 宋满景; 徐永健; 张珍祥

    2004-01-01

    To explore the effects of bilirubin on alveolar macrophages (AM) and expression of iNOS and NO in them in emphysema model, the rats were pretreated with bilirubin before exposed to smoke. AM were isolated from bronchoalveolar lavage fluid (BALF) and cultured. Pathological microscopic examination of AM and immunohistochemical analysis of iNOS were performed. Nitric oxide (NO) content in the samples was determined by nitrate reductase technique. The results showed both alveoli and alveolar septum appeared normal in size and shape in normal group. AM showed kidney-shaped nucleus and were rich in Golgi complexes and primary lysosomes in the cytoplasm. The inner membrane of mitochondrion was continuous. Most cristae of the mitochondria were intact. In model group, the alveoli were expanded, ruptured and bullaes were formed. Both the population and sizes of AM increased significantly. Secondary lysosomes were rich in the cytoplasm. Deformation and pyknosis of the nucleus, swelling of the mitochondrions and rupture of the inner mitochondrial membrane could also be seen. At high magnification, most of the mitochondrial cristae were broken, or completely lost at certain points. In bilirubin group, alveoli partly expanded and the population of AM also increased, with morphological changes being slighter than that in model group. Both NO contents and expression of iNOS in model group were higher than those in normal group (P<0.05). In bilirubin group the two indice were lower than those in model group (P<0.05). Our findings suggested that high expression of iNOS and high NO content in AM accelerate the development of emphysema associated with smoking in rats. Bilirubin may exert protective effects on AM and retards the development of emphysema in rats.

  19. Decreased Apoptotic Rate of Alveolar Macrophages of Patients with Idiopathic Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Fotios Drakopanagiotakis

    2012-01-01

    and control group. No difference was found between the respiratory function parameters of the two treatment groups after six months. A positive correlation was found between the number of bcl-2 positive stained macrophages and DLCO after treatment. Conclusions. The decreased apoptotic rate of AM of patients with IPF is not associated with decreased expression of apoptosis mediators involved in the external or internal apoptotic pathway.

  20. In vitro biodegradation of chrysotile fibres by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect.

    OpenAIRE

    Jaurand, M C; Gaudichet, A; Halpern, S.; Bignon, J.

    1984-01-01

    The modification of the chemistry of asbestos chrysotile fibres (Mg3(Si2O5)(OH)4) after their ingestion by cultured cells has been studied. Two types of cells involved in asbestos related pulmonary disease were used, rabbit alveolar macrophages (AM), recovered by bronchoalveolar lavage, and pleural mesothelial cells (PMC) obtained from the rat parietal pleura. Chemical characterisation of intracellular fibres was performed on unstained ultrathin sections by electron probe microanalysis. The r...

  1. Suppression and recovery of the alveolar macrophage phagocytic system during continuous exposure to 0. 5 ppm ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, M.I.; Hmieleski, R.R.; Stafford, E.A.; Jakab, G.J. (Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD (USA))

    1991-05-01

    Short-term exposures to ozone (O3) are known to impair pulmonary antibacterial defenses and alveolar macrophage (AM) phagocytosis in a dose-related manner. To determine the effect of prolonged O3 exposure, Swiss mice were exposed continuously to 0.5 ppm O3. At 1, 3, 7, and 14 days, intrapulmonary killing was assessed by inhalation challenge with Staphylococcus aureus or Proteus mirabilis and by comparing the number of viable bacteria remaining in the lungs at 4 h between O3-exposed and control animals. To evaluate the effects of O3 on the functional capacity of the AMs, Fc-receptor mediated phagocytosis was assessed. Ozone exposure impaired the intrapulmonary killing of S. aureus at 1 and 3 days; however, with prolonged exposure, the bactericidal capacity of the lungs returned to normal. This trend of an initial suppression followed by recovery was reflected in the phagocytic capacity of the AMs. In contrast to S. aureus, when P. mirabilis was used as the challenge organism, O3 exposure had no suppressive effect on pulmonary bactericidal activity, which correlated with an increase in the phagocytic cell population in the lungs. Morphologic examination of the lavaged macrophages showed that after 1 day of O3 exposure, the AMs were more foamy, and contained significantly more vacuoles. There was also a significant increase in binucleated cells at 3 days. These studies demonstrate that continuous exposure to O3 modulates AM-dependent lung defenses and points to the importance of the challenge organism and exposure protocol in establishing the adverse effect of O3.

  2. Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma.

    Science.gov (United States)

    Bunting, Melissa M; Shadie, Alexander M; Flesher, Rylie P; Nikiforova, Valentina; Garthwaite, Linda; Tedla, Nicodemus; Herbert, Cristan; Kumar, Rakesh K

    2013-01-01

    We investigated the role of interleukin-33 (IL-33) in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM) were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  3. Low pH Environmental Stress Inhibits LPS and LTA-Stimulated Proinflammatory Cytokine Production in Rat Alveolar Macrophages

    Directory of Open Access Journals (Sweden)

    Stanley F. Fernandez

    2013-01-01

    Full Text Available Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2 and TLR4, using isolated rat alveolar macrophages (aMØs. We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS and lipoteichoic acid (LTA stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-, MCP-1, and IFN-. LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway and TLR4 signaling (MyD88 and TRIF pathways. The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses.

  4. Differential response to dexamethasone on the TXB2 release in guinea-pig alveolar macrophages induced by zymosan and cytokines

    Directory of Open Access Journals (Sweden)

    M. E. Salgueiro

    1997-01-01

    Full Text Available Glucocorticosteroids reduce the production of inflammatory mediators but this effect may depend on the stimulus. We have compared the time course of the effect of dexamethasone on the thromboxane B2 (TXB2 release induced by cytokine stimulation and zymosan in guinea-pig alveolar macrophages. Interleukin-1β (IL-1β, tumour necrosis factor-α (TNF-α and opsonized zymosan (OZ, all stimulate TXB2 release. High concentrations of dexamethasone (1–10 μM inhibit the TXB2 production induced by both cytokines and OZ, but the time course of this response is different. Four hours of incubation with dexamethasone reduce the basal TXB2 release and that induced by IL-1β and TNF-α, but do not modify the TXB2 release induced by OZ. However, this stimulus was reduced after 24 h incubation. Our results suggest that the antiinflammatory activity of glucocorticosteroids shows some dependence on stimulus and, therefore, may have more than one mechanism involved.

  5. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages.

    Science.gov (United States)

    De Backer, Lynn; Naessens, Thomas; De Koker, Stefaan; Zagato, Elisa; Demeester, Jo; Grooten, Johan; De Smedt, Stefaan C; Raemdonck, Koen

    2015-11-10

    The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung.

  6. Microarray analysis of the effect of Streptococcus equi subsp. zooepidemicus M-like protein in infecting porcine pulmonary alveolar macrophage.

    Directory of Open Access Journals (Sweden)

    Zhe Ma

    Full Text Available Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM to infection with S. zooepidemicus ATCC35246 wild strain (WD and SzP-knockout strain (KO using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis.

  7. Atorvastatin protected from paraquat-induced cytotoxicity in alveolar macrophages via down-regulation of TLR-4.

    Science.gov (United States)

    Alizadeh-Tabrizi, Nazli; Malekinejad, Hassan; Varasteh, Soheil; Cheraghi, Hadi

    2017-01-01

    The current study designed to clarify the mechanism of paraquat-induced cytotoxicity and protective effects of Atorvastatin on freshly isolated alveolar macrophages (AMs). AMs were collected via bronchoalveolar lavage and exposed to various concentrations of paraquat in the presence and absence of atorvastatin for 24h. Cell viability, myeloperoxidase activity; nitric oxide generation and total antioxidant capacity were assessed. Expression of TLR-4 at mRNA and protein levels were studied by using PCR and western blot methods Atorvastatin enhanced the paraquat-reduced cell viability and reduced the paraquat-induced myeloperoxidase activity and nitric oxide production. Moreover, atorvastatin down-regulated by 60% the paraquat up-regulated expression of TLR-4 at protein and mRNA level. Our results suggest that, AMs in vitro model could be a novel cytological tool for studies on paraquat poisoning and therapy regimens. Additionally, atorvastatin cytoprotective effects on paraquat-induced cytotoxicity partly attribute to its anti-myeloperoxidase, antioxidant properties, which might be regulated via TLR-4 expression.

  8. Interleukin-33 Drives Activation of Alveolar Macrophages and Airway Inflammation in a Mouse Model of Acute Exacerbation of Chronic Asthma

    Directory of Open Access Journals (Sweden)

    Melissa M. Bunting

    2013-01-01

    Full Text Available We investigated the role of interleukin-33 (IL-33 in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  9. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity.

    Directory of Open Access Journals (Sweden)

    Brian J Laidlaw

    2013-03-01

    Full Text Available Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential "universal" vaccine.

  10. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression

    Directory of Open Access Journals (Sweden)

    Pavlova Barbora

    2011-01-01

    Full Text Available Abstract Genes localized at Salmonella pathogenicity island-1 (SPI-1 are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression.

  11. Induction of matrix metalloproteinase-9 in alveolar macrophages by TNF-α through NF-κB signal pathway

    Institute of Scientific and Technical Information of China (English)

    Yaqing Li; Zhenxiang Zhang; Yongjian Xu; Wang Ni; Shixin Chen

    2006-01-01

    Objective: To explore the effect of tumor necrosis factor (TNF)-α on matrix metalloproteinase-9 (MMP-9)expression and activity in alveolar macrophages (AM) from patients with chronic obstructive pulmonary disease (COPD) and study its associated signal pathway. Methods: AM were collected from bronchoalveolar lavage fluid in patients with COPD. The AM were incubated for 1.5 h with pyrrolidine dithiocarbamate(PDTC)at concentrations from 0 μmol/L to 50 μmol/L and then stimulated for 24 h by TNF-α at 10 ng/ml. MMP-9 expression and activity were respectively detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blotting and Zymography. NF-κB activity was investigated by electrophoretic mobility shift assay (EMSA).Results: Both the mRNA and protein levels of MMP-9 induced by TNF-α in AM were significantly elevated in a dose dependent manner (P < 0.05). The level of MMP-9 activity was also correspondingly significantly elevated in the induction ( P < 0.05), which was possibly related with the over-expression of MMP-9. NF-κB activity was significantly increased when AM were stimulated by 10 ng/mL TNF-α (P <0.05). The expression of MMP-9 induced by TNF-α could be significantly inhibited by PDTC ( P < 0.05). Conclusion: The expression and activity of MMP-9 from AM could be induced by TNF-α, and NF-κB signal pathway played an important role in the induction.

  12. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    Directory of Open Access Journals (Sweden)

    Meyerhans Andreas

    2010-09-01

    Full Text Available Abstract Background Investigations on pulmonary macrophages (MΦ mostly focus on alveolar MΦ (AM as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM, are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. Methods Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. Results IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG. Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6. Conclusion AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response.

  13. Dysregulation of alveolar macrophage PPARγ, NADPH oxidases and TGFβsub>1sub> in otherwise healthy HIV-infected individuals.

    Science.gov (United States)

    Yeligar, Samantha M; Ward, Janine M; Harris, Frank L; Brown, Lou Ann; Guidot, David; Cribbs, Sushma K

    2017-03-17

    Rationale: Despite antiretroviral therapy (ART), respiratory infections increase mortality in individuals living with chronic human immunodeficiency virus (HIV) infection. In experimental and clinical studies of chronic HIV infection, alveolar macrophages (AMs) exhibit impaired phagocytosis and bacterial clearance. Peroxisome proliferator-activated receptor (PPAR)γ, NADPH oxidase (Nox) isoforms Nox1, Nox2, Nox4, and transforming growth factor-beta 1 (TGFβsub>1sub>) are critical mediators of AM oxidative stress and phagocytic dysfunction. Therefore, we hypothesized that HIV alters AM expression of these targets, resulting in chronic lung oxidative stress and subsequent immune dysfunction. Methods: A cross-sectional study of HIV-infected (n=22) and HIV-uninfected (n=6) subjects was conducted. Bronchoalveolar lavage (BAL) was performed and AMs were isolated. Lung Hsub>2sub>Osub>2sub> generation was determined by measuring Hsub>2sub>Osub>2sub> in the BAL fluid. In AMs, PPARγ, Nox1, Nox2, Nox4, and TGFβsub>1sub> mRNA (qRT-PCR) and protein (fluorescent immunomicroscopy) levels were assessed. Results: Compared to HIV-uninfected (control) subjects, HIV-infected subjects were relatively older and the majority were African American; ~86% were on ART and their median CD4 count was 445 with a median viral load of 0 log copies/mL. HIV infection was associated with increased Hsub>2sub>Osub>2sub> in the BAL, decreased AM mRNA and protein levels of PPARγ, and increased AM mRNA and protein levels of Nox1, Nox2, Nox4, and TGFβsub>1sub>. Conclusions: PPARγ attenuation and increases in Nox1, Nox2, Nox4, and TGFβsub>1sub> contribute to AM oxidative stress and immune dysfunction in the AMs of otherwise healthy HIV-infected subjects. These findings provide novel insights into the molecular mechanisms by which HIV increases susceptibility to pulmonary infections.

  14. Interactions of the alveolar macrophage and the fibroblast: regulation of basal and silica-activated eicosanoid production

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, D.C.; Demers, L.M. [Pennsylvania State University College of Medicine, Hershey, PA (United States). Dept. of Pathology

    1996-07-01

    Intercellular communication between lung cells has been shown to modulate physiology and pathophysiology in the lung. In particular, it is apparent that the alveolar macrophage (AM) and the fibroblast (Fb) interact via soluble signalling molecules to mediate inflation and fibrosis in response to a variety of noxious substances. To characterize the interaction of the AM and Fb in the relative production of proinflammatory eicosanoids in the lung, we evaluated basal and silica-activated production of prostaglandin E{sub 2} (PGE{sub 2}), thromboxane A{sub 2} (TXA{sub 2}) and leukotriene B{sub 4} (LTB{sub 4}) by human AM and Fb alone and when cultured together. Unstimulated AM and Fb cultured alone produced equal amounts of PGE{sub 2}. However, AM produced 20-fold more TXA{sub 2} and 3-fold more LTB{sub 4} than Fb. When Am and Fb were cultured together, either separated by a membrane or in physical contact with one another, the total production of TXA{sub 2} and LTB{sub 4} by both cell types was reduced by 70 to 90% while production of PGE{sub 2} was unaffected. When AM were first exposed to silica dust and then cocultured with Fb, the total production of PGE{sub 2} was decreased while that of TXA{sub 2} and LTB{sub 4} was unchanged compared to coculture in the absence of silica. The results of these studies suggest that basal eicosanoid synthesis may be modulated by the interaction of the AM and the Fb and that this communication is via soluble substances. In addition, dust-activated AM produce soluble mediators that may further alter lung eicosanoid production as part of a mechanism to modulate dust-induced pathophysiology. 20 refs., 3 figs.

  15. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2006-09-01

    In order to confirm the efficacy of ciprofloxacin (CPFX) incorporated into liposomes (CPFX-liposomes) for treatment of respiratory intracellular parasite infections, the influence of particle size on drug delivery to rat alveolar macrophages (AMs) following pulmonary administration of CPFX-liposomes was investigated. CPFX-liposomes were prepared with hydrogenated soybean phosphatidylcholine (HSPC), cholesterol (CH) and dicetylphosphate (DCP) in a lipid molar ratio of 7/2/1 by the hydration method and then adjusted to five different particle sizes (100, 200, 400, 1000 and 2000 nm). In the pharmacokinetic experiment, the delivery efficiency of CPFX to rat AMs following pulmonary administration of CPFX-liposomes increased with the increase in the particle size over the range 100-1000 nm and became constant at over 1000 nm. The concentrations of CPFX in rat AMs until 24 h after pulmonary administration of CPFX-liposomes with a particle size of 1000 nm were higher than the minimum inhibitory concentration of CPFX against various intracellular parasites. In a cytotoxic test, no release of lactate dehydrogenase (LDH) from rat lung tissues by pulmonary administration of CPFX-liposomes with a particle size of 1000 nm was observed. These findings indicate that efficient delivery of CPFX to AMs by CPFX-liposomes with a particle size of 1000 nm induces an excellent antibacterial effect without any cytotoxic effects on lung tissues. Therefore, CPFX-liposomes may be useful in the development of drug delivery systems for the treatment of respiratory infections caused by intracellular parasites, such as Mycobacterium tuberculosis, Chlamydia pneumoniae and Listeria monocytogenes.

  16. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    Directory of Open Access Journals (Sweden)

    Yves Guichard

    2010-01-01

    Full Text Available Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a coculture system of rat alveolar macrophages (NR8383 and transgenic Big Blue Rat2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour to zymosan, a known macrophage activator. In separated cocultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed cocultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed cocultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the coculture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres.

  17. Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA

    Directory of Open Access Journals (Sweden)

    Cinar Mehmet

    2012-02-01

    Full Text Available Abstract Background To obtain reliable quantitative real-time PCR data, normalization relative to stable housekeeping genes (HKGs is required. However, in practice, expression levels of 'typical' housekeeping genes have been found to vary between tissues and under different experimental conditions. To date, validation studies of reference genes in pigs are relatively rare and have never been performed in porcine alveolar macrophages (AMs. In this study, expression stability of putative housekeeping genes were identified in the porcine AMs in response to the stimulation with two pathogen-associated molecular patterns (PAMPs lipopolysaccharide (LPS and lipoteichoic acid (LTA. Three different algorithms (geNorm, Normfinder and BestKeeper were applied to assess the stability of HKGs. Results The mRNA expression stability of nine commonly used reference genes (B2M, BLM, GAPDH, HPRT1, PPIA, RPL4, SDHA, TBP and YWHAZ was determined by qRT-PCR in AMs that were stimulated by LPS and LTA in vitro. mRNA expression levels of all genes were found to be affected by the type of stimulation and duration of the stimulation (P SDHA, B2M and RPL4 showed a high expression stability in the irrespective to the stimulation group, while SDHA, YWHAZ and RPL4 showed high stability in non-stimulated control group. In all cases, GAPDH showed the least stability in geNorm. NormFinder revealed that SDHA was the most stable gene in all the groups. Moreover, geNorm software suggested that the geometric mean of the three most stable genes would be the suitable combination for accurate normalization of gene expression study. Conclusions There was discrepancy in the ranking order of reference genes obtained by different analysing algorithms. In conclusion, the geometric mean of the SDHA, YWHAZ and RPL4 seemed to be the most appropriate combination of HKGs for accurate normalization of gene expression data in porcine AMs without knowing the type of bacterial pathogenic status of

  18. STAT1 Antisense Oligonucleotides Attenuate the Proinflammatory Cytokine Release of Alveolar Macrophages in Bleomycin-Induced Fibrosis

    Institute of Scientific and Technical Information of China (English)

    Xianming Fan; Zengli Wang

    2005-01-01

    To investigate the effect of signal transducers and activators of transcription 1 (STAT1) antisense oligonucleotides (ASON) on concentrations of TNF-α, IL-8, NO secreted by alveolar macrophages (AMs) in bleomycin-induced rat pulmonary fibrosis, five adult female Wistar rats were intratracheally instilled with bleomycin. After 7 days, the rats were killed by right ventricle of heart exsanguinations under ketamine anaesthesia and bronchoalveolar lavage (BAL) was performed to obtain AMs. AMs were divided into four groups, treated with STAT1 ASON, STAT1 sense oligonucleotides (SON), dexamethasone (DEX) and medium alone (control), respectively. AMs and media were collected after culture for 36 h. The mRNA and protein expressions of STAT1 and ICAM-1 in AMs were detected by RT-PCR and ELISA, respectively. The concentrations of TNF-α, IL-8, NO in cultured medium were detected.The STAT1 mRNA expression by AMs in the STAT1 ASON group was lower than those of AMs in the STAT1 SON group, the DEX group and the control group (p < 0.05). Moreover, the STAT1 mRNA expression by AMs in the DEX group was also lower than those of AMs in the STAT1 SON group and the control group (p < 0.05), but the STAT1 mRNA expression by AMs in the STAT1 SON group was not different from that of the control group (p >0.05). The protein expressions of STAT1 and ICAM-1 and the mRNA expression of ICAM-1 showed similar changes to the STAT1 mRNA expression by AMs. The concentrations of TNF-α, IL-8, NO in cultured medium from STAT1 ASON group were lower than those from STAT1 SON, DEX and the control groups (p < 0.05). Moreover,the concentrations of TNF-α, IL-8, NO in cultured medium from DEX group were also lower than those from the control and STAT1 SON group (p < 0.05), but no difference between STAT1 SON group and the control (p > 0.05).The results suggest that STAT1 ASON could inhibit the secretion of TNF-α, IL-8, NO in AMs, and STAT1 could become a target of treating pulmonary fibrosis.

  19. Sex differences in the response of the alveolar macrophage proteome to treatment with exogenous surfactant protein-A

    Directory of Open Access Journals (Sweden)

    Phelps David S

    2012-07-01

    Full Text Available Abstract Background Male wild type (WT C57BL/6 mice are less capable of clearing bacteria and surviving from bacterial pneumonia than females. However, if an oxidative stress (acute ozone exposure occurs before infection, the advantage shifts to males who then survive at higher rates than females. We have previously demonstrated that survival in surfactant protein-A (SP-A knockout (KO mice compared to WT was significantly reduced. Because the alveolar macrophage (AM is pivotal in host defense we hypothesized that SP-A and circulating sex hormones are responsible for these sex differences. We used 2D-DIGE to examine the relationship of sex and SP-A on the AM proteome. The role of SP-A was investigated by treating SP-A KO mice with exogenous SP-A for 6 and 18 hr and studying its effects on the AM proteome. Results We found: 1 less variance between KO males and females than between the WT counterparts by principal component analysis, indicating that SP-A plays a role in sex differences; 2 fewer changes in females when the total numbers of significantly changing protein spots or identified whole proteins in WT or 18 hr SP-A-treated males or females were compared to their respective KO groups; 3 more proteins with functions related to chaperones or protease balance and Nrf2-regulated proteins changed in response to SP-A in females than in males; and 4 the overall pattern of SP-A induced changes in actin-related proteins were similar in both sexes, although males had more significant changes. Conclusions Although there seems to be an interaction between sex and the effect of SP-A, it is unclear what the responsible mechanisms are. However, we found that several of the proteins that were expressed at significantly higher levels in females than in males in WT and/or in KO mice are known to interact with the estrogen receptor and may thus play a role in the SP-A/sex interaction. These include major vault protein, chaperonin subunit 2 (beta (CCT2, and Rho

  20. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages.

    Science.gov (United States)

    Van Parys, Alexander; Boyen, Filip; Verbrugghe, Elin; Leyman, Bregje; Bram, Flahou; Haesebrouck, Freddy; Pasmans, Frank

    2012-06-13

    Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host's immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig's immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  1. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  2. Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release.

    Science.gov (United States)

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A; Crother, Timothy R; Arditi, Moshe

    2015-04-21

    Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.

  3. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages.

    Science.gov (United States)

    Ward, D M; Pevsner, J; Scullion, M A; Vaughn, M; Kaplan, J

    2000-07-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.

  4. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs).

    Science.gov (United States)

    Thanawongnuwech, R; Thacker, E L; Halbur, P G

    1997-11-01

    Porcine pulmonary intravascular macrophages (PIMs) were recovered by in situ pulmonary vascular perfusion with 0.025% collagenase in saline from six 8-week old, crossbred pigs. Pulmonary alveolar macrophages (PAMs) were recovered by bronchoalveolar lavage from the same pigs for comparisons in each assay. The macrophages were exposed to PRRSV (ATCC VR-2385) in vitro for 24 h and infection was confirmed by an indirect immunofluorescence test or transmission electron microscopy. Viral particles tended to accumulate in the vesicles of the Golgi apparatus or endoplasmic reticulum. Bactericidal function assays were performed on the recovered macrophages to determine the effects of the virus on macrophage functions. In vitro PRRSV infection reduced the bactericidal ability of PIMs from 68.3% to 56.4% (P PAMs from 69.3% to 61.0% (P > 0.1) at 24 h post-infection. The mean percentage of bacteria killed by macrophages after PRRSV infection was not significantly different among the treatment groups or between the treatment groups and non-infected controls based on colorimetric MTT bactericidal (Staphylococcus aureus) assay. PRRSV did not affect the ability of PIMs or PAMs to internalize opsonized 125I-iododeoxyuridine-labeled S. aureus (P > 0.05). PRRSV infection significantly decreased the production of superoxide anion (P PAMs. PRRSV reduced the myeloperoxidase-H2O2-halide product (P PAMs. The results suggest: (1) PIMs should be considered as an important replication site of PRRSV; (2) PRRSV may have a detrimental effect on both PIMs and PAMs; (3) loss of bactericidal function in PIMs may facilitate hematogenous bacterial infections.

  5. Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation

    Directory of Open Access Journals (Sweden)

    Malkinson Alvin M

    2011-06-01

    Full Text Available Abstract Background Worldwide, lung cancer kills more people than breast, colon and prostate cancer combined. Alterations in macrophage number and function during lung tumorigenesis suggest that these immune effector cells stimulate lung cancer growth. Evidence from cancer models in other tissues suggests that cancer cells actively recruit growth factor-producing macrophages through a reciprocal signaling pathway. While the levels of lung macrophages increase during tumor progression in mouse models of lung cancer, and high pulmonary macrophage content correlates with a poor prognosis in human non-small cell lung cancer, the specific role of alveolar macrophages in lung tumorigenesis is not clear. Methods After culturing either an immortalized lung macrophage cell line or primary murine alveolar macrophages from naïve and lung-tumor bearing mice with primary tumor isolates and immortalized cell lines, the effects on epithelial proliferation and cellular kinase activation were determined. Insulin-like growth factor-1 (IGF-1 was quantified by ELISA, and macrophage conditioned media IGF-1 levels manipulated by IL-4 treatment, immuno-depletion and siRNA transfection. Results Primary macrophages from both naïve and lung-tumor bearing mice stimulated epithelial cell proliferation. The lungs of tumor-bearing mice contained 3.5-times more IGF-1 than naïve littermates, and media conditioned by freshly isolated tumor-educated macrophages contained more IGF-1 than media conditioned by naïve macrophages; IL-4 stimulated IGF-1 production by both macrophage subsets. The ability of macrophage conditioned media to stimulate neoplastic proliferation correlated with media IGF-1 levels, and recombinant IGF-1 alone was sufficient to induce epithelial proliferation in all cell lines evaluated. Macrophage-conditioned media and IGF-1 stimulated lung tumor cell growth in an additive manner, while EGF had no effect. Macrophage-derived factors increased p-Erk1/2, p

  6. [Reactive oxygen species produced by the addition of sepiolite and vermiculite (expanded or not) to suspensions of human polymorphonuclear phagocytes and bovine alveolar macrophages].

    Science.gov (United States)

    Amati, M; Visonà, I; Valentino, M; Scancarello, G; Governa, M

    1997-01-01

    We have studied a sample of commercial sepiolite and two samples of commercial vermiculite, which are clay minerals advised to replace asbestos. We have in vitro tested their abilities to produce reacting oxygen species (ROS) after they have been added to suspension of human polymorphonuclear leukocytes and bovine alveolar macrophages. The behaviour of sepiolite and vermiculite have been compared with those of asbestos fibres given by Unione Internationale contre le Cancer (UICC) and with kaolin and illite. Sepiolite was not able to induce ROS production, while vermiculite was able to induce a relevant ROS generation, even if the values were always lower than that obtained from chrysotile. Kaolin was able to generate a high ROS production.

  7. Regulation of TXB2 and PGE2 production by TGF-β1 in in vitro silica dust-exposed rat alveolar macrophage

    Directory of Open Access Journals (Sweden)

    Urszula Orlinska

    1995-01-01

    Full Text Available We investigated the effect of transforming factor factor-β1 (TGF-β1 on thromboxane B2 (TXB2 and prostaglandin E2 (PGE2 production in in vitro silica dust-exposed rat alveolar macrophages (AM. In the presence of 5 μg of anti-TGF-β1 antibodies, TXB2 production decreased, but PGE2 production increased. Addition of 2 ng of TGF-β1 to the culture medium potentiated TXB2 production, but PGE2 production apparently did not change. At 50 ng of TGF-β1, TXB2 production decreased, and PGE2 production varied. Our data suggest that in rat AM: (1 both endogenous and exogenous TGF-β1 regulate TXB2 production; and (2 in the absence of endogenous TGF-β1 the liberation of PGE2 increases; however, exogenous TGF-β1 does not have a regulatory effect on PGE2.

  8. Lack of marked cyto- and genotoxicity of cristobalite in devitrified (heated) alkaline earth silicate wools in short-term assays with cultured primary rat alveolar macrophages.

    Science.gov (United States)

    Ziemann, Christina; Harrison, Paul T C; Bellmann, Bernd; Brown, Robert C; Zoitos, Bruce K; Class, Philippe

    2014-02-01

    Alkaline earth silicate (AES) wools are low-biopersistence high-temperature insulation wools. Following prolonged periods at high temperatures they may devitrify, producing crystalline silica (CS) polymorphs, including cristobalite, classified as carcinogenic to humans. Here we investigated the cytotoxic and genotoxic significance of cristobalite present in heated AES wools. Primary rat alveolar macrophages were incubated in vitro for 2 h with 200 µg/cm² unheated/heated calcium magnesium silicate wools (CMS1, CMS2, CMS3; heat-treated for 1 week at, or 4 weeks 150 °C below, their respective classification temperatures) or magnesium silicate wool (MS; heated for 24 h at 1260 °C). Types and quantities of CS formed, and fiber size distribution and shape were determined by X-ray diffraction and electron microscopy. Lactate dehydrogenase release and alkaline and hOGG1-modified comet assays were used, ± aluminum lactate (known to quench CS effects), for cytotoxicity/genotoxicity screening. Cristobalite content of wools increased with heating temperature and duration, paralleled by decreases in fiber length and changes in fiber shape. No marked cytotoxicity, and nearly no (CMS) or only slight (MS) DNA-strand break induction was observed, compared to the CS-negative control Al₂O₃, whereas DQ12 as CS-positive control was highly active. Some samples induced slight oxidative DNA damage, but no biological endpoint significantly correlated with free CS, quartz, or cristobalite. In conclusion, heating of AES wools mediates changes in CS content and fiber length/shape. While changes in fiber morphology can impact biological activity, cristobalite content appears minor or of no relevance to the intrinsic toxicity of heated AES wools in short-term assays with rat alveolar macrophages.

  9. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Lee YT

    2015-07-01

    Full Text Available Young-Tae Lee,1,* Eun-Ju Ko,1,2,* Hye Suk Hwang,1,2 Jong Seok Lee,1,3 Ki-Hye Kim,1 Young-Man Kwon,1 Sang-Moo Kang1,2 1Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, 2Department of Biology, Georgia State University, Atlanta, GA, USA; 3National Institute of Biological Resources, Incheon, South Korea *These authors contributed equally to this work Abstract: The mechanisms of protection against respiratory syncytial virus (RSV are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs] have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV or FG VLPs were treated with clodronate liposome prior to RSV infection. FI-RSV immune mice with clodronate liposome treatment showed increases in eosinophils, plasmacytoid dendritic cells, interleukin (IL-4+ T-cell infiltration, proinflammatory cytokines, chemokines, and, in particular, mucus production upon RSV infection. In contrast to FI-RSV immune mice with severe pulmonary histopathology, FG VLP immune mice showed no overt sign of histopathology and significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines, but higher levels of interferon-γ, which are correlated with protection against RSV disease. FG VLP immune mice with depletion of AMs showed increases in inflammatory cytokines and chemokines, as well as eosinophils. The results in this study suggest that FG nanoparticle vaccination induces long-term protection against RSV and that AMs play a role in the RSV protection by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration. Keywords: alveolar macrophage, nanoparticle vaccine, VLP, FI-RSV, RSV disease

  10. Syntaxin 7 and VAMP-7 are Soluble N-Ethylmaleimide–sensitive Factor Attachment Protein Receptors Required for Late Endosome–Lysosome and Homotypic Lysosome Fusion in Alveolar Macrophages

    Science.gov (United States)

    Ward, Diane McVey; Pevsner, Jonathan; Scullion, Matthew A.; Vaughn, Michael; Kaplan, Jerry

    2000-01-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome–lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome–lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome–lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome–lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages. PMID:10888671

  11. Innate immune response of alveolar macrophage to house dust mite allergen is mediated through TLR2/-4 co-activation.

    Directory of Open Access Journals (Sweden)

    Chia-Fang Liu

    Full Text Available House dust mite, Dermatophagoides pteronyssinus (Der p, is one of the major allergens responsible for allergic asthma. However, the putative receptors involved in the signalization of Der p to the innate immune cells are still poorly defined as well as the impact of their activation on the outcome of the allergen-induced cell response. We previously reported that the HDM activation of mouse alveolar macrophages (AM involves the TLR4/CD14 cell surface receptor complex. Here using a TLR ligand screening essay, we demonstrate that HDM protein extract engages the TLR2, in addition to the TLR4, in engineered TLR-transfected HEK cells but also in the MH-S mouse alveolar macrophage cell line model. Moreover we found that the concomitant recruitment of the MH-S cell's TLR2 and TLR4 receptors by the HDM extract activates the MyD88-dependent signaling pathway and leads to the secretion of the NF-κB regulated pro-inflammatory factors NO and TNF-α. However unlike with the canonical TLR4 ligand (i.e. the bacterial LPS mobilization of TLR4 by the HDM extract induces a reduced production of the IL-12 pro-inflammatory cytokine and fails to trigger the expression of the T-bet transcription factor. Finally we demonstrated that HDM extract down-regulates LPS induced IL-12 and T-bet expression through a TLR2 dependent mechanism. Therefore, we propose that the simultaneous engagement of the TLR2 and TLR4 receptors by the HDM extract results in a cross regulated original activation pattern of the AM which may contribute to the Th2 polarization of the allergen-induced immune response. The deciphering of these cross-regulation networks is of prime importance to open the way for original therapeutic strategies taking advantage of these receptors and their associated signaling pathways to treat allergic asthma.

  12. EFFECTS OF ALVEOLAR MACROPHAGE CONDITIONED MEDIA FROM INTERSTITIAL LUNG DISEASEPATIENTS ON THE PROCOLLAGEN mRNA EXPRESSION IN HUMAN LUNG FIBROBLASTS

    Institute of Scientific and Technical Information of China (English)

    郭子健; 朱元珏; 刘秉慈; 朱亚玲; 赵文理; 陈勇

    1996-01-01

    Progressive inflammation and fibrosis are the central processez in the pathogenesis of pulmonary fibrosis. It is believed that macrophages in areas of chronically inflamed lung play a key role in fibrotic response. Therefore, we investigated the effects of alveolar macrophage (Amφ) conditioned media from interstitial lung disease (ILD) patients on lung fibroblast proliferation and procollagen mRNA expression, After stimulating with Amφ conditioned media from ILD pasients, the fibroblast proliferation increased 71.4% compared with the control, but for media from bronchial carcinoma (BC) patients, it just increased 14.3%. There is a significant dffference between the two groups (P<0. 05). The procollagen αl(I) mRNA in fibroblasts stimulated with Amφ conditioned media from ILD patients was increased 21.3% α1(Ⅲ)was 37.2 higher than control (P<0. 05). It increased 6. 8% and 12.8% fof media from BC patients respectively, but there was no difference when compared to the control. We considered that Amφ from ILD patients might be in an activated state and could release some growth factors to stimulate fibroblast proliferation and promote collagen DNA expression,

  13. In-Depth Global Analysis of Transcript Abundance Levels in Porcine Alveolar Macrophages Following Infection with Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Laura C. Miller

    2010-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is a major pathogen of swine worldwide and causes considerable economic loss. Identifying specific cell signaling or activation pathways that associate with variation in PRRSV replication and macrophage function may lead to identification of novel gene targets for the control of PRRSV infection. Serial Analysis of Gene Expression (SAGE was used to create and survey the transcriptome of in vitro mock-infected and PRRSV strain VR-2332-infected porcine alveolar macrophages (PAM at 0, 6, 12, 16, and 24 hours after infection. The transcriptome data indicated changes in transcript abundance occurring in PRRSV-infected PAMs over time after infection with more than 590 unique tags with significantly altered transcript abundance levels identified (P<.01. Strikingly, innate immune genes (whose transcript abundances are typically altered in response to other pathogens or insults including IL-8, CCL4, and IL-1β showed no or very little change at any time point following infection.

  14. BN 52021 (a platelet activating factor-receptor antagonist decreases alveolar macrophage-mediated lung injury in experimental extrinsic allergic alveolitis

    Directory of Open Access Journals (Sweden)

    J-L. Pérez-Arellano

    1998-01-01

    Full Text Available Several lines of research indirectly suggest that platelet activating factor (PAF may intervene in the pathogenesis of extrinsic allergic alveolitis (EAA. The specific aim of our study was to evaluate the participation of PAF on macrophage activation during the acute phase of EAA in an experimental model of this disease developed in guinea pigs. Initially we measured the concentration of PAF in bronchoalvedar lavage fluid, blood and lung tissue. In a second phase we evaluate the participation of PAF on alveolar macrophage activation and parenchymal lung injury. The effect of PAF on parenchymal lung injury was evaluated by m easuring several lung parenchymatous lesion indices (lung index, bronchoalvedar lavage fluid (BALF lactic hydrogenase activity and BALF alkaline phosphatase activity and parameters of systemic response to the challenge (acute phase reagents. We observed that induction of the experimental EAA gave rise to an increase in the concentration of PAF in blood and in lung tissue. The use of the PAF-receptor antagonist BN52021 decreases the release of lysosomal enzymes (β-glucuronidase and tartrate-sensitive acid phosphatase to the extracellular environment both in vivo and in vitro. Furthermore, antagonism of the PAF receptors notably decreases pulmonary parenchymatous lesion. These data suggest that lung lesions from acute EAA are partly mediated by local production of PAF.

  15. Avaliação da função de macrófagos alveolares em cavalos clinicamente sadios Evaluation of alveolar macrophage function in healthy horses

    Directory of Open Access Journals (Sweden)

    E. Mori

    2001-04-01

    Full Text Available Devido à importância dos macrófagos alveolares (MA nos mecanismos de defesa pulmonar, foram realizados estudos para avaliar a atividade desses fagócitos em cavalos hígidos. Foram realizados lavados broncoalveolares (LBA em cinco cavalos clinicamente sadios. A citologia foi realizada pela citocentrifugação das amostras e posterior confecção de lâminas coradas pelo método de Rosenfeld. Todas as amostras do LBA foram centrifugadas e a concentração celular foi ajustada para 2×10(6 células/ml, para a mensuração da atividade macrofágica (testes de espraiamento, fagocitose e liberação de peróxido de hidrogênio. A contagem diferencial das células presentes no LBA demonstrou a predominância de macrófagos (59,0± 6,9%. Os resultados obtidos nos testes de mensuração da atividade macrofágica foram: índice de espraiamento 25,1± 19,7%, índice de fagocitose 89,4± 6,2% e liberação de peróxido de hidrogênio 1,6± 0,3nmoles/2×10(5 células (sem PMA - phorbol 12-myristate 13-acetate e 1,8± 0,4nmoles/2×10(5 células (com PMA. Os resultados demonstraram um padrão de atividade para MA de cavalos hígidos, os quais apresentaram índices de ativação mesmo sem elicitação prévia, indicando que as técnicas utilizadas foram adequadas para tal propósito.Due to the importance of alveolar macrophages (AM in pulmonary defense mechanisms, studies were performed in order to evaluate the activity of these cells. Bronchoalveolar lavages (BAL were obtained from five healthy horses, and cytology was performed on glass slides after cytocentrifugation of the samples. Slides were stained by Rosenfeld. All BAL samples were centrifuged and cell concentration was adjusted to 2×10(6 cells/ml, for the measurement of AM activity (spreading, phagocytosis and hydrogen peroxide release tests. Differential counting of the BAL cells demonstrated that macrophages were the predominant type of cell (59.0± 6.9%. Measurement of AM activity presented the

  16. Endothelin receptor-antagonists suppress lipopolysaccharide-induced cytokine release from alveolar macrophages of non-smokers, smokers and COPD subjects.

    Science.gov (United States)

    Gerlach, Kathrin; Köhler-Bachmann, Stefanie; Jungck, David; Körber, Sandra; Yanik, Sarah; Knoop, Heiko; Wehde, Deborah; Rheinländer, Sonja; Walther, Jörg W; Kronsbein, Juliane; Knobloch, Jürgen; Koch, Andrea

    2015-12-01

    Smoking-induced COPD is characterized by chronic airway inflammation, which becomes enhanced by bacterial infections resulting in accelerated disease progression called exacerbation. Alveolar macrophages (AM) release endothelin-1 (ET-1), IL-6, CCL-2 and MMP-9, all of which are linked to COPD pathogenesis and exacerbation. ET-1 signals via ETA- and ETB-receptors (ETAR, ETBR). This is blocked by endothelin receptor antagonists (ERAs), like bosentan, which targets both receptors, ETAR-selective ambrisentan and ETBR-specific BQ788. Therefore, ERAs could have anti-inflammatory potential, which might be useful in COPD and other inflammatory lung diseases. We hypothesized that ERAs suppress cytokine release from AM of smokers and COPD subjects induced by lipopolysaccharide (LPS), the most important immunogen of gram-negative bacteria. AM were isolated from the broncho-alveolar lavage (BAL) of n=29 subjects (11 non-smokers, 10 current smokers without COPD, 8 smokers with COPD), cultivated and stimulated with LPS in the presence or absence of ERAs. Cytokines were measured by ELISA. Endothelin receptor expression was investigated by RT-PCR and western blot. AM expressed ETAR and ETBR mRNA, but only ETBR protein was detected. LPS and ET-1 both induced IL-6, CCL-2 and MMP-9. LPS-induced IL-6 release was increased in COPD versus non-smokers and smokers. Bosentan, ambrisentan and BQ788 all partially reduced all cytokines without differences between cohorts. Specific ETBR inhibition was most effective. LPS induced ET-1, which was exclusively blocked by BQ788. In conclusion, LPS induces ET-1 release in AM, which in turn leads to CCL-2, IL-6 and MMP-9 expression rendering AM sensitive for ERAs. ERAs could have anti-inflammatory potential in smoking-induced COPD.

  17. Human immunodeficiency virus infection alters tumor necrosis factor alpha production via Toll-like receptor-dependent pathways in alveolar macrophages and U1 cells.

    Science.gov (United States)

    Nicol, Marlynne Q; Mathys, Jean-Marie; Pereira, Albertina; Ollington, Kevin; Ieong, Michael H; Skolnik, Paul R

    2008-08-01

    Human immunodeficiency virus (HIV)-positive persons are predisposed to pulmonary infections, even after receiving effective highly active antiretroviral therapy. The reasons for this are unclear but may involve changes in innate immune function. HIV type 1 infection of macrophages impairs effector functions, including cytokine production. We observed decreased constitutive tumor necrosis factor alpha (TNF-alpha) concentrations and increased soluble tumor necrosis factor receptor type II (sTNFRII) in bronchoalveolar lavage fluid samples from HIV-positive subjects compared to healthy controls. Moreover, net proinflammatory TNF-alpha activity, as measured by the TNF-alpha/sTNFRII ratio, decreased as HIV-related disease progressed, as manifested by decreasing CD4 cell count and increasing HIV RNA (viral load). Since TNF-alpha is an important component of the innate immune system and is produced upon activation of Toll-like receptor (TLR) pathways, we hypothesized that the mechanism associated with deficient TNF-alpha production in the lung involved altered TLR expression or a deficit in the TLR signaling cascade. We found decreased Toll-like receptor 1 (TLR1) and TLR4 surface expression in HIV-infected U1 monocytic cells compared to the uninfected parental U937 cell line and decreased TLR message in alveolar macrophages (AMs) from HIV-positive subjects. In addition, stimulation with TLR1/2 ligand (Pam(3)Cys) or TLR4 ligand (lipopolysaccharide) resulted in decreased intracellular phosphorylated extracellular signal-regulated kinase and subsequent decreased transcription and expression of TNF-alpha in U1 cells compared to U937 cells. AMs from HIV-positive subjects also showed decreased TNF-alpha production in response to these TLR2 and TLR4 ligands. We postulate that HIV infection alters expression of TLRs with subsequent changes in mitogen-activated protein kinase signaling and cytokine production that ultimately leads to deficiencies of innate immune responses that

  18. Pulmonary alveolar proteinosis

    Directory of Open Access Journals (Sweden)

    B. Crestani

    2011-06-01

    Full Text Available Pulmonary alveolar proteinosis (PAP is a rare pulmonary disease characterised by alveolar accumulation of surfactant. It may result from mutations in surfactant proteins or granulocyte macrophage-colony stimulating factor (GM-CSF receptor genes, it may be secondary to toxic inhalation or haematological disorders, or it may be auto-immune, with anti-GM-CSF antibodies blocking activation of alveolar macrophages. Auto-immune alveolar proteinosis is the most frequent form of PAP, representing 90% of cases. Although not specific, high-resolution computed tomography shows a characteristic “crazy paving” pattern. In most cases, bronchoalveolar lavage findings establish the diagnosis. Whole lung lavage is the most effective therapy, especially for auto-immune disease. Novel therapies targeting alveolar macrophages (recombinant GM-CSF therapy or anti-GM-CSF antibodies (rituximab and plasmapheresis are being investigated. Our knowledge of the pathophysiology of PAP has improved in the past 20 yrs, but therapy for PAP still needs improvement.

  19. Effects of quartz, airborne particulates and fly ash fractions from a waste incinerator on elastase release by activated and nonactivated rabbit alveolar macrophages.

    Science.gov (United States)

    Gulyas, H; Labedzka, M; Schmidt, N; Gercken, G

    1988-01-01

    Elastase release from cultured, activated and nonactivated rabbit alveolar macrophages (AM) was investigated after stimulation by different environmentally related mineral dusts (50-1000 micrograms/10(6) cells). Eight different dusts were analyzed for element contents and grain size: one rural and three urban airborne dusts, a coarse and a fine fraction of a sieved waste incinerator fly ash, a sonicated coarse fly ash fraction, and the standard quartz dust DQ 12. The fine fly ash fraction, the sonicated coarse fly ash fraction, and the quartz dust DQ 12 enhanced elastase release by activated AM. Only one of the tested airborne dusts effected a comparable elastase release. The untreated coarse fraction of the fly ash did not cause a significant increase of extracellular elastase activities. Elastase release was dependent on particle numbers and chemical composition and correlated best with barium and tin contents. Nonactivated AM released higher elastase activities than activated AM at low-dose levels. The possible role of dust-induced elastase secretion in the pathogenesis of emphysema is discussed.

  20. Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency

    Directory of Open Access Journals (Sweden)

    Adele Mucci

    2016-08-01

    Full Text Available Induced pluripotent stem cells (iPSCs represent an innovative source for the standardized in vitro generation of macrophages (Mφ. We here describe a robust and efficient protocol to obtain mature and functional Mφ from healthy as well as disease-specific murine iPSCs. With regard to morphology, surface phenotype, and function, our iPSC-derived Mφ (iPSC-Mφ closely resemble their counterparts generated in vitro from bone marrow cells. Moreover, when we investigated the feasibility of our differentiation system to serve as a model for rare congenital diseases associated with Mφ malfunction, we were able to faithfully recapitulate the pathognomonic defects in GM-CSF signaling and Mφ function present in hereditary pulmonary alveolar proteinosis (herPAP. Thus, our studies may help to overcome the limitations placed on research into certain rare disease entities by the lack of an adequate supply of disease-specific primary cells, and may aid the development of novel therapeutic approaches for herPAP patients.

  1. Role of transforming growth factor-β1 in down-regulating TNF production by alveolar macrophages during asbestos-induced pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Irma Lemaire

    1996-01-01

    Full Text Available Activation of alveolar macrophages (AM for tumour necrosis factor production is suppressed initially during the inflammatory response to fibrogenic dusts. We investigated the mechanisms involved in TNF suppression, notably the role of other AM-derived mediators including prostaglandin E2 (PGE2, transforming growth factor-β1 (TGF-β1, and interleukin 6 (IL-6. The action of PGE2 and TGF-β1, on AM was different. At physiologically relevant doses (25–300 pg/ml, PGE2 did not cause significant inhibition of Hpopolysaccharide (Lps-induced TNF release by AM in vitro but stimulated IL-6 (up to six fold, an inhibitor of AM-derived TNT. In contrast, TGF-β1 (0.5–50 ng/ml inhibited both LPS-induced TNT and IL-6 release by 50% but had no effect on PGE2 production by AM. To determine the respective contribution of these different inhibitors in TNF suppression, AM from rats exposed to fibrogenic asbestos for weeks were treated with neutralizing antibody against TGF-β1 or indomethacin, an inhibitor of PGE2 synthesis. Treatment of rat AM with anti-TGF-β1 but not indomethacin, abrogated the observed TNT suppression. These results suggest that an autocrine, TGF-β1-dependent mechanism is involved in the down-regulation of TNF production by rat AM from animals with lung fibrosis.

  2. TNF-α Up-regulates Matrix Metalloproteinase-9 Expression and Activity in Alveolar Macrophages from Patients with Chronic Obstructive Pulmonary Disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the effects of tumor necrosis factor (TNF)-α on matrix metalloproteinase (MMP)-9 expression and activity in alveolar macrophages (AM) and to investigate the role of NF-κB in the induction, AM were collected from bronchoalveolar lavage fluid (BALF) of healthy subjects and patients with chronic obstructive pulmonary disease (COPD). MMP-9 expression and activity were detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blotting and zymography. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA). MMP-9 expression and activity induced by TNF-α in AM from healthy subjects or patients with COPD were significantly increased in a dose-dependent manner (P<0.05). NF-κB activity induced by TNF-α was significantly increased in AM from patients with COPD, and pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC) significantly inhibited the activation of NF-κB induced by TNF-α (P<0.05). The presents study suggested that the expression and activity of MMP-9 from AM can be induced by TNF-α, and TNF-α/NF-κB signal pathway may play an important role in the induction.

  3. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing.

    Science.gov (United States)

    Descamps, Delphyne; Le Gars, Mathieu; Balloy, Viviane; Barbier, Diane; Maschalidi, Sophia; Tohme, Mira; Chignard, Michel; Ramphal, Reuben; Manoury, Bénédicte; Sallenave, Jean-Michel

    2012-01-31

    A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation.

  4. Mitogen-activated protein kinases p38 and JNK mediate Actinobacillus pleuropneumoniae exotoxin ApxI-induced apoptosis in porcine alveolar macrophages.

    Science.gov (United States)

    Wu, Chi-Ming; Chen, Zeng-Weng; Chen, Ter-Hsin; Liao, Jiunn-Wang; Lin, Cheng-Chung; Chien, Maw-Sheng; Lee, Wei-Cheng; Hsuan, Shih-Ling

    2011-08-05

    Actinobacillus pleuropneumoniae exotoxins (Apx) are major virulence factors that play important roles in the pathogenesis of pleuropneumonia in swine. A previous study has demonstrated that native ApxI at low concentrations induces apoptosis in primary porcine alveolar macrophages (PAMs) via a caspase-3-dependent pathway. However, the molecular mechanisms underlying ApxI-induced apoptosis remain largely unknown. In this study, it was shown that ApxI treatment in PAMs rapidly induced phosphorylation of both p38 and JNK, members of the mitogen-activated protein kinase family. Application of a selective p38 or JNK inhibitor significantly reduced ApxI-induced apoptosis, indicating the involvement of p38 and JNK pathways in this event. Furthermore, activation of both caspase-8 and -9 were observed in ApxI-stimulated PAMs. Inhibition of caspase-8 and caspase-9 activity significantly protected PAMs from ApxI-induced apoptosis. In addition, Bid activation was also noted in ApxI-treated PAMs, and inhibition of caspase-8 suppressed the activation of Bid and caspase-9, suggesting that ApxI was able to activate the caspases-8-Bid-caspase-9 pathway. Notably, inhibition of p38 or JNK pathway greatly attenuated the activation of caspases-3, -8, and -9. This study is the first to demonstrate that ApxI-induced apoptosis of PAMs involves the activation of p38 and JNK, and engages the extrinsic and intrinsic apoptotic pathways.

  5. Molecular characterization of transcriptome-wide interactions between highly pathogenic porcine reproductive and respiratory syndrome virus and porcine alveolar macrophages in vivo.

    Science.gov (United States)

    Zhou, Ping; Zhai, Shanli; Zhou, Xiang; Lin, Ping; Jiang, Tengfei; Hu, Xueying; Jiang, Yunbo; Wu, Bin; Zhang, Qingde; Xu, Xuewen; Li, Jin-Ping; Liu, Bang

    2011-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infects mainly the porcine alveolar macrophages (PAMs) and causes porcine reproductive and respiratory syndrome (PRRS). Previous studies have analyzed the global gene expression profiles of lung tissue in vivo and PAMs in vitro following infection with PRRSV, however, transcriptome-wide understanding of the interaction between highly pathogenic PRRSV (HP-PRRSV) and PAMs in vivo has not yet been established. In this study, we employed Affymetrix microarrays to investigate the gene expression patterns of PAMs isolated from Tongcheng piglets (a Chinese indigenous breed) after infection with HP-PRRSV. During the infection, Tongcheng piglets exhibited typical clinical signs, e.g. fever, asthma, coughing, anorexia, lethargy and convulsion, but displayed mild regional lung damage at 5 and 7 dpi. Microarray analysis revealed that HP-PRRSV infection has affected PAMs in expression of the important genes involved in cytoskeleton and exocytosis organization, protein degradation and folding, intracellular calcium and zinc homeostasis. Several potential antiviral strategies might be employed in PAMs, including upregulating IFN-induced genes and increasing intracellular zinc ion concentration. And inhibition of the complement system likely attenuated the lung damage during HP-PRRSV infection. Transcriptomic analysis of PAMs in vivo could lead to a better understanding of the HP-PRRSV-host interaction, and to the identification of novel antiviral therapies and genetic components of swine tolerance/susceptibility to HP-PRRS.

  6. Identification of differentially expressed proteins in porcine alveolar macrophages infected with virulent/attenuated strains of porcine reproductive and respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Yan-Jun Zhou

    Full Text Available The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV is still a serious threat to the swine industry. However, the pathogenic mechanism of HP-PRRSV remains unclear. We infected host porcine alveolar macrophages (PAMs with the virulent HuN4 strain and the attenuated HuN4-F112 strain and then utilized fluorescent two-dimensional difference gel electrophoresis (2D-DIGE to screen for intracellular proteins that were differentially expressed in host cells infected with the two strains. There were 153 proteins with significant different expression (P<0.01 observed, 42 of which were subjected to mass spectrometry, and 24 proteins were identified. PAM cells infected with the virulent strain showed upregulated expression of pyruvate kinase M2 (PKM2, heat shock protein beta-1 (HSPB1, and proteasome subunit alpha type 6 (PSMA6, which were downregulated in cells infected with the attenuated strain. The upregulation of PKM2 provides sufficient energy for viral replication, and the upregulation of HSPB1 inhibits host cell apoptosis and therefore facilitates mass replication of the virulent strain, while the upregulation of PSMA6 facilitates the evasion of immune surveillance by the virus. Studying on those molecules mentioned above may be able to help us to understand some unrevealed details of HP-PRRSV infection, and then help us to decrease its threat to the swine industry in the future.

  7. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2008-04-01

    The efficacy of pulmonary administration of ciprofloxacin (CPFX) incorporated into mannosylated liposomes (mannosylated CPFX-liposomes) for the treatment of respiratory intracellular parasitic infections was evaluated. In brief, mannosylated CPFX-liposomes with 4-aminophenyl-a-d-mannopyranoside (particle size: 1000 nm) were prepared, and the drug targeting to alveolar macrophages (AMs) following pulmonary administration was examined in rats. Furthermore, the antibacterial and mutant prevention effects of mannosylated CPFX-liposomes in AMs were evaluated by pharmacokinetic/pharmacodynamic (PK/PD) analysis. The targeting efficiency of CPFX to rat AMs following pulmonary administration of mannosylated CPFX-liposomes was significantly greater than that of CPFX incorporated into unmodified liposomes (unmodified CPFX-liposomes; particle size: 1000 nm). According to PK/PD analysis, the mannosylated CPFX-liposomes exhibited potent antibacterial effects against many bacteria although unmodified CPFX-liposomes were ineffective against several types of bacteria, and the probability of microbial mutation by mannosylated CPFX-liposomes was extremely low. The present study indicates that mannosylated CPFX-liposomes as pulmonary administration system could be useful for the treatment of respiratory intracellular parasitic infections.

  8. Distribution characteristics of clarithromycin and azithromycin, macrolide antimicrobial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Morimoto, Kazuhiro

    2011-10-01

    The distribution characteristics of clarithromycin (CAM) and azithromycin (AZM), macrolide antimicrobial agents, in lung epithelial lining fluid (ELF) and alveolar macrophages (AMs) were evaluated. In the in vivo animal experiments, the time-courses of the concentrations of CAM and AZM in ELF and AMs following oral administration (50 mg/kg) to rats were markedly higher than those in plasma, and the area under the drug concentration-time curve (AUC) ratios of ELF/plasma of CAM and AZM were 12 and 2.2, and the AUC ratios of AMs/ELF were 37 and 291, respectively. In the in vitro transport experiments, the basolateral-to-apical transport of CAM and AZM through model lung epithelial cell (Calu-3) monolayers were greater than the apical-to-basolateral transport. MDR1 substrates reduced the basolateral-to-apical transport of CAM and AZM. In the in vitro uptake experiments, the intracellular concentrations of CAM and AZM in cultured AMs (NR8383) were greater than the extracellular concentrations. The uptake of CAM and AZM by NR8383 was inhibited by ATP depletors. These data suggest that the high distribution of CAM and AZM to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by the AMs themselves via active transport mechanisms.

  9. Efficient drug delivery to alveolar macrophages and lung epithelial lining fluid following pulmonary administration of liposomal ciprofloxacin in rats with pneumonia and estimation of its antibacterial effects.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2008-10-01

    The efficacy of pulmonary administration of liposomal ciprofloxacin (CPFX) in pneumonia was evaluated. In brief, the pharmacokinetics following pulmonary administration of liposomal CPFX (particle size, 1,000 nm; dose, 200 microg/kg) were examined in rats with lipopolysaccharide-induced pneumonia as an experimental pneumonia model. Furthermore, the antibacterial effects of liposomal CPFX against the pneumonic causative organisms were estimated by pharmacokinetic/pharmacodynamic (PK/PD) analysis. The time-courses of the concentration of CPFX in alveolar macrophages (AMs) and lung epithelial lining fluid (ELF) following pulmonary administration of liposomal CPFX to rats with pneumonia were markedly higher than that following the administration of free CPFX (200 microg/kg). The time course of the concentrations of CPFX in plasma following pulmonary administration of liposomal CPFX was markedly lower than that in AMs and ELF. These results indicate that pulmonary administration of liposomal CPFX was more effective in delivering CPFX to AMs and ELF compared with free CPFX, and it avoids distribution of CPFX to the blood. According to PK/PD analysis, the liposomal CPFX exhibited potent antibacterial effects against the causative organisms of pneumonia. This study indicates that pulmonary administration of CPFX could be an effective technique for the treatment of pneumonia.

  10. Distribution characteristics of telithromycin, a novel ketolide antimicrobial agent applied for treatment of respiratory infection, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-01-01

    The distribution characteristics of telithromycin (TEL), a novel ketolide antimicrobial agent, in lung epithelial fluid (ELF) and alveolar macrophages (AMs) were evaluated. In vivo animal experiments, the time-courses of the concentrations of TEL in ELF and AMs following oral administration of TEL solution (50 mg/4 mL/kg) to rats were markedly higher than in plasma, and areas under drug concentration-time curve (AUC) ratios of ELF/plasma and AMs/plasma were 2.4 and 65.3, respectively. In vitro transport experiments, the basolateral-to-apical transport of TEL through model lung epithelial cell (Calu-3) monolayers was greater than apical-to-basolateral transport. Rhodamine123 and verapamil, MDR1 substrates, reduced the basolateral-to-apical transport of TEL. In vitro uptake experiments, the intracellular equilibrated concentration of TEL in cultured AMs (NR8383) was approximately 40 times the extracellular concentration. The uptake of TEL by NR8383 was inhibited by rotenone and FCCP, ATP depletors and was temperature-dependent. These data suggest that the high distribution of TEL to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by AMs themselves via active transport mechanisms.

  11. Molecular Characterization of Transcriptome-wide Interactions between Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and Porcine Alveolar Macrophages in vivo

    Directory of Open Access Journals (Sweden)

    Ping Zhou, Shanli Zhai, Xiang Zhou, Ping Lin, Tengfei Jiang, Xueying Hu, Yunbo Jiang, Bin Wu, Qingde Zhang, Xuewen Xu, Jin-ping Li, Bang Liu

    2011-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV infects mainly the porcine alveolar macrophages (PAMs and causes porcine reproductive and respiratory syndrome (PRRS. Previous studies have analyzed the global gene expression profiles of lung tissue in vivo and PAMs in vitro following infection with PRRSV, however, transcriptome-wide understanding of the interaction between highly pathogenic PRRSV (HP-PRRSV and PAMs in vivo has not yet been established. In this study, we employed Affymetrix microarrays to investigate the gene expression patterns of PAMs isolated from Tongcheng piglets (a Chinese indigenous breed after infection with HP-PRRSV. During the infection, Tongcheng piglets exhibited typical clinical signs, e.g. fever, asthma, coughing, anorexia, lethargy and convulsion, but displayed mild regional lung damage at 5 and 7 dpi. Microarray analysis revealed that HP-PRRSV infection has affected PAMs in expression of the important genes involved in cytoskeleton and exocytosis organization, protein degradation and folding, intracellular calcium and zinc homeostasis. Several potential antiviral strategies might be employed in PAMs, including upregulating IFN-induced genes and increasing intracellular zinc ion concentration. And inhibition of the complement system likely attenuated the lung damage during HP-PRRSV infection. Transcriptomic analysis of PAMs in vivo could lead to a better understanding of the HP-PRRSV-host interaction, and to the identification of novel antiviral therapies and genetic components of swine tolerance/susceptibility to HP-PRRS.

  12. Effects of 5-chloro-2-methyl-4-isothiazolin-3-one and other candidate biodiesel biocides on rat alveolar macrophages and NR8383 cells

    Energy Technology Data Exchange (ETDEWEB)

    Poon, R.; Rigden, M. [Environmental Heath Science and Research Bureau, Health Canada, Ottawa (Canada); Edmonds, N.; Charman, N.; Lamy, S. [Water, Air and Climate Change Bureau, Health Canada, Ottawa (Canada)

    2011-11-15

    Biocides are added to biodiesels to inhibit and remove microbial growth. The effects of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), a candidate biodiesel biocide, were studied using freshly isolated rat alveolar macrophages (AM) and NR8383 cell line. CMIT markedly inhibited phagocytic oxidative burst as measured by zymosan-induced chemiluminescence, and cellular cytokine secretion as measured by zymosan-induced TNF-{alpha} secretion. The 50% inhibition concentration (LC{sub 50}) for CMIT was 0.002-0.004 mM for both cellular functions. AM exposed to CMIT for as little as 2 min showed markedly inhibited functions that persisted for at least 5 h. Sodium metabisulfite was able to partially neutralize the inhibitory activity of CMIT. Cysteine and glutathione, when present at a molar ratio of 2-1 or higher against CMIT, were effective neutralizers, while serine, histidine, alanine, and albumin were without effect. When the AM testing system was used to compare the toxicity of CMIT against three other candidate biodiesel biocides, methylene dithiocyanate (MDC) was found to be of comparable toxicity to CMIT, 2-methyl-4-isothiazolin-3-one (MIT) was much less toxic, and dimethyl acetylenedicarboxylate (DMAD) was non-toxic. Because AM is among the first cell-type exposed to inhaled biodiesel aerosols, the result suggested that CMIT present in biodiesel may produce respiratory effects, and further investigations including animal studies are warranted. (orig.)

  13. Inhibitory Effect of Oxymatrine on Quartz-induced Secretion of TNF-α by the Pulmonary Alveolar Macrophages in the Fibroblast Proliferation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the inhibitory effect of oxymatrine (OM) on quartz-induced secretion of TNF-α in the fibroblast proliferation, a given amount of quartz powder and OM of different concentrations were put into the media of pure culture containing macrophages. After 24 h of the culture, the TNF-α in the media was measured by double-antibody sandwich ELISA. The TNF-α (10 ng/mL) and OM of different concentrations were added into the media containing the fibroblasts of the 4th generations from neonate rats. The γ values of cAMP and cGMP in fibroblasts were determined by the radioimmunoassay and the concentrations of cAMP and cGMP were calculated according to standard curve.The intracellular Ca2+ was determined by flow cytometry and cell proliferation was detected by MTT.Our results showed that at the concentrations between 200 μg/mL-1600 μg/mL, OM inhibited the secretion of TNF-α by alveolar macrophages (AM) in a dose-dependent manner. Especially, there were significant differences, to various degrees, in the inhibitory effect of OM between the concentration range of 800 μg/mL-1600 μg/mL and the concentration of 10 ng/mL TNF-α. When compared with 10 ng/mL TNF-α, OM of different concentrations could dose-independently increased the level of intracellular cAMP and decreased the level of cGMP, thereby raising the ratio of cAMP/cGMP and lowering the concentrations of intracellular Ca2+. Moreover, OM of 800 μg/mL had the strongest inhibitory effect on cell proliferation and at this concentration, the cAMP/cGMP was highest and Ca2+was at the lowest level. We are led to conclude that OM can antagonize the damaging effect of quartz on the membrane of AM and the effect of TNF-α promoting the proliferation of fibroblasts. It achieves its inhibitory effect on the promoting effect of TNF-α on fibroblast proliferation by elevating the cAMP level and decreasing the release of Ca2+.

  14. Expression of IGF receptors on alveolar macrophages: IGF-induced changes in InsPi formation, [Ca2+]i, and pHi.

    Science.gov (United States)

    Geertz, R; Kiess, W; Kessler, U; Hoeflich, A; Tarnok, A; Gercken, G

    1997-12-01

    Expression of insulin-like growth factor-I (IGF-I) receptors and insulin-like growth factor-II/mannose-6-phosphate (IGF-II/Man6P) receptors in cultured bovine alveolar macrophages (BAM) was demonstrated by competitive binding studies and crosslinking experiments. Western blotting of protein extracts from cultured BAM using an anti bovine IGF-II/Man6P receptor antiserum (#66416) confirmed the presence of IGF-II/Man6P receptors on BAM. The effects of IGFs and Man6P on generation of inositol phosphates was measured by HPLC analysis of perchloric acid extracts from myo-[3H]inositol-labelled cultured BAM. IGF-I at nanomolar concentrations and Man6P (10[-8]-10[-3] M) stimulated the accumulation of both Ins(1,4,5)P3 and Ins(1,3,4,5)P4 after 30 sec. IGF-II (up to 2.3 x 10[-8] M) had no significant effect on inositol phosphate accumulation under the same conditions. Both IGFs and Man6P induced a rise in [Ca2+]i in cultured BAM. In addition, using the fluorescent dye SNARF-1/AM we could demonstrate rapid but small IGF-II (10[-9] M) triggered acidification (0.07 pH units) of cultured BAM. Taken together, our results indicate not only the presence of both IGF-I and IGF-II/Man6P receptors on BAM, but also provide evidence of the linkage of the IGF-I receptor to the inositol phosphate system.

  15. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.

    Science.gov (United States)

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-04-15

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings.

  16. N-Acetyl-L-cysteine and pyrrolidine dithiocarbamate inhibited nuclear factor-кB activation in alveolar macrophages by different mechanisms

    Institute of Scientific and Technical Information of China (English)

    Ya-qing LI; Zhen-xiang ZHANG; Yong-jian XU; Wang NI; Shi-xin CHEN; Zhao YANG; Dan MA

    2006-01-01

    Aim:To study the effects of N-acetyl-L-cysteine(NAC)and pyrrolidine dithiocarbamate(PDTC)on the phosphorylation of IκB kinase(IKK)β,IKKα,and IκBa in alveolar macrophages(AM),and to explore the pharmacological mechanisms of NAC and PDTC as inhibitors of NF-κB activation.Methods:AM were collected from bronchoalveolar lavage fluid from the patients with chronic obstructive pulmonary disease.The AM were incubated for 1.5h with NAC and PDTC,and then stimulated for 90 min by either tumor necrosis factor(TNF)-α or interleukin(IL)-1.Western blotting was used to detect the protein phosphorylation levels of IKKβ,IKKα,and IκBα.NF-κB activity was analyzed by using an electrophoretic mobility shift assay.Resuits:NAC inhibited the phosphorylation of IKKβ,IKKα,and IκBα induced by TNF-α,but had no effect on the phosphorylation of IKKβ,IKKα and IκBα induced by IL-1.PDTC did not inhibit the phosphorylation of IκBα induced by TNF-α or IL-1.Similarly,NAC inhibited the activation of NF-κB induced by TNF-α,but had no effect on the activation of NF-κB induced by IL-1.PDTC significantly inhibited the activation of NF-κB induced by TNF-α and IL-1.The electrophoretic mobility shift assay also showed that PDTC and NAC do not directly inhibit NF-κB DNA binding activity in vitro.Conclusion:PDTC prevents the degradation of IκBα via the ubiquitylation-proteasome proteolytic pathway.NAC can inhibit the processes upstream of IKK activation induced by TNF-α,which results in the decline of NF-κB activity.

  17. [Alveolar macrophages and mononuclear cells of the peripheral blood in sulfur dioxide and chrysotile B exposure: a realistic in vitro test of oxygen free radical liberation].

    Science.gov (United States)

    Knorst, M M; Kienast, K; Müller-Quernheim, J; Ferlinz, R

    1993-05-01

    Sulfur dioxide (SO2) and Asbest are frequently found at workplaces. They can induce airway and lung parenchymal injury. Alveolar macrophages (AM) play an important and decisive role in the damage of respiratory tissue. We evaluated the reactive oxygen intermediates (ROI) production of AM and peripheral blood mononuclear cells after exposure with SO2 and Chrysotile B. The cells were exposed in a special gas exposure chamber at 37 degrees C and 100% air humidity for 30 minutes to 1.5 or 2.5 ppm SO2. Afterwards they were incubated for one hour with 100 micrograms or 200 micrograms Chrysotile B. Control experiments were performed with cell exposure to synthetic air without SO2 and Chrysotile B. Spontaneous and phorbol myristate acetate (PMA) stimulated ROI-release were measured by chemiluminescence and the cell toxicity was evaluated with the trypan blue exclusion test. Our results show a dose-dependent increase of the spontaneous ROI-production of AM after SO2 and Chrysotile B exposure. Exposure to 100 micrograms Chrysotile B caused an 1.5 fold, exposure to 1.5 or 2.5 ppm SO2 plus 100 micrograms Chrysotile B resulted in an 2.4 respectively 3.3 fold increase in ROI-release compared to control experiments. Exposure of AM to 200 micrograms Chrysotile B yielded an 1.9 fold, exposure to 2.5 ppm SO2 plus 200 micrograms Chrysotile B a 3.9 fold elevation in the spontaneous ROI-production compared to control experiment with standard air. A similar reaction pattern was observed in PMA-stimulated AM and in peripheral blood mononuclear cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices.

    Science.gov (United States)

    Delgado-Ortega, Mario; Melo, Sandrine; Punyadarsaniya, Darsaniya; Ramé, Christelle; Olivier, Michel; Soubieux, Denis; Marc, Daniel; Simon, Gaëlle; Herrler, Georg; Berri, Mustapha; Dupont, Joëlle; Meurens, François

    2014-04-09

    Viral respiratory diseases remain of major importance in swine breeding units. Swine influenza virus (SIV) is one of the main known contributors to infectious respiratory diseases. The innate immune response to swine influenza viruses has been assessed in many previous studies. However most of these studies were carried out in a single-cell population or directly in the live animal, in all its complexity. In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells - NPTr) in comparison with alveolar macrophages and lung slices for the characterization of innate immune response to an infection by a European SIV of the H3N2 subtype. The expression pattern of transcripts involved in the recognition of the virus, interferon type I and III responses, and the host-response regulation were assessed by quantitative PCR in response to infection. Some significant differences were observed between the three systems, notably in the expression of type III interferon mRNA. Then, results show a clear induction of JAK/STAT and MAPK signaling pathways in infected NPTr cells. Conversely, PI3K/Akt signaling pathways was not activated. The inhibition of the JAK/STAT pathway clearly reduced interferon type I and III responses and the induction of SOCS1 at the transcript level in infected NPTr cells. Similarly, the inhibition of MAPK pathway reduced viral replication and interferon response. All together, these results contribute to an increased understanding of the innate immune response to H3N2 SIV and may help identify strategies to effectively control SIV infection.

  19. In vivo rescue of alveolar macrophages from SP-A knockout mice with exogenous SP-A nearly restores a wild type intracellular proteome; actin involvement

    Directory of Open Access Journals (Sweden)

    Floros Joanna

    2011-10-01

    Full Text Available Abstract Background Mice lacking surfactant protein-A (SP-A-/-; knockout; KO exhibit increased vulnerability to infection and injury. Although many bronchoalveolar lavage (BAL protein differences between KO and wild-type (WT are rapidly reversed in KO after infection, their clinical course is still compromised. We studied the impact of SP-A on the alveolar macrophage (AM proteome under basal conditions. Male SP-A KO mice were SP-A-treated (5 micrograms/mouse and sacrificed in 6 or 18 hr. The AM proteomes of KO, SP-A-treated KO, and WT mice were studied by 2D-DIGE coupled with MALDI-ToF/ToF and AM actin distribution was examined by phalloidon staining. Results We observed: a significant differences from KO in WT or exogenous SP-A-treated in 45 of 76 identified proteins (both increases and decreases. These included actin-related/cytoskeletal proteins (involved in motility, phagocytosis, endocytosis, proteins of intracellular signaling, cell differentiation/regulation, regulation of inflammation, protease/chaperone function, and proteins related to Nrf2-mediated oxidative stress response pathway; b SP-A-induced changes causing the AM proteome of the KO to resemble that of WT; and c that SP-A treatment altered cell size and F-actin distribution. Conclusions These differences are likely to enhance AM function. The observations show for the first time that acute in vivo SP-A treatment of KO mice, under basal or unstimulated conditions, affects the expression of multiple AM proteins, alters F-actin distribution, and can restore much of the WT phenotype. We postulate that the SP-A-mediated expression profile of the AM places it in a state of "readiness" to successfully conduct its innate immune functions and ensure lung health.

  20. RNA-sequence analysis of primary alveolar macrophages after in vitro infection with porcine reproductive and respiratory syndrome virus strains of differing virulence.

    Science.gov (United States)

    Badaoui, Bouabid; Rutigliano, Teresa; Anselmo, Anna; Vanhee, Merijn; Nauwynck, Hans; Giuffra, Elisabetta; Botti, Sara

    2014-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects porcine alveolar macrophages (PAMs), resulting in porcine reproductive and respiratory syndrome (PRRS) in pigs. Most of the transcriptomic studies on PAMs infected with PRRSV conducted thus far have made use of microarray technology. Here, we investigated the transcriptome of PAMs in vitro at 12 h post-infection with two European PRRSV strains characterized by low (Lelystad, LV) and high (Lena) virulence through RNA-Seq. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with the two strains. Gene ontology analysis confirmed that infection of PAMs with both the Lena and LV strains affected signaling pathways directly linked to the innate immune response, including interferon regulatory factors (IRF), RIG1-like receptors, TLRs and PKR pathways. The results confirmed that interferon signaling is crucial for transcriptional regulation during PAM infection. IFN-β1 and IFN-αω, but not IFN-α, were up-regulated following infection with either the LV or Lena strain. The down-regulation of canonical pathways, such as the interplay between the innate and adaptive immune responses, cell death and TLR3/TLR7 signaling, was observed for both strains, but Lena triggered a stronger down-regulation than LV. This analysis contributes to a better understanding of the interactions between PRRSV and PAMs and outlines the differences in the responses of PAMs to strains with different levels of virulence, which may lead to the development of new PRRSV control strategies.

  1. Mechanisms underlying Actinobacillus pleuropneumoniae exotoxin ApxI induced expression of IL-1β, IL-8 and TNF-α in porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Chen Zeng-Weng

    2011-02-01

    Full Text Available Abstract Actinobacillus pleuropneumoniae (A. pleuropneumoniae causes fibrino-hemorrhagic necrotizing pleuropneumonia in pigs. Production of proinflammatory mediators in the lungs is an important feature of A. pleuropneumoniae infection. However, bacterial components other than lipopolysaccharide involved in this process remain unidentified. The goals of this study were to determine the role of A. pleuropneumoniae exotoxin ApxI in cytokine induction and to delineate the underlying mechanisms. Using real-time quantitative PCR analysis, we found native ApxI stimulated porcine alveolar macrophages (PAMs to transcribe mRNAs of IL-1β, IL-8 and TNF-α in a concentration- and time-dependent manner. Heat-inactivation or pre-incubation of ApxI with a neutralizing antiserum attenuated ApxI bioactivity to induce cytokine gene expression. The secretion of IL-1β, IL-8 and TNF-α protein from PAMs stimulated with ApxI was also confirmed by quantitative ELISA. In delineating the underlying signaling pathways contributing to cytokine expression, we observed mitogen-activated protein kinases (MAPKs p38 and cJun NH2-terminal kinase (JNK were activated upon ApxI stimulation. Administration of an inhibitor specific to p38 or JNK resulted in varying degrees of attenuation on ApxI-induced cytokine expression, suggesting the differential regulatory roles of p38 and JNK in IL-1β, IL-8 and TNF-α production. Further, pre-incubation of PAMs with a CD18-blocking antibody prior to ApxI stimulation significantly reduced the activation of p38 and JNK, and subsequent expression of IL-1β, IL-8 or TNF-α gene, indicating a pivotal role of β2 integrins in the ApxI-mediated effect. Collectively, this study demonstrated ApxI induces gene expression of IL-1β, IL-8 and TNF-α in PAMs that involves β2 integrins and downstream MAPKs.

  2. RNA-sequence analysis of primary alveolar macrophages after in vitro infection with porcine reproductive and respiratory syndrome virus strains of differing virulence.

    Directory of Open Access Journals (Sweden)

    Bouabid Badaoui

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV mainly infects porcine alveolar macrophages (PAMs, resulting in porcine reproductive and respiratory syndrome (PRRS in pigs. Most of the transcriptomic studies on PAMs infected with PRRSV conducted thus far have made use of microarray technology. Here, we investigated the transcriptome of PAMs in vitro at 12 h post-infection with two European PRRSV strains characterized by low (Lelystad, LV and high (Lena virulence through RNA-Seq. The expression levels of genes, isoforms, alternative transcription start sites (TSS and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with the two strains. Gene ontology analysis confirmed that infection of PAMs with both the Lena and LV strains affected signaling pathways directly linked to the innate immune response, including interferon regulatory factors (IRF, RIG1-like receptors, TLRs and PKR pathways. The results confirmed that interferon signaling is crucial for transcriptional regulation during PAM infection. IFN-β1 and IFN-αω, but not IFN-α, were up-regulated following infection with either the LV or Lena strain. The down-regulation of canonical pathways, such as the interplay between the innate and adaptive immune responses, cell death and TLR3/TLR7 signaling, was observed for both strains, but Lena triggered a stronger down-regulation than LV. This analysis contributes to a better understanding of the interactions between PRRSV and PAMs and outlines the differences in the responses of PAMs to strains with different levels of virulence, which may lead to the development of new PRRSV control strategies.

  3. Effects of Neuromedin S on the Proliferation of Splenic Lymphocytes and the Cytokine Secretion by Pulmonary Alveolar Macrophages in Pigs in vitro.

    Science.gov (United States)

    Lin, R; Wang, Q; Qi, B; Huang, Y; Yang, G

    2016-09-01

    Neuromedin S (NMS), a 36-amino acid neuropeptide, has been found to be involved in the regulation of the endocrine activity. It has been also detected in immune tissues in mammals, what suggests that NMS may play an important role in the regulation of immune response. The aim of this study was to demonstrate the presence of NMS receptor 1 (NMU1R) and effect of NMS in pig splenic lymphocytes (SPLs) and pulmonary alveolar macrophages (PAMs). The presence of NMU1R in pig SPLs and PAMs was respectively confirmed by reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunocytochemical methods. Furthermore, SPL proliferation was analyzed using the 3-(4,5)-dimethyl-thiahiazo-(-2-yl)-3,5-di-phenytetrazoliumromide (MTT) method. Additionally, the secretion of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in PAMs was all measured by enzyme-linked immunosorbent assay (ELISA) kits. In the present study, the results of RT-PCR and western blot analysis revealed that NMU1R mRNA and protein were both expressed in pig SPLs and PAMs, and the immunocytochemical investigations further revealed that the positive signal of NMU1R immunoreactivity was observed in plasma membranes of both SPLs and PAMs. In the in vitro study, we found that at concentrations of 0.001-1000 nM NMS alone or combined with lipopolysaccharide or phytohemagglutinin significantly increased SPL proliferation. Application of ELISA method showed that NMS could induce the secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in PAMs. These results suggest that NMS can act as a potently positive pro-inflammatory factor and immunomodulatory agent that affects the immune response of immune cells by combining with its receptor NMU1R.

  4. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona

    2010-01-01

    BACKGROUND: In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release...... accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli. CONCLUSIONS: Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies....

  5. The kinetics and distribution of different macrophage populations in the developing rat skin

    OpenAIRE

    2010-01-01

    Macrophages play important roles in host defense and homeostasis. In contrast to adulthood, far less is known about macrophage populations in fetuses and neonates. Macrophages were evaluated in the developing rat skin at different anatomical sites (head, anterior dorsal, posterior dorsal, and abdomen) of F344 rats obtained on gestational days 18 and 20, on neonatal days 1-21, and at adult weeks 5-15. The numbers of macrophages in the epidermis, dermis or perifollicular...

  6. Effects of different experimental approaches on the expression of microRNA of alveolar macrophages in rats with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Yu-ting WU

    2016-08-01

    Full Text Available Objective  To compare the different expressions of miRNAs of alveolar macrophages (AM in two chronic obstructive pulmonary disease (COPD models of rat induced by smudging alone or combined with lipopolysaccharide (LPS infusion. Methods  Sixty female Wistar rats were randomly assigned into 4 groups: control group Ⅰ, control group Ⅱ, COPD model group Ⅰ(cigarette smoke exposure alone, CS and COPD model group Ⅱ(cigarette smoke exposure + LPS infusion, CS+LPS. COPD rat models were evaluated by chest CT, lung function test and histopathological examination of lungs. The primary AM were acquired and the RNAs were then extracted after carrying out bronchoalveolar lavage. Three pairs of samples were used for detection of miRNAs expression by the method of miRNA microarray chip. The difference was verified by qRT-PCR analysis on another 5 pairs of samples. Data analysis was performed to find out the significantly differential miRNAs expression profiles in COPD rat models. Results  The chest CT, lung function test and histopathological examination verified the COPD in rats of CS and CS+LPS groups. Compared with control group Ⅰ, the expressions of let-7b-3p, miR-376c-3p and miR-675-5p were down-regulated in CS group with no miRNAs up-regulated. Compared with control group Ⅱ, the expressions of let-7b-3p and miR-675-5p were down-regulated, while the expressions of 11 miRNAs were obviously up-regulated in CS+LPS group as miR-200b-3p, miR665, miR-344b-1-3p, miR-34c-5p, miR-34b-5p, miR-99b-5p, miR-129-1-3p, miR-3557-5p, miR-331-5p, miR-493-5p and miR-200a3p. Conclusions  COPD rat models are established successfully both with CS and CS+LPS. The results of chest CT, lung function test and histopathological examination have shown no significant difference between the two approaches. However, the expressions of miRNAs of AM are significantly different. DOI: 10.11855/j.issn.0577-7402.2016.07.05

  7. Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub–Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-01-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy. PMID:23070116

  8. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation.

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub-Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-11-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2(-/-) γC(-/-) immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.

  9. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  10. Pulmonary alveolar proteinosis in a cat

    NARCIS (Netherlands)

    Szatmári, Viktor; Teske, Erik; Nikkels, Peter G J; Griese, Matthias; de Jong, Pim A; Grinwis, Guy; Theegarten, Dirk; Veraa, Stefanie; van Steenbeek, Frank G; Drent, Marjolein; Bonella, Francesco

    2015-01-01

    BACKGROUND: Pulmonary alveolar proteinosis is an extremely rare lung disease in animals and humans. It is characterized by the deposition of a large amount of phospholipoproteinaceous material in the alveoli. There are several possible etiologies, both congenital and acquired. Alveolar macrophages p

  11. Functionalized synchrotron in-line phase-contrast computed tomography: a novel approach for simultaneous quantification of structural alterations and localization of barium-labelled alveolar macrophages within mouse lung samples

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Monego, Simeone dal [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Larsson, Emanuel [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); University of Trieste, Trieste (Italy); Linköping University, SE-581 83 Linkoeping (Sweden); Mohammadi, Sara [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy); Krenkel, Martin [University of Göttingen, Göttingen (Germany); Garrovo, Chiara; Biffi, Stefania [IRCCS Burlo Garofolo, Trieste (Italy); Lorenzon, Andrea [Cluster in Biomedicine, AREA Science Park Basovizza, Trieste (Italy); Markus, Andrea [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Napp, Joanna [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Salditt, Tim [University of Göttingen, Göttingen (Germany); Accardo, Agostino [University of Trieste, Trieste (Italy); Alves, Frauke [University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen (Germany); University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen (Germany); Tromba, Giuliana [Elettra Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza (Trieste) (Italy)

    2015-01-01

    This study presents an approach to increase the sensitivity of lung computed tomography (CT) imaging by utilizing in-line phase contrast CT in combination with single-distance phase-retrieval algorithms and a dedicated image-processing regime. As demonstrated here, functional CT imaging can be achieved for the assessment of both structural alterations in asthmatic mouse lung tissue and the accumulation pattern of instilled barium-sulfate-labelled macrophages in comparison with healthy controls. Functionalized computed tomography (CT) in combination with labelled cells is virtually non-existent due to the limited sensitivity of X-ray-absorption-based imaging, but would be highly desirable to realise cell tracking studies in entire organisms. In this study we applied in-line free propagation X-ray phase-contrast CT (XPCT) in an allergic asthma mouse model to assess structural changes as well as the biodistribution of barium-labelled macrophages in lung tissue. Alveolar macrophages that were barium-sulfate-loaded and fluorescent-labelled were instilled intratracheally into asthmatic and control mice. Mice were sacrificed after 24 h, lungs were kept in situ, inflated with air and scanned utilizing XPCT at the SYRMEP beamline (Elettra Synchrotron Light Source, Italy). Single-distance phase retrieval was used to generate data sets with ten times greater contrast-to-noise ratio than absorption-based CT (in our setup), thus allowing to depict and quantify structural hallmarks of asthmatic lungs such as reduced air volume, obstruction of airways and increased soft-tissue content. Furthermore, we found a higher concentration as well as a specific accumulation of the barium-labelled macrophages in asthmatic lung tissue. It is believe that XPCT will be beneficial in preclinical asthma research for both the assessment of therapeutic response as well as the analysis of the role of the recruitment of macrophages to inflammatory sites.

  12. [Alveolar hemorrhage].

    Science.gov (United States)

    Parrot, A; Fartoukh, M; Cadranel, J

    2015-04-01

    Alveolar hemorrhage occurs relatively rarely and is a therapeutic emergency because it can quickly lead to acute respiratory failure, which can be fatal. Hemoptysis associated with anemia and pulmonary infiltrates suggest the diagnosis of alveolar hemorrhage, but may be absent in one third of cases including patients in respiratory distress. The diagnosis of alveolar hemorrhage is based on the findings of a bronchoalveolar lavage. The causes are numerous. It is important to identify alveolar hemorrhage due to sepsis, then separate an autoimmune cause (vasculitis associated with antineutrophil cytoplasmic antibody, connective tissue disease and Goodpasture's syndrome) with the search for autoantibodies and biopsies from readily accessible organs, from a non-immune cause, performing echocardiography. Lung biopsy should be necessary only in exceptional cases. If the hemorrhage has an immune cause, treatment with steroids and cyclophosphamide may be started. The indications for treatment with rituximab are beginning to be established (forms that are not severe and refractory forms). The benefit of plasma exchange is unquestionable in Goodpasture's syndrome. In patients with an immune disease that can lead to an alveolar hemorrhage, removing any source of infection is the first priority.

  13. Autoimmune pulmonary alveolar proteinosis co-existing with breast cancer: a case report

    OpenAIRE

    Sawai, Toyomitsu; Umeyama, Yasuhiro; Yoshioka, Sumako; Matsuo, Nobuko; Suyama, Naofumi; Kohno, Shigeru

    2014-01-01

    Introduction. Pulmonary alveolar proteinosis is a rare pulmonary disease characterized by excessive alveolar accumulation of surfactant due to defective alveolar clearance by macrophages. There are only a few published case reports of pulmonary alveolar proteinosis occurring in association with solid cancers. To the best of our knowledge, there are no previously reported cases of pulmonary alveolar proteinosis associated with breast cancer. Case presentation. A 48-year-old Asian woman, a nons...

  14. The application of high-content analysis in the study of targeted particulate delivery systems for intracellular drug delivery to alveolar macrophages.

    Science.gov (United States)

    Lawlor, Ciaran; O'Sullivan, Mary P; Sivadas, Neera; O'Leary, Seonadh; Gallagher, Paul J; Keane, Joseph; Cryan, Sally-Ann

    2011-08-01

    With an ever increasing number of particulate drug delivery systems being developed for the intracellular delivery of therapeutics a robust high-throughput method for studying particle-cell interactions is urgently required. Current methods used for analyzing particle-cell interaction include spectrofluorimetry, flow cytometry, and fluorescence/confocal microscopy, but these methods are not high throughput and provide only limited data on the specific number of particles delivered intracellularly to the target cell. The work herein presents an automated high-throughput method to analyze microparticulate drug delivery system (DDS) uptake byalveolar macrophages. Poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared in a range of sizes using a solvent evaporation method. A human monocyte cell line (THP-1) was differentiated into macrophage like cells using phorbol 12-myristate 13-acetate (PMA), and cells were treated with microparticles for 1 h and studied using confocal laser scanning microscopy (CLSM), spectrofluorimetry and a high-content analysis (HCA). PLGA microparticles within the size range of 0.8-2.1 μm were found to be optimal for macrophage targeting (p quantitative data on the influence of carrier design on cell targeting that can be gathered in a high-throughput format and therefore has great potential in the screening of intracellularly targeted DDS.

  15. Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-α and NF-κb are key components of the innate immune response to the pathogen

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2009-09-01

    Full Text Available Abstract Background Bacillus anthracis, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM plays a key role in lung innate immune responses, studying the HAM response to B. anthracis is important in understanding the pathogenesis of the pulmonary form of this disease. Methods In this paper, the transcriptional profile of B. anthracis spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis. Results The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID analysis, the Promoter Analysis and Interaction Network Toolset (PAINT and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-α, NF-κB and their ligands/receptors. In addition to TNF-α, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-κB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas. Conclusion The

  16. Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2014-11-01

    Full Text Available Even though the number of Candida infections due to non-albicans species like C. parapsilosis has been increasing, little is known about their pathomechanisms. Certain aspects of C. parapsilosis and host interactions have already been investigated; however we lack information about the innate cellular responses towards this species. The aim of our project was to dissect and compare the phagocytosis of C. parapsilosis to C. albicans and to another Candida species C. glabrata by murine and human macrophages by live cell video microscopy. We broke down the phagocytic process into three stages: macrophage migration, engulfment of fungal cells and host cell killing after the uptake. Our results showed increased macrophage migration towards C. parapsilosis and we observed differences during the engulfment processes when comparing the three species. The engulfment time of C. parapsilosis was comparable to that of C. albicans regardless of the pseudohypha length and spatial orientation relative to phagocytes, while the rate of host cell killing and the overall uptake regarding C. parapsilosis showed similarities mainly with C. glabrata. Furthermore, we observed difference between human and murine phagocytes in the uptake of C. parapsilosis. UV-treatment of fungal cells had varied effects on phagocytosis dependent upon which Candida strain was used. Besides statistical analysis, live cell imaging videos showed that this species similarly to the other two also has the ability to survive in host cells via the following mechanisms: yeast replication, and pseudohypha growth inside of phagocytes, exocytosis of fungal cells and also abortion of host cell mitosis following the uptake. According to our knowledge this is the first study that provides a thorough examination of C. parapsilosis phagocytosis and reports intracellular survival mechanisms associated with this species.

  17. Efeitos do estresse agudo de contenção, do estresse crônico de natação e da administração de glutamina sobre a liberação de superóxido por macrófagos alveolares de ratos Effects of acute restraint stress, chronic swim stress and glutamine administration on the release of superoxide from alveolar macrophages of rats

    Directory of Open Access Journals (Sweden)

    Elizabeth do Nascimento

    2007-08-01

    Full Text Available OBJETIVO: Avaliar a liberação de ânion superóxido por macrófagos alveolares em ratos submetidos ou não ao estresse agudo, ao exercício físico de natação e à suplementação com glutamina. MÉTODOS: Quarenta e dois ratos machos da linhagem Wistar com idade em torno de 62 (desvio-padrão=3 dias de idade foram divididos em grupos controle, treino, estresse e glutamina. Após a intervenção, macrófagos alveolares foram coletados e estimulados com acetato de formol miristato para a avaliação da liberação de ânion superóxido. RESULTADOS: Em comparação à primeira hora (controle=26,2, desvio-padrão=4,2; treino=28,7, desvio-padrão=5,1; estresse=20,3, desvio-padrão=4,4; glutamina=26,2, desvio-padrão=4,2, houve aumento (pOBJECTIVE: To assess the release of superoxide anion from alveolar macrophages of rats submitted or not to acute restraint stress, forced swimming and glutamine supplementation. METHODS: Forty-two male Wistar rats aging roughly 62 days (standard deviation=3 were randomly divided into four groups: control, training, stress and glutamine. After the intervention, alveolar macrophages were collected and stimulated with phorbol myristate acetate to assess the release of superoxide anion. RESULTS: When compared with the first hour (control=26.2, standard deviation=4.2; training=28.7, standard deviation=5.1; stress=20.3 , standard deviation=4.4; glutamine=26.2, standard deviation=4.2, the release of superoxide increased (p<0.001 in all experimental groups in the second hour (control=38.4, standard deviation=4.9; training=40.7, standard deviation=6.1; stress=30.2, standard deviation=5.6; glutamine=39.2, standard deviation=5.2 of observation. Training and glutamine supplementation did not induce differences in the release of superoxide from alveolar macrophages when compared with the control group. Only the rats submitted to stress showed a reduction in the release of superoxide in both the first (20.3, standard deviation

  18. Porcine circovirus type 2 increases IL-1β and IL-10 production via the MyD88-NF-κB signaling pathway in porcine alveolar macrophages in vitro.

    Science.gov (United States)

    Han, Junyuan; Zhang, Shuxia; Zhang, Yaqun; Chen, Mengmeng; Lv, Yingjun

    2016-07-25

    Porcine alveolar macrophages represent the first line of defense in the porcine lung after infection with porcine circovirus type 2 (PCV2) via the respiratory tract. However, PCV2 infection impairs the microbicidal capability of PAMs and alters cytokine production and/or secretion. Currently, the reason for the imbalance of cytokines has not been fully elucidated and the regulatory mechanisms involved are not clear. Here, we investigated the expression levels and regulation of IL-1β and IL-10 in PAMs following incubation with PCV2 in vitro. Both levels of IL-1β and IL-10 increased in PAM supernatants, and the distribution of NF-κB p65 staining in the nucleus, the expression of MyD88 and p-IκB in the cytoplasm and the DNA-binding activity of NF-κB increased after incubation with PCV2, while the expression of p65 in the cytoplasm of PAMs decreased. However, when PAMs were co-incubated with PCV2 and small interfering RNA targeting MyD88, these effects were reversed. Additionally, mRNA expression levels of Toll-like receptor (TLR)-2, -3, -4, -7, -8 and -9 were increased when PAMs were incubated with PCV2. These findings showed that PCV2 induced increased IL-1β and IL-10 production in PAMs, and these changes in expression were relative to the TLR-MyD88-NF-κB signaling pathway.

  19. Serial bronchoscopic lung lavage in pulmonary alveolar proteinosis under local anesthesia

    Directory of Open Access Journals (Sweden)

    K Rennis Davis

    2015-01-01

    Full Text Available Pulmonary alveolar proteinosis (PAP is a rare disease, characterized by alveolar accumulation of surfactant composed of proteins and lipids due to defective surfactant clearance by alveolar macrophages. Mainstay of treatment is whole lung lavage, which requires general anesthesia. Herein, we report a case of primary PAP, successfully treated with serial bronchoscopic lung lavages under local anesthesia.

  20. Evaluation of alveolar macrophage function after experimental infection with equine herpesvirus-1 in horses Avaliação da função dos macrófagos alveolares após infecção experimental em cavalos por herpesvírus eqüino tipo 1

    Directory of Open Access Journals (Sweden)

    E. Mori

    2003-06-01

    Full Text Available The role of the pulmonary alveolar macrophages (PAM in the lung defense mechanism was evaluated in horses infected with equine hespesvirus-1 (EHV-1. Five adult horses were exposed to 10(6.6 TCID50 EHV-1 by intranasal instillation. Cytology of bronchoalveolar lavage (BAL was performed using cytocentrifugation of samples and slides stained by Rosenfeld. Cell concentration was adjusted to 2´10(6 cells/ml, for the measurement of macrophage activity - spreading, phagocytosis of zymosan particles and release of hydrogen peroxide (H2O2. All animals were positive in virus isolation on the second, third and fifth days post-inoculation (DPI. Seroconversion was observed on the 14th DPI. Lymphocytosis was observed by BAL cytology on the 16th DPI. Measurement of macrophage activity demonstrated a marked increase in the spreading rate, on the 23rd and 30th DPI. Phagocytosis was decreased on the second DPI, and returned to levels similar to those observed before inoculation on the 23rd DPI. The amount of H2O2 released by PAM declined on day 2, but, by day 16, they returned to values similar to those observed before inoculation. The decline in PAM activity in the acute phase of disease is indirect evidence that these cells have an important role in lung defense mechanisms against this agent.O papel dos macrófagos alveolares (MA nos mecanismos de defesa pulmonar foi estudado em cavalos infectados pelo herpesvírus eqüino tipo 1 (EHV-1. Cinco cavalos adultos foram inoculados com 10(6,6 TCID50 do EHV-1, por instilação intranasal. A citologia do lavado broncoalveolar (LBA foi feita usando-se citocentrifugação das amostras e confecção de lâminas coradas por Rosenfeld. A concentração celular foi ajustada para 2´10(6 células/ml, para mensuração da atividade macrofágica - espraiamento, fagocitose de partículas de zymosan e liberação de peróxido de hidrogênio (H2O2. Observou-se soroconversão no 14º dia pós-inoculação (DPI e isolamento viral

  1. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S., E-mail: rveazey@tulane.edu

    2013-11-15

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication.

  2. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    Science.gov (United States)

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.

  3. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    Science.gov (United States)

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  4. Effects of lipopolysaccharide on cytokines secreted by alveolar macrophages in aged rats%脂多糖对衰老大鼠肺泡巨噬细胞分泌细胞因子的影响

    Institute of Scientific and Technical Information of China (English)

    刘焕星; 姜智; 贾玉珍

    2007-01-01

    目的 探讨脂多糖(lipopolysaccharide,LPS)对衰老大鼠模型肺泡巨噬细胞(alveolar macrophage,AM)产生细胞因子的影响. 方法 ①将24只Wistar大鼠随机均分为2组,任取其中1组用D-半乳糖[D-galactose,D-gal,20 mg/(kg·d)]腹腔注射,连续6周制备衰老大鼠模型;另1组青年大鼠作为对照;②应用支气管肺泡灌洗和细胞贴壁的方法获取AM,用瑞氏染色鉴定纯度、台盼蓝染色测定活细胞数;③将各组获取的AM再随机均分为LPS刺激组及阴性对照组,其中LPS刺激组细胞在贴壁 2 h后加入含10 mg/L LPS的1640培养液,24 h后用酶联免疫吸附法(enzyma linked immunosorsent assay,ELISA)分别测定细胞上清液中肿瘤坏死因子-α(tumor necrosis factor-α,TNF- α)和内皮素(endolthelin,ET-1)的含量. 结果 (1)青年、老年大鼠LPS刺激组TNF-α、ET-1均高于对照组;(2)老年LPS刺激组肺泡灌洗液上清中TNF-α[ (31.32±2.38) pg/ml]高于青年LPS刺激组[(25.48±3.52) pg/ml, P《0.05];老年LPS刺激组ET-1[(3.91±0.11) pg/ml] 高于青年LPS刺激组[(3.17±0.11) pg/ml, P《0.05]. 结论 老年大鼠对LPS刺激的反应程度大于青年组,AM在炎症反应中起重要的作用.

  5. 不同毒力结核杆菌对感染小鼠肺泡巨噬细胞铁蛋白及铁转运蛋白表达的影响%Effect on expression of macrophages ferroportin and ferritin in mouse alveolar macrophages by mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    庄睿; 李文娟; 梁晨; 樊超; 张万江; 王霞; 张锋; 宝音; 章乐; 吴芳; 吴江东; 张春军; 张辉

    2014-01-01

    目的:探讨不同毒力的结核杆菌分别感染小鼠肺泡巨噬细胞后铁蛋白( Fn)和铁转运蛋白( FPN)表达量及其时相性变化。方法:利用制备的结核杆菌国际标准强毒株H37Rv株(以下简称H37Rv株)和卡介苗菌株(以下简称BCG)菌悬液,分别经小鼠尾静脉注射,建立各组小鼠感染模型。各组小鼠感染模型建立成功后,分别于第1、3、5、7、9、11、13、15天,进行肺泡灌洗,收集小鼠肺泡灌洗液,获取各组小鼠肺泡巨噬细胞。应用ELISA方法检测各组感染组小鼠肺泡巨噬细胞中Fn和FPN的表达含量;应用Western blot技术检测上述时间点各组感染的小鼠肺泡巨噬细胞内Fn的表达量。结果:用ELISA方法和Western blot技术检测各组小鼠肺泡巨噬细胞内Fn表达,结果显示:于模型建成后第7、9、11天,H37Rv株组与BCG组的小鼠肺泡巨噬细胞内Fn表达量明显减低,并且于第7天时表达量最低,差异有统计学意义(P<0.05)。利用ELISA方法检测各组小鼠肺泡巨噬细胞内FNP的表达,结果显示:不同毒力的结核杆菌菌株感染小鼠肺泡巨噬细胞后,各感染组内小鼠肺泡巨噬细胞FPN随处理时间延长表达逐渐降低;于感染第5天开始下降明显,第7、9天最低。 H37 Rv株组和BCG组表达接近,于第5、7、9天明显低于正常对照组FPN的表达量,差异有统计学意义( P<0.05)。结论:结核杆菌感染导致巨噬细胞内Fn与FPN的表达均降低,并且感染巨噬细胞Fn和FPN的表达与结核杆菌的毒力强弱关系无相关性。%Objective:To discuss the change of ferritin ( Fn) and ferroportin expression quantity and time-related feature in the alveolar macrophages of mice , infected with different virulence of Mycobacterium Tuberculosis infected .Methods:The prepared bacte-ria of H37Rv or BCG were injected intravenously into the mice tails .On the day 1, 3, 5, 7

  6. 肺泡表面活性物质对肺挫伤后肺泡巨噬细胞功能的影响%Effects of pulmonary surfactant on alveolar macrophage function after pulmonary contusion

    Institute of Scientific and Technical Information of China (English)

    刘军强; 卢建; 潘铁文; 徐志飞

    2012-01-01

    Objective To observe the effects of porcine pulmonary surfactant(PPS) on the function of pulmonary alveolar macrophagesC AMs) in vitro, so as to explore the mechanism by which PPS treating pulmonary contusion in rats. Methods AMs were separated by adherent culture from bronchoalveolar lavage fluid of rats with pulmonary contusion. The AMs were then cultured with media containing PPS (100 jig/ml or 200 fig/ml) , LPS (20 jug/ml) +PPS (100 jug/ml or 200 Fg/ ml), or LPS (20 /jg/ml) alone for 2 h. Then the phagocytic function of AMs in each group was examined with fungus. TNF-a mRNA was determined by RT-PCR in AMs of each group. AMs untreated with PPS and LPS were taken as blank control. Results The phagocytic function of the AMs and the expression of TNF-a mRNA were not significantly affected by PPS alone compared with the control group. LPS stimulation increased the phagocytic function of AMs and the TNF-a mRNA expression in AMs. PPS showed no significant effect on LPS-induced increase of phagocytic function of AMs, but it could greatly inhibit LPS-induced TNF-a mRNA increase. Conclusion PPS has no noticeable effect on the phagocytic function of the AMs, but it can inhibit TNF-a mRNA expression induced by LPS in AMs.%目的 观察研究外源性猪肺表面活性物质(PPS)对肺挫伤大鼠肺泡巨噬细胞(AM)的吞噬功能和分泌功能的影响,探讨补充PPS对肺挫伤大鼠的治疗作用及其机制.方法 采用贴壁培养的方法,分离肺挫伤大鼠肺泡灌洗液中的AM,将分离的AM于普通培养液、含PPS(100μg/ml或200 μg/ml)的培养液、含LPS(20 μg/ml)的培养液或含LPS(20 μg/ml)+PPS(100 μg/ml或200 μg/ml)的培养液中培养2h后,采用真菌吞噬法测定各组细胞的吞噬功能;采用RTPCR方法测定各组细胞中TNF-α mRNA含量.结果 与对照相比,PPS单独作用对AM的吞噬功能和TNF-α mRNA含量无明显影响.经LPS刺激后AM的吞噬功能增强,TNF-α mRNA含量明显增高.PPS对LPS导致的吞噬

  7. NOD2 stimulation enhances the innate immunity against Mycobacterium tuberculosis in human alveolar macrophages%NOD2信号对人肺泡巨噬细胞抗结核分枝杆菌活性的影响及机制研究

    Institute of Scientific and Technical Information of China (English)

    阳大庆; 石丽萍; 张普山

    2015-01-01

    Objective To evaluate the role of nucleotide‐binding oligomerization domain 2(NOD2) stimulation in innate immuni‐ty against M ycobacterium tuberculosis .Methods Plate counting as used to evaluate the effect of resisting M ycobacterium tubercu‐losis in human alveolar macrophages .Intracellular NOD2 expression were detected by flow cytometry .Quantitative real‐time PCR was performed to determine the NOD2 ,inducible nitric oxide synthase(iNOS) ,and DEF4B mRNA expression levels using the com‐parative threshold cycle method of relative quantitation .Reactive oxygen species(ROS) were detected by the DFCH probe .Results NOD2 stimulation enhanced the control of intracellular mycobacterial growth in human alveolar macrophages .Although ROS con‐centration did not changed ,the secretion of Nitro Oxygen and the expression of cathelicidin DEFB4 were significantly increased fol‐lowing NOD2 stimulation in human alveolar macrophages .Conclusion NOD2 stimulation may be involved in the early innate con‐trol of Mycobacterium tuberculosis primary infections inducing the generation of Nitro Oxygen and the peptides cathelicidin DEFB4 .%目的:研究核苷酸结合寡聚化结构域2(NOD2)信号在天然抗结核免疫中的作用。方法平板计数法评价NOD2信号对人肺泡巨噬细胞杀结核分枝杆菌效应的影响;流式细胞术和聚合酶链反应(PCR)检测NOD2的表达;实时荧光定量PCR检测一氧化氮合成酶(iNOS)和DEF4B mRNA的表达水平;还原型二氯荧光素(DFCH)探针法测定活性氧(ROS)水平。结果NOD2信号增强了人肺泡巨噬细胞对结核分枝杆菌 H37RV的杀灭。NOD2信号刺激后,人肺泡巨噬细胞中一氧化氮(NO )的分泌和DEF4B的表达均有所增加,但ROS水平变化不明显。结论 NOD2可能通过诱导NO和抗菌肽DEF4B的产生参与了早期的抗结核感染免疫。

  8. [Macrophages in asthma].

    Science.gov (United States)

    Medina Avalos, M A; Orea Solano, M

    1997-01-01

    Every time they exist more demonstrations of the paper than performs the line monocytes-macrophage in the patogenesis of the bronchial asthma. The mononuclear phagocytes cells, as the alveolar macrophages, also they can be activated during allergic methods. The monocytes macrophages are possible efficient inductors of the inflammation; this due to the fact that they can secrete inflammatory mediators, between those which are counted the pre-forming granules of peptides, metabolites of oxidation activation, activator of platelets activator and metabolites of the arachidonic acid. The identification of IL-1 in the liquidate of the bronchial ablution of sick asthmatic, as well as the identification of IL-1 in the I bronchioalveolar washing of places of allergens cutaneous prick, supports the activation concept mononuclear of phagocytic cells in allergic sufferings.

  9. Importin-α7 is required for enhanced influenza A virus replication in the alveolar epithelium and severe lung damage in mice.

    Science.gov (United States)

    Resa-Infante, Patricia; Thieme, René; Ernst, Thomas; Arck, Petra C; Ittrich, Harald; Reimer, Rudolph; Gabriel, Gülsah

    2014-07-01

    Influenza A viruses recruit components of the nuclear import pathway to enter the host cell nucleus and promote viral replication. Here, we analyzed the role of the nuclear import factor importin-α7 in H1N1 influenza virus pulmonary tropism by using various ex vivo imaging techniques (magnetic resonance imaging, confocal laser scanning microscopy, and correlative light-electron microscopy). We infected importin-α7 gene-deficient (α7(-/-)) mice with a recombinant H1N1 influenza virus and compared the in vivo viral kinetics with those in wild-type (WT) mice. In WT mice, influenza virus replication in the bronchial and alveolar epithelium already occurred a few days after infection. Accordingly, extensive mononuclear infiltration and alveolar destruction were present in the lungs of infected WT mice, followed by 100% lethality. Conversely, in α7(-/-) mice, virus replication was restricted mostly to the bronchial epithelium with marginal alveolar infection, resulting in significantly reduced lung damage and enhanced animal survival. To investigate the host immune response during alveolar virus replication, we studied the role of primary macrophages in virus propagation and clearance. The ability of macrophages to support or clear the virus infection, as well as the host cellular immune responses, did not significantly differ between WT and α7(-/-) mice. However, cytokine and chemokine responses were generally elevated in WT mice, likely reflective of increased viral replication in the lung. In summary, these data show that a cellular factor, importin-α7, is required for enhanced virus replication in the alveolar epithelium, resulting in elevated cytokine and chemokine levels, extensive mononuclear infiltration, and thus, severe pneumonia and enhanced virulence in mice. Importance: Influenza A viruses are respiratory pathogens that may cause pneumonia in humans. Viral infection and replication in the alveoli of the respiratory tract are believed to be crucial for

  10. Effects of ischemia on lung macrophages.

    Directory of Open Access Journals (Sweden)

    Aigul Moldobaeva

    Full Text Available Angiogenesis after pulmonary ischemia is initiated by reactive O(2 species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int, CD11C+, alveolar macrophages (MHCII(int, CD11C+, CD11B- and mature lung macrophages (MHCII(int, CD11C+, CD11B+ in left lungs from mice immediately (0 h or 24 h after left pulmonary artery ligation (LPAL. In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05. No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs. When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01 compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA. These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.

  11. Effects of immunosuppressive agent on mRNA expression of anti-aspergillus infection-associated receptors on alveolar macrophage%免疫抑制剂对小鼠肺泡巨噬细胞抗曲霉感染相关受体mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    荣令; 周新; 何牡丹; 李峰

    2009-01-01

    目的 探讨免疫抑制剂对小鼠肺泡巨噬细胞抗曲霉感染相关受体mRNA表达的影响.方法 30只昆明小鼠随机分为2组:正常对照组(6只)和免疫抑制组(24只,环磷酰胺150 mg/kg腹腔注射).免疫抑制组小鼠注射环磷酰胺后4 h、8 h、16 h及24 h,分别随机取6只进行支气管肺泡灌洗,收集肺泡巨噬细胞.正常对照组小鼠注射生理盐水24 h后处死,收集肺泡巨噬细胞.使用逆转录-聚合酶链反应检测小鼠肺泡巨噬细胞Toll样受体2(TLR2)、TLR4、树突状细胞相关C型凝集素1(Dectine-1)mRNA表达变化.结果 与正常对照组比较,腹腔注射环磷酰胺4 h后,TLR2 mRNA表达即出现显著下降(P<0.01);在腹腔注射环磷酰胺8 h后TLR4 mRNA表达出现显著下降(P<0.01);Dectine-1 mRNA在腹腔注射环磷酰胺后无明显变化.结论 免疫抑制剂环磷酰胺能够下调肺泡巨噬细胞抗曲霉感染相关受体TRL2和TLR4 mRNA的表达,对Dectine-1 mRNA的表达未见明显影响.%Objective To investigate the effects of immunosuppressive agent on mRNA expression of anti-aspergillus infection-associated receptors on alveolar macrophage.Methods Thirty Kunming mice were randomly divided into two groups:normal control group(n=6)and immunocompromise group(150 mg/kg cyclophosphamide,intraperitoneal injection,n=24).Six mice were randomly taken to collect alveolar macrophage by bronchoalveolar lavage from immunocompromise group at time of 4,8,12 and 24 hours after immunosuppression.Mice in normal control group were sacrificed to collect alveolar macrophage after receiving normal saline intraperitoneal injection.Reverse transcription-polymerase chain reaction was used for determining the mRNA expression of Toll-like receptor 2(TLR2),TLR4 and dendritic cell-associated C-type lectin 1(Dectine-1).Results TLR2 mRNA expression decreased signiffieantly four hours after cyclophosphamide intraperitoneal injection,and decreased continually to 24 hours(all P<0.01).The

  12. Alveolar proteinosis in Behçet's disease

    Directory of Open Access Journals (Sweden)

    Tetikkurt Cuneyt

    2010-08-01

    Full Text Available Abstract A 51-year-old man with Behçet's disease complained of fever, dry cough and dyspnea during exertion. Chest CT showed ground glass opacities with interstitial septal thickening in both lungs. Bronchoalveolar lavage (BAL revealed amorphous and lipoproteinaceous material that was periodic acid-Schiff (PAS stain positive. Transbronchial biopsy specimen demonstrated PAS positive alveolar eosinophilic material consistent with pulmonary alveolar proteinosis. Serum anti-granulocyte-macrophage colony stimulating factor (GM-CSF antibody was negative. Recent studies have reported anti-GMCSF not present in the the serum of patients with secondary pulmonary alveolar proteinosis (PAP but they have not reported so in patients with idiopathic PAP. We report a case of alveolar proteinosis in the setting of Behçet's disease with spontaneous remission.

  13. Alveolar macrophages stimulated with titanium dioxide, chrysotile asbestos, and residual oil fly ash upregulate the PDGF receptor-alpha on lung fibroblasts through an IL-1beta-dependent mechanism.

    Science.gov (United States)

    Lindroos, P M; Coin, P G; Badgett, A; Morgan, D L; Bonner, J C

    1997-03-01

    Enhanced proliferation of fibroblasts is a primary characteristic of lung fibrosis. Macrophage-secreted platelet-derived growth factor (PDGF) is a potent mitogen and chemoattractant for lung fibroblasts. The magnitude of the fibroblast PDGF response is dependent on the number of PDGF receptor alpha (PDGF-R alpha) relative to PDGF-R beta at the cell surface. We recently reported that upregulation of the PDGF-R alpha subtype by interleukin (IL)-1beta results in enhanced lung fibroblast proliferation in response to PDGF-AA, PDGF-AB, and PDGF-BB whereas transforming growth factor (TGF)-beta1 has the opposite effect. Both IL-1beta and TGF-beta1 are produced by particle-activated macrophages in vivo and in vitro. We studied the net effect of macrophage conditioned medium (MOCM), which contains both IL-1beta and TGF-beta1, on the expression of the lung fibroblast PDGF receptor system. MOCM obtained from unstimulated, titanium dioxide (TiO2)-, chrysotile asbestos-, or residual oil fly ash (ROFA)-exposed macrophages in vitro increased [125I]PDGF-AA binding 3-, 6-, 6-, and 20-fold, respectively. These increases correlated with increased PDGF-R alpha mRNA and protein expression as shown by northern and western assays. PDGF-AB and -BB-stimulated [3H]thymidine incorporation by fibroblasts was enhanced 5-, 5-, 10-, and 20-fold by pretreatment with MOCM from unstimulated, TiO2-, asbestos-, and ROFA-exposed macrophages, respectively. [125I]PDGF-AA binding experiments using the IL-1 receptor antagonist blocked the upregulatory effect of all MOCM samples. Latent TGF-beta1 present in MOCM was activated by acid treatment, inhibiting upregulation by approximately 60%, a result similar to experiments with IL-1beta and TGF-beta1 mixtures. Treatment with a TGF-beta neutralizing antibody restored full upregulatory activity to acidified MOCM. Thus activated macrophages increase lung fibroblast PDGF-R alpha primarily due to the secretion of IL-1beta. Intratracheal instillation of ROFA

  14. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    production of TNF-alpha and the CXC chemokine, macrophage inflammatory protein-2 (MIP-2). Alveolar macrophages exhibited cytokine responses to both sICAM-1 and immobilized sICAM-1, while rat PBMCs failed to demonstrate similar responses. Exposure of alveolar macrophages to sICAM-1 resulted in NFkappa...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes.......B activation (which was blocked by the presence of the aldehyde peptide inhibitor of 28S proteosome and by genistein, a tyrosine kinase inhibitor). As expected, cross-linking of CD18 on macrophages with Ab resulted in generation of TNF-alpha and MIP-2. This response was also inhibited in the presence...

  15. Effects of Panax Notoginseng Saponins on Expression of TNF-α mRNA in Alveolar Macrophage of Rabbits with Sea Water Drowning%三七总皂苷对海水淹溺兔肺泡巨噬细胞TNF-αmRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    顾兴; 金发光; 刘同刚

    2011-01-01

    目的 观察海水淹溺后家兔肺组织光镜下变化,并探讨三七总皂苷干预对海水淹溺后家兔肺泡巨噬细胞内TNF-α mRNA表达的影响.方法采用气管切开插入塑料导管、向气管内灌海水4mL/kg,双肺自主通气的方法模拟海水淹溺造成急性肺损伤模型,随机分为对照组、海水淹溺组、三七总皂苷治疗组.于淹溺后进行血气分析,采集支气管肺泡灌洗液,分离和培养肺泡巨噬细胞,并采集肺组织进行病理学分析,逆转录-聚合酶链反应(RT-PCR)检测肺泡巨噬细胞中TNF-α mRNA的表达.结果光镜下,海水淹溺兔肺组织炎症细胞大量浸润,经三七总皂苷治疗后肺组织损伤程度减轻.RT-PCR分析示淹溺后TNF-α mRNA表达显著增高,90min后达最高峰,而三七总皂苷可使之降低.结论海水淹溺急性肺损伤可能与肺泡巨噬细胞内TNF-αmRNA高表达有关.三七总皂苷可降低TNF-α mRNA的高表达,减轻肺损伤程度.%Objective :To observe the histopathology changes of rabbits drowned by sea water and to explore the effect of panax notoginseng saponins on TNF-a mRNA expression. Methods:The drowning model was established with inserting plastic tube to the trachea of rabbits and sea water(4ml7 kg) was poured into air tube with the both of lung auto ventilated to simulate the process of drowning. Rabbits were randomly divided into the control group, the drowning group and the panax notoginseng saponins group. Then the expression of TNF-α mRNA in the alveolar macrophage of rabbits was determined by reverse-transcription polymerase chain reaction (RT-PCR) after drawing. The infiltration of PMN was examined by histopathologic,while the blood gas analysis was determinated. Results: After drowning,the infiltration of PMN and the expression of TNF -α mRNA were significantly increased. However,Panax notoginseng saponins could inhibit the expression in TG and extenuate the degree of acute lung injury. Conclusion:For sea

  16. In vivo kinetics of sup 111 Indium-labelled autologous granulocytes following i. v. administration of granulocyte-macrophage colony-stimulating factor (GM-CSF)

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, D.; Mortensen, B.T.; Nissen, N.I. (Department of Hematology, Rigshospitalet, Copenhagen (Denmark)); Schifter, S.; Raboel, A. (Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen (Denmark))

    1992-01-01

    Administration of both glycosylated and non-glycosylated recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) induces an immediate transient granulocytopenia of 1-3 hours' duration. In order to explore this phenomenon, granulocytes were labelled with {sup 111}Indium and the effect on the kinetics of granulocytes after administration of rhGM-CSF was studied in 10 previously untreated patients with malignant lymphoma. For both types and doses of rhGM-CSF, a significant and dramatic accumulation of the {sup 111}Indium-labelled granulocytes was observed in the lung within a few minutes after i.v. injection of rhGM-CSF. The accumulation of radioactivity coincided with the pronounced and transient granulocytopenia in peripheral blood. The {sup 111}Indium-labelled granulocytes later reappeared in the peripheral blood, indicating reversible pulmonary vascular margination of the granulocytes. Half-life of labelled granulocytes after reappearance was comparable to half-life values under normal conditions. The transient accumulation of granulocytes in the pulmonary vessels seems not to be of clinical importance in the management of patients, but it may to some degree explain previously described side-effects, such as transient hypoxemia (''first-dose'' reaction) following administration of rhGM-CSF. (au).

  17. In vivo kinetics of 111indium-labelled autologous granulocytes following i.v. administration of granulocyte-macrophage colony-stimulating factor (GM-CSF).

    Science.gov (United States)

    Hovgaard, D; Schifter, S; Rabøl, A; Mortensen, B T; Nissen, N I

    1992-04-01

    Administration of both glycosylated and non-glycosylated recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) induces an immediate transient granulocytopenia of 1-3 hours' duration. In order to explore this phenomenon, granulocytes were labelled with 111Indium and the effect on the kinetics of granulocytes after administration of rhGM-CSF was studied in 10 previously untreated patients with malignant lymphoma. For both types and doses of rhGM-CSF, a significant and dramatic accumulation of the 111Indium-labelled granulocytes was observed in the lung within a few minutes after i.v. injection of rhGM-CSF. The accumulation of radioactivity coincided with the pronounced and transient granulocytopenia in peripheral blood. The 111Indium-labelled granulocytes later reappeared in the peripheral blood, indicating reversible pulmonary vascular margination of the granulocytes. Half-life of labelled granulocytes after reappearance was comparable to half-life values under normal conditions. The transient accumulation of granulocytes in the pulmonary vessels seems not to be of clinical importance in the management of patients, but it may to some degree explain previously described side-effects, such as transient hypoxemia ("first-dose" reaction) following administration of rhGM-CSF.

  18. Pulmonary alveolar microlithiasis

    Directory of Open Access Journals (Sweden)

    Surender Kashyap

    2013-01-01

    Full Text Available Pulmonary alveolar microlithiasis (PAM is a rare, chronic lung disease with bilateral intra-alveolar calcium and phosphate deposition throughout the lung parenchyma with predominance to lower and midzone. Although, etiology and pathogenesis of PAM is not fully understood, the mutation in SLC34A2 gene that encodes a sodium-phosphate co-transporter in alveolar type II cells resulting in the accumulation and forming of microliths rich in calcium phosphate (due to impaired clearance are considered to be the cause of the disease. Chest radiograph and high-resolution CT of thorax are nearly pathognomonic for diagnosing PAM. HRCT demonstrates diffuse micronodules showing slight perilobular predominance resulting in calcification of interlobular septa. Patients with PAM are asymptomatic till development of hypoxemia and cor-pulmonale. No therapy has been proven to be beneficial except lung transplantation.

  19. Enhancing toxic protein expression in Escherichia coli fed-batch culture using kinetic parameters: Human granulocyte-macrophage colony-stimulating factor as a model system.

    Science.gov (United States)

    Khasa, Yogender Pal; Khushoo, Amardeep; Mukherjee, Krishna Jyoti

    2013-03-01

    The kinetics of recombinant human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression was studied under the strong T7 promoter in continuous culture of Escherichia coli using complex medium to design an optimum feeding strategy for high cell density cultivation. Continuous culture studies were done at different dilution rates and the growth and product formation profiles were monitored post-induction. Recombinant protein expression was in the form of inclusion bodies with a maximum specific product formation rate (q(p)) of 63.5 mg g(-1) DCW h(-1) at a dilution rate (D) of 0.3 h(-1). The maximum volumetric product concentration achieved at this dilution rate was 474 mg l(-1), which translated a ~1.4 and ~1.75 folds increase than the values obtained at dilution rates of 0.2 h(-1) and 0.4 h(-1) respectively. The specific product yield (Y(P/x)) peaked at 138 mg g(-1) DCW, demonstrating a ~1.6 folds increase in the values obtained at other dilution rates. A drop in q(p) was observed within 5-6 h of induction at all the dilution rates, possibly due to protein toxicity and metabolic stress associated with protein expression. The data from the continuous culture studies allowed us to design an optimal feeding strategy and induction time in fed-batch cultures which resulted in a maximum product concentration of 3.95 g l(-1) with a specific hGM-CSF yield (Y(P/x)) of 107 mg g(-1) DCW.

  20. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  1. [Dento-alveolar injuries].

    Science.gov (United States)

    Voorsmit, R A; Kuijpers-Jagtman, A M

    1992-11-01

    Most dento-alveolar traumas can be managed by the dentist-general practitioner. Still, there are some specific injuries which should be treated by dental specialists. Some specific guidelines are given for the combined surgical-orthodontic treatment of fracture of the coronal part of the root, intrusive luxation, abnormal position of the permanent tooth due to traumatic displacement of the deciduous tooth, ankylosis and tooth loss.

  2. Alveolar development and disease.

    Science.gov (United States)

    Whitsett, Jeffrey A; Weaver, Timothy E

    2015-07-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis.

  3. IL-12、IL-18和TNF-α在外源性过敏性肺泡炎发病中的作用%Production of IL-12, IL-18 and TNF-α by Alveolar Macrophages in Extrinsic Allergic Alveolitis

    Institute of Scientific and Technical Information of China (English)

    童朝辉; 陈宝敏; 王辰; Guzman; Josune; Costabel; Ulrich

    2006-01-01

    目的从临床的角度出发、评价肺泡巨噬细胞(alveolar macrophages,AM)的产物白介素-12(IL-12)、白介素-18(IL-18)和肿瘤坏死因子-α(TNF-α)在外源性过敏性肺泡炎(extrinsic allergic alveolitis, EAA)炎症形成及发病中的作用.方法收集11例EAA 患者和10例正常对照的AM,以10%RPMI(含有10%热灭活胎牛血清、2 mmol/L L-谷氨酰胺、200 kU/L青霉素及200 mg/L链霉素) 为培养液,加或不加内毒素(LPS,100 μg/L)进行AM培养24 h.用ELISA方法测定培养上清液中细胞因子含量.结果与对照组相比,无论有无内毒素刺激,IL-18和TNF-α的水平在EAA患者中均明显增加(P<0.05或P<0.01).EAA 患者自发释放的IL-12的水平很低,内毒素刺激后明显升高(P<0.01).结论 IL-12、IL-18和TNF-α可能参与EAA炎症和肉芽肿形成过程,在其发病中起重要作用.

  4. Macrophage CD74 contributes to MIF-induced pulmonary inflammation

    Directory of Open Access Journals (Sweden)

    Al-Abed Yousef

    2009-05-01

    Full Text Available Abstract Background MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages. Methods To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation. Results Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2 and keratinocyte-derived chemokine (KC in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p 4 vs. 1.90 ± 0.61 × 104, p Conclusion MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.

  5. Modulatory action of endogenous and exogenous nitric oxide on survival of alveolar macrophages from normal and bleomycin-treated rats%内源性和外源性一氧化氮对正常和滴注博莱霉素大鼠肺泡巨噬细胞生存的调节

    Institute of Scientific and Technical Information of China (English)

    陈晓玲; 黄善生; 刘昆; 艾洁

    2005-01-01

    To investigate the modulatory action of endogenous and exogenous nitric oxide (NO) on survival of alveolar macrophages (AMs) in different cellular states, AMs from normal rats (normal AMs) and from bleomycin (BLM)-treated rats (BLM AMs) were incubated by sodium nitroprusside (SNP, NO donor) and L-arginin (L-Arg, NO precursor), respectively. The survival of AMs was evaluated by apoptosis and cell cycles. The molecular mechanisms were investigated by the contents of Bcl-2, Bax proteins in AMs.The results are as follows: (1) The degree of BLM AMs apoptosis was higher than that of normal AMs; the number of BLM AMs in G0/G1 phases was less than that of normal AMs; there was no significant difference in S+G2M phases between the number of BLM AMs and that of normal AMs. (2) Down-regulation of Bcl-2 and up-regulation of Bax occurred in BLM AMs, compared to those in normal AMs. (3) Apoptosis of AMs, either normal AMs or BLM AMs, was induced by both SNP and L-Arg, when compared to their respective control; only the number of BLM AMs in S+G2M phases was increased by L-Arg. (4) SNP and L-Arg induced a downregulation of Bcl-2 and an up-regulation of Bax proteins in normal AMs, but did not induce the same change pattern in BLM AMs. (5)The Bax in BLM AMs was down-regulated by L-Arg. It is concluded that NO can induce the apoptosis of BLM AMs and normal AMs; that Bcl-2 and Bax are implicated in NO-induced apoptosis of normal AMs, whereas they are not involved in that of BLM AMs,suggesting the differential molecular mechanisms underlying the NO-induced apoptosis of normal AMs and BLM AMs; and that endogenous NO promotes proliferation of BLM AMs, which might be associated with down-regulation of Bax.%分别用一氧化氮(nitric oxide,NO)供体硝普钠(sodium nitroprusside,SNP)和前体L-精氨酸(L-arginin,L-Arg)孵育来自正常大鼠(alveolar macrophages from normal rats,normal AMs)和滴注博莱霉素大鼠的肺泡巨噬细胞(alveolar macrophages fromBLM-treated rats

  6. Comparison of affinity of mannose receptor of peritoneal macrophage and alveolar macrophage and its ligands in rats%大鼠肺泡、腹腔巨噬细胞甘露糖受体与配体的亲和力比较

    Institute of Scientific and Technical Information of China (English)

    吕正光; 刘莉; 梅其炳; 曹尉; 王志鹏; 刘新友; 余璐

    2005-01-01

    目的:探讨来源于不同组织肺泡、腹腔巨噬细胞甘露糖受体(macrophage mannose receptor, MMR)与配体的亲和力差异.方法:采用支气管肺泡灌洗和腹腔冲洗法获得肺泡和腹腔巨噬细胞(macrophage,Mφ),经纯化、鉴定后与异硫氰酸荧光标记的甘露糖基化牛血清白蛋白(M-FITC-BSA)孵育20 min,分别加入D-甘露糖、D-半乳糖、EDTA,采用荧光显微镜和流式细胞仪检测甘露糖受体(mannose receptor,MR)与配体的结合情况.结果:Mφ上存在MR,MR与配体的结合属于Ca2+依赖性,其结合可被D-甘露糖、EDTA抑制,而不受D-半乳糖的抑制;腹腔MMR与配体的亲和力高于肺泡MMR.结论:腹腔MMR与配体的亲和力高于肺泡MMR.

  7. Diesel and biodiesel exhaust particle effects on rat alveolar machrophages with in vitro exposure

    Science.gov (United States)

    We conducted in vitro exposures of Wistar rat alveolar macrophages (AM) to compare and contrast the toxicity of particulate matter (PM) produced in combustion of biodiesel blend (B20) and petroleum diesel (PDEP). The PM contain detectable levels of transition metals and ions howe...

  8. Kinetics of versican-expressing macrophages in bone marrow after cord blood stem cell transplantation for treatment of acute myelogenous leukaemia

    Science.gov (United States)

    Senda, Miho; Fukuyama, Ryuichi; Nagasaka, Tetsuro

    2016-01-01

    Aims To determine versican-producing cells in normocellular bone marrow and to evaluate chronological alteration in the number of versican-producing macrophages in bone marrow of patients with acute myelogenous leukaemia (AML) after cord blood stem cell transplantation (CBSCT) to gain insight in the significance of versican in recovery of haematopoiesis. Methods We enrolled seven age-matched unrelated patients with normocellular bone marrow for determining versican-producing cells in bone marrow, CBSCT-treated patients with AML, 18 with fine and other four with poor engraftment, for determining chronological alteration of versican-expressing and CD68-expressing cells in transplanted bone marrow in reference to the total cells. Clot samples of patients with AML were collected from the +16 to +55 day after transplantation and separated into four groups. We included an AML case whose specimen was obtained on the +9 day. Cells positive in immunohistochemistry using antibodies to versican and CD68 were counted to obtain the mean±SD in a unit area of the bone marrow, plotted chronologically and compared with the numbers from the age-matched normocellular group. Results We determined by a double immunohistochemistry that the versican-expressing cells in bone marrow are macrophages. The time-course curve demonstrated an inverse relationship between the versican-positive macrophages and the total cells in the transplanted bone marrow for over 55 days. In bone marrow of poor engraftment cases, versican-positive macrophages appeared to be decreased in comparison with age-matched and sampling day-matched patients. Conclusions These results suggest that versican and/or versican-expressing macrophages positively contribute to bone marrow regeneration of patients with AML after CBSCT. PMID:26951084

  9. Role and mechanism of signal pathway mediated by Toll-like receptor 9-myeloid differentiation factor 88 in alveolar macrophages in ventilator-induced lung injury in rats%肺泡巨噬细胞Toll样受体9-髓样分化因子88信号通路在呼吸机相关性肺损伤中的作用机制研究

    Institute of Scientific and Technical Information of China (English)

    戴惠军; 潘灵辉; 林飞; 葛万运; 李玮; 贺盛

    2014-01-01

    Objective To investigate the role of Toll-like receptor9 (TLR9)-myeloid differentiation factor 88 (MyD88) signal pathway in alveolar macrophages in ventilator-induced lung injury (VILI).Methods 30 adult male Sprague-Dawley (SD) rats were randomly assigned to three groups (with 10 rats in each group).Group A was the control group,with spontaneous respiration after tracheostomy.Rats in group B received mechanical ventilation for 4 hours with normal tidal volume (VT) 7 ml/kg after tracheostomy,and group C rats received mechanical ventilation with VT 40 ml/kg for 4 hours.After termination of ventilation,examination with transmission electron microscopy was performed to observe the ultrastructure changes in alveolar epithelial cell type Ⅱ (AEC Ⅱ) of the lung.Lung wet/dry ratios (W/D) and total protein concentration,the concentration of interleukins (IL-6 and IL-1 β) in bronchoalveolar lavage fluid (BALF) were determined.The protein and mRNA expressions of TLR9,MyD88 and nuclear factor-κB (NF-κB) in alveolar macrophages were assayed by Western Blot and real-time reverse transcription-polymerase chain reaction (RT-PCR).Results The ultrastructure of AEC Ⅱ in the group A and group B was almost normal,whereas the chromatin of the nuclei,the lamellar corpuscles in the cytoplasm,the cell membrane and the microvilli of the AEC Ⅱ in the group C showed injurious changes in various degrees.When the group C was compared with the group A and the group B,it was shown that the W/D ratios (5.54 ± 0.17 vs.4.58 ± 0.17,4.69 ± 0.16) and total protein concentration (g/L:6.33 ± 0.61 vs.0.45 ± 0.05,0.47 ± 0.04),IL-6 (μg/L:1.989 ± 0.103 vs.1.033 ± 0.061,1.010 ± 0.069) and IL-lβ (ng/L:2.79 ±0.25 vs.1.05 ±0.15,1.23 ±0.22) in BALF,the protein expressions of TLR9,MyD88 and NF-κB [TLR9 (A value):0.770 ±0.042 vs.0.300 ±0.027,0.310 ±0.037; MyD88 (A value):0.950 ±0.091 vs.0.560 ±0.082,0.580±0.084; NF-κB(A value):1.020 ±0.076 vs.0.740 ±0.052,0.700 ±0.076] in alveolar

  10. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    Science.gov (United States)

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains.

  11. Alveolar bone grafting

    Directory of Open Access Journals (Sweden)

    Lilja Jan

    2009-10-01

    Full Text Available In patients with cleft lip and palate, bone grafting in the mixed dentition in the residual alveolar cleft has become a well-established procedure. The main advantages can be summarised as follows: stabilisation of the maxillary arch; facilitation of eruption of the canine and sometimes facilitation of the lateral incisor eruption; providing bony support to the teeth adjacent to the cleft; raising the alar base of the nose; facilitation of closure of an oro-nasal fistula; making it possible to insert a titanium fixture in the grafted site and to obtain favourable periodontal conditions of the teeth within and adjacent to the cleft. The timing of the ABG surgery take into consideration not only eruption of the canine but also that of the lateral incisor, if present. The best time for bone grafting surgery is when a thin shell of bone still covers the soon erupting lateral incisor or canine tooth close to the cleft.

  12. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution; Adduits encombrants a l'ADN dans des cocultures de cellules pulmonaires humaines exposees a une pollution atmospherique particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz [Universite Lille Nord de France - Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Andre, Veronique; Le Goff, Jeremie; Sichel, Francois [GRECAN, Universite de Caen Basse-Normandie et centre Francois Baclesse, Caen (France); Roy Saint-Georges, Francoise; Mulliez, Philippe [Service de Pneumologie, Hopital Saint-Philibert, GHICL, Lille (France)

    2012-01-15

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% < 2.5{mu}.m), specific surface area (1 m{sup 2}/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). {sup 32}P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC{sub 50} = 74.63 {mu}g/mL and L132: LC-5-0 = 75.36 {mu}g/mL). Exposure to desorbed particles (MA: C1= 61.11 {mu}g/mL and L132 : C2 = 61.71 {mu}g/mL) and B[a]P (1 {mu}M) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that

  13. Protein Changes in Macrophages Induced by Plasma from Rats Exposed to 35-GHz Millimeter Waves

    Science.gov (United States)

    2010-12-01

    macrophages (CRL-2192; ATCC, Manassas, VA) were seeded onto six-well culture plates and incubated for 24 h at 37 8C and 5% CO2 in RPMI-1640 medium (pH 7.2...inactivation. J Immunol 176:5587– 5597. Helmke RJ, German VF, Mangos JA. 1989. A continuous alveolar macrophage cell line: Comparisons with freshly

  14. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype.

    Science.gov (United States)

    Chung, Sangwoon; Lee, Tae Jin; Reader, Brenda F; Kim, Ji Young; Lee, Yong Gyu; Park, Gye Young; Karpurapu, Manjula; Ballinger, Megan N; Qian, Feng; Rusu, Luiza; Chung, Hae Young; Unterman, Terry G; Croce, Carlo M; Christman, John W

    2016-04-05

    Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated. Growing evidences indicate that FoxO1 acts as an upstream regulator of IRF4 and could have a role in a specific inflammatory phenotype of macrophages. Therefore, we hypothesized that IRF4 expression regulated by FoxO1 in alveolar macrophages is required for established type 2 immune mediates allergic lung inflammation. Our data indicate that targeted deletion of FoxO1 using FoxO1-selective inhibitor AS1842856 and genetic ablation of FoxO1 in macrophages significantly decreases IRF4 and various M2 macrophage-associated genes, suggesting a mechanism that involves FoxO1-IRF4 signaling in alveolar macrophages that works to polarize macrophages toward established type 2 immune responses. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, macrophage specific FoxO1 overexpression is associated with an accentuation of asthmatic lung inflammation, whereas pharmacologic inhibition of FoxO1 by AS1842856 attenuates the development of asthmatic lung inflammation. Thus, our study identifies a role for FoxO1-IRF4 signaling in the development of alternatively activated alveolar macrophages that contribute to type 2 allergic airway inflammation.

  15. Role of macrophages in the progression of acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Sabrina; Gea-Sorlí; Daniel; Closa

    2010-01-01

    In addition to pancreatic cells,other inflammatory cell populations contribute to the generation of inflammatory mediators during acute pancreatitis.In particular,macrophages could be activated by mediators released during pancreatitis by a damaged pancreas.It has been reported that peritoneal macrophages,alveolar macrophages and Kupffer cells become activated in different stages of severe acute pancreatitis.However,macrophages display remarkable plasticity and can change their physiology in response to environmental cues.Depending on their microenvironmental stimulation,macrophages could follow different activation pathways resulting in marked phenotypic heterogeneity.This ability has made these cells interesting therapeutical targets and several approaches have been assayed to modulate the progression of inflammatory response secondary to acute pancreatitis.However,despite the recent advances in the modulation of macrophage function in vivo,the therapeutical applications of these strategies require a better understanding of the regulation of gene expression in these cells.

  16. The immunomodulatory effect of inhaled granulocyte-macrophage colony-stimulating factor in cystic fibrosis. A new treatment paradigm

    DEFF Research Database (Denmark)

    Heslet, Lars; Bay, Christiane; Nepper-Christensen, Steen

    2012-01-01

    Patients with cystic fibrosis (CF) experience recurrent infections and develop chronically infected lungs, which initiates an altered immunological alveolar environment. End-stage pulmonary dysfunction is a result of a long sequence of complex events in CF, progressing to alveolar macrophage...

  17. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.

    Science.gov (United States)

    Xue, Jia; Schmidt, Susanne V; Sander, Jil; Draffehn, Astrid; Krebs, Wolfgang; Quester, Inga; De Nardo, Dominic; Gohel, Trupti D; Emde, Martina; Schmidleithner, Lisa; Ganesan, Hariharasudan; Nino-Castro, Andrea; Mallmann, Michael R; Labzin, Larisa; Theis, Heidi; Kraut, Michael; Beyer, Marc; Latz, Eicke; Freeman, Tom C; Ulas, Thomas; Schultze, Joachim L

    2014-02-20

    Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.

  18. In Vitro Toxicity of Aluminum Nanoparticles in Rat Alveolar Macrophages

    Science.gov (United States)

    2006-03-01

    protein in the inner membrane called ATP Synthase. This flow produces the energy needed to convert ADP into ATP ( Lehninger , Nelson, and Cox, 1993: 446...447). Figure 2-4 - Catabolism of proteins, fats and carbohydrates in eukaryotic cells ( Lehninger , Nelson, and Cox, 1993: 446...sepsis”, Chest 113: 1632- 1639 (June 1998). Lehninger , A.L., Nelson, D.L., Cox, M.M., Principles of Biochemistry, Second Edition. Worth

  19. A rare occurrence of pulmonary alveolar proteinosis after lung transplantation.

    Science.gov (United States)

    Albores, Jeffrey; Seki, Atsuko; Fishbein, Michael C; Abtin, Fereidoun; Lynch, Joseph P; Wang, Tisha; Weigt, S Samuel

    2013-06-01

    We present a case of pulmonary alveolar proteinosis (PAP) initially diagnosed 28 months after left single-lung transplantation for idiopathic pulmonary fibrosis. The diagnosis was based upon the presence of periodic acid-Schiff (PAS)-positive and surfactant immunostain-positive acellular lipoproteinaceous material within alveoli seen on transbronchial biopsy as well as in bronchoalveolar lavage fluid. The patient eventually also displayed a characteristic "crazy paving" pattern on radiographic imaging. Granulocyte macrophage-colony stimulating factor antibodies were negative, consistent with secondary PAP. PAP is a rare interstitial lung disease with only a few reported cases occurring after lung transplantation. The etiology is thought to be related to a defect in macrophage function caused by immunosuppression. Reduced immunosuppression has been associated with stabilization, but not reversal, of the condition in the case reported here. PAP is an exceptionally rare cause of dyspnea and radiographic infiltrates after lung transplantation and may be related to toxicity of immune-suppressive medications.

  20. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  1. 蓝玉簪颗粒抑制脂多糖诱导大鼠肺泡巨噬细胞TNF-α产生及相关机制研究%Gentiana veitchiorum particles inhibited LPS induced pulmonary alveolar macrophages(AM)TNF-α production and the underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    侯颖; 曹蔚; 李涛; 刘水冰; 张晓楠; 李旭波; 田琼; 尤福生

    2011-01-01

    AIM: To investigate the effect of Gentiana veitchiorum particles on the expression of TNF-α in pulmonary alveolar macrophages (AM) which induced by LPS, to explain the mechanism about anti-inflammatory action of Gentiana veitchiorum particles. METHODS: Purification of rat AM, TNF-α level in AM culture supematant was detected by ELISA. Western blot method for detecting the expression of TNF-α and pERK in the AM. While application of ERK antagonist (PD98059) in rat AM and the expression of TNFα was observed by Western blot. RESULTS: Gentiana veitchiorum particles can reduce the LPS induced AM TNF-α increase in dose dependent manner. Gentiana veitchiorum particles (100 mg/L) can significantly reduce the LPS induc ed pERK and TNF-α protein expression in AM. compared with LPS stimulation group, we found that ERK inhibitor ( PD98059 30 mol/L), Gentiana veitchiorum particles intervention and Gentiana veitchiorum particles + PD98059 groups' TNF-α expression were significantly reduced in rat AM. CONCLUSION: Gentiana veitchiorum particles can inhibit the LPS induced pulmonary AM TNF-α expression, one of the possible mechanism is to inhibit the extracailular signal transduction pathway.%目的:探讨蓝玉簪颗粒对脂多糖(LPS)诱导大鼠肺泡巨噬细胞(AM)内TNF-α表达及可能作用机制.方法:分离纯化AM,应用ELISA法检测蓝玉簪颗粒对LPS诱导的大鼠AM培养上清中的TNF-α水平的影响,应用Western blot方法检测大鼠AM内TNF-α及pERK蛋白表达水平,同时应用ERK拮抗剂(PD98059)观察AM内TNF-α蛋白表达.结果:蓝玉簪颗粒可剂量依赖的降低由于LPS刺激导致的AM培养上清内TNF-α含量升高;蓝玉簪(100 mg/L)颗粒可显著降低由于LPS刺激导致的AM细胞内pERK及TNF-α蛋白表达升高;ERK特异性抑制剂(PD98059 30 mol/L)及蓝玉簪颗粒干预,蓝玉簪颗粒+PD98059干预后,我们发现与LPS刺激组相比,大鼠AM中TNF-α表达显著降低.结论:蓝玉

  2. Chronic alcohol ingestion changes the landscape of the alveolar epithelium.

    Science.gov (United States)

    Downs, Charles A; Trac, David; Brewer, Elizabeth M; Brown, Lou Ann; Helms, My N

    2013-01-01

    Similar to effects of alcohol on the heart, liver, and brain, the effects of ethanol (EtOH) on lung injury are preventable. Unlike other vital organ systems, however, the lethal effects of alcohol on the lung are underappreciated, perhaps because there are no signs of overt pulmonary disorder until a secondary insult, such as a bacterial infection or injury, occurs in the lung. This paper provides overview of the complex changes in the alveolar environment known to occur following both chronic and acute alcohol exposures. Contemporary animal and cell culture models for alcohol-induced lung dysfunction are discussed, with emphasis on the effect of alcohol on transepithelial transport processes, namely, epithelial sodium channel activity (ENaC). The cascading effect of tissue and phagocytic Nadph oxidase (Nox) may be triggered by ethanol exposure, and as such, alcohol ingestion and exposure lead to a prooxidative environment; thus impacting alveolar macrophage (AM) function and oxidative stress. A better understanding of how alcohol changes the landscape of the alveolar epithelium can lead to improvements in treating acute respiratory distress syndrome (ARDS) for which hospitalized alcoholics are at an increased risk.

  3. Pulmonary alveolar microlithiasis with calcified pleural plaques

    Directory of Open Access Journals (Sweden)

    Malhotra Balbir

    2010-01-01

    Full Text Available Pulmonary alveolar microlithiasis (PAM is a rare disease. Herein we report a case of pulmonary alveolar microlithiasis who was suspected to have the disease on chest X-ray and was confirmed on high resolution CT and transbronchial lung biopsy. These investigations showed characteristic features of pulmonary alveolar microlithiasis with diffuse interstitial pulmonary fibrosis.

  4. True Fibroma of Alveolar Mucosa

    Directory of Open Access Journals (Sweden)

    Shankargouda Patil

    2014-01-01

    Full Text Available Benign fibrous overgrowths are often found in the oral cavity, almost always being reactive/irritational in nature. However, benign mesenchymal neoplasms of the fibroblasts are extremely uncommon. Here we report a case of “True Fibroma of Alveolar Mucosa” for its rarity.

  5. Role of JNK signal transduction pathway in IL-8 and TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits%JNK信号转导通路在大潮气量机械通气诱发兔肺泡巨噬细胞分泌IL-8和TNF-α中的作用

    Institute of Scientific and Technical Information of China (English)

    童瑾; Juliy M.Perelman; Victor P.Kolosov

    2010-01-01

    Objective To investigate the role of c-Jun N-terminal kinase (JNK) signal transduction pathway in IL-8 and TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits. Methods Thirty male New Zealand white rabbits weighing 210-260 g were randomly divided into 330-40 bpm, PEEP 0), and SB203580 group (group S). The animals were anesthetized with iv pentobarbital sodium 40 mg/kg, traeheostomized and mechanically ventilated. Group C received no mechanical ventilation. The animals were mechanically ventilated for 3 days in group V. The animals were mechanically ventilated for 3 days and SB203580 (a specific JNK inhibitor) 6 mg/kg was injected via the ear vein every day during ventilation (the ventilation parameters were the same as those in group V). The animals were then sacrificed by exsanguination. The concentrations of IL-8 and TNF-α in bronchoalveolar lavage fluid (BALF) were determined by ELISA and the alveolar macrophages were collected. After the macrophages were cultured for 2 h in vitro, the expression of IL-8 mRNA and TNF-α mRNA was determined by RT-PCR. Results Compared with group C, the levels of IL-8 , TNF-α,IL-8 mRNA and TNF-α mRNA were significantly increased in group V (P<0.05). Compared with group V, the levels of TNF-α and TNF-α mRNA were significantly decreased ( P < 0.01 ), but no significant change was found in the levels of IL-8 and IL-8 mRNA in group S ( P > 0.05). Conclusion JNK signal transduction pathway plays an important role in TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits, but is not involved the secretion of TNF-α.%目的 评价c-Jun氨基末端激酶(JNK)在大潮气量机械通气诱发兔肺泡巨噬细胞分泌IL-8和TNF-α中的作用.方法 清洁级雄性新西兰白兔30只,体重210~260 g,随机分为3组(n=10):正常对照组(C组)不予任何刺激;机械通气组(V组)大潮气量机械通气3 d

  6. Surfactant disaturated-phosphatidylcholine kinetics in acute respiratory distress syndrome by stable isotopes and a two compartment model

    Directory of Open Access Journals (Sweden)

    Cogo Paola E

    2007-02-01

    Full Text Available Abstract Background In patients with acute respiratory distress syndrome (ARDS, it is well known that only part of the lungs is aerated and surfactant function is impaired, but the extent of lung damage and changes in surfactant turnover remain unclear. The objective of the study was to evaluate surfactant disaturated-phosphatidylcholine turnover in patients with ARDS using stable isotopes. Methods We studied 12 patients with ARDS and 7 subjects with normal lungs. After the tracheal instillation of a trace dose of 13C-dipalmitoyl-phosphatidylcholine, we measured the 13C enrichment over time of palmitate residues of disaturated-phosphatidylcholine isolated from tracheal aspirates. Data were interpreted using a model with two compartments, alveoli and lung tissue, and kinetic parameters were derived assuming that, in controls, alveolar macrophages may degrade between 5 and 50% of disaturated-phosphatidylcholine, the rest being lost from tissue. In ARDS we assumed that 5–100% of disaturated-phosphatidylcholine is degraded in the alveolar space, due to release of hydrolytic enzymes. Some of the kinetic parameters were uniquely determined, while others were identified as lower and upper bounds. Results In ARDS, the alveolar pool of disaturated-phosphatidylcholine was significantly lower than in controls (0.16 ± 0.04 vs. 1.31 ± 0.40 mg/kg, p de novo synthesis of disaturated-phosphatidylcholine were also significantly lower, while mean resident time in lung tissue was significantly higher in ARDS than in controls. Recycling was 16.2 ± 3.5 in ARDS and 31.9 ± 7.3 in controls (p = 0.08. Conclusion In ARDS the alveolar pool of surfactant is reduced and disaturated-phosphatidylcholine turnover is altered.

  7. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  8. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis.

    Science.gov (United States)

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y; Fong, Guo-Hua; Sakmar, Thomas P; Rafii, Shahin; Ding, Bi-Sen

    2016-02-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.

  9. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis.

    Science.gov (United States)

    Larson-Casey, Jennifer L; Deshane, Jessy S; Ryan, Alan J; Thannickal, Victor J; Carter, A Brent

    2016-03-15

    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disorder with increasing incidence. Mitochondrial oxidative stress in alveolar macrophages is directly linked to pulmonary fibrosis. Mitophagy, the selective engulfment of dysfunctional mitochondria by autophagasomes, is important for cellular homeostasis and can be induced by mitochondrial oxidative stress. Here, we show Akt1 induced macrophage mitochondrial reactive oxygen species (ROS) and mitophagy. Mice harboring a conditional deletion of Akt1 in macrophages (Akt1(-/-)Lyz2-cre) and Park2(-/-) mice had impaired mitophagy and reduced active transforming growth factor-β1 (TGF-β1). Although Akt1 increased TGF-β1 expression, mitophagy inhibition in Akt1-overexpressing macrophages abrogated TGF-β1 expression and fibroblast differentiation. Importantly, conditional Akt1(-/-)Lyz2-cre mice and Park2(-/-) mice had increased macrophage apoptosis and were protected from pulmonary fibrosis. Moreover, IPF alveolar macrophages had evidence of increased mitophagy and displayed apoptosis resistance. These observations suggest that Akt1-mediated mitophagy contributes to alveolar macrophage apoptosis resistance and is required for pulmonary fibrosis development.

  10. Unsuspected pulmonary alveolar proteinosis in a patient with acquired immunodeficiency syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Niazi Masooma

    2011-02-01

    Full Text Available Abstract Introduction Diffuse lung infiltrates are a common finding in patients with acquired immunodeficiency syndrome and causes range from infectious processes to malignancies or interstitial lung diseases. Pulmonary alveolar proteinosis is a rare pulmonary disorder rarely reported in patients infected with human immunodeficiency virus. Secondary pulmonary alveolar proteinosis is associated with conditions involving functional impairment or reduced numbers of alveolar macrophages. It can be caused by hematologic malignancies, inhalation of toxic dust, fumes or gases, infectious or pharmacologic immunosuppression, or lysinuric protein intolerance. Case presentation A 42-year-old African American man infected with human immunodeficiency virus was admitted with chronic respiratory symptoms and diffuse pulmonary infiltrates. Chest computed tomography revealed bilateral spontaneous pneumothoraces, for which he required bilateral chest tubes. Initial laboratory investigations did not reveal any contributory conditions. Histological examination of a lung biopsy taken during video-assisted thoracoscopy showed pulmonary alveolar proteinosis concurrent with cytomegalovirus pneumonitis. After ganciclovir treatment, our patient showed radiologic and clinical improvement. Conclusion The differential diagnosis for patients with immunosuppression and lung infiltrates requires extensive investigations. As pulmonary alveolar proteinosis is rare, the diagnosis can be easily missed. Our case highlights the importance of invasive investigations and histology in the management of patients infected with human immunodeficiency virus and pulmonary disease who do not respond to empiric therapy.

  11. Influence of moxifloxacin on lipoteichoic acid induced apoptosis and expression of inflammatory cytokines in human alveolar macrophage%莫西沙星对脂磷壁酸诱导的人肺泡巨噬细胞凋亡及炎症因子释放的影响

    Institute of Scientific and Technical Information of China (English)

    罗进梅; 吴本权; 刘慧; 李洪涛; 黄静; 朱家馨; 张天托

    2012-01-01

    Objective To investigate the lipoteichoic acid(LTA) induced apoptosis and the expression of inflammatory cytokines in human alveolar macrophage (AM) and the anti-apoptotic and anti-inflamatory effect of moxifloxacin (MXF).Methods Obtained human AM from bronchoalveolar lavage and used MTT assay to observe the effects of LTA and MXF on cell activity,optical microscope to investigate the change of the cell morphology,flow cytometry to assess cell apoptosis,RT-PCR to detect the mRNA levels of TLR2,IL-1 β,IL-8 and TNF-α,ELISA for the production of IL-8 to exam RT-PCR.Results LTA showed cytotoxicity on AM in a dose-dependent manner ( P<0.05 ) ; MXF inhibited the effect of LTA without cytotoxicicy ( P<0.05 ).LTA promoted apoptosis ( P<0.05 ) and the mRNA expressions of TRL2,IL-1 β,IL-8 and TNF-α significantly in AM (P<0.05),the peaks and peak time ofthe above factors were (3.56±0.03) at 12 h,(46.63±7.06) at 6 h,(28.07±1.24) at 12 h and (2.34 ±0.50) at 3 h respectively and increased the release of IL-8 protein level at 24 h (P<0.05).MXF inhibited the cell apoptosis and the above mRNA expression at 12h ( P<0.05 ),and inhibited the IL-8 protein level at 24 h( P<0.05 ).Conclusion LTA showed cytotoxicity on AM,induced AM apoptosis and increased the expression of TLR2,IL-I β,IL-8 and TNF-α of AM ; MXF could protect AM through inhibiting of the above effects and may play a key role beside bactericidal effect in gram-positive bacteria pneumonia.%目的 探讨脂磷壁酸(LTA)对人肺泡巨噬细胞(AM)凋亡及炎症因子释放的影响和莫西沙星(MXF)对其反应的抑制作用.方法 收集、提纯及体外培养人AM,LTA刺激4h后,加或不加MXF与其共孵育,于各实验终点用MTT法计算细胞相对活力,光学显微镜观察细胞形态,流式细胞术检测细胞凋亡率,RT-PCR法检测TLR2、IL-1β、IL-8及TNF-α的mRNA水平,ELISA检测IL-8蛋白水平,验证RT-PCR.结果 LTA对AM有细胞毒性,并呈浓度递增关系(P<0

  12. [Persistent dento-alveolar pain disorder (PDAP)].

    Science.gov (United States)

    Warnsinck, C J; Koutris, M; Shemesh, H; Lobbezoo, F

    2015-02-01

    Dento-alveolar pain is common in the orofacial area. Persistent dento-alveolar pain could be experienced without an identifiable etiology with poor response to existing treatments. Confusion about the diagnosis and classification of persistent dento-alveolar pain (PDAP) disorders could explain the difficulties in treatment and unfavorable prognosis. Recently, initial steps were made to improve the taxonomy and diagnostic criteria for PDAP in order to improve clinical research and care.

  13. Pulmonary alveolar microlithiasis in children

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. [Center of Diagnostic Radiology, Frankfurt Univ. (Germany); Loercher, U. [Center of Diagnostic Radiology, Frankfurt Univ. (Germany); Kitz, R. [Center of Pediatrics, Frankfurt Univ. (Germany); Zielen, S. [Center of Pediatrics, Frankfurt Univ. (Germany); Ahrens, P. [Center of Pediatrics, Frankfurt Univ. (Germany); Koenig, R. [Inst. of Human Genetics, Frankfurt Univ. (Germany)

    1996-01-01

    Two asymptomatic Turkish sibs are presented, a 4-year-old boy and his 7-year-old sister, with pulmonary alveolar microlithiasis (PAM) confirmed by transbronchial lung biopsy and bronchoalveolar lavage. Chest radiographs and high resolution CT demonstrated wide-spread intra-alveolar calcifications in both lungs. The lesions were sharply defined and less than 1 mm in diameter. CT documented a high concentration of microliths along the bronchovascular bundles, the intralobular fissue and the (sub)pleural lung parenchyma. The combination of bronchoalveolar lavage and roentgenographic appearance in high resolution CT are characteristic and pathognomonic, and can confirm the diagnosis. The more severe changes in the elder sib and the radiographic controls suggest that the pulmonary disease may be progressive in our patients. The described family of consanguineous, unaffected parents with two affected and one healthy child confirmed the autosomal recessive inheritance of PAM (McKusick 265100). In addition, the affected girl had autosomal recessive Waardenburg-anophthalmia syndrome (McKusick 206920), raising the question of whether this is a chance occurrence or possibly a contiguous gene syndrome. (orig.)

  14. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

    Science.gov (United States)

    Liu, Chunping; Shen, Haitao; Yi, Li; Shao, Peilu; Soulika, Athena M; Meng, Xinxing; Xing, Lingxiao; Yan, Xia; Zhang, Xianghong

    2015-02-03

    Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.

  15. 在患有急性肺损伤的小猪的肺泡巨噬细胞中一氧化氮,表面活性剂和糖皮质激素对核因子-κB和激活蛋白-1的活性的调控作用%Regulation of activity of nuclear factor-κB and activator protein-1 by nitric oxide, surfactant and glucocorticoids in alveolar macrophages from piglets with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    曹蕾; 钱莉玲; 朱友荣; 郭春宝; 龚小慧; 孙波

    2003-01-01

    AIM: To investigate whether acute lung injury (ALI) in ventilated piglets with bacterial infection affects NF-κB and AP-1 expression in alveolar macrophages (AM) and whether nitric oxide (NO), surfactant (Surf), glucocorticoids (GC) affect NF-κB and AP-1 activation in AM in vivo and in vitro. METHODS: The animals were intraperitoneally injected Escherichia coli, which caused ALI. Nuclear extracts of AM were analyzed by electrophoretic mobility shift assay (EMSA) for the nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) expression. Detection of IκB-α protein was from cytoplasmic extract by Western blotting. Immunocytochemistry staining was used for intracellular location of p65 subunits of NF-κB. RESULTS: In ex vivo experiments, strikingly higher expression of NF-κB and AP-1 by EMSA was found 6 h after bacterial injection in contrast to the Normal group. In the NO, SNO, and GC groups, markedly attenuated NF-κB and AP-1 activation was observed. The NF-κB and AP-1 activation in Surf group showed lower levels of the expression. Immunoblotting of AM cytoplasmic extract showed low expression of IκB-α protein in the Control and Surf groups. The stronger expression was observed in the NO, GC, and SNO groups. AM of the Control and Surf groups showed intense nuclear staining, with decreased nuclear staining in the NO, GC and SNO groups. In in vitro experiment, it caused a significant increase in NF-κB and AP l activity in AM 1 h after exposure to lipopolysaccharides (LPS). In AM treated by LPS+SNP and LPS+GC, all showed decrease of DNA binding activity of NF-κB and AP-1 compared to those exposed to LPS+Surf. Immunoblotting of AM cytoplasmic extract showed that LPS stimulation of AM resulted in the low expression of Iκ B-α protein, which was not observed in the presence of SNP and methylprednisolone. However, the surfactant did not show such effect. LPS+Surf-exposed AM had intense nuclear staining, whereas decreased nuclear staining in the LPS

  16. Immune modulation with sulfasalazine attenuates immunopathogenesis but enhances macrophage-mediated fungal clearance during Pneumocystis pneumonia.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Although T cells are critical for host defense against respiratory fungal infections, they also contribute to the immunopathogenesis of Pneumocystis pneumonia (PcP. However, the precise downstream effector mechanisms by which T cells mediate these diverse processes are undefined. In the current study the effects of immune modulation with sulfasalazine were evaluated in a mouse model of PcP-related Immune Reconstitution Inflammatory Syndrome (PcP-IRIS. Recovery of T cell-mediated immunity in Pneumocystis-infected immunodeficient mice restored host defense, but also initiated the marked pulmonary inflammation and severe pulmonary function deficits characteristic of IRIS. Sulfasalazine produced a profound attenuation of IRIS, with the unexpected consequence of accelerated fungal clearance. To determine whether macrophage phagocytosis is an effector mechanism of T cell-mediated Pneumocystis clearance and whether sulfasalazine enhances clearance by altering alveolar macrophage phagocytic activity, a novel multispectral imaging flow cytometer-based method was developed to quantify the phagocytosis of Pneumocystis in vivo. Following immune reconstitution, alveolar macrophages from PcP-IRIS mice exhibited a dramatic increase in their ability to actively phagocytose Pneumocystis. Increased phagocytosis correlated temporally with fungal clearance, and required the presence of CD4(+ T cells. Sulfasalazine accelerated the onset of the CD4(+ T cell-dependent alveolar macrophage phagocytic response in PcP-IRIS mice, resulting in enhanced fungal clearance. Furthermore, sulfasalazine promoted a TH2-polarized cytokine environment in the lung, and sulfasalazine-enhanced phagocytosis of Pneumocystis was associated with an alternatively activated alveolar macrophage phenotype. These results provide evidence that macrophage phagocytosis is an important in vivo effector mechanism for T cell-mediated Pneumocystis clearance, and that macrophage phenotype can be altered

  17. Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages.

    Science.gov (United States)

    Rylance, Jamie; Fullerton, Duncan G; Scriven, James; Aljurayyan, Abdullah N; Mzinza, David; Barrett, Steve; Wright, Adam K A; Wootton, Daniel G; Glennie, Sarah J; Baple, Katy; Knott, Amy; Mortimer, Kevin; Russell, David G; Heyderman, Robert S; Gordon, Stephen B

    2015-05-01

    Three billion people are exposed to household air pollution from biomass fuel use. Exposure is associated with higher incidence of pneumonia, and possibly tuberculosis. Understanding mechanisms underlying these defects would improve preventive strategies. We used human alveolar macrophages obtained from healthy Malawian adults exposed naturally to household air pollution and compared them with human monocyte-derived macrophages exposed in vitro to respirable-sized particulates. Cellular inflammatory response was assessed by IL-6 and IL-8 production in response to particulate challenge; phagosomal function was tested by uptake and oxidation of fluorescence-labeled beads; ingestion and killing of Streptococcus pneumoniae and Mycobacterium tuberculosis were measured by microscopy and quantitative culture. Particulate ingestion was quantified by digital image analysis. We were able to reproduce the carbon loading of naturally exposed alveolar macrophages by in vitro exposure of monocyte-derived macrophages. Fine carbon black induced IL-8 release from monocyte-derived and alveolar macrophages (P < 0.05) with similar magnitude responses (log10 increases of 0.93 [SEM = 0.2] versus 0.74 [SEM = 0.19], respectively). Phagocytosis of pneumococci and mycobacteria was impaired with higher particulate loading. High particulate loading corresponded with a lower oxidative burst capacity (P = 0.0015). There was no overall effect on killing of M. tuberculosis. Alveolar macrophage function is altered by particulate loading. Our macrophage model is comparable morphologically to the in vivo uptake of particulates. Wood smoke-exposed cells demonstrate reduced phagocytosis, but unaffected mycobacterial killing, suggesting defects related to chronic wood smoke inhalation limited to specific innate immune functions.

  18. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  19. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  20. Lung alveolar epithelium and interstitial lung disease.

    Science.gov (United States)

    Corvol, Harriet; Flamein, Florence; Epaud, Ralph; Clement, Annick; Guillot, Loic

    2009-01-01

    Interstitial lung diseases (ILDs) comprise a group of lung disorders characterized by various levels of inflammation and fibrosis. The current understanding of the mechanisms underlying the development and progression of ILD strongly suggests a central role of the alveolar epithelium. Following injury, alveolar epithelial cells (AECs) may actively participate in the restoration of a normal alveolar architecture through a coordinated process of re-epithelialization, or in the development of fibrosis through a process known as epithelial-mesenchymal transition (EMT). Complex networks orchestrate EMT leading to changes in cell architecture and behaviour, loss of epithelial characteristics and gain of mesenchymal properties. In the lung, AECs themselves may serve as a source of fibroblasts and myofibroblasts by acquiring a mesenchymal phenotype. This review covers recent knowledge on the role of alveolar epithelium in the pathogenesis of ILD. The mechanisms underlying disease progression are discussed, with a main focus on the apoptotic pathway, the endoplasmic reticulum stress response and the developmental pathway.

  1. Beryllium uptake and related biological effects studied in THP-1 differentiated macrophages.

    Science.gov (United States)

    Ding, Jian; Lin, Lin; Hang, Wei; Yan, Xiaomei

    2009-11-01

    Investigation of cellular uptake of metal compounds is important in understanding metal-related toxicity and diseases. Inhalation of beryllium aerosols can cause chronic beryllium disease, a progressive, granulomatous fibrosis of the lung. Studies in laboratory animals and cultured animal cells indicate that alveolar macrophages take up beryllium compounds and participate in a hypersensitivity immune response to a beryllium-containing antigen. In the present work, human monocyte cell line THP-1 was induced with phorbol myristate acetate to differentiate into a macrophage. This cell with characteristics of human alveolar macrophages was employed to study cellular beryllium uptake and related biological effects. Morphological changes, phagocytosis of fluorescent latex beads, and cell surface CD14 expression were used to verify the successful differentiation of THP-1 monocytes into macrophages. An improved mass spectrometry method for quantitative analysis of intracellular beryllium as opposed to the traditional radioisotopic approach was developed using ICP-MS. The influence of the solubility of beryllium compounds, exposure duration, and beryllium concentration on the incorporation of beryllium was studied. Our data indicated that the uptake of particulate BeO was much more significant than that of soluble BeSO(4), suggesting the major cellular uptake pathway is phagocytosis. Nevertheless, subsequent DAPI nuclear staining and PARP cleavage study indicated that beryllium uptake had a negligible effect on the apoptosis of THP-1 macrophages compared to the unstimulated macrophage control. Meanwhile, no substantial variation of tumour necrosis factor-alpha production was observed for THP-1 macrophages upon beryllium exposure. These data imply alveolar macrophages could have some level of tolerance to beryllium and this may explain why most Be-exposed individuals remain healthy throughout life.

  2. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  3. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    Science.gov (United States)

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

  4. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    Science.gov (United States)

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Perawatan Ortodontik Gigi Anterior Berjejal dengan Tulang Alveolar yang Tipis

    Directory of Open Access Journals (Sweden)

    Miesje K. Purwanegara

    2015-09-01

    Full Text Available Anterior teeth movement in orthodontic treatment is limited to labiolingual direction by very thin alveolar bone. An uncontrolled anterior tooth movement to labiolingual direction can cause alveolar bone perforation at its root segment. This case report is to remind us that alveolar bone thickness limits orthodontc tooth movement. A case of crowded anterior teeth with thin alveolar bone in malocclusion I is reported. This case is treated using adgewise orthodontic appliance. Protraction of anterior teeth is anticipated due to thin alveolar bone on the anterior surface. The conclusion is although the alveolar bone surrounding the crowded anterior teeth is thin, by controlling the movement the teeth reposition is allowed.

  6. Orthopantomographic study of the alveolar bone level on periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sik; You, Dong Soo [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  7. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    Science.gov (United States)

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  8. Tissue-resident macrophages can contain replication-competent virus in antiretroviral-naive, SIV-infected Asian macaques

    Science.gov (United States)

    DiNapoli, Sarah R.; Ortiz, Alexandra M.; Wu, Fan; Matsuda, Kenta; Hirsch, Vanessa M.; Knox, Kenneth

    2017-01-01

    SIV DNA can be detected in lymphoid tissue–resident macrophages of chronically SIV-infected Asian macaques. These macrophages also contain evidence of recently phagocytosed SIV-infected CD4+ T cells. Here, we examine whether these macrophages contain replication-competent virus, whether viral DNA can be detected in tissue-resident macrophages from antiretroviral (ARV) therapy–treated animals and humans, and how the viral sequences amplified from macrophages and contemporaneous CD4+ T cells compare. In ARV-naive animals, we find that lymphoid tissue–resident macrophages contain replication-competent virus if they also contain viral DNA in ARV-naive Asian macaques. The genetic sequence of the virus within these macrophages is similar to those within CD4+ T cells from the same anatomic sites. In ARV-treated animals, we find that viral DNA can be amplified from lymphoid tissue–resident macrophages of SIV-infected Asian macaques that were treated with ARVs for at least 5 months, but we could not detect replication-competent virus from macrophages of animals treated with ARVs. Finally, we could not detect viral DNA in alveolar macrophages from HIV-infected individuals who received ARVs for 3 years and had undetectable viral loads. These data demonstrate that macrophages can contain replication-competent virus, but may not represent a significant reservoir for HIV in vivo.

  9. A very rare cause of dyspnea with a unique presentation on a computed tomography scan of the chest: macrophage activation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Brandao-Neto, Rodrigo Antonio [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Clinical Emergency Dept.; Santana, Alfredo Nicodemos Cruz; Danilovic, Debora Lucia Seguro; Mendonca, Berenice Bilharinho de [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina]. E-mail: alfredonicodemos@hotmail.com; Bernardi, Fabiola Del Carlo [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. of Pathology; Barbas, Carmen Silvia Valente [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. of Pulmonology

    2008-02-15

    Macrophage activation syndrome is a rare and potentially life-threatening disease. It occurs due to immune dysregulation manifested as excessive macrophage proliferation, typically causing hepatosplenomegaly, pancytopenia and hepatic dysfunction. Here, we report an unusual case of macrophage activation syndrome presenting as dyspnea, as well as (reported here for the first time) high resolution computed tomography findings of an excavated nodule, diffuse ground glass opacities and consolidations (mimicking severe pneumonia or alveolar hemorrhage). The patient was successfully treated with human immunoglobulin. We recommend that macrophage activation syndrome be considered in the differential diagnosis of respiratory failure. Rapid diagnosis and treatment are essential to achieving favorable outcomes in patients with this syndrome. (author)

  10. Alveolar rhabdomyosarcoma in children with histomorphological review

    Directory of Open Access Journals (Sweden)

    S. K. Nema

    2014-04-01

    Full Text Available Rhabdomyosarcomas (RMS are aggressive malignant neoplasm of mesenchymal origin, related to skeletal muscle lineage. These are the most common soft tissue tumors in children. The diagnosis is made by microscopic analysis and ancillary techniques like immunohistochemistry, electron microscopy, cytogenetics and molecular biology. We encountered a case of a 03 years old child who presented with a tender, reddish, soft swelling over cheek for three weeks. The FNAC was reported as a small round cell tumor, Probably Primitive Neuroectodermal Tumor (PNET. The biopsy of tumor revealed a small round cell tumor with an alveolar pattern. Tumor giant cells were absent and mitotic figures were infrequent. Hence, differentials of alveolar rhabdomyosarcoma and PNET were rendered. Immunohistochemistry (IHC demonstrated desmin positivity. Thus, a final diagnosis of alveolar rhabdomyosarcoma was offered. [Int J Res Med Sci 2014; 2(2.000: 775-778

  11. Lateralization Technique and Inferior Alveolar Nerve Transposition

    Directory of Open Access Journals (Sweden)

    Angélica Castro Pimentel

    2016-01-01

    Full Text Available Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics.

  12. Lateralization Technique and Inferior Alveolar Nerve Transposition

    Science.gov (United States)

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  13. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model.

    Science.gov (United States)

    Settem, Rajendra P; El-Hassan, Ahmed Taher; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2012-07-01

    Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.

  14. A plasmapheresis protocol for refractory pulmonary alveolar proteinosis.

    Science.gov (United States)

    Garber, Bryan; Albores, Jeffrey; Wang, Tisha; Neville, Thanh H

    2015-04-01

    Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by the accumulation of proteinaceous material within the lungs. While typically managed with whole lung lavage (WLL), more recent PAP therapies aimed at reducing granulocyte-macrophage colony stimulating factor autoantibodies (anti-GM-CSF) have reduced symptoms and improved lung function. We present a patient with PAP refractory to WLL, exogenous GM-CSF and rituximab who underwent a novel plasmapheresis protocol as a therapeutic trial. While previously reported regimens have utilized plasmapheresis sessions distributed over months, our patient underwent five consecutive days of plasmapheresis, followed by rituximab. Anti-GM-CSF levels decreased from 24.8 to 2.7 mcg/mL post-plasmapheresis. This reduction of autoantibody correlated with reduction in WLL frequency, increase in diffusing capacity for carbon monoxide, and subjective improvement in dyspnea. Our case suggests that five consecutive days of plasmapharesis results in increased clearance of anti-GM-CSF and may be potentially efficacious in cases of refractory PAP.

  15. Macrophage Autophagy in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Maria Chiara Maiuri

    2013-01-01

    Full Text Available Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation. AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility.

  16. Effect of pentoxifylline on the expression level of TNF-α induced by respiratory syncytial virus-infected human alveolar macrophages%己酮可可碱对呼吸道合胞病毒感染的人肺泡巨噬细胞TNF-α表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    陶晓南; 彭毅; 付薇; 向敏; 张瑞祥; 杨业金

    2001-01-01

    目的 观察己酮可可碱(PTX)对呼吸道合胞病毒(RSV)所诱导的人肺泡灌洗液巨噬细胞肿瘤坏死因子(TNF-α)含量及TNF-α mRNA表达水平的影响。方法 收集咳嗽患者正常镜像的支气管肺泡灌洗液巨噬细胞,随机分成三组:(1)对照组(NOR组);(2)感染组(RSV组)加入106 pfu的RSV;(3)己酮可可碱组(PTX组)RSV感染后加入PTX(1 mg/ml)。每组于RSV感染20 h后,用ELISA法测定培养细胞上清中TNF-α含量的变化,用逆转录聚合酶链反应(RT-PCR) 测定各组巨噬细胞TNF-α mRNA表达水平。结果 感染组中TNF-α mRNA表达水平与对照组相比明显增多。PTX组TNF-α mRNA的表达和感染组相比明显降低。TNF-α的含量也有相应的变化:与对照组比较,感染组明显升高(P<0.01); 而PTX组与感染组比较明显下降(P<0.01)。结论 PTX能抑制RSV所诱导的人肺泡巨噬细胞TNF-α的基因表达,并减少TNF-α的产生。%Objective To investigate the effect of pentoxifylline (PTX) on the expression of the TNF-α mRNA and the amount of TNF-α induced by RSV-infected human bronchoalveolar flruid (BALF) macrophages.Methods Human BALF macrophages were collected and divided into the following three groups:(1)control group; (2) infected group,with 106 pfu RSV in the culture medium; (3) PTX group,in which 1 mg/ml of PTX was added after RSV infection. Twenty hours after the RSV infection, the mRNA expression level of TNF-α gene was analysed by RT-PCR and the TNF-α protein level was measured by the ELISA.Results In comparison with the control group,the expression of TNF-α mRNA was increased in the infected group,while this induction was inhibited in the PTX group.Similar results were also obtained when the content of TNF-α protein was studied by ELISA:PTX could reduce the high levels of TNF-α in the infected group (P<0.01).Conclusion PTX exerts an inhibitory effect on the expression of the TNF-α mRNA,as well as

  17. Insulin Influences Autophagy Response Distinctively in Macrophages of Different Compartments

    Directory of Open Access Journals (Sweden)

    Karen K. S. Sunahara

    2014-11-01

    Full Text Available Background/Aims: Diabetes mellitus (DM is characterized by hyperglycemia, associated to a lack or inefficiency of the insulin to regulate glucose metabolism. DM is also marked by alterations in a diversity of cellular processes that need to be further unraveled. In this study, we examined the autophagy pathway in diabetic rat macrophages before and after treatment with insulin. Methods: Bone marrow-derived macrophages (BMM, bronchoalveolar lavage (BAL and splenic tissue of diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days and control rats (physiological saline, i.v.. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c. 8 h before experiments. For characterization of the model and evaluation of the effect of insulin on the autophagic process, the following analyzes were performed: (a concentrations of cytokines: interleukin (IL-1β, tumor necrosis factor (TNF-α, IL-6, IL-4, IL-10, cytokine-induced neutrophil chemoattractant (CINC-1 and CINC-2 in the BAL supernatant was measured by ELISA; (b characterization of alveolar macrophage (AM of the BAL as surface antigens (MHCII, pan-macrophage KiM2R, CD11b and autophagic markers (protein microtubule-associated light chain (LC3, autophagy protein (Atg12 by flow cytometry and confocal microscopy (c study of macrophages differentiated from the bone marrow by flow cytometry and confocal microscopy (d histology of the spleen by immunohistochemistry associated with confocal microscopy. Results: Interestingly, insulin exerted antagonistic effects on macrophages from different tissues. Macrophages from bronchoalveolar lavage (BAL enhanced their LC3 autophagosome bound content after treatment with insulin whereas splenic macrophages from red pulp in diabetic rats failed to enhance their Atg 12 levels compared to control animals. Insulin treatment in diabetic rats did not change LC3 content in bone marrow derived macrophages (BMM. M1 and M2 macrophages behaved accordingly to the

  18. Intracellular survival of Clostridium chauvoei in bovine macrophages.

    Science.gov (United States)

    Pires, Prhiscylla Sadanã; Santos, Renato Lima; da Paixão, Tatiane Alves; de Oliveira Bernardes, Laura Cristina; de Macêdo, Auricélio Alves; Gonçalves, Luciana Aramuni; de Oliveira Júnior, Carlos Augusto; Silva, Rodrigo Otávio Silveira; Lobato, Francisco Carlos Faria

    2017-02-01

    Clostridium chauvoei is the etiological agent of blackleg, a severe disease of domestic ruminants, causing myonecrosis and serious toxemia with high mortality. Despite the known importance of this agent, studies evaluating its pathogenesis of blackleg are scarce, and many are based on an unproven hypothesis that states that macrophages are responsible for carrying C. chauvoei spores from the intestines to muscles in the early stages of blackleg. Therefore, the present study aimed to investigate the survival of C. chauvoei vegetative cells or spores after phagocytosis by a murine macrophage cell line (RAW 264.7) and bovine monocyte-derived macrophages and to profile inflammatory and anti-inflammatory cytokine transcripts of bovine macrophages infected with C. chauvoei vegetative cells or spores. Both vegetative cells and spores of C. chauvoei remain viable after internalization by murine and bovine macrophages. Bovine macrophages infected with vegetative cells showed a pro-inflammatory profile, while those infected with spores displayed an anti-inflammatory profile. Together, these results corroborate the classical hypothesis that macrophages may play a role in the early pathogenesis of blackleg. Moreover, this is the first study to evaluate the infection kinetics and cytokine profile of bovine monocyte-derived macrophages infected with a Clostridium species.

  19. Iatrogenic injury to the inferior alveolar nerve

    DEFF Research Database (Denmark)

    Hillerup, Søren

    2008-01-01

    The purpose of this prospective, non-randomised, descriptive study is to characterise the neurosensory deficit and associated neurogenic discomfort in 52 patients with iatrogenic injury to the inferior alveolar nerve (IAN). All patients were examined and followed up according to a protocol assess...

  20. Glutamine Modulates Macrophage Lipotoxicity

    Directory of Open Access Journals (Sweden)

    Li He

    2016-04-01

    Full Text Available Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs, activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli.

  1. Silver Nanoparticles in Alveolar Bone Surgery Devices

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2012-01-01

    Full Text Available Silver (Ag ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cells in vitro and in vivo in animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.

  2. Pelvic alveolar rhabdomyosarcoma in a young adult

    Directory of Open Access Journals (Sweden)

    David Reisner, MD

    2014-01-01

    Full Text Available Rhabdomyosarcomas are soft-tissue tumors, rare in adults. Accounting for nearly 5% of childhood cancers, they represent less than 0.03% of adult malignancies (1, 2. Three different subtypes of rhabdomyosarcoma have been described (embryonal, alveolar and pleomorphic, making up approximately 50%, 30%, and 20% of the cases, respectively (3. Although the definitive diagnosis is made pathologically, some distinguishing features among these subtypes, and between rhabdomyosarcomas and other soft-tissue tumors, can be suggested on MRI and CT. We present an interesting case of a 20-year-old female with a locally aggressive pelvic alveolar rhabdomyosarcoma. While the prognosis has improved with newer treatment techniques, overall survival rates remain poor. Our case study presents typical features of a rare disease, which can often present a diagnostic dilemma for clinicians.

  3. The phosphoproteome of toll-like receptor-activated macrophages

    DEFF Research Database (Denmark)

    Weintz, Gabriele; Olsen, Jesper Velgaard; Frühauf, Katja;

    2010-01-01

    Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome...

  4. Bmp2 and Bmp4 accelerate alveolar bone development.

    Science.gov (United States)

    Ou, Mingming; Zhao, Yibing; Zhang, Fangming; Huang, Xiaofeng

    2015-06-01

    Alveolar bone remodeling is a continuous process that takes place during development and in response to various physiological and pathological stimuli. However, detailed knowledge regarding the underlying mechanisms involved in alveolar bone development is still lacking. This study aims at improving our understanding of alveolar bone formation and the role of bone morphogenetic proteins (Bmps) in this process. Mice at embryonic (E) day 13.5 to postnatal (PN) day 15.5 were selected to observe the process of alveolar bone development. Alveolar bone development was found to be morphologically observable at E14.5. Molar teeth isolated from mice at PN7.5 were pretreated with Bmp2, Bmp4, Noggin, or BSA, and grafted subcutaneously into mice. The subcutaneously implanted tooth germs formed alveolar bone indicating the role of the dental follicle in alveolar bone development. Alveolar bone formation was increased after pretreatment with Bmp2 and Bmp4, but not with Noggin. Gene expression levels in dental follicle cells from murine molars were also determined by real-time RT-PCR. The expression levels of Runx2, Bsp, and Ocn were significantly higher in dental follicle cells cultured with Bmp2 or Bmp4, and significantly lower in those cultured with Noggin when compared with that of the BSA controls. Our results suggest that the dental follicle participates in alveolar bone formation and Bmp2/4 appears to accelerate alveolar bone development.

  5. Management of maxillary alveolar process fractures

    Directory of Open Access Journals (Sweden)

    Shukhrat Boymuradov

    2011-04-01

    Full Text Available Incidence of maxillofacial traumas is reported steadily increasing, maxillary fractures being extremely severe. Maxillary alveolar process (AP and front teeth are traumatized more frequently than any other parts of the maxilla. Deprivation of teeth and AP post-traumatic flaw as well as loss of alveolar height not only create a cosmetic defect but also complicate subsequent prosthetics of the patients. The work was initiated to assess efficacy of “CollapAn L” in comparison with a combination of “Osteon”, an osteoplastic material, and “Colla Guide” resorbable membrane in prevention of AP post-traumatic flaws and deformities. 60 patients aged from 16 to 47 with the comminuted fractures of maxillary AP emergently hospitalized were examined and treated. The findings showed that Combination of “Osteon” and “Colla Guide” resorbable membrane is the one to increase efficacy of the treatment, facilitating preservation of and alveolar crest height and shape. In addition, preservation of bone tissue mineralization helps avoid risk of the bone wound inflammatory morbidity.

  6. Complex determinants of macrophage tropism in env of simian immunodeficiency virus.

    Science.gov (United States)

    Mori, K; Ringler, D J; Kodama, T; Desrosiers, R C

    1992-04-01

    Macrophage-tropic virus variants evolved during the course of infection of individual rhesus monkeys with cloned, non-macrophagetropic simian immunodeficiency virus. Specific changes in the envelope gene (env) were found to be primarily responsible for the dramatic increase in the ability of the virus to replicate in macrophages. Cloned viruses differing at nine amino acid positions in env exhibited a more than 100-fold difference in replicative capacity for primary cultures of rhesus monkey alveolar macrophages. At least five of the nine amino acid changes contributed to macrophage tropism. These determinants were distributed across the full length of env, including both the gp120 and gp41 products of the env gene. Furthermore, the emergence of macrophagetropic variants in vivo was associated with specific pathologic manifestations in which the macrophage is the major infected cell type. Thus, major determinants of macrophage tropism reside in env, they can be complex in nature, and the presence of macrophage-tropic virus variants in vivo can influence the disease course and disease manifestations.

  7. A Systematic Approach to Identify Markers of Distinctly Activated Human Macrophages

    Directory of Open Access Journals (Sweden)

    Bayan eSudan

    2015-05-01

    Full Text Available Polarization has been a useful concept for describing activated macrophage phenotypes and gene expression profiles. However, macrophage activation status within tumors and other settings are often inferred based on only a few markers. Complicating matters for relevance to human biology, many of the best studied macrophage activation markers have been best characterized in mice and sometimes are not similarly regulated in human macrophages. To identify novel markers of activated human macrophages, gene expression profiles for human macrophages of a single donor subjected to 33 distinct activating conditions were obtained and a set of putative activation markers were subsequently evaluated in macrophages from multiple donors using integrated fluidic circuit (IFC-based RT-PCR. Using unsupervised hierarchical clustering of the microarray screen, highly-altered transcripts (>4-fold change in expression sorted the macrophage transcription profiles into two major and 13 minor clusters. Among the 1874 highly-altered transcripts, over 100 were uniquely altered in one major or two related minor clusters. IFC PCR-derived data confirmed the microarray results and to show the kinetics of expression of potential macrophage activation markers. Transcripts encoding chemokines, cytokines, and cell surface were prominent in our analyses. The activation markers identified by this study could be used to better characterize tumor-associated macrophages from biopsies as well as other macrophage populations collected from human clinical samples.

  8. Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia.

    Directory of Open Access Journals (Sweden)

    Norberto González-Juarbe

    2015-12-01

    Full Text Available Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC, and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10, which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.

  9. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection.

    Directory of Open Access Journals (Sweden)

    Hongyu Qiu

    Full Text Available Acinetobacter baumannii is an emerging bacterial pathogen that causes nosocomial pneumonia and other infections. Although it is recognized as an increasing threat to immunocompromised patients, the mechanism of host defense against A. baumannii infection remains poorly understood. In this study, we examined the potential role of macrophages in host defense against A. baumannii infection using in vitro macrophage culture and the mouse model of intranasal (i.n. infection. Large numbers of A. baumannii were taken up by alveolar macrophages in vivo as early as 4 h after i.n. inoculation. By 24 h, the infection induced significant recruitment and activation (enhanced expression of CD80, CD86 and MHC-II of macrophages into bronchoalveolar spaces. In vitro cell culture studies showed that A. baumannii were phagocytosed by J774A.1 (J774 macrophage-like cells within 10 minutes of co-incubation, and this uptake was microfilament- and microtubule-dependent. Moreover, the viability of phagocytosed bacteria dropped significantly between 24 and 48 h after co-incubation. Infection of J774 cells by A. baumannii resulted in the production of large amounts of proinflammatory cytokines and chemokines, and moderate amounts of nitric oxide (NO. Prior treatment of J774 cells with NO inhibitors significantly suppressed their bactericidal efficacy (P<0.05. Most importantly, in vivo depletion of alveolar macrophages significantly enhanced the susceptibility of mice to i.n. A. baumannii challenge (P<0.01. These results indicate that macrophages may play an important role in early host defense against A. baumannii infection through the efficient phagocytosis and killing of A. baumannii to limit initial pathogen replication and the secretion of proinflammatory cytokines and chemokines for the rapid recruitment of other innate immune cells such as neutrophils.

  10. Immunological priming requires regulatory T cells and IL-10-producing macrophages to accelerate resolution from severe lung inflammation.

    Science.gov (United States)

    Aggarwal, Neil R; Tsushima, Kenji; Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R; Garibaldi, Brian T; Singer, Benjamin D; Sidhaye, Venkataramana K; Horton, Maureen R; King, Landon S; D'Alessio, Franco R

    2014-05-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and noninfectious agents and is a leading cause of mortality worldwide. In that context, immunomodulatory strategies may be used to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose LPS can immunologically prime the lung to augment alveolar macrophage production of IL-10 and enhance resolution of lung inflammation induced by a lethal dose of LPS or by Pseudomonas bacterial pneumonia. IL-10-deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage IL-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared with low-dose LPS but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal LPS exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures.

  11. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss.

    Science.gov (United States)

    Papadopoulos, George; Weinberg, Ellen O; Massari, Paola; Gibson, Frank C; Wetzler, Lee M; Morgan, Elise F; Genco, Caroline A

    2013-02-01

    Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.

  12. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus

    Directory of Open Access Journals (Sweden)

    Kosmider Beata

    2012-06-01

    Full Text Available Abstract Background Influenza A virus (IAV infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2 activates the majority of antioxidant genes. Methods Alveolar type II (ATII cells and alveolar macrophages (AM were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8 virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2 or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. Results We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and

  13. Inferior alveolar nerve injuries associated with mandibular fractures.

    Science.gov (United States)

    Bede, Salwan Yousif Hanna; Ismael, Waleed Khaleel; Al-Assaf, Dhuha A; Omer, Saad Salem

    2012-11-01

    The study evaluates the incidence of inferior alveolar nerve injuries in mandibular fractures, the duration of their recovery, and the factors associated with them. Fifty-two patients with mandibular fractures involving the ramus, angle, and body regions were included in this study; the inferior alveolar nerve was examined for neurological deficit posttraumatically using sharp/blunt differentiation method, and during the follow-up period the progression of neural recovery was assessed. The incidence of neural injury of the inferior alveolar nerve was 42.3%, comminuted and displaced linear fractures were associated with higher incidence of inferior alveolar nerve injury and prolonged recovery time, and recovery of inferior alveolar nerve function occurred in 91%.Fractures of the mandible involving the ramus, angle, and body regions, and comminuted and displaced linear fractures are factors that increase the incidence of inferior alveolar nerve injuries. Missile injuries can be considered as another risk factor.

  14. Modeling In Vivo Interactions of Engineered Nanoparticles in the Pulmonary Alveolar Lining Fluid

    Directory of Open Access Journals (Sweden)

    Dwaipayan Mukherjee

    2015-07-01

    Full Text Available Increasing use of engineered nanomaterials (ENMs in consumer products may result in widespread human inhalation exposures. Due to their high surface area per unit mass, inhaled ENMs interact with multiple components of the pulmonary system, and these interactions affect their ultimate fate in the body. Modeling of ENM transport and clearance in vivo has traditionally treated tissues as well-mixed compartments, without consideration of nanoscale interaction and transformation mechanisms. ENM agglomeration, dissolution and transport, along with adsorption of biomolecules, such as surfactant lipids and proteins, cause irreversible changes to ENM morphology and surface properties. The model presented in this article quantifies ENM transformation and transport in the alveolar air to liquid interface and estimates eventual alveolar cell dosimetry. This formulation brings together established concepts from colloidal and surface science, physics, and biochemistry to provide a stochastic framework capable of capturing essential in vivo processes in the pulmonary alveolar lining layer. The model has been implemented for in vitro solutions with parameters estimated from relevant published in vitro measurements and has been extended here to in vivo systems simulating human inhalation exposures. Applications are presented for four different ENMs, and relevant kinetic rates are estimated, demonstrating an approach for improving human in vivo pulmonary dosimetry.

  15. The role of synthetic biomaterials in resorptive alveolar bone regeneration

    OpenAIRE

    2007-01-01

    The alveolar bone tissue resorption defect has a significant role in dentistry. Because of the bone tissue deficit developed by alveolar resorption, the use of synthetic material CP/PLGA (calcium-phosphate/polylactide-co-gliycolide) composite was introduced. Investigations were performed on rats with artificially produced resorption of the mandibular bone. The results show that the best effect on alveolar bone were attained by using nano-composite implants. The effect of the nanocomposite was...

  16. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments.

    Directory of Open Access Journals (Sweden)

    Wen-Jie Ji

    Full Text Available BACKGROUND: Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20 mg/kg/day by oral gavage revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson' trichrome staining in bleomycin treated (2.5 mg/kg, via oropharyngeal instillation male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6C(hi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+ of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c- remained unaffected by spironolactone during investigation. CONCLUSIONS/SIGNIFICANCE: The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.

  17. Cyclophilin A (CypA) is associated with the inflammatory infiltration and alveolar bone destruction in an experimental periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079 (China); Li, Chengzhang, E-mail: l56cz@hotmail.com [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079 (China); Department of Periodontology, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079 (China); Cai, Cia [Department of Periodontology, School and Hospital of Stomatology, Zhejiang University, 395 Yan An Road, Hangzhou 310006 (China); Xiang, Junbo [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079 (China); Cao, Zhengguo, E-mail: jery7677@hotmail.com [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079 (China); Department of Periodontology, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079 (China)

    2010-01-01

    Background and objective: CypA is able to regulate inflammatory responses and MMPs production via interaction with its cell surface receptor, EMMPRIN. This study aimed to address the possible association of CypA with pathological inflammation and destruction of periodontal tissues, and whether CypA-EMMPRIN interaction exists in periodontitis. Materials and methods: Experimental periodontitis was induced by ligation according to our previous method. Histological and radiographic examinations were performed. Western blot was used to detect CypA and EMMPRIN expressions in gingival tissues. Immunohistochemistry was applied for CypA, EMMPRIN, MMP-1, MMP-2, MMP-9, as well as cell markers of macrophage, lymphocyte and neutrophil. CypA expression, alveolar bone loss, and inflammatory infiltrations were quantified followed by correlation analyses. Results: Western blot revealed that CypA and EMMRPIN expressions were dramatically elevated in inflamed gingival tissues (ligature group) as compared to healthy gingival tissues (control group). The enhanced CypA and EMMPRIN expressions were highly consistent in cell localization on seriate sections. They were permanently co-localized in infiltrating macrophages and lymphocytes, as well as osteoclasts and osteoblasts in interradicular bone, but rarely expressed by infiltrating neutrophils. MMP-1, MMP-2, and MMP-9 expressions were also sharply increased in inflamed gingiva. MMP-2 and MMP-9 were mainly over-expressed by macrophages, while MMP-1 was over-produced by fibroblasts and infiltrating cells. The number of CypA-positive cells was strongly correlated with the ACJ-AC distance (r = 0.839, p = 0.000), the number of macrophages (r = 0.972, p = 0.000), and the number of lymphocytes (r = 0.951, p = 0.000). Conclusion: CypA is associated with the inflammatory infiltration and alveolar bone destruction of periodontitis. CypA-EMMPRIN interaction may exist in these pathological processes.

  18. Macrophages and Iron Metabolism.

    Science.gov (United States)

    Soares, Miguel P; Hamza, Iqbal

    2016-03-15

    Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.

  19. Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles.

    Science.gov (United States)

    Nakamura, Michihiro; Hayashi, Koichiro; Nakano, Mutsuki; Kanadani, Takafumi; Miyamoto, Kazue; Kori, Toshinari; Horikawa, Kazuki

    2015-02-24

    An in vitro imaging system to evaluate the stealth function of nanoparticles against mouse macrophages was established using fluorescent organosilica nanoparticles. Surface-functionalized organosilica nanoparticles with polyethylene glycol (PEG) were prepared by a one-step process, resulting in a brush-type PEG layer. A simultaneous dual-particle administration approach enabled us to evaluate the stealth function of nanoparticles with respect to single cells using time-lapse fluorescent microscopic imaging and flow cytometry analyses. Single-cell imaging and analysis revealed various patterns and kinetics of bare and PEGylated nanoparticle uptake. The PEGylated nanoparticles revealed a stealth function against most macrophages (PEG-sensitive macrophages); however, a stealth function against certain macrophages (PEG-insensitive macrophages) was not observed. We identified and characterized the PEG-resistant macrophages that could take up PEGylated nanoparticles at the same level as bare nanoparticles.

  20. Acute Respiratory Failure due to Alveolar Hemorrhage after Exposure to Organic Dust

    Directory of Open Access Journals (Sweden)

    Sun Mi Choi

    2016-05-01

    Full Text Available Diffuse alveolar hemorrhage (DAH is associated with severe outcomes. We report a case of acute respiratory failure that required mechanical ventilation and was clinically and pathologically diagnosed as DAH related to exposure to organic dust. A 39-year-old man, who had visited a warehouse to grade beans for purchase, was referred to our hospital for impending respiratory failure. His initial radiographic examinations revealed diffuse bilateral ground-glass opacities in his lungs and bronchoalveolar lavage resulted in progressively bloodier returns, which is characteristic of DAH. He underwent bedside open lung biopsy of his right lower lobe in the intensive care unit. Biopsy results revealed DAH and organization with accumulation of hemosiderin-laden macrophages and a few fibroblastic foci. The patient was treated with empirical antibiotics and high-dose corticosteroids and successfully weaned from mechanical ventilation. DAH might be considered in the differential diagnosis of patients with acute respiratory failure after exposure to organic particles.

  1. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  2. PERFORATION OF INFERIOR ALVEOLAR NERVE BY MAXILLARY ARTERY. LA PERFORACION DEL NERVIO ALVEOLAR INFERIOR POR LA ARTERIA MAXILAR

    OpenAIRE

    Vanishree S Nayak; Ramachandra Bhat K; Prakash Billakanti Babu

    2011-01-01

    Infratemporal fossa is clinically important anatomical area for the delivery of local anesthetic agents in dentistry and maxillofacial surgery. Variations in the anatomy of the inferior alveolar nerve and maxillary artery were studied in infratemporal dissection. During routine dissection of the head in an adult male cadaver an unusual variation in the origin of the inferior alveolar nerve and its relationship with the surrounding structures was observed. The inferior alveolar nerve originate...

  3. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure

    Science.gov (United States)

    Heyob, Kathryn M.; Rogers, Lynette K.; Welty, Stephen E.

    2010-01-01

    Systemic maternal inflammation contributes to preterm birth and is associated with development of bronchopulmonary dysplasia (BPD). Infants with BPD exhibit decreased alveolarization, diffuse interstitial fibrosis with thickened alveolar septa, and impaired pulmonary function. We tested the hypothesis that systemic prenatal LPS administration to pregnant mice followed by postnatal hyperoxia exposure is associated with prolonged alterations in pulmonary structure and function after return to room air (RA) that are more severe than hyperoxia exposure alone. Timed-pregnant C3H/HeN mice were dosed with LPS (80 μg/kg) or saline on gestation day 16. Newborn pups were exposed to RA or 85% O2 for 14 days and then to RA for an additional 14 days. Data were collected and analyzed on postnatal days 14 and 28. The combination of prenatal LPS and postnatal hyperoxia exposure generated a phenotype with more inflammation (measured as no. of macrophages per high-power field) than either insult alone at day 28. The combined exposures were associated with a diffuse fibrotic response [measured as hydroxyproline content (μg)] but did not induce a more severe developmental arrest than hyperoxia alone. Pulmonary function tests indicated that hyperoxia, independent of maternal exposure, induced compliance decreases on day 14 that did not persist after RA recovery. Either treatment alone or combined induced an increase in resistance on day 14, but the increase persisted on day 28 only in pups receiving the combined treatment. In conclusion, the combination of systemic maternal inflammation and neonatal hyperoxia induced a prolonged phenotype of arrested alveolarization, diffuse fibrosis, and impaired lung mechanics that mimics human BPD. This new model should be useful in designing studies of specific mechanisms and interventions that could ultimately be utilized to define therapies to prevent BPD in premature infants. PMID:20223995

  4. Recent advances in alveolar biology: Evolution and function of alveolar proteins

    NARCIS (Netherlands)

    Orgeig, S.; Hiemstra, P.S.; Veldhuizen, E.J.A.; Casals, C.; Clark, H.W.; Hackzu, A.; Knudsen, L.; Possmayer, F.

    2010-01-01

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two gro

  5. Segment distraction to reduce a wide alveolar cleft before alveolar bone grafting.

    NARCIS (Netherlands)

    Binger, T.; Katsaros, C.; Rucker, M.; Spitzer, W.J.

    2003-01-01

    OBJECTIVE: To demonstrate a method for reduction of wide alveolar clefts prior to bone grafting. This method aims to facilitate bone grafting and achieve adequate soft tissue coverage of the graft with attached gingiva. CASE REPORT: Treatment of a patient with bilateral cleft lip and palate with a s

  6. 3D-CT evaluation of secondary alveolar bone grafts in alveolar clefts

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Hiroshi; Nishimura, Yoshihiko [Kyoto Univ. (Japan). Graduate School of Medicine; Yamawaki, Yoshiroh [Kyoto Katsura Hospital (Japan); Morimoto, Naoki [Kobe City General Hospital (Japan)

    2002-07-01

    From 1994 to 2000, we treated 116 patients with cleft alveolus by secondary alveolar bone grafts, and 48 of them were evaluated morphologically with 3D-CT. The frequency of successful bony bridging was significantly higher in the group whose grafts were completely enveloped (including the anterior alveolar ridge) with a mucoperiosteal flap. The frequency was also significantly higher in the group who underwent bone grafts at the age of 13 or less, and canine eruptions did not influence the ratio. Some cases showed such an improved growth pattern of grafted bone that the shape of the affected maxilla resembled that of the normal side, after long-term follow-up observations. The growth increment was remarkable in anterior maxillary height. Orthodontic management guides the canine or incisor into the reconstructed area of the previous cleft. We surmise that the new occlusal position puts pressure on the grafted bone and promotes further osteogenesis. These findings show that it is important to produce sufficient bony bridge to guide the canine or incisor, not the volume of grafted bone, in secondary alveolar bone grafts. Long-term follow-up observation, after more than 2-3 years, is also necessary to evaluate secondary alveolar bone grafts. (author)

  7. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    Science.gov (United States)

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.

  8. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  9. Role of cytoskeleton in cytokine production from lung alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cytokines are involved in both host defense and inflammatory lung injury. Recent work from our laboratory and others has demonstrated that in addition to classical immune cells, lung alveolar epithelial cells (or pneumocytes) can also produce cytokines in response to various stimuli. This new knowledge has advanced our view of the host defense system in the lung. The regulatory mechanisms of cytokine production have been studied in great detail at various cellular and molecular levels, but the mechanisms of intracellular cytokine transport are largely unknown. Our recent studies suggest that the cytoskeleton could play an important role in mediating intracellular cytokine trafficking. This could be an important regulatory step for cytokine production. For example, lipopolyssacharide (LPS) induced tumor necrosis factor-α (TNF-α) from rat pneumocytes, which was further enhanced by a microfilament-disrupting agent. LPS also induced macrophage inflammatory protein-2(MIP-2), a chemokine for neutrophil recruitment and activation, from rat pneumocytes. This effect was enhanced by microtubule-disrupting agents. We speculate that both microfilaments and microtubules are involved in regulating cytokine transportation in pneumocytes through different mechanisms. Further investigation in on going in my laboratory. From a clinical perspective, if we understand the mechanisms regulating cytokine production and release from lung alveolar epithelial cells, we may be able to enhance or inhibit release of crucial cytokines depending on the clinical situation.

  10. Decompression of inferior alveolar nerve: case report.

    Science.gov (United States)

    Marques, Tiago Miguel Santos; Gomes, Joana Marques

    2011-01-01

    Paresthesia as a result of mechanical trauma is one of the most frequent sensory disturbances of the inferior alveolar nerve. This case report describes surgical treatment for paresthesia caused by a compressive phenomenon within the mandibular canal. The cause of the compression, a broken instrument left in the patient's mouth during previous endodontic therapy, was identified during routine radiography and computed tomography. Once the foreign object was removed by surgery, the paresthesia resolved quickly. This case highlights the potential for an iatrogenic mechanical cause of paresthesia.

  11. Nostril Base Augmentation Effect of Alveolar Bone Graft

    Directory of Open Access Journals (Sweden)

    Woojin Lee

    2013-09-01

    Full Text Available Background The aims of alveolar bone grafting are closure of the fistula, stabilization ofthe maxillary arch, support for the roots of the teeth adjacent to the cleft on each side.We observed nostril base augmentation in patients with alveolar clefts after alveolar bonegrafting. The purpose of this study was to evaluate the nostril base augmentation effect ofsecondary alveolar bone grafting in patients with unilateral alveolar cleft.Methods Records of 15 children with alveolar clefts who underwent secondary alveolar bonegrafting with autogenous iliac cancellous bone between March of 2011 and May of 2012 werereviewed. Preoperative and postoperative worm’s-eye view photographs and reconstructedthree-dimensional computed tomography (CT scans were used for photogrammetry. Thedepression of the nostril base and thickness of the philtrum on the cleft side were measuredin comparison to the normal side. The depression of the cleft side pyriform aperture wasmeasured in comparison to the normal side on reconstructed three-dimensional CT.Results Significant changes were seen in the nostril base (P=0.005, the philtrum length(P=0.013, and the angle (P=0.006. The CT measurements showed significant changes in thepyriform aperture (P<0.001 and the angle (P<0.001.Conclusions An alveolar bone graft not only fills the gap in the alveolar process but alsoaugments the nostril base after surgery. In this study, only an alveolar bone graft was performedto prevent bias from other procedures. Nostril base augmentation can be achieved byperforming alveolar bone grafts in children, in whom invasive methods are not advised.

  12. [Development of drug delivery systems for targeting to macrophages].

    Science.gov (United States)

    Chono, Sumio

    2007-09-01

    Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.

  13. Phenotypic diversity and emerging new tools to study macrophage activation in bacterial infectious diseases

    Directory of Open Access Journals (Sweden)

    Jean-Louis eMege

    2014-10-01

    Full Text Available Macrophage polarization is a concept that has been useful to describe the different features of macrophage activation related to specific functions. Macrophage polarization is responsible for a dichotomic approach (killing versus repair of the host response to bacteria: M1-type conditions are protective, whereas M2-type conditions are associated with bacterial persistence. The use of the polarization concept to classify the features of macrophage activation in infected patients using transcriptional and/or molecular data and to provide biomarkers for diagnosis and prognosis has most often been unsuccessful. The confrontation of polarization with different clinical situations in which monocytes/macrophages encounter bacteria obliged us to reappraise this concept. With the exception of M2-type infectious diseases such as leprosy and Whipple’s disease, most acute (sepsis or chronic (Q fever, tuberculosis infectious diseases do not exhibit polarized monocytes/macrophages. This is also the case for commensals that shape the immune response and for probiotics that alter the immune response independent of macrophage polarization. We propose that the type of myeloid cells (monocytes vs. macrophages and the kinetics of the immune response (early vs. late responses are critical variables for understanding macrophage activation in human infectious diseases. Explorating the role of these new markers will provide important tools to better understand complex macrophage physiology.

  14. Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages.

    Directory of Open Access Journals (Sweden)

    Silvia Slesiona

    Full Text Available Invasive bronchopulmonary aspergillosis (IBPA is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly

  15. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    Science.gov (United States)

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human.

  16. Perawatan Pulpa Gigi Sulung Disertai Abses Dento Alveolar

    OpenAIRE

    2008-01-01

    Abses dento alveolar adalah kumputan pus yang berada pada tulang alveolar sekitar apeks gigi akibat kematian pulpa. Matinya pulpa dapat disebabkan bakteri, trauma, iritasi mekanis, termis maupun kimiawi. Pengaruh bakteri merupakan penyebab kerusakan jaringan pulpa yang terbesar. Perluasan infeksi ke dalam jaringan periapikal dapat melalui foramen apikalke jaringan periodontal sehingga terjadi inflarnasi. Bila virulensi bakteri meningkat disertai rendahnya pertahanan tubuh penderita dapat ...

  17. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice.

    Science.gov (United States)

    Massaro, Donald; Massaro, Gloria Decarlo

    2004-12-01

    Lung tissue elastic recoil and the dimension and number of pulmonary gas-exchange units (alveoli) are major determinants of gas-exchange function. Loss of gas-exchange function accelerates after menopause in the healthy aged and is progressively lost in individuals with chronic obstructive pulmonary disease (COPD). The latter, a disease of midlife and later, though more common in men than in women, is a disease to which women smokers and never smokers may be more susceptible than men; it is characterized by diminished lung tissue elastic recoil and presently irremediable alveolar loss. Ovariectomy in sexually immature rats diminishes the formation of alveoli, and estrogen prevents the diminution. In the present work, we found that estrogen receptor-alpha and estrogen receptor-beta, the only recognized mammalian estrogen receptors, are required for the formation of a full complement of alveoli in female mice. However, only the absence of estrogen receptor-beta diminishes lung elastic tissue recoil. Furthermore, ovariectomy in adult mice results, within 3 wk, in loss of alveoli and of alveolar surface area without a change of lung volume. Estrogen replacement, after alveolar loss, induces alveolar regeneration, reversing the architectural effects of ovariectomy. These studies 1) reveal estrogen receptors regulate alveolar size and number in a nonredundant manner, 2) show estrogen is required for maintenance of already formed alveoli and induces alveolar regeneration after their loss in adult ovariectomized mice, and 3) offer the possibility estrogen can slow alveolar loss and induce alveolar regeneration in women with COPD.

  18. Alveolar ridge augmentation by osteoinductive materials in goats

    DEFF Research Database (Denmark)

    Pinholt, E M; Haanaes, H R; Roervik, M;

    1992-01-01

    The purpose of the present study was to determine whether alveolar ridge augmentation could be induced in goats. In 12 male goats allogenic, demineralized, and lyophilized dentin or bone was implanted subperiosteally on the buccal sides of the natural edentulous regions of the alveolar process of...

  19. Tongue-Palate Contact of Perceptually Acceptable Alveolar Stops

    Science.gov (United States)

    Lee, Alice; Gibbon, Fiona E.; O'Donovan, Cliona

    2013-01-01

    Increased tongue-palate contact for perceptually acceptable alveolar stops has been observed in children with speech sound disorders (SSD). This is a retrospective study that further investigated this issue by using quantitative measures to compare the target alveolar stops /t/, /d/ and /n/ produced in words by nine children with SSD (20 tokens of…

  20. Reversible transdifferentiation of alveolar epithelial cells.

    Science.gov (United States)

    Danto, S I; Shannon, J M; Borok, Z; Zabski, S M; Crandall, E D

    1995-05-01

    Alveolar epithelial type II (AT2) cells have been thought to be the progenitors of terminally differentiated type I (AT1) cells in the adult animal in vivo. In this study, we used an AT1 cell-specific monoclonal antibody (mAb VIII B2) to investigate expression of the AT1 cell phenotype accompanying reversible changes in expression of the AT2 cell phenotype. AT2 cells were isolated and cultured either on attached collagen gels or on gels detached 1 or 4 days after plating and maintained thereafter as floating gels. Monolayers on both attached and floating gels were harvested on days 4 and 8 and analyzed by electron microscopy for changes in morphology and binding of mAb VIII B2. Results indicate that: (1) alveolar epithelial cells (AEC) on attached gels develop characteristics of the AT1 cell phenotype, (2) AEC on gels detached on day 1 maintain features of the AT2 cell phenotype (and do not react with mAb VIII B2), and (3) the expression of AT1 cell phenotypic traits seen by day 4 on attached gels is reversed after detachment. We conclude that commitment to the AT1 and AT2 cell lineages requires continuous regulatory input to maintain the differentiated states, and that transdifferentiation between AT2 and AT1 cells may be reversible.

  1. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II

    DEFF Research Database (Denmark)

    Dahl, Morten; Bauer, Alison K; Arredouani, Mohamed

    2007-01-01

    Alveolar macrophages (AMs) express the class A scavenger receptors (SRAs) macrophage receptor with collagenous structure (MARCO) and scavenger receptor AI/II (SRA-I/II), which recognize oxidized lipids and provide innate defense against inhaled pathogens and particles. Increased MARCO expression......, consistent with SRA function in binding oxidized lipids. SR-AI/II-/- mice showed similar enhanced acute lung inflammation after beta-epoxide or another inhaled oxidant (aerosolized leachate of residual oil fly ash). In contrast, subacute ozone exposure did not enhance inflammation in SR-AI/II-/- versus SR-AI...

  2. Binding of 1-nitro(/sup 14/C)pyrene to DNA and protein in cultured lung macrophages and respiratory tissues

    Energy Technology Data Exchange (ETDEWEB)

    King, L.C.; Ball, L.M.; Lewtas, J. (Envrironmental Protection Agency, Research Triangle Park, Genetic Toxicology Division); Jackson, M. (Environmental Protection Agency, Research Triangle Park, Cellular Pathology and Biochemistry Section)

    1983-07-01

    Binding of 1-nitro(/sup 14/C)pyrene(1-NP) or its metabolites to cellular DNA and protein in cultures of rabbit alveolar macrophages and lung and tracheal tissues was examined. DNA binding was highest in tracheal tissue (136.9 +- 18.3 pmol 1-NP/mg DNA). DNA binding in macrophages and lung tissue was one-fifth of the level observed in tracheal tissue. Also, 1-NP was bound to cellular protein in tracheal and lung tissues, and at a lower level in macrophages. Co-cultivation of the macrophages with lung and tracheal tissues decreased the DNA binding in tracheal tissue and increased the protein binding in macrophages. This study shows that lung cells and tissue are capable of binding 1-NP or its metabolites to DNA and protein.

  3. Transcriptional Regulation and Macrophage Differentiation.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  4. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  5. Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages

    NARCIS (Netherlands)

    Oliver, B G G; Lim, S; Wark, P; Laza-Stanca, V; King, N; Black, J L; Burgess, J K; Roth, M; Johnston, S L

    2008-01-01

    BACKGROUND: Rhinovirus infection is responsible for considerable morbidity and mortality as the major cause of exacerbations of asthma, and is also known to induce exacerbations of cystic fibrosis and chronic obstructive pulmonary disease. Exacerbations of these diseases are also frequently associat

  6. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters

    Science.gov (United States)

    2016-05-20

    indicating that AMθ can 452 be a key source of neutrophil chemoattractants. Conversely , in other models, AMθ appear to 453 play a greater role in the...and sphingosine 1- phosphate inhibit hantavirus-directed permeability. Journal of 823 virology 82:5797-5806. 824 74. Gorbunova E, Gavrilovskaya IN

  7. In vitro Toxicity and Inflammatory Response Induced by Copper Nanoparticles in Rat Alveolar Macrophages

    Science.gov (United States)

    2008-03-01

    ingestion (via the gastrointestinal tract) or skin absorption routes of exposure (Tsuji, et al., 2006:43). More research is needed to determine if...nanoparticles can penetrate the skin (Tsuji, et al., 2006:44), because little information exists as to whether nanoparticles can be absorbed through...below). The conversion in viable cells is done by nicotinamide adenine dinucleotide phosphate (NADPH) or nicotinamide adenine dinucleotide (reduced

  8. Suppression of the acute inflammatory response of porcine alveolar- and liver macrophages

    NARCIS (Netherlands)

    Izeboud, C.A.; Monshouwer, M.; Witkamp, R.F.; Miert, A.S.J. van

    2000-01-01

    During infection and inflammation drug disposition and hepatic metabolism are markedly affected in mammals. Pro-inflammatory mediators play an important role in the suppression of (cytochrome-P450-mediated) drug metabolism. Inflammatory mediators like cytokines, nitric oxide (NO), reactive oxygen sp

  9. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Boczkowski Jorge

    2009-04-01

    Full Text Available Abstract Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red and analyzed 2 time points (3 and 24 hours for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality was calculated. Results The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. Conclusion Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity.

  10. Overexpression of sICAM-1 in the Alveolar Epithelial Space Results in an Exaggerated Inflammatory Response and Early Death in Gram Negative Pneumonia

    Directory of Open Access Journals (Sweden)

    Curtis Jeffery L

    2011-01-01

    Full Text Available Abstract Background A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1 plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs, we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1 is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection. Methods Using the surfactant protein C (SPC promoter, we developed a transgenic mouse (SPC-sICAM-1 that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae. Results SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups. Conclusions We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections.

  11. Rv3351c, a Mycobacterium tuberculosis gene that affects bacterial growth and alveolar epithelial cell viability.

    Science.gov (United States)

    Pavlicek, Rebecca L; Fine-Coulson, Kari; Gupta, Tuhina; Quinn, Frederick D; Posey, James E; Willby, Melisa; Castro-Garza, Jorge; Karls, Russell K

    2015-12-01

    Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.

  12. Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss

    Institute of Scientific and Technical Information of China (English)

    Ujjal K Bhawal; Nobushiro Hamada; Ikuo Nasu; Hirohisa Arakawa; Koh Shibutani; Hye-Jin Lee; Kazumune Arikawa; Michiharu Shimosaka; Masatoshi Suzuki; Toshizo Toyama; Takenori Sato; Ryota Kawamata; Chieko Taguchi

    2015-01-01

    Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. Periodontitis is an inflammatory disease characterized by extensive bone resorption. In this study, we investigated the effects of sodium fluoride (NaF) on osteoclastogenesis induced by Porphyromonas gingivalis, an important colonizer of the oral cavity that has been implicated in periodontitis. NaF strongly inhibited the P. gingivalis-induced alveolar bone loss. That effect was accompanied by decreased levels of cathepsin K, interleukin (IL)-1b, matrix metalloproteinase 9 (MMP9), and tartrate-resistant acid phosphatase, which were up-regulated during P. gingivalis-induced osteoclastogenesis. Consistent with the in vivo anti-osteoclastogenic effect, NaF inhibited osteoclast formation caused by the differentiation factor RANKL (receptor activator of nuclear factor kB ligand) and macrophage colony-stimulating factor (M-CSF). The RANKL-stimulated induction of the transcription factor nuclear factor of activated T cells (NFAT) c1 was also abrogated by NaF. Taken together, our data demonstrate that NaF inhibits RANKL-induced osteoclastogenesis by reducing the induction of NFATc1, ultimately leading to the suppressed expression of cathepsin K and MMP9. The in vivo effect of NaF on the inhibition of P. gingivalis-induced osteoclastogenesis strengthens the potential usefulness of NaF for treating periodontal diseases.

  13. Chronic Exposure to Water-Pipe Smoke Induces Alveolar Enlargement, DNA Damage and Impairment of Lung Function

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-03-01

    Full Text Available Background/Aim: Epidemiological evidence indicates that water-pipe smoking (WPS adversely affects the respiratory system. However, the mechanisms underlying its effects are not well understood. Recent experimental studies reported the occurrence of lung inflammation and oxidative stress following acute and subacute exposure to WPS. Here, we wanted to verify the extent of inflammation and oxidative stress in mice chronically-exposed to WPS and to evaluate, for the first time, its effect on alveolar injury and DNA damage and their association with impairment of lung function. Methods: Mice were nose-only exposed to mainstream WPS (30 min/day; 5 days/week for 6 consecutive months. Control mice were exposed using the same protocol to atmospheric air only. At the end of the exposure period, several respiratory parameters were assessed. Results: In bronchoalveolar lavage fluid, WPS increased neutrophil and lymphocyte numbers, lactate dehydrogenase, myeloperoxidase and matrix metallopeptidase 9 activities, as well as several proinflammatory cytokines. In lung tissue, lipid peroxidation, reactive oxygen species, superoxide dismutase activity and reduced glutathione were all increased by WPS exposure. Along with oxidative stress, WPS exposure significantly increased lung DNA damage index. Histologically the lungs of WPS-exposed mice had foci of mixed inflammatory cells infiltration in the interalveolar interstitium which consisted of neutrophils, lymphocytes and macrophages. Interestingly, we found dilated alveolar spaces and alveolar ducts with damaged interalveolar septae, and impairment of lung function following WPS exposure. Conclusion: We show the persistence of lung inflammation and oxidative stress in mice chronically-exposed to WPS and demonstrate, for the first time, the occurrence of DNA damage and enlargement of alveolar spaces and ducts associated with impairment of lung function. Our findings provide novel mechanistic elucidation for the

  14. Hemorragia alveolar associada a nefrite lúpica Alveolar hemorrhage associated with lupus nephritis

    Directory of Open Access Journals (Sweden)

    Ricardo Henrique de Oliveira Braga Teixeira

    2003-12-01

    Full Text Available Hemorragia alveolar, como causa de insuficiência respiratória, é pouco freqüente, com diversas etiologias possíveis. Entre elas, o lúpus eritematoso sistêmico, que se apresenta geralmente como síndrome pulmão-rim, possui alta morbimortalidade. Acredita-se que a patogênese da microangiopatia, tanto renal como pulmonar, esteja associada ao depósito de imunocomplexos, que ativariam as vias de apoptose celular. Relatam-se dois casos de pacientes com nefrite lúpica que evoluíram com hemorragia alveolar associada à insuficiência respiratória necessitando de ventilação mecânica com evoluções totalmente distintas frente às terapias farmacológicas. O achado de anticorpos antimembrana basal em um dos casos evidencia a multiplicidade de mecanismos fisiopatológicos possivelmente envolvidos, que poderiam justificar as respostas heterogêneas frente aos tratamentos disponíveis.Alveolar hemorrhage leading to respiratory failure is uncommon. Various etiologies have been reported, including systemic lupus erythematosus, which generally presents as pulmonary-renal syndrome. It is believed that the pathogenesis of microangiopathy is related to deposits of immune complexes that lead to activation of cellular apoptosis. The authors report two cases of alveolar hemorrhage and respiratory failure, both requiring mechanical ventilation. The two cases had opposite outcomes after pharmacological therapy. The presence of anti-glomerular basement membrane antibodies in one of the cases demonstrates the multiplicity of physiopathological mechanisms that may be involved. This multiplicity of mechanisms provides a possible explanation for the heterogeneous responses to the available treatments.

  15. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  16. Imaging features of alveolar soft part sarcoma

    Institute of Scientific and Technical Information of China (English)

    Teng Jin; Ping Zhang Co-first author; Xiaoming Li

    2015-01-01

    Objective The aim of this study was to analyze the imaging features of alveolar soft part sarcoma (ASPS). Methods The imaging features of 11 cases with ASPS were retrospectively analyzed. Results ASPS mainly exhibited an isointense or slightly high signal intensity on T1-weighted imaging (T1WI), and a mixed high signal on T2-weighted imaging (T2WI). ASPS was partial, with rich tortuous flow voids, or “line-like” low signal septa. The essence of the mass was heterogeneous enhancement. The 1H-MRS showed a slight choline peak at 3.2 ppm. Conclusion The wel-circumscribed mass and blood voids, combined with “line-like” low signals play a significant role in diagnosis. The choline peak and the other signs may be auxiliary diagnoses.

  17. Diffuse alveolar hemorrhage due to ketorolac tromethamine.

    Science.gov (United States)

    Marak, Creticus P; Alappan, Narendrakumar; Shim, Chang; Guddati, Achuta K

    2013-01-01

    Drug-induced lung disease (DILD) is a common but frequently missed diagnosis. Therefore, a high index of clinical suspicion and familiarity with the clinical syndromes associated with DILD are important in making the diagnosis. Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the mostly commonly used classes of medications. NSAIDs are safe when used at prescribed doses. Side effects from use of NSAIDs are not uncommon and can affect almost every organ system in the body. NSAIDs are notorious for causing pulmonary toxicity, the common ones being bronchospasm and hypersensitivity reactions. Diffuse alveolar hemorrhage (DAH) secondary to NSAIDs is uncommon. Here, we report a case of DAH secondary to the use of ketorolac tromethamine.

  18. [Distraction osteogenesis of deficient alveolar bone prior to dental rehabilitation].

    Science.gov (United States)

    Shilo, D; Emodi, O; Aizenbud, D; Rachmiel, A

    2015-07-01

    Implant supported rehabilitation has become very common in treatment plans nowadays, yet many patients lack the vertical and horizontal bone dimensions required for endosseous implant insertion. Distraction osteogenesis is a technique in which bone is generated by progressive elongation of two bone fragments following an osteotomy or corticotomy. Distraction osteogenesis of the alveolar ridge as a treatment modality in implant dentistry is a very useful technique that allows for adequate bone formation suitable for implant insertion. Alveolar distraction can be unidirectional, bidirectional, multidirectional or horizontal. Alveolar distraction osteogenesis can be performed by using intraosseous distraction devices, intraosseous distraction implants or by extraosseous devices which are the most prevalent today. Distraction osteogenesis has many advantages such as gradual lengthening of the bone with no need for an autogenous bone graft and lack of the associated donor site morbidity as well as distraction of the surrounding soft tissue together with the transported bone. One of the major challenges when using alveolar distraction osteogenesis is controlling the vector of distraction, this problem should be further addressed in future researches. We describe different methods for alveolar distraction osteogenesis, including the surgical procedure, latency period, lengthening and consolidation period. We also discuss the advantages, disadvantages and complications of the method. In this manuscript a case of mandibular alveolar deficiency following mandibular fracture and loss of teeth and the alveolar bone is presented. This patient was treated by alveolar distraction osteogenesis with excellent results. This patient was later rehabilitated . using endosseous implants as demonstrated by radiographs. Alveolar distraction osteogenesis provides a method to regain both hard tissue and soft tissue without additional grafting and is an efficient modality in cases of medium

  19. Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry.

    Science.gov (United States)

    Coelho, Carolina; Tesfa, Lydia; Zhang, Jinghang; Rivera, Johanna; Gonçalves, Teresa; Casadevall, Arturo

    2012-04-01

    We investigated the outcome of the interaction of Cryptococcus neoformans with murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis of C. neoformans promoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis of C. neoformans promoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellular C. neoformans residence that manifested itself in impaired cell cycle completion as a consequence of a block in the G(2)/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replication in vivo and demonstrated that these cells are capable of low levels of cell division in the presence or absence of C. neoformans infection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect of C. neoformans infection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferation in vivo.

  20. Fractura da cortical alveolar resultante da exodontia de dentes anquilosados

    OpenAIRE

    2010-01-01

    Monografia apresentada à Universidade Fernando Pessoa para obtenção do grau Licenciado em Medicina Dentária A anquilose dento-alveolar constitui uma condição patológica que consiste na fusão anatómica entre o cemento radicular e o osso alveolar propriamente dito, podendo ocorrer durante qualquer etapa do processo eruptivo. Os factores etiológicos da anquilose dento-alveolar ainda não estão totalmente esclarecidos, existindo diversas teorias que pretendem explicar o fenómeno. O objectivo...

  1. DAP12 expression in lung macrophages mediates ischemia/reperfusion injury by promoting neutrophil extravasation.

    Science.gov (United States)

    Spahn, Jessica H; Li, Wenjun; Bribriesco, Alejandro C; Liu, Jie; Shen, Hua; Ibricevic, Aida; Pan, Jie-Hong; Zinselmeyer, Bernd H; Brody, Steven L; Goldstein, Daniel R; Krupnick, Alexander S; Gelman, Andrew E; Miller, Mark J; Kreisel, Daniel

    2015-04-15

    Neutrophils are critical mediators of innate immune responses and contribute to tissue injury. However, immune pathways that regulate neutrophil recruitment to injured tissues during noninfectious inflammation remain poorly understood. DAP12 is a cell membrane-associated protein that is expressed in myeloid cells and can either augment or dampen innate inflammatory responses during infections. To elucidate the role of DAP12 in pulmonary ischemia/reperfusion injury (IRI), we took advantage of a clinically relevant mouse model of transplant-mediated lung IRI. This technique allowed us to dissect the importance of DAP12 in tissue-resident cells and those that infiltrate injured tissue from the periphery during noninfectious inflammation. Macrophages in both mouse and human lungs that have been subjected to cold ischemic storage express DAP12. We found that donor, but not recipient, deficiency in DAP12 protected against pulmonary IRI. Analysis of the immune response showed that DAP12 promotes the survival of tissue-resident alveolar macrophages and contributes to local production of neutrophil chemoattractants. Intravital imaging demonstrated a transendothelial migration defect into DAP12-deficient lungs, which can be rescued by local administration of the neutrophil chemokine CXCL2. We have uncovered a previously unrecognized role for DAP12 expression in tissue-resident alveolar macrophages in mediating acute noninfectious tissue injury through regulation of neutrophil trafficking.

  2. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    Science.gov (United States)

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  3. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  4. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  5. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure.

    Science.gov (United States)

    Jessop, Forrest; Hamilton, Raymond F; Rhoderick, Joseph F; Shaw, Pamela K; Holian, Andrij

    2016-10-15

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.

  6. Carbon monoxide kinetics following simulated cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, A.S. (Wayne State Univ., Detroit, MI); Coin, E.J.

    1980-05-01

    Carbon monoxide kinetics were measured in the blood (% carboxyhemoglobin) and alveolar phase (ppM carbon monoxide) after simulated cigarette smoking. Cigarette smoking was siumlated using the same amount of carbon monoxide that 2R1F cigarettes manufactured by the Tobacco Research Institute would contain. Ten boluses of air containing carbon monoxide equivalent to smoking one cigarette were inhaled by six healthy nonsmoker volunteers. Carbon monoxide in the air phase was measured by an Ecolyzer and carboxyhemoglobin was measured by a CO-Oximeter. The mean rise in alveolar carbon monoxide immediately and 20 min after inhaling the last bolus was 3.3 and 3.1 ppM, respectively (p<.005). The mean rise in carboxyhemoglobin immediately and 20 min after inhalation of the last bolus was 0.8 and 0.5% respectively (P<.005). The changes in carboxyhemoglobin were found to be similar to changes that occur when one cigarette is actually smoked.

  7. The role of synthetic biomaterials in resorptive alveolar bone regeneration

    Directory of Open Access Journals (Sweden)

    Kaličanin Biljana M.

    2007-01-01

    Full Text Available The alveolar bone tissue resorption defect has a significant role in dentistry. Because of the bone tissue deficit developed by alveolar resorption, the use of synthetic material CP/PLGA (calcium-phosphate/polylactide-co-gliycolide composite was introduced. Investigations were performed on rats with artificially produced resorption of the mandibular bone. The results show that the best effect on alveolar bone were attained by using nano-composite implants. The effect of the nanocomposite was ascertained by determining the calcium and phosphate content, as a basis of the hydroxyapatite structure. The results show that synthetic CP/PLGA nanocomposite alleviate the rehabilitation of weakened alveolar bone. Due to its osteoconductive effect, CP/PLGA can be the material of choice for bone substitution in the future.

  8. Alveolar lymphangioma in infants: report of two cases.

    LENUS (Irish Health Repository)

    FitzGerald, Kirsten

    2009-06-01

    The alveolar lymphangioma is a benign but relatively rare condition found only in the oral cavities of black infants. Dentists practising in Ireland may be unaware of this condition due to its racial specificity. This paper presents two case reports of multiple alveolar lymphangiomas found in black infants in a children\\'s hospital in Ireland. The epidemiology, aetiology, clinical presentation, histology, and management options are discussed. The photographs should aid the practitioner in recognising these lesions.

  9. Alveolar lymphangioma in infants: report of two cases.

    LENUS (Irish Health Repository)

    FitzGerald, Kirsten

    2012-02-01

    The alveolar lymphangioma is a benign but relatively rare condition found only in the oral cavities of black infants. Dentists practising in Ireland may be unaware of this condition due to its racial specificity. This paper presents two case reports of multiple alveolar lymphangiomas found in black infants in a children\\'s hospital in Ireland. The epidemiology, aetiology, clinical presentation, histology, and management options are discussed. The photographs should aid the practitioner in recognising these lesions.

  10. Dynamic thermal performance of alveolar brick construction system

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, A. de; Castell, A.; Medrano, M. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Cabeza, L.F., E-mail: lcabeza@diei.udl.ca [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain)

    2011-07-15

    Highlights: {yields} Even though U-value does not measure thermal inertia, it is the commonly used parameter. {yields} The thermal performance analysis of buildings must include the evaluation of transient parameters. {yields} Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  11. Modified Dento - Alveolar Distraction Osteogenesis Technique for Rapid Canine Retraction

    Directory of Open Access Journals (Sweden)

    Sameer Patil

    2012-01-01

    Full Text Available Distraction Osteogenesis claims to reduce the duration of treatment as well aid in conservation of anchorage. With the introduction of Dento- alveolar distraction retraction of canine can now be done in about 2-3 weeks with minimal loss of anchorage and little/no root resorption. However, surgical procedure required for dento-alveolar distraction can cause significant swelling and post operative discomfort. Our small modification in the surgical procedure drastically reduces the discomfort and improves patient compliance.

  12. Modified Dento - Alveolar Distraction Osteogenesis Technique for Rapid Canine Retraction

    OpenAIRE

    Sameer Patil; Sharadindu Kotrashetti; Sumit Yadev; Ketan Vhora

    2012-01-01

    Distraction Osteogenesis claims to reduce the duration of treatment as well aid in conservation of anchorage. With the introduction of Dento- alveolar distraction retraction of canine can now be done in about 2-3 weeks with minimal loss of anchorage and little/no root resorption. However, surgical procedure required for dento-alveolar distraction can cause significant swelling and post operative discomfort. Our small modification in the surgical procedure drastically reduces the discomfort an...

  13. Anaesthetic management of bilateral alveolar proteinosis for bronchopulmonary lavage.

    Directory of Open Access Journals (Sweden)

    Dixit R

    1998-01-01

    Full Text Available The most hazardous manifestation of pulmonary alveolar proteinosis is progressive hypoxia for which bronchopulmonary lavage (BPL is the single most effective treatment. Unfortunately this procedure under general anesthesia itself increases the risk of hypoxia due to the need for one lung ventilation. It was therefore considered interesting to report the successful anaesthetic management of a patient with pulmonary alveolar proteinosis for Bronchopulmonary lavage.

  14. Impact of the Oral Commensal Flora on Alveolar Bone Homeostasis

    OpenAIRE

    Irie, K; Novince, C.M.; Darveau, R. P.

    2014-01-01

    Homeostasis of healthy periodontal tissues is affected by innate and adaptive immunosurveillance mechanisms in response to the normal oral flora. Recent comparisons of germ-free (GF) and normal specific-pathogen-free (SPF) mice have revealed the impact of host immunosurveillance mechanisms in response to the normal oral flora on alveolar bone height. Prior reports that alveolar bone height is significantly less in normal SPF mice compared with their age- and strain-matched GF counterparts sug...

  15. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    OpenAIRE

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neut...

  16. Horizontal alveolar bone loss: A periodontal orphan

    Directory of Open Access Journals (Sweden)

    Jayakumar A

    2010-01-01

    Full Text Available Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician′s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs (of patients diagnosed with chronic periodontitis and seeking periodontal care, which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36% OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2% teeth, and vertical defects were found only in 264 (7.8% of the teeth, which was statistically significant (P<.001. Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3% have addressed vertical bone loss, and 18 (3.7% have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment

  17. An influx of macrophages is the predominant local immune response in ovine pulmonary adenocarcinoma.

    Science.gov (United States)

    Summers, C; Norval, M; De Las Heras, M; Gonzalez, L; Sharp, J M; Woods, G M

    2005-07-15

    Infection with a retrovirus, Jaagsiekte sheep retrovirus (JSRV), causes ovine pulmonary adenocarcinoma (OPA). The excess production of surfactant proteins by alveolar tumour cells results in increased production of pulmonary fluid, which is characteristically expelled through the nostrils of affected sheep. The immune response to JSRV and the tumour is poorly understood: no JSRV-specific circulating antibodies or T cells have been detected to date. The aim of the present study was to obtain phenotypic evidence for a local immune response in OPA lungs. Specific-pathogen free lambs were infected intratracheally with JSRV. When clinical signs of OPA were apparent, the lungs were removed at necropsy and immunohistochemistry (IHC) was performed on lung sections using a panel of mouse anti-sheep mAbs. No influx of dendritic cells, B cells, CD4, CD8 or gammadelta T cells was seen in the neoplastic nodules or in their periphery. MHC Class II-positive cells were found intratumourally, peritumourally and in the surrounding alveolar lumina. In the tumours, many of these cells were shown to be fibroblasts and the remainder were likely to be mature macrophages. In the alveolar lumen, the MHC Class II-positive cells were CD14-positive and expressed high levels of IFN-gamma. They appeared to be immature monocytes or macrophages which then differentiated to become CD14-negative as they reached the periphery of the tumours. A high level of MHC Class I expression was detected on a range of cells in the OPA lungs but the tumour nodules themselves contained no MHC Class I-positive cells. On the basis of these findings, it is proposed that the lack of an effective immune response in OPA could result from a mechanism of peripheral tolerance in which the activity of the invading macrophages is suppressed by the local environment, possibly as a consequence of the inhibitory properties of the surfactant proteins.

  18. Wound-associated macrophages control collagen 1α2 transcription during the early stages of skin wound healing.

    Science.gov (United States)

    Rodero, Mathieu P; Legrand, Julien M D; Bou-Gharios, George; Khosrotehrani, Kiarash

    2013-02-01

    Wound-associated fibrosis is important to provide tensile strength upon wound healing but at the same time is detrimental to proper tissue regeneration. To date, there is no clear evidence of the role of macrophages and their subpopulations in the control of the kinetics of collagen production during wound healing. To evaluate in vivo the contribution of macrophages in collagen transcription, we depleted macrophages after wounding luciferase reporter mice of the collagen 1 alpha 2 (Col 1α2) promoter activity. Our data reveal that Col 1α2 starts to be transcribed at D2 after wounding, reaching a plateau after 7 days. Sustained macrophage depletion significantly reduced collagen 1α2 transcription from D4, indicating that the control of fibrosis by macrophages occurs during the early stages of the wound healing process. In conclusion, our results demonstrate an important role of wound macrophages in the control of collagen production during wound healing.

  19. SIV Infection of Lung Macrophages.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.

  20. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    Science.gov (United States)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  1. Effects of inhaled ceramic fibres on macrophage function of rat lungs.

    OpenAIRE

    Morimoto, Y.; Yamato, H; Kido, M; Tanaka, I; Higashi, T; Fujino, A; Yokosaki, Y

    1994-01-01

    To evaluate the biological effect of ceramic fibres on the clearance function of alveolar macrophages (AMs) morphological changes and phagocytic activity of AMs were assessed. Rats were exposed to respirable ceramic fibres with a mass median aerodynamic diameter of 4.4 microns and a concentration of 20.1 mg/m3 in an exposure chamber. They were killed after one week (group A) and two weeks (group B) of exposure, and four weeks (group C) and 12 weeks (group D) after exposure for two weeks. The ...

  2. Lung vasculitis and alveolar hemorrhage: pathology.

    Science.gov (United States)

    Fishbein, Gregory A; Fishbein, Michael C

    2011-06-01

    Pulmonary vasculitides are a diverse group of limited and systemic disorders associated with inflammation of pulmonary vessels and parenchyma. These diseases often have distinctive clinical, serological, and histopathological features-extrapulmonary sites of involvement, circulating autoantibodies, predispositions for small or large vessels, and others. Some have characteristic inflammatory lesions; others are characterized by the absence of such lesions. Frequently pathological findings overlap, rendering classification, and diagnosis a challenge. The anti-neutrophil cytoplasmic antibody (ANCA)-associated small-vessel diseases constitute the major pulmonary vasculitides. These include Wegener granulomatosis (WG), Churg Strauss syndrome (CSS), and microscopic polyangiitis (MPA). Less frequently, diseases such as polyarteritis nodosa, Takayasu arteritis, Behçet syndrome, and connective tissue diseases may involve pulmonary vessels, but these entities are better associated with extrapulmonary disease. Diffuse alveolar hemorrhage (DAH) is a severe manifestation of pulmonary vasculitis. DAH is most commonly seen in small-vessel vasculitides, specifically MPA and WG. Other syndromes associated with DAH include Goodpasture syndrome, Henoch-Schönlein purpura, and systemic lupus erythematosus. Less commonly, DAH may be secondary to infection or drugs/toxins. Furthermore, in the absence of discernable systemic disease, DAH may be idiopathic-referred to as isolated pulmonary capillaritis (IPC) or idiopathic pulmonary hemosiderosis (IPH), depending on the presence of capillaritis.

  3. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages.

    Directory of Open Access Journals (Sweden)

    Michael L Litvack

    Full Text Available BACKGROUND: Antibodies are often involved in enhancing particle clearance by macrophages. Although the mechanisms of antibody-dependent phagocytosis have been studied for IgG in greater detail, very little is known about IgM-mediated clearance. It has been generally considered that IgM does not support phagocytosis. Recent studies indicate that natural IgM is important to clear microbes and other bioparticles, and that shape is critical to particle uptake by macrophages; however, the relevance of IgM and particle size in their clearance remains unclear. Here we show that IgM has a size-dependent effect on clearance. METHODOLOGY/PRINCIPAL FINDINGS: We used antibody-opsonized sheep red blood cells, different size beads and apoptotic cells to determine the effect of human and mouse IgM on phagocytosis by mouse alveolar macrophages. Our microscopy (light, epifluorescence, confocal and flow cytometry data show that IgM greatly enhances the clearance of small particles (about 1-2 micron by these macrophages. There is an inverse relationship between IgM-mediated clearance by macrophages and the particle size; however, macrophages bind and internalize many different size particles coated with IgG. We also show that IgM avidly binds to small size late apoptotic cells or bodies (2-5 micron and apoptotic microparticles (<2 µm released from dying cells. IgM also promotes the binding and uptake of microparticle-coated beads. CONCLUSIONS/SIGNIFICANCE: Therefore, while the shape of the particles is important for non-opsonized particle uptake, the particle size matters for antibody-mediated clearance by macrophages. IgM particularly promotes the clearance of small size particles. This finding may have wider implications in IgM-mediated clearing of antigens, microbial pathogens and dying cells by the host.

  4. The role of TREM-2 in internalization and intracellular survival of Brucella abortus in murine macrophages.

    Science.gov (United States)

    Wei, Pan; Lu, Qiang; Cui, Guimei; Guan, Zhenhong; Yang, Li; Sun, Changjiang; Sun, Wanchun; Peng, Qisheng

    2015-02-15

    Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and dendritic cells. TREM-2 functions as a phagocytic receptor for bacteria as well as an inhibitor of Toll like receptors (TLR) induced inflammatory cytokines. However, the role of TREM-2 in Brucella intracellular growth remains unknown. To investigate whether TREM-2 is involved in Brucella intracellular survival, we chose bone marrow derived macrophages (BMDMs), in which TREM-2 is stably expressed, as cell model. Colony formation Units (CFUs) assay suggests that TREM-2 is involved in the internalization of Brucella abortus (B. abortus) by macrophages, while silencing of TREM-2 decreases intracellular survival of B. abortus. To further study the underlying mechanisms of TREM-2-mediated bacterial intracellular survival, we examined the activation of B. abortus-infected macrophages through determining the kinetics of activation of the three MAPKs, including ERK, JNK and p38, and measuring TNFα production in response to lipopolysaccharide (LPS) of Brucella (BrLPS) or B. abortus stimulation. Our data show that TREM-2 deficiency promotes activation of Brucella-infected macrophages. Moreover, our data also demonstrate that macrophage activation promotes killing of Brucella by enhancing nitric oxygen (NO), but not reactive oxygen species (ROS) production, macrophage apoptosis or cellular death. Taken together, these findings provide a novel interpretation of Brucella intracellular growth through inhibition of NO production produced by TREM-2-mediated activated macrophages.

  5. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  6. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stim

  7. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1992-03-01

    An understanding of the process of alveolar epithelial cell growth and differentiation requires the ability to trace and analyze the phenotypic transitions that the cells undergo. This analysis demands specific phenotypic probes to type II and, especially, type I pneumocytes. To this end, monoclonal antibodies have been generated to type I alveolar epithelial cells using an approach designed to enhance production of lung-specific clones from a crude lung membrane preparation. The monoclonal antibodies were screened by a combination of enzyme-linked immunosorbent assay and immunohistochemical techniques, with the determination of type I cell specificity resting primarily on immunoelectron microscopic localization. Two of these new markers of the type I pneumocyte phenotype (II F1 and VIII B2) were used to analyze primary cultures of type II cells growing on standard tissue culture plastic and on a variety of substrata reported to affect the morphology of these cells in culture. On tissue culture plastic, the antibodies fail to react with early (days 1 to 3) type II cell cultures. The cells become progressively more reactive with time in culture to a plateau of approximately 6 times background by day 8, with a maximum rate of increase between days 3 and 5. This finding is consistent with the hypothesis that type II cells in primary culture undergo at least partial differentiation into type I cells. Type II cells grown on laminin, which reportedly delays the loss of type II cell appearance, and on fibronectin, which has been reported to facilitate cell spreading and loss of type II cell features, develop the type I cell markers during cultivation in vitro with kinetics similar to those on uncoated tissue culture plastic. Cells on type I collagen and on tissue culture-treated Nuclepore filters, which have been reported to support monolayers with type I cell-like morphology, also increase their expression of the II F1 and VIII B2 epitopes around days 3 to 5. Taken

  8. Partial pulmonary embolization disrupts alveolarization in fetal sheep

    Directory of Open Access Journals (Sweden)

    Hooper Stuart B

    2010-04-01

    Full Text Available Abstract Background Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. Methods Partial pulmonary embolization (PPE was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA or 5 days (5d PPE; 110-115d GA. Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1α abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-Rα mRNA levels were measured using real-time PCR. Results At 130d GA (term ~147d, in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 ± 1% in controls to 35 ± 1% in 1d PPE and 44 ± 1% in 5d PPE fetuses (p VEGF and Flk-1, although a small increase in PDGF-Rα expression at 116d GA, from 1.00 ± 0.12 in control fetuses to 1.61 ± 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. Conclusions PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation.

  9. Interaction of apoptotic cells with macrophages upregulates COX-2/PGE2 and HGF expression via a positive feedback loop.

    Science.gov (United States)

    Byun, Ji Yeon; Youn, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Woo, So-Yeon; Kang, Jihee Lee

    2014-01-01

    Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  10. Interaction of Apoptotic Cells with Macrophages Upregulates COX-2/PGE2 and HGF Expression via a Positive Feedback Loop

    Directory of Open Access Journals (Sweden)

    Ji Yeon Byun

    2014-01-01

    Full Text Available Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE2 and hepatocyte growth factor (HGF play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  11. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Michelle B Ryndak

    Full Text Available Mycobacterium tuberculosis (M. tb infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2-3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW. In contrast, significant downregulation of the DevR (DosR regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune

  12. Thalidomide treatment modulates macrophage pro-inflammatory function and cytokine levels in Klebsiella pneumoniae B5055 induced pneumonia in BALB/c mice.

    Science.gov (United States)

    Kumar, Vijay; Harjai, Kusum; Chhibber, Sanjay

    2010-07-01

    Lung innate immune response plays an important role in the clearance of pathogens from lungs, however, profound activation of innate immune cells (alveolar macrophages or neutrophils) can lead to development of acute lung inflammation or injury by producing various pro-inflammatory molecules (IL-1, TNF-alpha and H2O2 etc.). Present study is designed to investigate the immunomodulatory action of thalidomide in Klebsiella pneumoniae B5055 induced acute lung infection in BALB/c mice. Acute lung inflammation was induced by intranasal instillation of K. pneumoniae B5055 into mice without any anaesthesia and treated with thalidomide (30 mg/kg/day/po) or normal saline orally using a treatment schedule shown to modulate pro-inflammatory innate immune response. Thalidomide treatment modulated pro-inflammatory function of alveolar macrophages by significantly (ppneumonia caused by gram negative bacterial infection.

  13. Composition of alveolar liquid in the foetal lamb.

    Science.gov (United States)

    Adamson, T M; Boyd, R D; Platt, H S; Strang, L B

    1969-09-01

    1. Experiments were performed on foetal lambs at gestations between 125 days and term. The foetus was exteriorized at Caesarean section with the umbilical cord and placental attachment maintained intact. Samples of liquid from the alveolar parts of the lung were withdrawn through a tracheal cannula and samples of lung lymph, plasma and amniotic liquid were also obtained. Measurements were made of total osmolality, concentrations of electrolytes and urea, pH and P(CO2). Titrations were carried out with N/10 HCl and N/10 NaOH. The water content of the liquids was estimated and concentrations expressed per kg H(2)O.2. In alveolar liquid [H(+)], [K(+)] and [Cl(-)] were higher and [Ca(2+)], [phosphates] and [HCO(3) (-)] were lower than in plasma or lymph. In amniotic liquid osmolality [Na(+)], [Cl(-)] and [Ca(2+)] were lower and [phosphates] higher than in plasma or lymph. Alveolar liquid/plasma ratios of [HCO(3) (-)], [Ca(2+)], [Cl(-)] and [K(+)] differed from ultra filtrate/plasma ratios of these ions.3. Titration curves demonstrated a very small amount of buffering in alveolar liquid at its in vivo pH of 6.27 mostly due to HCO(3) (-) at an average concentration of 2.8 mM/kg H(2)O.4. It is concluded that foetal alveolar liquid is not an ultrafiltrate of plasma nor a mixture of amniotic liquid and plasma ultrafiltrate, but a special material elaborated by the foetal lung.

  14. Alveolar targeting of aerosol pentamidine. Toward a rational delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. (Royal Free Hospital, London (England))

    1990-04-01

    Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

  15. Is alveolar cleft reconstruction still controversial? (Review of literature

    Directory of Open Access Journals (Sweden)

    Sameh A. Seifeldin

    2016-01-01

    Full Text Available Cleft lip and palate (CL/P is a frequent congenital malformation that manifests in several varieties including unilateral or bilateral and complete or incomplete. Alveolar cleft reconstruction remains controversial with regard to timing, graft materials, surgical techniques, and methods of evaluation. Many studies have been conducted addressing these points to develop an acceptable universal protocol for managing CL/P. The primary goal of alveolar cleft reconstruction in CL/P patients is to provide a bony bridge at the cleft site that allows maxillary arch continuity, oronasal fistula repair, eruption of the permanent dentition into the newly formed bone, enhances nasal symmetry through providing alar base support, orthodontic movement and placement of osseointegrated implants when indicated. Other goals include improving speech, improvement of periodontal conditions, establishing better oral hygiene, and limiting growth disturbances. In order to rehabilitate oral function in CL/P patients alveolar bone grafting is necessary. Secondary bone grafting is the most widely accepted method for treating alveolar clefts. Autogenous bone graft is the primary source for reconstructing alveolar cleft defects and is currently the preferred grafting material.

  16. Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation

    Science.gov (United States)

    López, Icíar P.; Piñeiro-Hermida, Sergio; Pais, Rosete S.; Torrens, Raquel; Hoeflich, Andreas; Pichel, José G.

    2016-01-01

    Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors) signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor) in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice, and revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury. PMID:27861515

  17. Traumatic neuroma of the inferior alveolar nerve: a case report.

    Science.gov (United States)

    Arribas-García, Ignacio; Alcalá-Galiano, Andrea; Gutiérrez, Ramón; Montalvo-Moreno, Juan José

    2008-03-01

    Traumatic neuromas are rare entities which characteristically arise subsequently to surgery and are usually accompanied by pain, typically neuralgic. We present an unusual case of an intraosseous traumatic neuroma of the inferior alveolar nerve following tooth extraction. A 56-year-old man consulted for paresthesias and hyperesthesia in the left mandibular region following extraction of the left mandibular third molar (#38). The panoramic radiograph revealed a radiolucent lesion in the inferior alveolar nerve canal, and CT demonstrated the existence of a mass within the canal, producing widening of the same. Nerve-sparing excisional biopsy was performed. Histopathology and immunohistochemistry were consistent with traumatic neuroma of the left inferior alveolar nerve. After 3 years of follow-up, the patient is asymptomatic and there are no signs of recurrence.

  18. Alveolar process reconstruction after tooth extraction by orthodontic indications

    Directory of Open Access Journals (Sweden)

    Kovalev М.О.

    2013-09-01

    Full Text Available The objective of the study is to determine indications for alveolar bone reconstruction after tooth extraction according to orthodontic indications. Material and methods. 62 patients (first maturity level with dental arch asymmetry due to loss of a premolar on one side of the mouth were examined and treated. Frontal-diagonal coefficient of the dental arch was used to determine the correlation between tooth size and dental arch parameters. Results. It has been demonstrated that changes of the alveolar ridge following the extraction of the first premolars in patients of the experimental group were less significant as compared with the controls. Conclusion. It is reasonable to apply this method simultaneously with the removal of a tooth for orthodontic indications or when the alveolar ridge in the post-extraction socket leaves insufficient bone volume.

  19. Alveolar-filling growth pattern of sarcomatoid malignant pleural mesothelioma.

    Science.gov (United States)

    Hayakawa, Takamitsu; Tajima, Shogo; Takanashi, Yusuke; Takahashi, Tsuyoshi; Neyatani, Hiroshi; Funai, Kazuhito

    2016-09-01

    A case of sarcomatoid malignant pleural mesothelioma showing extremely rare growth pattern is described. A 63-year-old man presented to our hospital with left pleural effusion. A computed tomography (CT) scan of the chest showed diffusely thickened left visceral and parietal pleura associated with intermingled pulmonary infiltrative shadowing. Biopsy of the pleura under general anaesthesia confirmed the diagnosis of sarcomatoid malignant pleural mesothelioma. The patient underwent left extra-pleural pneumonectomy. Histopathologically, the sarcomatoid spindle tumour cells changed their morphology to polygonal cells in the pulmonary parenchyma and grew upwards, filling the alveolar space without the destruction of its septa, showing an alveolar-filling growth pattern. The current report indicates a case of sarcomatoid pleural mesothelioma that shows an alveolar-filling growth pattern, despite having not been thoroughly categorized in the World Health Organization (WHO) classification.

  20. Electronic thermography for the assessment of inferior alveolar nerve deficit.

    Science.gov (United States)

    Gratt, B M; Shetty, V; Saiar, M; Sickles, E A

    1995-08-01

    Neurosensory deficit is one of the major complications encountered in oral and maxillofacial surgery. OBJECTIVES. To determine the efficacy of electronic thermography in objectively assessing neurosensory deficits of the inferior alveolar nerve. STUDY DESIGN. Three studies were conducted measuring skin temperature over the chin region of the face at 0.1 degree C accuracy. RESULTS. (1) Thermal symmetry of the chin region in normal subjects (delta T = 0.2 degree C, SD = 0.02 degree C); (2) Induction of transient thermal asymmetry by local anesthetic injection (delta T = +0.4 degree C, SD = 0.2 degree C); (3) nine subjects with neurologic alterations of the inferior alveolar nerve (delta T = +0.5 degree C, SD = 0.2 degree C). Statistically significant differences were found between control group and experimental groups at p alveolar nerve injury or by pharmacologic nerve block.

  1. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  2. Alveolar rhabdomyosarcoma involving the mandibular ramus and its surrounding tissues

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Ja; Kang, Byung Cheol [Chonnam National University College of Medicine, Gwangju (Korea, Republic of)

    2004-06-15

    Rhabdomyosarcoma, when it occurs in the head and neck, is primarily found in children. Alveolar rhabdomyosarcoma is rarely seen in the oral lesion, comparing to the embryonal and the pleomorphic variants. This is a report of a case of alveolar rhabdomyosarcoma in the mandible in a ten-year old girl who complained of a non-painful swelling on the right cheek. The right lower 1st molar was mobile. Her radiographs revealed an extensive radiolucency with somewhat irregular border on the right mandibular ramus. The right mandibular 1st and 2nd molars lost their lamina dura and were floating. CT images revealed smooth-outlined soft tissue mass occupying the pterygomandibular space, the infratemporal space, and the masseteric muscle with thinning and perforation of the right mandibular angle and ramus. Histopathological and immunohistochemical findings established the final diagnosis of alveolar rhabdomyosarcoma.

  3. Recent advances in alveolar biology: evolution and function of alveolar proteins.

    Science.gov (United States)

    Orgeig, Sandra; Hiemstra, Pieter S; Veldhuizen, Edwin J A; Casals, Cristina; Clark, Howard W; Haczku, Angela; Knudsen, Lars; Possmayer, Fred

    2010-08-31

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies.

  4. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  5. In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages

    Directory of Open Access Journals (Sweden)

    Mariani Francesca

    2010-11-01

    Full Text Available Abstract Background In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI, mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP, in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed. Methods Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL performed on the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR. Results We have found that: 1 system y+L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2 on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/y+LAT2 isoform; 3 in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that the gene is a target of the cytokine; 4 GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5 general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization. Conclusions Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the

  6. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ... Show The actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial DNA on murine macrophage

  7. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Show Monocyte/macrophage traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage traffic

  8. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice.

    Science.gov (United States)

    Terlizzi, Michela; Colarusso, Chiara; Popolo, Ada; Pinto, Aldo; Sorrentino, Rosalinda

    2016-09-06

    Macrophages highly populate tumour microenvironment and are referred to as tumor-associated macrophages (TAMs). The inflammasome is a multiprotein complex responsible of IL-1 like cytokines release, which biology has been widely studied by using bone-marrow-derived macrophages to mimic a physiological and/or host defense condition. To understand the role of this complex in lung tumor-associated macrophages (TAMs), we isolated and cultured broncho-alveolar lavage (BAL)-derived cells of lung tumor-bearing mice. The stimulation of lung TAMs with LPS+ATP increased the release of IL-1β. The inhibition of NLRP3 by means of glybenclamide significantly reduced IL-1β release. Similarly, C3H-derived, caspase-1 ko and caspase-11 ko TAMs released significantly reduced levels of IL-1β. Moreover, the stimulation of lung TAMs with the sole LPS induced a significant release of IL-1α, which was significantly reduced after caspase-1 pharmacological inhibition, and in TAMs genetically lacking caspase-1 and caspase-11. The inhibition of calpain I/II by means of MDL28170 did not alter IL-1α release after LPS treatment of lung TAMs. To note, the inoculation of LPS-treated bone marrow-derived macrophages into carcinogen-exposed mice increased lung tumor formation. In contrast, the depletion of TAMs by means of clodronate liposomes reduced lung tumorigenesis, associated to lower in vivo release of IL-1α and IL-1β.In conclusion, our data imply lung tumor lesions are populated by macrophages which pro-tumor activity is regulated by the activation of the NLRP3 inflammasome that leads to the release of IL-1α and IL-1β in a caspase-11/caspase-1-dependent manner.

  9. Reconstruction of alveolar defects in patients with cleft lip and palate - 111 consecutive patients

    DEFF Research Database (Denmark)

    Andersen, Kristian

    2012-01-01

    Reconstruction of alveolar defects in patients with cleft lip and palate - 111 consecutive patients......Reconstruction of alveolar defects in patients with cleft lip and palate - 111 consecutive patients...

  10. Alveolar hemorrhage as the initial presentation of systemic lupus erythematosus.

    Science.gov (United States)

    de Holanda, Bruna A; Barreto, Isabela G Menna; de Araujo, Isadora S Gomes; de Araujo, Daniel B

    2016-01-01

    Alveolar hemorrhage (AH) is a rare syndrome that can often occur in autoimmune diseases, blood clotting disorders, infection or by acute inhalation injury, presenting rapid evolution and high mortality, especially with late diagnosis and treatment. Among the autoimmune diseases, there are reported cases in patients with primary antiphospholipid syndrome (PAPS), vasculitis and systemic lupus erythematosus (SLE). An early diagnosis is an essential tool in the successful management of this complication, requiring aggressive treatment based on vigorous immunosuppression and broad-spectrum antibiotic. We describe here a case of alveolar hemorrhage associated with glomerulonephritis as the open presentation in a patient with SLE.

  11. From alveolar diffuse atrophy to aggressive periodontitis: a brief history.

    Science.gov (United States)

    Guzeldemir, Esra; Toygar, Hilal Uslu

    2006-01-01

    Technologic advances in mechanics, electronics, physics, chemistry, and computer science have contributed to advances in dental medicine. Periodontology is not only a clinical science but is also directly related to the basic sciences. Research is conducted in laboratories rather than in clinics now. During the last century, aggressive periodontitis has received attention from numerous researchers because of its multifactorial features. This paper explores the long scientific journey of aggressive periodontitis, beginning with its first definition as alveolar diffuse atrophy. Perhaps in the future, "alveolar diffuse atrophy" will be referred to by another name or term. However, this journey will never end.

  12. Alveolar ridge rehabilitation to increase full denture retention and stability

    Directory of Open Access Journals (Sweden)

    Mefina Kuntjoro

    2010-12-01

    Full Text Available Background: Atrophic mandibular alveolar ridge generally complicates prostetic restoration expecially full denture. Low residual alveolar ridge and basal seat can cause unstable denture, permanent ulcer, pain, neuralgia, and mastication difficulty. Pre-proshetic surgery is needed to improve denture retention and stability. Augmentation is a major surgery to increase vertical height of the atrophic mandible while vestibuloplasty is aimed to increase the denture bearing area. Purpose: The augmentation and vestibuloplasty was aimed to provide stability and retentive denture atrophic mandibular alveolar ridge. Case: A 65 years old woman patient complained about uncomfortable denture. Clinical evaluate showed flat ridge in the anterior mandible, flabby tissue and candidiasis, while residual ridge height was classified into class IV. Case management: Augmentation using autograph was conducted as the mandible vertical height is less than 15 mm. Autograph was used to achieve better bone quantity and quality. Separated alveolar ridge was conducted from left to right canine region and was elevated 0.5 mm from the previous position to get new ridge in the anterior region. The separated alveolar ridge was fixated by using T-plate and ligature wire. Three months after augmentation fixation appliances was removed vestibuloplasty was performed to increase denture bearing area that can make a stable and retentive denture. Conclusion: Augmentation and vestibuloplasty can improve flat ridge to become prominent.Latar belakang: Ridge mandibula yang atrofi pada umumnya mempersulit pembuatan restorasi prostetik terutama gigi tiruan lengkap (GTL. Residual alveolar ridge dan basal seat yang rendah menyebabkan gigi tiruan menjadi tidak stabil, menimbulkan ulser permanen, nyeri, neuralgia, dan kesulitan mengunyah. Tujuan: Augmentasi dan vestibuloplasti pada ridge mandibula yang atrofi dilakukan untuk menciptakan gigi tiruan yang stabil dan retentive. Kasus: Pasien wanita

  13. Thermal behavior of premises equipped with different alveolar structures

    Directory of Open Access Journals (Sweden)

    Lajimi Nour

    2015-01-01

    Full Text Available This paper presents a numerical study of local thermal behavior. Vertical walls are equipped with alveolar structure and/or simple glazing in East, South and West frontages. Local temperature is assumed to be variable with time or imposed at set point temperature. Results principally show that the simple glazing number has a sensitive effect on convection heat transfer and interior air temperature. They also show that the diode effect is more sensitive in winter. The effect of alveolar structure and simple glazing on the power heating in case with set point temperature is also brought out.

  14. Alveolar hemorrhage as the initial presentation of systemic lupus erythematosus

    Science.gov (United States)

    de Holanda, Bruna A.; Barreto, Isabela G. Menna; de Araujo, Isadora S. Gomes

    2016-01-01

    Alveolar hemorrhage (AH) is a rare syndrome that can often occur in autoimmune diseases, blood clotting disorders, infection or by acute inhalation injury, presenting rapid evolution and high mortality, especially with late diagnosis and treatment. Among the autoimmune diseases, there are reported cases in patients with primary antiphospholipid syndrome (PAPS), vasculitis and systemic lupus erythematosus (SLE). An early diagnosis is an essential tool in the successful management of this complication, requiring aggressive treatment based on vigorous immunosuppression and broad-spectrum antibiotic. We describe here a case of alveolar hemorrhage associated with glomerulonephritis as the open presentation in a patient with SLE. PMID:27994272

  15. Pro-inflammatory chemokine CCL2 (MCP-1 promotes healing in diabetic wounds by restoring the macrophage response.

    Directory of Open Access Journals (Sweden)

    Stephen Wood

    Full Text Available Prior studies suggest that the impaired healing seen in diabetic wounds derives from a state of persistent hyper-inflammation characterized by harmful increases in inflammatory leukocytes including macrophages. However, such studies have focused on wounds at later time points (day 10 or older, and very little attention has been given to the dynamics of macrophage responses in diabetic wounds early after injury. Given the importance of macrophages for the process of healing, we studied the dynamics of macrophage response during early and late phases of healing in diabetic wounds. Here, we report that early after injury, the diabetic wound exhibits a significant delay in macrophage infiltration. The delay in the macrophage response in diabetic wounds results from reduced Chemokine (C-C motif ligand 2 (CCL2 expression. Importantly, one-time treatment with chemoattractant CCL2 significantly stimulated healing in diabetic wounds by restoring the macrophage response. Our data demonstrate that, rather than a hyper-inflammatory state; the early diabetic wound exhibits a paradoxical and damaging decrease in essential macrophage response. Our studies suggest that the restoration of the proper kinetics of macrophage response may be able to jumpstart subsequent healing stages. CCL2 chemokine-based therapy may be an attractive strategy to promote healing in diabetic wounds.

  16. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages

    Directory of Open Access Journals (Sweden)

    Verbrugghe Elin

    2011-12-01

    Full Text Available Abstract Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.

  17. The natural cytotoxicity receptor 1 contribution to early clearance of Streptococcus pneumoniae and to natural killer-macrophage cross talk.

    Directory of Open Access Journals (Sweden)

    Shirin Elhaik-Goldman

    Full Text Available Natural killer (NK cells serve as a crucial first line of defense against tumors, viral and bacterial infections. We studied the involvement of a principal activating natural killer cell receptor, natural cytotoxicity receptor 1 (NCR1, in the innate immune response to S. pneumoniae infection. Our results demonstrate that the presence of the NCR1 receptor is imperative for the early clearance of S. pneumoniae. We tied the ends in vivo by showing that deficiency in NCR1 resulted in reduced lung NK cell activation and lung IFNγ production at the early stages of S. pneumoniae infection. NCR1 did not mediate direct recognition of S. pneumoniae. Therefore, we studied the involvement of lung macrophages and dendritic cells (DC as the mediators of NK-expressed NCR1 involvement in response to S. pneumoniae. In vitro, wild type BM-derived macrophages and DC expressed ligands to NCR1 and co-incubation of S. pneumoniae-infected macrophages/DC with NCR1-deficient NK cells resulted in significantly lesser IFNγ levels compared to NCR1-expressing NK cells. In vivo, ablation of lung macrophages and DC was detrimental to the early clearance of S. pneumoniae. NCR1-expressing mice had more potent alveolar macrophages as compared to NCR1-deficient mice. This result correlated with the higher fraction of NCR1-ligand(high lung macrophages, in NCR1-expressing mice, that had better phagocytic activity compared to NCR1-ligand(dull macrophages. Overall, our results point to the essential contribution of NK-expressed NCR1 in early response to S. pneumoniae infection and to NCR1-mediated interaction of NK and S. pneumoniae infected-macrophages and -DC.

  18. OCLI-023, a Novel Pyrimidine Compound, Suppresses Osteoclastogenesis In Vitro and Alveolar Bone Resorption In Vivo

    Science.gov (United States)

    Kim, Ju Ang; Lee, Doohyun; Kim, Nam Doo; Shin, Hong-In; Bae, Yong Chul; Park, Eui Kyun

    2017-01-01

    An abnormal increase in osteoclast differentiation and activation results in various bone-resorptive diseases, including periodontitis, rheumatoid arthritis, and osteoporosis. Chemical compounds containing pyrimidine ring have been shown to regulate a variety of biological processes. Therefore, in order to identify an antiresorptive agent, we synthesized a series of pyrimidine ring-containing chemical compounds, and found that OCLI-023 suppressed the differentiation and activation of osteoclasts in vitro. OCLI-023 directly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow macrophages into osteoclasts, without a cytotoxic response. OCLI-023 also downregulated the RANKL-induced mRNA expression of osteoclast markers as well as inhibited the formation of actin rings and resorption pits. OCLI-023 attenuated the RANKL-induced activation of c-Jun N-terminal kinase and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathways. In a mouse model of periodontitis, ligature induced an increase of distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) in the second molar, and OCLI-023 significantly reduced it. Histological analysis showed ligature-induced increase of osteoclast numbers was also significantly reduced by OCLI-023. These data demonstrated the inhibitory effect of OCLI-023 on osteoclast differentiation and activity of osteoclasts in vitro, as well as on ligature-induced bone loss in vivo, and OCLI-023 can be proposed as a novel anti-resorptive compound. PMID:28085946

  19. Analysis of macrophage apoptosis induced by Brucella melitensis and the effects of caspases 3,8 and 9

    Institute of Scientific and Technical Information of China (English)

    任晓莉

    2013-01-01

    Objective To determine the difference of macrophage RAW264.7 apoptosis induced by Brucella melitensis virulent strain 16M and attenuated strain M5-90 and elucidate the regulatory role of caspases 3,8 and 9.Methods The best multiplicity of infection (MOI) was determined through kinetic analysis of Brucella melitensis strain 16M and M5-90 induced mouse macrophages apop-

  20. Imaging of macrophage-related lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Marten, Katharina; Hansell, David M. [Royal Brompton Hospital, Department of Radiology, London (United Kingdom)

    2005-04-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  1. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  2. Remodeling dynamics in the alveolar process in skeletally mature dogs.

    Science.gov (United States)

    Huja, Sarandeep S; Fernandez, Soledad A; Hill, Kara J; Li, Yan

    2006-12-01

    Bone turnover rates can be altered by metabolic and mechanical demands. Due to the difference in the pattern of loading, we hypothesized that there are differences in bone remodeling rates between the maxillary and mandibular alveolar processes. Furthermore, in a canine model, the alveolar process of teeth that lack contact (e.g., second premolars) would have a different turnover rate than bone supporting teeth with functional contact (e.g., first molars). Six skeletally mature male dogs were given a pair of calcein labels. After sacrifice, specimens representing the anterior and posterior locations of both jaws were prepared for examination by histomorphometric methods to evaluate the bone volume/total volume (BV/TV; %), bone volume (mm2), mineral apposition rate (MAR; microm/day), and bone formation rate (BFR; %/year) in the alveolar process. There were no significant differences (P>0.05) in the BV/TV within the jaws. The bone volume within the alveolar process of the mandible was 2.8-fold greater than in the maxilla. The MAR was not significantly different between the jaws and anteroposterior locations. However, the BFR was significantly (Parchitecture.

  3. An unusual delayed complication of inferior alveolar nerve block.

    Science.gov (United States)

    Smyth, Joanna; Marley, John

    2010-01-01

    Systemic and localised complications after administration of local anaesthetic for dental procedures are well recognised. We present two cases of patients with trismus and sensory deficit that arose during resolution of trismus as a delayed complication of inferior alveolar nerve block.

  4. Pulmonary alveolar proteinosis in an indium-processing worker

    Institute of Scientific and Technical Information of China (English)

    XIAO Yong-long; CAI Hou-rong; WANG Yi-hua; MENG Fan-qing; ZHANG De-ping

    2010-01-01

    @@ With the increasing number of workers engaged in liquid-crystal displays (LCD) manufacturer, lung diseases related to this occupational exposure are attracting more attention.Herein we report a case of interstitial lung disease in a LCD processing worker, which was pathologically confirmed as pulmonary alveolar proteinosis (PAP).

  5. Endodontic-related inferior alveolar nerve and mental foramen paresthesia.

    Science.gov (United States)

    Morse, D R

    1997-10-01

    Paresthesia is a condition that involves perverted sensations of pain, touch, or temperature. It has a variety of possible causes. This article presents a literature review and case reports of endodontically related inferior alveolar nerve and mental foramen paresthesia. Nondrug prevention methods and the dental uses of dexamethasone are also discussed.

  6. Complications in alveolar distraction osteogenesis of the atrophic mandible.

    NARCIS (Netherlands)

    Perdijk, F.B.; Meijer, G.J.; Strijen, P.J.; Koole, R.

    2007-01-01

    To improve the starting point for placement of dental implants, 45 patients suffering from atrophied edentulous mandibles, with a vertical height varying between 7.3 and 15.8mm, were treated by alveolar vertical distraction osteogenesis (VDO). The mean follow-up period was 3 years, ranging from 1 to

  7. Complications in alveolar distraction osteogenesis of the atrophic mandible

    NARCIS (Netherlands)

    Perdijk, F. B. T.; van Strijen, P. J.; Meijer, G.

    2007-01-01

    To improve the starting point for placement of dental implants, 45 patients suffering from atrophied edentulous mandibles, with a vertical height varying between 7.3 and 15.8 turn, were treated by alveolar vertical distraction osteogenesis (VDO). The mean follow-up period was 3 years, ranging from 1

  8. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins

    NARCIS (Netherlands)

    Szafranski, P.; Gambin, T.; Dharmadhikari, A.V.; Akdemir, K.C.; Jhangiani, S.N.; Schuette, J.; Godiwala, N.; Yatsenko, S.A.; Sebastian, J.; Madan-Khetarpal, S.; Surti, U.; Abellar, R.G.; Bateman, D.A.; Wilson, A.L.; Markham, M.H.; Slamon, J.; Santos-Simarro, F.; Palomares, M.; Nevado, J.; Lapunzina, P.; Chung, B.H.; Wong, W.L.; Chu, Y.W.; Mok, G.T.; Kerem, E.; Reiter, J.; Ambalavanan, N.; Anderson, S.A.; Kelly, D.R.; Shieh, J.; Rosenthal, T.C.; Scheible, K.; Steiner, L.; Iqbal, M.A.; McKinnon, M.L.; Hamilton, S.J.; Schlade-Bartusiak, K.; English, D.; Hendson, G.; Roeder, E.R.; DeNapoli, T.S.; Littlejohn, R.O.; Wolff, D.J.; Wagner, C.L.; Yeung, A.; Francis, D.; Fiorino, E.K.; Edelman, M.; Fox, J.; Hayes, D.A.; Janssens, S.; Baere, E. De; Menten, B.; Loccufier, A.; Vanwalleghem, L.; Moerman, P.; Sznajer, Y.; Lay, A.S.; Kussmann, J.L.; Chawla, J.; Payton, D.J.; Phillips, G.E.; Brosens, E.; Tibboel, D.; Klein, A.; Maystadt, I.; Fisher, R.; Sebire, N.; Male, A.; Chopra, M.; Pinner, J.; Malcolm, G.; Peters, G.; Arbuckle, S.; Lees, M.; Mead, Z.; Quarrell, O.; Sayers, R.; Owens, M.; Shaw-Smith, C.; Lioy, J.; McKay, E.; Leeuw, N. de; Feenstra, I.; Spruijt, L.; Elmslie, F.; Thiruchelvam, T.; Bacino, C.A.; Langston, C.; Lupski, J.R.; Sen, P.; Popek, E.; Stankiewicz, P.

    2016-01-01

    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC0108

  9. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Science.gov (United States)

    Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  10. Alveolar echinococcosis localized in the liver, lung and brain

    Institute of Scientific and Technical Information of China (English)

    Seyit Mehmet Kayacan; Kutigin Turkmen; Fatih Yakar; Kerim Guier; Sezai Vatansever; Suleyman Temiz; Bora Uslu; Dilek Kayacan; Vakur Akkaya; Osman Erk; Büent Saka; Aytac Karadag

    2008-01-01

    @@ Echinococcosis is a parasitic disease caused by the larval forms of echinococci. It has two main forms as the unilocular cystic form that is more commonly seen and caused by E. granulosus and the alveolar form that is rarely seen and caused by E.

  11. Alveolar bone measurement precision for phosphor-plate images

    Science.gov (United States)

    HILDEBOLT, CHARLES F.; COUTURE, REX; GARCIA, NATHALIA M.; DIXON, DEBRA; SHANNON, WILLIAM DOUGLAS; LANGENWALTER, ERIC; CIVITELLI, ROBERTO

    2009-01-01

    Objectives To demonstrate methods for determining measurement precision and to determine the precision of alveolar-bone measurements made with a vacuum-coupled, positioning device and phosphor-plate images. Study design Subjects were rigidly attached to the x-ray tube by means of a vacuum coupling device and custom, cross-arch, bite plates. Original and repeat radiographs (taken within minutes of each other) were obtained of the mandibular posterior teeth of 51 subjects, and cementoenamel-junction-alveolar-crest (CEJ-AC) distances were measured on both sets of images. In addition, x-ray-transmission (radiodensity) and alveolar-crest-height differences were determined by subtracting one image from the other. Image subtractions and measurements were performed twice. Based on duplicate measurements, the root-mean-square standard deviation (precision) and least-significant change (LSC) were calculated. LSC is the magnitude of change in a measurement needed to indicate that a true biological change has occurred. Results The LSCs were 4% for x-ray transmission, 0.49 mm for CEJ-AC distance, and 0.06 mm for crest-height 0.06 mm. Conclusion The LSCs for our CEJ-AC and x-ray transmission measurements are similar to what has been reported. The LSC for alveolar-crest height (determined with image subtraction) was less than 0.1 mm. Compared with findings from previous studies, this represents a highly precise measurement of alveolar crest height. The methods demonstrated for calculating LSC can be used by investigators to determine how large changes in radiographic measurements need to be before the changes can be considered (with 95% confidence) true biological changes and not noise (that is, equipment/observer error). PMID:19716499

  12. Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals.

    Science.gov (United States)

    Bagalkot, Vaishali; Badgeley, Marcus A; Kampfrath, Thomas; Deiuliis, Jeffrey A; Rajagopalan, Sanjay; Maiseyeu, Andrei

    2015-11-10

    Macrophages are innate immune cells with great phenotypic plasticity, which allows them to regulate an array of physiological processes such as host defense, tissue repair, and lipid/lipoprotein metabolism. In this proof-of-principle study, we report that macrophages of the M1 inflammatory phenotype can be selectively targeted by model hybrid lipid-latex (LiLa) nanoparticles bearing phagocytic signals. We demonstrate a simple and robust route to fabricate nanoparticles and then show their efficacy through imaging and drug delivery in inflammatory disease models of atherosclerosis and obesity. Self-assembled LiLa nanoparticles can be modified with a variety of hydrophobic entities such as drug cargos, signaling lipids, and imaging reporters resulting in sub-100nm nanoparticles with low polydispersities. The optimized theranostic LiLa formulation with gadolinium, fluorescein and "eat-me" phagocytic signals (Gd-FITC-LiLa) a) demonstrates high relaxivity that improves magnetic resonance imaging (MRI) sensitivity, b) encapsulates hydrophobic drugs at up to 60% by weight, and c) selectively targets inflammatory M1 macrophages concomitant with controlled release of the payload of anti-inflammatory drug. The mechanism and kinetics of the payload discharge appeared to be phospholipase A2 activity-dependent, as determined by means of intracellular Förster resonance energy transfer (FRET). In vivo, LiLa targets M1 macrophages in a mouse model of atherosclerosis, allowing noninvasive imaging of atherosclerotic plaque by MRI. In the context of obesity, LiLa particles were selectively deposited to M1 macrophages within inflamed adipose tissue, as demonstrated by single-photon intravital imaging in mice. Collectively, our results suggest that phagocytic signals can preferentially target inflammatory macrophages in experimental models of atherosclerosis and obesity, thus opening the possibility of future clinical applications that diagnose/treat these conditions. Tunable Li

  13. Isolation and culture of murine macrophages.

    Science.gov (United States)

    Davies, John Q; Gordon, Siamon

    2005-01-01

    The two most convenient sources of primary murine macrophages are the bone marrow and the peritoneal cavity. Resident peritoneal macrophages can readily be harvested from mice and purified by adherence to tissue culture plastic. The injection of Bio-Gel polyacrylamide beads or thioglycollate broth into the peritoneal cavity produces an inflammatory response allowing the purification of large numbers of elicited macrophages. The production of an activated macrophage population can be achieved by using Bacillus-Calmette-Guerin as the inflammatory stimulus. Resident bone marrow macrophages can be isolated following enzymatic separation of cells from bone marrow plugs and enrichment on 30% fetal calf serum containing medium or Ficoll-Hypaque gradients. Bone marrow-derived macrophages can be produced by differentiating nonadherent macrophage precursors with medium containing macrophage colony-stimulating factor.

  14. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages.

    Directory of Open Access Journals (Sweden)

    Julie A Hicks

    Full Text Available Porcine Reproductive and Respiratory Syndrome Virus (PRRSV, a member of the arterivirus family, is the causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS. PRRS is characterized by late term abortions and respiratory disease, particularly in young pigs. Small regulatory RNAs termed microRNA (miRNA are associated with gene regulation at the post-transcriptional level. MiRNAs are known to play many diverse and complex roles in viral infections. To discover the impact of PRRSV infections on the cellular miRNAome, Illumina deep sequencing was used to construct small RNA expression profiles from in vitro cultured PRRSV-infected porcine alveolar macrophages (PAMs. A total of forty cellular miRNAs were significantly differentially expressed within the first 48 hours post infection (hpi. The expression of six miRNAs, miR-30a-3p, miR-132, miR-27b*, miR-29b, miR-146a and miR-9-2, were altered at more than one time point. Target gene identification suggests that these miRNAs are involved in regulating immune signaling pathways, cytokine, and transcription factor production. The most highly repressed miRNA at 24 hpi was miR-147. A miR-147 mimic was utilized to maintain miR-147 levels in PRRSV-infected PAMs. PRRSV replication was negatively impacted by high levels of miR-147. Whether down-regulation of miR-147 is directly induced by PRRSV or if it is part of the cellular response and PRRSV indirectly benefits remains to be determined. No evidence could be found of PRRSV-encoded miRNAs. Overall, the present study has revealed that a large and diverse group of miRNAs are expressed in swine alveolar macrophages and that the expression of a subset of these miRNAs is altered in PRRSV infected macrophages.

  15. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  16. MAPK-Mediated YAP Activation Controls Mechanical-Tension-Induced Pulmonary Alveolar Regeneration

    Directory of Open Access Journals (Sweden)

    Zhe Liu

    2016-08-01

    Full Text Available The pulmonary alveolar epithelium undergoes extensive regeneration in response to lung injuries, including lung resection. In recent years, our understanding of cell lineage relationships in the pulmonary alveolar epithelium has improved significantly. However, the molecular and cellular mechanisms that regulate pneumonectomy (PNX-induced alveolar regeneration remain largely unknown. In this study, we demonstrate that mechanical-tension-induced YAP activation in alveolar stem cells plays a major role in promoting post-PNX alveolar regeneration. Our results indicate that JNK and p38 MAPK signaling is critical for mediating actin-cytoskeleton-remodeling-induced nuclear YAP expression in alveolar stem cells. Moreover, we show that Cdc42-controlled actin remodeling is required for the activation of JNK, p38, and YAP in post-PNX lungs. Our findings together establish that the Cdc42/F-actin/MAPK/YAP signaling cascade is essential for promoting alveolar regeneration in response to mechanical tension in the lung.

  17. Characteristic aspects of alveolar proteinosis diagnosis Aspectos característicos do diagnóstico da proteinose alveolar

    Directory of Open Access Journals (Sweden)

    Thiago Prudente Bártholo

    2012-02-01

    Full Text Available Alveolar proteinosis is an uncommon pulmonary disease characterized by an accumulation of surfactant in terminal airway and alveoli, thereby impairing gas exchange and engendering respiratory insufficiency in some cases. Three clinically and etiologically distinct forms of pulmonary alveolar proteinosis are recognized: congenital, secondary and idiopathic, the latter corresponding to 90% of the cases. In this case report we present a young male patient that was diagnosed with alveolar proteinosis. Computed tomography of the thorax, bronchoscopy and transbronchial biopsy were performed. The histopathologic aspect was characteristic. The patient was discharged in good health conditions and remains asymptomatic to date.Proteinose alveolar é uma doença pulmonar incomum caracterizada pelo acúmulo de surfactante nas vias aéreas terminais e nos alvéolos, alterando a troca gasosa e, em alguns casos, promovendo insuficiência respiratória. Três formas clínicas e etiologicamente distintas de proteinose alveolar são reconhecidas: congênitas, secundárias e idiopáticas (mais de 90% dos casos são de etiologia idiopática. Neste relato, apresentamos um homem jovem que foi diagnosticado com proteinose pulmonar. Tomografia computadorizada de tórax, broncoscopia e biópsia transbrônquica foram realizadas. O aspecto histopatológico foi característico. O paciente teve alta, com boas condições de saúde, e encontra-se assintomático nos dias de hoje.

  18. The role of probiotic on alveolar bone resorption

    Directory of Open Access Journals (Sweden)

    Desi Sandra Sari

    2011-09-01

    Full Text Available Background: Probiotics are microbes derived from the group of lactic acid bacteria that work to maintain the health of hosts. Probiotics can also be used to improve oral health. Periodontal disease is usually marked with gingival inflammation and alveolar bone resorption. Gram negative anaerobic bacteria that play important role in human periodontal disease are Porphyromonas gingivalis. (P. gingivalis. P. gingivalis is a virulent bacteria in vivo or in vitro, and mostly found in subgingival plaque of periodontitis patients. Purpose: This study is aimed to know the role of probiotics to inhibit the resorption of alveolar bone induced with P. gingivalis. Methods: This study used male wistar rats divided into 4 groups. Group I was control group (without treatment; group II was induced with P. gingivalis ATCC 33277 for 5 days; group III was induced with P. gingivalis ATCC 33277 and also injected with probiotics (Lactobacillus casei ATCC 4224 for 5 days simultaneously; and group IV was induced with P. gingivalis ATCC 33277 for 5 days and also injected by probiotics (Lactobacillus casei ATCC 4224 in the next 5 days. After that, the samples were decapitated, taken their alveolar bone, and then were examined by immunohistochemistry to observe osteoclast activity in alveolar bone resorption by using tartrate-resistant acid phosphatase (TRAP expression. All data were then analyzed statistically. Results: It is known that there were significant differences of TRAP expression among all those treatment groups (p < 0.05. Conclusion: It then can be concluded that probiotics can decrease osteoclast activity in periodontal tissue of wistar rats, so it can inhibit alveolar bone resorption.Latar belakang: Probiotik adalah mikroba dari golongan bakteri asam laktat yang bekerja mempertahankan kesehatan host dan probiotik dapat digunakan untuk meningkatkan kesehatan rongga mulut. Penyakit periodontal ditandai dengan adanya keradangan pada gingiva dan resobsi tulang

  19. A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages

    Science.gov (United States)

    Bao, Zhang; Chen, Ran; Zhang, Pei; Lu, Shan; Chen, Xing; Yao, Yake; Jin, Xiaozheng; Sun, Yilan; Zhou, Jianying

    2016-01-01

    Mycobacterium tuberculosis (MTB), one of the major bacterial pathogens for lethal infectious diseases, is capable of surviving within the phagosomes of host alveolar macrophages; therefore, host genetic variations may alter the susceptibility to MTB. In this study, to identify host genes exploited by MTB during infection, genes were non-selectively inactivated using lentivirus-based antisense RNA methods in RAW264.7 macrophages, and the cells that survived virulent MTB infection were then screened. Following DNA sequencing of the surviving cell clones, 26 host genes affecting susceptibility to MTB were identified and their pathways were analyzed by bioinformatics analysis. In total, 9 of these genes were confirmed as positive regulators of collagen α-5(IV) chain (Col4a5) expression, a gene encoding a type IV collagen subunit present on the cell surface. The knockdown of Col4a5 consistently suppressed intracellular mycobacterial viability, promoting the survival of RAW264.7 macrophages following mycobacterial infection. Furthermore, Col4a5 deficiency lowered the pH levels of intracellular vesicles, including endosomes, lysosomes and phagosomes in the RAW264.7 cells. Finally, the knockdown of Col4a5 post-translationally increased microsomal vacuolar-type H+-ATPase activity in macrophages, leading to the acidification of intracellular vesicles. Our findings reveal a novel role for Col4a5 in the regulation of macrophage responses to mycobacterial infection and identify Col4a5 as a potential target for the host-directed anti-mycobacterial therapy. PMID:27432120

  20. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    Science.gov (United States)

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation.

  1. Macrophage responsiveness to light therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.; Bolton, P.; Dyson, M.; Harvey, W.; Diamantopoulos, C. (United Medical School, London (England))

    1989-01-01

    Macrophages are a source of many important mediators of wound repair. It was the purpose of this study to see if light could stimulate the release of these mediators. In this study an established macrophage-like cell line (U-937) was used. The cells were exposed in culture to the following wavelengths of light: 660 nm, 820 nm, 870 nm, and 880 nm. The 820-nm source was coherent and polarised, and the others were non-coherent. Twelve hours after exposure the macrophage supernatant was removed and placed on 3T3 fibroblast cultures. Fibroblast proliferation was assessed over a 5-day period. The results showed that 660-nm, 820-nm, and 870-nm wavelengths encouraged the macrophages to release factors that stimulated fibroblast proliferation above the control levels, whereas the 880-nm wavelength either inhibited the release of these factors or encouraged the release of some inhibitory factors of fibroblast proliferation. These results suggest that light at certain wavelengths may be a useful therapeutic agent by providing a means of either stimulating or inhibiting fibroblast proliferation where necessary. At certain wavelengths coherence is not essential.

  2. The role of IgG subclass of mouse monoclonal antibodies in antibody-dependent enhancement of feline infectious peritonitis virus infection of feline macrophages.

    Science.gov (United States)

    Hohdatsu, T; Tokunaga, J; Koyama, H

    1994-01-01

    Antibody-dependent enhancement (ADE) of feline infectious peritonitis virus (FIPV) infection was studied in feline alveolar macrophages and human monocyte cell line U937 using mouse neutralizing monoclonal antibodies (MAbs) directed to the spike protein of FIPV. Even among the MAbs that have been shown to recognize the same antigenic site, IgG 2a MAbs enhanced FIPV infection strongly, whereas IgG 1 MAbs did not. These IgG 2a MAbs enhanced the infection even when macrophages pretreated with the MAb were washed and then inoculated with the virus. Immunofluorescence flow cytometric analysis of the macrophages treated with each of the MAbs showed that the IgG 2a MAbs but not the IgG 1 MAbs bound to feline alveolar macrophages. Treatment of the IgG 2a MAb with protein A decreased the binding to the macrophages and, in parallel, diminished the ADE activity. Although no infection was observed by inoculation of FIPV to human monocyte cell line U937 cells, FIPV complexed with either the IgG 2a MAb or the IgG 1 MAb caused infection in U937 cells which are shown to express Fc gamma receptor (Fc gamma R) I and II that can bind mouse IgG 2a and IgG 1, respectively. These results suggest that the enhancing activity of MAb is closely correlated with IgG subclass and that the correlation is involved in binding of MAb to Fc gamma R on feline macrophage.

  3. Kinetic Biochemistry

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2003-03-01

    Full Text Available Mathematics and computer programming have a major contribution to chemistry. Two directions can be identified: one that searches and tries (rich to explain the structural binding and shape of the chemical compounds [1] with major applications in QSPR/QSAR studies [2], and applied sciences such as engineering of materials or agriculture [3]; the second direction is to models the kinetic processes that are involved in chemical reactions [4]. Many such models are available here. The present paper describes three variants of well the known kinetic models and presents the mathematical equations associated with them. The differential equations are numerically solved and fitted with MathCad program. [1] Diudea M., Gutman I., Jäntschi L., Molecular Topology, Nova Science, Huntington, New York, 332 p., 2001, 2002. [2] Diudea M. V., Ed., QSPR / QSAR Studies by Molecular Descriptors, Nova Science, Huntington, New York, 438 p., 2001. [3] Jäntschi L., Microbiology and Toxicology. Phytochemistry Studies (in Romanian, Amici, Cluj-Napoca, 184 p., 2003. [4] Jäntschi L., Unguresan M., Physical Chemistry. Molecular Kinetic and Dynamic (in Romanian, Mediamira, Cluj-Napoca, 159 p., 2001.

  4. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  5. Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype

    Directory of Open Access Journals (Sweden)

    Mansoor A. Syed

    2013-01-01

    Full Text Available Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2 studies. For in vivo studies, wild-type (WT and BRP-39−/− mice received continuous exposure to 21% O2 (control mice or 100% O2 from postnatal (PN 1 to PN7 days, along with intranasal lipopolysaccharide (LPS administered on alternate days (PN2, -4, and -6. Lung histology, bronchoalveolar lavage (BAL cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.

  6. Retinoid induction of alveolar regeneration: from mice to man?

    Science.gov (United States)

    Hind, M; Gilthorpe, A; Stinchcombe, S; Maden, M

    2009-05-01

    The use of retinoids to induce human lung regeneration is under investigation in a number of studies in patients with chronic obstructive pulmonary disease (COPD). Retinoic acid (RA) has complex pleiotropic functions during vertebrate patterning and development and can induce regeneration in a number of different organ systems. Studies of retinoid signalling during lung development might provide a molecular basis to explain pharmacological induction of alveolar regeneration in adult models of lung disease. In this review the role of endogenous RA signalling during alveologenesis is explored and data suggesting that a number of exogenous retinoids can induce regeneration in the adult lung are discussed. Current controversies in this area are highlighted and a hypothesis of lung regeneration is put forward. Understanding the cellular and molecular mechanisms of induction of regeneration will be central for effective translation into patients with lung disease and may reveal novel insights into the pathogenesis of alveolar disease and senescence.

  7. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    Science.gov (United States)

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician. PMID:27471408

  8. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    Science.gov (United States)

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician.

  9. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Christopher T D Price

    Full Text Available Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼ 300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs to actively replicating L. pneumophila.Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling, anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression.Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.

  10. The role of macrophage mediators in respirable quartz-elicited inflammation

    Science.gov (United States)

    van Berlo, D.; Albrecht, C.; Knaapen, A. M.; van Schooten, F. J.; Schins, R. P. F.

    2009-02-01

    The instigation and persistence of an inflammatory response is widely considered to be critically important in quartz-induced lung cancer and fibrosis. Macrophages have been long recognised as a crucial player in pulmonary inflammation, but evidence for the role of type II epithelial cells is accumulating. Investigations were performed in the rat lung type II cell line RLE and the rat alveolar macrophage cell line NR8383 using Western blotting, NF-κB immunohistochemistry and qRT-PCR of the pro-inflammatory genes iNOS and COX-2, as well as the cellular stress gene HO-1. The direct effect of quartz on pro-inflammatory signalling cascades and gene expression in RLE cells was compared to the effect of conditioned media derived from quartz-treated NR8383 cells. Conditioned media activated the NF-κB signalling pathway and induced a far stronger upregulation of iNOS mRNA than quartz itself. Quartz elicited a stronger, progressive induction of COX-2 and HO-1 mRNA. Our results suggest a differentially mediated inflammatory response, in which reactive particles themselves induce oxidative stress and activation of COX-2, while mediators released from particle-activated macrophages trigger NF-κB activation and iNOS expression in type II cells.

  11. Injury of the Inferior Alveolar Nerve during Implant Placement: a Literature Review

    Directory of Open Access Journals (Sweden)

    Gintaras Juodzbalys

    2011-01-01

    Full Text Available Objectives: The purpose of present article was to review aetiological factors, mechanism, clinical symptoms, and diagnostic methods as well as to create treatment guidelines for the management of inferior alveolar nerve injury during dental implant placement.Material and Methods: Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were inferior alveolar nerve injury, inferior alveolar nerve injuries, inferior alveolar nerve injury implant, inferior alveolar nerve damage, inferior alveolar nerve paresthesia and inferior alveolar nerve repair. The search was restricted to English language articles, published from 1972 to November 2010. Additionally, a manual search in the major anatomy, dental implant, periodontal and oral surgery journals and books were performed. The publications there selected by including clinical, human anatomy and physiology studies.Results: In total 136 literature sources were obtained and reviewed. Aetiological factors of inferior alveolar nerve injury, risk factors, mechanism, clinical sensory nerve examination methods, clinical symptoms and treatment were discussed. Guidelines were created to illustrate the methods used to prevent and manage inferior alveolar nerve injury before or after dental implant placement.Conclusions: The damage of inferior alveolar nerve during the dental implant placement can be a serious complication. Clinician should recognise and exclude aetiological factors leading to nerve injury. Proper presurgery planning, timely diagnosis and treatment are the key to avoid nerve sensory disturbances management.

  12. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  13. An automatic early stage alveolar-bone-resorption evaluation method on digital dental panoramic radiographs

    Science.gov (United States)

    Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi

    2014-03-01

    Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.

  14. Alveolar type II epithelial cell dysfunction in rat experimental hepatopulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Wenli Yang

    Full Text Available The hepatopulmonary syndrome (HPS develops when pulmonary vasodilatation leads to abnormal gas exchange. However, in human HPS, restrictive ventilatory defects are also observed supporting that the alveolar epithelial compartment may also be affected. Alveolar type II epithelial cells (AT2 play a critical role in maintaining the alveolar compartment by producing four surfactant proteins (SPs, SP-A, SP-B, SP-C and SP-D which also facilitate alveolar repair following injury. However, no studies have evaluated the alveolar epithelial compartment in experimental HPS. In this study, we evaluated the alveolar epithelial compartment and particularly AT2 cells in experimental HPS induced by common bile duct ligation (CBDL. We found a significant reduction in pulmonary SP production associated with increased apoptosis in AT2 cells after CBDL relative to controls. Lung morphology showed decreased mean alveolar chord length and lung volumes in CBDL animals that were not seen in control models supporting a selective reduction of alveolar airspace. Furthermore, we found that administration of TNF-α, the bile acid, chenodeoxycholic acid, and FXR nuclear receptor activation (GW4064 induced apoptosis and impaired SP-B and SP-C production in alveolar epithelial cells in vitro. These results imply that AT2 cell dysfunction occurs in experimental HPS and is associated with alterations in the alveolar epithelial compartment. Our findings support a novel contributing mechanism in experimental HPS that may be relevant to humans and a potential therapeutic target.

  15. Identification of polarized macrophage subsets in zebrafish.

    Science.gov (United States)

    Nguyen-Chi, Mai; Laplace-Builhe, Béryl; Travnickova, Jana; Luz-Crawford, Patricia; Tejedor, Gautier; Phan, Quang Tien; Duroux-Richard, Isabelle; Levraud, Jean-Pierre; Kissa, Karima; Lutfalla, Georges; Jorgensen, Christian; Djouad, Farida

    2015-07-08

    While the mammalian macrophage phenotypes have been intensively studied in vitro, the dynamic of their phenotypic polarization has never been investigated in live vertebrates. We used the zebrafish as a live model to identify and trail macrophage subtypes. We generated a transgenic line whose macrophages expressing tumour necrosis factor alpha (tnfa), a key feature of classically activated (M1) macrophages, express fluorescent proteins Tg(mpeg1:mCherryF/tnfa:eGFP-F). Using 4D-confocal microscopy, we showed that both aseptic wounding and Escherichia coli inoculation triggered macrophage recruitment, some of which started to express tnfa. RT-qPCR on Fluorescence Activated Cell Sorting (FACS)-sorted tnfa(+) and tnfa(-) macrophages showed that they, respectively, expressed M1 and alternatively activated (M2) mammalian markers. Fate tracing of tnfa(+) macrophages during the time-course of inflammation demonstrated that pro-inflammatory macrophages converted into M2-like phenotype during the resolution step. Our results reveal the diversity and plasticity of zebrafish macrophage subsets and underline the similarities with mammalian macrophages proposing a new system to study macrophage functional dynamic.

  16. Thermal behavior of premises equipped with different alveolar structures

    OpenAIRE

    Lajimi Nour; Boukadida Noureddine

    2015-01-01

    This paper presents a numerical study of local thermal behavior. Vertical walls are equipped with alveolar structure and/or simple glazing in East, South and West frontages. Local temperature is assumed to be variable with time or imposed at set point temperature. Results principally show that the simple glazing number has a sensitive effect on convection heat transfer and interior air temperature. They also show that the diode effect is more sensitive in w...

  17. Bruxism elicited by inferior alveolar nerve injury: a case report.

    Science.gov (United States)

    Melis, Marcello; Coiana, Carlo; Secci, Simona

    2012-02-01

    The aim of this case report is to describe the history of a patient who received an injury to the right inferior alveolar nerve after placement of a dental implant, with bruxism noted afterward. The symptoms were managed by the use of an occlusal appliance worn at night and occasionally during the day, associated with increased awareness of parafunction during the day to reduce muscle pain and fatigue. Paresthesia of the teeth, gingiva, and lower lip persisted but were reduced during appliance use.

  18. Coronectomy - A viable alternative to prevent inferior alveolar nerve injury

    Directory of Open Access Journals (Sweden)

    Alok Sagtani

    2015-12-01

    Full Text Available Background and Objectives: Coronectomy is a relatively new method to prevent the risk of Inferior Alveolar Nerve (IAN injury during removal of lower third molars with limited scientific literature among Nepalese patients. Thus, a study was designed to evaluate coronectomy regarding its use, outcomes and complications.Materials and Methods: A descriptive study was conducted from December 2012 to December 2013 among patients attending Department of Oral and Maxillofacial Surgery, College of Dental Sciences, BP Koirala Institute of Health Sciences, Dharan, Nepal for removal of mandibular third molars. After reviewing the radiograph for proximity of third molar to the IAN, coronectomy was advised. A written informed consent was obtained from the patients and coronectomy was performed. Patients were recalled after one week. The outcome measures in the follow-up visit were primary healing, pain, infection, dry socket, root exposure and IAN injury. The prevalence of IAN proximity of lower third molars and incidence of complications were calculated.Results: A total 300 mandibular third molars were extracted in 278 patients during the study period. Out of 300 impacted mandibular third molar, 41 (13.7% showed close proximity to inferior alveolar nerve . The incidence of complications and failed procedure was 7.4% among the patients who underwent coronectomy. During the follow up visit, persistent pain and root exposure was reported while other complications like inferior alveolar nerve injury, dry socket and infection was not experienced by the study patients.Conclusion: With a success rate of 92.6% among the 41 patients, coronectomy is a viable alternative to conventional total extraction for mandibular third molars who have a higher risk for damage to the inferior alveolar nerve.JCMS Nepal. 2015;11(3:1-5.

  19. Primary Pulmonary Plasmacytoma with Diffuse Alveolar Consolidation: A Case Report

    Directory of Open Access Journals (Sweden)

    Zohreh Mohammad Taheri

    2010-01-01

    Full Text Available Solitary extramedullary plasmacytomas are plasma cell tumors that tend to develop in mucosa-associated lymphoid tissues including the sinonasal or nasopharyngeal regions. Primary plasmacytoma of the lung is exceedingly rare and often presents as a solitary mass or nodule in mid-lung or hilar areas and diagnosed after resection. Herein, we report a case of primary pulmonary plasmacytoma that presented with diffuse alveolar consolidation and diagnosed by transbronchial lung biopsy.

  20. Alveolar ridge augmentation in rats by Bio-Oss

    DEFF Research Database (Denmark)

    Pinholt, E M; Bang, G; Haanaes, H R

    1991-01-01

    The purpose of the study was to examine if Bio-Oss initiated osteoinduction or osteoconduction when implanted into rats. Sintered and unsintered granules of the anorganic bovine bone Bio-Oss was implanted subperiosteally for alveolar ridge augmentation purposes and heterotopically in the abdominal...... muscles of rats. Light microscopic evaluation revealed no osteoinduction or osteoconduction in connection with sintered or unsintered Bio-Oss. A foreign body reaction was observed around both forms....

  1. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  2. Keratinocyte growth factor administration attenuates murine pulmonary mycobacterium tuberculosis infection through granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophage activation and phagolysosome fusion.

    Science.gov (United States)

    Pasula, Rajamouli; Azad, Abul K; Gardner, Jason C; Schlesinger, Larry S; McCormack, Francis X

    2015-03-13

    Augmentation of innate immune defenses is an appealing adjunctive strategy for treatment of pulmonary Mycobacterium tuberculosis infections, especially those caused by drug-resistant strains. The effect of intranasal administration of keratinocyte growth factor (KGF), an epithelial mitogen and differentiation factor, on M. tuberculosis infection in mice was tested in prophylaxis, treatment, and rescue scenarios. Infection of C57BL6 mice with M. tuberculosis resulted in inoculum size-dependent weight loss and mortality. A single dose of KGF given 1 day prior to infection with 10(5) M. tuberculosis bacilli prevented weight loss and enhanced pulmonary mycobacterial clearance (compared with saline-pretreated mice) for up to 28 days. Similar effects were seen when KGF was delivered intranasally every third day for 15 days, but weight loss and bacillary growth resumed when KGF was withdrawn. For mice with a well established M. tuberculosis infection, KGF given every 3 days beginning on day 15 postinoculation was associated with reversal of weight loss and an increase in M. tuberculosis clearance. In in vitro co-culture experiments, M. tuberculosis-infected macrophages exposed to conditioned medium from KGF-treated alveolar type II cell (MLE-15) monolayers exhibited enhanced GM-CSF-dependent killing through mechanisms that included promotion of phagolysosome fusion and induction of nitric oxide. Alveolar macrophages from KGF-treated mice also exhibited enhanced GM-CSF-dependent phagolysosomal fusion. These results provide evidence that administration of KGF promotes M. tuberculosis clearance through GM-CSF-dependent mechanisms and enhances host defense against M. tuberculosis infection.

  3. Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema.

    Science.gov (United States)

    Solymosi, Esther A; Kaestle-Gembardt, Stefanie M; Vadász, István; Wang, Liming; Neye, Nils; Chupin, Cécile Julie Adrienne; Rozowsky, Simon; Ruehl, Ramona; Tabuchi, Arata; Schulz, Holger; Kapus, Andras; Morty, Rory E; Kuebler, Wolfgang M

    2013-06-18

    Alveolar fluid clearance driven by active epithelial Na(+) and secondary Cl(-) absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na(+) channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion. We, therefore, hypothesized that alveolar ion and fluid secretion may constitute a pathomechanism in lung edema and aimed to identify underlying molecular pathways. In isolated perfused lungs, alveolar fluid clearance and secretion were determined by a double-indicator dilution technique. Transepithelial Cl(-) secretion and alveolar Cl(-) influx were quantified by radionuclide tracing and alveolar Cl(-) imaging, respectively. Elevated hydrostatic pressure induced ouabain-sensitive alveolar fluid secretion that coincided with transepithelial Cl(-) secretion and alveolar Cl(-) influx. Inhibition of either cystic fibrosis transmembrane conductance regulator (CFTR) or Na(+)-K(+)-Cl(-) cotransporters (NKCC) blocked alveolar fluid secretion, and lungs of CFTR(-/-) mice were protected from hydrostatic edema. Inhibition of ENaC by amiloride reproduced alveolar fluid and Cl(-) secretion that were again CFTR-, NKCC-, and Na(+)-K(+)-ATPase-dependent. Our findings show a reversal of transepithelial Cl(-) and fluid flux from absorptive to secretory mode at hydrostatic stress. Alveolar Cl(-) and fluid secretion are triggered by ENaC inhibition and mediated by NKCC and CFTR. Our results characterize an innovative mechanism of cardiogenic edema formation and identify NKCC1 as a unique therapeutic target in cardiogenic lung edema.

  4. The Role of Macrophages in Tumor Development

    Directory of Open Access Journals (Sweden)

    Gerben J. van der Bij

    2005-01-01

    Full Text Available Macrophages constitute a large proportion of the immune cell infiltrate, which is present in many tumors. Activation state of macrophages is greatly influenced by their environment, leading to different macrophage subsets with diverse functions. Although previously regarded as potent immune cells that are capable of destroying tumor cells, recent literature focuses on the ability of macrophages to promote tumor development due to secretion of mediators, like growth and angiogenic factors. It is now becoming increasingly clear that a complicated synergistic relationship exists between macrophages and malignant cells whereby tumor cells can affect macrophage phenotype, and vice versa. As such, macrophages and their contribution in cancer development are currently subject of debate.

  5. Macrophages in Tissue Repair, Regeneration, and Fibrosis.

    Science.gov (United States)

    Wynn, Thomas A; Vannella, Kevin M

    2016-03-15

    Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.

  6. Referral practice of military corpsmen regarding dento-alveolar trauma.

    Science.gov (United States)

    Zadik, Yehuda; Levin, Liran

    2008-06-01

    The aim of this study was to evaluate the Israeli military corpsmens' practice of referral to professional treatment regarding traumatic dental injuries. The study consisted of 250 corpsmen during their military service. Questionnaire and slide show were used to present clinical photos with short history descriptions of dento-alveolar traumatic injuries. Participants were asked to indicate the preferred referral destination for each case to state the urgency of referral to the destination and to note their regional emergency department with an oral and maxillofacial surgery consultant and the nearest 24-h emergency dental clinic. Corpsmen immediately evacuated the wounded with full-thickness lip laceration (59%), tooth avulsion (79%), alveolar fracture (88%) and mandibular fracture (100%). Most corpsmen referred crown fracture to a dental clinic and alveolar- or mandibular-bone fracture to the emergency department. Tooth avulsion cases were equally distributed between the emergency department and dental clinic and full-thickness lip laceration between the emergency department and general medical office. Familiarity with the nearest 24-h emergency dental clinic was found in 38% and with the regional emergency department with an oral and maxillofacial surgery consultant in 57%. The knowledge of this group of military corpsmen regarding referral practices was encouraging. However, further continuing education with regards to the regionally available emergency services is needed. Special emphasis should be given to provide primary caregivers with the relevant education to improve their knowledge and ability of dealing dental trauma.

  7. Thermographic assessment of reversible inferior alveolar nerve deficit.

    Science.gov (United States)

    Shetty, V; Gratt, B M; Flack, V

    1994-01-01

    The purpose of this study was to investigate thermography's potential as a diagnostic alternative for evaluating neurosensory deficits of the inferior alveolar nerve. Electronic thermography was used to evaluate the alterations in facial thermal patterns attendant to a conduction defect of the inferior alveolar nerve induced in 12 subjects using 2% lidocaine. The rates of onset and duration of sensory block, as visualized by thermography, were related to the results of conventional neurosensory testing. Comparison of the rate of response change within each measurement system revealed that changes in facial skin temperature manifest the induced deficit earlier than discriminative tests. Also, the prolonged elevation of thermal asymmetry suggested that electronic thermography has the ability to detect subtle changes in nerve function that are not discernible by physical neurosensory tests relying on patient response. Although cutaneous temperature increases were highest in the field of observation near the sensory distribution of the mental nerve, an inexplicable warming of the contralateral side of the face and neck was also observed. These attendant findings emphasize the need for further studies on the pathophysiologic mechanisms of facial thermal changes to better understand thermography's diagnostic accuracy and clinical utility for monitoring inferior alveolar nerve dysfunction.

  8. Pregnancy in a patient with severe pulmonary alveolar microlithiasis.

    Science.gov (United States)

    Souza Filho, José Osmar Bezerra de; Silveira, Cristiane Maria Cavalcante; Cunha, Aline Barreto da; Pinheiro, Valéria Goes Ferreira; Feitosa, Francisco Edson de Lucena; Holanda, Marcelo Alcântara

    2008-10-01

    Pulmonary alveolar microlithiasis (PAM) is a rare disease that affects both lungs. It is characterized by the presence of small calculi (calcium phosphate) within the alveolar spaces. We report the case of a 26-year-old female whose diagnosis was based on characteristic findings on chest X-rays and high-resolution computed tomography scans. The patient, 28 weeks pregnant, was rehospitalized 10 months after the diagnosis, presenting hypoxemic acute respiratory failure and severe restrictive ventilatory defect on spirometry. After 32 completed weeks of gestation (228 days), she was submitted to cesarean section, and the outcome was successful for mother and newborn. PAM has a variable clinical course. It is suggestive of an autosomal recessive inheritance pattern and has been associated with positive family history. The etiology of PAM is unclear, and many authors speculate that there is a local enzymatic defect responsible for the intra-alveolar accumulation of calcium. Reports of patients with PAM who become pregnant are exceptional, and this is the first case described in Brazil. The course of this disease is usually slow and progressive, and patients typically die of cardiorespiratory failure. The present case illustrates the need to offer female patients, especially those with advanced disease, genetic counseling and orientation regarding the risks of pregnancy. Currently, the only effective therapy is lung transplantation.

  9. Intraosseous schwannoma originating in inferior alveolar nerve: a case report.

    Science.gov (United States)

    Suga, Kenichiro; Ogane, Satoru; Muramatsu, Kyotaro; Ohata, Hitoshi; Uchiyama, Takeshi; Takano, Nobuo; Shibahara, Takahiko; Eguchi, Jun; Murakami, Satoshi; Matsuzaka, Kenichi

    2013-01-01

    Schwannomas (neurilemmomas) are benign neoplasms derived from Schwann cells of the neurilemma and appear most frequently on the auditory nerve or peripheral nerves of the skin. They arise in the oral and maxillofacial region infrequently, and very rarely in the center of the jaw. We herein present a case of a rare mandibular intraosseous schwannoma derived from the main trunk of the inferior alveolar nerve in a 33-year-old man. Fusiform expansion in the mandibular canal was observed and a mass showing the target sign in the mandibular canal was confirmed on T2-weighted and Gd contrastenhanced T1-weighted MRI. Based on these findings, an inferior alveolar nerve-derived schwannoma or other benign nervous system neoplasm was diagnosed. A buccal side cortical bone flap in the mandibular molar region was removed to expose the mass, which was then peeled away from the nerve fibers and completely removed. Some inferior alveolar nerve fibers that were connected to the mass were removed at the same time, but the remaining nerve fiber bundle was preserved. Histopathology confirmed the diagnosis of a schwannoma with Antoni type A and Antoni type B regions. Although the patient experienced extremely mild paresthesia in the skin over the mental region and mental foramen at immediately after surgery, this had almost entirely disappeared at 7 years and 4 months later, and there has been no tumor recurrence.

  10. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  11. Analysis of the GM-CSF and GM-CSF/IL-3/IL-5 receptor common beta chain in a patient with pulmonary alveolar proteinosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) and GM-CSF/IL-3/IL-5 receptor common beta chain (βc receptor) in an adult patient with idiopathic pulmonary alveolar proteinosis (PAP), so as to demonstrate the possible association of the GM-CSF and βc receptor with the pathogenesis of human PAP. Methods The GM-CSF levels were measured with a commercial ELISA kit (sensitivity 5?pg/ml) and the βc receptor expression on the cell surface was detected by flow cytometry analysis. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was employed to detect the expression of the GM-CSF mRNA and the βc receptor mRNA in peripheral blood mononuclear cells and alveolar macrophages. The entire coding regions of the GM-CSF cDNA and the βc receptor cDNA were sequenced by the Sanger dideoxy-mediated chain termination method to detect possible mutations. Results The patient with PAP failed to release the GM-CSF protein either from circulating mononuclear cells or from alveolar macrophages. The expression of the GM-CSF mRNA was normal after the stimulation of lipopolysaccharide, whereas a point mutation at position 382 of the GM-CSF cDNA from “T" to “C" was revealed by cDNA sequencing, which caused a change in amino acid 117 of the protein from isoleucine to threonine. The βc receptor expression on the cell surface was normal, and the βc receptor mRNA expression and the sequence of the entire coding region of the βc receptor were also normal. Conclusions The decreased GM-CSF production is associated with the pathogenesis of human PAP. A point mutation of the GM-CSF cDNA may contribute to the decreased GM-CSF production in our adult PAP patient. The mutation of the βc receptor in some of paediatric patients with PAP may not be a common problem in adult patients.

  12. Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis.

    Science.gov (United States)

    Hernandez-Pando, R; Orozco, H; Arriaga, K; Sampieri, A; Larriva-Sahd, J; Madrid-Marina, V

    1997-01-01

    A mouse model of pulmonary tuberculosis induced by the intratracheal instillation of live and virulent mycobacteria strain H37-Rv was used to examine the relationship of the histopathological findings with the local kinetics production and cellular distribution of tumour necrosis factor-alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) and transforming growth factor-beta (TGF-beta). The histopathological and immunological studies showed two phases of the disease: acute or early and chronic or advanced. The acute phase was characterized by inflammatory infiltrate in the alveolar-capillary interstitium, blood vessels and bronchial wall with formation of granulomas. During this acute phase, which lasted from 1 to 28 days, high percentages of TNF-alpha and IL-1 alpha immunostained activated macrophages were observed principally in the interstium-intralveolar inflammatory infiltrate and in granulomas. Electron microscopy studies of these cells, showed extensive rough endoplasmic reticulum, numerous lysosomes and occasional mycobacteria. Double labelling with colloid gold showed that TNF-alpha and IL-1 alpha were present in the same cells, but were confined to separate vacuoles near the Golgi area, and mixed in larger vacuoles near to cell membrane. The concentration of TNF-alpha and IL-1 alpha as well as their respective mRNAs were elevated in the early phase, particularly at day 3 when the bacillary count decreased. A second peak was seen at days 14 and 21-28 when granulomas appeared and evolved to full maturation. In contrast, TGF-beta production and numbers of immunoreactive cells were low in comparison with the advanced phase of the disease. The chronic phase was characterized by histopathological changes indicative of more severity (i.e. pneumonia, focal necrosis and extensive interstitial fibrosis) with a decrease in the TNF-alpha and IL-1 alpha production that coincided with the highest level of TGF-beta. The bacillary counts were highest as the macrophages

  13. Treatment of sharp mandibular alveolar process with hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Sukaedi Sukaedi

    2010-09-01

    Full Text Available Background: Losing posterior teeth for a long time would occasionally lead to the sharpening of alveolar process. The removable partial denture usually have problems when used during mastication, because of the pressure on the mucosa under the alveolar ridge. Purpose: The purpose of this case report was to manage patients with sharp mandibular alveolar process by wearing hybrid prosthesis with extra coronal precision attachment retention and soft liner on the surface base beneath the removable partial denture. Case: A 76 years old woman visited the Prosthodontic Clinic Faculty of Dentistry Airlangga University. The patient had a long span bridge on the upper jaw and a free end acrylic removable partial denture on the lower jaw. She was having problems with mastication. The patient did not wear her lower denture because of the discomfort with it during mastication. Hence, she would like to replace it with a new removable partial denture. Case management: The patient was treated by wearing a hybrid prosthesis with extra coronal precision attachment on the lower jaw. Soft liner was applied on the surface of the removable partial denture. Hybrid prosthesis is a complex denture consisting of removable partial denture and fixed bridge. Conclusion: It concluded that after restoration, the patient had no problems with sharp alveolar process with her new denture, and she was able to masticate well.Latar belakang: Kehilangan geligi posterior dapat menimbulkan processus alveolaris tajam. Gigi tiruan sebagian lepasan mempunyai masalah selama pengunyahan karena adanya tekanan di mukosa di bawah alveolar ridge. Tujuan: Tujuan laporan kasus ini adalah untuk menjelaskan cara menangani pasien yang mempunyai prosesus alveolaris yang tajam di rahang bawah dengan dibuatkan protesis hybrid dengan daya tahan extra coronal precision attachment dan soft liner di permukaan bawah basis gigi tiruan sebagian lepasan. Kasus: Pasien wanita berumur 76 tahun datang di klinik

  14. Endotoxin-induced lung alveolar cell injury causes brain cell damage

    Science.gov (United States)

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia RM; Pelosi, Paolo

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  15. The use of digital periapical radiographs to study the prevalence of alveolar domes

    Science.gov (United States)

    Xambre, Pedro Augusto Oliveira Santos; Valerio, Claudia Scigliano; e Alves Cardoso, Claudia Assunção; Custódio, Antônio Luís Neto

    2016-01-01

    Purpose In the present study, we coined the term 'alveolar dome' and aimed to demonstrate the prevalence of alveolar domes through digital periapical radiographs. Materials and Methods This study examined 800 digital periapical radiographs in regard to the presence of alveolar domes. The periapical radiographs were acquired by a digital system using a photostimulable phosphor (PSP) plate. The χ2 test, with a significance level of 5%, was used to compare the prevalence of alveolar domes in the maxillary posterior teeth and, considering the same teeth, to verify the difference in the prevalence of dome-shaped phenomena between the roots. Results The prevalence of alveolar domes present in the first pre-molars was statistically lower as compared to the other maxillary posterior teeth (pauxiliary information necessary to identify alveolar domes, thus improving diagnosis, planning, and treatment. PMID:27672614

  16. Buprenorphine kinetics.

    Science.gov (United States)

    Bullingham, R E; McQuay, H J; Moore, A; Bennett, M R

    1980-11-01

    Buprenorphine kinetics was determined in surgical patients using radioimmunoassay. Buprenorphine was measured in the plasma of 24 patients who had received 0.3 mg buprenorphine intraoperatively. After 3 hr 10 of these patients then received a further 0.3 mg buprenorphine intravenously for postoperative pain relief, and 11 patients were given 0.3 mg intramuscularly; again, plasma levels were measured for 3 hr. The data fitted closely to a triexponential decay curve. There was a very fast initial phase, with a half-life (t1/2) of 2 min. The terminal t1/2 was slow, approximately 3 hr. Comparison of the kinetics of the same patient, awake and anesthetized, showed that the clearance was significantly lower in the anesthetized state. A notable feature of the drug given intramuscularly is rapid systemic availability, so that peaks are obtained in 2 to 5 min, and in 10 min the resulting levels are the same as for the intravenous and intramuscular routes.

  17. Interaction of glucocorticoids with macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Foley, R.; Munck, A.

    1978-01-01

    The mononuclear phagocyte system plays a central role in mediating host responses in inflammation. Glucocorticoids have anti-inflammatory actions that may be of considerable importance in the therapeutic effects of these agents in chronic inflammation; it is possible that some of these effects are mediated through direct hormonal action on macrophages. Although the site of action of the glucocorticoids on macrophages has not been established, it has been shown that in many other glucocorticoid target systems the effects of glucocorticoids are mediated by specific macromolecular binding proteins, referred to as receptors. In this study we have established that monocytes and macophages contain saturable glucocorticoid-binding proteins, with specificity of binding for cortisol, corticosterone, and related synthetic steroids such as dexamethasone, and that they have dissociation constants for binding within physiological ranges.

  18. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions.

    Directory of Open Access Journals (Sweden)

    Ken Kobayashi

    Full Text Available Mastitis, inflammation of the mammary gland, is the most costly common disease in the dairy industry, and is caused by mammary pathogenic bacteria, including Escherichia coli. The bacteria invade the mammary alveolar lumen and disrupt the blood-milk barrier. In normal mammary gland, alveolar epithelial tight junctions (TJs contribute the blood-milk barrier of alveolar epithelium by blocking the leakage of milk components from the luminal side into the blood serum. In this study, we focused on claudin subtypes that participate in the alveolar epithelial TJs, because the composition of claudins is an important factor that affects TJ permeability. In normal mouse lactating mammary glands, alveolar TJs consist of claudin-3 without claudin-1, -4, and -7. In lipopolysaccharide (LPS-induced mastitis, alveolar TJs showed 2-staged compositional changes in claudins. First, a qualitative change in claudin-3, presumably caused by phosphorylation and participation of claudin-7 in alveolar TJs, was recognized in parallel with the leakage of fluorescein isothiocyanate-conjugated albumin (FITC-albumin via the alveolar epithelium. Second, claudin-4 participated in alveolar TJs with claudin-3 and claudin-7 12 h after LPS injection. The partial localization of claudin-1 was also observed by immunostaining. Coinciding with the second change of alveolar TJs, the severe disruption of the blood-milk barrier was recognized by ectopic localization of β-casein and much leakage of FITC-albumin. Furthermore, the localization of toll-like receptor 4 (TLR4 on the luminal side and NFκB activation by LPS was observed in the alveolar epithelial cells. We suggest that the weakening and disruption of the blood-milk barrier are caused by compositional changes of claudins in alveolar epithelial TJs through LPS/TLR4 signaling.

  19. Combined soft and hard tissue augmentation for a localized alveolar ridge defect

    OpenAIRE

    2013-01-01

    Ideal alveolar ridge width and height allows placement of a natural appearing pontic, which provides maintenance of a plaque-free environment. The contour of a partially edentulous ridge should be thoroughly evaluated before a fixed partial denture is undertaken. Localized alveolar ridge defect refers to a volumetric deficit of the limited extent of bone and soft-tissue within the alveolar process. These ridge defects can be corrected by hard tissue and/or soft-tissue augmentation. A 30-year-...

  20. Injury of the Inferior Alveolar Nerve during Implant Placement: a Literature Review

    OpenAIRE

    Gintaras Juodzbalys; Hom-Lay Wang; Gintautas Sabalys

    2011-01-01

    ABSTRACT Objectives The purpose of present article was to review aetiological factors, mechanism, clinical symptoms, and diagnostic methods as well as to create treatment guidelines for the management of inferior alveolar nerve injury during dental implant placement. Material and Methods Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were inferior alveolar nerve injury, inferior alveolar nerve injuries, inferior alveo...

  1. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  2. Atypical dento-alveolar fracture fixed with screws: a technical note.

    Science.gov (United States)

    Shinohara, Elio Hitoshi; Vieira, Eduardo Hochuli; Júnior, Idelmo Rangel Garcia; Pires-Soubhia, Ana Maria; Martini, Marcelo Zillo

    2010-08-01

    Dento-alveolar process fracture is an important and common event in the dental office practice usually managed under the well-established protocols, but sometimes this kind of lesion is evaluated in the hospital emergency rooms without attention to the dental injuries. In this type of trauma, the time between the injury and the definitive resolution is essential for the treatment success, usually 1 h in cases of dento-alveolar fractures (tooth and alveolar bone). This paper describes the management of a patient with unusual dento-alveolar fracture caused by gunshot and treated using screw fixation.

  3. Perawatan Ortodonti pada Kasus Mutilasi dengan Resorpsi Tulang Alveolar dan Resesi Gingiva (Laporan Kasus

    Directory of Open Access Journals (Sweden)

    Retno Widayati

    2015-09-01

    Full Text Available In the mutilated case in adults, generally malocclusion is often accompanied by less support of periodontal tissues, such as alveolar bone resorption and gingival recession. The treatment of orthodontic is to arrange the teeth into good position and good occlusion, but is widely known to increase the alveolar bone resorption. In handling such case, orthodontist needs to look at factors which do not increase existing alveolar bone resorption and gingival recession. In this case report, it will be reported orthodontic treatment on mutilated case which are accompanied by alveolar bone resorption and gingival recession on a patient of 45 years and 4 months of age.

  4. Expression of von Willebrand factor, pulmonary intravascular macrophages, and Toll-like receptors in lungs of septic foals

    Science.gov (United States)

    Harrison, Jacqueline M. E.; Quanstrom, Leah M.; Robinson, Alex R.; Wobeser, Bruce; Anderson, Stacy L.

    2017-01-01

    Sepsis causes significant mortality in neonatal foals; however, there is little data describing the cellular and molecular pathways of lung inflammation in septic foals. This study was conducted to characterize lung inflammation in septic foals. Lung tissue sections from control (n = 6) and septic (n = 17) foals were compared using histology and immunohistology. Blinded pathologic scoring of hematoxylin and eosin stained samples revealed increased features of lung inflammation such as thickened alveolar septa and sequestered inflammatory cells in septic foals. Septic foal lungs showed increased expression of von Willebrand factor in blood vessels, demonstrating vascular inflammation. Use of MAC387 antibody to detect calprotectin as a reflection of mononuclear cell infiltration revealed a significant increase in their numbers in alveolar septa of lungs from septic foals compared to those from control foals. The mononuclear cells appeared to be mature macrophages and were located in the septal capillaries, suggesting they were pulmonary intravascular macrophages (PIMs). Finally, lungs from septic foals showed increased expression of Toll-like receptor 4 and 9 in mononuclear cells relative to the control. Taken together, this study is the first to show the expression of inflammatory molecules and an increa