WorldWideScience

Sample records for alveolar epithelial cell

  1. Alveolar epithelial type II cell: defender of the alveolus revisited

    OpenAIRE

    Fehrenbach Heinz

    2001-01-01

    Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2) cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, a...

  2. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs).

    OpenAIRE

    Féréol, Sophie; Fodil, Redouane; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2008-01-01

    Cell mechanics provides an integrated view of many biological phenomena which are intimately related to cell structure and function. Because breathing constitutes a sustained motion synonymous with life, pulmonary cells are normally designed to support permanent cyclic stretch without breaking, while receiving mechanical cues from their environment. The authors study the mechanical responses of alveolar cells, namely epithelial cells and macrophages, exposed to well-controlled mechanical stre...

  3. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  4. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells

    OpenAIRE

    Wang, Dachun; Haviland, David L.; Burns, Alan R.; Zsigmond, Eva; Wetsel, Rick A.

    2007-01-01

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute ≈60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the ...

  5. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    OpenAIRE

    Aoshiba K; Nagai A

    2003-01-01

    Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inapprop...

  6. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  7. Dexmedetomidine Attenuates Bilirubin-Induced Lung Alveolar Epithelial Cell Death In Vitro and In Vivo*

    OpenAIRE

    Cui, Jian; Zhao, Hailin; Yi, Bin; Zeng, Jing; Lu, Kaizhi; Ma, Daqing

    2015-01-01

    Objective: To investigate bilirubin-induced lung alveolar epithelial cell injury together with the protection afforded by dexmedetomidine. Design: Prospective, randomized, controlled study. Setting: Research laboratory. Subjects: Sprague Dawley rats. Interventions: Alveolar epithelial A549 cell lines were cultured and received bilirubin (from 0 to 160 μM) to explore the protective pathway of dexmedetomidine on bilirubin-induced alveolar epithelial cell injury assessed by immunochemistry and f...

  8. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  9. Human alveolar epithelial type II cells in primary culture.

    Science.gov (United States)

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  10. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Jessica L Eisenberg

    2011-01-01

    Full Text Available Jessica L Eisenberg1,2, Asmahan Safi3, Xiaoding Wei3, Horacio D Espinosa3, GR Scott Budinger2, Desire Takawira1, Susan B Hopkinson1, Jonathan CR Jones1,21Department of Cell and Molecular Biology, 2Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 3Department of Mechanical Engineering, Northwestern University, Evanston, IL, USAAim: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC in the lung, including their deposition and organization of extracellular matrix (ECM proteins.Methods: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy.Results: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM.Conclusions: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.Keywords: alveolar epithelial cells, fibrosis, extracellular matrix, substrate stiffness

  11. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    Science.gov (United States)

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  12. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Science.gov (United States)

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  13. Targeted Injury of Type II Alveolar Epithelial Cells Induces Pulmonary Fibrosis

    OpenAIRE

    Sisson, Thomas H.; Mendez, Michael; Choi, Karen; Subbotina, Natalya; Courey, Anthony; Cunningham, Andrew; Dave, Aditi; Engelhardt, John F.; Liu, Xiaoming; White, Eric S.; Thannickal, Victor J.; Bethany B Moore; Christensen, Paul J; Simon, Richard H

    2009-01-01

    Rationale: Ineffective repair of a damaged alveolar epithelium has been postulated to cause pulmonary fibrosis. In support of this theory, epithelial cell abnormalities, including hyperplasia, apoptosis, and persistent denudation of the alveolar basement membrane, are found in the lungs of humans with idiopathic pulmonary fibrosis and in animal models of fibrotic lung disease. Furthermore, mutations in genes that affect regenerative capacity or that cause injury/apoptosis of type II alveolar ...

  14. Type I Alveolar Epithelial Cells Mount Innate Immune Responses during Pneumococcal Pneumonia

    OpenAIRE

    Yamamoto, Kazuko; Ferrari, Joseph D.; Cao, Yuxia; Ramirez, Maria I.; Jones, Matthew R.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    Pneumonia results from bacteria in the alveoli. The alveolar epithelium consists of type II cells, which secrete surfactant and associated proteins, and type I cells, which constitute 95% of the surface area and met anatomic and structural needs. Other than constitutively expressed surfactant proteins, it is unknown whether alveolar epithelial cells have distinct roles in innate immunity. Since innate immunity gene induction depends on NF-κB RelA (also known as p65) during pneumonia, we gener...

  15. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells

    OpenAIRE

    LI Hong; Xiang, Zheng; Feng, Ting; Li, Jinrong; Liu, Yinping; Fan, Yingying; Lu, Qiao; Yin, Zhongwei; Yu, Meixing; Shen, Chongyang; Tu, Wenwei

    2013-01-01

    γδ-T cells play an indispensable role in host defense against different viruses, including influenza A virus. However, whether these cells have cytotoxic activity against influenza virus-infected lung alveolar epithelial cells and subsequently contribute to virus clearance remains unknown. Using influenza virus-infected A549 cells, human lung alveolar epithelial cells, we investigated the cytotoxic activity of aminobisphosphonate pamidronate (PAM)-expanded human Vγ9Vδ2-T cells and their under...

  16. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ferranda Puig

    Full Text Available Acute lung injury (ALI is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC on mechanical tension and barrier integrity in human alveolar epithelial cells (A549 exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml or vehicle (control. Subsequently, thrombin (50 nM or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  17. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.

    Science.gov (United States)

    Wang, Dachun; Haviland, David L; Burns, Alan R; Zsigmond, Eva; Wetsel, Rick A

    2007-03-13

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung. PMID:17360544

  18. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shimpei Gotoh

    2014-09-01

    Full Text Available No methods for isolating induced alveolar epithelial progenitor cells (AEPCs from human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs, we identified carboxypeptidase M (CPM as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine.

  19. Cell Stress Induces Upregulation of Osteopontin via the ERK Pathway in Type II Alveolar Epithelial Cells

    OpenAIRE

    Aki Kato; Takafumi Okura; Chizuru Hamada; Seigo Miyoshi; Hitoshi Katayama; Jitsuo Higaki; Ryoji Ito

    2014-01-01

    Osteopontin (OPN) is a multifunctional protein that plays important roles in cell growth, differentiation, migration and tissue fibrosis. In human idiopathic pulmonary fibrosis and murine bleomycin-induced lung fibrosis, OPN is upregulated in type II alveolar epithelial cells (AEC II). However, the mechanism of OPN induction in AEC II is not fully understood. In this study, we demonstrate the molecular mechanism of OPN induction in AEC II and elucidate the functions of OPN in AEC II and lung ...

  20. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    Science.gov (United States)

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation. PMID:26830082

  1. Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation

    Directory of Open Access Journals (Sweden)

    Chen Yao

    2012-01-01

    Full Text Available Abstract Background Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII→ATI trans-differentiation has not been explored. Method In a controlled nonvascular environment, an in vitro model of ATII→ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation. Results Here, we show that EMAP II significantly blocked ATII→ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA. Conclusion Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia.

  2. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  3. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  4. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy;

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Type...... II) constitutively express the class II MHC led us to hypothesize that Type II cells play a role in the adaptive immune response. Because Type II cells do not express detectable levels of the costimulatory molecules CD80 and CD86, we propose that Type II cells suppress activation of naive T cells...

  5. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Marco Checa

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549, was exposed to cigarette smoke extract (CSE for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12 and rat (RLE-6TN epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  6. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells

    Science.gov (United States)

    Checa, Marco; Hagood, James S.; Velazquez-Cruz, Rafael; Ruiz, Victor; García-De-Alba, Carolina; Rangel-Escareño, Claudia; Urrea, Francisco; Becerril, Carina; Montaño, Martha; García-Trejo, Semiramis; Cisneros Lira, José; Aquino-Gálvez, Arnoldo; Pardo, Annie; Selman, Moisés

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers. PMID:26934369

  7. Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat

    Directory of Open Access Journals (Sweden)

    Crystal N. Marconett

    2014-12-01

    Full Text Available Cell-type specific gene regulation is a key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how changes in transcriptional activation during alveolar epithelial cell (AEC differentiation determine phenotype. We performed transcriptomic profiling using in vitro differentiation of human and rat primary AEC. This model recapitulates in vitro an in vivo process in which AEC transition from alveolar type 2 (AT2 cells to alveolar type 1 (AT1 cells during normal maintenance and regeneration following lung injury. Here we describe in detail the quality control, preprocessing, and normalization of microarray data presented within the associated study (Marconett et al., 2013. We also include R code for reproducibility of the referenced data and easily accessible processed data tables.

  8. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  9. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    OpenAIRE

    Seok-Jo Kim; Paul Cheresh; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidenc...

  10. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  11. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    Science.gov (United States)

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs. PMID:27182651

  12. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT

    Directory of Open Access Journals (Sweden)

    Kamimura Takashi

    2005-06-01

    Full Text Available Abstract Background Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF. They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. Methods A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA, and expression of epithelial phenotypic markers including E-cadherin (E-cad. Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. Results The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2

  13. Establishment and evaluation of a stable cattle type II alveolar epithelial cell line.

    Directory of Open Access Journals (Sweden)

    Feng Su

    Full Text Available Macrophages and dendritic cells are recognized as key players in the defense against mycobacterial infection. Recent research has confirmed that alveolar epithelial cells (AECs also play important roles against mycobacterium infections. Thus, establishing a stable cattle AEC line for future endogenous immune research on bacterial invasion is necessary. In the present study, we first purified and immortalized type II AECs (AEC II cells by transfecting them with a plasmid containing the human telomerase reverse trancriptase gene. We then tested whether or not the immortalized cells retained the basic physiological properties of primary AECs by reverse-transcription polymerase chain reaction and Western blot. Finally, we tested the secretion capacity of immortalized AEC II cells upon stimulation by bacterial invasion. The cattle type II alveolar epithelial cell line (HTERT-AEC II that we established retained lung epithelial cell characteristics: the cells were positive for surfactants A and B, and they secreted tumor necrosis factor-α and interleukin-6 in response to bacterial invasion. Thus, the cell line we established is a potential tool for research on the relationship between AECs and Mycobacterium tuberculosis.

  14. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  15. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-li; LIU Zhi-wei; LI Tian-shui; WANG Cong; ZHAO Bin

    2013-01-01

    Background Acute lung injury (ALl) is a common syndrome associated with high morbidity and mortality in emergency medicine.Cell apoptosis plays a key role in the pathogenesis of ALl.Hydrogen sulfide (H2S) plays a protective role during acute lung injury.We designed this study to examine the role of H2S in the lung alveolar epithelial cell apoptosis in rats with ALl.Methods Sixty-nine male Sprague Dawley rats were used.ALl was induced by intra-tail vein injection of oleic acid (OA).NaHS solution was injected intraperitonally 30 minutes before OA injection as the NaHS pretreatment group.Single sodium hydrosulfide pretreatment group and control group were designed.Index of quantitative assessment (IQA),wet/dry weight (W/D) ratio and the percentage of polymorphonuclear leukocyte (PMN) cells in the bronchoalveolar lavage fluid (BALF) were determined.H2S level in lung tissue was measured by a sensitive sulphur electrode.Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Fas protein was measured by immunohistochemical staining.Results The level of endogenous H2S in lung tissue decreased with the development of ALl induced by OA injection.Apoptosis and Fas protein in alveolar epithelial cells increased in the ALl of rats but NaHS lessened apoptosis and Fas protein expression in alveolar epithelial cells of rats with ALl.Conclusion Endogenous H2S protects rats from oleic acid-induced ALl,probably by inhibiting cell apoptosis.

  16. Primary Culture of Alveolar Epithelial Type Ⅱ Cells and Its Bionomic Study

    Institute of Scientific and Technical Information of China (English)

    SHI Xuemei; NI Wang; ZHANG Huilan; XIONG Shengdao; ZHEN Guohua; XIONG Weining; ZHANG Zhenxiang; XU Yongjian; HU Qiongjie; ZHAO Jianping

    2007-01-01

    To establish a better method of primary culture for alveolar epithelial type Ⅱ cells (AEC Ⅱ) and to study its bionomics, alveolar epithelial type Ⅱ cells were isolated by digestion with tryp- sin and collagenase, which were then purified by plated into culture flask coated with rat immu- noglobulin G. The purified AEC Ⅱ were identified by alkaline phosphatase staining, electron mi-croscopy, immunocytochemical staining of pulmonary surfactant protein A (SPA). The SPA expres-sion and transfection characteristics were compared with those of A549 cell line. The results showed that AEC Ⅱ could be isolated by digestion with trysin and collagenase and purified by adhesive pu- rification by using IgG, with a yield of about 2-3×107, and a purity of about 75%-84 %. Cells could be quickly identified with AKP staining. AEC Ⅱ were different from A549 cell line in terms of SPA expression and transfection characteristics. It is concluded that adhesive purification with IgG can improve the purity of AEC Ⅱ, and AKP staining is simple in cell identification. AEC Ⅱ can not be completely replaced by A549 cells in some studies because the differences between them, such as SPA expression.

  17. Cigarette Smoke Extract Inhibits the Proliferation of Alveolar Epithelial Cells and Augments the Expression of P21WAF1

    Institute of Scientific and Technical Information of China (English)

    Zongxian JIAO; Qilin AO; Xiaona GE; Mi XIONG

    2008-01-01

    Cigarette smoking is intimately related with the development of chronic obstructive pulmonary diseases, and alveolar epithelium is a major target for the exposure of cigarette smoke ex- tract. In order to investigate the effect of cigarette smoke extract on the proliferation of alveolar epithelial cell type Ⅱand its relationship with P21WAF1, the alveolar epithelial type Ⅱ cell line (A549) cells were chosen as surrogate cells to represent alveolar epithelial type Ⅱ cells. MTT assay was used to detect cell viability after interfered with different concentrations of cigarette smoke ex-tract. It was observed cigarette smoke extract inhibited the growth of A549 cells in a dose- and time-dependent manner. The morphological changes, involving the condensation and margination of nuclear chromatin, even karyorrhexis, were observed by both Hoechst staining and electronic mi-croscopy. Flow cytometry analysis demonstrated the increased cell percentages in G1 and subG1phases after the cells were incubated with cigarette smoke extract. The expression of p21WAF1 protein and mRNA was also significantly increased as detected by the methods of Western blot or reverse transcription-polymerase chain reaction respectively. In conclusion, cigarette smoke extract inhibits the proliferation of alveolar epithelial cell type Ⅱ and blocks them in G1/S phase. The intracellular accumulation of P21WAF1 may be one of the mechanisms which contribute to cigarette smoke ex-tract-induced inhibition of cell proliferation.

  18. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  19. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells

    Science.gov (United States)

    Li, Hong; Xiang, Zheng; Feng, Ting; Li, Jinrong; Liu, Yinping; Fan, Yingying; Lu, Qiao; Yin, Zhongwei; Yu, Meixing; Shen, Chongyang; Tu, Wenwei

    2013-01-01

    γδ-T cells play an indispensable role in host defense against different viruses, including influenza A virus. However, whether these cells have cytotoxic activity against influenza virus-infected lung alveolar epithelial cells and subsequently contribute to virus clearance remains unknown. Using influenza virus-infected A549 cells, human lung alveolar epithelial cells, we investigated the cytotoxic activity of aminobisphosphonate pamidronate (PAM)-expanded human Vγ9Vδ2-T cells and their underlying mechanisms. We found that PAM could selectively activate and expand human Vγ9Vδ2-T cells. PAM-expanded human Vγ9Vδ2-T cells efficiently killed influenza virus-infected lung alveolar epithelial cells and inhibited virus replication. The cytotoxic activity of PAM-expanded Vγ9Vδ2-T cells was dependent on cell-to-cell contact and required NKG2D activation. Perforin–granzyme B, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas–Fas ligand (FasL) pathways were involved in their cytotoxicity. Our study suggests that targeting γδ-T cells by PAM can potentially offer an alternative option for the treatment of influenza virus. PMID:23353835

  20. Role of cytoskeleton in cytokine production from lung alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cytokines are involved in both host defense and inflammatory lung injury. Recent work from our laboratory and others has demonstrated that in addition to classical immune cells, lung alveolar epithelial cells (or pneumocytes) can also produce cytokines in response to various stimuli. This new knowledge has advanced our view of the host defense system in the lung. The regulatory mechanisms of cytokine production have been studied in great detail at various cellular and molecular levels, but the mechanisms of intracellular cytokine transport are largely unknown. Our recent studies suggest that the cytoskeleton could play an important role in mediating intracellular cytokine trafficking. This could be an important regulatory step for cytokine production. For example, lipopolyssacharide (LPS) induced tumor necrosis factor-α (TNF-α) from rat pneumocytes, which was further enhanced by a microfilament-disrupting agent. LPS also induced macrophage inflammatory protein-2(MIP-2), a chemokine for neutrophil recruitment and activation, from rat pneumocytes. This effect was enhanced by microtubule-disrupting agents. We speculate that both microfilaments and microtubules are involved in regulating cytokine transportation in pneumocytes through different mechanisms. Further investigation in on going in my laboratory. From a clinical perspective, if we understand the mechanisms regulating cytokine production and release from lung alveolar epithelial cells, we may be able to enhance or inhibit release of crucial cytokines depending on the clinical situation.

  1. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells.

    Science.gov (United States)

    Wujak, Łukasz A; Blume, Anna; Baloğlu, Emel; Wygrecka, Małgorzata; Wygowski, Jegor; Herold, Susanne; Mayer, Konstantin; Vadász, István; Besuch, Petra; Mairbäurl, Heimo; Seeger, Werner; Morty, Rory E

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence. PMID:26410457

  2. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    Directory of Open Access Journals (Sweden)

    Kajiki Akira

    2011-03-01

    Full Text Available Abstract Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs. Objectives This study aimed to elucidate the clinical significance of the expression of such lung secretory proteins as SP-A and KL-6 in lung tissues of patients with IIPs. Methods We retrospectively investigated the immunohistochemical expression of SP-A, KL-6, cytokeratin (CK, and epithelial membrane antigen (EMA in alveolar epithelial cells in lung tissues obtained from surgical lung biopsy in 43 patients with IIPs, and analyzed the correlation between expression of these markers and the prognosis of each IIP patient. CK and EMA were used as general markers for epithelial cells. Results In patients with usual interstitial pneumonia (UIP, the ratio of SP-A positive epithelial cells to all alveolar epithelial cells (SP-A positive ratio in the collapsed and mural fibrosis areas varied, ranging from cases where almost all alveolar epithelial cells expressed SP-A to cases where only a few did. On the other hand, in many patients with nonspecific interstitial pneumonia (NSIP, many of the alveolar epithelial cells in the diseased areas expressed SP-A. The SP-A positive ratio was significantly lower in patients who died from progression of UIP than in patients with UIP who remained stable or deteriorated but did not die. In NSIP patients, a similar tendency was noted between the SP-A positive ratio and prognosis. Conclusions The results suggest that the paucity of immunohistochemical SP-A expression in alveolar epithelial cells in diseased areas (i.e. regenerative

  3. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    OpenAIRE

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.; Waters, Christopher M.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CX...

  4. Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    Xiaofei Qin

    2013-01-01

    Full Text Available Alveolar epithelial type II cells (AECIIs containing lamellar bodies (LBs are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI. After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group, namely, control (no mechanical ventilation, conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.

  5. Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection.

    Science.gov (United States)

    Gentry, Megan; Taormina, Joanna; Pyles, Richard B; Yeager, Linsey; Kirtley, Michelle; Popov, Vsevolod L; Klimpel, Gary; Eaves-Pyles, Tonyia

    2007-08-01

    Francisella tularensis, an intracellular pathogen, is highly virulent when inhaled. Alveolar epithelial type I (ATI) and type II (ATII) cells line the majority of the alveolar surface and respond to inhaled pathogenic bacteria via cytokine secretion. We hypothesized that these cells contribute to the lung innate immune response to F. tularensis. Results demonstrated that the live vaccine strain (LVS) contacted ATI and ATII cells by 2 h following intranasal inoculation of mice. In culture, primary human ATI or ATII cells, grown on transwell filters, were stimulated on the apical (AP) surface with virulent F. tularensis Schu 4 or LVS. Basolateral (BL) conditioned medium (CM), collected 6 and 24 h later, was added to the BL surfaces of transwell cultures of primary human pulmonary microvasculature endothelial cells (HPMEC) prior to the addition of polymorphonuclear leukocytes (PMNs) or dendritic cells (DCs) to the AP surface. HPMEC responded to S4- or LVS-stimulated ATII, but not ATI, CM as evidenced by PMN and DC migration. Analysis of the AP and BL ATII CM revealed that both F. tularensis strains induced various levels of a variety of cytokines via NF-kappaB activation. ATII cells pretreated with an NF-kappaB inhibitor prior to F. tularensis stimulation substantially decreased interleukin-8 secretion, which did not occur through Toll-like receptor 2, 2/6, 4, or 5 stimulation. These data indicate a crucial role for ATII cells in the innate immune response to F. tularensis. PMID:17502386

  6. Role of Primary Human Alveolar Epithelial Cells in Host Defense against Francisella tularensis Infection▿

    Science.gov (United States)

    Gentry, Megan; Taormina, Joanna; Pyles, Richard B.; Yeager, Linsey; Kirtley, Michelle; Popov, Vsevolod L.; Klimpel, Gary; Eaves-Pyles, Tonyia

    2007-01-01

    Francisella tularensis, an intracellular pathogen, is highly virulent when inhaled. Alveolar epithelial type I (ATI) and type II (ATII) cells line the majority of the alveolar surface and respond to inhaled pathogenic bacteria via cytokine secretion. We hypothesized that these cells contribute to the lung innate immune response to F. tularensis. Results demonstrated that the live vaccine strain (LVS) contacted ATI and ATII cells by 2 h following intranasal inoculation of mice. In culture, primary human ATI or ATII cells, grown on transwell filters, were stimulated on the apical (AP) surface with virulent F. tularensis Schu 4 or LVS. Basolateral (BL) conditioned medium (CM), collected 6 and 24 h later, was added to the BL surfaces of transwell cultures of primary human pulmonary microvasculature endothelial cells (HPMEC) prior to the addition of polymorphonuclear leukocytes (PMNs) or dendritic cells (DCs) to the AP surface. HPMEC responded to S4- or LVS-stimulated ATII, but not ATI, CM as evidenced by PMN and DC migration. Analysis of the AP and BL ATII CM revealed that both F. tularensis strains induced various levels of a variety of cytokines via NF-κB activation. ATII cells pretreated with an NF-κB inhibitor prior to F. tularensis stimulation substantially decreased interleukin-8 secretion, which did not occur through Toll-like receptor 2, 2/6, 4, or 5 stimulation. These data indicate a crucial role for ATII cells in the innate immune response to F. tularensis. PMID:17502386

  7. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase.

    Science.gov (United States)

    Wilhelm, Kristina R; Roan, Esra; Ghosh, Manik C; Parthasarathi, Kaushik; Waters, Christopher M

    2014-02-01

    Patients with acute lung injury are administered high concentrations of oxygen during mechanical ventilation, and while both hyperoxia and mechanical ventilation are necessary, each can independently cause additional injury. However, the precise mechanisms that lead to injury are not well understood. We hypothesized that alveolar epithelial cells may be more susceptible to injury caused by mechanical ventilation because hyperoxia causes cells to be stiffer due to increased filamentous actin (f-actin) formation via the GTPase RhoA and its effecter Rho kinase (ROCK). We examined cytoskeletal structures in cultured murine lung alveolar epithelial cells (MLE-12) under normoxic and hyperoxic (48 h) conditions. We also measured cell elasticity (E) using an atomic force microscope in the indenter mode. Hyperoxia caused increased f-actin stress fibers and bundle formation, an increase in g- and f-actin, an increase in nuclear area and a decrease in nuclear height, and cells became stiffer (higher E). Treatment with an inhibitor (Y-27632) of ROCK significantly decreased E and prevented the cytoskeletal changes, while it did not influence the nuclear height and area. Pre-exposure of cells to hyperoxia promoted detachment when cells were subsequently stretched cyclically, but the ROCK inhibitor prevented this effect. Hyperoxia caused thickening of vinculin focal adhesion plaques, and inhibition of ROCK reduced the formation of distinct focal adhesion plaques. Phosphorylation of focal adhesion kinase was significantly reduced by both hyperoxia and treatment with Y-27632. Hyperoxia caused increased cell stiffness and promoted cell detachment during stretch. These effects were ameliorated by inhibition of ROCK.

  8. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    Science.gov (United States)

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. PMID:26702148

  9. Breakdown of Epithelial Barrier Integrity and Overdrive Activation of Alveolar Epithelial Cells in the Pathogenesis of Acute Respiratory Distress Syndrome and Lung Fibrosis

    OpenAIRE

    Shigehisa Yanagi; Hironobu Tsubouchi; Ayako Miura; Nobuhiro Matsumoto; Masamitsu Nakazato

    2015-01-01

    Individual alveolar epithelial cells (AECs) collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic ...

  10. Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Dagher Hayat

    2010-02-01

    Full Text Available Abstract Background Transforming growth factor β1 (TGF-β1-mediated epithelial mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ and ciglitazone (CGZ to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker and N-cadherin (mesenchymal cell marker, and collagen 1α1 (COL1A1, CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line were pre-incubated with RGZ and CGZ (1 - 30 μM in the absence or presence of the PPARγ antagonist GW9662 (10 μM before TGFβ-1 (0.075-7.5 ng/ml treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml. However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml, with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR

  11. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    Science.gov (United States)

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  12. Protein Expression Profile of Rat Type Two Alveolar Epithelial Cells During Hyperoxic Stress and Recovery

    Science.gov (United States)

    Bhargava, Maneesh

    Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.

  13. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xu-Guang [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ji, Tian-Xing [Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Xia, Yong, E-mail: gysyxy@gmail.com [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ma, Yue-Yun, E-mail: cmbmayy@fmmu.edu.cn [Center for Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi' an (China)

    2013-03-08

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  14. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    International Nuclear Information System (INIS)

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  15. Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers

    Directory of Open Access Journals (Sweden)

    Fazlollahi F

    2011-11-01

    Full Text Available Farnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8 1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Department of Pathology, 5Department of Physiology and Biophysics, 6Department of Pharmacology and Pharmaceutical Sciences, 7Department of Biomedical Engineering, 8Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA Background: In this study, primary rat alveolar epithelial cell monolayers (RAECM were used to investigate transalveolar epithelial quantum dot trafficking rates and underlying transport mechanisms. Methods: Trafficking rates of quantum dots (PEGylated CdSe/ZnS, core size 5.3 nm, hydrodynamic size 25 nm in the apical-to-basolateral direction across RAECM were determined. Changes in bioelectric properties (ie, transmonolayer resistance and equivalent active ion transport rate of RAECM in the presence or absence of quantum dots were measured. Involvement of endocytic pathways in quantum dot trafficking across RAECM was assessed using specific inhibitors (eg, methyl-ß-cyclodextrin, chlorpromazine, and dynasore for caveolin-, clathrin-, and dynamin-mediated endocytosis, respectively. The effects of lowering tight junctional resistance on quantum dot trafficking were determined by depleting Ca2+ in apical and basolateral bathing fluids of RAECM using 2 mM EGTA. Effects of temperature on quantum dot trafficking were studied by lowering temperature from 37°C to 4°C. Results: Apical exposure of RAECM to quantum dots did not elicit changes in transmonolayer resistance or ion transport rate for up to 24 hours; quantum dot trafficking rates were not surface charge-dependent; methyl-ß-cyclodextrin, chlorpromazine, and dynasore did not decrease quantum dot trafficking rates; lowering of temperature

  16. MicroRNA 16 Modulates Epithelial Sodium Channel in Human Alveolar Epithelial Cells

    OpenAIRE

    Parthasarathy, Prasanna Tamarapu; Galam, Lakshmi; Huynh, Bao; Yunus, Asfiya; Abuelenen, Toaa; Castillo, Annie; Ramanathan, Gurukumar Kollongod; Ruan, Cox; Kolliputi, Narasaiah

    2012-01-01

    Acute lung injury (ALI) is a devastating disease characterized by pulmonary edema. Removal of edema from the air spaces is a critical function of the epithelial sodium channel (ENaC) in ALI. The molecular mechanisms behind resolution of pulmonary edema are incompletely understood. MicroRNA’s (miRNA) are crucial gene regulators and are dysregulated in various diseases including ALI. Recent studies suggest that microRNA-16 (miR-16) targets serotonin transporter (SERT) involved in the serotonin ...

  17. Rv3351c, a Mycobacterium tuberculosis gene that affects bacterial growth and alveolar epithelial cell viability.

    Science.gov (United States)

    Pavlicek, Rebecca L; Fine-Coulson, Kari; Gupta, Tuhina; Quinn, Frederick D; Posey, James E; Willby, Melisa; Castro-Garza, Jorge; Karls, Russell K

    2015-12-01

    Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.

  18. Incorporation of tritiated thymidine by epithelial and interstitial cells in bronchiolar-alveolar regions of asbestos-exposed rats

    International Nuclear Information System (INIS)

    Inhaled asbestos causes progressive interstitial lung disease. The authors have performed a series of studies to elucidate early pathogenetic events at sites of fiber deposition in asbestos-exposed rats. This study reports that a single 5-hour exposure to chrysotile asbestos induces significant increases in incorporation of tritiated thymidine (3HTdR) into nuclei of epithelial and interstitial cells of bronchiolar-alveolar regions. No cell populations in air-exposed or carbonyl iron-exposed control animals exhibited more than 1% labeling at any point in time. Immediately after the 5-hour asbestos exposure, incorporation was normal. By 19 hours after exposure there was a significant increase in incorporation of 3HTdR, particularly by Type II epithelial cells of the first alveolar duct bifurcations. The greatest increase in degree of incorporation (up to 18-fold) was observed 24 hours after exposure, and increased percentages of 3HTdR-labeled cells were maintained through the 48 hours postexposure period. Normal labeling was present by 8 days after exposure, and this level remained through the 1-month period studied. This apparent mitogenic response correlates with increased numbers of bronchiolar-alveolar epithelial and interstitial cells demonstrated by ultrastructural morphometry in correlative studies. The authors speculate that the incorporation of 3HTdR could be induced by the direct effects of inhaled fibers or by mitogenic factors released from macrophages attracted to the inhaled asbestos

  19. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Stoehr Linda C

    2011-12-01

    Full Text Available Abstract Background In nanotoxicology, the exact role of particle shape, in relation to the composition, on the capacity to induce toxicity is largely unknown. We investigated the toxic and immunotoxic effects of silver wires (length: 1.5 - 25 μm; diameter 100 - 160 nm, spherical silver nanoparticles (30 nm and silver microparticles ( Methods Wires and nanoparticles were synthesized by wet-chemistry methods and extensively characterized. Cell viability and cytotoxicity were assessed and potential immunotoxic effects were investigated. To compare the effects on an activated and a resting immune system, cells were stimulated with rhTNF-α or left untreated. Changes in intracellular free calcium levels were determined using calcium imaging. Finally, ion release from the particles was assessed by ICP-MS and the effects of released ions on cell viability and cytotoxicity were tested. Results No effects were observed for the spherical particles, whereas the silver wires significantly reduced cell viability and increased LDH release from A549 cells. Cytokine promoter induction and NF-κB activation decreased in a concentration dependent manner similar to the decrease seen in cell viability. In addition, a strong increase of intracellular calcium levels within minutes after addition of wires was observed. This toxicity was not due to free silver ions, since the samples with the highest ion release did not induce toxicity and ion release control experiments with cells treated with pre-incubated medium did not show any effects either. Conclusions These data showed that silver wires strongly affect the alveolar epithelial cells, whereas spherical silver particles had no effect. This supports the hypothesis that shape is one of the important factors that determine particle toxicity.

  20. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Seok-Jo Kim

    2015-09-01

    Full Text Available Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC programmed cell death (apoptosis that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF and asbestosis (pulmonary fibrosis following asbestos exposure. The mammalian mitochondrial DNA (mtDNA encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1 and mitochondrial aconitase (ACO-2 in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.

  1. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Williams, David B; Kamp, David W

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  2. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Georg Ebeling

    Full Text Available P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.

  3. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  4. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Michelle B Ryndak

    Full Text Available Mycobacterium tuberculosis (M. tb infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2-3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW. In contrast, significant downregulation of the DevR (DosR regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune

  5. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia.

    Directory of Open Access Journals (Sweden)

    Katrin Högner

    2013-02-01

    Full Text Available Influenza viruses (IV cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL. Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR- and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.

  6. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    OpenAIRE

    Kajiki Akira; Fukushima Kazuo; Kawabata Masaharu; Wakamatsu Kentaro; Kitasato Yasuhiko; Nagata Nobuhiko; Kitahara Yoshinari; Watanabe Kentaro

    2011-01-01

    Abstract Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP) and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs). Objectives This...

  7. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias

    OpenAIRE

    Nagata, Nobuhiko; Kitasato, Yasuhiko; Wakamatsu, Kentaro; Kawabata, Masaharu; Fukushima, Kazuo; Kajiki, Akira; Kitahara, Yoshinari; Watanabe, Kentaro

    2011-01-01

    Background It is difficult to predict survival in patients with idiopathic pulmonary fibrosis. Recently, several proteins, such as surfactant protein (SP) and KL-6, have been reported to be useful biologic markers for prediction of prognosis for interstitial pneumonias. It is not clear whether there is any relationship between expression of these proteins in regenerative/hyperplastic alveolar epithelial cells and prognosis of idiopathic interstitial pneumonias (IIPs). Objectives This study ai...

  8. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew Faron

    Full Text Available Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell, as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris and had an attenuated growth phenotype in the human AT-II cells. These

  9. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    OpenAIRE

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E.; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2010-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells ...

  10. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model.

    Science.gov (United States)

    Birkelbach, Bastian; Lutz, Dennis; Ruppert, Clemens; Henneke, Ingrid; Lopez-Rodriguez, Elena; Günther, Andreas; Ochs, Matthias; Mahavadi, Poornima; Knudsen, Lars

    2015-07-01

    Chronic injury of alveolar epithelial type II cells (AE2 cells) represents a key event in the development of lung fibrosis in animal models and in humans, such as idiopathic pulmonary fibrosis (IPF). Intratracheal delivery of amiodarone to mice results in a profound injury and macroautophagy-dependent apoptosis of AE2 cells. Increased autophagy manifested in AE2 cells by disturbances of the intracellular surfactant. Hence, we hypothesized that ultrastructural alterations of the intracellular surfactant pool are signs of epithelial stress correlating with the severity of fibrotic remodeling. With the use of design-based stereology, the amiodarone model of pulmonary fibrosis in mice was characterized at the light and ultrastructural level during progression. Mean volume of AE2 cells, volume of lamellar bodies per AE2 cell, and mean size of lamellar bodies were correlated to structural parameters reflecting severity of fibrosis like collagen content. Within 2 wk amiodarone leads to an increase in septal wall thickness and a decrease in alveolar numbers due to irreversible alveolar collapse associated with alveolar surfactant dysfunction. Progressive hypertrophy of AE2 cells and increase in mean individual size and total volume of lamellar bodies per AE2 cell were observed. A high positive correlation of these AE2 cell-related ultrastructural changes and the deposition of collagen fibrils within septal walls were established. Qualitatively, similar alterations could be found in IPF samples with mild to moderate fibrosis. We conclude that ultrastructural alterations of AE2 cells including the surfactant system are tightly correlated with the progression of fibrotic remodeling. PMID:25957292

  11. Breakdown of Epithelial Barrier Integrity and Overdrive Activation of Alveolar Epithelial Cells in the Pathogenesis of Acute Respiratory Distress Syndrome and Lung Fibrosis

    Directory of Open Access Journals (Sweden)

    Shigehisa Yanagi

    2015-01-01

    Full Text Available Individual alveolar epithelial cells (AECs collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic lung diseases involve AECs both as a frequent target of injury and as a driver of ongoing pathological processes. Aberrantly activated AECs express most of the growth factors and chemokines responsible for the proliferation, migration, and activation of fibroblasts. Current evidences suggest that AECs may acquire overdrive activation in the initial step of fibrosis by several mechanisms, including abnormal recapitulation of the developmental pathway, defects of the molecules essential for epithelial integrity, and acceleration of aging-related properties. Among these initial triggering events, epithelial Pten, a multiple phosphatase that negatively regulates the PI3K/Akt pathway and is crucial for lung development, is essential for the prevention of alveolar flooding and lung fibrosis through the regulation of AEC barrier integrity after injury. Reestablishment of AEC barrier integrity also involves the deployment of specialized stem/progenitor cells.

  12. Activated Alveolar Epithelial Cells Initiate Fibrosis through Secretion of Mesenchymal Proteins

    OpenAIRE

    Yang, Jibing; Wheeler, Sarah E.; Velikoff, Miranda; Kleaveland, Kathryn R.; LaFemina, Michael J.; Frank, James A.; Chapman, Harold A.; Christensen, Paul J; Kim, Kevin K.

    2013-01-01

    Fibrosis is characterized by accumulation of activated fibroblasts and pathological deposition of fibrillar collagens. Activated fibroblasts overexpress matrix proteins and release factors that promote further recruitment of activated fibroblasts, leading to progressive fibrosis. The contribution of epithelial cells to this process remains unknown. Epithelium-directed injury may lead to activation of epithelial cells with phenotypes and functions similar to activated fibroblasts. Prior report...

  13. The vitronectin RGD motif regulates TGF-β-induced alveolar epithelial cell apoptosis.

    Science.gov (United States)

    Wheaton, Amanda K; Velikoff, Miranda; Agarwal, Manisha; Loo, Tiffany T; Horowitz, Jeffrey C; Sisson, Thomas H; Kim, Kevin K

    2016-06-01

    Transforming growth factor-β (TGF-β) is a critical driver of acute lung injury and fibrosis. Injury leads to activation of TGF-β, which regulates changes in the cellular and matrix makeup of the lung during the repair and fibrosis phase. TGF-β can also initiate alveolar epithelial cell (AEC) apoptosis. Injury leads to destruction of the laminin-rich basement membrane, which is replaced by a provisional matrix composed of arginine-glycine-aspartate (RGD) motif-containing plasma matrix proteins, including vitronectin and fibronectin. To determine the role of specific matrix proteins on TGF-β-induced apoptosis, we studied primary AECs cultured on different matrix conditions and utilized mice with deletion of vitronectin (Vtn(-/-)) or mice in which the vitronectin RGD motif is mutated to nonintegrin-binding arginine-glycine-glutamate (RGE) (Vtn(RGE/RGE)). We found that AECs cultured on fibronectin and vitronectin or in wild-type mouse serum are resistant to TGF-β-induced apoptosis. In contrast, AECs cultured on laminin or in serum from Vtn(-/-) or Vtn(RGE/RGE) mice undergo robust TGF-β-induced apoptosis. Plasminogen activator inhibitor-1 (PAI-1) sensitizes AECs to greater apoptosis by disrupting AEC engagement to vitronectin. Inhibition of integrin-associated signaling proteins augments AEC apoptosis. Mice with transgenic deletion of PAI-1 have less apoptosis after bleomycin, but deletion of vitronectin or disruption of the vitronectin RGD motif reverses this protection, suggesting that the proapoptotic function of PAI-1 is mediated through vitronectin inhibition. Collectively, these data suggest that integrin-matrix signaling is an important regulator of TGF-β-mediated AEC apoptosis and that PAI-1 functions as a natural regulator of this interaction. PMID:27106291

  14. Construction of p66Shc gene interfering lentivirus vectors and its effects on alveolar epithelial cells apoptosis induced by hyperoxia

    Science.gov (United States)

    Zhang, Chan; Dong, Wen-Bin; Zhao, Shuai; Li, Qing-Ping; Kang, Lan; Lei, Xiao-Ping; Guo, Lin; Zhai, Xue-Song

    2016-01-01

    Background The aim of this study is to observe the inhibitive effects of p66Shc gene interfering lentivirus vectors on the expression of p66Shc, and to explore its effects on alveolar epithelial cells apoptosis induced by hyperoxia. Methods The gene sequences were cloned into the pLenR-GPH-shRNA lentiviral vector, which was selected by Genebank searches. The pLenR-GPH-shRNA and lentiviral vector packaging plasmid mix were cotransfected into 293T cells to package lentiviral particles. Culture virus supernatant was harvested, and then the virus titer was determined by serial dilution assay. A549 cells were transduced with the constructed lentiviral vectors, and real-time polymerase chain reaction (RT-PCR) and Western blot were used to evaluate p66Shc expression. This study is divided into a control group, a hyperoxia group, an A549-p66ShcshRNA hyperoxia group, and a negative lentivirus group. Cell apoptosis was detected by flow cytometry after 24 hours; the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-9 were detected by immunohistochemistry assay. The production of reactive oxygen species and cellular mitochondria membrane potential (ΔΨm) were determined by fluorescence microscopy. Results We successfully established the p66Shc gene interfering lentivirus vectors, A549-p66ShcshRNA. The A549-p66ShcshRNA was transfected into alveolar epithelial cells, and the inhibitive effects on the expression of p66Shc were observed. Both RT-PCR and Western blot demonstrated downregulation of p66Shc expression in A549 cells. In the A549-p66ShcshRNA hyperoxia group, we found dampened oxidative stress. A549-p66ShcshRNA can cause p66Shc gene silencing, reduce mitochondrial reactive oxygen species generation, reduce membrane potential decrease, reduce the apoptosis of A549 cells, and reduce alveolar epithelial cell injury, while the lentiviral empty vector group had no such changes. Conclusion p66Shc gene interfering lentivirus vector can affect the

  15. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  16. Elastolytic activity and alveolar epithelial type-1 cell damage after chronic LPS inhalation: Effects of dexamethasone and rolipram

    International Nuclear Information System (INIS)

    This study investigated whether a correlation between leukocyte-derived elastolytic activity, alveolar epithelial type-1 cell damage, and leukocyte infiltration of the airways existed in guinea-pigs chronically exposed to inhaled lipopolysaccharide (LPS). The airway pathology of this model, notably the neutrophilia, resembles chronic obstructive pulmonary disease (COPD). The effect of the corticosteroid, dexamethasone, or the phosphodiesterase-4 (PDE4)-inhibitor, rolipram, on these features was studied. Conscious guinea-pigs were exposed for 1 h to single or repeated (nine) doses of LPS (30 μg ml-1). Dexamethasone (20 mg kg-1, ip) or rolipram (1 mg kg-1, ip) was administered 24 and 0.5 h before the first exposure and daily thereafter. Bronchoalveolar lavage fluid (BALF) was removed and elastolytic activity determined as the elastase-like release of Congo Red from impregnated elastin. The presence of the specific epithelial cell type-1 protein (40-42 kDa) RT140 in BALF was identified by Western blotting using a rat monoclonal antibody and semi-quantified by dot-blot analysis. The antibody was found to identify guinea-pig RT140. BALF inflammatory cells, particularly neutrophils and macrophages, and elastolytic activity were increased in chronic LPS-exposed guinea-pigs, the latter by 90%. Chronic LPS exposure also increased (10.5-fold) RT140 levels, indicating significant alveolar epithelial type-1 cell damage. Dexamethasone or rolipram treatment reduced the influx of inflammatory cells, the elastolytic activity (by 40% and 38%, respectively), and RT140 levels (by 50% and 57%, respectively). In conclusion, chronic LPS-exposed guinea-pigs, like COPD, exhibit elastolytic lung damage. This was prevented by a PDE4 inhibitor and supports their development for suppressing this leukocyte-mediated pathology

  17. Exacerbation of benzene pneumotoxicity in connexin 32 knockout mice: enhanced proliferation of CYP2E1-immunoreactive alveolar epithelial cells

    International Nuclear Information System (INIS)

    The pulmonary pathogenesis triggered by benzene exposure was studied. Since the role of the connexin 32 (Cx32) gap junction protein in mouse pulmonary pathogenesis has been suggested, in the present study, we explored a possible role of Cx32 in benzene-induced pulmonary pathogenesis using the wild-type (WT) and Cx32 knockout (KO) mice. The mice were exposed to 300 ppm benzene by inhalation for 6 h per day, 5 days per week for a total of 26 weeks, and then sacrificed to evaluate the pneumotoxicity or allowed to live out their life span to evaluate the reversibility of the lesions and tumor incidence. Our results clearly revealed exacerbated pneumotoxicity in the benzene-exposed Cx32 KO mice, characterized by diffuse granulomatous interstitial pneumonia, markedly increased mucin secretion of bronchial/bronchiolar and alveolar epithelial cells, and hyperplastic alveolar epithelial cells positive for CYP2E1. But the results did not indicate any enhancement of pulmonary tumorigenesis in the Cx32 KO mice though the number of animals was small

  18. Intratracheal Administration of Recombinant Human Keratinocyte Growth Factor Promotes Alveolar Epithelial Cell Proliferation during Compensatory Lung Growth in Rat

    International Nuclear Information System (INIS)

    Keratinocyte growth factor (KGF) is considered to be one of the most important mitogens for lung epithelial cells. The objectives of this study were to confirm the effectiveness of intratracheal injection of recombinant human KGF (rhKGF) during compensatory lung growth and to optimize the instillation protocol. Here, trilobectomy in adult rat was performed, followed by intratracheal rhKGF instillation with low (0.4 mg/kg) and high (4 mg/kg) doses at various time-points. The proliferation of alveolar cells was assessed by the immunostaining for proliferating cell nuclear antigen (PCNA) in the residual lung. We also investigated other immunohistochemical parameters such as KGF, KGF receptor and surfactant protein A as well as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Consequently, intratracheal single injection of rhKGF in high dose group significantly increased PCNA labeling index (LI) of alveolar cells in the remaining lung. Surprisingly, there was no difference in PCNA LI between low and high doses of rhKGF with daily injection, and PCNA LI reached a plateau level with 2 days-consecutive administration (about 60%). Our results indicate that even at low dose, daily intratracheal injection is effective to maintain high proliferative states during the early phase of compensatory lung growth

  19. Proinflammatory cytokine responses induced by influenza A (H5N1 viruses in primary human alveolar and bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Poon LLM

    2005-11-01

    Full Text Available Abstract Background Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10. Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97 (H5N1/97 were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a and chemokines (e.g. IP-10 from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. Methods We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97, A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04 with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. Results We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted and interleukin 6 (IL-6 in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04 appeared to be even more potent at inducing IP-10 than H5N1/97 virus. Conclusion The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.

  20. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  1. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor

    OpenAIRE

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C.; Kim, Kevin K.

    2014-01-01

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis...

  2. Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles

    International Nuclear Information System (INIS)

    While inhalation represents one of the most likely routes of exposure, the toxicity and response of nanoparticles at concentrations expected from such an exposure are not well understood. Here we characterized the in vitro response of human A549 adenocarcinomic alveolar epithelial cells following exposure to gold (AuNP) and silver (AgNP) nanoparticles at levels approximating an occupational exposure. Changes in neither oxidative stress nor cytotoxicity were significantly affected by exposure to AgNPs and AuNPs, regardless of NP type (Ag vs. Au), concentration, surface ligand (citrate or tannic acid), or size. An inflammatory response was, however, observed in response to 20 nm AgNPs and 20 nm AuNPs, where significant differences in the release of interleukin (IL)-8 but not IL-6 were observed. Additional data demonstrated that increased IL-8 secretion was strongly dependent on both nanoparticle size and concentration. Overall these data suggest that, while not acutely toxic, occupational exposure to AuNPs and AgNPs may trigger a significant inflammatory response in alveolar epithelium. Moreover, the differential responses in IL-8 and IL-6 secretion suggest that NPs may induce a response pathway that is distinct from those commonly elicited by allergens and pathogens.

  3. Environmental particulate (PM2.5 augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta.

    Directory of Open Access Journals (Sweden)

    Marilyn M Dysart

    Full Text Available Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD, and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor--beta (TGFβ signaling, the alveolar type II (ATII epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5 will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung

  4. Role of mechanical stretching and lipopolysaccharide in early apoptosis and IL-8 of alveolar epithelial typeⅡ cells A549

    Institute of Scientific and Technical Information of China (English)

    Qiao-Ming Ning; Xiao-Ning Sun; Xin-Kai Zhao

    2012-01-01

    Objective:To investigate the effects of mechanical stretching and lipopolysaccharide (LPS) on the early apoptosis and IL-8 production of alveolar epithelial typeⅡ cellsA549.Methods:The experimental matrix consisted of three integrated studies.In the first study,A549 cells were subjected to different stretching strain frequency and duration time to see the effects on the early apoptosis.In the second study,A549 cells were subjected to mechanical stretch(15%4 h, 0.5Hz) andLPS(1 or100 ng/mL) to see whether mechanical strain andLPS also have an addictive effect on the early apoptosis.In the third study to investigate whether this addictive effect could be induced byLPS and mechanical stretch onIL-8 production,A549 cells were subjected to LPS(100 ng/mL) and mechanical strain(15%,0.5Hz,4 h).Real timePCR and enzyme linked immunosorbent assay were used to measure mRNA and protein level ofIL-8.The early apoptosis was detected by flow cytometry.Results:Mechanical stretch induced the early apoptosis in a force and frequency and time-dependent manner.In the presence ofLPS, mechanical stretch enhancedLPS-induced early apoptosis, especially in100 ng/mLLPS group compared with1 ng/mLLPS and the control group.Mechanical stretch increasedIL-8 production and enhancedLPS-inducedIL-8 screation both in mRNA and protein levels.Conclusions:Mechanical stretch can induce the early apoptosis andIL-8 secretion.Mechanical stretch andLPS have an addictive effect on the early apoptosis andIL-8 production in alveolar type2 cells, which is one of the mechanisms of ventilator-induced lung injury.

  5. Electron microscope study on the relationship between macrophages of the alevolar space and spheroid alveolar epithelial cells on mice after injection of squid-ink (sepia-melanin solution into the trachea

    Directory of Open Access Journals (Sweden)

    Suwa,Kiichi

    1977-02-01

    Full Text Available The relationship between alveolar macrophages and spheroid alveolar epithelial cells was studied with the electron microscope after injection of squid-ink solution into the trachea of the mouse. At 20 hours after injection of squid-ink solution slight degeneration was evident in alveolar macrophages with sepia-melanin particles being phagocytized with partial digestion by lysosmes. Furthermore, hardly any changes were seen in mitochondria and inclusion bodies of the spheroid alveolar epithelial cells. In contrast, at one week after injection of squid-ink solution, almost all alveolar macrophages were degenerated with destruction of the ectoplasm in which the ingested sepia-melanin particles were digested by lysosomes into fine particles, and the mitochondria of spheroid alveolar epithelial cells were degenerated and the inclusion bodies were hardly formed. At three weeks after injection of squid-ink solution, alveolar macrophages as well as speroid alveolar epithelial cells showed almost complete recovery of functional structure. As the phagocyte in the alveolar space, neutrophile leucocytes were also observed in addition to the so-called alveolar macrophage.

  6. Cadmium exposure down-regulates 8-oxoguanine DNA glycosylase expression in rat lung and alveolar epithelial cells

    International Nuclear Information System (INIS)

    The current study tested the hypothesis that the pulmonary carcinogenic potential of cadmium (Cd) is related to its ability to inhibit the expression (mRNA and protein) and activity of 8-oxoguanine-DNA glycosylase (OGG1), a base excision repair (BER) enzyme that functions to preferentially excise pre-mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA. We demonstrate that a single Cd aerosol exposure of adult male Lewis rats causes time- and dose-dependent down-regulation in the pulmonary levels of rOGG1 mRNA and OGG1 protein, quantified by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assays and western analyses, respectively. Immunohistochemical studies confirmed that Cd inhalation reduces the relative amount of OGG1 in lungs of exposed animals without altering its over-all distribution within the lung, which appears to be more prominent within the alveolar epithelium. In agreement with our in vivo studies, we show that OGG1 expression is also attenuated in alveolar epithelial cell cultures exposed to CdCl2 either acutely or by repeated passaging in Cd-containing medium. The effects caused by Cd were observed in cells that show no loss in viability, as assessed by colony forming ability, the MTT assay, and propidium iodide membrane permeability studies. Nuclear extracts prepared from Cd-treated cells also exhibit a reduction in the ability to nick a synthetic oligonucleotide containing 8-oxoG. We conclude from these studies that Cd causes suppression of OGG1 in the lung and that this mechanism may, in part, play a role in the Cd carcinogenic process

  7. CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II

    Directory of Open Access Journals (Sweden)

    Prasse Antje

    2005-07-01

    Full Text Available Abstract The attraction of leukocytes from circulation to inflamed lungs depends on the activation of both the leukocytes and the resident cells within the lung. In this study we determined gene expression and secretion patterns for monocyte chemoattractant protein-1 (MCP-1/CCL2 and T-cell specific CXCR3 agonistic chemokines (Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11 in TNF-α-, IFN-γ-, and IL-1β-stimulated human alveolar epithelial cells type II (AEC-II. AEC-II constitutively expressed high level of CCL2 mRNA in vitro and in situ , and released CCL2 protein in vitro . Treatment of AEC-II with proinflammatory cytokines up-regulated both CCL2 mRNA expression and release of immunoreactive CCL2, whereas IFN-γ had no effect on CCL2 release. In contrast, CXCR3 agonistic chemokines were not detected in freshly isolated AEC-II or in non-stimulated epithelial like cell line A549. IFN-γ, alone or in combination with IL-1β and TNF-α resulted in an increase in CXCL10, CXCL11, and CXCL9 mRNA expression and generation of CXCL10 protein by AEC-II or A549 cells. CXCL10 gene expression and secretion were induced in dose-dependent manner after cytokine-stimulation of AEC-II with an order of potency IFN-γ>>IL-1β ≥ TNF-α. Additionally, we localized the CCL2 and CXCL10 mRNAs in human lung tissue explants by in situ hybridization, and demonstrated the selective effects of cytokines and dexamethasone on CCL2 and CXCL10 expression. These data suggest that the regulation of the CCL2 and CXCL10 expression exhibit significant differences in their mechanisms, and also demonstrate that the alveolar epithelium contributes to the cytokine milieu of the lung, with the ability to respond to locally generated cytokines and to produce potent mediators of the local inflammatory response.

  8. Effect of Amygdalin on the Proliferation of Hyperoxia-exposed Type Ⅱ Alveolar Epithelial Cells Isolated from Premature Rat

    Institute of Scientific and Technical Information of China (English)

    祝华平; 常立文; 李文斌; 刘汉楚

    2004-01-01

    Summary: The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in AEC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 μmol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 μmol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 μmol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  9. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals

    OpenAIRE

    Marcinkiewicz, Mariola M.; Baker, Sandy T.; Jichuan Wu; Terrence L Hubert; Wolfson, Marla R.

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established ...

  10. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells.

    Science.gov (United States)

    Grabowski, Nadège; Hillaireau, Hervé; Vergnaud, Juliette; Santiago, Letícia Aragão; Kerdine-Romer, Saadia; Pallardy, Marc; Tsapis, Nicolas; Fattal, Elias

    2013-10-01

    In vitro cytotoxicity and inflammatory response following exposure to nanoparticles (NPs) made of poly(lactide-co-glycolide) (PLGA) have been investigated on A549 human lung epithelial cells. Three different PLGA NPs (230 nm) were obtained using different stabilizers (polyvinyl alcohol, chitosan, or Pluronic(®) F68) to form respectively neutral, positively or negatively charged NPs. Polystyrene NPs were used as polymeric but non-biodegradable NPs, and titanium dioxide (anatase and rutile) as inorganic NPs, for comparison. Cytotoxicity was evaluated through mitochondrial activity as well as membrane integrity (lactate dehydrogenase release, trypan blue exclusion, propidium iodide staining). The cytotoxicity of PLGA-based and polystyrene NPs was lower or equivalent to the one observed after exposure to titanium dioxide NPs. The inflammatory response, evaluated through the release of the IL-6, IL-8, MCP-1, TNF-α cytokines, was low for all NPs. However, some differences were observed, especially for negative PLGA NPs that led to a higher inflammatory response, which can be correlated to a higher uptake of these NPs. Taken together, these results show that both coating of PLGA NPs and the nature of the core play a key role in cell response.

  11. Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation

    OpenAIRE

    Hussein, Omar; Walters, Bruce; Stroetz, Randolph; Valencia, Paul; McCall, Deborah; Hubmayr, Rolf D.

    2013-01-01

    Mechanical ventilation may cause harm by straining lungs at a time they are particularly prone to injury from deforming stress. The objective of this study was to define the relative contributions of alveolar overdistension and cyclic recruitment and “collapse” of unstable lung units to membrane wounding of alveolar epithelial cells. We measured the interactive effects of tidal volume (VT), transpulmonary pressure (PTP), and of airspace liquid on the number of alveolar epithelial cells with p...

  12. Microarray identifies ADAM family members as key responders to TGF-β1 in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Walls Dermot

    2006-09-01

    Full Text Available Abstract The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF remain elusive. Transforming Growth Factor beta 1(TGF-β1 is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549 in response to TGF-β1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-β1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-β1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  13. Induction of type Ⅱ alveolar epithelial cells apoptosis in mouse by lipopolysaccharide does not require TNF-α

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To examine whether lipopolysaccharide (LPS)-induced apoptosis correlates with TNF-α release by type Ⅱ alveolar epithelial cells (AEC Ⅱ), whether TNF-α knockout (TNF KO) abrogates the induction of apoptosis by LPS and whether TNF-α is sufficient to induce apoptosis in this cell type.Methods AEC Ⅱ were isolated from wild type mice and TNF KO mice. Cells were stimulated with LPS or recombinant murine TNF-α for 24 h. TNF-α in culture supernatant was determined by ELISA following LPS stimulation. Apoptosis was determined by the terminal deoxynucleotidyl transferase end-labeling (TUNEL) assay after treatment with either LPS or TNF-α. Results LPS induced apoptosis in wild type AEC Ⅱ in a concentration-dependent manner. LPS-induced AEC Ⅱ apoptosis was accompanied by an 11-fold increase (from 0.073±0.065 ng/ml in control to 0.94±0.14 ng/ml in 50 μg/ml of LPS, P<0.01) in TNF-α release. However, increasing concentrations (5 or 25 ng/ml) of recombinant murine TNF-α failed to induce AEC Ⅱ apoptosis. In addition, apoptosis did occur in AEC Ⅱ isolated from TNF KO mice following LPS stimulation.Conclusions This study confirms that LPS induces TNF-α release and apoptosis in murine AEC Ⅱ in vitro. Exogenous TNF-α failed to induce AEC Ⅱ apoptosis, and apoptosis occurred following LPS stimulation in cells lacking the ability to produce TNF-α. Taken together, these results suggest that LPS-induced AEC Ⅱ apoptosis occurs by a TNF-α-independent mechanism.

  14. Hypoxia inducible factor 3α plays a critical role in alveolarization and distal epithelial cell differentiation during mouse lung development.

    Directory of Open Access Journals (Sweden)

    Yadi Huang

    Full Text Available Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by Hypoxia Inducible Factors (HIF. HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFα, and a constitutively expressed subunit, HIF1β. HIF1α and HIF2α, encoded by two separate genes, contribute to the activation of hypoxia inducible genes. A third HIFα gene, HIF3α, is subject to alternative promoter usage and splicing, leading to three major isoforms, HIF3α, NEPAS and IPAS. HIF3α gene products add to the complexity of the hypoxia response as they function as dominant negative inhibitors (IPAS or weak transcriptional activators (HIF3α/NEPAS. Previously, we and others have shown the importance of the Hif1α and Hif2α factors in lung development, and here we investigated the role of Hif3α during pulmonary development. Therefore, HIF3α was conditionally expressed in airway epithelial cells during gestation and although HIF3α transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities, including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3α expressing lungs displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3α expression, the level of Hif2α was reduced, but that of Hif1α was not affected. Two regulatory genes, Rarβ, involved in alveologenesis, and Foxp2, a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3α expressing lungs. In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that Hif3α binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2 promoter region. Moreover, Hif3α affected the expression of genes not typically involved in the hypoxia response, providing evidence for a novel

  15. Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone

    Directory of Open Access Journals (Sweden)

    Koide Michio

    2008-05-01

    Full Text Available Abstract Background Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells. Methods Nuclear deoxyribonucleic acid (DNA fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP-biotin nick end labeling method (TUNEL method and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila. Results The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1 protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells. Conclusion Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a

  16. cDNA microarray analysis of rat alveolar epithelial cells following exposure to organic extract of diesel exhaust particles

    International Nuclear Information System (INIS)

    Diesel exhaust particles (DEP) induce pulmonary diseases including asthma and chronic bronchitis. Comprehensive evaluation is required to know the mechanisms underlying the effects of air pollutants including DEP on lung diseases. Using a cDNA microarray, we examined changes in gene expression in SV40T2 cells, a rat alveolar type II epithelial cell line, following exposure to an organic extract of DEP. We identified candidate sensitive genes that were up- or down-regulated in response to DEP. The cDNA microarray analysis revealed that a 6-h exposure to the DEP extract (30 μg/ml) increased (>2-fold) the expression of 51 genes associated with drug metabolism, antioxidation, cell cycle/proliferation/apoptosis, coagulation/fibrinolysis, and expressed sequence tags (ESTs), and decreased (<0.5-fold) that of 20 genes. In the present study, heme oxygenase (HO)-1, an antioxidative enzyme, showed the maximum increase in gene expression; and type II transglutaminase (TGM-2), a regulator of coagulation, showed the most prominent decrease among the genes. We confirmed the change in the HO-1 protein level by Western blot analysis and that in the enzyme activity of TGM-2. The organic extract of DEP increased the expression of HO-1 protein and decreased the enzyme activity of TGM-2. Furthermore, these effects of DEP on either HO-1 or TGM-2 were reduced by N-acetyl-L-cysteine (NAC), thus suggesting that oxidative stress caused by this organic fraction of DEP may have induced these cellular responses. Therefore, an increase in HO-1 and a decrease in TGM-2 might be good markers of the biological response to organic compounds of airborne particulate substances

  17. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H;

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P ..., suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P

  18. Macrophage control of phagocytosed mycobacteria is increased by factors secreted by alveolar epithelial cells through nitric oxide independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Dagbjort H Petursdottir

    Full Text Available Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC can influence the functionality of resident pulmonary macrophages (PuM. We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS1; c AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS, secretion of nitric oxide (NO, or IL-12, d in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms.

  19. Fas Activation in Alveolar Epithelial Cells Induces KC (CXCL1) Release by a MyD88-Dependent Mechanism

    OpenAIRE

    Farnand, Alex W.; Eastman, Alison J.; Herrero, Raquel; Hanson, Josiah F.; Mongovin, Steve; Altemeier, William A.; Matute-Bello, Gustavo

    2011-01-01

    Activation of the Fas/Fas ligand (FasL) system is associated with activation of apoptotic and proinflammatory pathways that lead to the development of acute lung injury. Previous studies in chimeric mice and macrophage-depleted mice suggested that the main effector cell in Fas-mediated lung injury is not a myeloid cell, but likely an epithelial cell. The goal of this study was to determine whether epithelial cells release proinflammatory cytokines after Fas activation, and to identify the rel...

  20. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines

    Directory of Open Access Journals (Sweden)

    Boczkowski Jorge

    2009-04-01

    Full Text Available Abstract Background A critical issue with nanomaterials is the clear understanding of their potential toxicity. We evaluated the toxic effect of 24 nanoparticles of similar equivalent spherical diameter and various elemental compositions on 2 human pulmonary cell lines: A549 and THP-1. A secondary aim was to elaborate a generic experimental set-up that would allow the rapid screening of cytotoxic effect of nanoparticles. We therefore compared 2 cytotoxicity assays (MTT and Neutral Red and analyzed 2 time points (3 and 24 hours for each cell type and nanoparticle. When possible, TC50 (Toxic Concentration 50 i.e. nanoparticle concentration inducing 50% cell mortality was calculated. Results The use of MTT assay on THP-1 cells exposed for 24 hours appears to be the most sensitive experimental design to assess the cytotoxic effect of one nanoparticle. With this experimental set-up, Copper- and Zinc-based nanoparticles appear to be the most toxic. Titania, Alumina, Ceria and Zirconia-based nanoparticles show moderate toxicity, and no toxicity was observed for Tungsten Carbide. No correlation between cytotoxicity and equivalent spherical diameter or specific surface area was found. Conclusion Our study clearly highlights the difference of sensitivity between cell types and cytotoxicity assays that has to be carefully taken into account when assessing nanoparticles toxicity.

  1. Regulation and function of the two-pore-domain (K2P) potassium channel Trek-1 in alveolar epithelial cells

    OpenAIRE

    Schwingshackl, Andreas; Teng, Bin; Ghosh, Manik; West, Alina Nico; Makena, Patrudu; Gorantla, Vijay; Sinclair, Scott E.; Waters, Christopher M.

    2011-01-01

    Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K+ channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this stud...

  2. Advances in researches on the functions of alveolar epithelial type Ⅱ cells%肺泡Ⅱ型上皮细胞功能的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨青

    2012-01-01

    Alveolar epithelial type Ⅱ cell ( AT2) ,one of the mammalian alveolar epithelial cell,is the major cell type that synthesizes and secretes pulmonary surfactant. Its synthesizing and secreting function has been reported in recent years to be regulated and affected by a variety of body fluid and environmental factors, with a number of genes, proteins and signal pathways involved. AT2 has proliferation, differentiation and repair function,its abnormal trans-differentiation may be associated with lung fibrosis and tumor formation. It plays an important role in maintaining alveolar fluid balance and the function is regulated by a variety of body fluid and inflammatory factors,which may participate in lung injury and pulmonary edema pathological processes. AT 2 is also involved in innate immunity and immune regulatory mechanisms. It also presents antigen to T cells and regulates T cell differentiation. Studying the alveolar type D epithelial cell function helps to understand the physiological functional mechanism of alveolar and the process of multiple pulmonary diseases. Further study in the regulation of its function may have a promising prospect in treating and preventing pulmonary diseases.%肺泡Ⅱ型上皮细胞(alveolar epithelial type Ⅱ cell,AT2)是构成哺乳类动物肺泡上皮的主要细胞之一,是合成和分泌肺泡表面活性物质的主要细胞.近年来研究发现其合成和分泌功能受多种体液及环境因素的影响和调控,并涉及多种相关基因、蛋白及信号通路.AT2具有增殖、分化及修复功能,其异常转分化可能与肺纤维化及肿瘤发生有关.AT2在维持肺泡内液体平衡中发挥重要作用,并受多种体液与炎症因子调控,可能参与肺损伤和肺水肿的病理过程.AT2参与固有免疫及免疫调节机制,可向T细胞呈递抗原并调节T细胞的分化.对肺泡Ⅱ型上皮细胞功能的研究有助于理解肺泡生理功能和多种肺部疾病的发病和病理过程,对

  3. Nemo-like kinase regulates the expression of vascular endothelial growth factor (VEGF) in alveolar epithelial cells.

    Science.gov (United States)

    Ke, Hengning; Masoumi, Katarzyna Chmielarska; Ahlqvist, Kristofer; Seckl, Michael J; Rydell-Törmänen, Kristina; Massoumi, Ramin

    2016-01-01

    The canonical Wnt signaling can be silenced either through β-catenin-mediated ubiquitination and degradation or through phosphorylation of Tcf and Lef by nemo-like kinase (NLK). In the present study, we generated NLK deficient animals and found that these mice become cyanotic shortly before death because of lung maturation defects. NLK-/- lungs exhibited smaller and compressed alveoli and the mesenchyme remained thick and hyperplastic. This phenotype was caused by epithelial activation of vascular endothelial growth factor (VEGF) via recruitment of Lef1 to the promoter of VEGF. Elevated expression of VEGF and activation of the VEGF receptor through phosphorylation promoted an increase in the proliferation rate of epithelial and endothelial cells. In summary, our study identifies NLK as a novel signaling molecule for proper lung development through the interconnection between epithelial and endothelial cells during lung morphogenesis. PMID:27035511

  4. Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells.

    Science.gov (United States)

    Sallenave, J M; Tremblay, G M; Gauldie, J; Richards, C D

    1997-06-01

    Alpha-1 proteinase inhibitor (A1-Pi) is the main serine proteinase inhibitor found in human plasma and is a potent elastase inhibitor in various tissues, including lung. A1-Pi is expressed and induced in liver during inflammatory responses but can also be produced by epithelial cells. Since hepatocyte A1-Pi production is stimulated by interleukin-6 (IL-6) and other gp130-cytokines, such as leukemia inhibitory factor (LIF) and oncostatin M (OM), we investigated the role of these cytokines in regulating A1-Pi in lung epithelial cells. We show that OM, a monocyte and T cell product, can specifically and potently induce A1-Pi production in lung-derived A549 alveolar (epithelial) cells, as well as in liver-derived HepG2 cells. Both A1-Pi protein (as detected by ELISA and Western blots) and mRNA levels were enhanced 20-fold to 30-fold in A549 cells. OM was also able to stimulate the expression of tissue inhibitor of metalloproteinase-1 in these cells. Interestingly, other members of the IL-6 family (IL-6 and LIF) had little or no effect on A549 cells, and proinflammatory cytokines, such as IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) also had no stimulatory effect on A1-Pi synthesis in A549 cells. Costimulation with IL-1 beta resulted in a decrease in A1-Pi production from OM-stimulated A549 cells. However, IL-6 production was synergistically enhanced. OM was also able to stimulate A1-Pi production from a bronchial epithelial primary cell line, whereas an intestinal epithelial cell line HT29 responded to IL-6 but not OM. These results suggest that lung levels A1-Pi could be derived not only from liver and inflammatory cells but also from epithelial cells, which can be upregulated on stimulation by OM. This may have implications for regulation of local activity of human neutrophil elastase (HNE) in such diseases as emphysema and cystic fibrosis. PMID:9198001

  5. Claudins and alveolar epithelial barrier function in the lung

    OpenAIRE

    Frank, James A.

    2012-01-01

    The alveolar epithelium of the lung constitutes a unique interface with the outside environment. This thin barrier must maintain a surface for gas transfer while being continuously exposed to potentially hazardous environmental stimuli. Small differences in alveolar epithelial barrier properties could therefore have a large impact on disease susceptibility or outcome. Moreover, recent work has focused attention on the alveolar epithelium as central to several lung diseases, including acute lu...

  6. Hyperoxia-mediated LC3B activation contributes to the impaired transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs).

    Science.gov (United States)

    Zhang, Liang; Zhao, Shuang; Yuan, Lijie; Wu, Hongmin; Jiang, Hong; Luo, Gang

    2016-09-01

    Life-saving mechanical ventilation can also cause lung injury through the overproduction of reactive oxygen species (ROS), leading to bronchopulmonary dysplasia (BPD)-like symptoms in preterm infants. It is reported that the autophagic protein microtubule-associated protein-1 light chain (LC)-3B can confer protection against hyperoxia-induced DNA damage in lung alveolar epithelium. However, its role in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I cells (AECIs) is unclear and requires further investigation. In this study, newborn Sprague-Dawley rats were exposed to 90% oxygen for up to 14 days to mimic BPD in human infants, with neonatal pups exposed to room air (21% oxygen) as controls. Primary rat AECIIs were cultured under hyperoxic conditions for up to 24 hours to further investigate the underlying mechanisms. This study found that hyperoxia promoted a significant and time-dependent increase of AECII marker surfactant protein (SP)-C in the lung. The increase of AECI marker T1α was repressed by hyperoxia during lung development. These results indicated an impaired AECII transdifferentiation. Pulmonary ROS concentration and expression of autophagic protein LC-3B were increased gradually in response to hyperoxia exposure. Furthermore, AECIIs produced more ROS when cultured under hyperoxic conditions in vitro. Both the LC3B expression and the conversion from LC3BI to LC3BII were enhanced in hyperoxic AECs. Interestingly, inhibition of LC3B either by ROS inhibitor N-acetyl-l-cysteine (NAC) or adenovirus-mediated LC3B shRNA could partly restore AECII transdifferentiation under hyperoxia condition. In summary, the current study reveals a novel role of activated LC3B induced by hyperoxia in AECII transdifferentiation. PMID:27187184

  7. High CO2 levels impair alveolar epithelial function independently of pH.

    Directory of Open Access Journals (Sweden)

    Arturo Briva

    Full Text Available BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2 is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  8. Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko E; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-03-01

    Limited knowledge exists on pathways, networks and transcriptional factors regulated within epithelial cells by diverse Mycobacterium tuberculosis genotypes. This study aimed to elucidate these mechanisms induced in A549 epithelial cells by dominant clinical strains in KwaZulu-Natal, South Africa. RNA for sequencing was extracted from epithelial cells at 48 h post-infection with 5 strains at a multiplicity of infection of approximately 10:1. Bioinformatics analysis performed with the RNA-Seq Tuxedo pipeline identified differentially expressed genes. Changes in pathways, networks and transcriptional factors were identified using Ingenuity Pathway Analysis (IPA). The interferon signalling and hepatic fibrosis/hepatic stellate cell activation pathways were among the top 5 canonical pathways in all strains. Hierarchical clustering for enrichment of cholesterol biosynthesis and immune associated pathways revealed similar patterns for Beijing and Unique; F15/LAM4/KZN and F11; and, F28 and H37Rv strains, respectively. However, the induction of top scoring networks varied among the strains. Among the transcriptional factors, only EHL, IRF7, PML, STAT1, STAT2 and VDR were induced by all clinical strains. Activation of the different pathways, networks and transcriptional factors revealed in the current study may be an underlying mechanism that results in the differential host response by clinical strains of M. tuberculosis. PMID:26980499

  9. Internalization of SiO₂ nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf.

    Science.gov (United States)

    Vranic, Sandra; Garcia-Verdugo, Ignacio; Darnis, Cécile; Sallenave, Jean-Michel; Boggetto, Nicole; Marano, Francelyne; Boland, Sonja; Baeza-Squiban, Armelle

    2013-05-01

    Because of an increasing exposure to environmental and occupational nanoparticles (NPs), the potential risk of these materials for human health should be better assessed. Since one of the main routes of entry of NPs is via the lungs, it is of paramount importance to further characterize their impact on the respiratory system. Here, we have studied the uptake of fluorescently labeled SiO₂ NPs (50 and 100 nm) by epithelial cells (NCI-H292) and alveolar macrophages (MHS) in the presence or absence of pulmonary surfactant. The quantification of NP uptake was performed by measuring cell-associated fluorescence using flow cytometry and spectrometric techniques in order to identify the most suitable methodology. Internalization was shown to be time and dose dependent, and differences in terms of uptake were noted between epithelial cells and macrophages. In the light of our observations, we conclude that flow cytometry is a more reliable technique for the study of NP internalization, and importantly, that the hydrophobic fraction of lung surfactant is critical for downregulating NP uptake in both cell types. PMID:23288678

  10. Alveolocapillary model system to study alveolar re-epithelialization

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands); Cohen Tervaert, Jan Willem [Division of Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht (Netherlands); Duimel, Hans J.Q.; Verheyen, Fons K.C.P. [Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Iwaarden, J. Freek van, E-mail: f.vaniwaarden@maastrichtuniversity.nl [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands)

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  11. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-02-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.

  12. Calcitonin gene-related peptide inhibits interleukin-1β-induced interleukin-8 secretion in human type Ⅱ alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Wen-jing LI; Teng-ke WANG; Xian WANG

    2006-01-01

    Aim: Our previous data have shown that type Ⅱ alveolar epithelial (AEII) cells express neuropeptide calcitonin gene-related peptide (CGRP), and that pro-inflammatory factor interleukinl-β(IL-1β) induces CGRP secretion in the A549 human AEII cell line. In the present study, we investigated the effect of endogenous and exogenous CGRP on IL-1β-induced chemokine interleukin-8 (IL-8) secretion. Methods: We used enzyme-linked immunosorbent assay (ELISA) and RT-PCR to detect IL-8 protein and mRNA levels, respectively. siRNA and the stably transfected cell line were used to knock down and overexpress the CGRP gene, respectively, and chemiluminescence assay was used to detect reactive oxygen species (ROS) formation. Results: CGRP-1 receptor antagonist hCGRP8-37 (0.1-1 nmol·L-1) greatly amplified IL-1β-induced IL-8 production. The inhibition of CGRP expression by siRNA significantly increased IL-8 secretion upon IL-1β stimulation. However, cell clones stably transfected with CGRP showed significantly inhibited mRNA and protein levels of IL-8 induced by IL-1β. Conclusion: These data imply that AEII cell-derived CGRP suppress EL-1β-induced IL-8 secretion in an autocrine/paracrine mode. Further investigation showed that CGRP attenuated IL-1β-aroused ROS formation, which is an early indication of pro-inflammatory factor signaling.

  13. Phagocytic properties of lung alveolar wall cells

    Directory of Open Access Journals (Sweden)

    Tanaka,Akisuke

    1974-04-01

    Full Text Available For the purpose to define the mechanism of heavy metal intoxication by inhalation, morphologic observations were made on rat lungs after nasal instillation of iron colloid particles of positive and negative electric charges. Histochemical observation was also made on the liver and spleen of these animals. The instilled iron colloid particles reach the alveolar cavity easily, as can be seen in the tissue sections stained by Prussian blue reaction. Alveolar macrophages do take up them avidly both of positive and negative charges, though much less the positive particles than negative ones. In contrast, the alveolar epithelial cells take up solely positive particles by phagocytosis but not negative ones. Electron microscope observation revealed that the positive particles are ingested by Type I epithelial cells by pinocytosis and by Type II cells by phagocytosis as well. Then the iron colloid particles are transferred into the basement membrane by exocytosis. Travelling through the basement membrane they are again taken up by capillary endothelial cells by phagocytosis. Some particles were found in the intercellular clefts of capillary endothelial cells but not any iron colloid particles in the intercellular spaces of epithelial cells and in the capillary lumen. However, the liver and spleen tissues of the animals given iron colloid showed a strong positive iron reaction. On the basis of these observations, the mechanism of acute intoxication by inhaling heavy metal dusts like lead fume is discussed from the view point of selective uptake of alveolar epithelial and capillary endothelial cells for the particles of the positive electric cha'rge.

  14. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Directory of Open Access Journals (Sweden)

    Mariola M Marcinkiewicz

    Full Text Available The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age. Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.

  15. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals.

    Science.gov (United States)

    Marcinkiewicz, Mariola M; Baker, Sandy T; Wu, Jichuan; Hubert, Terrence L; Wolfson, Marla R

    2016-01-01

    The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung. PMID:26999050

  16. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells.

    Science.gov (United States)

    Reid, P T; Marsden, M E; Cunningham, G A; Haslett, C; Sallenave, J M

    1999-08-20

    Elafin is a low molecular weight antiproteinase believed to be important in the regulation of elastase mediated tissue damage. The expression of elafin is known to be regulated by proinflammatory cytokines such as interleukin-1 beta and tumour necrosis factor but little was known regarding the effect of human neutrophil elastase (HNE). Employing a chloramphenicol acetyltransferase reporter construct of the human elafin gene, reverse transcription PCR from total cellular RNA and ELISA techniques, we have examined the effect of human neutrophil elastase on the transcription and secretion of human elafin in the pulmonary epithelial A549 cell line. Stimulation with HNE at concentrations of 10(-10) and 10(-11) M resulted in a significant upregulation of elafin promoter activity. Similarly, transcription of the endogenous human elafin gene was upregulated with HNE concentrations ranging from 10(-10) to 10(-12) M. In addition, we demonstrate that stimulation with HNE at concentrations ranging from 10(-9) and 10(-12) M resulted in a significant reduction in the secreted elafin protein as measured in the cell supernatant. These results provide further evidence for a role of elafin in the regulation of HNE driven proteolysis of the extracellular matrix. PMID:10486558

  17. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah;

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  18. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    Science.gov (United States)

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  19. Repopulation of denuded tracheal grafts with alveolar type II cells

    International Nuclear Information System (INIS)

    Repopulation of denuded heterotopic tracheal grafts with populations of specific epithelial cell types is one approach to study the differentiation potential of various cell types. This technique has been adopted to delineate the differentiation pathways of alveolar type II cells isolated from rat lungs. Under the conditions of this experiment, the reestablished epithelial lining was alveolar-like, however, ultrastructural analysis of the cells showed them to be like Clara cells. These preliminary results suggest that the secretary cells of the lung parenchyma and terminal airways may share a common ancestry. (author)

  20. Alveolar epithelial permeability in bronchial asthma in children

    International Nuclear Information System (INIS)

    To evaluate alveolar epithelial permeability (kep) in children with bronchial asthma, 99mTc-DTPA (diethylene triamine penta acetate) aerosol lung inhalation scintigraphies were performed. There was no correlation between the kep value and the severity of asthma. On the other hand, out of 10 cases which had no aerosol deposition defect in the lung field, 4 showed high kep values on the whole lung field and 7 had high kep value areas, particularly apparent in the upper lung field. These results suggest that even when the central airway lesions are mild, severe damage exists in the alveolar region of the peripheral airway. (author)

  1. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies

    International Nuclear Information System (INIS)

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endpoints of inflammation, and oxidant stress. Separation of Chapel Hill PM 10 into fine and coarse size particles revealed that the main proinflammatory response (TNF, IL-6, COX-2) in AM was driven by material present in the coarse PM, containing 90-95% of the stimulatory material in PM10. The particles did not affect expression of hemoxygenase-1 (HO-1), a sensitive marker of oxidant stress. Primary cultures of normal human bronchial epithelial cells (NHBE) also responded to the coarse fraction with higher levels of IL-8 and COX-2, than induced by fine or ultrafine PM. All size PM induced oxidant stress in NHBE, while fine PM induced the highest levels of HO-1 expression. The production of cytokines in AM by both coarse and fine particles was blocked by the toll like receptor 4 (TLR4) antagonist E5531 involved in the recognition of LPS and Gram negative bacteria. The NHBE were found to recognize coarse and fine PM through TLR2, a receptor with preference for recognition of Gram positive bacteria. Compared to ambient PM, diesel PM induced only a minimal cytokine response in both AM and NHBE. Instead, diesel suppressed LPS-induced TNF and IL-8 release in AM. Both coarse and fine ambient air PM were also found to inhibit LPS-induced TNF release while silica, volcanic ash or carbon black had no inhibitory effect. Diesel particles did not affect cytokine mRNA induction nor protein accumulation but interfered with the release of cytokine from the cells. Ambient coarse and fine PM, on the other hand, inhibited both mRNA induction and protein production. Exposure to coarse and fine PM decreased the expression of TLR4 in the macrophages. Particle-induced decrease in TLR4 and hyporesponsiveness to LPS

  2. LC-MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells.

    Science.gov (United States)

    Oswald, Stefan; Peters, Jette; Venner, Monica; Siegmund, Werner

    2011-04-28

    Clarithromycin (CLA) is a well established macrolide antibiotic which is frequently used in therapy of airway diseases in foals. It is extensively metabolized by CYP3A4 resulting in the antimicrobial active metabolite 14-hydroxyclarithromycin (OH-CLA). Rifampicin (RIF) is often comedicated to prevent resistance and augment therapy. RIF is a known inducer for metabolizing enzymes and transporter proteins. Therefore, comedication might bare the risks of pharmacokinetic drug interactions which were investigated in a clinical trial. As no adequate method to determine CLA, RIF and their main metabolites OH-CLA and 25-O-desacetylrifampicin (DAc-RIF) were described so far, we developed a selective and sensitive assay to measure concentrations of all four substances simultaneously in plasma, epithelial lining fluid (ELF) and broncho-alveolar cells (BAC) of foals. Drugs were measured after extraction with methyl tert-butyl ether using roxithromycin as internal standard and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for detection. The chromatography was done isocratically using 25mM ammonium acetate buffer (pH 4)/acetonitrile (45%/55%, flow rate 200μl/min). The MS/MS analysis was performed in the positive ion mode (m/z transitions: CLA, 748.5-590.1; OH-CLA, 764.1-606.1; RIF, 823.1-791.2; DAc-RIF, 781.1-749.1 and 837.3-679.2 for the internal standard). The method was validated according to selectivity, linearity, accuracy, precision, recovery, matrix effects and stability. The validation ranges for all substances were 2.5-25 for the low and 25-250ng/ml for the high validation range. The described assay was shown to be valid and successfully applied to measure disposition of CLA, OH-CLA, RIF and DAc-RIF in plasma, ELF and BAC of foals in a clinical trial.

  3. Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation.

    Science.gov (United States)

    Hussein, Omar; Walters, Bruce; Stroetz, Randolph; Valencia, Paul; McCall, Deborah; Hubmayr, Rolf D

    2013-10-01

    Mechanical ventilation may cause harm by straining lungs at a time they are particularly prone to injury from deforming stress. The objective of this study was to define the relative contributions of alveolar overdistension and cyclic recruitment and "collapse" of unstable lung units to membrane wounding of alveolar epithelial cells. We measured the interactive effects of tidal volume (VT), transpulmonary pressure (PTP), and of airspace liquid on the number of alveolar epithelial cells with plasma membrane wounds in ex vivo mechanically ventilated rat lungs. Plasma membrane integrity was assessed by propidium iodide (PI) exclusion in confocal images of subpleural alveoli. Cyclic inflations of normal lungs from zero end-expiratory pressure to 40 cmH2O produced VT values of 56.9 ± 3.1 ml/kg and were associated with 0.12 ± 0.12 PI-positive cells/alveolus. A preceding tracheal instillation of normal saline (3 ml) reduced VT to 49.1 ± 6 ml/kg but was associated with a significantly greater number of wounded alveolar epithelial cells (0.52 ± 0.16 cells/alveolus; P < 0.01). Mechanical ventilation of completely saline-filled lungs with saline (VT = 52 ml/kg) to pressures between 10 and 15 cmH2O was associated with the least number of wounded epithelial cells (0.02 ± 0.02 cells/alveolus; P < 0.01). In mechanically ventilated, partially saline-filled lungs, the number of wounded cells increased substantially with VT, but, once VT was accounted for, wounding was independent of maximal PTP. We found that interfacial stress associated with the generation and destruction of liquid bridges in airspaces is the primary biophysical cell injury mechanism in mechanically ventilated lungs. PMID:23997173

  4. Effects of elastase and cigarette smoke on alveolar epithelial permeability

    International Nuclear Information System (INIS)

    To determine whether instilled porcine pancreatic elastase (PPE) increases alveolar epithelial permeability, the authors measured alveolar epithelium permeability X surface area (PS) for [14C]sucrose and 125I-bovine serum albumin in isolated perfused lungs from hamsters previously exposed to PPE and/or cigarette smoke. Saline (0.5 ml) with 0, 5, or 20 units PPE was instilled intratracheally in anesthetized hamsters. Those exposed to smoke for 4-6 wk received 0 or 5 units; PS was measured 3 h later. Nonsmokers received 0, 5, or 20 units; PS was measured 3 h, 24 h, or 5 days later. Control PS values were (cm3/s X 10(-4), +/- SE) 0.84 +/- 0.11 for sucrose and 0.030 +/- 0.006 for BSA. Three and 24 h following 20 units PPE, (PS)sucrose was twice the control valve. (PS)BSA was four times control at 3 h but not significantly increased at 24 h. Five days after PPE both were back to control levels. Five units PPE or smoke exposure alone caused no PS changes. Smoke exposure and 5 units PPE caused (PS)sucrose to increase markedly (1.85 +/- 0.32); (PS)BSA was not significantly increased (0.076 +/- 0.026). Thus, instilled PPE causes reversible increases in alveolar epithelial PS; cigarette smoking potentiates this effect

  5. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Directory of Open Access Journals (Sweden)

    Li Changgong

    2011-10-01

    Full Text Available Abstract Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.

  6. In vivo metabolism of pulmonary alveolar epithelial type II pneumonocytes and macrophages from Syrian hamsters

    International Nuclear Information System (INIS)

    Young adult Syrian hamsters were injected intraperitoneally with 14C-glycerol and 3H-palmitate 17 hr before they were sacrificed and pulmonary alveolar epithelial type II cells and pulmonary alveolar macrophages (PAM) were isolated. Incorporation of the two labeled components into the cellular lipids showed that the 3H-specific activity of the phospholipids from the type II cells was three times that of the PAM and the utilization of 14C-glycerol into phosphatidyl choline (PC) was 50% greater than incorporation into the PC from PAMs. The PC from type II cells showed that 30% was disaturated and from PAMs 21% was disaturated. Another phosphatide, phosphatidyl glycerol contained about one-third of the molecules in disaturated form. These data are consistent with the view that both type II cells and PAMs can synthesize surface-active phospholipids but it is generally accepted that only the pulmonary alveolar epithelial type II cells excrete the disaturated phospholipids which comprise the surface-active components of pulmonary surfactant

  7. The potential of microfluidic lung epithelial wounding: towards in vivo-like alveolar microinjuries

    OpenAIRE

    Felder, Marcel; Stucki, Andreas; Stucki, Janick; Geiser, Thomas; Guenat, Olivier Thierry

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) remains a major clinical challenge to date. Repeated alveolar epithelial microinjuries are considered as the starting point and the key event in both the development and the progression of IPF. Various pro-fibrotic agents have been identified and shown to cause alveolar damage. In IPF, however, no leading cause of alveolar epithelial microinjuries can be identified and the exact etiology remains elusive. New results from epidemiologic studies suggest a caus...

  8. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    OpenAIRE

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2011-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less...

  9. Alveolar epithelial cells (A549) exposed at the air-liquid interface to diesel exhaust: First study in TNO's powertrain test center

    NARCIS (Netherlands)

    Kooter, I.M.; Alblas, M.J.; Jedynska, A.D.; Steenhof, M.; Houtzager, M.M.G.; Ras, M.G. van

    2013-01-01

    Air–liquid interface (ALI) exposures enable in vitro testing ofmixtures of gases and particles such as diesel exhaust (DE). The main objective of this study was to investigate the feasibility of exposing human lung epithelial cells at the ALI to complete DE generated by a heavy-duty truck in the sta

  10. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1

    OpenAIRE

    Zhou, Guofei; Dada, Laura A.; Wu, Minghua; Kelly, Aileen; Trejo, Humberto; Zhou, Qiyuan; Varga, John; Sznajder, Jacob I.

    2009-01-01

    Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of α-smooth muscle actin (α-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, ...

  11. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat.

    Science.gov (United States)

    Deng, Haijing; Xu, Hong; Zhang, Xianghong; Sun, Yue; Wang, Ruimin; Brann, Darrell; Yang, Fang

    2016-03-01

    The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.

  12. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat.

    Science.gov (United States)

    Deng, Haijing; Xu, Hong; Zhang, Xianghong; Sun, Yue; Wang, Ruimin; Brann, Darrell; Yang, Fang

    2016-03-01

    The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties. PMID:26785300

  13. Hydrogen sulfide donor NaHS induces death of alveolar epithelial L2 cells that is associated with cellular shrinkage, transgelin expression and myosin phosphorylation.

    Science.gov (United States)

    Fujii, Yusuke; Funakoshi, Takeshi; Unuma, Kana; Noritake, Kanako; Aki, Toshihiko; Uemura, Koichi

    2016-01-01

    Hydrogen sulfide (H2S) is a highly toxic gaseous molecule that causes death to humans exposed to high concentrations. H2S is absorbed into the body through the alveolar epithelium and other tissues. The aim of this study is to evaluate the molecular mechanism underling acute lung injury caused by the inhalation of high concentrations of H2S. Rat lung epithelium-derived L2 cells were exposed to a H2S donor, NaHS, at concentrations of 2-4 mM for 1-6 hr. NaHS caused shrinkage and death of the cells without caspase activation. An actin-binding protein, transgelin, was identified as one of the NaHS-inducible proteins in the cells. NaHS increased myosin light chain (MLC) phosphorylation, indicating that actomyosin-mediated cellular contractility and/or motility could be increased after NaHS exposure. The administration of ML-7, a myosin light chain kinase (MLCK) inhibitor, accelerated cell death after NaHS exposure. Based on these data, we conclude that the increase in MLC phosphorylation in response to NaHS exposure is a cellular protective reaction against NaHS toxicity. Enhancements in smooth muscle cell properties such as transgelin expression and actomyosin-mediated contractility/motility might be involved in cell survival after NaHS exposure. PMID:27665774

  14. Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes.

    Science.gov (United States)

    Ursini, Cinzia Lucia; Cavallo, Delia; Fresegna, Anna Maria; Ciervo, Aureliano; Maiello, Raffaele; Buresti, Giuliana; Casciardi, Stefano; Bellucci, Stefano; Iavicoli, Sergio

    2014-01-01

    Functionalized MWCNTs are used in many commercial and biomedical applications, but their potential health effects are not well defined. We investigated and compared cytotoxic, genotoxic/oxidative, and inflammatory effects of pristine and carboxyl MWCNTs exposing human respiratory (A549 and BEAS-2B) cells to 1-40 μg/mL of CNTs for 24 h. Both MWCNTs induced low viability reduction (by WST1 assay) in A549 cells and only MWCNTs-COOH caused high viability reduction in BEAS-2B cells reaching 28.5% viability at 40 μg/mL. Both CNTs induced membrane damage (by LDH assay) with higher effects in BEAS-2B cells at the highest concentrations reaching 20% cytotoxicity at 40 μg/mL. DNA damage (by Fpg-comet assay) was induced by pristine MWCNTs in A549 cells and by both MWCNTs in BEAS-2B cells reaching for MWCNTs-COOH a tail moment of 22.2 at 40 μg/mL versus 10.2 of unexposed cells. Increases of IL-6 and IL-8 release (by ELISA) were detected in A549 cells exposed to MWCNTs-COOH from 10 μg/mL while IL-8 increased in BEAS-2B cells exposed to pristine MWCNTs at 20 and 40 μg/mL. The results show higher cytogenotoxicity of MWCNTs-COOH in bronchial and of pristine MWCNTs in alveolar cells. Different inflammatory response was also found. The findings suggest the use of in vitro models with different end points and cells to study CNT toxicity.

  15. Ischemia Induced Caveolin-1 Moving from Cell Membrane to Lipid Droplets in Type Ⅱ Alveolar Epithelial Cell%缺血引起陷窝蛋白-1在肺泡Ⅱ型上皮细胞定位的改变

    Institute of Scientific and Technical Information of China (English)

    李凌海; 耿万明; 王子彤; 秦林; 张慧娜

    2013-01-01

    Type Ⅱ alveolar epithelial cells play an important role in ischemia of the lung.In this research,the authors studied the intracellular location of the caveolin-1 in type Ⅱ alveolar epithelial cells under normal and ischemia status.They purified the lipid droplets from type Ⅱ alveolar epithelial cell line A549.The results indicated that caveolin-1 was localized on plasma membrane as well as lipid droplets of alveolar epithelial cell,whereas ischemia stimulus induced caveolin-1 moving from cell membrane to lipid droplets in A549 cell line.In human lung tissue,They also observed the translocation of caveolin-1 from cell membrane to lipid droplets under ischemia status.These findings may promote new directions in future research concerning the mechanism of lung ischemia injury.%肺泡Ⅱ型上皮细胞在肺缺血病理过程中具有重要作用.为研究缺血对陷窝蛋白-1在肺泡Ⅱ型上皮细胞A549脂滴定位的影响,利用已经建立的脂滴纯化方法,纯化得到肺泡Ⅱ型上皮细胞A549的脂滴,并在脂滴上发现了陷窝蛋白-1.在A549细胞缺血模型中发现缺血可以导致陷窝蛋白-1从细胞膜移动到脂滴.人肺组织脂滴纯化实验也证实缺血可以刺激陷窝蛋白-1从细胞膜移动到脂滴.这一发现将为肺缺血机制的研究提供新的思路.

  16. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells

    OpenAIRE

    Mattes, Charlott; Laube, Mandy; Thome, Ulrich H.

    2014-01-01

    Abstract Alveolar fluid clearance is driven by vectorial Na+ transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na+ transport was studied in isolated alveolar cells from 18–19‐day gestational age rat fetuses. Equivalent short‐circuit currents (I SC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by insulin ...

  17. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells

    OpenAIRE

    Mattes, Charlott; Thome, Ulrich H.

    2014-01-01

    Alveolar fluid clearance is driven by vectorial Na+ transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na+ transport was studied in isolated alveolar cells from 18–19-day gestational age rat fetuses. Equivalent short-circuit currents (ISC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by ...

  18. Systems-level comparison of host responses induced by pandemic and seasonal influenza A H1N1 viruses in primary human type I-like alveolar epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Guan Yi

    2010-10-01

    Full Text Available Abstract Background Pandemic influenza H1N1 (pdmH1N1 virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. Methods We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. Results Overall, we found that most of the genes that induced by the pdmH1N1 were similarly regulated in response to seasonal H1N1 infection with respect to both trend and extent of gene expression. These commonly responsive genes were largely related to the interferon (IFN response. Expression of the type III IFN IL29 was more prominent than the type I IFN IFNβ and a similar pattern of expression of both IFN genes was seen in pdmH1N1 and seasonal H1N1 infection. Genes that were significantly down-regulated in response to seasonal H1N1 but not in response to pdmH1N1 included the zinc finger proteins and small nucleolar RNAs. Gene Ontology (GO and pathway over-representation analysis suggested that these genes were associated with DNA binding and transcription/translation related functions. Conclusions Both seasonal H1N1 and pdmH1N1 trigger similar host responses including IFN-based antiviral responses and cytokine responses. Unlike the avian H5N1 virus, pdmH1N1 virus does not have an intrinsic capacity for cytokine dysregulation. The differences between pdmH1N1 and seasonal H1N1 viruses

  19. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport

    Science.gov (United States)

    Kaltofen, Till; Haase, Melanie; Thome, Ulrich H.; Laube, Mandy

    2015-01-01

    Respiratory distress syndrome (RDS) is the most frequent pulmonary complication in preterm infants. RDS incidence differs between genders, which has been called the male disadvantage. Besides maturation of the surfactant system, Na+ transport driven alveolar fluid clearance is crucial for the prevention of RDS. Na+ transport is mediated by the epithelial Na+ channel (ENaC) and the Na,K-ATPase, therefore potential differences in their expression or activity possibly contribute to the gender imbalance observed in RDS. Fetal distal lung epithelial (FDLE) cells of rat fetuses were separated by sex and analyzed regarding expression and activity of the Na+ transporters. Ussing chamber experiments showed a higher baseline short-circuit current (ISC) and amiloride-sensitive ΔISC in FDLE cells of female origin. In addition, maximal amiloride-sensitive ΔISC and maximal ouabain-sensitive ΔISC of female cells were higher when measured in the presence of a permeabilized basolateral or apical membrane, respectively. The number of FDLE cells per fetus recoverable during cell isolation was also significantly higher in females. In addition, lung wet-to-dry weight ratio was lower in fetal and newborn female pups. Female derived FDLE cells had higher mRNA levels of the ENaC- and Na,K-ATPase subunits. Furthermore, estrogen (ER) and progesterone receptor (PR) mRNA levels were higher in female cells, which might render female cells more responsive, while concentrations of placenta-derived sex steroids do not differ between both genders during fetal life. Inhibition of ER-β abolished the sex differences in Na+ transport and female cells were more responsive to estradiol stimulation. In conclusion, a higher alveolar Na+ transport, possibly attributable to a higher expression of hormone receptors in female FDLE cells, provides an explanation for the well known sex-related difference in RDS occurrence and outcome. PMID:26291531

  20. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport.

    Directory of Open Access Journals (Sweden)

    Till Kaltofen

    Full Text Available Respiratory distress syndrome (RDS is the most frequent pulmonary complication in preterm infants. RDS incidence differs between genders, which has been called the male disadvantage. Besides maturation of the surfactant system, Na+ transport driven alveolar fluid clearance is crucial for the prevention of RDS. Na+ transport is mediated by the epithelial Na+ channel (ENaC and the Na,K-ATPase, therefore potential differences in their expression or activity possibly contribute to the gender imbalance observed in RDS. Fetal distal lung epithelial (FDLE cells of rat fetuses were separated by sex and analyzed regarding expression and activity of the Na+ transporters. Ussing chamber experiments showed a higher baseline short-circuit current (ISC and amiloride-sensitive ΔISC in FDLE cells of female origin. In addition, maximal amiloride-sensitive ΔISC and maximal ouabain-sensitive ΔISC of female cells were higher when measured in the presence of a permeabilized basolateral or apical membrane, respectively. The number of FDLE cells per fetus recoverable during cell isolation was also significantly higher in females. In addition, lung wet-to-dry weight ratio was lower in fetal and newborn female pups. Female derived FDLE cells had higher mRNA levels of the ENaC- and Na,K-ATPase subunits. Furthermore, estrogen (ER and progesterone receptor (PR mRNA levels were higher in female cells, which might render female cells more responsive, while concentrations of placenta-derived sex steroids do not differ between both genders during fetal life. Inhibition of ER-β abolished the sex differences in Na+ transport and female cells were more responsive to estradiol stimulation. In conclusion, a higher alveolar Na+ transport, possibly attributable to a higher expression of hormone receptors in female FDLE cells, provides an explanation for the well known sex-related difference in RDS occurrence and outcome.

  1. Pulmonary alveolar epithelial uptake of S-nitrosothiols is regulated by L-type amino acid transporter.

    Science.gov (United States)

    Granillo, Olivia M; Brahmajothi, Mulugu V; Li, Sheng; Whorton, A Richard; Mason, S Nicholas; McMahon, Timothy J; Auten, Richard L

    2008-07-01

    Nitric oxide (NO) effects are often mediated via S-nitrosothiol (SNO) formation; SNO uptake has recently been shown to be mediated in some cell types via system L-type amino acid transporters (LAT-1, 2). Inhaled NO therapy may exert some biological effects via SNO formation. We therefore sought to determine if pulmonary epithelial SNO uptake depended on LAT or peptide transporter 2 (PEPT2). Both LAT-1 and PEPT2 proteins were detected by immunoblot and immunocytochemistry in L2 cells and rat lung. We tested SNO uptake through the transporters by exposing rat alveolar epithelial cells (L2 and type II) to RSNOs: S-nitrosoglutathione, S-nitrosocysteinylglycine (SNO-Cys-Gly), S-nitrosocysteine (CSNO), and to NO donor diethylamine NONOate (DEA-NONOate). SNO was detected in cell lysates by ozone chemiluminescence. NO uptake was detected by fluorescence in alveolar epithelial cells loaded with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) diacetate cultured in submersion and exposed to RSNOs and DEA NONOate. Addition of L-Cys but not D-Cys to RSNOs or DEA NONOate increased SNO and DAF-FM signal that was inhibited by coincubation with LAT competitors. Incubation of cells with PEPT2 substrate SNO-Cys-Gly showed no increase in SNO or DAF-FM signal unless incubated with L-Cys. This was unaffected by PEPT2 inhibition. We conclude that RSNOs (thionitrites, S-nitrosothiols) and NO enter alveolar epithelial cells predominantly by S-nitrosation of L-Cys, which is then imported through LAT.

  2. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    Science.gov (United States)

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.

  3. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    Science.gov (United States)

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases. PMID:27334278

  4. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model.

    Science.gov (United States)

    Douville, Nicholas J; Zamankhan, Parsa; Tung, Yi-Chung; Li, Ran; Vaughan, Benjamin L; Tai, Cheng-Feng; White, Joshua; Christensen, Paul J; Grotberg, James B; Takayama, Shuichi

    2011-02-21

    Studies using this micro-system demonstrated significant morphological differences between alveolar epithelial cells (transformed human alveolar epithelial cell line, A549 and primary murine alveolar epithelial cells, AECs) exposed to combination of solid mechanical and surface-tension stresses (cyclic propagation of air-liquid interface and wall stretch) compared to cell populations exposed solely to cyclic stretch. We have also measured significant differences in both cell death and cell detachment rates in cell monolayers experiencing combination of stresses. This research describes new tools for studying the combined effects of fluid mechanical and solid mechanical stress on alveolar cells. It also highlights the role that surface tension forces may play in the development of clinical pathology, especially under conditions of surfactant dysfunction. The results support the need for further research and improved understanding on techniques to reduce and eliminate fluid stresses in clinical settings. PMID:21152526

  5. Activation of Type II Cells into Regenerative Stem Cell Antigen-1+ Cells during Alveolar Repair

    Science.gov (United States)

    Kumar, Varsha Suresh; Zhang, Wei; Rehman, Jalees; Malik, Asrar B.

    2015-01-01

    The alveolar epithelium is composed of two cell types: type I cells comprise 95% of the gas exchange surface area, whereas type II cells secrete surfactant, while retaining the ability to convert into type I cells to induce alveolar repair. Using lineage-tracing analyses in the mouse model of Pseudomonas aeruginosa–induced lung injury, we identified a population of stem cell antigen (Sca)-1–expressing type II cells with progenitor cell properties that mediate alveolar repair. These cells were shown to be distinct from previously reported Sca-1–expressing bronchioalveolar stem cells. Microarray and Wnt reporter studies showed that surfactant protein (Sp)-C+Sca-1+ cells expressed Wnt signaling pathway genes, and inhibiting Wnt/β-catenin signaling prevented the regenerative function of Sp-C+Sca-1+ cells in vitro. Thus, P. aeruginosa–mediated lung injury induces the generation of a Sca-1+ subset of type II cells. The progenitor phenotype of the Sp-C+Sca-1+ cells that mediates alveolar epithelial repair might involve Wnt signaling. PMID:25474582

  6. Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-β-induced alveolar epithelial to mesenchymal transition

    OpenAIRE

    Song, Jeong Sup; Kang, Chun Mi; Park, Chan Kwon; Yoon, Hyung Kyu; Lee, Sook Young; Ahn, Joong Hyun; Moon, Hwa-Sik

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal parenchymal lung disease characterized by myofibroblast proliferation. Alveolar epithelial cells (AECs) are thought to produce myofibroblasts through the epithelial to mesenchymal transition (EMT). Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation is associated with renal fibrosis during diabetes and liver fibrosis. RAGE is expressed at low basal levels in...

  7. Src激酶在机械通气性牵张致肺泡上皮细胞损伤中的作用%Role of Src tyrosine kinase in damage to alveolar epithelial cells caused by mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    赵涛; 刘孟洁; 谷长平; 王月兰

    2014-01-01

    Objective To evaluate the role of Src tyrosine kinase in damage to alveolar epithelial cells caused by mechanical stretch.Methods MLE-12 cells cultured in vitro were randomly divided into 3 groups using a random number table:mechanical stretch group (group S),dimethyl sulfoxide control group (group D),and Src tyrosine kinase inhibitor PP2 group (group P).In D and P groups,dimethyl sulfoxide 30 μl/ml and PP2 100 μmol/L were added to the culture medium,respectively,and the cells were then cultured for 30 min.The cells underwent mechanical stretch for 8 h with frequency of0.5 Hz and amplitude of 20% in the three groups.At 0,2,4 and 8 h of mechanical stretch,MLE-12 cells in 3 wells of each group were collected for determination of cell apoptosis with flow cytometry and expression of occludin using Western blot.The apoptosis rate was calculated.Results Compared with S group,no significant changes were found in the apoptosis rate and expression of occludin at each time point in group D,and the apoptosis rate was significantly decreased,and the expression of occludin was up-regulated at 2,4 and 8 h of mechanical stretch in group P.Conclusion The activation of Src tyrosine kinase is involved in damage to alveolar epithelial cells caused by mechanical stretch.%目的 评价Src激酶在机械通气性牵张致肺泡上皮细胞损伤中的作用.方法 采用随机数字表法,将体外培养的MEL12细胞分为3组:机械通气性牵张组(S组)、二甲基亚砜对照组(D组)和Src激酶抑制剂PP2组(P组).D组和P组分别加入二甲基亚砜30 μl/ml和Src激酶抑制剂PP2100 μmol/L(用二甲基亚砜溶解)孵育30 min,然后3组给予20%应变率的机械牵张,频率0.5 Hz.分别于机械牵张即刻、2、4和8h时,每组取3孔 MLE-12细胞,测定细胞凋亡情况,计算细胞凋亡率,采用Western blot法测定Occludin蛋白的表达.结果 与S组比较,D组各时点细胞凋亡率和Occludin蛋白表达差异无统计学意义(P>0.05),P

  8. Clinical value of the alveolar epithelial permeability in various pulmonary diseases

    International Nuclear Information System (INIS)

    The authors have measured the pulmonary epithelial permeability in normals, smokers, ex-smokers and in various pulmonary diseases, using the sup(99m)Tc-DTPA monodisperse radioaerosol delivered by a newly designed nebulizer. Reference values for alveolar epithelial permeability were those of their own laboratory. Accelerated clearance of small idrophylic solutes from the lungs to the blood was found in smokers and in all the patients with idiopathic diffuse pulmonary fibrosis, chronic obstructive lung disease, congestive heart failure, acute viral pneumonia and adult respiratory distress syndrome. The greatest increase of alveolar epithelial clearance was found in the lung zone affected by the viral infection. The normal upper-lover lobe gradient of epithelial clearance was lost only in some patients. The increased permeability of the alveolar wall, although not specific, is characteristic and early feature of many acute and chronic pulmonary disease. For practical purposes, this parameter, rather than diagnostic, should be considered as a sensitive index of alveolar damage and repair, especially suitable for the follow-up of patients with spontaneous or therapeutic reversibility of parenchimal lung diseases. (orig.)

  9. Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in lung ion transport

    OpenAIRE

    Johnson, Meshell D.; Bao, Hui-Fang; Helms, My N.; Chen, Xi-Juan; Tigue, Zac; Jain, Lucky; Dobbs, Leland G.; Eaton, Douglas C.

    2006-01-01

    Efficient gas exchange in the lungs depends on regulation of the amount of fluid in the thin (average 0.2 μm) liquid layer lining the alveolar epithelium. Fluid fluxes are regulated by ion transport across the alveolar epithelium, which is composed of alveolar type I (TI) and type II (TII) cells. The accepted paradigm has been that TII cells, which cover 95% of the surface area, provide a route for water absorption. Here we present data that TI cells contain functional epithelial Na+ channels...

  10. Simvastatin attenuates the apoptosis of alveolar epithelial cells in aged chronic obstructive pulmonary disease rats%辛伐他汀对老年COPD大鼠肺泡上皮细胞凋亡的干预作用

    Institute of Scientific and Technical Information of China (English)

    宋国栋; 丁启翠; 吴倩; 王永彬; 张华楠; 王伟

    2014-01-01

    目的:探讨辛伐他汀对老年COPD大鼠肺泡上皮细胞凋亡干预作用。方法39只老年Wistar大鼠随机分为正常组(A组)、COPD模型组(B组)及辛伐他汀干预组(C组),每组各13只。B、C组采用熏香烟联合气道内滴入脂多糖法建立大鼠COPD模型,在造模2周后C组给予辛伐他汀(2.5 mg/kg)灌胃6周,A、B组给予同等量生理盐水灌胃。8周后处死大鼠,并观察大鼠肺组织病理变化,检测肺泡上皮细胞凋亡及凋亡相关因子半胱氨酸蛋白酶-3(Caspase-3)、诱导型一氧化氮合酶(iNOS)、内皮型一氧化氮合酶(eNOS) mRNA表达,并计算凋亡指数。结果与A组相比, B组和C组凋亡指数、Caspase-3及iNOS mRNA表达增加(P均<0.01),eNOS mRNA表达降低(P<0.01);与B组相比,C组凋亡指数、Caspase-3及iNOS mRNA表达降低(P均<0.01),eNOS mRNA表达增加(P<0.01)。各组间肺泡上皮细胞凋亡指数与Caspase-3及iNOS mRNA表达呈正相关(P<0.05),与eNOS mRNA表达呈负相关(P<0.05)。各组间Caspase-3 mRNA与iNOS mRNA表达呈正相关(P<0.05),与eNOS mRNA表达呈负相关(P<0.01)。结论辛伐他汀通过增加肺组织eNOS基因表达,抑制iNOS及Caspase-3基因表达,抑制了老年COPD大鼠肺泡上皮细胞凋亡。%Objective To explore the effect of simvastatin on the apoptosis of alveolar epithelial cells in aged chronic obstructive pulmonary disease (COPD)model rat lungs. Methods Thirty-nine aged wistar rats were randomly divided into three groups:the normal group (group A,n=1 3 ),the COPD model group (group B,n=1 3)and the simvastatin treatment group (group C,n=1 3). The COPD rat model was estab-lished by cigarette smoke combined with lipopolysaccharide. Simvastatin,at a dose of (2.5 mg/kg),was ad-ministered orally to rats in group C once per day for 6 weeks. Meanwhile,Group A and B received equivalent normal saline. At the end of the 8

  11. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  12. Effect of Napsin A transfection into type Ⅱ alveolar epithelial cells on pulmonary fibrosis%Ⅱ型肺泡上皮细胞转染Napsin A基因对肺纤维化的干预作用

    Institute of Scientific and Technical Information of China (English)

    郑金旭; 管淑红; 许清; 汤艳; 刘继柱; 吕晓婷

    2010-01-01

    信号传导通路有关.%Objective To study the in vitro effect and mechanism of Napsin A gene transfection into type Ⅱ alveolar epithelial cells on pulmonary fibrosis. Methods A recombinant lentiviral plasmid PLJM1Napsin A was constructed and transfected into human type Ⅱ alveolar epithelial cell line A549. The model of pulmonary fibrosis was established by the in vitro stimulation of A549 cells by transforming growth factor beta-1 (TGF-β1). The morphological changes were observed continuously under inverted microscopy. The proliferation of transgenic and non-transgenic cells was detected by MTT. To observe the degree of epithelialmesenchymal transition ( EMT ) by TGF-β1 intervening A549 cells, the expressions of E-cadherin and fibronectin were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot.Lastly the protein expression of focal adhesion kinase (FAK) was detected by Western blot to investigate the mechanism. Results The result of sequencing the recombinant lentiviral plasmid PLJM1-Napsin A was the same as the design sequence. Napsin A mRNA and protein were expressed in transgenic A549 cells( P <0. 01 ). The model of pulmonary fibrosis was established successfully based on the morphology of transformed interstitial cell. As compared with the control group, the proliferation rate of transgenic cells decreased significantly (P <0. 05 ). The mRNA and protein expression of E-cadherin significantly decreased in the model of pulmonary fibrosis ( P < 0. 01 ), while the expression of fibronectin markedly increased ( P < 0. 01 ).But the change rate of transgenic cells decreased ( P < 0. 01, P < 0. 05 ). The expression of FAK was significantly elevated after the stimulation of TGF-β1 ( P < 0. 01 ). But the upward trend of the transgenic cells was smaller as compared with the control group (P < 0. 01 ). Conclusion Pulmonary fibrosis may be suppressed by the transfection of Napsin A gene into type Ⅱ alveolar epithelial cells. And the mechanism may

  13. Abberent expression of oncogenic and tumor-suppressive microRNAs and their target genes in human adenocarcinoma alveolar basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Elham Tafsiri

    2016-01-01

    Conclusion: The significant differential expression level of these miRNAs made them as candidate biomarkers in NSCLC tumor tissues of patients. Perhaps Bcl-2 down-regulation and Akt-3 up-regulation can be linked with survival signals in A549 cell line. We can conclude that Bcl-2 and Akt-3 might be therapeutic targets to inhibit cell proliferation in NSCLC.

  14. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    International Nuclear Information System (INIS)

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGFβ1-mediated lytic phase. EBV lytic reactivation by TGFβ1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM181552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  15. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  16. Cellular responses of A549 alveolar epithelial cells to serially collected Pseudomonas aeruginosa from cystic fibrosis patients at different stages of pulmonary infection

    DEFF Research Database (Denmark)

    Hawdon, Nicole A; Aval, Pouya Sadeghi; Barnes, Rebecca J;

    2010-01-01

    . Pseudomonas aeruginosa isolates from the early stages of the infection exhibited high adherence to A549 cells, were readily internalized, and able to induce reactive oxygen species (ROS) production, apoptosis of infected cells, and the release of granulocyte macrophage colony-stimulating factor. Late P....... aeruginosa isolates collected from patients with chronic lung infection were shown to have reduced adherence to and internalization into A549 cells compared with bacteria from patients with intermittent P. aeruginosa colonization, and induced lower production of ROS and apoptosis, but caused high...

  17. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis

    OpenAIRE

    Serrano-Mollar, Anna; Nácher, María; Gay-Jordi, Gemma; Closa, Daniel; Xaubet, Antoni; Bulbena, Oriol

    2007-01-01

    [Rationale]: Transplantation of stem cells has been proposed as a strategy for repair of lung fibrosis. Nevertheless, many studies have yielded controversial results that currently limit the potential use of these cells as an efficient treatment. Alveolar type II cells are the progenitor cells of the pulmonary epithelium and usually proliferate after epithelial cell injury. During lung fibrosis, however, the altered regeneration process leads to uncontrolled fibroblast proliferation. [Objecti...

  18. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  19. CCAAT/Enhancer-Binding Protein \\(\\gamma\\) Is a Critical Regulator of IL-1\\(\\beta\\)-Induced IL-6 Production in Alveolar Epithelial Cells

    OpenAIRE

    Chunguang Yan; Ximo Wang; Jay Cao; Min Wu; Hongwei Gao

    2012-01-01

    CCAAT/enhancer binding protein \\(\\gamma\\) (C/EBPγ) is a member of the C/EBP family of transcription factors, which lacks known activation domains. C/EBP\\(\\gamma\\) was originally described as an inhibitor of C/EBP transactivation potential. However, previous study demonstrates that C/EBP\\(\\gamma\\) augments the C/EBP\\(\\beta\\) stimulatory activity in lipopolysaccharide induction of IL-6 promoter in a B lymphoblast cell line. These data indicate a complexing functional role for C/EBP\\(\\gamma\\) in...

  20. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H;

    1999-01-01

    experiments showed increases in IL-8 release at 4 h, 8 h and 24 h compared with control cultures (all P minor (13%) dose- and time-related increase in MCP-1 release at 24 h (P = 0.02). Co-incubation of MSG with mannan or beta-glucan decreased IL-8 release by 48% and 42% respectively......, suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P protection assays for steady-state IL-8 mRNA showed that increases...

  1. Emodin enhances alveolar epithelial barrier function in rats with experimental acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the effect of emodin on expression of claudin4, claudin5 and occludin, as well as the alveolar epithelial barrier in rats with pancreatitis induced by sodium taurocholate. METHODS: Experimental pancreatitis was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Emodin was injected via the external jugular vein 3 h after induction of acute pancreatitis. Rats from sham operation group and acute pancreatitis group were injected with normal saline (an eq...

  2. 高氧及TGF-β1对肺泡Ⅱ型细胞上皮间质转化的影响%Effect of hyperoxia and TGF-β1 on epithelial-mesenchymal transition of type Ⅱ alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    刘芳君; 邓春; 郭春宝; 符州

    2012-01-01

    AIM: To investigate the effect of hyperoxia and TGF-pi on epithelial-mesenchymal transition (EMT)of type II alveolar epithelial cells (AEC-Ⅱ ) of mice. METHODS; AEC-Ⅱ cells (MLE-12 lines) were randomly divided into following groups: air exposure group, hyperoxia exposure group, air exposure combined with TGF-pi treatment group, hyperoxia exposure combined with TGF-pi treatment group. The morphological changes of cells in each group were observed at 6, 12, 24, 48 hours. The protein and mR-NA expressions of AEC Ⅱ specific marker lung surfactant protein B ( SP-B) and fibroblast specific marker fibroblast specific protein ( FSP1) were detected by double-labeled immunoflu orescence and real time-PCR at the same time point, respectively. RESULTS: Along with the time of exposure to hyperoxia and TGF-pi, AEC Ⅱ cells gradually changed from pebble-like shape to spindle shape, and showed some fibroblast appearances. Synchronously, the protein expression of SP-B in AEC Ⅱ cells decreased, whereas the expression of FSP1 increased. The co-expressed were observed at 24 hours. Comparing with that of the air exposure group, the mRNA expression of SP-B in the hyperoxia exposure group, air exposure combined with TGF-pi treatment group, hyperoxia exposure combined with TGF-pi treatment group decreaseed significantly, whereas the mRNA expression of FSPl increased significantly at 24 hours and 48 hours (P<0.01). CONCLUSION; Hyperoxia and TGF-β1 can induce EMT of type II alveolar epithelial cells in a time-dependent manner.%目的:探讨高氧及TGF-β1干预小鼠肺泡Ⅱ型细胞(AECⅡ)后,是否发生上皮间质转化(EMT)及其影响.方法:小鼠肺泡Ⅱ型细胞系MLE-12,随机分为空气暴露组、高氧暴露组、TGF-β1干预空气暴露组、TGF-β1干预高氧暴露组.观察各组6、12、24、48 h细胞形态变化.应用细胞免疫荧光双标法及荧光定量PCR法检测各组各时间点肺表面活性物质B (SP-B)及成纤维细胞特异性蛋白1(FSP

  3. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism

    Science.gov (United States)

    Roux, Jérémie; McNicholas, Carmel M.; Carles, Michel; Goolaerts, Arnaud; Houseman, Benjamin T.; Dickinson, Dale A.; Iles, Karen E.; Ware, Lorraine B.; Matthay, Michael A.; Pittet, Jean-François

    2013-01-01

    Patients with acute lung injury (ALI) who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. Experimental and small clinical studies have shown that β2-adrenergic receptor (β2AR) agonists enhance AFC via a cAMP-dependent mechanism. However, two multicenter phase 3 clinical trials failed to show that β2AR agonists provide a survival advantage in patients with ALI. We hypothesized that IL-8, an important mediator of ALI, directly antagonizes the alveolar epithelial response to β2AR agonists. Short-circuit current and whole-cell patch-clamping experiments revealed that IL-8 or its rat analog CINC-1 decreases by 50% β2AR agonist-stimulated vectorial Cl− and net fluid transport across rat and human alveolar epithelial type II cells via a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis. This reduction was mediated by heterologous β2AR desensitization and down-regulation (50%) via the G-protein-coupled receptor kinase 2 (GRK2)/PI3K signaling pathway. Inhibition of CINC-1 restored β2AR agonist-stimulated AFC in an experimental model of ALI in rats. Finally, consistent with the experimental results, high pulmonary edema fluid levels of IL-8 (>4000 pg/ml) were associated with impaired AFC in patients with ALI. These results demonstrate a novel role for IL-8 in inhibiting β2AR agonist-stimulated alveolar epithelial fluid transport via GRK2/PI3K-dependent mechanisms.—Roux, J., McNicholas, C. M., Carles, M., Goolaerts, A., Houseman, B. T., Dickinson, D. A., Iles, K. E., Ware, L. B., Matthay, M. A., Pittet, J.-F. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism. PMID:23221335

  4. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture

    OpenAIRE

    Arold, Stephen P.; Bartolák-Suki, Erzsébet; Suki, Béla

    2009-01-01

    Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant se...

  5. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    OpenAIRE

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveol...

  6. Experimental radiation pneumonitis. Corticosteroids increase the replicative activity of alveolar type 2 cells

    International Nuclear Information System (INIS)

    Corticosteroid administration during radiation pneumonitis in mice markedly improves the physiologic abnormalities and decreases mortality, an effect that has been attributed to the stimulation of surfactant synthesis and secretion by type 2 alveolar epithelial cells. In the present experiments we explored the effects of corticosteroids on the replicative activity of type 2 cells of lethally irradiated lungs at the height of the radiation reaction. The labeling index of type 2 cells of irradiated mice was increased threefold above that of sham-irradiated controls. Corticosteroids given continuously from 10 weeks after thoracic irradiation further increased the type 2 cell labeling index another threefold above that of irradiated untreated mice. The enhanced reproductive activity of type 2 cells following thoracic irradiation is seen as a protective response that is augmented by corticosteroids, whose effect may be both to improve the physiology of the alveolar surface and to maintain the population of alveolar epithelial cells. The bearing of this result on the controversial role of the type 2 cell as a target in radiation pneumonitis is discussed

  7. Epithelial cell apoptosis causes acute lung injury masquerading as emphysema.

    Science.gov (United States)

    Mouded, Majd; Egea, Eduardo E; Brown, Matthew J; Hanlon, Shane M; Houghton, A McGarry; Tsai, Larry W; Ingenito, Edward P; Shapiro, Steven D

    2009-10-01

    Theories of emphysema traditionally revolved around proteolytic destruction of extracellular matrix. Models have recently been developed that show airspace enlargement with the induction of pulmonary cell apoptosis. The purpose of this study was to determine the mechanism by which a model of epithelial cell apoptosis caused airspace enlargement. Mice were treated with either intratracheal microcystin (MC) to induce apoptosis, intratracheal porcine pancreatic elastase (PPE), or their respective vehicles. Mice from all groups were inflated and morphometry was measured at various time points. Physiology measurements were performed for airway resistance, tissue elastance, and lung volumes. The groups were further analyzed by air-saline quasistatic measurements, surfactant staining, and surfactant functional studies. Mice treated with MC showed evidence of reversible airspace enlargement. In contrast, PPE-treated mice showed irreversible airspace enlargement. The airspace enlargement in MC-treated mice was associated with an increase in elastic recoil due to an increase in alveolar surface tension. PPE-treated mice showed a loss of lung elastic recoil and normal alveolar surface tension, a pattern more consistent with human emphysema. Airspace enlargement that occurs with the MC model of pulmonary epithelial cell apoptosis displays physiology distinct from human emphysema. Reversibility, restrictive physiology due to changes in surface tension, and alveolar enlargement associated with heterogeneous alveolar collapse are most consistent with a mild acute lung injury. Inflation near total lung capacity gives the appearance of enlarged alveoli as neighboring collapsed alveoli exert tethering forces. PMID:19188661

  8. IDIOPATHIC PULMONARY FIBROSIS: A DISORDER OF EPITHELIAL CELL DYSFUNCTION

    OpenAIRE

    Zoz, Donald F.; Lawson, William E.; Blackwell, Timothy S.

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive dyspnea, interstitial infiltrates in lung parenchyma, and restriction on pulmonary function testing. IPF is the most common and severe of the idiopathic interstitial pneumonias (IIPs), with most individuals progressing to respiratory failure. Multiple lines of evidence reveal prominent roles for alveolar epithelial cells (AECs) in disease. Our current disease paradigm is that ongoing or repetitive injurious stimuli in the pre...

  9. Depletion of resident alveolar macrophages does not prevent Fas-mediated lung injury in mice

    OpenAIRE

    Bem, R. A.; Farnand, A. W.; Wong, V; Koski, A; Rosenfeld, M. E.; Van Rooijen, N.; C. W. Frevert; Martin, T R; Matute-Bello, G.

    2008-01-01

    Activation of the Fas/Fas ligand (FasL) system in the lungs results in a form of injury characterized by alveolar epithelial apoptosis and neutrophilic inflammation. Studies in vitro show that Fas activation induces apoptosis in alveolar epithelial cells and cytokine production in alveolar macrophages. The main goal of this study was to determine the contribution of alveolar macrophages to Fas-induced lung inflammation in mice, by depleting alveolar macrophages using clodronate-containing lip...

  10. Overexpression of cyclooxygenase-2 in NCI-H292 human alveolar epithelial carcinoma cells: roles of p38 MAPK, ERK-1/2, and PI3K/PKB signaling proteins.

    Science.gov (United States)

    Sung, Suhaeng; Park, Yukyoung; Jo, Jeong-Rang; Jung, Nak-Kyun; Song, Dae-Kyu; Bae, Jaehoon; Keum, Dong-Yun; Kim, Jae-Bum; Park, Gy-Young; Jang, Byeong-Churl; Park, Jong-Wook

    2011-10-01

    Evidence suggests overexpression of COX-2 and its role in many human cancers, including lung. However, the regulatory mechanism underlying COX-2 overexpression in lung cancer is not fully understood. We herein investigated whether COX-2 is overexpressed in human airway cancer cell lines, including A549 (lung), Hep-2 (bronchial), and NCI-H292 (alveolar). When grown in cell culture medium containing 10% FBS (serum), of note, there was strong and transient induction of COX-2 protein and mRNA in NCI-H292 cells, but little or low COX-2 expression is seen in A549 or Hep-2 cells. Interestingly, strong and sustained activities of ERK-1/2, JNK-1/2, p38 MAPK, and PKB were also shown in NCI-H292 cells grown in presence of serum. Profoundly, results of pharmacological inhibition studies demonstrated that the serum-dependent COX-2 up-regulation in NCI-H292 cells is attributed to not only the p38 MAPK-, PI3K/PKB-, and ERK-1/2-mediated COX-2 transcriptional up-regulation but also the p38 MAPK- and ERK-1/2-mediated post-transcriptional COX-2 mRNA stabilization. Of further note, it was shown that the ERK-1/2 and PI3K/PKB (but not COX-2, p38 MAPK, and JNK-1/2) activities are necessary for growth of NCI-H292 cells. These findings collectively demonstrate for the first time that COX-2 expression is transiently up-regulated by serum addition in NCI-H292 cells and the serum-induced COX-2 expression is closely linked to the p38 MAPK-, ERK-1/2-, and PI3K/PKB-mediated COX-2 transcriptional and post-transcriptional up-regulation.

  11. Dynamics of surfactant release in alveolar type II cells

    OpenAIRE

    Haller, Thomas; Ortmayr, Jörg; Friedrich, Franz; Völkl, Harald; Dietl, Paul

    1998-01-01

    Pulmonary surfactant, secreted via exocytosis of lamellar bodies (LB) by alveolar type II (AT II) cells, maintains low alveolar surface tension and is therefore essential for normal lung function. Here we describe real-time monitoring of exocytotic activity in these cells by visualizing and quantifying LB fusion with the plasma membrane (PM). Two approaches were used. First, fluorescence of LysoTracker Green DND-26 (LTG) in LB disappeared when the dye was released after exocytosis. Second, ph...

  12. Identification of a cell membrane protein that binds alveolar surfactant.

    OpenAIRE

    Strayer, D. S.

    1991-01-01

    Alveolar surfactants are complex mixtures of proteins and phospholipids produced by type II alveolar cells and responsible for lowering pulmonary surface tension. The process by which surfactant is produced and exported and by which its production by pulmonary cells is regulated are not well understood. This study was designed to identify a cellular receptor for surfactant constituents. To do so, monoclonal anti-idiotypic antibodies directed against antibodies to porcine and rabbit surfactant...

  13. Effects of Pseudomonas aeruginosa elastase on alveolar epithelial permeability in guinea pigs

    International Nuclear Information System (INIS)

    Elastase-deficient mutants of Pseudomonas aeruginosa are less virulent than the wild type and are easily cleared from the lungs of guinea pigs. The effect of P. aeruginosa elastase on lung epithelium, however, is not yet understood. We addressed the hypothesis that breach of the epithelial barrier by elastase from P. aeruginosa allows invading organisms and toxic substances to penetrate the interstitium. We measured the clearance of aerosolized technetium-labeled albumin (molecular weight, 69,000) from the lungs of anesthetized guinea pigs with the aid of a gamma camera and a dedicated computer. Aerosols of the elastase (0.1 to 5 micrograms) increased the rate of clearance of labeled albumin from the lungs in proportion to the elastase dose. Electron microscopic studies using horseradish peroxidase as a tracer revealed that elastase interrupts intercellular tight junctions of the epithelial lining, thereby increasing the permeability to macromolecules. The amounts of elastase used in this report did not cause interstitial or alveolar edema, as determined by both postmortem extravascular lung water volume measurement and morphological examination. The data indicate that the elastase is a potentially important virulence factor in acute lung infection

  14. Overexpression of sICAM-1 in the Alveolar Epithelial Space Results in an Exaggerated Inflammatory Response and Early Death in Gram Negative Pneumonia

    Directory of Open Access Journals (Sweden)

    Curtis Jeffery L

    2011-01-01

    Full Text Available Abstract Background A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1 plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs, we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1 is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection. Methods Using the surfactant protein C (SPC promoter, we developed a transgenic mouse (SPC-sICAM-1 that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae. Results SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups. Conclusions We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections.

  15. Intestinal Epithelial Cells In Vitro

    OpenAIRE

    Chopra, Dharam P.; Dombkowski, Alan A.; Stemmer, Paul M.; Parker, Graham C.

    2009-01-01

    Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progeni...

  16. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    Science.gov (United States)

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  17. Capsaicinoids Cause Inflammation and Epithelial Cell Death through Activation of Vanilloid Receptors

    OpenAIRE

    Reilly, Christopher A.; Taylor, Jack L.; Lanza, Diane L.; Carr, Brian A.; Crouch, Dennis J.; Yost, Garold S.

    2003-01-01

    Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammatio...

  18. Roles of neuropeptide substance P in transdifferentiation of premature rat type Ⅱ alveolar epithelial cells induced by hyperxia%神经肽P物质促进高氧诱导的胎鼠肺泡Ⅱ型上皮细胞转分化

    Institute of Scientific and Technical Information of China (English)

    黄波; 付红敏; 杨鸣; 方芳; 匡凤梧; 许峰

    2009-01-01

    目的 探讨感觉神经肽P物质(substance P,SP)对高氧诱导的胎鼠Ⅱ型肺泡上皮细胞(type Ⅱ alveolar epithelial cells,AECⅡ)转分化的影响.方法 剖官取出孕21 d(足月为22 d)SD胎鼠,分离纯化原代培养AECⅡ,采用随机分组法分为:空气暴露组(氧体积分数为0.21)、高氧暴露组(氧体积分数为0.95)、SP干预组,SP干预组于暴露前加入SP 1×10-6 mol/L,在置于氧体积分数为0.21和0.95中分别暴露12、24、和48 h,电镜观察AECⅡ的形态变化;免疫细胞化学染色法和流式细胞仪检测AECⅡ特异性肺泡表而活性蛋白-C(surfactant protein C,sp-C)及Ⅰ型肺泡上皮细胞(type Ⅰ alveolar epithelial cells,AEC Ⅰ)特异性水通道蛋5(aquaporin5,AQP5)的表达.结果 与空气组比较,高氧暴露后,AECⅡ SP-C的表达、SP-C细胞的表达率及荧光指数(fluorescence index,FI)明显降低,AQP5表达明显增加;而SP干预后,SP-C、AQP5表达都明显增加,形态学的损伤也有明显的改善.结论 SP可促进高氧诱导的胎鼠AECⅡ的转分化,在肺损伤修复中可能起重要作用.

  19. 石棉暴露下内质网应激在肺泡上皮细胞凋亡中的作用机制%THE MECHANISM OF ENDOPLASMIC RETICULUM STRESS INDUCING ALVEOLAR EPI-THELIAL CELLS APOPTOSIS UNDERLYING ASBESTOS EXPOSURE

    Institute of Scientific and Technical Information of China (English)

    周煦; 刘刚

    2014-01-01

    Objective To investigate the role of endoplasmic reticulum stress ( ERS) in asbestos-induced Alveolar epithelial cell apoptosis.Methods A549 cells were treated with asbestos to observe the expression of ERS proteins and apop-tosis gene by immunofluorescence staining and western blotting.Results Under asbestos exposure, the expression of Bip, GRP94, IRE-1α, BAX and BAK are up-regulated.There is a positive correlativity of the expression of proteins to the ex-posure time of asbestos.Conclusion Endoplasmic reticulum stress takes part in asbestos-induced apoptosis.%目的:探讨石棉暴露下内质网应激在细胞凋亡中的作用机制。方法应用石棉处理A549细胞,免疫荧光染色免疫法和免疫印迹法观察内质网应激( ERS)相关蛋白与促凋亡基因的变化。结果石棉暴露下,ERS相关蛋白Bip、IRE-1α和GRP94,以及促凋亡基因BAX、BAK蛋白表达均上调,且与石棉暴露时间呈正相关。结论内质网应激参与了石棉诱导的细胞凋亡。

  20. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H2O2) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H2O2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  1. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  2. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy.

  3. Alteration in Intrapulmonary Pharmacokinetics of Aerosolized Model Compounds Due to Disruption of the Alveolar Epithelial Barriers Following Bleomycin-Induced Pulmonary Fibrosis in Rats.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Tada, Hitoshi

    2016-03-01

    Idiopathic pulmonary fibrosis is a lethal lung disease that is characterized by the accumulation of extracellular matrix and a change in lung structure. In this study, intrapulmonary pharmacokinetics of aerosolized model compounds were evaluated using rats with bleomycin-induced pulmonary fibrosis. Aerosol formulations of indocyanine green, 6-carboxyfluorescein (6-CF), and fluorescein isothiocyanate dextrans (FD; 4.4, 10, 70, and 250 kDa) were administered to rat lungs using a MicroSprayer. Indocyanine green fluorescence signals were significantly weaker in fibrotic lungs than in control lungs and 6-CF and FD concentrations in the plasma of pulmonary fibrotic animals were markedly higher than in the plasma of control animals. Moreover, disrupted epithelial tight junctions, including claudins-1, -3, and -5, were observed in pulmonary fibrotic lesions using immunofluorescence microscopy. In addition, destruction of tight junctions on model alveolar epithelial cells (NCI-H441) by transforming growth factor-β1 treatment enhanced the permeability of 6-CF and FDs through NCI-H441 cell monolayers. These results indicate that aerosolized drugs are easily distributed into the plasma after leakage through damaged tight junctions of alveolar epithelium. Therefore, the development of delivery systems for anti-fibrotic agents to improve intrapulmonary pharmacokinetics may be necessary for effective idiopathic pulmonary fibrosis therapy. PMID:26886341

  4. Transforming Growth Factor β1 Inhibits Cystic Fibrosis Transmembrane Conductance Regulator-dependent cAMP-stimulated Alveolar Epithelial Fluid Transport via a Phosphatidylinositol 3-Kinase-dependent Mechanism*

    OpenAIRE

    Roux, Jérémie; Carles, Michel; Koh, Hidefumi; Goolaerts, Arnaud; Ganter, Michael T.; Chesebro, Brian B; Howard, Marybeth; Houseman, Benjamin T.; Finkbeiner, Walter; Shokat, Kevan M.; Paquet, Agnès C.; Matthay, Michael A; Pittet, Jean-François

    2009-01-01

    Exogenous or endogenous β2-adrenergic receptor agonists enhance alveolar epithelial fluid transport via a cAMP-dependent mechanism that protects the lungs from alveolar flooding in acute lung injury. However, impaired alveolar fluid clearance is present in most of the patients with acute lung injury and is associated with increased mortality, although the mechanisms responsible for this inhibition of the alveolar epithelial fluid transport are not completely understood. Here, we found that tr...

  5. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yasukawa

    Full Text Available Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  6. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    Science.gov (United States)

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  7. Detection of alveolar epithelial injury by 99mTc-DTPA radioaerosol inhalation lung scan following blunt chest trauma

    International Nuclear Information System (INIS)

    DTPA clearance rate is a reliable index of alveolar epithelial permeability, and is a highly sensitive marker of pulmonary epithelial damage, even of mild degree. In this study, 99mTc-DTPA aerosol inhalation scintigraphy was used to assess the pulmonary epithelial membrane permeability and to investigate the possible application of this permeability value as an indicator of early alveolar or interstitial changes in patients with blunt chest trauma. A total of 26 patients was chest trauma (4 female, 22 male, 31-80 yrs, mean age; 53±13 yrs) who were referred to the emergency department in our hospital participated in this study. Technetium-99m diethylene triamine pentaacetic acid (DTPA) aerosol inhalation scintigraphy was performed on the first and thirtieth days after trauma. Clearance half times (T1/2) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. On the first day, mean T1/2 value of the whole lung was 63±19 minutes (min), and thirtieth day mean T1/2 value was 67±21 min. On the first day, mean PI values of the lung and 30th day mean PI value were 0.60±0.05, and 0.63 ±0.05, respectively. Significant changes were observed in radioaerosol clearance and penetration indices. Following chest trauma, clearance of 99mTc-DTPA increased owing to breakdown of the alveolar-capillary barrier. This increase in the epithelial permeability of the lung appears to be an early manifestation of lung disease that may lead to efficient therapy in the early phase. (author)

  8. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair.

    Science.gov (United States)

    Garcia, Orquidea; Hiatt, Michael J; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex; Driscoll, Barbara

    2016-03-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury.

  9. Cell culture models using rat primary alveolar type I cells.

    Science.gov (United States)

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  10. 油烟中细颗粒物致胎鼠肺泡Ⅱ型上皮细胞DNA损伤的研究%Assessment of DNA Damage Induced by Cooking Oil Fumes Particulate in the Mice Alveolar Type Ⅱ Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    梁春梅; 操基玉; 王勇; 冯哲伟; 汪磊

    2011-01-01

    目的 探讨油烟中的细颗粒物(PM2.5)对原代培养的胎鼠肺泡Ⅱ型上皮细胞(AECⅡ)DNA的损伤效应.方法 将1只妊娠18d的SPF级ICR小鼠体内的胎鼠肺组织制成AECⅡ细胞悬液,取对数生长期细胞,调整细胞密度为1×106/ml,分别加入终浓度为0(溶剂对照,含10% FBS的DMEM)、12.5、25、50、100μg/ml的PM2.5(来源于烹调油烟)溶液,培养6、12h后进行MTT试验和彗星试验,并检测AECⅡ细胞的尾长、尾部DNA百分比、尾矩和Olive尾矩.结果与溶剂对照组比较,50、100 μg/ml PM2.5染毒6、12 h时胎鼠AECⅡ存活率下降,差异均有统计学意义(P<0.05);12.5、25、50μg/mlPM2.5染毒6、12h时胎鼠AECⅡ的尾长、尾部DNA百分比、尾矩和Olive尾矩升高,差异均有统计学意义(P<0.05).随着PM2.5染毒浓度的升高,AECⅡ细胞存活率呈下降趋势,尾长、尾部DNA百分比、尾矩和Olive尾矩均呈上升趋势.结论油烟中的PM2.5可降低AECⅡ的细胞活性,对AECⅡ的DNA具有损伤效应.%Objective To investigate DNA damage induced by cooking oil fume participate (PM2.5) in the mice alveolar type II epithelial cells in primary cultured. Methods The mice alveolar type Ⅱ epithelial cells were isolated from 18 days old fetuses of ICR mice. The cells in exponential phase were cultured at a density of 1×106 cells/ml,AEC II cells were treated with PM2.5 at the doses of 0 μg/ml (the solvent control, 10% FBS of DMEM), 12.5,25,50 and 100 μg/ml for 6 and 12 h. AEC Ⅱ cell proliferation were detected with MTT assays and the comet assay was used to detect the Olive tail moment,tail moment,tail length and tail intensity. Results The survival rate of AEC II was decreased with a dose-dependent manner; Olive tail moment, tail moment, tail length and tail intensity were increased with a dose-dependent manner. Conclusion Cooking oil fume participate may decrease the viability of AEC II cells and produce evident DNA damage.

  11. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    International Nuclear Information System (INIS)

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal

  12. Epithelial hyperplasia, alveoli —

    Science.gov (United States)

    Solitary or multiple foci of increased cellularity distal to terminal bronchioles. The background of broncho-alveolar architecture remains detectable, and epithelial cells are usually single layered. Round to oval hypertrophic type II pneumocytes with abundant eosinophilic cytoplasm line alveolar walls. In bronchiolar subvariant, also called bronchiolization of alveoli, alveolar walls are lined by cuboidal to columnar cells with features of bronchiolar differentiation, such as formation of cilia, Clara cell resemblance, and presence of mucous granules. Foci of consolidation may indicate early stages of adenoma formation. Macrophages may be present in the alveolar lumens.

  13. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  14. Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A

    International Nuclear Information System (INIS)

    Primary cultures of rat alveolar type II cells bind radiolabeled pulmonary surfactant protein A (SP-A) with high affinity. The binding of 125I-labeled SP-A is time- and temperature-dependent and is not accompanied by significant degradation. The binding process is saturable at low concentrations of SP-A, and unlabeled SP-A readily competes with labeled SP-A for cellular binding sites. Subsequent to binding, two pools of cell-associated 125I-labeled SP-A can be identified based upon sensitivity to trypsin at 0 degree C. It is likely that the trypsin-sensitive pool comprises 125I-labeled SP-A bound to the cell surface and the trypsin-insensitive pool comprises the internalized protein. Scatchard analysis of cell surface binding of SP-A at 0.1-10 μg/ml shows positive cooperativity at concentrations between 0.1 and 1 μg/ml. Hill plots give nH = 1.34 ± 0.08 with an apparent dissociation constant K'd = 1.02 ± 0.32 μg/ml. The binding of SP-A to type II cells shows an absolute requirement for Ca2+. The putative receptor for SP-A is unaffected by treatment of type II cells with a variety of proteases and N-Glycanase. Alveolar macrophages also exhibit high-affinity binding of SP-A, but rat lung fibroblasts and the alveolar epithelial cell line L2 exhibit only nonspecific binding

  15. Effects of simvastatin on the transdifferentiation of hypoxia and reoxygenation injury of alveolar epithelial type Ⅱ cells%辛伐他汀促进缺氧复氧损伤后肺泡Ⅱ型上皮细胞转分化的研究

    Institute of Scientific and Technical Information of China (English)

    武雅琴; 冯冬杰; 蒋峰; 张治; 黄建峰; 张帅; 尹荣; 许林

    2012-01-01

    目的 观察辛伐他汀是否能在体外促进缺氧复氧损伤后肺泡Ⅱ型上皮细胞向Ⅰ型细胞转分化,并探讨其作用机制.方法 体外培养小鼠肺泡上皮细胞MLE-12,建立缺氧复氧损伤模型,分为空白对照组(Blank)、辛伐他汀组(Sim)及缺氧复氧组(H/R),分别于缺氧2h后复氧0h、1d、3d和7d共4个时间点获取细胞,流式细胞仪检测肺泡Ⅰ型/Ⅱ型细胞表面特异性标志Caveolin- 1/Pro-SP-C 阳性细胞数百分比,Western blot法测定各组Pro-SP-C和Caveolin-1蛋白水平,最后行甲羟戊酸通路竞争实验观察左旋甲羟戊酸( L-meva)对辛伐他汀作用的影响.结果 流式细胞术结果显示:在缺氧复氧早期(d0及d1),Sim组较H/R组Caveolin-1/Pro-SP-C百分比显著降低;至d3和d7百分比则显著升高;Western blot结果显示:与H/R组比较,Sim组Pro-SP-C蛋白水平在d0及d1最高,至d3和d7则显著下降,Caveolin-1蛋白水平在d1最低,至d3和d7则逐渐升高,两者比较均有显著统计学差异(P<0.01).L-meva竞争试验显示:与Sim组比较,Sim+ L-meva组在各个时间点Pro-SP-C和Caveolin-1蛋白水平差异无统计学意义(P>0.05).结论 辛伐他汀可以促进缺氧复氧损伤后肺泡Ⅱ型上皮细胞向Ⅰ型细胞的转分化,但其作用机制不依赖于甲羟戊酸通路.%Objective To investigate the role of simvastatin in the transdifferentiation of hypoxia and reoxygenation injury of type Ⅱ alveolar epithelial cells and explore the underlying mechanisms.Methods Mouse AT Ⅱ cell line MLE-12 were subjected to hypoxia reoxygenation (H/R) injury.Blank,control and simvastatin-treated groups (20 μmol/L) were designed in the present study.The percentage of Caveolin-1/Pro-SP-C expression in the different points was assessed by flow cytometry double-staining.The protein levels of pro-surfactant protein-C (Pro-SP-C) and Caveolin-1 in AT Ⅱ cells was determined by Western blotting.And the protein levels of Pro-SP-C and Caveolin-1 was

  16. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    Science.gov (United States)

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+)) -fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+)) -endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+)) -fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. J. Cell. Physiol. 231: 1601-1610, 2016. © 2015 Wiley Periodicals, Inc. PMID:26574905

  17. Protective effects of amygdalin on hyperoxia-exposed type Ⅱ alveolar epithelial cells isolated from premature rat lungs in vitro%苦杏仁甙对高氧暴露早产鼠肺泡Ⅱ型细胞的保护作用

    Institute of Scientific and Technical Information of China (English)

    常立文; 祝华平; 李文斌; 刘汉楚; 张谦慎; 陈红兵

    2005-01-01

    目的探讨苦杏仁甙对体外高氧暴露早产鼠肺泡Ⅱ型细胞( type 2 alveolar epithelial cell,AECⅡ)的保护作用机制.方法原代培养早产鼠AECⅡ,建立高氧细胞模型,采用MTT比色法、流式细胞术、免疫印迹(Western blot)、逆转录聚合酶链反应(RT-PCR)等方法,观察苦杏仁甙对高氧暴露早产鼠AECⅡ增殖及表面活性物质蛋白(surfactant associated protein, SP)mRNA表达的影响.结果高氧暴露导致早产鼠AECⅡ增殖抑制,AECⅡSPs mRNA表达降低.MTT试验显示,苦杏仁甙50~200μmol/L时呈剂量依赖方式促进早产鼠AECⅡ细胞增殖,200 μmol/L浓度时,其作用最强,400 μmol/L浓度时反而呈抑制作用.200 μmol/L苦杏仁甙可显著促进体外高氧暴露AECⅡ增殖,提高其SP mRNA表达水平.结论高氧暴露导致早产鼠AECⅡ增殖抑制及SP mRNA表达降低,200 μmol/L苦杏仁甙对体外高氧暴露的早产鼠AECⅡ有一定保护作用.

  18. Plasma cell gingivitis with severe alveolar bone loss.

    Science.gov (United States)

    Kumar, Vivek; Tripathi, Amitandra Kumar; Saimbi, Charanjit Singh; Sinha, Jolly

    2015-01-16

    Plasma cell gingivitis is a rare benign condition of the gingiva characterised by sharply demarcated erythaematous and oedematous gingiva often extending up to the muco gingival junction. It is considered a hypersensitive reaction. It presents clinically as a diffuse, erythaematous and papillary lesion of the gingiva, which frequently bleeds, with minimal trauma. This paper presents a case of a 42-year-old man who was diagnosed with plasma cell gingivitis, based on the presence of plasma cells in histological sections, and severe alveolar bone loss at the affected site, which was managed by surgical intervention.

  19. Alveolar Development and Disease

    OpenAIRE

    Jeffrey A Whitsett; Weaver, Timothy E.

    2015-01-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. T...

  20. Conditional deletion of Abca3 in alveolar type II cells alters surfactant homeostasis in newborn and adult mice

    OpenAIRE

    Besnard, Valérie; Matsuzaki, Yohei; Clark, Jean; Xu, Yan; Wert, Susan E.; Ikegami, Machiko; Stahlman, Mildred T.; Weaver, Timothy E.; Hunt, Alan N.; Postle, Anthony D.; Whitsett, Jeffrey A.

    2010-01-01

    ATP-binding cassette A3 (ABCA3) is a lipid transport protein required for synthesis and storage of pulmonary surfactant in type II cells in the alveoli. Abca3 was conditionally deleted in respiratory epithelial cells (Abca3Δ/Δ) in vivo. The majority of mice in which Abca3 was deleted in alveolar type II cells died shortly after birth from respiratory distress related to surfactant deficiency. Approximately 30% of the Abca3Δ/Δ mice survived after birth. Surviving Abca3Δ/Δ mice developed emphys...

  1. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  2. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  3. Simultaneous occurrence of pulmonary interstitial fibrosis and alveolar cell carcinoma in one family.

    OpenAIRE

    Beaumont, F; Jansen, H. M.; Elema, J D; ten Kate, L P; Sluiter, H J

    1981-01-01

    The coexistence of interstitial pulmonary fibrosis and alveolar cell carcinoma is well known. The familial occurrence of a combination of these two entities, however, is very rare. We present a family of which five members had diffuse interstitial pulmonary fibrosis. Three of them had in addition alveolar cell carcinoma. In a sixth family member, evidence of alveolar cell carcinoma was present without proven interstitial fibrosis. An autosomal dominant trait is suggested as the mode of inheri...

  4. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  5. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    Science.gov (United States)

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young

    2015-06-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  6. Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice

    DEFF Research Database (Denmark)

    Jung, A; Allen, L; Nyengaard, Jens Randel;

    2005-01-01

    (-)D(-) mice have fewer and larger alveoli, an increase in the number and size of type II cells, as well as more numerous and larger alveolar macrophages. More surfactant-storing lamellar bodies are seen in type II cells, leading to a threefold increase in the total volume of lamellar bodies per lung, but the......Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have...... overlapping as well as distinct functions. The present study provides a design-based stereological analysis of adult mice deficient in both SP-A and SP-D (A(-)D(-)) with special emphasis on parameters characterizing alveolar architecture and surfactant-producing type II cells. Compared to wild-type, A...

  7. Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds.

    Science.gov (United States)

    Shojaie, Sharareh; Lee, Joyce; Wang, Jinxia; Ackerley, Cameron; Post, Martin

    2016-01-01

    Lung lineage differentiation requires integration of complex environmental cues that include growth factor signaling, cell-cell interactions and cell-matrix interactions. Due to this complexity, recapitulation of lung development in vitro to promote differentiation of stem cells to lung epithelial cells has been challenging. In this protocol, decellularized lung scaffolds are used to mimic the 3-dimensional environment of the lung and generate stem cell-derived airway epithelial cells. Mouse embryonic stem cell are first differentiated to the endoderm lineage using an embryoid body (EB) culture method with activin A. Endoderm cells are then seeded onto decellularized scaffolds and cultured at air-liquid interface for up to 21 days. This technique promotes differentiation of seeded cells to functional airway epithelial cells (ciliated cells, club cells, and basal cells) without additional growth factor supplementation. This culture setup is defined, serum-free, inexpensive, and reproducible. Although there is limited contamination from non-lung endoderm lineages in culture, this protocol only generates airway epithelial populations and does not give rise to alveolar epithelial cells. Airway epithelia generated with this protocol can be used to study cell-matrix interactions during lung organogenesis and for disease modeling or drug-discovery platforms of airway-related pathologies such as cystic fibrosis. PMID:27214388

  8. Detection of alveolar epithelial injury by Tc-99m DTPA radioaerosol inhalation lung scan in rheumatoid arthritis patients

    International Nuclear Information System (INIS)

    Rheumatoid arthritis (RA) is a systemic autoimmune disorder primarily involving the joints. Lung alterations in RA may be primary or secondary to pharmacological treatments and may involve the alveoli, interstitium, airways and/or pleura. Technetium-99 m diethylenetriaminepentaacetic acid (Tc-99m DTPA) aerosol inhalation scintigraphy is a sensitive and noninvasive test commonly employed to assess pulmonary epithelial membrane permeability. The purpose of this study was to investigate the changes of pulmonary alveolar epithelial permeability in patients with RA, to determine the relationship between the clearance rate of Tc-99m DTPA and pulmonary function test (PFT) results, and to determine the relationship between the clearance rate of Tc-99m DTPA and clinical parameters of disease. Twenty-five patients with RA but without lung alterations were included in the study. The patients were 22 females, and 3 males; mean age 53.6±8.7 years. Technetium-99m DTPA aerosol inhalation scintigraphy was performed on the study and healthy control groups. Clearance half times (T1/2) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. There were no significant differences in the mean T1/2 or mean PI values between the RA patients and control subjects. No correlation was found between the mean T1/2 values of Tc-99m DTPA clearance and activity of RA, clinical values, or the spirometric measurements except FEV1/FVC and functional status in RA patients (p=0.02, p=0.01, respectively). However, a weak correlation was found between duration of disease and T1/2 values of Tc-99m DTPA clearance (p=0.006). PI values tended to correlate with FEF25-75, although, this was not statistically significant (p=0.057). This study shows that no changes occur in alveolar-capillary permeability in RA patients without lung alterations. (author)

  9. Polarized sorting and trafficking in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Xinwang Cao; Michal A Surma; Kai Simons

    2012-01-01

    The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain,which are separated by tight junctions.The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules.This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers.Here we review the recent advances in the field of polarized sorting in epithelial cells.We especially highlight the role of lipid rafts in apical sorting.

  10. Distribution characteristics of clarithromycin and azithromycin, macrolide antimicrobial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Morimoto, Kazuhiro

    2011-10-01

    The distribution characteristics of clarithromycin (CAM) and azithromycin (AZM), macrolide antimicrobial agents, in lung epithelial lining fluid (ELF) and alveolar macrophages (AMs) were evaluated. In the in vivo animal experiments, the time-courses of the concentrations of CAM and AZM in ELF and AMs following oral administration (50 mg/kg) to rats were markedly higher than those in plasma, and the area under the drug concentration-time curve (AUC) ratios of ELF/plasma of CAM and AZM were 12 and 2.2, and the AUC ratios of AMs/ELF were 37 and 291, respectively. In the in vitro transport experiments, the basolateral-to-apical transport of CAM and AZM through model lung epithelial cell (Calu-3) monolayers were greater than the apical-to-basolateral transport. MDR1 substrates reduced the basolateral-to-apical transport of CAM and AZM. In the in vitro uptake experiments, the intracellular concentrations of CAM and AZM in cultured AMs (NR8383) were greater than the extracellular concentrations. The uptake of CAM and AZM by NR8383 was inhibited by ATP depletors. These data suggest that the high distribution of CAM and AZM to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by the AMs themselves via active transport mechanisms.

  11. Distribution characteristics of telithromycin, a novel ketolide antimicrobial agent applied for treatment of respiratory infection, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-01-01

    The distribution characteristics of telithromycin (TEL), a novel ketolide antimicrobial agent, in lung epithelial fluid (ELF) and alveolar macrophages (AMs) were evaluated. In vivo animal experiments, the time-courses of the concentrations of TEL in ELF and AMs following oral administration of TEL solution (50 mg/4 mL/kg) to rats were markedly higher than in plasma, and areas under drug concentration-time curve (AUC) ratios of ELF/plasma and AMs/plasma were 2.4 and 65.3, respectively. In vitro transport experiments, the basolateral-to-apical transport of TEL through model lung epithelial cell (Calu-3) monolayers was greater than apical-to-basolateral transport. Rhodamine123 and verapamil, MDR1 substrates, reduced the basolateral-to-apical transport of TEL. In vitro uptake experiments, the intracellular equilibrated concentration of TEL in cultured AMs (NR8383) was approximately 40 times the extracellular concentration. The uptake of TEL by NR8383 was inhibited by rotenone and FCCP, ATP depletors and was temperature-dependent. These data suggest that the high distribution of TEL to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by AMs themselves via active transport mechanisms.

  12. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Huachen Gan

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3 were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  13. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis.

    Science.gov (United States)

    Mohapatra, A; Van Dyken, S J; Schneider, C; Nussbaum, J C; Liang, H-E; Locksley, R M

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) have an important role in acute allergic lung inflammation. Given their distribution and function, lung ILC2s are hypothesized to coordinate epithelial responses to the external environment; however, how barrier surveillance is linked to ILC2 activation remains unclear. Here, we demonstrate that alveolar type II cells are the main source of interleukin (IL)-33 and thymic stromal lymphopoietin (TSLP) generated in response to chitin or migratory helminths. IL-33 and TSLP synergistically induce an interferon regulatory factor 4 (IRF4)-IL-9 program in ILC2s, and autocrine IL-9 promotes rapid IL-5 and IL-13 production required for optimal epithelial responses in the conducting airways. Thus, ILC2s link alveolar function to regulation of airway flow, revealing a key interaction between resident lymphoid and structural cells that might underlie similar organizational hierarchies in other organs.

  14. Bronchiolo-alveolar cell carcinoma: A review of 11 cases

    International Nuclear Information System (INIS)

    Eleven patients with proved Bronchiolo-alveolar cell carcinoma were found in the chest department of the national menical center from 1975 to 1981. The clinical od Bronchiolo-alveolar cell carcinoma is recently increased as primary lung carcinoma. The results were as follow. 1. The ratio of male and female was 5 : 6, and an incidence of 4.4% among total primary lung cancer patients. The highest incidence (3 of cases) was seen in the sixth decade, and the remaining cases were evenly distributed in the third, fourth, and fifth decades of life. Among them youngest was 29 years old and the oldest was 66 years old. 2. Clinical and radiological initial diagnosis prior to the final diagnosis were as follows; pulmonary tuberculosis; 7 cases, pneumonia; 1 case, bronchiectasis; 1 case, and lung cancer; 2 cases. 3. Radiological examination of chest presented several pictures; most commonly, homogenous or patchy infiltration; 6 cases, nodular or mass like densities; 2 cases, disseminated nodular or military patterns; 2 cases, and reticular pattern; 1 case. 4. Bronchogram revealed no contributable findings except one case of complete tappering obstruction of the segmental bronchus. Therefore we arrive at the conclusion that early diagnosis will result in increased resectability and improved survival so aggressive diagnostic work-up for suspicious pulmonary infiltrate is necessary

  15. p172: An alveolar type II and Clara cell specific protein with late developmental expression and upregulation by hyperoxic lung injury.

    Science.gov (United States)

    Girod, C E; Shin, D H; Hershenson, M B; Solway, J; Dahl, R; Miller, Y E

    1996-06-01

    The epithelium of the alveolus and distal airway meets unique requirements, functioning as a gas exchange membrane and barrier to alveolar flooding by vascular contents as well as to bloodstream contamination by airborne toxins and pathogens. Gene products specifically expressed by this epithelium, notably the surfactant apoproteins, have had important clinical application. No cell surface antigen specific for alveolar type II and Clara cells has been described. We report the biochemical characterization, tissue and developmental expression, and upregulation by injury of a 172 kD protein recognized by a monoclonal antibody, 3F9, synthesized in response to immunization with freshly isolated rat alveolar type II cells. p172 is expressed in a polarized fashion by the apical surface of rat alveolar type II and Clara cells. An immunohistochemical survey of various rat tissues and organs reveals lung specificity. p172 is first detectable in rare epithelial cells at 19 days of gestation, a time when the fully differentiated alveolar type II cell is identified by the first detection of lamellar bodies. There is a dramatic increase in p172 expression just prior to birth. Hyperoxic lung injury results in increased expression of p172. The upregulation of p172 by hyperoxia and its cell-specific expression suggests an important adaptive function.

  16. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  17. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  18. Uptake of palmitic acid by rabbit alveolar type II cells

    International Nuclear Information System (INIS)

    Alveolar type II cells require a source of palmitic acid for synthesis of dipalmitoyl phosphatidylcholine (DPPC), a major constituent of pulmonary surfactant. Previous studies indicated that maximal rates of DPPC synthesis are achieved only if exogenous palmitate is available to the type II cell. Little is known of the mechanisms by which fatty acids enter type II cells. To determine if uptake is mediated by a membrane carrier system, as described in other cell types, we examined the kinetics of palmitate uptake. Using freshly isolated rabbit type II cells, we demonstrated that radiolabeled palmitate uptake was maximal and linear for 45 s; after 1 min the apparent rate of uptake declined. The initial uptake phase was taken as a measure of cellular fatty acid influx because intracellular radiolabeled palmitate remained 80% nonesterified at this time but was 55% esterified by 2 min. Cellular influx of palmitate showed saturation kinetics with increasing concentration of nonalbumin bound palmitate. Michaelis constant was 52.6 nM, and maximum velocity was 152 pmol.10(6) cells-1.min-1. The hypothesis that saturable cellular influx of palmitate is likely linked to the previously identified membrane fatty acid binding protein (MFABP) was supported by Western-blot analysis of rat lung tissue with an antibody to MFABP that demonstrated the presence of this carrier protein in lung tissue. These data suggest that palmitate uptake by type II cells is saturable and may be mediated by a membrane-associated carrier as described in other cell types

  19. 硫化氢对急性肺损伤大鼠肺泡上皮细胞内质网应激的调节%Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    刘志伟; 王海英; 关岚; 赵斌

    2014-01-01

    目的 探索内源性硫化氢对于油酸诱导的急性肺损伤大鼠肺泡上皮细胞内质网应激的调节作用.方法 雄性Sprague Dawley大鼠随机(随机数字法)被分入正常对照组、油酸组、油酸+硫氢化钠组及硫氢化钠对照组.每个组进一步分为2、4和6h3个时间点.对肺组织进行肺组织损伤半定量评分,检测肺组织湿、干质量比和匀浆硫化氢含量.通过免疫组化染色和蛋白印迹法检测内质网应激的标志蛋白(GRP78和elF2α)的表达.结果 肺损伤大鼠肺组织损伤半定量评分及湿、干质量比明显升高,而肺组织硫化氢含量,肺泡上皮细胞GRP78及eIF2α的表达明显降低.在硫氢化钠预处理的大鼠中,肺损伤半定量评分及肺组织湿、干质量比明显降低,而肺组织硫化氢含量,肺泡上皮细胞GRP78及eIF2α的表达明显升高.结论 内源性硫化氢可以通过促进肺泡上皮细胞内质网应激反应进而在肺损伤过程中起到保护作用.%Objective To study the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress in alveolar epithelial cells of rats with acute lung injury (ALI) induced by oleic acid (OA).Methods Seventy-two male Sprague Dawley (SD) rats were equally divided into control group (C group),oleic acid-induced ALI group (OA group),oleic acid-induced ALI with sodium hydrosulfide (NaHS) pretreatment group (OA + NaHS group) and sodium hydrosulfide treatment group (NaHS group).The model of acute lung injury was made by oleic acid intravenous injection in dose of 0.1 mL/kg.NaHS was injected intra-abdominally in dose of 1 ml/kg with concentration of 56 μmol/L 30 min before administration of oleic acid for pretreatment.In control groups,saline was used instead of oleic acid and NaHS in the equivalent volume.Six rats of each group were sacrificed at 2 h,4 h and 6 hours separately after modeling for observing the acute injury of lung tissue.Index of quantitative assessment of

  20. Wnt signaling promotes the differentiation of adipose mesenchymal stem cells into type II alveolar epithelial cells%Wnt信号途径促进脂肪间充质干细胞向Ⅱ型肺泡上皮细胞分化

    Institute of Scientific and Technical Information of China (English)

    石莉; 竭晶; 王芳; 赵丹; 张秀芳; 彭丽萍

    2015-01-01

    背景:脂肪间充质干细胞向Ⅱ型肺泡上皮细胞定向分化的能力以及调节机制尚未完全阐明。  目的:观察脂肪间充质干细胞在体外分化为Ⅱ型肺泡上皮的能力以及W nt途径对分化的调节作用。  方法:取大鼠脂肪组织,体外分离培养脂肪间充质干细胞并通过流式细胞术进行鉴定。实验分为对照组、小气道生长液组和Wnt3a组,对照组用普通DMEM培养基培养,小气道生长液组和Wnt3a组均使用小气道生长液培养,且Wnt3a组加入Wnt信号通路激动剂Wnt3a培养。诱导10 d后分别通过qRT-PCR和免疫荧光检测Ⅱ型肺泡上皮标志物肺表面活性蛋白B,C,D的表达,并于诱导5 d和10 d时通过Western blot检测磷酸化β-catenin和GSK-3β。  结果与结论:大鼠脂肪组织中可成功分离出纯度较高的脂肪间充质干细胞,可表达 CD44和 CD29,不表达CD11b和CD45;经小气道生长液诱导后,脂肪间充质干细胞中肺表面活性蛋白B,C,D蛋白和mRNA表达均上调(P OBJECTIVE:To study the ability of adipose mesenchymal stem cels differentiating into type II alveolar epithelial cels in vitro and the function of Wnt pathway in the regulation of differentiation. METHODS:Adipose mesenchymal stem cels were obtained from fat tissue of rats and identified by flow cytometry. The adipose mesenchymal stem cels were divided into control group, smal airway growth medium (SAGM) group and Wnt3a group. Control group was treated with normal DMEM medium; SAGM and Wnt3a groups were both treated with smal airway growth medium, and additionaly, the Wnt3a group was treated with Wnt3a, a Wnt signaling pathway agonist. After 10 days, quantitative RT-PCR and immunofluorescence detection were used to test the expression of surfactant proteins B, C, D, type II alveolar epithelial markers. Phosphorylatedβ-catenin and GSK-3β were detected using western blot after 5 and 10 days of induction. RESULTS

  1. Human odontogenic epithelial cells derived from epithelial rests of Malassez possess stem cell properties.

    Science.gov (United States)

    Tsunematsu, Takaaki; Fujiwara, Natsumi; Yoshida, Maki; Takayama, Yukihiro; Kujiraoka, Satoko; Qi, Guangying; Kitagawa, Masae; Kondo, Tomoyuki; Yamada, Akiko; Arakaki, Rieko; Miyauchi, Mutsumi; Ogawa, Ikuko; Abiko, Yoshihiro; Nikawa, Hiroki; Murakami, Shinya; Takata, Takashi; Ishimaru, Naozumi; Kudo, Yasusei

    2016-10-01

    Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of the Hertwig's epithelial root sheath (HERS) that are involved in the formation of tooth roots. ERM cells are unique epithelial cells that remain in periodontal tissues throughout adult life. They have a functional role in the repair/regeneration of cement or enamel. Here, we isolated odontogenic epithelial cells from ERM in the periodontal ligament, and the cells were spontaneously immortalized. Immortalized odontogenic epithelial (iOdE) cells had the ability to form spheroids and expressed stem cell-related genes. Interestingly, iOdE cells underwent osteogenic differentiation, as demonstrated by the mineralization activity in vitro in mineralization-inducing media and formation of calcification foci in iOdE cells transplanted into immunocompromised mice. These findings suggest that a cell population with features similar to stem cells exists in ERM and that this cell population has a differentiation capacity for producing calcifications in a particular microenvironment. In summary, iOdE cells will provide a convenient cell source for tissue engineering and experimental models to investigate tooth growth, differentiation, and tumorigenesis. PMID:27479086

  2. Wound healing of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Masahiro Iizuka; Shiho Konno

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events;restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  3. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  4. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  5. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  6. Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Li

    Full Text Available To develop stem/progenitor cell-based therapy for cystic fibrosis (CF lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6β4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6β4(+ cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6β4(+ epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6β4(- epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6β4(+ epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs serotypes, AAV2 and AAV8, capable of transducing α6β4(+ cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6β4(+ epithelial cells significantly rescued defects in Cl(- transport. Therefore, targeting the α6β4(+ epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.

  7. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    International Nuclear Information System (INIS)

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  8. The effect of phospholipid transfer protein on cigarette smoke extract induced epithelial-mesenchymal transition of rat alveolar type Ⅱ cells%磷脂转运蛋白在烟草诱导RLE-6TN细胞株发生上皮间质转化中的作用

    Institute of Scientific and Technical Information of China (English)

    巫凤苹; 陈亚娟; 余秀英; 廖科; 李丹丹; 陈虹

    2016-01-01

    Objective To investigate the effect of phospholipid transfer protein(PLTP) on cigarette smoke extract(CSE) induced epithelial-mesenchymal transition(EMT) in rat alveolar Type Ⅱ cells (RLE-6TN).Methods CSE of different concentrations (0%,0.25%,0.5% and 1%) was co-cultured for 2 or 3days with RLE-6TN,either pre-treated or not pre-treated with siRNA-PLTP for 6 h.Expression levels of E-cadherin mRNA and Vimentin mRNA were examined by RT-PCR,while expression levels of PLTP,E-cadherin,N-cadherin and Vimentin were examined by Western blot.Results Our results showed that the expression of E-cadherin mRNA decreased in CSE-treated groups:1.01 ± 0.05,0.74 ± 0.05,0.65 ± 0.03,0.30 ±0.08 respectively at different concentrations of CSE (0 %,0.25%,0.5 %,and 1.0%);while the level of Vimentin mRNA increased significantly in 1% CSE treated cells (1.88 ± O.49),compared with control cells (1.01 ±0.20).Treatment with CSE at different concentrations (0%,0.25%,0.5% and 1%) showed that the protein levels of PLTP were 0.42 ± 0.02,0.89 ± 0.25,1.08 ± 0.18,1.61 ± 0.06 respectively;those of E-cadherin were 1.61 ± 0.04,1.08 ± 0.10,0.62 ± 0.08,0.68 ± 0.17,respectively;those of N-cadherin were 0.60 ± 0.14,0.57 ± 0.26,0.88 ± 0.30,1.94 ± 0.54,respectively;and those of Vimentin were 0.61 ± 0.05,0.98 ± 0.16,1.07 ± 0.14,1.34 ± 0.19,respectively;all P < 0.05 when the 1% CSE group was compared with the control group.EMT induced by CSE was significantly inhibited by siRNA-PLTP.Conclusion PLTP may be involved in CSE induced EMT of rat alveolar cells.%目的 探讨磷脂转运蛋白(PLTP)在烟草提取物(CSE)诱导大鼠Ⅱ型肺泡上皮细胞株RLE-6TN发生上皮间质转化(EMT)中的作用.方法 体外培养RLE-6TN细胞株24 h,分为4组,每组3孔,分别加入0%、0.25%、0.5%和1% CSE培养2d,检测E-钙黏蛋白和波形蛋白mRNA表达以及细胞和CSE共培养3d检测PLTP、EMT相关蛋白(E-钙黏蛋白、N-钙黏蛋白和波形

  9. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  10. Alveolar epithelial permeability in patients with primary spontaneous pneumothorax as determined by Tc-99m DTPA aerosol scintigraphy

    International Nuclear Information System (INIS)

    Primary spontaneous pneumothorax (PSP) occurs subsequent to a disruption in the continuity of visceral pleura and escape of air into the pleural space. The cause of PSP is most often the rupture of subpleural blebs or bullae. It is usually difficult to detect evidence of pulmonary pathology. The purposes of the present study were to investigate the changes of pulmonary alveolar epithelial permeability in patients with PSP as determined by Tc-99m DTPA aerosol lung scintigraphy, to assess whether or not some differences exist between apical and basal parts of the lungs, and to determine the relationship between the clearance rate of Tc-99m DTPA and the pulmonary function test (PFT) results, the recurrence rate of PSP, and the percentage of pneumothorax in affected lung. Thirteen PSP patients (two females, 11 males; mean age 32.5±11.8 years) with normal chest X-ray were studied. Thirteen healthy non-smoking volunteers (1 female, 12 males; mean age, 35.8±10 years) were selected as a control group. Tc-99m DTPA aerosol lung scintigraphy and PFT were performed in all patients and controls. Clearance rates (%/min) of Tc-99m DTPA aerosol in right and left lung field, and apical and basal parts of each lung were calculated from dynamic images for 15 min. There was no significant difference (p>0.05) between patients and controls, or between apical and basal parts of each lung. No correlation was found between the clearance rate of Tc-99m DTPA and PFT results, the recurrence rate of PSP, or the percentage of pneumothorax. This study demonstrates that pulmonary epithelial permeability is not altered in PSP patients; the clearance rate of Tc-99m DTPA shows no difference between apical and basal parts of each lung. (author)

  11. Identification of molecular markers related to human alveolar bone cells and pathway analysis in diabetic patients.

    Science.gov (United States)

    Sun, X; Ren, Q H; Bai, L; Feng, Q

    2015-10-28

    Alveolar bone osteoblasts are widely used in dental and related research. They are easily affected by systemic diseases such as diabetes. However, the mechanism of diabetes-induced alveolar bone absorption remains unclear. This study systematically explored the changes in human alveolar bone cell-related gene expression and biological pathways, which may facilitate the investigation of its mechanism. Alveolar bone osteoblasts isolated from 5 male diabetics and 5 male healthy adults were cultured. Total RNA was extracted from these cells and subjected to gene microarray analysis. Differentially expressed genes were screened, and a gene interaction network was constructed. An enrichment pathway analysis was simultaneously performed on differentially expressed genes to identify the biological pathways associated with changes in the alveolar bone cells of diabetic humans. In total, we identified 147 mRNAs that were differentially expressed in diabetic alveolar bone cells (than in the normal cells; 91 upregulated and 36 downregulated mRNAs). The constructed co-expression network showed 3 pairs of significantly-expressed genes. High-enrichment pathway analysis identified 8 pathways that were affected by changes in gene expression; three of the significant pathways were related to metabolism (inositol phosphate metabolism, propanoate metabolism, and pyruvate metabolism). Here, we identified a few potential genes and biological pathways for the diagnosis and treatment of alveolar bone cells in diabetic patients.

  12. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  13. Adiponectin ameliorates the apoptotic effects of paraquat on alveolar type II cells via improvements in mitochondrial function

    Science.gov (United States)

    HE, YARONG; ZOU, LIQUN; ZHOU, YAXIONG; HU, HAI; YAO, RONG; JIANG, YAOWEN; LAU, WAYNE BOND; YUAN, TUN; HUANG, WEN; ZENG, ZHI; CAO, YU

    2016-01-01

    Previous studies have demonstrated that excessive reactive oxygen/nitrogen species (ROS/RNS)-induced apoptosis is an important feature of the injury to the lung epithelium in paraquat (PQ) poisoning. However the precise mechanisms of PQ-induced dysfunction of the mitochondria, where ROS/RNS are predominantly produced, remain to be fully elucidated. Whether globular adiponectin (gAd), a potent molecule protective to mitochondria, regulates the mitochondrial function of alveolar type II cells to reduce PQ-induced ROS/RNS production remains to be investigated. The current study aimed to investigate the precise mechanisms of PQ poisoning in the mitochondria of alveolar type II cells, and to elucidate the role of gAd in protecting against PQ-induced lung epithelium injury. Therefore, lung epithelial injury was induced by PQ co-culture of alveolar type II A549 cells for 24 h. gAd was administrated to and removed from the injured cells in after 24 h. PQ was observed to reduce cell viability and increase apoptosis by ~1.5 fold in A549 cells. The oxidative/nitrative stress, resulting from ROS/RNS and disordered mitochondrial function were evidenced by increased O2−., NO production and reduced mitochondrial membrane potential (ΔΨ), adenosine 5′-triphosphate (ATP) content in PQ-poisoned A549 cells. gAd treatment significantly reversed the PQ-induced cell injury and mitochondrial dysfunction in A549 cells. The protective effects of gAd were partly abrogated by an adenosine 5′-monophosphate-activated protein kinase (AMPK) inhibitor, compound C. The results suggest that reduced ΔΨ and ATP content may result in PQ-induced mitochondrial dysfunction of the lung epithelium, which constitutes a novel mechanism for gAd exerting pulmonary protection against PQ poisoning via AMPK activation. PMID:27220901

  14. Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice.

    Science.gov (United States)

    Lin, Shin-E; Barrette, Anne Marie; Chapin, Cheryl; Gonzales, Linda W; Gonzalez, Robert F; Dobbs, Leland G; Ballard, Philip L

    2015-12-01

    Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is expressed in the epithelium of various primate tissues, including lung airway and alveoli. In human lung, CEACAM6 is developmentally and hormonally regulated, protects surfactant function, has anti-apoptotic activity and is dysregulated in cancers. We hypothesized that alveolar CEACAM6 expression increases in lung injury and promotes cell proliferation during repair. Studies were performed in CEABAC transgenic mice-containing human CEACAM genes. The level of CEACAM6 in adult CEABAC lung was comparable to that in human infants; expression occurred in epithelium of airways and of some alveoli but rarely co-localized with markers of type I or type II cells. Ten days after bleomycin instillation, both the number of CEACAM6(+) cells and immunostaining intensity were elevated in injured lung areas, and there was increased co-localization with type I and II cell markers. To specifically address type II cells, we crossed CEABAC mice with animals expressing EGFP driven by the SP-C promoter. After bleomycin injury, partially flattened, elongated epithelial cells were observed that expressed type I cell markers and were primarily either EGFP(+) or CEACAM6(+). In cell cycle studies, mitosis was greater in CEACAM6(+) non-type II cells versus CEACAM6(+)/EGFP(+) cells. CEACAM6 epithelial expression was also increased after hyperoxic exposure and LPS instillation, suggesting a generalized response to acute lung injuries. We conclude that CEACAM6 expression is comparable in human lung and the CEABAC mouse. CEACAM6 in this model appears to be a marker of a progenitor cell population that contributes to alveolar epithelial cell replenishment after lung injury. PMID:26702074

  15. Alveolar Type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis

    OpenAIRE

    Guillamat-Prats, Raquel; Gay-Jordi, Gemma; Xaubet, Antoni; Peinado, Victor; Serrano-Mollar, Anna

    2014-01-01

    Background Alveolar Type II cell transplantation has been proposed as a cell therapy for the treatment of idiopathic pulmonary fibrosis. Its long-term benefits include repair of lung fibrosis, but its success partly depends on the restoration of lung homeostasis. Our aim was to evaluate surfactant protein restoration after alveolar Type II cell transplantation in an experimental model of bleomycin-induced lung fibrosis in rats. Methods Lung fibrosis was induced by intratracheal instillation o...

  16. Assessment of alveolar epithelial permeability in Behcet's disease with 99mTc-DTPA aerosol scintigraphy

    International Nuclear Information System (INIS)

    Behcet's disease (BD) is a multisystem disorder characterized by vasculitis, and consists of a triad of recurrent ulcers of the oral and genital mucosa with relapsing uveitis. The prevalance of pulmonary involvement varies in the range of 1-10% in various studies and its complications are severe and life threatening. In this study, we investigated the changes of pulmonary epithelial permeability of patients with BD using technetium-99m diethylene triamine penta-acetic acid (99mTc-DTPA) aerosol scintigraphy, so as to begin the therapy regimen as soon as possible. Twenty-one nonsmoking patients with BD (8 women, 13 men; mean age 38.67±8.86 years) and 15 healthy volunteer nonsmoking controls (8 women, 7 men; mean age 50.87±12.45 years) underwent 99mTc-DTPA aerosol inhalation scintigraphy and pulmonary function tests (PFTs). Subjects inhaled 1480 MBq of 99mTc-DTPA for 4 min in the supine position. Scintigraphic data were recorded dynamically (1 frame/min) in the posterior projection on a 64 x 64 matrix for a 30-min period using a double-headed gamma camera (Infinia, GE, Tirat Hacarmel, Israel) equipped with a low-energy all-purpose parallel hole collimator. Half time of 99mTc-DTPA clearance (T1/2) was calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was also calculated by dividing the peripheral total counts by the sum of the peripheral and central total counts on the first minute image, in order to quantify the distribution of the inhaled aerosol. The clearance half time of 99mTc-DTPA radioaerosols in the BD patients (24.81±6.22 min) was faster than in the normal control group (46.53±22.41 min) (P=0.004). There was also a significant difference between PI of the patients with BD (0.15±0.03) and that of the controls (0.21±0.06) (P=0.002). No correlation was found between the mean T1/2 values of 99mTc-DTPA clearance or the spirometric measurements in the BD patients. Penetration indices were not correlated with PET in the BD

  17. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Satoshi Konishi

    2016-01-01

    Full Text Available Multi-ciliated airway cells (MCACs play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs, we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine.

  18. Lipid polarity and sorting in epithelial cells

    NARCIS (Netherlands)

    van Meer, G.; Simons, K.

    1988-01-01

    Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier appar

  19. Pathobiology of glomerular visceral epithelial cells

    NARCIS (Netherlands)

    Coers, Wilko

    1994-01-01

    The purpose of this thesis was to investigate the interactions of humoral and cellular factors with glomerular epithelial cells in culture to gain insight in the pathogenesis of GVEC dedifferentiation and detachment in vivo. Our study is composed of three parts. ... Zie: Summary and discussion

  20. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  1. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  2. Protons sensitize epithelial cells to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Minli Wang

    Full Text Available Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1-mediated epithelial-mesenchymal transition (EMT, a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu and hTERT- immortalized human esophageal epithelial cells (EPC were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1 kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  3. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    Science.gov (United States)

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  4. Isolation and Culture of Human Alveolar Type II Pneumocytes.

    Science.gov (United States)

    Witherden, I R; Tetley, T D

    2001-01-01

    Alveolar type II pneumocytes (alveolar type II cells; TII cells) play an important role in the homeostasis of the alveolar unit. They are the progenitor cells to the type I pneumocyte and are therefore responsible for regeneration of alveolar epithelium following alveolar epithelial cell damage. The type I cell covers over 90% of the alveolar surface, reflecting its capacity to stretch into a flattened cell with very little depth (approx. 0.1 µm), but with a large surface area, to facilitate gas exchange. Nevertheless, the type II cell outnumbers type I cells, estimated to be by 2:1 in rodents. Most of the type II cell lies buried in the interstitium of the alveolus, with only the apical tip of the cell reaching into the airspace, through which another crucial function, provision of alveolar surfactant, occurs. Surfactant synthesis and secretion is a unique feature of type II cells; surfactant consists of a high proportion of phospholipids (approx. 90%) and a small proportion of protein (approx. 10%), which contains surfactant apoprotein (SP), of which four have so far been described, SP-A, SP-B, SP-C, and SP-D (1,2). Surfactant is highly surface active and is essential to prevent alveolar collapse. In addition, surfactant has many other roles, including pulmonary host defense. Compromised surfactant synthesis and function are believed to be a feature of numerous disease states (1,2), including infant respiratory distress syndrome, adult respiratory distress syndrome, alveolar proteinosis, and microbial infection. PMID:21336897

  5. Perivascular epithelial cell tumor (PEComa) of the pancreas: a case report and review of previous literatures.

    Science.gov (United States)

    Mizuuchi, Yusuke; Nishihara, Kazuyoshi; Hayashi, Akifumi; Tamiya, Sadafumi; Toyoshima, Satoshi; Oda, Yoshinao; Nakano, Toru

    2016-12-01

    Perivascular epithelial cell tumors (PEComas), firstly described by Bonetti in 1992, are a family of mesenchymal tumor composed of perivascular epithelioid cells having epithelioid or spindle morphology and exhibiting melanocytic and myogenic immunoreactivities. We herein described a 61-year-old woman who presented with epigastric pain. Preoperative imaging studies showed that 7-cm-sized mass was located in pancreatic head and body, and pancreaticoduodenectomy was performed. Histological findings showed that the tumor was composed of clear epithelioid cells with abundant glycogen granules, which grew in a nested and alveolar pattern around blood vessels. The tumor cells showed immunoreactivities for HMB-45 but did not express epithelial or endocrine markers. These histological features indicated those of PEComa. This report underlines that we should recognize PEComa as a preoperative differential diagnosis of pancreatic tumors. PMID:27307283

  6. N-acetyl-L-cysteine inhibits adenoviral E1A-involved transactivation of nuclear factor-κB in rat alveolar epithelial cells%腺病毒E1A蛋白对核因子-κB活化的影响及N-乙酰半胱氨酸的干预作用

    Institute of Scientific and Technical Information of China (English)

    陈娟; 李冰; 冉丕鑫

    2010-01-01

    Objective The relationship between latent adenvorius infection and airway inflammation had not been well documented.The aim of this study was to illustrate the roles of adenovirus E1 A protein on the transactivation of NF-κ inflammatory stimuli and the effect of N-Acetylcysteine (NAC)upon the transactivation of NF-κB and AP-1 in cells stably expressing E1 A protein.Methods Rat alveolar epithelial cells stably expressing adenoviral E1 A or control plasmid were developed.For isolation of nuclear extracts,5×10~5 cells were plated and grown overnight in 60 mm dishes.Experiments were repeated 3 times.The cell model of stably expressing adenoviral E1 A was stimulated by LPS or TNF-aκ and treated with NAC,a precursor for cysteine.The NF-κB and AP-1 transcriptional activity were measured by LUC report system.The expression of NF-κB and AP-1 were measured by Western blot.Differences between groups were assessed for significance by Student't test,and multiple comparisons were made by one-way ANOVA.Results The luciferage activity drived by NF-κB element wag(9 698±98)RLU in untreated E1 A-positive clones and(101 195±234),and(170 385 4±443)RLU in LPS and TNF-α-stimulated cells,which were significantly higher than that of the control group 2 077±107,67 846±332,95 743-1-211 respectively.The luciferage activity drived by AP-1 element wag 9 034±78 RLU in untreated E1 A-positive clones and 26 343 4±398 and 31 731 4±332 RLU in LPS and TNF-α-stimulated cells.which were significantly higher than that of the control group 2 845±93,10 772±432,11 005±556 respectively.The densitometry of the NF-κB expression in E1 A-positive clones were 79.3±4.6 and 80.3±3.8 respectively without treatment and were 81.8 4±3.9-89.9±1.6 and 94.1 4-1.9 to 99.8±1.6 respectively under LPS or TNF-α stimulation,which were significantly higher than that of the control group(68.3±3.8,69.4±4.3 respectively)without stimulation and 70.1 4±2.8 to 80.8±3.6.73.4±4.9 to 83.2 4±6

  7. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Richter Joachim

    2008-01-01

    Full Text Available Abstract Background Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. Methods Rats were randomly assigned to a control, Celsior (CE or Celsior + surfactant (CE+S group (n = 5 each. In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups or immediately after sacrifice (Control, the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. Results Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation: CE: 160 mm3 (0.61 vs. CE+S: 4 mm3 (0.75; p 3 (0.90 vs. CE+S: 0 mm3; p 3 (0.39 vs. CE+S: 268 mm3 (0.43; p 3(0.10 and CE+S (481 μm3(0.10 compared with controls (323 μm3(0.07; p Conclusion Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of

  8. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    Science.gov (United States)

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. PMID:25991731

  9. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Directory of Open Access Journals (Sweden)

    Reyes Livia

    2005-06-01

    Full Text Available Abstract Background Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. Methods Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed. Results A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation. Conclusion These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.

  10. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    Science.gov (United States)

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  11. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  12. Influences of methyl-β-cyclodextrin-caused caveolae destruction on TGF-y/Smad signaling pathway and on proliferation of type Ⅱ alveolar epithelial cells%甲基-β-环糊精对肺泡Ⅱ型上皮细胞增殖和TGF-β/Smad信号通路的影响

    Institute of Scientific and Technical Information of China (English)

    王勤; 王建春; 李玉英; 王关嵩

    2011-01-01

    Objective To study the influences of methyl-β-cyclodextrin ( MβCD)-caused caveolae destruction on proliferation of type Ⅱ alveolar epithelial cells ( AECs Ⅱ ) and on TGF-β/Smad signaling pathway in AECs Ⅱ. Methods Rat AECs Ⅱ were isolated through enzyme digestion, and then identified through immunofluorescence assay. The distribution of caveolin-1 (a caveolae-specific protein) and type Ⅰ TGF-β receptor (TβR- Ⅰ ) in AECs Ⅱ cell membranes was analyzed with double-labeling immunofluorescence assay and confocal laser scanning microscopy. AECs Ⅱ were divided into a treatment group and a control group. MβCD (5 mmol/L in DME0M) was added into the treatment group to destroy caveolae of AECs Ⅱ, while DMEM was added into the control group. Lipid rafts were extracted from AECs Ⅱ by nonionic detergent method, and the distribution of caveolin-1 and TβR- Ⅰ in cell membranes of treated AECs Ⅱ was analyzed through SDS-PAGE.The expression of caveolin-1 and phosphorylated Smad2 (pSmad2, a downstream molecule of TGF-β/Smad signaling pathway) in AECs Ⅱ was analyzed through Western blotting. The proliferation rate of AECs Ⅱ was analyzed through methyl thiazolyl tetrazolium method. Results The double-labeling immunofluorescence assay and lipid raft extraction showed that TβR-Ⅰ was mainly distributed in caveolae of cell membrane and, after MβCD treatment, was re-distributed in non-raft domains. The expression of caveolin-1 in AECs Ⅱ of the treatment group was significantly lower than that of the control group [( 24.53 ± 3.24 ) % vs (54.83 ± 5.67 ) %,P <0. 01]. The expression of pSmad2 in AECs Ⅱ of the treatment group was significantly higher than that of the control group [( 10.93 ± 1.11 ) % vs ( 8.36 ± 0.64) %, P < 0. 05]. The proliferation rate of AECs Ⅱ of the treatment group is significantly lower than that of the control group (31.00 ±4.18)% vs (49.20 ±4.44)%, P <0. 01 ). Corclusior MβCD-caused caveolae

  13. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yuka; Hagiwara, Natsumi [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan); Radisky, Derek C. [Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32225 (United States); Hirai, Yohei, E-mail: y-hirai@kwansei.ac.jp [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan)

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.

  14. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  15. DNA typing of epithelial cells after strangulation.

    Science.gov (United States)

    Wiegand, P; Kleiber, M

    1997-01-01

    DNA typing was carried out on epithelial cells which were transferred from the hands of the suspect onto the neck of the victim. In an experimental study 16 suspect-victim combinations were investigated for estimating the typing success. Alternatively to an attack against the neck, the upper arm was used for "strangulation". PCR typing was carried out using the short tandem repeat systems (STRs) HumCD4, HumVWF31A (VWA) and Hum-FIBRA (FGA) and the success rate was > 70% for all 3 systems. In most of the cases mixed patterns containing the phenotype of the suspect and the victim were obtained. In a case where strangulation was the cause of death, epithelial cells could be removed from the neck of the victim. The DNA pattern of the suspect could be successfully amplified using four STRs, demonstrating the applicability of this approach for practical casework. PMID:9274940

  16. Pathogenesis of idiopathic pulmonary fibrosis: from initial apoptosis of epithelial cells to lung remodeling?

    Institute of Scientific and Technical Information of China (English)

    JIN Hua-liang; DONG Jing-cheng

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal form of interstitial lung disease.Despite extensive efforts in research during recent years,the mechanisms of the disease remain poorly understood.Evidence of an inflammatory mechanism,both supportive and contrary,is briefly reviewed in this paper.However,growing evidence has indicated that the apoptosis of alveolar epithelial cells (AECs) may be the early driving force of progression,with subsequent disrupted integrity of the alveolar-capillary basement membrane leading to an abnormal wound healing pathway.Thus,this paper will focus on outlining a process of pathogenesis of IPF from initial apoptosis of AECs to end lung remodeling.

  17. Assessment of alveolar epithelial permeability in progressive systemic sclerosis (PSS) using 99mTc-DTPA (diethylene triamine penta acetate) aerosol inhalation

    International Nuclear Information System (INIS)

    To evaluate alveolar epithelial damage in PSS, we studied pulmonary epithelial permeability by measuring the clearance of inhaled 99mTc-DTPA aerosol and performing thin slice CT scan, pulmonary function tests and right heart catheterization in 28 patients with PSS. The 99mTc-DTPA clearance rate (kep value) in PSS was greater than in 11 non-smoking normal subjects (18.2±7.63x10-3/min vs. 9.12±0.77x10-3/min, p2. In contrast, the kep value showed significant correlations with %DLco (diffusing capacity for carbon monoxide), extent of interstitial lesions evaluated by CT scan (CT score), and mean pulmonary artery pressure. On the other hand, the kep value was high in some patients with normal CT scan and normal %DLco. These findings indicate that pulmonary interstitial lesions in PSS are accompanied by alveolar epithelial damage, and that the clearance of 99mTc-DTPA may be an early predictor of interstitial change. (author)

  18. Intestinal epithelial cells in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Giulia; Roda; Alessandro; Sartini; Elisabetta; Zambon; Andrea; Calafiore; Margherita; Marocchi; Alessandra; Caponi; Andrea; Belluzzi; Enrico; Roda

    2010-01-01

    The pathogenesis of inflammatory bowel diseases (IBDs) seems to involve a primary defect in one or more of the elements responsible for the maintenance of intestinal homeostasis and oral tolerance. The most important element is represented by the intestinal barrier, a complex system formed mostly by intestinal epithelial cells (IECs). IECs have an active role in producing mucus and regulating its composition; they provide a physical barrier capable of controlling antigen traff ic through the intestinal muco...

  19. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    OpenAIRE

    Gharib, Sina A; Pippin, Jeffrey W.; Takamoto Ohse; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs ...

  20. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair

    Science.gov (United States)

    Quantius, Jennifer; Schmoldt, Carole; Vazquez-Armendariz, Ana I.; Becker, Christin; El Agha, Elie; Wilhelm, Jochen; Morty, Rory E.; Vadász, István; Mayer, Konstantin; Gattenloehner, Stefan; Fink, Ludger; Matrosovich, Mikhail; Li, Xiaokun; Seeger, Werner; Lohmeyer, Juergen; Bellusci, Saverio; Herold, Susanne

    2016-01-01

    Influenza Virus (IV) pneumonia is associated with severe damage of the lung epithelium and respiratory failure. Apart from efficient host defense, structural repair of the injured epithelium is crucial for survival of severe pneumonia. The molecular mechanisms underlying stem/progenitor cell mediated regenerative responses are not well characterized. In particular, the impact of IV infection on lung stem cells and their regenerative responses remains elusive. Our study demonstrates that a highly pathogenic IV infects various cell populations in the murine lung, but displays a strong tropism to an epithelial cell subset with high proliferative capacity, defined by the signature EpCamhighCD24lowintegrin(α6)high. This cell fraction expressed the stem cell antigen-1, highly enriched lung stem/progenitor cells previously characterized by the signature integrin(β4)+CD200+, and upregulated the p63/krt5 regeneration program after IV-induced injury. Using 3-dimensional organoid cultures derived from these epithelial stem/progenitor cells (EpiSPC), and in vivo infection models including transgenic mice, we reveal that their expansion, barrier renewal and outcome after IV-induced injury critically depended on Fgfr2b signaling. Importantly, IV infected EpiSPC exhibited severely impaired renewal capacity due to IV-induced blockade of β-catenin-dependent Fgfr2b signaling, evidenced by loss of alveolar tissue repair capacity after intrapulmonary EpiSPC transplantation in vivo. Intratracheal application of exogenous Fgf10, however, resulted in increased engagement of non-infected EpiSPC for tissue regeneration, demonstrated by improved proliferative potential, restoration of alveolar barrier function and increased survival following IV pneumonia. Together, these data suggest that tropism of IV to distal lung stem cell niches represents an important factor of pathogenicity and highlight impaired Fgfr2b signaling as underlying mechanism. Furthermore, increase of alveolar Fgf10

  1. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    C Lin

    Full Text Available Our previous studies showed that bovine respiratory syncytial virus (BRSV followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2 epithelial cells with H. somni concentrated culture supernatant (CCS stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2 and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.

  2. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    Science.gov (United States)

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  3. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  4. Alveolar progenitor and stem cells in lung development, renewal and cancer

    OpenAIRE

    Desai, Tushar J.; Brownfield, Douglas G.; Krasnow, Mark A.

    2014-01-01

    Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing, and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that during development AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 derive from rare, self-renewing,...

  5. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2013-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  6. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2014-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  7. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis

    OpenAIRE

    Kasper, M; Haroske, G.

    1996-01-01

    This review discusses current knowledge of the involvement of the alveolar epithelium in tissue remodelling during fibrogenesis. The purpose of the present paper is to give an overview, including the authors' own results, of knowledge of ultrastructural alterations, proliferation kinetics and phenotypic changes of pneumocytes in experimental and clinical pathology of pulmonary fibrosis. After lung injury, the alveolar epithelial cells show ultrastructural alter...

  8. Attachment of Actinomyces naeslundii to human buccal epithelial cells.

    OpenAIRE

    Saunders, J M; MILLER, C. H.

    1980-01-01

    A standardized assay was used to measure the attachment of Actinomyces naeslundii ATCC 12104 to washed human buccal epithelial cells. Treatment of the A. naeslundii cells with hyaluronidases, wheat germ lipase, protease, trypsin, heat, or sonic oscillation significantly reduced their ability to attach to epithelial cells. Treatment of the epithelial cells with the above enzymes did not influence the attachment of A. naeslundii. Extraction of A. naeslundii with NaOH also significantly reduced ...

  9. Primary Human Bronchial Epithelial Cells Grown from Explants

    OpenAIRE

    Yaghi, Asma; Zaman, Aisha; Dolovich, Myrna

    2010-01-01

    Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g. lung cancer or lung volume reduction surgery). With ethics approval and informed consent, the surgeon takes what is needed for ...

  10. B Cell IgD Deletion Prevents Alveolar Bone Loss Following Murine Oral Infection

    Directory of Open Access Journals (Sweden)

    Pamela J. Baker

    2009-01-01

    and CD4+ T cells in immune normal mice compared to IgD deficient mice. These data suggest that IgD is an important mediator of alveolar bone resorption, possibly through antigen-specific coactivation of B cells and CD4+ T cells.

  11. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface.

    Directory of Open Access Journals (Sweden)

    Charles Oliver Morton

    Full Text Available The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549 and endothelium (human pulmonary artery epithelial cells, HPAEC on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC, monocyte-derived DC (moDC and myeloid DC (mDC, were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.

  12. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  13. A method to measure mechanical properties of pulmonary epithelial cell layers.

    Science.gov (United States)

    Dassow, Constanze; Armbruster, Caroline; Friedrich, Christian; Smudde, Eva; Guttmann, Josef; Schumann, Stefan

    2013-10-01

    The lung has a huge inner alveolar surface composed of epithelial cell layers. The knowledge about mechanical properties of lung epithelia is helpful to understand the complex lung mechanics and biomechanical interactions. Methods have been developed to determine mechanical indices (e.g., tissue elasticity) which are both very complex and in need of costly equipment. Therefore, in this study, a mechanostimulator is presented to dynamically stimulate lung epithelial cell monolayers in order to determine their mechanical properties based on a simple mathematical model. First, the method was evaluated by comparison to classical tensile testing using silicone membranes as substitute for biological tissue. Second, human pulmonary epithelial cells (A549 cell line) were grown on flexible silicone membranes and stretched at a defined magnitude. Equal secant moduli were determined in the mechanostimulator and in a conventional tension testing machine (0.49 ± 0.05 MPa and 0.51 ± 0.03 MPa, respectively). The elasticity of the cell monolayer could be calculated by the volume-pressure relationship resulting from inflation of the membrane-cell construct. The secant modulus of the A549 cell layer was calculated as 0.04 ± 0.008 MPa. These findings suggest that the mechanostimulator may represent an adequate device to determine mechanical properties of cell layers. PMID:23564730

  14. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  15. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...... that have become nervefree. Furthermore we show that epithelial cells are unable to exchange low-molecular weight fluorescent dyes....

  16. Apoptosis of Alveolar Wall Cells in Chronic Obstructive Pulmonary Disease Patients with Pulmonary Emphysema Is Involved in Emphysematous Changes

    Institute of Scientific and Technical Information of China (English)

    Hongmei LIU; Lijun MA; Jizhen WU; Kai WANG; Xianliang CHEN

    2009-01-01

    s of alveolar wall cells, espe-cially apoptosis of type-Ⅱ cells, may take part in the pathogenesis of emphysema. Up-regulation of Bax expression may be responsible for the apoptosis of alveolar wall cells in the COPD patients with pulmonary emphysema.

  17. The First Case of Pulmonary Alveolar Proteinosis With Small Cell Lung Carcinoma.

    Science.gov (United States)

    Hiraki, Tsubasa; Goto, Yuko; Kitazono, Ikumi; Tasaki, Takashi; Higashi, Michiyo; Hatanaka, Kazuhito; Tanimoto, Akihide

    2016-04-01

    Pulmonary alveolar proteinosis (PAP) is a rare pulmonary disease characterized by alveolar accumulation of surfactant lipids and proteins. It is usually autoimmune and secondary to hematologic malignancy or infection. To date, only 5 case reports of PAP associated with lung cancers, including 2 cases of squamous cell carcinoma and 3 cases of adenocarcinoma, have been published. To the best of our knowledge, no case of PAP with small cell lung carcinoma has been reported thus far. We herein report the first case of PAP associated with small cell lung carcinoma. PMID:26519525

  18. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  19. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    Directory of Open Access Journals (Sweden)

    Haller Thomas

    2011-02-01

    Full Text Available Abstract Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS, exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells, a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.

  20. Alveolar development and disease.

    Science.gov (United States)

    Whitsett, Jeffrey A; Weaver, Timothy E

    2015-07-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis. PMID:25932959

  1. Alveolar development and disease.

    Science.gov (United States)

    Whitsett, Jeffrey A; Weaver, Timothy E

    2015-07-01

    Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis.

  2. Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells

    OpenAIRE

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N.

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was a...

  3. Mechanical strain of alveolar type II cells in culture: changes in the transcellular cytokeratin network and adaptations.

    Science.gov (United States)

    Felder, Edward; Siebenbrunner, Marcus; Busch, Tobias; Fois, Giorgio; Miklavc, Pika; Walther, Paul; Dietl, Paul

    2008-11-01

    Mechanical forces exert multiple effects in cells, ranging from altered protein expression patterns to cell damage and death. Despite undisputable biological importance, little is known about structural changes in cells subjected to strain ex vivo. Here, we undertake the first transmission electron microscopy investigation combined with fluorescence imaging on pulmonary alveolar type II cells that are subjected to equibiaxial strain. When cells are investigated immediately after stretch, we demonstrate that curved cytokeratin (CK) fibers are straightened out at 10% increase in cell surface area (CSA) and that this is accompanied by a widened extracellular gap of desmosomes-the insertion points of CK fibers. Surprisingly, a CSA increase by 20% led to higher fiber curvatures of CK fibers and a concurrent return of the desmosomal gap to normal values. Since 20% CSA increase also induced a significant phosphorylation of CK8-ser431, we suggest CK phosphorylation might lower the tensile force of the transcellular CK network, which could explain the morphological observations. Stretch durations of 5 min caused membrane injury in up to 24% of the cells stretched by 30%, but the CK network remained surprisingly intact even in dead cells. We conclude that CK and desmosomes constitute a strong transcellular scaffold that survives cell death and hypothesize that phosphorylation of CK fibers is a mechano-induced adaptive mechanism to maintain epithelial overall integrity. PMID:18708634

  4. Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment.

    Science.gov (United States)

    Saito, Atsushi; Nikolaidis, Nikolaos M; Amlal, Hassane; Uehara, Yasuaki; Gardner, Jason C; LaSance, Kathleen; Pitstick, Lori B; Bridges, James P; Wikenheiser-Brokamp, Kathryn A; McGraw, Dennis W; Woods, Jason C; Sabbagh, Yves; Schiavi, Susan C; Altinişik, Göksel; Jakopović, Marko; Inoue, Yoshikazu; McCormack, Francis X

    2015-11-11

    Pulmonary alveolar microlithiasis (PAM) is a rare, autosomal recessive lung disorder associated with progressive accumulation of calcium phosphate microliths. Inactivating mutations in SLC34A2, which encodes the NPT2b sodium-dependent phosphate cotransporter, has been proposed as a cause of PAM. We show that epithelial deletion of Npt2b in mice results in a progressive pulmonary process characterized by diffuse alveolar microlith accumulation, radiographic opacification, restrictive physiology, inflammation, fibrosis, and an unexpected alveolar phospholipidosis. Cytokine and surfactant protein elevations in the alveolar lavage and serum of PAM mice and confirmed in serum from PAM patients identify serum MCP-1 (monocyte chemotactic protein 1) and SP-D (surfactant protein D) as potential biomarkers. Microliths introduced by adoptive transfer into the lungs of wild-type mice produce marked macrophage-rich inflammation and elevation of serum MCP-1 that peaks at 1 week and resolves at 1 month, concomitant with clearance of stones. Microliths isolated by bronchoalveolar lavage readily dissolve in EDTA, and therapeutic whole-lung EDTA lavage reduces the burden of stones in the lungs. A low-phosphate diet prevents microlith formation in young animals and reduces lung injury on the basis of reduction in serum SP-D. The burden of pulmonary calcium deposits in established PAM is also diminished within 4 weeks by a low-phosphate diet challenge. These data support a causative role for Npt2b in the pathogenesis of PAM and the use of the PAM mouse model as a preclinical platform for the development of biomarkers and therapeutic strategies. PMID:26560359

  5. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution; Adduits encombrants a l'ADN dans des cocultures de cellules pulmonaires humaines exposees a une pollution atmospherique particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane; Garcon, Guillaume; Billet, Sylvain; Shirali, Pirouz [Universite Lille Nord de France - Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Andre, Veronique; Le Goff, Jeremie; Sichel, Francois [GRECAN, Universite de Caen Basse-Normandie et centre Francois Baclesse, Caen (France); Roy Saint-Georges, Francoise; Mulliez, Philippe [Service de Pneumologie, Hopital Saint-Philibert, GHICL, Lille (France)

    2012-01-15

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% < 2.5{mu}.m), specific surface area (1 m{sup 2}/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). {sup 32}P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC{sub 50} = 74.63 {mu}g/mL and L132: LC-5-0 = 75.36 {mu}g/mL). Exposure to desorbed particles (MA: C1= 61.11 {mu}g/mL and L132 : C2 = 61.71 {mu}g/mL) and B[a]P (1 {mu}M) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that

  6. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  7. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors.

    Science.gov (United States)

    Reilly, Christopher A; Taylor, Jack L; Lanza, Diane L; Carr, Brian A; Crouch, Dennis J; Yost, Garold S

    2003-05-01

    Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammation and damage to nasal, tracheal, bronchiolar, and alveolar cells in a dose-related manner. In vitro cytotoxicity assays demonstrated that cultured human lung cells (BEAS-2B and A549) were more susceptible to necrotic cell death than liver (HepG2) cells. Transcription of the human vanilloid receptor type-1, VR1 or TRPV1, was demonstrated by RT-PCR in all of these cells, and the relative transcript levels were correlated to cellular susceptibility. TRPV1 receptor activation was presumably responsible for cellular cytotoxicity, but prototypical functional antagonists of this receptor were cytotoxic themselves, and did not ameliorate capsaicinoid-induced damage. Conversely, the TRPV1 antagonist capsazepine, as well as calcium chelation by EGTA ablated cytokine (IL-6) production after capsaicin exposure. To address these seemingly contradictory results, recombinant human TRPV1 was cloned and overexpressed in BEAS-2B cells. These cells exhibited dramatically increased cellular susceptibility to capsaicinoids, measured using IL-6 production and cytotoxicity, and an apoptotic mechanism of cell death. Surprisingly, the cytotoxic effects of capsaicin in TRPV1 overexpressing cells were also not inhibited by TRPV1 antagonists or by treatments that modified extracellular calcium. Thus, capsaicin interacted with TRPV1 expressed by BEAS-2B and other airway epithelial cells to cause the calcium-dependent production of cytokines and, conversely, calcium-independent cell death. These results

  8. Computational investigation of epithelial cell dynamic phenotype in vitro

    OpenAIRE

    Debnath Jayanta; Mostov Keith; Park Sunwoo; Kim Sean HJ; Hunt C Anthony

    2009-01-01

    Abstract Background When grown in three-dimensional (3D) cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1) that validated for several Madin-Darby canine kidney (MDCK) epith...

  9. Potential contribution of Type I lung epithelial cells to chronic neonatal lung disease

    Directory of Open Access Journals (Sweden)

    Henry J. Rozycki

    2014-05-01

    Full Text Available The alveolar surface is covered by large flat Type I cells (alveolar epithelial cells 1, AEC1. The normal physiological function of AEC1s involves gas exchange, based on their location in approximation to the capillary endothelium and their thinness, and in ion and water flux, as shown by the presence of solute active transport proteins, water channels, and impermeable tight junctions between cells. With the recent ability to produce relatively pure cultures of AEC1 cells, new functions have been described. These may be relevant to lung injury, repair and the abnormal development that characterizes bronchopulmonary dysplasia. To hypothesize a potential role for AEC1 in the development of lung injury and abnormal repair/development in premature lungs, evidence is presented for their presence in the developing lung, how their source may not be the Type II cell (AEC2 as has been assumed for forty years, and how the cell can be damaged by same type of stressors as those which lead to bronchopulmonary dysplasia (BPD. Recent work shows that the cells are part of the innate immune response, capable of producing pro-inflammatory mediators, which could contribute to the increase in inflammation seen in early bronchopulmonary dysplasia. One of the receptors found exclusively on AEC1 cells in the lung, called RAGE, may also have a role in increased inflammation, and to alveolar simplification. While the current evidence for AEC1 involvement in BPD is circumstantial and limited at present, the accumulating data supports several hypotheses and questions regarding potential differences in the behavior of AEC1 cells from newborn and premature lung compared with the adult lung.

  10. Documentation of angiotensin II receptors in glomerular epithelial cells

    Science.gov (United States)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  11. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8⁺ T cells.

    Directory of Open Access Journals (Sweden)

    Melanie J Harriff

    Full Text Available Mycobacterium tuberculosis (Mtb is transmitted via inhalation of aerosolized particles. While alveolar macrophages are thought to play a central role in the acquisition and control of this infection, Mtb also has ample opportunity to interact with the airway epithelium. In this regard, we have recently shown that the upper airways are enriched with a population of non-classical, MR1-restricted, Mtb-reactive CD8⁺ T cells (MAIT cells. Additionally, we have demonstrated that Mtb-infected epithelial cells lining the upper airways are capable of stimulating IFNγ production by MAIT cells. In this study, we demonstrate that airway epithelial cells efficiently stimulate IFNγ release by MAIT cells as well as HLA-B45 and HLA-E restricted T cell clones. Characterization of the intracellular localization of Mtb in epithelial cells indicates that the vacuole occupied by Mtb in epithelial cells is distinct from DC in that it acquires Rab7 molecules and does not retain markers of early endosomes such as Rab5. The Mtb vacuole is also heterogeneous as there is a varying degree of association with Lamp1 and HLA-I. Although the Mtb vacuole shares markers associated with the late endosome, it does not acidify, and the bacteria are able to replicate within the cell. This work demonstrates that Mtb infected lung epithelial cells are surprisingly efficient at stimulating IFNγ release by CD8⁺ T cells.

  12. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    Science.gov (United States)

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  13. Hypoxia-Inducible Factor Regulates Expression of Surfactant Protein in Alveolar Type II Cells In Vitro

    OpenAIRE

    Ito, Yoko; Ahmad, Aftab; Kewley, Emily; Mason, Robert J

    2011-01-01

    Alveolar type II (ATII) cells cultured at an air–liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley ra...

  14. Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats

    OpenAIRE

    van Haaften, Timothy; Byrne, Roisin; Bonnet, Sebastien; Rochefort, Gael Y.; Akabutu, John; Bouchentouf, Manaf; Rey-Parra, Gloria J.; Galipeau, Jacques; Haromy, Alois; Eaton, Farah; Chen, Ming; Hashimoto, Kyoko; Abley, Doris; Korbutt, Greg; Archer, Stephen L.

    2009-01-01

    Rationale: Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow–derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown.

  15. Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells

    OpenAIRE

    Delgado, Oliver; Kaisani, Aadil A.; Spinola, Monica; Xie, Xian-Jin; Batten, Kimberly G.; Minna, John D.; Wright, Woodring E; Shay, Jerry W.

    2011-01-01

    While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lun...

  16. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  17. The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Yu; Jian Ge; Zhichong Wang; Bing Huang; Keming Yu; Chongde Long; Xigu Chen

    2001-01-01

    Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified.

  18. Role of alveolar type II cells and of surfactant-associated protein C mRNA levels in the pathogenesis of respiratory distress in mink kits infected with Aleutian mink disease parvovirus.

    OpenAIRE

    Viuff, B; Aasted, B; Alexandersen, S.

    1994-01-01

    Neonatal mink kits infected with Aleutian mink disease parvovirus (ADV) develop an acute interstitial pneumonia with clinical symptoms and pathological lesions that resemble those seen in preterm human infants with respiratory distress syndrome and in human adults with adult respiratory distress syndrome. We have previously suggested that ADV replicates in the alveolar type II epithelial cells of the lung. By using double in situ hybridization, with the simultaneous use of a probe to detect A...

  19. A non-BRICHOS surfactant protein c mutation disrupts epithelial cell function and intercellular signaling

    Directory of Open Access Journals (Sweden)

    Beers Michael F

    2010-11-01

    Full Text Available Abstract Background Heterozygous mutations of SFTPC, the gene encoding surfactant protein C (SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. The most frequent SFTPC mutation in ILD patients leads to a threonine for isoleucine substitution at position 73 (I73T of the SP-C preprotein (proSP-C, however little is known about the cellular consequences of SP-CI73T expression. Results To address this, we stably expressed SP-CI73T in cultured MLE-12 alveolar epithelial cells. This resulted in increased intracellular accumulation of proSP-C processing intermediates, which matched proSP-C species recovered in bronchial lavage fluid from patients with this mutation. Exposure of SP-CI73T cells to drugs currently used empirically in ILD therapy, cyclophosphamide, azathioprine, hydroxychloroquine or methylprednisolone, enhanced expression of the chaperones HSP90, HSP70, calreticulin and calnexin. SP-CI73T mutants had decreased intracellular phosphatidylcholine level (PC and increased lyso-PC level without appreciable changes of other phospholipids. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CI73T cells secreted into the medium soluble factors that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine influence of SP-CI73T on neighboring cells in the alveolar space. Conclusion We show that I73T mutation leads to impaired processing of proSP-C in alveolar type II cells, alters their stress tolerance and surfactant lipid composition, and activates cells of the immune system. In addition, we show that some of the mentioned cellular aspects behind the disease can be modulated by application of pharmaceutical drugs commonly applied in the ILD therapy.

  20. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  1. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  2. Epithelial cells as alternative human biomatrices for comet assay

    OpenAIRE

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many org...

  3. Ciliated epithelial cell lifespan in the mouse trachea and lung

    OpenAIRE

    Rawlins, Emma L.; Brigid L M Hogan

    2008-01-01

    The steady-state turnover of epithelial cells in the lung and trachea is highly relevant to investigators who are studying endogenous stem cells, manipulating gene expression in vivo, or using viral vectors for gene therapy. However, the average lifetime of different airway epithelial cell types has not previously been assessed using currently available genetic techniques. Here, we use Cre/loxP genetic technology to indelibly label a random fraction of ciliated cells throughout the airways of...

  4. Adrenomedullin Expression by Gastric Epithelial Cells in Response to Infection

    OpenAIRE

    Robert P. Allaker; Kapas, Supriya

    2003-01-01

    Many surface epithelial cells express adrenomedullin, a multifunctional peptide found in a wide number of body and cell systems. Recently, we and others have proposed that adrenomedullin has an important novel role in host defense. This peptide has many properties in common with other cationic antimicrobial peptides, including the human β-defensins. Upon exposure of human gastric epithelial cells to viable cells of invasive or noninvasive strains of Helicobacter pylori, Escherichia coli, Salm...

  5. GROWTH CHARACTERISTICS, MORPHOLOGY, AND PHOSPHOLIPID COMPOSITION OF HUMAN TYPE 2 PULMONARY ALVEOLAR CELLS GROWN IN A COLLAGEN-FREE MICROENVIRONMENT

    Science.gov (United States)

    Human lung epithelial cells have been cultured and characterized for phospholipid content. Any residual fibroblasts were removed by selective trypsinization within the first 48 hours in culture. Epithelial cells were serially subpassaged when cultures reached ca. 80% confluency. ...

  6. Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis.

    Science.gov (United States)

    Tanaka, Kensuke; Fujita, Tetsuo; Umezawa, Hiroki; Namiki, Kana; Yoshioka, Kento; Hagihara, Masahiko; Sudo, Tatsuhiko; Kimura, Sadao; Tatsumi, Koichiro; Kasuya, Yoshitoshi

    2014-11-01

    Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and

  7. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yuan Liu; Yueling Zhang; Zhaohui Gu; Lina Hao; Juan Du; Qian Yang; Suping Li; Liying Wang; Shilei Gong

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuropro-tective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epi-thelial cells against apoptosis induced by peroxynitrite.

  8. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  9. Human mast cells decrease SLPI levels in type II – like alveolar cell model, in vitro

    Directory of Open Access Journals (Sweden)

    Nyström Max

    2003-08-01

    Full Text Available Abstract Background Mast cells are known to accumulate at sites of inflammation and upon activation to release their granule content, e.g. histamine, cytokines and proteases. The secretory leukocyte protease inhibitor (SLPI is produced in the respiratory mucous and plays a role in regulating the activity of the proteases. Result We have used the HMC-1 cell line as a model for human mast cells to investigate their effect on SLPI expression and its levels in cell co-culture experiments, in vitro. In comparison with controls, we found a significant reduction in SLPI levels (by 2.35-fold, p Conclusion These results indicate that SLPI-producing cells may assist mast cell migration and that the regulation of SLPI release and/or consumption by mast cells requires interaction between these cell types. Therefore, a "local relationship" between mast cells and airway epithelial cells might be an important step in the inflammatory response.

  10. Epithelial cells as alternative human biomatrices for comet assay

    Directory of Open Access Journals (Sweden)

    Emilio eRojas

    2014-11-01

    Full Text Available The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes.Over a thirty year period, the comet assay in epithelial cells has been litlle employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  11. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  12. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H;

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  13. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  14. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells

    Indian Academy of Sciences (India)

    Forum Kayastha; Kaid Johar; Devarshi Gajjar; Anshul Arora; Hardik Madhu; Darshini Ganatra; Abhay Vasavada

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers -SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  15. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO. PMID:25963259

  16. Sepsis-associated AKI: epithelial cell dysfunction.

    Science.gov (United States)

    Emlet, David R; Shaw, Andrew D; Kellum, John A

    2015-01-01

    Acute kidney injury (AKI) occurs frequently in critically ill patients with sepsis, in whom it doubles the mortality rate and half of the survivors suffer permanent kidney damage or chronic kidney disease. Failure in the development of viable therapies has prompted studies to better elucidate the cellular and molecular etiologies of AKI, which have generated novel theories and paradigms for the mechanisms of this disease. These studies have shown multifaceted origins and elements of AKI that, in addition to/in lieu of ischemia, include the generation of damage-associated molecular patterns and pathogen-associated molecular patterns, the inflammatory response, humoral and cellular immune activation, perturbation of microvascular flow and oxidative stress, bioenergetic alterations, cell-cycle alterations, and cellular de-differentiation/re-differentiation. It is becoming clear that a major etiologic effector of all these inputs is the renal tubule epithelial cell (RTEC). This review discusses these elements and their effects on RTECs, and reviews the current hypotheses of how these effects may determine the fate of RTECs during sepsis-induced AKI. PMID:25795502

  17. Alveolar osseous defect in rat for cell therapy: preliminary report Defeito ósseo alveolar em ratos para terapia celular: estudo preliminar

    Directory of Open Access Journals (Sweden)

    Cassio Eduardo Raposo-Amaral

    2010-08-01

    Full Text Available PURPOSE: To study were to reproduce an alveolar bone defect model in Wistar rats to be used for testing the efficacy of stem cell therapies. Additionally, we also aimed to determine the osteogenesis process of this osseous defect in the 1 month period post-surgery. METHODS: The animals were randomly divided into two groups of 7 animals each. A gingivobuccal incision was made, and a bone defect of 28 mm² of area was performed in the alveolar region. Animals were killed at 2 weeks after surgery (n=7 and 4 weeks after surgery (n=7. RESULTS: The average area of the alveolar defect at time point of 2 weeks was 22.27 ± 1.31 mm² and the average area of alveolar defect at time point of 4 weeks was 9.03 ± 1.17 mm². The average amount of bone formation at time point of 2 weeks was 5.73 ± 1.31 mm² and the average amount of bone formation at time point of 4 weeks was 19 ± 1.17 mm². Statistically significant differences between the amount of bone formation at 2 weeks and 4 weeks after surgery were seen (p=0.003. CONCLUSION: The highest rate of ossification occurred mostly from 2 to 4 weeks after surgery. This observation suggests that 4 weeks after the bone defect creation should be a satisfactory timing to assess the potential of bone inductive stem cells to accelerate bone regeneration in Wistar rats.OBJETIVO: Reproduzir um novo modelo de defeito ósseo alveolar em ratos Wistar que será utilizado para terapia genética e estudos com células tronco. Adicionalmente, outro objetivo do presente estudo foi determinar o pico de regeneração óssea do defeito criado na região alveolar do modelo experimental. MÉTODOS: Os animais foram aleatoriamente divididos em dois grupos de sete animais. Através de uma incisão gengivobucal foi criado um defeito ósseo medindo 28 mm² de área na região alveolar dos ratos. Os ratos foram sacrificados após duas semanas (n=7 e quatro semanas (n=7 da cirurgia. RESULTADOS: A área média do defeito alveolar ap

  18. The role of the epithelial cell in asthma

    OpenAIRE

    Mota-Pinto, Anabela; Todo-Bom, Ana

    2009-01-01

    It is done a review of the intervention of the epithelial bronchial cell in the pathophysiology of asthma. The respiratory epithelium acts as a physical barrier that separates the external environment from the pulmonary internal environment. It controls the intercellular and trans -cellular permeability and this way the accessibility of the inhaled pathogens to the antigen presenting cells involved in the immuno -inflammatory response. Epithelial cells connected by tight junctions contribute ...

  19. Alveolar Surfactant Homeostasis and the Pathogenesis of Pulmonary Disease

    OpenAIRE

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2010-01-01

    The alveolar region of the lung creates an extensive epithelial surface that mediates the transfer of oxygen and carbon dioxide required for respiration after birth. Maintenance of pulmonary function depends on the function of type II epithelial cells that synthesize and secrete pulmonary surfactant lipids and proteins, reducing the collapsing forces created at the air-liquid interface in the alveoli. Genetic and acquired disorders associated with the surfactant system cause both acute and ch...

  20. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples

    International Nuclear Information System (INIS)

    Due to their large specific surface area, the potential of nanoparticles to be highly reactive and to induce oxidative stress is particularly high. In addition, some types of nanoparticles contain transition metals as trace impurities which are known to generate reactive oxygen species (ROS) in biological systems. This study investigates the potential of two types of single-walled carbon nanotube samples, nanoparticulate carbon black and crocidolite asbestos to induce ROS in lung epithelial cells in vitro. Carbon nanotube and carbon black samples were used as produced, without further purification or processing, in order to best mimic occupational exposure by inhalation of airborne dust particles derived from carbon nanomaterial production. Intracellular ROS were measured following short-term exposure of primary bronchial epithelial cells (NHBE) and A549 alveolar epithelial carcinoma cells using the redox sensitive probe carboxydichlorofluorescin (carboxy-DCFDA). The oxidative potential of agglomerated nanomaterial samples was compared following dispersion in cell culture medium with and without foetal calf serum (FCS) supplement. In addition, samples were dispersed in dipalmitoylphosphatidylcholine (DPPC), the major component of lung surfactant. It could be illustrated that in vitro exposure of lung epithelial cells to carbon nanomaterial samples results only in moderate or low oxidative stress under the exposure conditions employed. However, cell responses are strongly dependent on the vehicle used for dispersion. Whereas the presence of DPPC increased intracellular ROS formation, FCS seemed to protect the cells from oxidative insult.

  1. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  2. Mitosis orientation in prostate epithelial cells changed by endocrine effect

    Institute of Scientific and Technical Information of China (English)

    Xiang-yun LIU; Dong-mei Li; Xiao-fang ZHANG; Jian-hui WU; Zu-yue SUN

    2008-01-01

    Aim: The aim of the present study was to investigate the effect of androgen and estrogen on mitosis orientation in the prostate epithelial cells of male rats. Methods: Castrated rats were treated with a single injection of testosterone propionate (TP) or benzogynestry (E2). There were 8 rats in the control group and TP-treated or E2-treated group. Prostate, liver, a specimen of skin, and a segment of the jejunum and colon were removed after the corresponding treatment. The results were observed through immunohistochemistry and iron hematoxylin-eosin staining.Results: All mitoses found in the prostate epithelial cells of castrated rats with TP were oriented parallel to the basement membrane; however, mitoses found in the prostate epithelial cells of castrated rats in E2 and the control group were oriented perpendicular to the basement membrane. TP treatment resulted in marked changes in mitosis orientation in the prostate epithelial cells. Bromodeoxyuridine-labeled positive cells could be seen throughout the stroma and prostate epithelial cells with an injection of TP; however, the positive cells could only be seen in the stroma of prostate with an injection of E2, and the positive cells could hardly be seen in the control group. Conclusion: We found a novel effect of TP in the prostate as a marked change of mitosis orientation in prostate epithelial cells.

  3. High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yingze Zhang

    Full Text Available BACKGROUND: Transforming growth factor beta 1 (TGFβ1 plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. METHODOLOGY: We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. RESULTS AND CONCLUSIONS: Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2.

  4. Diversity of epithelial stem cell types in adult lung.

    Science.gov (United States)

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  5. Diversity of Epithelial Stem Cell Types in Adult Lung

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-01-01

    Full Text Available Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer.

  6. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones.

    Directory of Open Access Journals (Sweden)

    Mona Saffarzadeh

    Full Text Available Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET. These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction.

  7. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamada

    Full Text Available The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ poisoning. Epithelial-mesenchymal transition (EMT has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involved in pulmonary fibrosis during PQ poisoning using A549 human alveolar epithelial cells in vitro. The cells were treated with various concentrations of PQ (0-500 μM for 2-12 days. Short-term (2 days high-dose (>100 μM treatments with PQ induced cell death accompanied by the activation of caspase9 as well as a decrease in E-cadherin (an epithelial cell marker, suggesting apoptotic cell death with the features of anoikis (cell death due to the loss of cell-cell adhesion. In contrast, long-term (6-12 days low-dose (30 μM treatments with PQ resulted in a transformation into spindle-shaped mesenchymal-like cells with a decrease of E-cadherin as well as an increase of α-smooth muscle actin (α-SMA. The mesenchymal-like cells also secreted the extracellular matrix (ECM protein fibronectin into the culture medium. The administration of a TGF-β1 receptor antagonist, SB431542, almost completely attenuated the mesenchymal transformation as well as fibronectin secretion, suggesting a crucial role of TGF-β1 in EMT-like cellular response and subsequent fibrogenesis. It is noteworthy that despite the suppression of EMT-fibrogenesis, apoptotic death was observed in cells treated with PQ+SB431542. EMT-like cellular response and subsequent fibrogenesis were also observed in normal human bronchial epithelial (NHBE cells exposed to PQ in a TGF-β1-dependent manner. Taken together, our experimental model reflects well the etiology of PQ poisoning in human and shows the involvement of EMT-like cellular response in both fibrogenesis and resistance to cell death during

  8. MFGE8 regulates TGF-β-induced epithelial mesenchymal transition in endometrial epithelial cells in vitro.

    Science.gov (United States)

    Yu, Liang; Hu, Rong; Sullivan, Claretta; Swanson, R James; Oehninger, Sergio; Sun, Ying-Pu; Bocca, Silvina

    2016-09-01

    This study investigated the role of milk fat globule-epidermal growth factor-factor 8 (MFGE8) in TGF-β-induced epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. These were in vitro studies using human endometrial epithelial cells and mouse blastocysts. We investigated the ability of TGF-β to induce EMT in endometrial epithelial cells (HEC-1A) by assessment of cytological phenotype (by light and atomic force microscopy), changes in expression of the markers of cell adhesion/differentiation E- and N-cadherin, and of the transcription factor Snail (by immunofluorescence and immunoblotting), and competence to support embryo attachment in a mouse blastocyst outgrowth assay. We also studied the effects of E-cadherin expression in cells transfected by retroviral shRNA vectors specifically silencing MFGE8. Results demonstrated that TGF-β induced EMT as demonstrated by phenotypic cell changes, by a switch of cadherin expression as well as by upregulation of the expression of the mesenchymal markers Snail and Vimentin. Upon MFGE8 knockdown, these processes were interfered with, suggesting that MFGE8 and TGF-β together may participate in regulation of EMT. This study demonstrated for the first time that endometrial MFGE8 modulates TGF-β-induced EMT in human endometrium cells. PMID:27340235

  9. In Vitro transformation of LW13 Rat liver epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    SHICAN; KARLFETNANSKY; 等

    1992-01-01

    A rat liver epithelial cell line designated LW 13 was established using a sequential sedimentation method.The cell line retained many normal proerties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells,LW13 cells became malignant after the intrduction of exogenous transforming EJ Ha ras gene,Tumors produced by inoculation of the transformed cells into baby rats contained areas of poorly differentialted hepatocellular carcinoma,In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes.Furthermore,an at least tenfold increase in the expression of the endogenous c mys gene was detected among transformed cell lines,suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.

  10. Blood group glycolipids as epithelial cell receptors for Candida albicans.

    OpenAIRE

    Cameron, B J; Douglas, L J

    1996-01-01

    The role of glycosphingolipids as possible epithelial cell receptors for Candida albicans was examined by investigating the binding of biotinylated yeasts to lipids extracted from human buccal epithelial cells and separated on thin-layer chromatograms. Binding was visualized by the addition of 125I-streptavidin followed by autoradiography. Five C. albicans strains thought from earlier work to have a requirement for fucose-containing receptors all bound to the same three components in the lipi...

  11. Diversity of Epithelial Stem Cell Types in Adult Lung

    OpenAIRE

    Feng Li; Jinxi He; Jun Wei; Cho, William C.; Xiaoming Liu

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local e...

  12. Effect of inhaled 239PuO2 on alveolar Type II cells

    International Nuclear Information System (INIS)

    Morphological changes of rat alveolar type II (AT-II) cells were studied at 8 and 10 months following inhalation of 239PuO2 to elucidate the biological role of AT-II cells in the induction of lung tumours. TEM micrographs of random sections of lung were analysed qualitatively and quantitatively using an automatic image analyser. Eighteen morphometric parameters were obtained according to stereological principles. The results showed that, following the inhalation of 239PuO2, AT-II cells became less differentiated and the metabolism of the pulmonary surfactant in AT-II cells was disturbed. (author)

  13. Effect of inhaled 239PuO2 on alveolar type II cells

    International Nuclear Information System (INIS)

    Morphological changes of rat alveolar type II (AT-II) cells were studied at 8 and 10 months following inhalation of 239PuO2 to elucidate the biological role of At-II cells in the induction of lung tumours. TEM micrographs of random sections of lung were analysed qualitatively and quantitatively using an automatic image analyser. Eighteen morphometric parameters were obtained according to stereo logical principles. The results showed that, following the inhalation of 239PuO2, AT-II cells became less differentiated and the metabolism of the pulmonary surfactant in AT-II cells was disturbed

  14. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells

    OpenAIRE

    Chen, Xueni; Hyatt, Brian A.; Mucenski, Michael L; Mason, Robert J; Shannon, John M.

    2006-01-01

    Pulmonary surfactant is a complex of lipids and proteins produced and secreted by alveolar type II cells that provides the low surface tension at the air–liquid interface. The phospholipid most responsible for providing the low surface tension in the lung is dipalmitoylphosphatidylcholine. Dipalmitoylphosphatidylcholine is synthesized in large part by phosphatidylcholine (PC) remodeling, and a lysophosphatidylcholine (lysoPC) acyltransferase is thought to play a critical role in its synthesis...

  15. Glycogen accumulation in alveolar type II cells in 3-methylindole--induced pulmonary edema in goats.

    OpenAIRE

    Atwal, O. S.; Bray, T. M.

    1981-01-01

    The present study shows that intravenous infusion of 3-methylindole (3MI) induced acute pulmonary edema in goats. Edematous changes were seen in the alveoli and the interalveolar interstitium. At 72 hours after treatment, an accumulation of glycogen that had a pathognomonic appearance of alpha particles was observed in the alveolar Type II cells. A rich accumulation of glycogen particles and defective lamellar bodies containing triglycerides were the significant morphologic changes in the alv...

  16. Knockdown of flotillin-2 inhibits lung surfactant secretion by alveolar type Ⅱ cells

    Institute of Scientific and Technical Information of China (English)

    Narendranath Reddy Chintagari; Deming Gou; Lin Liu

    2008-01-01

    @@ Dear Editor, Lung surfactant is stored in lamellar bodies and exocytosed following fusion of the lamellar bodies with the plasma membrane of alveolar type Ⅱ (AT2) cells [1].A number of proteins have been shown to be involved in surfactant secretion including SNAREs,NSF,α-SNAP and annexin A2 [2,3].Lipid rafts enriched in SNAREs are crucial for surfactant secretion [4].

  17. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    OpenAIRE

    Tales Lyra Oliveira; Návylla Candeia-Medeiros; Polliane M. Cavalcante-Araújo; Igor Santana Melo; Elaine Fávaro-Pípi; Luciana Alves Fátima; Antônio Augusto Rocha; Luiz Ricardo Goulart; Ubiratan Fabres Machado; Ruy R. Campos; Robinson Sabino-Silva

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-...

  18. The TNF Family Molecules LIGHT and Lymphotoxin αβ Induce a Distinct Steroid-Resistant Inflammatory Phenotype in Human Lung Epithelial Cells.

    Science.gov (United States)

    da Silva Antunes, Ricardo; Madge, Lisa; Soroosh, Pejman; Tocker, Joel; Croft, Michael

    2015-09-01

    Lung epithelial cells are considered important sources of inflammatory molecules and extracellular matrix proteins that contribute to diseases such as asthma. Understanding the factors that stimulate epithelial cells may lead to new insights into controlling lung inflammation. This study sought to investigate the responsiveness of human lung epithelial cells to the TNF family molecules LIGHT and lymphotoxin αβ (LTαβ). Bronchial and alveolar epithelial cell lines, and primary human bronchial epithelial cells, were stimulated with LIGHT and LTαβ, and expression of inflammatory cytokines and chemokines and markers of epithelial-mesenchymal transition and fibrosis/remodeling was measured. LTβ receptor, the receptor shared by LIGHT and LTαβ, was constitutively expressed on all epithelial cells. Correspondingly, LIGHT and LTαβ strongly induced a limited but highly distinct set of inflammatory genes in all epithelial cells tested, namely the adhesion molecules ICAM-1 and VCAM-1; the chemokines CCL5, CCL20, CXCL1, CXCL3, CXCL5, and CXCL11; the cytokines IL-6, activin A and GM-CSF; and metalloproteinases matrix metalloproteinase-9 and a disintegrin and metalloproteinase domain-8. Importantly, induction of the majority of these inflammatory molecules was insensitive to the suppressive effects of the corticosteroid budesonide. LIGHT and LTαβ also moderately downregulated E-cadherin, a protein associated with maintaining epithelial integrity, but did not significantly drive production of extracellular matrix proteins or α-smooth muscle actin. Thus, LIGHT and LTαβ induce a distinct steroid-resistant inflammatory signature in airway epithelial cells via constitutively expressed LTβ receptor. These findings support our prior murine studies that suggested the receptors for LIGHT and LTαβ contribute to development of lung inflammation characteristic of asthma and idiopathic pulmonary fibrosis. PMID:26209626

  19. Epidermal growth factor receptor and alveolar epithelial atypical adenomatous hyperplasia%表皮生长因子受体与肺泡上皮不典型腺瘤样增生的关系

    Institute of Scientific and Technical Information of China (English)

    黄谦

    2012-01-01

    Lung cancer is a common malignant tumor and lung adenocarcinoma is the main type of it. Bronchioloalveolar lung carcinoma (BAC) is a special type of lung adenocarcinoma. Research indicates that alveolar epithelial atypical adenomatous hyperplasia (AAH) in BAC or adenocarcinoma may be a precancerous lesion, even in the early stage of cancer. Overexpression and/or mutatioin of epidermal growth factor receptor (EGFR) is closely related to the occurrence, development, invasion and metastasis of lung cancer, especially in non-small-cell lung cancer (NSCLC). But there are few studies reported about EGFR in the precancerous lesion of non-small-cell lung cancer.%肺癌是人类常见的恶性肿瘤,肺腺癌是其主要类型之一.细支气管肺泡癌(bronchioloalveolar lung carcinoma,BAC)是肺腺癌的一个特殊类型.肺泡上皮不典型腺瘤样增生(atypical adenomatous hyperplasia,AAH)可能是BAC或腺癌的癌前病变,甚至是其早期癌.表皮生长因子受体(epidermal growth factor receptor,EGFR)的过表达和(或)突变与肺癌尤其是非小细胞肺癌(non-small-cell lung cancer,NSCLC)的发生、发展、侵袭和转移等密切相关.

  20. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  1. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  2. Evaluation of pulmonary alveolar epithelial integrity by the detection of restriction to diffusion of hydrophilic solutes of different molecular sizes.

    Science.gov (United States)

    Mason, G R; Peters, A M; Bagdades, E; Myers, M J; Snook, D; Hughes, J M

    2001-03-01

    The rate of transfer of a hydrophilic solute from the alveoli to pulmonary blood following inhalation as an aerosol depends on the molecular size of the solute and the permeability of the alveolar epithelium. The value of this measurement for assessing damage to the epithelium in lung disease is compromised by cigarette smoking, which accelerates clearance by unknown mechanisms. The rates of clearance of (99m)Tc-labelled diethylenetriaminepenta-acetic acid (DTPA) (molecular mass 492 Da) and (113m)In-labelled biotinylated DTPA (B-DTPA) (molecular mass 1215 Da) were monitored simultaneously by dynamic gamma-radiation camera imaging following simultaneous inhalation, and compared between eight normal non-smoking subjects and nine habitual cigarette smokers. The clearance rates of DTPA were 0.95 (S.D. 0.39)%/min in non-smokers and 4.13 (1.06) %/min in smokers. These were about twice the clearance rates of B-DTPA, which in the corresponding groups were 0.41 (0.26) and 2.12 (0.72)%/min respectively. The ratio of the B-DTPA/DTPA clearance rates was, in all subjects, less than the ratio (0.74) of the cube roots of the molecular masses of the solutes, assumed to correspond to the ratio of their free diffusion coefficients in water, and was not significantly different between smokers and non-smokers. As alveolar permeability increased, the ratio of clearance rates in the entire population showed a significant trend to increase in a non-linear fashion towards the value corresponding to the ratio of the free diffusion coefficients. We conclude that the diffusion of at least the larger of these two solutes through the pulmonary alveolar epithelium is restricted (i.e. associated with a reflection coefficient greater than zero). Cigarette smoking, however, does not appear to cause a loss of this restriction, and may increase solute clearance by other mechanisms, such as reducing fluid volume within the alveolus, thereby raising the local radiotracer concentration, or increasing

  3. Role of autophagy in the regulation of epithelial cell junctions.

    Science.gov (United States)

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  4. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  5. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    Science.gov (United States)

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  6. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    International Nuclear Information System (INIS)

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol

  7. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  8. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  9. Lingual Epithelial Stem Cells and Organoid Culture of Them.

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-28

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  10. Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S

    2002-07-01

    Full Text Available Abstract Background To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC — the particulate fraction of tobacco smoke — were examined. Methods The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and Results NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK kinase (MEK, and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2, demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml or TNF-α (50 ng/ml had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls. Conclusion The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB.

  11. Regeneration of alveolar type I and II cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza.

    Directory of Open Access Journals (Sweden)

    Dahai Zheng

    Full Text Available The lung comprises an extensive surface of epithelia constantly exposed to environmental insults. Maintaining the integrity of the alveolar epithelia is critical for lung function and gaseous exchange. However, following severe pulmonary damage, what progenitor cells give rise to alveolar type I and II cells during the regeneration of alveolar epithelia has not been fully determined. In this study, we have investigated this issue by using transgenic mice in which Scgb1a1-expressing cells and their progeny can be genetically labeled with EGFP. We show that following severe alveolar damage induced either by bleomycin or by infection with influenza virus, the majority of the newly generated alveolar type II cells in the damaged parenchyma were labeled with EGFP. A large proportion of EGFP-expressing type I cells were also observed among the type II cells. These findings strongly suggest that Scgb1a1-expressing cells, most likely Clara cells, are a major cell type that gives rise to alveolar type I and II cells during the regeneration of alveolar epithelia in response to severe pulmonary damage in mice.

  12. Macrophage-epithelial interactions in pulmonary alveoli.

    Science.gov (United States)

    Bhattacharya, Jahar; Westphalen, Kristin

    2016-07-01

    Alveolar macrophages have been investigated for years by approaches involving macrophage extraction from the lung by bronchoalveolar lavage, or by cell removal from lung tissue. Since extracted macrophages are studied outside their natural milieu, there is little understanding of the extent to which alveolar macrophages interact with the epithelium, or with one another to generate the lung's innate immune response to pathogen challenge. Here, we review new evidence of macrophage-epithelial interactions in the lung, and we address the emerging understanding that the alveolar epithelium plays an important role in orchestrating the macrophage-driven immune response. PMID:27170185

  13. Permanent alveolar collapse is the predominant mechanism in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Todd, Nevins W; Atamas, Sergei P; Luzina, Irina G; Galvin, Jeffrey R

    2015-08-01

    Alveolar epithelial cell loss and impaired epithelial cell regeneration are currently accepted as central initiating events in idiopathic pulmonary fibrosis (IPF), but subsequent downstream effects remain uncertain. The most accepted downstream effect is aberrant and dysregulated mesenchymal cell proliferation and excess extracellular matrix (ECM) accumulation. However, biochemical and imaging studies have perhaps somewhat surprisingly indicated little increase in total lung collagen and lung tissue, and have rather shown a substantial decrease in lung aeration and lung air volume. Loss of tissue aeration is a consequence of alveolar collapse, which occurs in IPF as a result of apposition and septal incorporation of denuded basal lamina. Permanent alveolar collapse is well-documented following epithelial injury, has the ability to mimic interstitial fibrosis radiologically and histologically, and is a better supported explanation than dysregulated fibroblast proliferation and excess ECM accumulation for the constellation of findings in patients with IPF. PMID:26165208

  14. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    Science.gov (United States)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  15. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  16. Infant formula alters surfactant protein A (SP-A) and SP-B expression in pulmonary epithelial cells.

    Science.gov (United States)

    Chen, Maurice G; Atkins, Constance L; Bruce, Shirley R; Khan, Amir M; Liu, Yuying; Alcorn, Joseph L

    2011-09-01

    Surfactant proteins A (SP-A) and SP-B are critical in the ability of pulmonary surfactant to reduce alveolar surface tension and provide innate immunity. Aspiration of infant milk formula can lead to lung dysfunction, but direct effects of aspirated formula on surfactant protein expression in pulmonary cells have not been described. The hypothesis that infant formula alters surfactant protein homeostasis was tested in vitro by assessing surfactant protein gene expression in cultured pulmonary epithelial cell lines expressing SP-A and SP-B that were transiently exposed (6 hr) to infant formula. Steady-state levels of SP-A protein and mRNA and SP-B mRNA in human bronchiolar (NCI-H441) and mouse alveolar (MLE15) epithelial cells were reduced in a dose-dependent manner 18 hr after exposure to infant formula. SP-A mRNA levels remained reduced 42 hr after exposure, but SP-B mRNA levels increased 10-fold. Neither soy formula nor non-fat dry milk affected steady-state SP-A and SP-B mRNA levels; suggesting a role of a component of infant formula derived from cow milk. These results indicate that infant formula has a direct, dose-dependent effect to reduce surfactant protein gene expression. Ultimately, milk aspiration may potentially result in a reduced capacity of the lung to defend against environmental insults. PMID:21520433

  17. Pulmonary alveolar proteinosis with myeloproliferative syndrome with myelodysplasia: bronchoalveolar lavage reduces white blood cell count.

    Science.gov (United States)

    Pollack, Seth M; Gutierrez, Guillermo; Ascensao, Joao

    2006-08-01

    Pulmonary alveolar proteinosis (PAP) is a rare disorder characterized by surfactant component accumulation in the alveolar space. Primary PAP is likely an autoimmune disorder caused by antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF). When an underlying disease causes PAP, this is called secondary PAP. Hematologic malignancies are an important cause of secondary PAP. As the pathogenesis of primary PAP has become more fully understood, improvements in diagnostic and therapeutic approaches have followed. However, when PAP is secondary to an underlying hematologic malignancy, much remains unclear. Here we describe for the first time a patient with hybrid myelodysplastic syndrome/myeloproliferative syndrome and PAP who had a marked decrease in her white blood cell count following a transbronchial biopsy accompanied by bronchoalveolar lavage (BAL). Similar significant decreases in WBC count accompanied clinical improvement following two unilateral BALs. Given that patients with pulmonary alveolar proteinosis frequently have elevated GM-CSF in bronchoalveolar fluid, this observation provides a unique vantage point to understand the pathophysiology of secondary PAP. PMID:16906593

  18. Primary human bronchial epithelial cells grown from explants.

    Science.gov (United States)

    Yaghi, Asma; Zaman, Aisha; Dolovich, Myrna

    2010-01-01

    Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g. lung cancer or lung volume reduction surgery). With ethics approval and informed consent, the surgeon takes what is needed for pathology and provides us with a bronchial portion that is remote from the diseased areas. The tissue is then used as a source of explants that can be used for growing primary bronchial epithelial cells in culture. Bronchial segments about 0.5-1cm long and open and minced into 2-3mm(3) pieces of tissue. The pieces are used as a source of primary cells. After coating 100mm culture plates for 1-2 hr with a combination of collagen (30 microg/ml), fibronectin (10 microg/ml), and BSA (10 microg/ml), the plates are scratched in 4-5 areas and tissue pieces are placed in the scratched areas, then culture medium (DMEM/Ham F-12 with additives) suitable for epithelial cell growth is added and plates are placed in an incubator at 37 degrees C in 5% CO(2) humidified air. The culture medium is changed every 3-4 days. The epithelial cells grow from the pieces forming about 1.5 cm diameter rings in 3-4 weeks. Explants can be re-used up to 6 times by moving them into new pre-coated plates. Cells are lifted using trypsin/EDTA, pooled, counted, and re-plated in T75 Cell Bind flasks to increase their numbers. T75 flasks seeded with 2-3 million cells grow to 80% confluence in 4 weeks. Expanded primary human epithelial cells can be cultured and allowed to differentiate on air-liquid interface. Methods described here provide an abundant source of human bronchial epithelial cells from freshly isolated tissues and allow for studying these cells as models of disease and for pharmacology and toxicology

  19. Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration.

    Science.gov (United States)

    Kokubun, Kelsey; Pankajakshan, Divya; Kim, Min-Jung; Agrawal, Devendra K

    2016-02-01

    Epithelial denudation is one of the characteristics of chronic asthma. To restore its functions, the airway epithelium has to rapidly repair the injuries and regenerate its structure and integrity. Mesenchymal stem cells (MSCs) have the ability to differentiate into many cell lineages. However, the differentiation of MSCs into epithelial cells has not been fully studied. Here, we examined the differentiation of MSCs into epithelial cells using three different media compositions with various growth supplementations. The MSCs were isolated from porcine bone marrow by density gradient centrifugation. The isolated MSCs were CD11(-) CD34(-) CD45(-) CD44(+) CD90(+) and CD105(+) by immunostaining and flow cytometry. MSCs were stimulated with EpiGRO (Millipore), BEpiCM (ScienCell) and AECGM (PromoCell) media for 5 and 10 days, and epithelial differentiation was assessed by qPCR (keratin 14, 18 and EpCAM), fluorometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM), western blot analysis (pancytokeratin, EpCAM) and flow cytometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM). The functional marker MUC1 was also assessed after 10 days of air-liquid interface (ALI) culture in optimized media. Cells cultured in BEpiCM containing fibroblast growth factor and prostaglandin E2 showed the highest expression of the epithelial markers: CK7-8 (85.90%); CK-14-15-16-19 (10.14%); and EpCAM (64.61%). The cells also expressed functional marker MUC1 after ALI culture. The differentiated MSCs when cultured in BEpiCM medium ex vivo in a bioreactor on a decellularized trachea for 10 days retained the epithelial-like phenotype. In conclusion, porcine bone marrow-derived MSCs demonstrate commitment to the epithelial lineage and might be a potential therapy for facilitating the repair of denuded airway epithelium. PMID:23696537

  20. Efficient drug delivery to alveolar macrophages and lung epithelial lining fluid following pulmonary administration of liposomal ciprofloxacin in rats with pneumonia and estimation of its antibacterial effects.

    Science.gov (United States)

    Chono, Sumio; Tanino, Tomoharu; Seki, Toshinobu; Morimoto, Kazuhiro

    2008-10-01

    The efficacy of pulmonary administration of liposomal ciprofloxacin (CPFX) in pneumonia was evaluated. In brief, the pharmacokinetics following pulmonary administration of liposomal CPFX (particle size, 1,000 nm; dose, 200 microg/kg) were examined in rats with lipopolysaccharide-induced pneumonia as an experimental pneumonia model. Furthermore, the antibacterial effects of liposomal CPFX against the pneumonic causative organisms were estimated by pharmacokinetic/pharmacodynamic (PK/PD) analysis. The time-courses of the concentration of CPFX in alveolar macrophages (AMs) and lung epithelial lining fluid (ELF) following pulmonary administration of liposomal CPFX to rats with pneumonia were markedly higher than that following the administration of free CPFX (200 microg/kg). The time course of the concentrations of CPFX in plasma following pulmonary administration of liposomal CPFX was markedly lower than that in AMs and ELF. These results indicate that pulmonary administration of liposomal CPFX was more effective in delivering CPFX to AMs and ELF compared with free CPFX, and it avoids distribution of CPFX to the blood. According to PK/PD analysis, the liposomal CPFX exhibited potent antibacterial effects against the causative organisms of pneumonia. This study indicates that pulmonary administration of CPFX could be an effective technique for the treatment of pneumonia.

  1. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes...... such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered......The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...

  2. Radiation-induced strain differences in mouse alveolar inflammatory cell apoptosis.

    Science.gov (United States)

    O'Brien, Thomas J; Létuvé, Séverine; Haston, Christina K

    2005-01-01

    Whole-thorax irradiation results in the development of the diffuse inflammatory response alveolitis in C3H/HeJ (C3H) mice and a milder alveolitis with fibrosis in C57BL/6J (B6) mice. In this study, we investigate if this mouse strain difference in response to radiation is due to differences in lung inflammatory cell apoptosis. Mice of the C3H and B6 strains were given a radiation dose of 18 Gy to the thorax and the animals were sacrificed at 11 or 18 weeks following exposure or when they were moribund. Active caspase-3 staining was used to identify apoptotic cells in the alveolar space of histological lung sections from the mice. The apoptotic index of B6 mice was greater than that of C3H mice at 11 weeks postirradiation (17.8% of airspace cells vs. 7.8%, p = 0.028) and in mice sacrificed because of illness (27.3% vs. 14.4%, p = 0.036). No C3H mice survived to the later time point. The inflammatory cells undergoing apoptosis in the mouse lungs were morphologically consistent with alveolar macrophages. We conclude that a difference in inflammatory cell apoptosis may contribute to the disparate pulmonary radiation response of these mouse strains.

  3. Respiratory epithelial cells orchestrate pulmonary innate immunity

    OpenAIRE

    Whitsett, Jeffrey A.; Alenghat, Theresa

    2014-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of ...

  4. Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells.

    Science.gov (United States)

    Hirakawa, Satoshi; Kojima, Takashi; Obata, Kazufumi; Okabayashi, Tamaki; Yokota, Shin-Ichi; Nomura, Kazuaki; Obonai, Toshimasa; Fuchimoto, Jun; Himi, Tetsuo; Tsutsumi, Hiroyuki; Sawada, Norimasa

    2013-12-01

    Respiratory syncytial virus (RSV) is an important pathogen of bronchiolitis, asthma, and severe lower respiratory tract disease in infants and young children. Matrix metalloproteinases (MMPs) play key roles in viral infection, inflammation and remodeling of the airway. However, the roles and regulation of MMPs in human nasal epithelial cells (HNECs) after RSV infection remain unclear. To investigate the regulation of MMP induced after RSV infection in HNECs, an RSV-infected model of HNECs in vitro was used. It was found that mRNA of MMP-10 was markedly increased in HNECs after RSV infection, together with induction of mRNAs of MMP-1, -7, -9, and -19. The amount of MMP-10 released from HNECs was also increased in a time-dependent manner after RSV infection as was that of chemokine RANTES. The upregulation of MMP-10 in HNECs after RSV infection was prevented by inhibitors of NF-κB and pan-PKC with inhibition of RSV replication, whereas it was prevented by inhibitors of JAK/STAT, MAPK, and EGF receptors without inhibition of RSV replication. In lung tissue of an infant with severe RSV infection in which a few RSV antibody-positive macrophages were observed, MMP-10 was expressed at the apical side of the bronchial epithelial cells and alveolar epithelial cells. In conclusion, MMP-10 induced by RSV infection in HNECs is regulated via distinct signal transduction pathways with or without relation to RSV replication. MMP-10 may play an important role in the pathogenesis of RSV diseases and it has the potential to be a novel marker and therapeutic target for RSV infection.

  5. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells

    Science.gov (United States)

    Chen, Qike K.; Lee, KangAe; Radisky, Derek C.; Nelson, Celeste M.

    2013-01-01

    Mouse mammary epithelial cells undergo transdifferentiation via epithelial-mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland. PMID:23660532

  6. Sphingolipid trafficking and protein sorting in epithelial cells

    NARCIS (Netherlands)

    Slimane, TA; Hoekstra, D

    2002-01-01

    Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an asy

  7. Loss of proliferation and antigen presentation activity following internalization of polydispersed carbon nanotubes by primary lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mandavi Kumari

    Full Text Available Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs and primary lung epithelial (PLE cells were studied. Peritoneal macrophages (PMs, known phagocytic cells were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells.

  8. [Epithelial cell in intestinal homeostasis and inflammatory bowel diseases].

    Science.gov (United States)

    Zouiten-Mekki, Lilia; Serghini, Meriem; Fekih, Monia; Kallel, Lamia; Matri, Samira; Ben Mustapha, Nadia; Boubaker, Jalel; Filali, Azza

    2013-12-01

    Crohn's disease (CD) and ulcerative colitis (UC) are the principal inflammatory bowel diseases (IBD) which physiopathology is currently poorly elucidated. During these diseases, the participation of the epithelial cell in the installation and the perpetuation of the intestinal inflammation is now clearly implicated. In fact, the intestinal epithelium located at the interface between the internal environment and the intestinal luminal, is key to the homeostatic regulation of the intestinal barrier. This barrier can schematically be regarded as being three barriers in one: a physical, chemical and immune barrier. The barrier function of epithelial cell can be altered by various mechanisms as occurs in IBD. The goal of this article is to review the literature on the role of the epithelial cell in intestinal homeostasis and its implication in the IBD. PMID:24356146

  9. Epithelial fibroblast triggering and interactions in pulmonary fibrosis

    OpenAIRE

    Noble, P W

    2008-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterised by repeated injury to the alveolar epithelium with loss of lung epithelial cells and abnormal tissue repair, resulting in excessive accumulation of fibroblasts and myofibroblasts, deposition of extracellular matrix components and distortion of lung architecture, eventually leading to respiratory failure. There is growing circumstantial evidence to suggest that in IPF the alveolar epithelium is prone to undergoing programmed cell death follo...

  10. New insights of P2X7 receptor signaling pathway in alveolar functions

    OpenAIRE

    Mishra, Amarjit

    2013-01-01

    Purinergic P2X7 receptor (P2X7R), an ATP-gated cation channel, is unique among all other family members because of its ability to respond to various stimuli and to modulate pro-inflammatory signaling. The activation of P2X7R in immune cells is absolutely required for mature interleukin -1beta (IL-1beta) and IL-18 production and release. Lung alveoli are lined by the structural alveolar epithelial type I (AEC I) and alveolar epithelial type II cells (AEC II). AEC I plays important roles in alv...

  11. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells

    OpenAIRE

    Gray, Daniel H.D.; Seach, Natalie; Ueno, Tomoo; Milton, Morag K; Liston, Adrian; Lew, Andrew M.; Christopher C Goodnow; Boyd, Richard L.

    2006-01-01

    Despite the importance of thymic stromal cells to T-cell development, relatively little is known about their biology. Here, we use single-cell analysis of stromal cells to analyze extensive changes in the number and composition of thymic stroma throughout life, revealing a surprisingly dynamic population. Phenotypic progression of thymic epithelial subsets was assessed at high resolution in young mice to provide a developmental framework. The cellular and molecular requirements of adult epith...

  12. Regenerative capacity of adult cortical thymic epithelial cells

    OpenAIRE

    Rode, Immanuel; Boehm, Thomas

    2012-01-01

    Involution of the thymus is accompanied by a decline in the number of thymic epithelial cells (TECs) and a severely restricted peripheral repertoire of T-cell specificities. TECs are essential for T-cell differentiation; they originate from a bipotent progenitor that gives rise to cells of cortical (cTEC) and medullary (mTEC) phenotypes, via compartment-specific progenitors. Upon acute selective near-total ablation during embryogenesis, regeneration of TECs fails, suggesting that losses from ...

  13. A Case of Bronchiolo-alveolar Cell Carcinoma Presenting Multiple Cavities

    OpenAIRE

    西辻, 雅; 坂東, 琢磨; 安井, 正英; 藤村, 政樹; 渡辺, 洋宇; 松田, 保

    1996-01-01

    A 49-year-old woman was admitted with dry cough, and consolidation in the right middle lobe was predominant on a chest X-ray film in May 1994.Transbronchial biopsy was performed, and pathologically the diagnosis was bronchiolo-alveolar cell carcinoma.Five months after the surgery, cavitary shadows appeared in the left lung.The number of cavitary shadows increased, and the patient died due to respiratory failure.Intrapulmonary metastasis of lung cancer rarely presents with multiple cavitary sh...

  14. Epithelial cell cultures from normal and cancerous human tissues.

    Science.gov (United States)

    Owens, R B; Smith, H S; Nelson-Rees, W A; Springer, E L

    1976-04-01

    Thirty epithelial cell strains were isolated from human carcinomas and normal epithelial tissues by collagenase digestion and selective removal of fibroblasts with trypsin-Versene. Most strains were obtained from metastatic carcinomas or epithelia of the urinary and intestinal tracts. The success rate for growth of both neoplastic and normal tissues (excluding skin) was 38%. Six of these strains showed gross morphologic and chromosome changes typical of malignant cells. Nine resembled normal epithelium. The other 15 exhibited some degree of morphologic change from normal. PMID:176412

  15. HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic

    OpenAIRE

    Gazdhar, Amiq Ur Rahman; Susuri, Njomeza; Hostettler, Katrin; Gugger, Mathias; Knudsen, Lars; Roth, Michael; Ochs, Matthias; Geiser, Thomas

    2013-01-01

    BACKGROUND Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. METHODS Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells o...

  16. HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic

    OpenAIRE

    Gazdhar, Amiq; Susuri, Njomeza; Hostettler, Katrin; Gugger, Mathias; Knudsen, Lars; Roth, Michael; Ochs, Matthias; Geiser, Thomas

    2013-01-01

    Background Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. Methods Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from...

  17. Use of Induced Pluripotent Stem Cells to Recapitulate Pulmonary Alveolar Proteinosis Pathogenesis

    OpenAIRE

    Suzuki, Takuji; Mayhew, Christopher; Sallese, Anthony; Chalk, Claudia; Carey, Brenna C.; Malik, Punam; Wood, Robert E.; Trapnell, Bruce C.

    2014-01-01

    Rationale: In patients with pulmonary alveolar proteinosis (PAP) syndrome, disruption of granulocyte/macrophage colony–stimulating factor (GM-CSF) signaling is associated with pathogenic surfactant accumulation from impaired clearance in alveolar macrophages.

  18. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    Science.gov (United States)

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  19. Adherence of Candida albicans to oral epithelial cells differentiated by Papanicolaou staining.

    OpenAIRE

    Williams, D. W.; Walker, R; Lewis, M.A.; Allison, R T; Potts, A J

    1999-01-01

    OBJECTIVE: To examine the relative adherence of Candida albicans to oral epithelial cells differentiated by Papanicolaou staining. METHODS: Oral epithelial cells were collected from 10 healthy adults (five male, five female) and counted. Equal volumes of oral epithelial cells and candida were mixed and incubated. The epithelial cells from this mix were collected by filtration through 10 microns polycarbonate membrane filters. Cells retained on the membrane filters were stained with crystal vi...

  20. Emergence of an Apical Epithelial Cell Surface In Vivo.

    Science.gov (United States)

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B

    2016-01-11

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological, and laser-dissection experiments with theoretical modeling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  1. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  2. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    Science.gov (United States)

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.

  3. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    Directory of Open Access Journals (Sweden)

    Burkhardt Wolfram

    2007-06-01

    Full Text Available Abstract Background Repeated bronchoalveolar lavage (BAL has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5 or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5. For control, 10 healthy animals with gas (Healthy-Gas, n = 5 or PF5080 filled lungs (Healthy-PF5080, n = 5 were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. Results Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. Conclusion After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.

  4. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  5. Sodium selectivity of semicircular canal duct epithelial cells

    Directory of Open Access Journals (Sweden)

    Harbidge Donald G

    2011-09-01

    Full Text Available Abstract Background Sodium absorption by semicircular canal duct (SCCD epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC, comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197, whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the

  6. File list: ALL.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.50.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epithelia...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  7. File list: ALL.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.20.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epithelia...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  8. File list: ALL.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.05.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  9. File list: ALL.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.10.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  10. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M;

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels......HLA-DP molecules function as restriction elements in the presentation of foreign antigens to T cells by antigen presenting cells and certain HLA-DP molecules confer susceptibility to autoimmune disease. Because HLA molecules play an essential role in thymic selection and elimination of autoreactive...

  11. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  12. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  13. Inhibition of tumor necrosis factor-α reduces alveolar septal cell apoptosis in passive smoking rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; CAI Shan; CHEN Ping; CHEN Jian-bo; WU Jie; WU Shang-jie; ZHOU Rui

    2008-01-01

    Background Recent studies have revealed that lung cell apoptosis plays an important role in pathogenesis of cigarette-induced chronic obstructive pulmonary disease (COPD).Tumor necrosis factor alpha(TNF-α)is one of the most important cytokines which are involved in COPD.This study aimed at investigating the jnfluence of its inhibitor,recombinant human necrosis factor-alpha receptor Ⅱ:IgG Fc fusion protein(rhTNFR:Fc)on alveolar septal cell apoptosis in passive smoking rats.Methods Forty-eight rats were randomly divided into a normal control group,a passive smoking group,an rhTNFR:Fc intervention group and a sham intervention group.The passive smoking rats were treated by exposure to cigarette smoking daily for 80 days.Afcer smoking for one month the rhTNFR:Fc Intervention group was treated with rhTNFR:Fc by subcutaneous injection,the sham intervention group injected subcutaneousIv with a neutral preparation(normal saline 0.1 ml,manicol 0.8 ml,cane sugar 0.2 mg,Tris 0.024 mg as a control.Lung function was determined and the levels of TNF-α in serum and broncho-alveolar lavage fluid(BALF)were measured with enzyme-linked immunosorbnent assay (ELISA).Lung tissue sections stained by hematoxylin and eosin(HE)were observed for study of morphological alternations.Mean linear intercept(MLI)and mean alveolar numbers(MAN)were measured and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)method was carried out to determine the percentage of positive cells and distribution of apoptotic cells.Results Increased MLI and decreased MAN were found in the passive smoking group compared with both the normal control group and the rhTNFR:Fc intervention group(P<0.05).Forced expiratory volume in 0.3 second(FEV0.3)/forced vital capacity(FVC)and peak expiratory flow(PEF)were lower in the passive smoking group than that in the normal control group(P<0.05).Compared with the sham intervention group,FEV0.3/FVC and PEF increased in the rhTNFR:Fc intervention

  14. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  15. Effect of recombinant IL-10 on cultured fetal rat alveolar type II cells exposed to 65%-hyperoxia

    Directory of Open Access Journals (Sweden)

    Lee Hyeon-Soo

    2011-05-01

    Full Text Available Abstract Background Hyperoxia plays an important role in the genesis of lung injury in preterm infants. Although alveolar type II cells are the main target of hyperoxic lung injury, the exact mechanisms whereby hyperoxia on fetal alveolar type II cells contributes to the genesis of lung injury are not fully defined, and there have been no specific measures for protection of fetal alveolar type II cells. Objective The aim of this study was to investigate (a cell death response and inflammatory response in fetal alveolar type II cells in the transitional period from canalicular to saccular stages during 65%-hyperoxia and (b whether the injurious stimulus is promoted by creating an imbalance between pro- and anti-inflammatory cytokines and (c whether treatment with an anti-inflammatory cytokine may be effective for protection of fetal alveolar type II cells from injury secondary to 65%-hyperoxia. Methods Fetal alveolar type II cells were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 h and 36 h. Cells in room air were used as controls. Cellular necrosis was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry, and cell proliferation was studied by BrdU incorporation. Release of cytokines including VEGF was analyzed by ELISA, and their gene expressions were investigated by qRT-PCR. Results 65%-hyperoxia increased cellular necrosis, whereas it decreased cell proliferation in a time-dependent manner compared to controls. 65%-hyperoxia stimulated IL-8-release in a time-dependent fashion, whereas the anti-inflammatory cytokine, IL-10, showed an opposite response. 65%-hyperoxia induced a significant decrease of VEGF-release compared to controls, and similar findings were observed on IL-8/IL-10/VEGF genes expression. Preincubation of recombinant IL-10 prior to 65%-hyperoxia decreased cellular necrosis and IL-8-release, and increased VEGF-release and cell proliferation

  16. Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest

    OpenAIRE

    Fan, Hongran; Khavari, Paul A

    1999-01-01

    Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation...

  17. Epithelial cells with hepatobiliary phenotype: Is it another stem cell candidate for healthy adult human liver?

    Institute of Scientific and Technical Information of China (English)

    Dung Ngoc Khuu; Mustapha Najimi; Etienne M Sokal

    2007-01-01

    AIM: To investigate the presence and role of liver epithelial cells in the healthy human adult liver.METHODS: Fifteen days after human hepatocyte primary culture, epithelial like cells emerged and started proliferating. Cell colonies were isolated and sub-cultured for more than 160 d under specific culture conditions. Cells were analyzed for each passage using immunofluorescence, flow cytometry and reverse transcriptionpolymerase chain reaction (RT-PCR).RESULTS: Flow cytometry analysis demonstrated that liver epithelial cells expressed common markers for hepatic and stem cells such as CD90, CD44 and CD29 but were negative for CD34 and CD117. Using immunofluorescence we demonstrated that liver epithelial cells expressed not only immature (a-fetoprotein) but also differentiated hepatocyte (albumin and CK-18) and biliary markers (CK-7 and 19), whereas they were negative for OV-6. RT-PCR analysis confirmed immunofluorescence data and revealed that liver epithelial cells did not express mature hepatocyte markers such as CYP2B6, CYP3A4 and tyrosine amino-transferase. Purified liver epithelial cells were transplanted into SCID mice. One month after transplantation, albumin positive cell foci were detected in the recipient mouse parenchyma.CONCLUSION: According to their immature and bipotential phenotype, liver epithelial cells might represent a pool of precursors in the healthy human adult liver other than oval cells.

  18. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla;

    2011-01-01

    endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression...... to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal......Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether...

  19. Cell deformation at the air-liquid interface induces Ca2+-dependent ATP release from lung epithelial cells.

    Science.gov (United States)

    Ramsingh, Ronaldo; Grygorczyk, Alexandra; Solecki, Anna; Cherkaoui, Lalla Siham; Berthiaume, Yves; Grygorczyk, Ryszard

    2011-04-01

    Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ∼40 to ∼90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface. PMID:21239538

  20. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  1. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  2. Biomechanics of epithelial cell islands analyzed by modeling and experimentation

    CERN Document Server

    Coburn, Luke; Noppe, Adrian; Caldwell, Benjamin J; Moussa, Elliott; Yap, Chloe; Priya, Rashmi; Lobaskin, Vladimir; Roberts, Anthony P; Yap, Alpha S; Neufeld, Zoltan; Gomez, Guillermo A

    2016-01-01

    We generated a new computational approach to analyze the biomechanics of epithelial cell islands that combines both vertex and contact-inhibition-of-locomotion models to include both cell-cell and cell-substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of protrusions (and traction forces) that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell-cell junctions (and monolayer stress) is not homogeneous across the island. Instead it is higher at the island center and scales up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Moreover, our approach has the minimal elements necessary to reproduce mechanical crosstalk between both cell-cell and cell substrate adhesion systems. We found that an i...

  3. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  4. File list: DNS.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  5. File list: Oth.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.10.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithelia...l cells SRX268452,SRX268450,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  6. File list: His.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  7. File list: Unc.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  8. File list: Pol.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.20.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  9. File list: Unc.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.05.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  10. File list: Pol.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  11. File list: DNS.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  12. File list: Oth.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.20.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithelia...l cells SRX268452,SRX268451,SRX268450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  13. File list: Oth.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  14. File list: Unc.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.50.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  15. File list: His.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX403485,SRX396749,SRX403486,SRX031075,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  16. File list: Oth.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  17. File list: His.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  18. File list: Pol.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  19. File list: Oth.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.05.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithelia...l cells SRX268452,SRX268450,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  20. File list: His.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  1. File list: His.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.50.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  2. File list: Pol.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  3. File list: Unc.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  4. File list: Unc.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  5. File list: DNS.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  6. File list: His.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  7. File list: DNS.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.20.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  8. File list: DNS.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  9. File list: Pol.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  10. File list: Pol.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  11. File list: Oth.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  12. File list: His.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  13. File list: Unc.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  14. File list: Oth.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithelia...l cells SRX424872,SRX330635,SRX330636 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  15. File list: Pol.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  16. File list: Pol.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  17. File list: Oth.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.50.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268450,SRX268452,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  18. File list: Unc.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.10.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  19. File list: DNS.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.10.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  20. File list: His.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  1. File list: Unc.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.20.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  2. File list: DNS.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.50.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  3. File list: DNS.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.05.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  4. Culture and immortalization of pancreatic ductal epithelial cells.

    Science.gov (United States)

    Lawson, Terence; Ouellette, Michel; Kolar, Carol; Hollingsworth, Michael

    2005-01-01

    Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug- and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide epithelial cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium. PMID:15542901

  5. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages.

    Science.gov (United States)

    Song, Xiaolian; Xie, Shuanshuan; Lu, Kun; Wang, Changhui

    2015-04-01

    The reparative and immunoregulatory properties of mesenchymal stromal cells (MSCs) have made them attractive candidates for cellular therapy. However, the underlying mechanism of the effects of transplanted MSCs on allergic asthma remains elusive. Here, we show that administration of MSCs isolated from human bone marrow provoked a pronounced polarization in alveolar macrophages to M2 subtypes, rather than induced an increase in the total macrophage number, and efficiently inhibited hallmark features of asthma, including airway hyperresponsiveness and eosinophilic accumulation. Moreover, transforming growth factor beta (TGF-β) signaling pathway appeared to mediate the effects of MSCs on macrophage polarization and subsequently the inhibition of hallmark features of asthma. Inhibition of TGF-β signaling was sufficient to inhibit the macrophage polarization in response to MSCs and consequently reserved the inhibitory effects of macrophage polarization on hallmark features of asthma. Collectively, our data demonstrate that human MSCs have immunosuppressive activity on asthma, which is mediated by TGF-β-signaling-dependent alveolar macrophage polarization. PMID:24958014

  6. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.

  7. Sulforaphane inhibits de novo synthesis of IL-8 and MCP-1 in human epithelial cells generated by cigarette smoke extract.

    Science.gov (United States)

    Starrett, Warren; Blake, David J

    2011-06-01

    Chronic obstructive pulmonary disease (COPD) is currently the fifth leading cause of death worldwide. Exposure to cigarette smoke (CS) is the primary factor associated with the COPD development. CS activates epithelial cells to secrete chemokines such as interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) that recruit neutrophils and macrophages to the lung. These inflammatory cells then release additional chemokines and cytokines leading to chronic inflammation that initiates apoptosis in epithelial and endothelial cells and destruction of alveolar structure. Pulmonary epithelium responds to oxidative stress mediated by CS through activating NRF2-dependent pathways, leading to an increased expression of antioxidant and cytoprotective enzymes thereby providing a protective response against CS-induced lung injury. We hypothesized that activating NRF2-dependent cytoprotective gene expression with sulforaphane (SFN) affords protection against CS-induced lung damage by inhibiting chemokine production. Results indicate that in the human BEAS-2B epithelial cell line, 5 μM SFN activated NRF2-dependent gene expression by triggering the translocation of NRF2 to the nucleus and significantly increased the expression of NRF2-dependent genes such as NADPH quinone oxidoreductase-1, heme oxygenase-1, and glutamate cysteine ligase modulatory subunit. Cigarette smoke extract (CSE) exposure of BEAS-2B cells significantly increased production of both IL-8 and MCP-1. Production of both chemokines was significantly reduced with SFN given prior to CSE; SFN inhibited IL-8 and MCP-1 gene expression at the transcription level. Our results indicate that activating NRF2 pathways with SFN inhibits CSE-induced chemokine production in human epithelial cells. However, the mechanism by which the production of chemokines is inhibited through SFN still remains to be elucidated. SFN may enhance NRF2 transcriptional activity resulting in the inhibition of proinflammatory pathways such

  8. Lgr proteins in epithelial stem cell biology

    NARCIS (Netherlands)

    Barker, N.; Tan, S.; Clevers, H.

    2013-01-01

    The ultimate success of global efforts to exploit adult stem cells for regenerative medicine will depend heavily on the availability of robust, highly selective stem cell surface markers that facilitate the isolation of stem cells from human tissues. Any subsequent expansion or manipulation of isola

  9. Epithelial Cell Apoptosis Causes Acute Lung Injury Masquerading as Emphysema

    OpenAIRE

    Mouded, Majd; Egea, Eduardo E.; Brown, Matthew J.; Hanlon, Shane M.; Houghton, A. McGarry; Tsai, Larry W; Ingenito, Edward P.; Shapiro, Steven D

    2009-01-01

    Theories of emphysema traditionally revolved around proteolytic destruction of extracellular matrix. Models have recently been developed that show airspace enlargement with the induction of pulmonary cell apoptosis. The purpose of this study was to determine the mechanism by which a model of epithelial cell apoptosis caused airspace enlargement. Mice were treated with either intratracheal microcystin (MC) to induce apoptosis, intratracheal porcine pancreatic elastase (PPE), or their respectiv...

  10. Midbody remnant licenses primary cilia formation in epithelial cells.

    Science.gov (United States)

    Ott, Carolyn M

    2016-08-01

    Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model. PMID:27482049

  11. Vectorial secretion of proteoglycans by polarized rat uterine epithelial cells

    OpenAIRE

    1988-01-01

    We have studied proteoglycan secretion using a recently developed system for the preparing of polarized primary cultures of rat uterine epithelial cells. To mimic their native environment better and provide a system for discriminating apical from basolateral compartments, we cultured cells on semipermeable supports impregnated with biomatrix. Keratan sulfate proteoglycans (KSPG) as well as heparan sulfate- containing molecules (HS[PG]) were the major sulfated products synthesized and secreted...

  12. The Epithelial Cell in Lung Health and Emphysema Pathogenesis

    OpenAIRE

    Mercer, Becky A; Lemaître, Vincent; Powell, Charles A.; D’Armiento, Jeanine

    2006-01-01

    Cigarette smoking is the primary cause of the irreversible lung disease emphysema. Historically, inflammatory cells such as macrophages and neutrophils have been studied for their role in emphysema pathology. However, recent studies indicate that the lung epithelium is an active participant in emphysema pathogenesis and plays a critical role in the lung’s response to cigarette smoke. Tobacco smoke increases protease production and alters cytokine expression in isolated epithelial cells, sugge...

  13. Estradiol increases mucus synthesis in bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anthony Tam

    Full Text Available Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI. Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0 cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6 mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium.

  14. Sef Regulates Epithelial-Mesenchymal Transition in Breast Cancer Cells.

    Science.gov (United States)

    He, Qing; Gong, Yan; Gower, Lindsey; Yang, Xuehui; Friesel, Robert E

    2016-10-01

    Sef (similar expression to fgf), also know as IL17RD, is a transmembrane protein shown to inhibit fibroblast growth factor signaling in developmental and cancer contexts; however, its role as a tumor suppressor remains to be fully elucidated. Here, we show that Sef regulates epithelial-mesenchymal transition (EMT) in breast cancer cell lines. Sef expression was highest in the normal breast epithelial cell line MCF10A, intermediate expression in MCF-7 cells and lowest in MDA-MB-231 cells. Knockdown of Sef increased the expression of genes associated with EMT, and promoted cell migration, invasion, and a fibroblastic morphology of MCF-7 cells. Overexpression of Sef inhibited the expression of EMT marker genes and inhibited cell migration and invasion in MCF-7 cells. Induction of EMT in MCF10A cells by TGF-β and TNF-α resulted in downregulation of Sef expression concomitant with upregulation of EMT gene expression and loss of epithelial morphology. Overexpression of Sef in MCF10A cells partially blocked cytokine-induced EMT. Sef was shown to block β-catenin mediated luciferase reporter activity and to cause a decrease in the nuclear localization of active β-catenin. Furthermore, Sef was shown to co-immunoprecipitate with β-catenin. In a mouse orthotopic xenograft model, Sef overexpression in MDA-MB-231 cells slowed tumor growth and reduced expression of EMT marker genes. Together, these data indicate that Sef plays a role in the negative regulation of EMT in a β-catenin dependent manner and that reduced expression of Sef in breast tumor cells may be permissive for EMT and the acquisition of a more metastatic phenotype. J. Cell. Biochem. 117: 2346-2356, 2016. © 2016 Wiley Periodicals, Inc. PMID:26950413

  15. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    International Nuclear Information System (INIS)

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis

  16. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  17. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  18. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  19. 降钙素基因相关肽调控细胞外信号调节激酶减轻高体积分数氧对胎鼠肺泡Ⅱ型上皮细胞的损伤作用%Damage - Reduced Effects of Calcitonin Gene - Related Peptide on Hyperoxia - Exposed Type Ⅱ Alveolar Epithelial Cell Mediated by Extracellular Signal -Regulated Kinase

    Institute of Scientific and Technical Information of China (English)

    付红敏; 李利; 汤春辉; 皇甫春荣; 米弘瑛; 李献珍; 方芳; 许峰

    2012-01-01

    Objective To explore the effects of calcitonin gene - related peptide( CGRF) on type II alveolar epithelial cell( AEC II ) exposed to hyperoxia and whether the mechanism is mediated by extracellular signal - regulated kinase ( ERK) pathway. Methods AEC II were isolated from 21 d fetal rat lung and grew for 12 h to attach. Then AEC II were randomly divided into six groups;air group,CGRP/air group,CGRP8 -37/air group,hyperoxia group,CGRP/O2 and CGRP8 - 37/O2 group. Air or hyperoxia environment was achieved by exposing AEC1I into 210 mL · L-1oxygen or 850 mL · L-1 oxygen for 18 h. CGRP group or CGRP8 - 37 group was carried out by adding 10-1 mol · L-1 CGRP or both CGRP and CGRP8 -37(10-1 mol · L-1) ,a receptor antagonist against CGRP,into medium before cultured in air or 850 mL · I-1 oxygen. Lactate dehydrogenase (LDH) ,alkaline phosphatase (AKP) and malondialdehyde (MDA) were measured by immune tur-bidimetry and reactive oxygen species( ROS) by flow cytometry. Immunofluorescence microscopy was used to analyze the expression of surfactant protein C( SP - C) and Western blot was taken to detect the content of p - ERK1/2. Results The levels of MDA,LDH,AKP,ROS and p-ERKl/2 were markedly increased in hyperoxia group than those in air group [(2. 29 ±0.10) μmol · L-1 vs (1.06±0.14) μmol · L-1, (58.79 ±5.01) U ·L-1 vs (25.92 ±3.68) U · L-1,(24.63 ±2.92) U · L-1 vs (10. 34 ±1.78) U · L-1,47.74 ±3.35 vs 25.96 ±5.04, 1.21 ±0.06 vs 0.45 ±0.05 ,P, <0.01] .whereas expression of SP -C was decreased in hyperoxia group compared with air group (22.75 ±3.31 vs 43. 50 ± 4.42 ). Levels of MDA, LDH, AKP and ROS were reduced with an elevated expression of p - ERK1 /2 and SP - C in CGRP/O2 group compared with those in hyperoxia group and CGRP8 - 37/O2 group (Pa < 0. 01). There were no significant differences about the levels of MDA,LDH,AKP,ROS and SP- C among three groups cultured in air condition. The expression of p - ERK1/2 in CGRP/air group was also higher than

  20. DNA analysis of epithelial cell suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.S.; Johnson, N.F.; Holland, L.M.

    1985-01-01

    Cell suspensions of skin were obtained by animals exposed by skin painting of several crude oils. DNA analysis of these cell suspensions labeled with mithramycin provide determination of percentages of cells in the G/sub 1/, S and G/sub 2/M phases of the cell cycle. Data acquired showed differences from control animals occurring as early as 7 days after treatment and persisting through 21 days afterwards. There was histological evidence of erythema and hyperplasia in shale oil-exposed skins. Flow cytometric analysis of DNA content in shale-oil-exposed skin cells showed an increased percentage of cycling cells plus evidence of aneuploidy. Similar data from simply abraded skin showed increased percentages of cycling cells, but no aneuploidy. The shale-oil-exposed group, when compared to a standard petroleum-exposed group, had significantly increased percentages of cycling cells. This early indication of differing response to different complex mixtures was also seen in long-term skin exposures to these compounds. Similar analytical techniques were applied to tracheal cell suspensions from ozone-exposed rats. 12 refs., 4 figs., 4 tabs. (DT)

  1. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  2. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  3. Progressive transformation of immortalized esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-YingShen; Li-YanXu; Min-HuaChen; JianShen; Wei-JiaCai; YiZeng

    2002-01-01

    AIM:To investigate the progressive transformation of immortal cells of human fetal esophageal epithelium induced by human papillomavirus,and to examine biological criteria of sequential passage of cells,including cellular phenotype,proliferative rate,telomerase,chromosome and tumorigenicity.

  4. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian;

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...

  5. Expression of Connexin43 in Rat Epithelial Cells and Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the role of connexin43 (Cx43) in gap junctional intercellular communication (GJIC) and propagated sensation along meridians, the expression of Cx43 in the rat epithelial cells and fibroblasts was studied both in vitro and in vivo. With the in vitro study, the rat epithelial cells and fibroblasts were cultured together, and the localization of Cx43 was detected by immunohistochemistry and indirect immunofluorescent cytochemistry and under confocal microscopy . And the expression of Cx43 on the surface of the cells was examined by flow cytometry. With the in vivo examination, 20 SD rats were randomized into control group (n = 10) and electrical acupuncture group (EAgroup, n=10). EA ( 0.5-1.5 V, 4-16 Hz , 30 min) was applied to"Zusanli"acupoint for 30 min at rat's hind paw, the localization of Cx43 was immunohistochemically detected.The immunohistochemical staining and indirect immunfluorescent cytochemistry showed that Cx43was localized on the surface of the cells and in the cytoplasm. The relative expression level of Cx43on the cellular membrane surfaces of the rat epithelial cells and fibroblasts, as determined by FACS, were 13.91 % and 29.53 % respectively. Our studied suggested that Cx43 might be involved in GJIC and propagated sensation along meridians.

  6. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  7. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    OpenAIRE

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B; Parkos, Charles A.; Nusrat, Asma

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating c...

  8. CD74 is a survival receptor on colon epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Nitsan; Maharshak; Sivan; Cohen; Frida; Lantner; Gili; Hart; Richard; Bucala; Idit; Shachar

    2010-01-01

    AIM: To investigate the expression and function of CD74 in normal murine colon epithelial cells (CEC) and colon carcinoma cells. METHODS: Expression of CD74 mRNA and protein were measured by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and fluorescence-activated cell sorter (FACS). The effect of migration inhibitory factor (MIF) on the survival of normal CEC from C57BL/6, NOD/SCID, and CD74 def icient mice both in vitro and in vivo, and on the CT26 carcinoma cell line was analy...

  9. Early release of surfactant following lung irradiation of alveolar type II cells

    International Nuclear Information System (INIS)

    At 1 hour, 24 hours, and 1 week following irradiation, studies utilizing LAF 1/J mouse lung showed increase of disaturated alveolar phosphatidylcholine (PC) by radiolabelling and alveolar lavage, thus indicating PC as a nearly immediate post-irradiation biomarker. A corresponding decrease of PC in lung tissue following alveolar lavage correlated with an early decrease of lamellar bodies in type II pneumocytes after irrdiation

  10. Epigenetics in Intestinal Epithelial Cell Renewal.

    Science.gov (United States)

    Roostaee, Alireza; Benoit, Yannick D; Boudjadi, Salah; Beaulieu, Jean-François

    2016-11-01

    A controlled balance between cell proliferation and differentiation is essential to maintain normal intestinal tissue renewal and physiology. Such regulation is powered by several intracellular pathways that are translated into the establishment of specific transcription programs, which influence intestinal cell fate along the crypt-villus axis. One important check-point in this process occurs in the transit amplifying zone of the intestinal crypts where different signaling pathways and transcription factors cooperate to manage cellular proliferation and differentiation, before secretory or absorptive cell lineage terminal differentiation. However, the importance of epigenetic modifications such as histone methylation and acetylation in the regulation of these processes is still incompletely understood. There have been recent advances in identifying the impact of histone modifications and chromatin remodelers on the proliferation and differentiation of normal intestinal crypt cells. In this review we discuss recent discoveries on the role of the cellular epigenome in intestinal cell fate, development, and tissue renewal. J. Cell. Physiol. 231: 2361-2367, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27061836

  11. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  12. Cationic surface modification of PLG nanoparticles offers sustained gene delivery to pulmonary epithelial cells.

    Science.gov (United States)

    Baoum, Abdulgader; Dhillon, Navneet; Buch, Shilpa; Berkland, Cory

    2010-05-01

    Biodegradable polymeric nanoparticles are currently being explored as a nonviral gene delivery system; however, many obstacles impede the translation of these nanomaterials. For example, nanoparticles delivered systemically are inherently prone to adsorbing serum proteins and agglomerating as a result of their large surface/volume ratio. What is desired is a simple procedure to prepare nanoparticles that may be delivered locally and exhibit minimal toxicity while improving entry into cells for effectively delivering DNA. The objective of this study was to optimize the formulation of poly(D,L-lactide-co-glycolide) (PLG) nanoparticles for gene delivery performance to a model of the pulmonary epithelium. Using a simple solvent diffusion technique, the chemistry of the particle surface was varied by using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (approximately 200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for 2 weeks. In A549 alveolar lung epithelial cells, high levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least 2 weeks. In contrast, PEI gene expression ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium.

  13. Multipotent capacity of immortalized human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Oliver Delgado

    Full Text Available While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer.

  14. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B; Mandel, U;

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrat...

  15. Quantitation and renewal of alveolar and bronchiolar cell populations of rat lungs. Changes during some pathological processes

    International Nuclear Information System (INIS)

    The various cells of alveolar and bronchiolar tissues of rat lungs were studied qualitatively and quantitatively. In physiological conditions, the renewal rate of the cell populations is low and the frequency of the various cell types is constant. This stability, especially at the level of the alveolar tissue, was also found during the latency period and the development of radiation-induced lung cancers. A particular cellular population was demonstrated: marginated leukocyte pool at the level of the pulmonary circulation. This pool was different both qualitatively and quantitatively from the leukocytes of the systemic circulation and, in physiological conditions, behaved as a cellular reservoir of monocytes chiefly re-distributed according to the body needs. In pathological conditions, its fast migration contributed to the defence of the alveolar medium. A quantitative study of the renewal of alveolar macrophages showed that under 1 p. cent of the marginated leukocyte pool is used daily to keep up this population. This fraction undergoes a maturation stage by cellular division within the endoalveolar medium. In some pathological conditions, this division can be completely inhibited

  16. Oral epithelial cell responses to multispecies microbial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms. PMID:23300185

  17. Oral epithelial cell responses to multispecies microbial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms.

  18. Evaluating alternative stem cell hypotheses for adultcorneal epithelial maintenance

    Institute of Scientific and Technical Information of China (English)

    John D West; Natalie J Dorà; Natalie J Dorà,

    2015-01-01

    In this review we evaluate evidence for three differenthypotheses that explain how the corneal epitheliumis maintained. The limbal epithelial stem cell (LESC)hypothesis is most widely accepted. This proposes thatstem cells in the basal layer of the limbal epithelium,at the periphery of the cornea, maintain themselvesand also produce transient (or transit) amplifying cells(TACs). TACs then move centripetally to the centre ofthe cornea in the basal layer of the corneal epitheliumand also replenish cells in the overlying suprabasallayers. The LESCs maintain the corneal epitheliumduring normal homeostasis and become more active torepair significant wounds. Second, the corneal epithelialstem cell (CESC) hypothesis postulates that, duringnormal homeostasis, stem cells distributed throughoutthe basal corneal epithelium, maintain the tissue.According to this hypothesis, LESCs are present in thelimbus but are only active during wound healing. We alsoconsider a third possibility, that the corneal epithelium ismaintained during normal homeostasis by proliferationof basal corneal epithelial cells without any input fromstem cells. After reviewing the published evidence,we conclude that the LESC and CESC hypotheses areconsistent with more of the evidence than the thirdhypothesis, so we do not consider this further. The LESCand CESC hypotheses each have difficulty accountingfor one main type of evidence so we evaluate the twokey lines of evidence that discriminate between them.Finally, we discuss how lineage-tracing experimentshave begun to resolve the debate in favour of theLESC hypothesis. Nevertheless, it also seems likely thatsome basal corneal epithelial cells can act as long-termprogenitors if limbal stem cell function is compromised.Thus, this aspect of the CESC hypothesis may have alasting impact on our understanding of corneal epithelialmaintenance, even if it is eventually shown that stemcells are restricted to the limbus as proposed by the

  19. Particle-induced indentation of the alveolar epithelium caused by surface tension forces.

    Science.gov (United States)

    Mijailovich, S M; Kojic, M; Tsuda, A

    2010-10-01

    Physical contact between an inhaled particle and alveolar epithelium at the moment of particle deposition must have substantial effects on subsequent cellular functions of neighboring cells, such as alveolar type-I, type-II pneumocytes, alveolar macrophage, as well as afferent sensory nerve cells, extending their dendrites toward the alveolar septal surface. The forces driving this physical insult are born at the surface of the alveolar air-liquid layer. The role of alveolar surfactant submerging a hydrophilic particle has been suggested by Gehr and Schürch's group (e.g., Respir Physiol 80: 17-32, 1990). In this paper, we extended their studies by developing a further comprehensive and mechanistic analysis. The analysis reveals that the mechanics operating in the particle-tissue interaction phenomena can be explained on the basis of a balance between surface tension force and tissue resistance force; the former tend to move a particle toward alveolar epithelial cell surface, the latter to resist the cell deformation. As a result, the submerged particle deforms the tissue and makes a noticeable indentation, which creates unphysiological stress and strain fields in tissue around the particle. This particle-induced microdeformation could likely trigger adverse mechanotransduction and mechanosensing pathways, as well as potentially enhancing particle uptake by the cells. PMID:20634359

  20. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    Science.gov (United States)

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Alveolar Ridge Augmentation with Titanium Mesh. A Retrospective Clinical Study

    OpenAIRE

    Poli, Pier P; Beretta, Mario; Cicciù, Marco; Maiorana, Carlo

    2014-01-01

    An adequate amount of bone all around the implant surface is essential in order to obtain long-term success of implant restoration. Several techniques have been described to augment alveolar bone volume in critical clinical situations, including guided bone regeneration, based on the use of barrier membranes to prevent ingrowth of the epithelial and gingival connective tissue cells. To achieve this goal, the use of barriers made of titanium micromesh has been advocated. A total of 13 patients...

  2. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases

    OpenAIRE

    Zehethofer, Nicole; Bermbach, Saskia; Hagner, Stefanie; Garn, Holger; Müller, Julia; Goldmann, Torsten; Lindner, Buko; Schwudke, Dominik; König, Peter

    2014-01-01

    Airway epithelial cells play an important role in the pathogenesis of inflammatory lung diseases such as asthma, cystic fibrosis and COPD. Studies concerning the function of the lipid metabolism of the airway epithelium are so far based only on the detection of lipids by immunohistochemistry but quantitative analyses have not been performed. Although recent advances in mass spectrometry have allowed to identify a variety of lipid classes simultaneously in isolated tissue samples, up until now...

  3. Proliferation of Cultured Mouse Choroid Plexus Epithelial Cells

    OpenAIRE

    Barkho, Basam Z.; Monuki, Edwin S.

    2015-01-01

    The choroid plexus (ChP) epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF) that bathes and nourishes the central nervous system (CNS). In addition to the CSF, ChP epithelial cells (CPECs) produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and inte...

  4. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob;

    2003-01-01

    Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers...... of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium....

  5. Maintenance of human amnion epithelial cell phenotype in pulmonary surfactant

    OpenAIRE

    McDonald, Courtney A.; Melville, Jacqueline M; Graeme R Polglase; Jenkin, Graham; Moss, Timothy JM

    2014-01-01

    Introduction Preterm newborns often require mechanical respiratory support that can result in ventilation-induced lung injury (VILI), despite exogenous surfactant treatment. Human amnion epithelial cells (hAECs) reduce lung inflammation and resultant abnormal lung development in preterm animals; co-administration with surfactant is a potential therapeutic strategy. We aimed to determine whether hAECs remain viable and maintain function after combination with surfactant. Methods hAECs were inc...

  6. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  7. Oral Epithelial Cell Responses to Multispecies Microbial Biofilms

    OpenAIRE

    Peyyala, R.; Kirakodu, S.S.; Novak, K.F.; Ebersole, J L

    2013-01-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. On...

  8. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Matthew A Pettengill

    Full Text Available Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia.

  9. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    Science.gov (United States)

    Pettengill, Matthew A; Lam, Verissa W; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  10. Entry of genital Chlamydia trachomatis into polarized human epithelial cells.

    OpenAIRE

    Wyrick, P B; Choong, J; Davis, C H; Knight, S T; Royal, M O; Maslow, A S; Bagnell, C R

    1989-01-01

    To study the initial invasion process(es) of genital chlamydiae, a model system consisting of hormonally maintained primary cultures of human endometrial gland epithelial cells (HEGEC), grown in a polarized orientation on collagen-coated filters, was utilized. After Chlamydia trachomatis inoculation of the apical surface of polarized HEGEC, chlamydiae were readily visualized, by transmission electron microscopy, in coated pits and coated vesicles. This was true for HEGEC maintained in physiol...

  11. Isolation of intestinal epithelial cells and evaluation of transport functions

    Energy Technology Data Exchange (ETDEWEB)

    Kimmich, G.A.

    1990-01-01

    Epithelial cells can be isolated from the small intestine of chickens by a procedure involving hyaluronidase treatment of the intact tissue. The isolated cells retain a high degree of functional activity as assessed by the formation of 70-fold gradients of alpha-MG. Stability of the sugar gradients reflects maintenance of stable electrochemical Na+ gradients across the plasma membrane. The cells can be used to evaluate the properties of Na(+)-dependent sugar transport, Na(+)-independent sugar transport, ion transport, metabolism, membrane potentials, and the integration of these events, all of which are important to achieving a stable sugar gradient.

  12. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Pulmonary surfactant is synthesized and secreted by alveolar type II cells. Radioactive phosphatidylcholine has been used as a marker for surfactant secretion. The authors report findings that suggest that surfactant inhibits secretion of 3H-labeled phosphatidylcholine by cultured rat type II cells. The lipid components and the surfactant protein group of M/sub r/ 26,000-36,000 (SP 26-36) inhibit secretion to different extents. Surfactant lipids do not completely inhibit release; in concentrations of 100 μg/ml, lipids inhibit stimulated secretion by 40%. SP 26-36 inhibits release with an EC50 of 0.1 μg/ml. At concentrations of 1.0 μg/ml, SP 26-36 inhibits basal secretion and reduces to basal levels secretion stimulated by terbutaline, phorbol 12-myristate 13-acetate, and the ionophore A23187. The inhibitory effect of SP 26-36 can be blocked by washing type II cells after adding SP 26-36, by heating the proteins to 1000C for 10 min, by adding antiserum specific to SP 26-36, or by incubating cells in the presence of 0.2 mM EGTA. SP 26-36 isolated from canine and human sources also inhibits phosphatidylcholine release from rat type II cells. Neither type I collagen nor serum apolipoprotein A-1 inhibits secretion. These findings are compatible with the hypothesis that surfactant secretion is under feedback regulatory control

  13. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes.

    Science.gov (United States)

    Sallenave, J M; Shulmann, J; Crossley, J; Jordana, M; Gauldie, J

    1994-12-01

    The regulation of the activity of potentially harmful proteinases secreted by neutrophils during inflammation is important for the prevention of excessive tissue injury. Secretory leukocyte proteinase inhibitor (SLPI), also called antileukoprotease (ALP) or mucus proteinase inhibitor (MPI), is a serine proteinase inhibitor that has been found in a variety of mucous secretions and that is secreted by bronchial epithelial cells. We recently reported the presence of SLPI and of an elastase-specific inhibitor (ESI), also called elafin, in the supernatants of two cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. We showed in addition that epithelial cell lines produce the elastase-specific inhibitor as a 12 to 16 kD precursor of the elafin molecule (6 kD) called pre-elafin. In the present study, we show that NCI-H322 cells produced higher amounts of both inhibitors than A549 cells and that basal production of SLPI in both cell lines is higher than the production of elafin/pre-elafin. In addition, we show that interleukin-1 beta and tumor necrosis factor induce significant SLPI expression and are major inducers of elafin/pre-elafin expression. Moreover, induction is greater in A549 cells than in NCI-H322 cells. The implications of these findings for the peripheral airways are twofold: (1) alveolar epithelial cells may respond to cytokines secreted during the onset of inflammation by increasing their antiprotease shield; (2) elafin/pre-elafin seems to be a true local "acute phase reactant" whereas SLPI, in comparison, may be less responsive to local inflammatory mediators. PMID:7946401

  14. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly

    OpenAIRE

    Campinho, Pedro; Behrndt, Martin; Ranft, Jonas; Risler, Thomas; Minc, Nicolas; Heisenberg, Carl-Philipp

    2015-01-01

    Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish ep...

  15. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total