WorldWideScience

Sample records for aluminum

  1. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  2. The Aluminum Smelting Process

    OpenAIRE

    Kvande, Halvor

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The me...

  3. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  4. Graphene-aluminum nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, Stephen F., E-mail: stephen.bartolucci@us.army.mil [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Paras, Joseph [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Rafiee, Mohammad A. [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Rafiee, Javad [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina; Kapoor, Deepak [U.S. Army Benet Laboratories, Armaments Research Development and Engineering Center, Watervliet, NY 12189-4000 (United States); Koratkar, Nikhil, E-mail: koratn@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-10-15

    Highlights: {yields} We investigated the mechanical properties of aluminum and aluminum nanocomposites. {yields} Graphene composite had lower strength and hardness compared to nanotube reinforcement. {yields} Processing causes aluminum carbide formation at graphene defects. {yields} The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  5. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  6. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  7. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  8. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  9. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  10. Purifying Aluminum by Vacuum Distillation

    Science.gov (United States)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  11. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  12. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  13. Fabrication of aluminum foam from aluminum scrap Hamza

    OpenAIRE

    O. A. Osman1 ,; Mining and Petroleum Engineering, Faculty of Engineering- Qena, Al_Azhar University, Egypt

    2015-01-01

    In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second ...

  14. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  15. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    Science.gov (United States)

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  16. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  17. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  18. RECLAMATION OF ALUMINUM FINISHING SLUDGES

    Science.gov (United States)

    The research study of the reclamation of aluminum-anodizing sludges was conducted in two sequential phases focused on enhanced dewatering of aluminum-anodizing sludges to produce commercial-strength solutions of aluminum sulfate, i.e., liquid alum. The use of high-pressure (14 to...

  19. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  20. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  1. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  2. Hot pressing aluminum nitride

    International Nuclear Information System (INIS)

    Experiment was performed on the hot pressing of aluminum nitride, using three kinds of powder which are: a) made by electric arc method, b) made by nitrifying aluminum metal powder, and c) made from alumina and carbon in nitrogen atmosphere. The content of oxygen of these powders was analyzed by activation analysis using high energy neutron irradiation. The density of hot pressed samples was classified into two groups. The high density group contained oxygen more than 3 wt. %, and the low density group contained about 0.5 wt %. Typical density vs. temperature curves have a bending point near 1,5500C, and the sample contains iron impurity of 0.5 wt. %. Needle crystals were found to grow near 1,5500C by VLS mechanism, and molten iron acts a main part of mechanism as a liquid phase. According to the above-mentioned curve, the iron impurity in aluminum nitride prevents densification. The iron impurity accelerates crystal growth. Advance of densification may be expected by adding iron impurity, but in real case, the densification is delayed. Densification and crystal growth are greatly accelerated by oxygen impurity. In conclusion, more efforts must be made for the purification of aluminum nitride. In the present stage, the most pure nitride powder contains about 0.1 wt. % of oxygen, as compared with good silicon carbide crystals containing only 10-5 wt. % of nitrogen. (Iwakiri, K.)

  3. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  4. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  5. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    International Nuclear Information System (INIS)

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlOx/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlOx interlayer

  6. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  7. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V. M. Y; Trojanowski, J Q

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  8. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  9. Aluminum Nanoholes for Optical Biosensing

    Science.gov (United States)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  10. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  11. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  12. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  13. Ultrahigh vacuum system with aluminum

    International Nuclear Information System (INIS)

    A bakeable vacuum chamber (1500C continuous) consists of aluminum alloy beam pipe (6063-T6) and bellows (5052-F) with an aluminum alloy flange (2219-T87) and a metal seal [Helicoflex-HN: pure aluminum (1050) O-ring with an elastic core (Ni base super alloy Inconel 750) which supplies the sealing force] has been constructed. The beam pipe and the flange (6063-T6/2219-T87), and the bellows and the flange (5052-F/2219-T87) were welded by an alternate current (50 Hz) TIG process using an aluminum alloy filler wire (4043). The mechanical properties of the aluminum alloy (2219-T87) is suitable for using the Helicoflex O-ring but the groove surface for the gasket is weak for scratching. Cromium-nitride coating by ion plating method was carried out on the aluminum surface of the gasket groove [thickness: 16 μm, micro Vickers hardness: 1800]. Ordinary stainless steel vacuum system can be replaced by the aluminum vacuum system in an accelerator. (author)

  14. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  15. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  16. Refinement of Aluminum Thermal Chrome

    International Nuclear Information System (INIS)

    Refinement of aluminum thermal chrome of the X98.5 mark by a high-temperature annealing in high vacuum is explored experimentally. It is shown that at the temperature of annealing 1150 C during 1...6 hours the content of such interstitial impurity as nitrogen is essentially depressed in chrome, and also the content of aluminum and iron admixtures is noticeably moderated

  17. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  18. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  19. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  20. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  1. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of...... are discussed and compared with results from an earlier study1 covering the recrystallization behavior of commercial aluminum of the same purity deformed at higher degrees of deformation (50 to 90 pct reduction in thickness by cold-rolling)....

  2. Baise to Build Ecological Aluminum Industry Base

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The government of Baise announced the construction of an ecological aluminum industry base over the next few years,pledging to turn the city into a major aluminum industry base in China and the rest of Asia.

  3. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  4. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... in the Federal Register on November 17, 2009 (74 FR 59254). At the request of the State agency and a... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site...

  5. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  6. Mineral resource of the month: aluminum

    Science.gov (United States)

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  7. Evaluation of Aluminum in Iranian Consumed Tea

    OpenAIRE

    Alireza Asgari; Mahdi Ahmadi Moghaddam; Amirhossein Mahvi; Masoud Yonesian

    2008-01-01

    Introduction: Black tea leaf is one of the most important sources of Aluminum in dietary. Therefore this research was conducted to assess the amount of Aluminum in Iranian tea infusion. Methods: To assess Aluminum in Iranian consumed tea, 27 tea samples were analyzed for Al concentration for 10 and 60 min infusion, aluminum concentration was measured with atomic absorption and the results were analyzed by SPSS.13 version. Results: The results showed that minimum and maximum concentration of A...

  8. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  9. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be...

  10. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  11. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  12. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  13. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ... Affirmative Countervailing Duty Determination, 75 FR 54302, September 7, 2010, and Aluminum Extrusions From... Antidumping Duty Determination, 75 FR 57441, September 21, 2010. \\3\\ See Aluminum Extrusions From the People's... Determination of Targeted Dumping, 75 FR 69403, November 12, 2010, and Aluminum Extrusions From the...

  14. Characterization of ultrafine aluminum nanoparticles

    International Nuclear Information System (INIS)

    Aluminum nanopowders with particle sizes ranging from ∼25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  15. Luminescent properties of aluminum hydride

    International Nuclear Information System (INIS)

    We studied cathodoluminescence and photoluminescence of α-AlH3– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH3 and α-AlH3 irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH3 and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers

  16. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  17. Decarbonization process for carbothermically produced aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  18. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  19. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    Science.gov (United States)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  20. Implants of aluminum into silicon

    Science.gov (United States)

    Galvagno, G.; Scandurra, A.; Raineri, V.; Rimini, E.; La Ferla, A.; Sciascia, V.; Frisina, F.; Raspagliesi, M.; Ferla, G.

    1993-04-01

    The electrical behaviour of ion implanted aluminum into silicon was investigated by varying the beam energy in the 80 keV-6 MeV range, the dose in the 1 × 10 13-1 × 10 14/cm 2 range and the annealing procedure. Aluminum atoms precipitate into exten defects at the end of range damage and where the concentration exceeds the solid solubility value (about 2 × 10 19/cm 3 at 1200°C Escape of Al atoms occurs very easily as soon as they reach the external surface during the thermal diffusion. Using high energy implants, 6 MeV, it was possible to follow in detail the broadening of the diffused profiles. The measured trends between the retained dose and the junction depth and between the outdiffused dose and the annealing time are quite well predicted by the solution of the diffusion equation with the surface acting as a perfect sink for the dopant.

  1. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  2. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  3. Aluminum-lithium target behavior

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.

    1989-10-01

    Information on physical properties and irradiation behavior of aluminum-lithium target alloys employed for the production of tritium in Savannah River reactors has been reviewed to support development of technology for the New Production Reactor (NPR). Phase compositions and microstructures, thermal conductivity, mechanical properties, and constituent diffusion phenomena of the alloys, established in prior site studies, are presented. Irradiation behavior, including distributions of product tritium and helium and related exposure limits due to swelling and cracking of the target alloys is discussed, along with gas release processes occurring during subsequent product recovery operations. The property review supports designation of the aluminum-lithium alloys as ideally well-suited target materials for low-temperature, tritium-producing reactors, demonstrated over 35 years of Savannah River reactor operation. Low temperature irradiation and reaction with lithium in the alloy promotes tritium retention during reactor exposure, and the aluminum provides a matrix from which the product is readily recovered on heating following irradiation. 33 refs., 26 figs., 8 tabs.

  4. Purification technology of molten aluminum

    Institute of Scientific and Technical Information of China (English)

    孙宝德; 丁文江; 疏达; 周尧和

    2004-01-01

    Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%-20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.

  5. Theoretical Study of Hydrogenated Tetrahedral Aluminum Clusters

    CERN Document Server

    Ichikawa, Kazuhide; Wagatsuma, Ayumu; Watanabe, Kouhei; Szarek, Pawel; Tachibana, Akitomo

    2011-01-01

    We report on the structures of aluminum hydrides derived from a tetrahedral aluminum Al4 cluster using ab initio quantum chemical calculation. Our calculation of binding energies of the aluminum hydrides reveals that stability of these hydrides increases as more hydrogen atoms are adsorbed, while stability of Al-H bonds decreases. We also analyze and discuss the chemical bonds of those clusters by using recently developed method based on the electronic stress tensor.

  6. Aluminum exclusion and aluminum tolerance in woody plants

    OpenAIRE

    Brunner, Ivano; Sperisen, Christoph

    2013-01-01

    The aluminum (Al) cation Al3 + is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3 + conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusio...

  7. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  8. Investigating aluminum alloy reinforced by graphene nanoflakes

    International Nuclear Information System (INIS)

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs

  9. Gut: An underestimated target organ for Aluminum.

    Science.gov (United States)

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. PMID:26970682

  10. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No....

  11. The Aluminum Deep Processing Project of North United Aluminum Landed in Qijiang

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.

  12. [The corrosion resistance of aluminum and aluminum-based alloys studied in artificial model media].

    Science.gov (United States)

    Zhakhangirov, A Zh; Doĭnikov, A I; Aboev, V G; Iankovskaia, T A; Karamnova, V S; Sharipov, S M

    1991-01-01

    Samples of aluminum and its alloys, designed for orthodontic employment, were exposed to 4 media simulating the properties of biologic media. The corrosion resistance of the tested alloys was assessed from the degree of aluminum migration to simulation media solutions, which was measured by the neutron activation technique. Aluminum alloy with magnesium and titanium has shown the best corrosion resistance. PMID:1799002

  13. Hydrogen effects in aluminum alloys

    International Nuclear Information System (INIS)

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  14. Aluminum corrosion product release kinetics

    International Nuclear Information System (INIS)

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  15. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  16. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  17. Sanmenxia strives to create aluminum industrial base

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Contradiction between rich alumina resource and relatively weak electrolytic aluminum production capacity is the "bottleneck" inhibiting development of aluminum industry in San-menxia. During the period of "11th Five-Year Development", Sanmenxia will relay on its

  18. Aluminum induced proteome changes in tomato cotyledons

    Science.gov (United States)

    Cotyledons of tomato seedlings that germinated in a 20 µM AlK(SO4)2 solution remained chlorotic while those germinated in an aluminum free medium were normal (green) in color. Previously, we have reported the effect of aluminum toxicity on root proteome in tomato seedlings (Zhou et al. J Exp Bot, 20...

  19. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  20. Trends in the global aluminum fabrication industry

    Science.gov (United States)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  1. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  2. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  3. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  4. Oxidation dynamics of aluminum nanorods

    International Nuclear Information System (INIS)

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation

  5. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 800 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  6. Oxidation kinetics of aluminum diboride

    Science.gov (United States)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  7. Superhydrophobic coating deposited directly on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ana M., E-mail: annaescobarromero@ub.edu; Llorca-Isern, Nuria

    2014-06-01

    This study develops an alternative method for enhancing superhydrophobicity on aluminum surfaces with an amphiphilic reagent such as the dodecanoic acid. The goal is to induce superhydrophobicity directly through a simple process on pure (99.9 wt%) commercial aluminum. The initial surface activation leading to the formation of the superhydrophobic coating is studied using confocal microscopy. Superhydrophobic behavior is analyzed by contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest contact angle (approaching 153°) was obtained after forming hierarchical structures with a particular roughness obtained by grinding and polishing microgrooves on the aluminum surface together with the simultaneous action of HCl and dodecanoic acid. The results also showed that after immersion in the ethanol-acidic-fatty acid solutions, they reacted chemically through the action of the fatty acid, on the aluminum surface. The mechanism is analyzed by TOF-SIMS and XPS in order to determine the molecules involved in the reaction. The TOF-SIMS analysis revealed that the metal and its oxides seem to be necessary, and that free-aluminum is anchored to the fatty acid molecules and to the alumina molecules present in the medium. Consequently, both metallic aluminum and aluminum oxides are necessary in order to form the compound responsible for superhydrophobicity.

  8. Modification of galvannealed steel through aluminum addition

    International Nuclear Information System (INIS)

    Aluminum is believed to modify and to some extent control the coating characteristics of commercially produced galvanneal sheet steel. These include mechanical, chemical, and aesthetic properties. Whereas the aluminum added to the molten zinc bath is known to form intermetallics before the steel is annealed, our research is primarily concerned with the effect aluminum has on suppression or enhancement of the particular iron-zinc alloy phases in the coating during galvannealing. The microstructure of four commercially important iron-zinc intermetallic phases containing varying aluminum content between 0-1.5 weight percent has been studied. It is also believed that an iron-aluminum alloy, known as the inhibition layer, forms on the steel surface following hot dipping and prior to annealing. Transmission and scattering Moessbauer spectroscopy as well as X-ray diffraction have been used to identify iron-zinc and iron-aluminum alloys present in the coatings. Discussion will be presented on the effect aluminum has on phase suppression for Fe-Zn alloys prepared in commercially produced galvanneal

  9. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  10. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  11. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  12. Spray Rolling Aluminum Strip for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  13. Recycling of Aluminum from Fibre Metal Laminates

    OpenAIRE

    Zhu, G.; Xiao, Y; Yang, Y.; Wang, J.; Sun, B; Boom, R.

    2012-01-01

    Recycling of aluminum alloy scrap obtained from delaminated fibre metal laminates (FMLs) was studied through high temperature refining in the presence of a salt flux. The aluminum alloy scrap contains approximately mass fraction w(Cu) = 4.4%, w(Mg) = 1.1% and w(Mn) = 0.6% (2024 aluminum alloy). The main objective of this research is to obtain a high metal yield, while maintaining its original alloy compositions. The work focuses on the metal yield and quality of recycled Al alloy under differ...

  14. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  15. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its... the aluminum cargo tank must meet the steel structural standards of the American Bureau of...

  16. 49 CFR 229.51 - Aluminum main reservoirs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0,...

  17. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  18. 49 CFR 178.505 - Standards for aluminum drums.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum...

  19. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  20. X-ray photoelectron spectroscopy study of catalyzed aluminum carbide formation at aluminum-carbon interfaces

    Science.gov (United States)

    Rabenberg, L.; Maruyama, Benji

    1990-01-01

    Aluminum carbide may form at aluminum-graphite interfaces during the high-temperature processing of graphite fiber-reinforced aluminum metal matrix composites. The chemical interactions leading to the formation of the aluminum carbide in the solid state involve the breaking of the carbon-carbon bonds within the graphite, the transport of the carbon atoms across the interface, and the reaction with the aluminum to form Al4C3. The aluminum carbide formation process has been followed using X-ray photoelectron spectroscopy of model, thin-film, reaction couples. The overall reaction is shown to be catalyzed by the presence of water vapor. Water at the interface increases reaction kinetics by apparently weakening the bonds between the surface carbon atoms and their substrate. This result is in general agreement with what is known to occur during the oxidation of graphite in air.

  1. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    International Nuclear Information System (INIS)

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660 degree C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs

  2. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  3. Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production

    OpenAIRE

    Taiwo, Oyebode A.

    2014-01-01

    Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exp...

  4. Differences of growth response to aluminum excess of two Melaleuca trees differing in aluminum resistance

    OpenAIRE

    Houman, Yoshifumi; Tahara, Ko; Shinmachi, Fumie; Noguchi, Akira; Satohiko, Sasaki; Hasegawa, Isao

    2009-01-01

    Factors that inhibit the growth of plants in strongly acidic soils include low pH and aluminum excess. We evaluated two Myrtaceae species (Melaleuca cajuputi and Melaleuca bracteata), which are useful trees in tropical regions due to their resistance to low pH and excessive aluminum, to determine their response characteristics to environmental stresses. The results revealed that M.cajuputi, the growth by the aluminum concentration was not inhibited. However, the root growth of M.bracteata, by...

  5. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles

    OpenAIRE

    Li, Xinran; Aldayel, Abdulaziz M.; Cui, Zhengrong

    2013-01-01

    Aluminum hydroxide is used as a vaccine adjuvant in various human vaccines. Unfortunately, despite its favorable safety profile, aluminum hydroxide can only weakly or moderately potentiate antigen-specific antibody responses. When dispersed in an aqueous solution, aluminum hydroxide forms particulates of 1–20 µm. There is increasing evidence that nanoparticles around or less than 200 nm as vaccine or antigen carriers have a more potent adjuvant activity than large microparticles. In the prese...

  6. Infiltration of molten aluminum in aluminum-nickel powder preform

    International Nuclear Information System (INIS)

    It has been shown by the present author that when molten aluminum comes in contact with nickel, an exothermic reaction is initiated and both stiochiometric and non-stiochiometric phases form at the interface. For nickel powders, such reaction is expected to be much faster due to high surface area to volume ratio of the fine particles. Infiltration of molten metals in ceramics powder preforms has long been used to fabricate near or net-shaped Metal Matrix Composite components. For metallic preforms however, it is important to see if the exothermic reaction compromises the infiltration of the molten metal constituent, i.e. defective components. The current project studied the fabrication of near net-shaped Intermetallic Matrix Composites, (IMC) via molten metal infiltration and subsequent reaction with the metal powder preform. X-ray diffraction (XRD), Optical and SEM microscopes were used to characterize the infiltration, reaction and the resulted microstructure. It is expected that the molten metal temperature, holding time within the molten metal, the infiltration pressure, i.e. metallostatic pressure and the preform compaction pressure are all important parameters to be considered carefully to achieve sound components. The current report examined the feasibility of such fabrication technique and the resultant microstructure. (author)

  7. Southwest Aluminum Increase Two Production Lines and May Become the Largest Aluminum Fabricator In the World

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Recently,Wu Bing,Director of Chongqing Economic Committee,announced at the"Industrial Economy Meeting"that the city will"facilitate the technical upgrade and capacity expansion of the existing production lines at Southwest Aluminum with great efforts on the construction of one additional hot continuous rolling line and one cold continuous rolling line so as to have a comprehensive production ca- pacity of 1.2 million tons on aluminum processing profiles for the achievement of building Southwest Aluminum into the world largest aluminum processing enterprise".

  8. Preliminary Study on Aluminum Content of Foods and Aluminum Intake of Residents in Tianjin

    Institute of Scientific and Technical Information of China (English)

    XUGe-Sheng; JINRng-Pei; 等

    1993-01-01

    Aluminum contents of 64 kinds of foods in Tianjin were detrmined.The results showed that the aluminum levels in diffeent kinds of foods varied greatly,and most foodstuffs from natural sources(including contamination from food processing)contained less than 10mg/kg,Aluminum contents were higher in foodstuffs of plant origin,especiallydry beans containing large amounts of aluminum naturally.Lower concentration of aluminum seemed to be present in foodstuffs of animal origin.It was estimated that the potential daily intake of aluminum per person from natural dietary sources in Tianjin was about 3.79 mg.This estimated figure of dietary aluminum intake was very close to the measured data from 24 daily diets of college students.which was 4.86±1.72mg.Considering all the potential sources of natural aluminum in foods.water and the individual habitual food,it would apear that most residents in Tianjin would consume 3-10mg aluminum daily from natural dietary sources.

  9. South West Aluminum: Next year The Capacity of Auto-use Aluminum Sheet will Reach 5000 Tonnes

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Following supplying supporting aluminum products for"Shenzhou"spacecraft,"Long March"rocket,Boeing and Airbus,South West Aluminum again tapped new economic growth points,i.e.automobile-use aluminum products.According to what the reporter has learned from South West Aluminum Group recently,this group has finished early stage

  10. China Aluminum Processing Industry Development Report 2011

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>In 2011,China’s aluminum processing industry maintained a high growth rate,with the aluminum output reaching 23,456,000tons,up 20.6% y-o-y.Overshadowed by complicated situation both at home and abroad,China’seconomy slowed down and declined by2.2% y-o-y.In 2011,China’s aluminum processing industry showed a downward tendency,that is,it grew at a high speed before the3rd quarter,but suffered from a shortage of orders in the remaining time of the year and the growth rate fell increasingly.Between January and August,China’s aluminum output rose by 26% y-o-y;

  11. Aluminum-CNF Lightweight Radiator Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal relates to a new materials concept for an aluminum-carbon nanofiber composite, high thermal conductivity ultra lightweight material that will form the...

  12. Macrodeformation Twins in Single-Crystal Aluminum

    Science.gov (United States)

    Zhao, F.; Wang, L.; Fan, D.; Bie, B. X.; Zhou, X. M.; Suo, T.; Li, Y. L.; Chen, M. W.; Liu, C. L.; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2016-02-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (˜106 s-1 ) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates.

  13. Electrometallurgical treatment of aluminum-based fuels

    International Nuclear Information System (INIS)

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining

  14. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    International Nuclear Information System (INIS)

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  15. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  16. Over-heated Investment in Aluminum Hub Industry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Aluminum hub is one of typical products with the comparative advantages.China’s aluminum hub industry is very competitive.In recent years,the value of export for the aluminum hub soared,increasing from USD130 millions in 1999 up to nearly USD1 billion in 2004.The main exporter are Wanfeng Auto Holding Group,Shanghai Fervent Alloy Wheel MFG Co.,Ltd.,Nanhai Zhongnan Aluminum Co., Ltd.,Taian Huatai Aluminum Hub Co.,Ltd.

  17. Anodic Activation of Aluminum by Trace Element Tin

    OpenAIRE

    Tan, Juan

    2011-01-01

    Anodic activation of commercial and model aluminum alloys in chloride solution became of practical importance in connection with filiform corrosion of painted aluminum sheet in architectural application and aluminum components of brazed heat exchangers. Activation in chloride solution manifests itself in the form of a significant negative shift in the pitting potential relative to pure aluminum and a significant increase in the anodic current output at potentials where aluminum is normally ex...

  18. Oxidation kinetics of aluminum diboride

    International Nuclear Information System (INIS)

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3–B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB2 in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy

  19. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  20. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  1. Aluminum Nitride Sensors for Harsh Environments

    OpenAIRE

    Goericke, Fabian Thomas

    2013-01-01

    Harsh environment applications include high temperature, pressure and mechanical shock. Aluminum nitride is a strong ceramic material with very good high temperature survivability. It also has piezoelectric properties that can be used for sensing applications and it can be deposited with good control as thin polycrystalline film for the fabrication of micro-electromechanical systems. In this dissertation, optimized deposition parameters for aluminum nitride films and characterization techniqu...

  2. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  3. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  4. ALUMINUM FOIL REINFORCED BY CARBON NANOTUBES

    OpenAIRE

    A. V. Alekseev; PREDTECHENSKIY M.R.

    2016-01-01

    In our research, the method of manufacturing an Al-carbon nanotube (CNT) composite by hot pressing and cold rolling was attempted. The addition of one percent of multi-walled carbon nanotubes synthesized by OCSiAl provides a significant increase in the ultimate tensile strength of aluminum. The tensile strength of the obtained composite material is at the tensile strength level of medium-strength aluminum alloys.

  5. Transfer and transport of aluminum in filtration unit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different Aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while Nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  6. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  7. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    The effects of high aluminum concentrations in rat brains were studied using 14C autoradiography to measure the uptake of 14C 2-deoxy-D-glucose (14C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 109 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  8. Spark plasma sintering of aluminum matrix composites

    Science.gov (United States)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  9. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnoeckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kiran, Boggavarapu, E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup −} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup −}, did the aluminum moieties exhibit Zintl anion-like characteristics.

  10. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  11. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  12. The Role of Particles in Fatigue Crack Propagation of Aluminum Matrix Composites and Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhenzhong CHEN; Ping HE; Liqing CHEN

    2007-01-01

    Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high AK region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.

  13. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. PMID:27090705

  14. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays.

    Science.gov (United States)

    Biring, Sajal; Tsai, Kun-Tong; Sur, Ujjal Kumar; Wang, Yuh-Lin

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment. PMID:21730530

  15. Determination of aluminum by four analytical methods

    International Nuclear Information System (INIS)

    Four procedures have been developed for determining the aluminum concentration in basic matrices. Atomic Absorption Spectroscopy (AAS) was the routine method of analysis. Citrate was required to complex the aluminum and eliminate matrix effects. AAS was the least accurate of the four methods studied and was adversely affected by high aluminum concentrations. The Fluoride Electrode Method was the most accurate and precise of the four methods. A Gran's Plot determination was used to determine the end point and average standard recovery was 100% +- 2%. The Thermometric Titration Method was the fastest method for determining aluminum and could also determine hydroxide concentration at the same time. Standard recoveries were 100% +- 5%. The pH Electrode Method also measures aluminum and hydroxide content simultaneously, but is less accurate and more time consuming that the thermal titration. Samples were analyzed using all four methods and results were compared to determine the strengths and weaknesses of each. On the basis of these comparisons, conclusions were drawn concerning the application of each method to our laboratory needs

  16. Study of aluminum-doped silicon clusters

    International Nuclear Information System (INIS)

    Using full-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the effect of aluminum heteroatoms on the geometric structures and bond characteristics of Si n (n=5-10) clusters in detail. It is found that the geometric framework of the ground state structures for Si n (n=5-10) clusters change to some extent upon the substitution of Al atoms in some Si atoms. The effect of aluminum doping on the silicon clusters depends on the geometric structures of Si n (n=5-10) clusters. In particular, the calculations suggest that the aluminum doping would improve the bond strength of some Si-Si bonds in the mixed Si n-m Al m clusters

  17. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  18. Pulmonary alveolar proteinosis and aluminum dust exposure

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.R.; Churg, A.M.; Hutcheon, M.; Lom, S.

    1984-08-01

    A 44-yr-old male presented shortness of breath, diffuse X-ray infiltrates, and physiologic evidence of a restrictive lung disease. Biopsy revealed pulmonary alveolar proteinosis. The patient had worked for the previous 6 yr as an aluminum rail grinder in a very dusty environment. Analysis of his lung tissue revealed greater than 300 X 10(6) particles of aluminum/g dry lung; all of the particles appeared as spheres of less than 1 mu diameter. We believe that this case represents an example of pulmonary alveolar proteinosis induced by inhalation of aluminum particles; this finding confirms animal studies which suggest that proteinosis can be produced by very large doses of many types of finely divided mineral dust.

  19. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  20. A study of the association between urinary aluminum concentration and pre-clinical findings among aluminum-handling and non-handling workers

    OpenAIRE

    OGAWA,Masanori; Kayama, Fujio

    2015-01-01

    Background Aluminum is considered to be a relatively safe metal for humans. However, there are some reports that aluminum can be toxic to humans and animals. In order to estimate the toxicity of aluminum with respect to humans, we measured the aluminum concentration in urine of aluminum-handling and non-handling workers and investigated the relationships between their urinary aluminum concentrations and pre-clinical findings. Methods Twenty-three healthy aluminum-handling workers and 10 healt...

  1. Aluminum stabilized multifilamentary NbTi superconductors

    International Nuclear Information System (INIS)

    Recently there have been significant improvements in the properties of Cu stabilized NbTi (1-3) and the techniques used to accomplish these improvements have suggested new approaches to the manufacture of aluminum stabilized material with a range of filament sizes. A totally aluminum stabilized conductor with 14 relatively large filaments and an Al:Sc ratio of 5:1, which offers promise for use in large d.c. magnets, is described. Some finer filament arrays are also illustrated, although no J/sub c/ properties have yet been measured

  2. Development of deep drawn aluminum piston tanks

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.; Evans, M.C.; Ormsby, A.E.; Spears, H.R.; Wilson, J.D.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  3. Effect of Electrolyte on the Dissolution of Aluminum from Acid Sois and the Distribution of Aluminum Forms in Soil Solution

    Institute of Scientific and Technical Information of China (English)

    XURENKOU; JIGUOLIANG

    1997-01-01

    KCl,CaCl2,NH4Cl,NaCl,K2SO4 and KF solutions were used for studying the effects of cations and anions on the dissolution of aluminum and the distribution of aluminum forms respectively.Power of exchanging and releasing aluminum of four kinds of cations was in the decreasing order Ca2+>K+>NH4+>Na+,The dissolution of aluminum increased with the cation concentration.The adsorption affinity of various soils fro aluminum was different.The aluminum in the soil with a stronger adsorption affinity was diffcult to be exchanged and released by cations.The Al-F complexes were main species of inorganic aluminum at a low concentration of cations,while Al3+ became major species of inorganic aluminum at a hiht concentration of cations .The results on the effct of anions indicated that the concentrations of total aluminum,three kinds of inorganc aluminum(Al3+,Al-F and Al-OH complexes) and organic aluminum complexes(Al-OM) when SO42- was added into soil suspension were lower than those when Cl- was added.The dissolution of aluminum from soils and the distribution of aluminum forms in solution were affected by the adsorption of F- on the soil.For soils with strong affinity for F-,the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-;but for soils with weak affinity for F-,the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl- .The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.

  4. Refined Aluminum Industry Suffers From Deficit and Western Investment Accelerates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>Under the backdrop of loss of the entire refined aluminum industry,the investment in electrolytic aluminum accelerates.The reporter learnt from a recent survey that,many companies including Shandong Xinfa Group,East Hope

  5. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  6. Low Mass, Aluminum NOFBX Combustion Chamber Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our team proposes to define a diffusion bonding process for aluminum as an enabling step to ultimately develop an innovative, lightweight, long life, aluminum...

  7. Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites

    OpenAIRE

    Huss, Gary R.; MacPherson, Glenn J.; Wasserburg, G. J.; Russell, Sara S.; Srinivasan, Gopalan

    2001-01-01

    In order to investigate the distribution of ^(26)A1 in chondrites, we measured aluminum-magnesium systematics in four calcium-aluminum-rich inclusions (CAIs) and eleven aluminum-rich chondrules from unequilibrated ordinary chondrites (UOCs). All four CAIs were found to contain radiogenic ^(26)Mg (^(26)Mg^*) from the decay of ^(26)A1. The inferred initial ^(26)Al/^(27)Al ratios for these objects ((^(26)Al/^(27)Al)_0 ≅ 5 × 10^(−5)) are indistinguishable from the (^(26)Al/^(27)Al)_0 ratios found...

  8. Control of Temperature and Aluminum Fluoride Concentration Based on Model Prediction in Aluminum Electrolysis

    OpenAIRE

    Zeng Shuiping; Wang Shasha; Qu Yaxing

    2014-01-01

    The temperature and the aluminum fluoride (AlF3) concentration of electrolyte greatly affect the current efficiency and energy consumption in aluminum electrolysis. This paper developed a new kind of algorithm to control the temperature and AlF3 concentration of electrolyte for 300 kA prebake aluminum production cells by altering the setting cell voltage and the AlF3 adding rate. One is liquidus model which can be used to calculate AlF3 concentration of electrolyte by some technical parameter...

  9. Aluminum base alloy powder metallurgy process and product

    Science.gov (United States)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  10. Sunshine Group Builds High-End Aluminum Product Industrial Base

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In order to propel development of the aluminum industry to move toward featured,specialized,and ecological directions,Sunlight Sanyuan Aluminum Company plans to expropriate 300 mu of land in Hanjiang District of Putian City,Fujian province,where it plans to construct high-end aluminum product industrial park,introduce the world’s most advanced fully automatic production equipment and technologies for aluminum profile and

  11. Specific features of aluminum nanoparticle water and wet air oxidation

    International Nuclear Information System (INIS)

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation

  12. Macro deformation twins in single-crystal aluminum

    OpenAIRE

    Zhao, F.; Wang, L.; Fan, D.; B. X. Bie; Zhou, X. M.; Suo, T.; Y. L. Li; Chen, M. W.; Liu, C; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2015-01-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum, at scales beyond nanotwins. Here, we present the first experimental demonstration of macro deformation twins in single-crystal aluminum formed under ultrahigh strain-rate ($\\sim$10$^6$ s$^{-1}$), large shear strain (200$\\%$) via dynamic equal channel angular pressing. Deformation t...

  13. Rheology of suspensions with aluminum nano-particles

    OpenAIRE

    Ulrich Teipel; Ulrich Förter-Barth

    2009-01-01

    Nano-scale aluminum particles are innovative materials increasingly used in energetic formulations. In this contribution, the rheological behavior of suspensions with either paraffin oil or HTPB as the matrix fluid and nano-scale aluminum (ALEX) as the dispersed phase is described and discussed. The paraffin oil/aluminum suspensions exhibit non-Newtonian flow behavior over a wide range of concentrations, whereas the HTPB/aluminum suspensions exhibitNewtonian behavior (i.e. the viscosity is in...

  14. Removal of Aluminum from Water and Industrial Waste Water

    OpenAIRE

    Parisa Ghashghaiee pour; Mohammad Ali Takassi; Touba Hamoule

    2014-01-01

    This study attempts to introduce a procedure to remove Aluminum ions from drinking water and industrial effluents by using active carbon with different grading as absorbent. Absorption of Aluminum ions were discussed in different conditions of Aluminum concentration, contact time, impact of electrolytes and pH on Aluminum ions absorbency. Both Freundlich and Langmuir isotherms used to investigate the adsorption. Thermodynamics relations governing process, such as specification of ( ), ( ) an...

  15. Water content of aluminum, dialysis dementia, and osteomalacia.

    OpenAIRE

    Wills, M. R.; Savory, J

    1985-01-01

    In the presence of normal renal function, a high concentration of aluminum in drinking water has been implicated as a factor in the etiology of a neurological syndrome in one specific geographical area. The role of aluminum as a toxic agent in other neurological disorders, where renal function is normal, is controversial. Aluminum is absorbed from the gastrointestinal tract and is normally excreted by the kidneys in the urine. In patients with chronic renal failure, aluminum appears to be of ...

  16. Corrosion behavior of aluminum exposed to a biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Ballote, L.; Maldonado-Lopez, L. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida Yucatan, 97310 (Mexico); Lopez-Sansores, J.F. [Facultad de Quimica, UADY, Merida Yucatan, 97310 (Mexico); Garfias-Mesias, L.F. [Corrosion and Materials Technology Laboratory, DNV/CCT, Dublin, Ohio, 43017 (United States)

    2009-01-15

    Aluminum was exposed to biodiesel with different levels of contaminants and impurities, and its corrosion behavior was evaluated by conventional electrochemical techniques. It was found that the corrosion behavior of aluminum in biodiesel contaminated with alkalis is similar to the corrosion behavior of aluminum in aqueous solutions. In addition, it was demonstrated that corrosion of aluminum can be used as a quantitative indication of the biodiesel purity. (author)

  17. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  18. Status Quo of China’s Aluminum Sheet & Strip Industry

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Aluminum sheet & strip products are one of the major product varieties in the aluminum processing industry, they also provide indis-pensable basic materials for the development of national economy. In recent years, driven by rapid economic growth, China’s investment in aluminum sheet & strip industry continued to

  19. Shanxi Zhaofeng Aluminum Industry is Planning Oversea Listing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Shanxi Yangquan Coal Industry(Group)Co., Ltd.intends to promote its subsidiary company Shanxi Zhaofeng Aluminum Metallurgy Co Ltd (hereinafter referred to as Zhaofeng Aluminum Metallurgy)to seek oversea listing.If its effort succeeds,Zhaofeng Aluminum Metallurgy will become the third public listed company under Yangquan Group.

  20. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  1. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  2. Shanxi Will Build Aluminum Deep Processing Industrial Park

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a province with high coal output,Shanx boasts rich electrolytic aluminum resources.On January 7,the reporter learned from the Provincial Commission of Economy and Information Technology that in order to continually expand the size of aluminum industry,extend aluminum industrial chain,so

  3. New Tax Rebate Policy Favorable to Aluminum Processing Industry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>China has made the decision to increase export tax rebate rate for part of the non-ferrous products from April 1, 2009, among which the export tax rebate for aluminum alloy hollow profiles and other aluminum alloy profiles goes up to 13%. The new policy is a piece of good news for aluminum processing

  4. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  5. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  6. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    Science.gov (United States)

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers About Litter, Solid Waste, and…

  7. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  8. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  9. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  10. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  11. 2009 China’s Aluminum Fabrication Industrial Development Report

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>1 Overview of Aluminum Fabrication Industry Despite the impact of 2008’s financial crisis on China’s aluminum fabrication industry, China’s output of aluminum products remained the world’s largest in 2009, against overall steady

  12. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white,...

  13. Loften Aluminum Aluminum Foil Output to Reach 120,000 Tons in 2012

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Loften Aluminum Co., Ltd. was founded in 2000 Boxing County, Shandong Province. On 31 March 2010, Loften became an A-share listed company, creating favorable conditions for raising funds to expand its operations.

  14. Scintillating properties of rare earth aluminum garnets

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří A.; Nikl, Martin; Beitlerová, Alena; Kučera, M.; Nitsch, Karel; Malý, P.; Blažek, K.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 1-3. ISSN 2164-6627 R&D Projects: GA MŠk LA08015; GA ČR GA202/08/0893 Institutional support: RVO:68378271 Keywords : scintillation * aluminum garnets * Ce 3+ and Pr 3+ dopants * light yield * annealing Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  16. Aluminum Solubility in Complex Electrolytes - 13011

    International Nuclear Information System (INIS)

    Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dSmix (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

  17. Closing the Loop for Aluminum Cans

    DEFF Research Database (Denmark)

    Niero, Monia; Negrelli, Anthony Johannes; Hoffmeyer, Simon Boas;

    2016-01-01

    Despite their different scopes, both the Life Cycle Assessment (LCA) methodology and the Cradle to Cradle (C2C) Certified™ Product Standard can support companies in the implementation of circular economy strategies. Considering the case of aluminum cans, the objectives of this paper are twofold: (i...

  18. Superconducting transition temperature in anodized aluminum

    International Nuclear Information System (INIS)

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains

  19. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  20. Materials data handbook, aluminum alloy 6061

    Science.gov (United States)

    Sessler, J.; Weiss, V.

    1969-01-01

    Comprehensive compilation of technical data on aluminum alloy 6061 is presented in handbook form. The text includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent information required for the design and fabrication of components and equipment utilizing this alloy.

  1. Materials data handbook: Aluminum alloy 2219

    Science.gov (United States)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  2. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  3. A successful management of aluminum phosphide intoxication

    OpenAIRE

    Moazezi, Zoleika; Abedi, Seyed Hassan

    2011-01-01

    Background: Aluminum Phosphide or rice tablet is one of the most common pesticides which leads to accidental or intentional acute intoxication and finally death. In this paper, we describe a successful management of intoxication with rice tablet in a young girl.

  4. Lead exposure from aluminum cookware in Cameroon.

    Science.gov (United States)

    Weidenhamer, Jeffrey D; Kobunski, Peter A; Kuepouo, Gilbert; Corbin, Rebecca W; Gottesfeld, Perry

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. PMID:25087065

  5. Aluminum Foil and Aluminum Sheet Project with the Total Investment of RMB 1 billion Officially Launched in Wanshan

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>According the news report on February 25,Wanshan district and Galaxy Aluminum Co.,Ltd. in Shengzhou,Zhejiang province signed an agreement on aluminum foil and aluminum sheet production on February 19 in Sanya,Hainan province,a sign that the project is offi- cially established in Wanshan.

  6. Hangzhou Jinjiang Group Shanxi Fusheng Aluminum Phase I 800,000 t/a Aluminum Oxide Project Started Operation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On October 19,the Shanxi Province Pinglu County Phase I 800,000t/a Aluminum Oxide Project of Shanxi Fusheng Aluminum Co.,Ltd,a subordinate of Hangzhou Jinjiang Group,started operation.This is the fourth Aluminum oxide project constructed and operated by Jinjiang Group.

  7. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Science.gov (United States)

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  8. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  9. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (aluminum particle combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the

  10. The Nondestructive Determination of the Aluminum Content in Pressed Skulls of Aluminum Dross

    Science.gov (United States)

    Kevorkijan, Varuzan; Škapin, Srečo Davor; Kovačec, Uroš

    2013-02-01

    During production of primary and secondary aluminum, various amounts (in some cases up to 200 kg) of aluminum dross, a mixture consisting of molten aluminum metal and different oxide compounds (the nonmetallic phase), are skimmed per tonne of molten metal. To preserve the maximum aluminum content in hot dross for further extraction, it is necessary to cool the dross immediately after skimming. One way to do this is to press the skimmed hot dross in a press. In this process, the skimmed dross is transformed into so-called pressed skulls, with characteristic geometry convenient for storage, transport, or further in-house processing. Because of its high aluminum content—usually between 30% and 70%—pressed skulls represent a valuable source of aluminum and hence are in great demand in the aluminum recycling industry. Because pressed skulls are generally valued on a free-metal recovery basis, which is influenced by the yield of recovery, or in other words, by the quality of the recycling process, it was recognized as important and useful to develop a method of fast and cost-effective nondestructive measurement of the free aluminum content in pressed skulls, independent of the technology of pressed skulls recycling. In the model developed in this work, the aluminum content in pressed skulls was expressed as a function of the pressed skulls density, the density of the nonmetallic phase, and the volume fraction of closed pores. In addition, the model demonstrated that under precisely defined conditions (i.e., skulls from the dross of the same aluminum alloy and skimmed, transported, cooled, and pressed in the same way and under the same processing conditions), when other parameters except the pressed skulls density remain constant, the aluminum content in pressed skulls can be expressed as a linear function of the pressed skulls density. Following the theoretical considerations presented in this work, a practical industrial methodology was developed for nondestructive

  11. Preparation of Ultra-fine Aluminum Nitride in Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    漆继红; 罗义文; 印永祥; 代晓雁

    2002-01-01

    Ultra-fine aluminum nitride has been synthesized by the evaporation of aluminum powder at atmospheric-pressure nitrogen plasma in a hot-wall reactor. The average size of aluminum nitride particle is 0.11μm measured by scanning electric mirror (SEM), and the purity is at least over 90% evaluated by X-Ray diffraction (XRD). The conversion of Al powder to aluminum nitride is strongly depended on the injection of NH3. Typical experimental parameters such as the feed rate of raw material, the flow rate of ammonia and the position of injecting aluminum powder into the reactor are given.

  12. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  13. Removal of Aluminum from Water and Industrial Waste Water

    Directory of Open Access Journals (Sweden)

    Parisa Ghashghaiee pour

    2014-09-01

    Full Text Available This study attempts to introduce a procedure to remove Aluminum ions from drinking water and industrial effluents by using active carbon with different grading as absorbent. Absorption of Aluminum ions were discussed in different conditions of Aluminum concentration, contact time, impact of electrolytes and pH on Aluminum ions absorbency. Both Freundlich and Langmuir isotherms used to investigate the adsorption. Thermodynamics relations governing process, such as specification of ( , ( and the enthalpy of adsorption, were calculated, which showed that Aluminum absorption on active carbon is an endothermic and spontaneous process.

  14. Rheology of suspensions with aluminum nano-particles

    Directory of Open Access Journals (Sweden)

    Ulrich Teipel

    2009-01-01

    Full Text Available Nano-scale aluminum particles are innovative materials increasingly used in energetic formulations. In this contribution, the rheological behavior of suspensions with either paraffin oil or HTPB as the matrix fluid and nano-scale aluminum (ALEX as the dispersed phase is described and discussed. The paraffin oil/aluminum suspensions exhibit non-Newtonian flow behavior over a wide range of concentrations, whereas the HTPB/aluminum suspensions exhibitNewtonian behavior (i.e. the viscosity is independent of shear stress up to a concentration of 50 vol.% aluminum. Both systems have unusual viscoelastic properties in that their elastic moduli are independent of the solids concentration.

  15. Fracture of explosively compacted aluminum particles in a cylinder

    Science.gov (United States)

    Frost, David; Loiseau, Jason; Goroshin, Sam; Zhang, Fan; Milne, Alec; Longbottom, Aaron

    2015-06-01

    The explosive compaction, fracture and dispersal of aluminum particles contained within a cylinder have been investigated experimentally and computationally. The aluminum particles were weakly confined in a cardboard tube and surrounded a central cylindrical burster charge. The compaction and fracture of the particles are visualized with flash radiography and the subsequent fragment dispersal with high-speed photography. The aluminum fragments produced are much larger than the original aluminum particles and similar in shape to those generated from the explosive fracture of a solid aluminum cylinder, suggesting that the shock transmitted into the aluminum compacts the powder to near solid density. The casing of the burster explosive (plastic-, copper-, and un-cased charges were used) had little influence on the fragment size. The effect of an air gap between the burster and the aluminum particles was also investigated. The particle motion inferred from the radiographs is compared with the predictions of a multimaterial hydrocode.

  16. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    Science.gov (United States)

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations. PMID:27404616

  17. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  18. ALUMINUM CONTENT OF TEA LEAVES AND FACTORS AFFECTING THE UPTAKE OF ALUMINUM FROM SOIL INTO TEA LEAVES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Numerous studies indicated that aluminum, the most abundant metallic element within the lithosphere, was considered to be related to some human diseases especially the Alzheimer's disease. Tea, economically an important beverage in the world, has been found to contain higher concentration of aluminum than many other drinks and foods. Therefore, tea would be a potentially important source of dietary aluminum. In order to understand the sources of aluminum in tea leaves and factors related with aluminum content of tea leaves, an experiment was designed to investigate the relationships of aluminum in tea leaves with leaf age, soil properties and forms of aluminum in soils. The results showed that there were great distinctions in the concentration of aluminum in tea leaves with different leaf age (Alold leaf> Almature leaf> Alyoung leaf). Moreover, soil pH was the major factor controlling the uptake of aluminum from soil into tea leaves. Furthermore, the content of aluminum in tea leaves was better predicated by the soluble aluminum extracted by 0. 02mol/L CaCl2.

  19. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  20. Depassivation of aluminum in neutral solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.I.; Popova, L.I.; Makarychev, Yu.B.

    1986-10-20

    Considering the role of complexation in the depassivation of aluminum and nucleophilic substitution of ligands in a surface compound, an earlier author proposed that the reactivity of anions - particularly halide anions - is determined mainly by their polarizability and by solvation effects. It was suggested that this be evaluated from the hydrophobic constants of the atoms or corresponding groups. This article is devoted to verifying this proposal and to studying the competing adsorption of an activator and an inhibiting anion. It is concluded that the pitting of aluminum and its inhibition can be represented as a consequence of the occurrence of heterogeneous reactions involving the nucleophilic substitution of different anions in the adsorption complex, the properties of which are determined by the basicity, polarizability, and hydrophobicity of the ligands.

  1. Hydrogen in aluminum during alkaline corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Saikat; Ai, Jiahe [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Hebert, Kurt R., E-mail: krhebert@iastate.ed [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Ho, K.M.; Wang, C.Z. [US DOE, Ames Laboratory, Ames, IA 50011 (United States)] [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2010-07-30

    The thermodynamic state of hydrogen in aluminum during alkaline corrosion was investigated, using a two-compartment hydrogen permeation cell with an Al/Pd bilayer membrane. The open-circuit potential of the Pd layer in a pH 7.0 buffer solution was monitored to sense the hydrogen chemical potential, {mu}{sub H}. At pH 12.5-13.5, the measurements established a minimum {mu}{sub H} of 0.55 eV relative to the ideal gas reference, equivalent to a H{sub 2} gas pressure of 5.7 GPa. Statistical mechanics calculations show that vacancy-hydrogen defects are stable in Al at this condition. A dissolution mechanism was proposed in which H at very high {mu}{sub H} is produced by oxidation of interfacial aluminum hydride. The mechanism explains the observed rapid accumulation of H in the metal by extensive formation of vacancy-hydrogen defects.

  2. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  3. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  4. High speed aluminum wire anodizing and process

    International Nuclear Information System (INIS)

    A high speed aluminum wire anodizing machine and process are provided which includes anodizing aluminum wire in an anodizer tank having wire ingress and egress openings. At least two adjacent rotatable wire accumulator drums are provided in the tank, preferably with means for producing a flow of anodizing electrolytes into each of the drums through an end hub thereof and out of the sidewalls of the drums passed circumferential wire separators. An anode is located proximal to the wire ingress opening, preferably in a contact cell which has an adjustable wire egress window. At least one cathode is provided in the tank. The cathode is preferably either between the drums or a pair of cathodes are provided above and below the drums adjacent to the sidewalls thereof, or both

  5. Generation and structural characterization of aluminum cyanoacetylide

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Carlos; Peña, Isabel; Alonso, José L., E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, Paseo de Belén 5, 47011 Valladolid (Spain); Barrientos, Carmen; Largo, Antonio, E-mail: alargo@qf.uva.es, E-mail: jlalonso@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid (Spain); Guillemin, Jean-Claude [Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Cernicharo, José [Group of Molecular Astrophysics, ICMM C/Sor Juana Ines de la Cruz N3 Cantoblanco, 28049 Madrid (Spain)

    2014-09-14

    Combined spectroscopy measurements and theoretical calculations bring to light a first investigation of a metallic cyanoacetylide, AlC{sub 3}N, using laser ablation molecular beam Fourier transform microwave spectroscopy. This molecule was synthesized in a supersonic expansion by the reaction of aluminum vapour with C{sub 3}N, produced from solid aluminum rods and BrCCCN in a newly constructed ablation-heating nozzle device. A set of accurate rotational and {sup 27}Al and {sup 14}N nuclear quadrupole coupling constants have been determined from the analysis of the rotational spectrum and compared with those predicted in a high-level ab initio study, conducting to the assignment of the observed species to linear AlCCCN. We have searched for this species towards the carbon-rich evolved star IRC + 10216 but only an upper limit to its abundance has been obtained.

  6. Fluorescence energy transfer enhancement in aluminum nanoapertures

    CERN Document Server

    de Torres, Juan; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérome

    2015-01-01

    Zero-mode waveguides (ZMWs) are confining light into attoliter volumes, enabling single molecule fluorescence experiments at physiological micromolar concentrations. Among the fluorescence spectroscopy techniques that can be enhanced by ZMWs, F\\"{o}rster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentration with single molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor-acceptor fluorophore pairs diffusing in aluminum zero-mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large literature describing their use for single molecule fluorescence spectroscopy. We also compare the ...

  7. Laser perforation of aluminum alloy sheet

    Science.gov (United States)

    Migliore, Leonard; Nazary, George

    2010-02-01

    Recent advances in the design of gain modules for diode-pumped solid-state lasers have allowed the manufacture of high-powered Q-switched products. The high available pulse energy and good mode quality enable highly efficient harmonic conversion, enabling the generation of several hundred watts of average power at a wavelength of 532nm. Among the applications for which this class of product may be suited is the rapid drilling of small-diameter holes in aluminum sheet. To investigate this application, plates of several aluminum alloys were drilled under a variety of conditions. The drilled plates were sectioned and subjected to analysis by optical metallography. The initial results indicate ways in which the process may be optimized.

  8. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    Science.gov (United States)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an

  9. Torsional Stability of Aluminum Alloy Seamless Tubing

    Science.gov (United States)

    Moore, R L; Paul, D A

    1939-01-01

    Torsion tests were made on 51ST aluminum-alloy seamless tubes having diameter-to-thickness ratios of from 77 to 139 and length-to-diameter ratios of from 1 to 60. The torsional strengths developed in the tubes which failed elastically (all tubes having lengths greater than 2 to 6 times the diameter) were in most cases within 10 percent of the value indicated by the theories of Donnel, Timoshenko, and Sturm, assuming a condition of simply supported ends.

  10. CVD aluminum plating on steel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Clay, F.A.

    1979-01-01

    A chemical vapor deposition (CVD) process was developed that produces aluminum coatings capable of being anodized at 500 volts. The intent is to use this method to apply an anodized coating onto the interior of a complex-shaped part. Unrecycled TIBAL, one of the least pyrophoric of the alkyls, was used under the following optimum coating conditions: temperature, 260 +- 5/sup 0/C; spray pressure, 345 +- 35 kPa; and time, 2 to 3 hours.

  11. The Anisotropy of Replicated Aluminum Foams

    OpenAIRE

    Furman, Eugeny L.; Arcady B. Finkelstein; Maxim L. Cherny

    2014-01-01

    The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregn...

  12. Preparation and characterization of aluminum stearate

    Directory of Open Access Journals (Sweden)

    Lončar Eva S.

    2003-01-01

    Full Text Available Preparation of aluminum stearate by the precipitation method was examined under various conditions of stearic acid saponification with sodium hydroxide. It was proved that the most favorable ratio of acid/alkali was 1:1.5 and that the obtained soap was very similar to the commercial product. Endothermic effects determined by differential scanning calorimetry and also the other parameters showed that the soaps consisted mono-, di-, tristearates and non-reacted substances, where distearate was the dominant form.

  13. Boron/aluminum shelf for shuttle orbiter

    International Nuclear Information System (INIS)

    Boron/aluminum skins and channels were used in the fabrication of a prototype honeycomb sandwich avionics shelf. The avionic shelves are stiffness-critical and must be vibration tolerant. In conjunction with the shelf mounting system, they must isolate the avionics equipment from the severe vibration of the primary and secondary structure nearby. Design rationale, fabrication procedures, vibration test criteria and test results are presented. (9 fig) (U.S.)

  14. Exchangeable aluminum evaluation in acid soils

    OpenAIRE

    Abreu Jr. Cassio Hamilton; Muraoka Takashi; Lavorante André Fernando

    2003-01-01

    One of the main factors limiting agricultural production in tropical climate regions is mainly related to the presence of exchangeable aluminum (Al3+) in highly weathered acid soils. Four methods of Al3+ determination extracted with neutral 1 mol L¹ KCl solution were evaluated: three colorimetric methods (aluminon plus ascorbic acid, and eriochrome cyanine R by FIA) and the usual titrimetric method with back-titration. Surface samples from 20 soils of different Brazilian regions, with active ...

  15. Useful angular selectivity in oblique columnar aluminum

    Science.gov (United States)

    Ditchburn, R. J.; Smith, G. B.

    1991-03-01

    A useful magnitude of angular selective transmittance of incident unpolarized light is demonstrated in obliquely deposited aluminum. Required deposition procedures and anisotropic optical properties are discussed. Angular selectivity is very strong at visible wavelengths but both experiment and theory indicate that a single oblique layer with well defined columns gives high transmittance at near-infrared wavelengths compared with normal films. There are ways of reducing this to enhance the energy control capability. Both solar and luminous angular selectivity are reported.

  16. Behaviour of aluminum foam under fire conditions

    OpenAIRE

    J. Grabian; K. Gawdzińska; M. Szweycer

    2008-01-01

    Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1). Figure 1 present...

  17. Aluminum and the human diet revisited

    OpenAIRE

    Shaw, Christopher A.; Marler, Thomas E.

    2013-01-01

    Concerns about aluminum (Al) exposure in the human diet have persisted for one century. We suggest that continued research would benefit from better reporting of environmental factors that are known to influence Al accumulation in plant organs that are consumed, focusing on subsets of the general public that exhibit the highest risk for neuropathological responses, increased evaluation of commercial processing procedures that may concentrate Al or other toxic substances, and designing studies...

  18. Composite hydrophilic coating for conditioner aluminum fins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  19. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    S Rusu; A Buzaianu; D G Galusca; L Ionel; D Ursescu

    2013-11-01

    Based on the lack of consistent literature publications that analyse the effects of laser marking for traceability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty impact, femtolaser marking has been carried out, besides the standard commercial nanosecond engraving. All the marks have been analysed using profilometry, overhead and cross-section SEM microscopy, respectively and EDAX measurements.

  20. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  1. Texture in Aluminum Titanate Ceramic Materials

    OpenAIRE

    Schmalzried, C; Kim, J.-W.; Hennicke, H. W.

    1995-01-01

    Dry pressing and filtration of a mixture of platelike corundum and rutile powders shows a slight to sharp texture of the corundum particles. The reaction sintering forming aluminum titanate destroys the texture of the green compact. When starting with a rutile texture in the green compact there exists a texture of tielite in the reaction product. Furthermore we developed a process for production of platelike tielite monocrystalline particles which should be very suited for texturing of the ce...

  2. Deuterium transport and trapping in aluminum alloys

    International Nuclear Information System (INIS)

    A simple model of diffusion and evolution of the density of deuterium in metals is presented. A model of the deuterium evolution in the presence of uniform and nonuniform distributions of traps, as well as perfectly reflecting and partially permeable boundary conditions is discussed. Computers are compared with experimental results describe deuterium distribution after fatigue crack growth of 2219 and 7075 aluminum alloys in a D2O water vapor environment and after ion implantation

  3. Gating of Permanent Molds for Aluminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    This report summarizes a two-year project, DE-FC07-011D13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was to determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. Other studies have been conducted using water flow and behavior of liquid aluminum in sand mold using real time photography. This investigation utilizes graphite molds transparent to X-Rays making it possible to observe the flow pattern through a number of vertically oriented grating systems. These have included systems that are choked at the base of a rounded vertical sprue and vertical gating systems with a variety of different ingates into the bottom of a mold cavity. These systems have also been changed to include gating systems with vertical and horizontal gate configurations. Several conclusions can be derived from this study. A sprue-well, as designed in these experiments, does not eliminate the vena contracta. Because of the swirling at the sprue-base, the circulating metal begins to push the entering metal stream toward the open runner mitigating the intended effect of the sprue-well. Improved designs of

  4. Chromic acid anodizing of aluminum foil

    Science.gov (United States)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  5. Roll bonding of 6061 aluminum alloy plates

    International Nuclear Information System (INIS)

    The roll bonding process is an important application of the solid state welding . in principle, two or more slabs of the materials to be bonded are placed in contact and welded around the edges. then, this assembled set is heated and rolled until the required thickness is obtained. this process is applied to clad the nuclear fuel, with high strength aluminum alloys during fabrication of plate type nuclear fuel elements for research reactors, or to produce many new constructions which have special uses in industrial applications. in the present work, the steps of the hot roll bonding of 6061 aluminum alloy plates were studies by using both microscopic examination and mechanical test namely singe lap shear strength test. also the effect of reduction degree in thickness, the sequence of hot rolling , surface roughness, degassing opening length and holding time on roll bonding process were studied. the results obtained due to variations in the above parameters are discussed with respect to their effects on the roll bonding of 6061 aluminum alloy plates as well as their effects on the specifications of the fuel plates

  6. Explosive characteristics of nanometer and micrometer aluminum-powder

    Institute of Scientific and Technical Information of China (English)

    Jiang Bingyou; Lin Baiquan; Shi Shulei; Zhu Chuanjie; Li Wenxia

    2011-01-01

    The explosive characteristics of aluminum powder have great significance in preventing and controlling aluminum-dust explosion accidents,especially the nano-aluminum powder.The explosion characteristics of 100 nm and 75 μm aluminum powders were investigated by using a 20 L spherical explosion cavity and a horizontal pipe whose cross-section area is 80 mm × 80 mm and length is 8 m.The results show that the maximum explosion pressure and its rising rate of 100 nm aluminum powder gradually increase with increasing concentration of aluminum-powder at the beginning.When aluminum-powder concentration is 1 kg/m3,the maximum explosion pressure reaches its maximum,and then gradually decreases.While when the concentration is 1.25 kg/m3,the maximum rate of pressure rise obtains its maximum,and then decreases.After 100 nm aluminum powder is exploded in pipes,the peak overpressure of blast wave first decreases and then increases to the maximum at a distance of 298 cm from the ignition source,and then gradually decreases,The most violent concentration is about 0.4 kg/m3 which is lower than 0.8 kg/m3 of 75 μm aluminum powder,so 100 nm aluminum powders are more easily exploded.The change laws of maximum explosion pressure,maximum rate of pressure rise and blast-wave peak overpressure of 100 nm aluminum powders with concentration are similar to those of 75 μm aluminum powders,but these values are much higher than 75 μm aluminum powders under the same concentration,so the aluminum-powders explosion of 1 00 nm will produce more harms.In the process of production,storage and transportation of aluminum powder,some relevant preventive measures can be taken to reduce the loss caused by aluminum-dust explosion according to nano-aluminum dust.

  7. Aluminum exposure and toxicity in neonates:a practical guide to halt aluminum overload in the prenatal and perinatal periods

    Institute of Scientific and Technical Information of China (English)

    Daniela Fanni; Rossano Ambu; Clara Gerosa; Sonia Nemolato; Nicoletta Iacovidou; Peter Van Eyken; Vassilios Fanos; Marco Zaffanello; Gavino Faa

    2014-01-01

    Background: During the last years, human newborns have been overexposed to biologically reactive aluminum, with possible relevant consequences on their future health and on their susceptibility to a variety of diseases. Children, newborns and particularly preterm neonates are at an increased risk of aluminum toxicity because of their relative immaturity. Data sources: Based on recent original publications and classical data of the literatures, we reviewed the aluminum content in mother's food during the intrauterine life as well as in breast milk and infant formula during lactation. We also determined the possible role of aluminum in parenteral nutrition solutions, in adjuvants of vaccines and in pharmaceutical products. A special focus is placed on the relationship between aluminum overexposure and the insurgence of bone diseases. Results: Practical points of management and prevention are suggested. Aluminum sources that infants may receive during the fi rst 6 months of life are presented. In the context of prevention of possible adverse effects of aluminum overload in fetal tissues during development, simple suggestions to pregnant women are described. Finally, practical points of management and prevention are suggested. Conclusions: Pediatricians and neonatologists must be more concerned about aluminum content in all products our newborns are exposed to, starting from monitoring aluminum concentrations in milk- and soybased formulas in which, on the basis of recent studies, there is still too much aluminum.

  8. Defects in aluminum foam with superfine open-cell structure

    Institute of Scientific and Technical Information of China (English)

    Wang Fang; Zhang Zhimin; Li Baocheng; Wang Lucai

    2008-01-01

    The infiltration casting process for producing aluminum foam includes three steps: preparing precursor using NaCI particles, infiltrating molten aluminum and cleaning NaCI precursor. Defects occur during the preparation of aluminum foam with superfine open-cell structure, and influence the pore structure and performance of aluminum foam materials. The types of the defect and their forming mechanisms are analyzed in this paper. The defects include point defects and linear metal defects, and are caused by the defects in salt precursor and the insufficient infiltration of molten aluminum into precursor. With the choice of proper precursor preparation method and infiltration process parameters, the complete aluminum foam with superfine pores could be achieved.

  9. Analysis of Aluminum Dust Cloud Combustion Using Flame Emission Spectroscopy.

    Science.gov (United States)

    Lee, Sanghyup; Noh, Kwanyoung; Yoon, Woongsup

    2015-09-01

    In this study, aluminum flame analysis was researched in order to develop a measurement method for high-energy-density metal aluminum dust cloud combustion, and the flame temperature and UV-VIS-IR emission spectra were precisely measured using a spectrometer. Because the micron-sized aluminum flame temperature was higher than 2400 K, Flame temperature was measured by a non-contact optical technique, namely, a modified two-color method using 520 and 640 nm light, as well as by a polychromatic fitting method. These methods were applied experimentally after accurate calibration. The flame temperature was identified to be higher than 2400 K using both methods. By analyzing the emission spectra, we could identify AlO radicals, which occur dominantly in aluminum combustion. This study paves the way for realization of a measurement technique for aluminum dust cloud combustion flames, and it will be applied in the aluminum combustors that are in development for military purposes. PMID:26669143

  10. Analysis of lateral stability of I-section aluminum beams

    Institute of Scientific and Technical Information of China (English)

    CHENG; Ming; SHI; Yongjiu

    2006-01-01

    This paper focuses on the lateral buckling of laterally-unrestrained aluminum beams subjected to a concentrated, uniformly loading and pure-bending action. The design methods of lateral stability of aluminum beams in the current codes are discussed. The influence of material property on the lateral buckling of aluminum beams is investigated with finite element analysis (FEA) methods. Some numerical examples are given, and the results from current codes are compared with the FEA solutions. The design method on lateral stability of steel beams specified in the Chinese standard GB 50017-2003 is modified to calibrate the stability factors of aluminum beams according to the European code, British code, and American code, and the modified method is verified by FEA results. Through comparison with the available test results, the modified design method for overall stability of aluminum bending members is proposed in this paper and proved applicable in the design of lateral stability of aluminum beams.

  11. Spark Plasma Sintering of MgO-Strengthened Aluminum

    Science.gov (United States)

    Ben-Haroush, M.; Dikovsky, G.; Kalabukhov, S.; Aizenshtein, M.; Hayun, S.

    2016-02-01

    The effects of MgO as a sintering additive, sintering duration, and post-heat treatment on mechanical properties and microstructure of spark plasma-sintered aluminum powders were investigated. The sinterability of aluminum with or without MgO was found to be sensitive to the aluminum average particle size, meaning the amount of native oxide within the raw aluminum powders. The fracture mode changes gradually from a brittle mode (after short SPS), through a mixed brittle-ductile fracture mode (after long SPS), ending with the pure ductile form (short SPS followed by heat treatment). Maxima flexural strength and elongation were found in samples with particles size of about 44 μm and the addition of 2 wt.% MgO after short SPS process followed by an additional heat treatment. The addition of MgO may contribute to perforation of the aluminum native oxide and enhance aluminum diffusion during the heat treatment.

  12. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries.

    Science.gov (United States)

    Sun, Xiao-Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2016-01-01

    A polymer gel electrolyte using AlCl3 complexed acrylamide as a functional monomer and acidic ionic liquid based on a mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 (EMImCl-AlCl3, 1-1.5, in molar ratio) as a plasticizer has been successfully prepared for the first time via free radical polymerization. Aluminum deposition is successfully achieved using a polymer gel electrolyte containing 80 wt% ionic liquid. The polymer gel electrolytes are also good candidates for rechargeable aluminum ion batteries. PMID:26511160

  13. Aluminum/glass fibre and aluminum/carbon fibre hybrid laminates

    Directory of Open Access Journals (Sweden)

    Ana STAN

    2010-06-01

    Full Text Available The metal/fibre hybrid laminates consist of an alternation of 0.2 ÷ 0.5 mm metallic sheets(Aluminum or Titanium in Aeronautical Engineering and pre-pregs made of unidirectional carbon oraramid or glass fibre or of the two-dimensional fabric of these materials, bonded by a polymeradhesive (epoxy, especially. Compared with the monolithic metal foils, the essential quality of thesehybrid laminates is their superior resistance to fatigue, impact and crack propagation (existing ormade by notches. The paper presents some results regarding hybrid laminates aluminium-carbonfibre and aluminum-glass fibre achieved in the CEEX project X1C05 (2005.

  14. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  15. 49 CFR 178.512 - Standards for steel or aluminum boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel or aluminum boxes. 178.512... aluminum boxes. (a) The following are identification codes for steel or aluminum boxes: (1) 4A for a steel box; and (2) 4B for an aluminum box. (b) Construction requirements for steel or aluminum boxes are...

  16. Would decreased aluminum ingestion reduce the incidence of Alzheimer's disease?

    OpenAIRE

    McLachlan, D R; Kruck, T P; Lukiw, W J; Krishnan, S.S.

    1991-01-01

    Although the cause of Alzheimer's disease (AD) remains unknown there is mounting evidence that implicates aluminum as a toxic environmental factor of considerable importance. Four independent lines of evidence--laboratory studies of the effects of intracerebral aluminum on the cognitive and memory performance of animals, biochemical studies, epidemiologic studies and the slowing of the progress of the disease with the use of an agent that removes aluminum from the body--now support the concep...

  17. Localizations of aluminum in soybean bacteroids and seeds.

    OpenAIRE

    Roth, L. E.; Dunlap, J R; Stacey, G.

    1987-01-01

    Aluminum, long known to be detrimental to soybean productivity, was localized in the polyphosphate granules (PPG) of bacteroids in root nodules of soybean plants. By using energy-dispersive X-ray analysis, bacteroids in early infections were shown to have typical PPG constituents. However, in PPG in older infections and after the bacteroids were digested intracellularly, aluminum was also detected. These results indicate that aluminum accumulates in PPG after a period when organisms have been...

  18. Siderophore-Mediated Aluminum Uptake by Bacillus megaterium ATCC 19213

    OpenAIRE

    X. Hu; Boyer, G. L.

    1996-01-01

    The bacterium Bacillus megaterium ATCC 19213 is known to produce two hydroxamate siderophores, schizokinen and N-deoxyschizokinen, under iron-limited conditions. In addition to their high affinity for ferric ions, these siderophores chelate aluminum. Aluminum was absorbed by B. megaterium ATCC 19213 through the siderophore transport receptor, providing an extra pathway for aluminum accumulation into iron-deficient bacteria. At low concentrations of the metal, siderophore-mediated uptake was t...

  19. Synthesis and electroluminescent property of dinuclear aluminum 8-hydroxyquinoline complex

    International Nuclear Information System (INIS)

    A new structural dinuclear aluminum 8-hydroxyquinoline complex (DAlq3) with two aluminum chelate-center was designed and synthesized. It was assessed as light-emitting material in organic light-emitting device (OLED). The green light emission was observed in films and OLEDs. DAlq3 has better electron mobility and also shows a higher electroluminescence (EL) efficiency than that of aluminum 8-hydroxyquinoline (Alq3).

  20. Reactive self-heating model of aluminum spherical nanoparticles

    OpenAIRE

    Martirosyan, Karen S; Zyskin, Maxim

    2012-01-01

    Aluminum-oxygen reaction is important in many highly energetic, high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potent...

  1. Galvanic aspects of aluminum sacrificial anode alloys in seawater.

    OpenAIRE

    Cummings, Jon Richard

    2012-01-01

    Galvanic aspects of aluminum sacrificial anode alloys in artificial seawater were investigated. Specifically, two mercury-bearing alloys and one tin-bearing alloy were studied. The polarization behavior of the aluminum sacrificial anode alloys coupled to HY-80 steel is discussed. Current versus time curves were obtained for aluminum/steel galvanic couples immersed in artificial seawater for specific intervals. Scanning elecron microscopy was used to characterize the anode dissolution patt...

  2. The Technological Improvements of Aluminum Alloy Coloring by Electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Nai-jun

    2004-01-01

    The technological process of coloring golden-tawny on aluminum alloy by electrolysis was improved in this paper. The optimum composition of electrolyte was found, the conditions of deposition and anodic oxidation by electrolysis were studied. The oxidative membrane on aluminum alloy was satisfying, the colored aluminum alloy by electrolysis is uniformity,bright and beautiful, and the coloring by electrolysis is convenient and no pollution.

  3. Electrodeposition of magnesium and magnesium/aluminum alloys

    Science.gov (United States)

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  4. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source. With...... this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All...

  5. Aluminum nitrate recrystallization and recovery from liquid extraction raffinates

    International Nuclear Information System (INIS)

    The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment

  6. Research progress of aluminum alloy automotive sheet and application technology

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  7. The aluminum chemistry and corrosion in alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinsuo [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: jszhang@lanl.gov; Klasky, Marc; Letellier, Bruce C. [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-02-15

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted.

  8. Monolithic Approach to Oxide Dispersion Strengthened Aluminum Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  9. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  10. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source. With...... this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All...

  11. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  12. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al2O3, followed by a thinner layer of FeAl3, and then a much thicker one of Fe2Al5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  13. Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses

    OpenAIRE

    Masahiro Kawahara; Midori Kato-Negishi

    2011-01-01

    Whilst being environmentally abundant, aluminum is not essential for life. On the contrary, aluminum is a widely recognized neurotoxin that inhibits more than 200 biologically important functions and causes various adverse effects in plants, animals, and humans. The relationship between aluminum exposure and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and Parkinsonism dementia in the Kii Peninsula and Guam, and Alzheimer's disease (AD) has been...

  14. 10 Billion Yuan Transport-use Aluminum Market Invigorated the Vitality Of the Aluminum Deep Processing Industry

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    When the Chinese economy enters a"new normal"status,the aluminum industry is also facing the overlapping pattern of"growth speed gear-shift period,period of structure adjustmen and pains,and early-stage stimulation policy digestion period",rebuilding industria structure and developing mode undoubtedly have become key discussion topics of the aluminum industry.Although China’aluminum industry is temporarily trapped in

  15. Thermal coatings for titanium-aluminum alloys

    Science.gov (United States)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  16. Accelerating Thick Aluminum Liners Using Pulsed Power

    International Nuclear Information System (INIS)

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane

  17. Aluminum-Free Semiconductors and Packaging

    International Nuclear Information System (INIS)

    The use of laser diodes instead of flashlamps to pump solid state lasers generally results in lighter weight, more compact systems with improved efficiency and reliability. These traits are important to a wide variety of applications in military, industrial and other areas. Common solid state laser systems such as yttrium aluminum garnet doped with neodymium or ytterbium (Nd:YAG and Yb:YAG, respectively) require pump light in the 800 to 1000 nm range, and such laser diodes have typically been fabricated in the AlGaAs material system on a GaAs substrate. Unfortunately, the presence of aluminum in or near the light-generating regions of these devices appears to limit their high-power performance, so for improved performance attention has turned to the aluminum-free (''Al-free'') material system of InGaAsP on a GaAs substrate. Laser diodes in this system offer the wavelength coverage similar to the AlGaAs/GaAs material system, and early results suggest that they may offer improved high-power performance. However, such Al-free diodes are more challenging to manufacture than AlGaAs-based devices. The goal of this LDRD project has been to evaluate Al-free diode technology in comparison with conventional AlGaAs-based structures for use in diode-pumped solid state lasers. This has been done by testing commercially available devices, surveying the literature, developing in-house capability in order to explore new device designs, and by engaging a leading university research group in the field

  18. Aluminum-Free Semiconductors and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, M.A.

    2000-02-03

    The use of laser diodes instead of flashlamps to pump solid state lasers generally results in lighter weight, more compact systems with improved efficiency and reliability. These traits are important to a wide variety of applications in military, industrial and other areas. Common solid state laser systems such as yttrium aluminum garnet doped with neodymium or ytterbium (Nd:YAG and Yb:YAG, respectively) require pump light in the 800 to 1000 nm range, and such laser diodes have typically been fabricated in the AlGaAs material system on a GaAs substrate. Unfortunately, the presence of aluminum in or near the light-generating regions of these devices appears to limit their high-power performance, so for improved performance attention has turned to the aluminum-free (''Al-free'') material system of InGaAsP on a GaAs substrate. Laser diodes in this system offer the wavelength coverage similar to the AlGaAs/GaAs material system, and early results suggest that they may offer improved high-power performance. However, such Al-free diodes are more challenging to manufacture than AlGaAs-based devices. The goal of this LDRD project has been to evaluate Al-free diode technology in comparison with conventional AlGaAs-based structures for use in diode-pumped solid state lasers. This has been done by testing commercially available devices, surveying the literature, developing in-house capability in order to explore new device designs, and by engaging a leading university research group in the field.

  19. Effects of shot peening on internal friction in CP aluminum and aluminum alloy 6008

    Energy Technology Data Exchange (ETDEWEB)

    Flejszar, Aneta; Ludian, Tomasz; Mielczarek, Agnieszka; Riehemann, Werner; Wagner, Lothar [Clausthal Univ. of Science and Technology, Inst. of Materials Science and Technology, Clausthal-Zellerfeld (Germany)

    2009-06-15

    The strain-amplitude-dependent damping of bending beams of aluminum alloy 6008 and CP aluminum was measured at room temperature after different heat treatments and after shot peening. Shot peening led to an increase of damping in almost the whole measured amplitude strain range from 10{sup -6} to 10{sup -3} for CP aluminum. Strong ageing effects at room temperature were observed immediately after the shot peening process, namely an increase of the amplitude dependent part and a decrease of the amplitude-independent part of damping. After about 2700 h, ageing of the samples had saturated. For aluminum alloy 6008 much smaller ageing effects were found being due to compensating effects like formation of Cottrell clouds, precipitation of G.P. - zones, and the reduction of foreign atoms in solid solution. The found amplitude-dependent damping can be explained by the reversible movement of dislocations between strong pinning points like, e.g., precipitates and weak pinning points like solid solute atoms as proposed by the dislocation damping theory of Granato and Luecke. Using this model the found ageing effects can be explained by the diffusion of solid solute atoms to the dislocations. (orig.)

  20. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    Science.gov (United States)

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  1. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum

    DEFF Research Database (Denmark)

    Reitzel, Kasper; Jensen, Henning S.; Egemose, Sara

    2013-01-01

    The possible pH dependent dissolution of aluminum hydroxides (Al(OH)(3)) from lake sediments was studied in six lakes previously treated with Al to bind excess phosphorus (P). Surface sediment was suspended for 2 h in lake water of pH 7.5, 8.5, or 9.5 with resulting stepwise increments in dissolved...

  2. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  3. Aluminum structures exposed to blast loading

    OpenAIRE

    Hustad, Tore Andre; Lindland, Andreas Lyngtveit

    2014-01-01

    Design of blast resistance in structures is an important aspect in modern society. Plated structures are used in a lot of constructions that can be especially vulnerable to explosions. This includes e.g. protective, offshore or automotive structures. The main objective in this study was to investigate the response of thin plates made of the aluminum alloy 1050A-H14, as well as to evaluate the available computational methods.Material tensile tests were performed in order to determine a materia...

  4. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  5. Plasma-Activated Sintering of Aluminum Nitride

    Science.gov (United States)

    Hensley, J. E.; Risbud, S. H.; Groza, J. R.; Yamazaki, K.

    1993-10-01

    The use of a new plasma- activated sintering (PAS) process to densify aluminum nitride (AIN) powders to nearly full theoretical density (97 to >99%) in 5 to 10 min was investigated. The process consists of a pulse activation step, followed by sintering at 1730 to 1800 °C using resistance heating in carbon dies. Submicron size (~0.44 μm) AIN powders of low oxygen content (submicron grain structure (~0.77 μm) with no apparent pores or intergranular phases. X- ray powder diffraction revealed no secondary crystalline phases.

  6. Structure of aluminum-iron melts

    Energy Technology Data Exchange (ETDEWEB)

    Khomutova, Z.V.; Slukhovskii, O.I.; Romanova, A.V.

    1986-07-01

    Aluminum-based melts with compositions close to those of intermetallic compounds (Al3Fe, Al5Fe2, and AlFe) and eutectics with atomic Fe concentrations of 0.9 and 8.0 percent are investigated experimentally using X-ray diffraction analysis. The concentration and temperature dependences of the electrical resistivity of these melts are determined for temperatures up to 1700 C. Calculations of the electrical resistance are then made on the basis of a microinhomogeneous structural model of the melts. 9 references.

  7. -Based Cermet Inert Anodes for Aluminum Electrolysis

    Science.gov (United States)

    Tian, ZhongLiang; Lai, YanQing; Li, ZhiYou; Chai, DengPeng; Li, Jie; Liu, YeXiang

    2014-11-01

    The new aluminum electrolysis technology based on inert electrodes has received much interest for several decades because of the environment and energy advantages. The key to realize this technique is the inert anode. This article presents China's recent developments of NiFe2O4-based cermet inert anodes, which include the optimization of material performance, the joint between the cermet inert anode and metallic bar, as well as the results of 20 kA pilot testing for a large-size inert anode group. The problems NiFe2O4-based cermet inert anodes face are also discussed.

  8. Westward Movement in China’s Electrolytic Aluminum Industry:an Irresistible Trend

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>China’s aluminum industry, especially the electrolytic aluminum industry, is currently undergoing unprecedented difficulties. Henan, a powerhouse of China’s aluminum industry, has been adversely affected by a series of issues

  9. 78 FR 20298 - Restoration and Compensation Determination Plan and Environmental Assessment: Aluminum Production...

    Science.gov (United States)

    2013-04-04

    ... Environmental Assessment: Aluminum Production Plants and Engine Manufacturer, St. Lawrence River, Massena, NY... resource injuries and service losses associated with the release of hazardous substances from two aluminum... included polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), aluminum, fluoride,...

  10. The Revision of Aluminum-containing Food Additive Provisions in China.

    Science.gov (United States)

    Zhang, Hong; Zhang, Ji Yue; Wang, Hua Li; Luo, Peng Jie; Zhang, Jian Bo

    2016-06-01

    The aim of this study was to revise the provisions for aluminum-containing food additives in GB 2760-2011 (The National Food Safety Standard for Use of Food Additives), in order to reduce aluminum exposure among the Chinese population. According to the latest risk assessment results of JECFA and China on aluminum and the actual use of aluminum-containing food additives in certain products, the aluminum-containing food additive-related provisions in GB 2760-2011 were revised. Those revisions included narrowing down the applicable food categories and adjusting the maximum use level of aluminum potassium sulfate and aluminum ammonium sulfate, repealing nine aluminum-containing food additives in puffed food and repealing the use of sodium aluminum phosphate, sodium aluminosilicate and starch aluminum octenylsuccinate in all food. After revision of the use of aluminum food additive provisions, the weekly dietary intake of aluminum in the Chinese population can be reduced to a safe level. PMID:27470109

  11. Advances in aluminum hydroxide-based adjuvant research and its mechanism

    OpenAIRE

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully und...

  12. Determination of Total Dissolved Aluminum in Seta River Water by Flow Injection Fluorometry with Aluminum-Lumogallion Complex after Acid Digestion

    OpenAIRE

    Hara, Hirokazu; Ohkuni, Sakura; Koebisu, Yosuke; Nishikawa, Naomichi

    2012-01-01

    The total dissolved aluminum in the Seta River water was determined by flow-injection fluorometryusing the aluminum-lumogallion complex after its digestion by a mixture of nitric acid and hydrofluoric acid. The sample decomposition system, which was hard to be contaminated by aluminum from the air, was constructed and used successfully to produce reproducible values. By subtractingthe concentration of dissolved reactive aluminum, the concentration of the non-reactive aluminum was estimated. T...

  13. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  14. Fouling corrosion in aluminum heat exchangers

    Directory of Open Access Journals (Sweden)

    Su Jingxin

    2015-06-01

    Full Text Available Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus. This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss, Tafel plots, electrochemical impedance spectroscopy (EIS, and scanning electron microscope (SEM observations. The results reveal that chloride is one of the major elements found in the fouling which damages the passive film and initiates corrosion. The galvanic corrosion between the metal and the adjacent carbon particles accelerates the corrosive process. Furthermore, the black carbon favors the moisture uptake, and gives the dissolved oxygen greater chance to migrate through the fouling layer and form a continuous diffusive path. The corrosion rate decreasing over time is conformed to electrochemistry measurements and can be verified by Faraday’s law. The EIS results indicate that the mechanism of corrosion can be interpreted by the pitting corrosion evolution mechanism, and that pitting was observed on the coupons by SEM after corrosive exposure.

  15. Fragmentation of hypervelocity aluminum projectiles on fabrics

    Science.gov (United States)

    Rudolph, Martin; Schäfer, Frank; Destefanis, Roberto; Faraud, Moreno; Lambert, Michel

    2012-07-01

    This paper presents work performed for a study investigating the ability of different flexible materials to induce fragmentation of a hypervelocity projectile. Samples were chosen to represent a wide range of industrially available types of flexible materials like ceramic, aramid and carbon fabrics as well as a thin metallic mesh. Impact conditions and areal density were kept constant for all targets. Betacloth and multi-layer insulation (B-MLI) are mounted onto the targets to account for thermal system engineering requirements. All tests were performed using the Space light-gas gun facility (SLGG) of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI. Projectiles were aluminum spheres with 5 mm diameter impacting at approximately 6.3 km/s. Fragmentation was evaluated using a witness plate behind the target. An aramid and a ceramic fabric lead the ranking of fabrics with the best projectile fragmentation and debris cloud dispersion performance. A comparison with an equal-density rigid aluminum plate is presented. The work presented can be applied to optimize the micrometeoroid and space debris (MM/SD) shielding structure of inflatable modules.

  16. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  17. Review and Outlook of China’s Secondary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>In 2010, driven by the rapid growth of up-stream and downstream sectors, China’s whole year output of secondary aluminum reached 4 million tons, up by 29% on a year-on-year basis. The production output of secondary aluminum grew in successive years, and recorded

  18. Selenium adsorption to aluminum-based water treatment residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solutions at pH values o...

  19. Aluminum-matrix composite materials with shungite rock fillers

    Science.gov (United States)

    Kalashnikov, I. E.; Kovalevski, V. V.; Chernyshova, T. A.; Bolotova, L. K.

    2010-11-01

    A method is proposed for the introduction of shungite rocks into aluminum melts by mechanical mixing with carriers, namely, aluminum granules and reactive titanium powders taking part in exothermic in situ reactions. The structures of composite materials with shungite rock additions are studied, and a stabilizing effect of these additions on dry sliding friction is revealed.

  20. Electrochemical study of aluminum corrosion in boiling high purity water

    Science.gov (United States)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  1. The Current Situation of the Aluminum Industry in Henan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The aluminum industry in Henan has taken an important position in Chinese aluminum indus- try and even in the whole world. From the aspect of the reserve of bauxite,He- nan has significant share of the reserve.By the end of 2005,Henan has a total prospected

  2. Comment on " An update on toxicology of aluminum phosphide "

    Directory of Open Access Journals (Sweden)

    Omid Mehrpour

    2012-10-01

    Full Text Available I read with interest the recent published article by Dr Moghadamnia titled "An update on toxicology of aluminum phosphide". Since aluminum phosphide (AlP poisoning is an important medical concern in Iran, I have had the opportunities to work and publish many papers in this regard. I would like to comment on that paper.

  3. Melting, growth, and faceting of lead precipitates in aluminum

    DEFF Research Database (Denmark)

    Gråbæk, L.; Bohr, J.; Andersen, H.H.;

    1992-01-01

    Aluminum single crystals cut in the <111> direction were implanted with 2 x 10(20) m-2 Pb+ ions at 75 or 150 keV. The implanted insoluble lead precipitated as epitaxially oriented crystallites in the aluminum matrix. The precipitates were studied by x-ray diffraction at Riso, DESY, and Brookhaven...

  4. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  5. Brazed boron-silicon carbide/aluminum structural panels

    Science.gov (United States)

    Arnold, W. E., Jr.; Bales, T. T.; Brooks, T. G.; Lawson, A. G.; Mitchell, P. D.; Royster, D. M.; Wiant, R.

    1978-01-01

    Fluxless brazing process minimizes degradation of mechanical properties composite material of silicon carbide coated boron fibers in an aluminum matrix. Process is being used to fabricate full-scale Boron-Silicon Carbide/Aluminum-Titanium honeycomb core panels for flight testing and ground testing.

  6. Aluminum-26 as a biological tracer using accelerator mass spectrometry

    Science.gov (United States)

    Flarend, Richard Edward

    1997-06-01

    The development of accelerator mass spectrometry (AMS) has provided a practical method of detection for the only isotope of aluminum suitable as a tracer, 26Al. The use of 26Al as a tracer for aluminum has made possible the study of aluminum metabolism and the pharmacokinetics of aluminum-containing drugs at physiological levels. An overview of the various advantages of using 26Al as a tracer for aluminum and a general description of the AMS technique as applied to bio-medical applications is given. To illustrate the versatility of 26Al as a tracer for aluminum, 26Al studies of the past several years are discussed briefly. In addition, Two novel investigations dealing with 26Al-labeled drugs will be presented in more detail. In one of these studies, it was found that 26Al from aluminum hydroxide and aluminum phosphate vaccine adjuvants appeared in the blood just one hour after intramuscular injection. This is a surprising result since the currently held theory of how adjuvants work assumes that adjuvants remain insoluble and hold the antigen at the injection site for a long period of time. In another project, 26Al-labeled antiperspirants are being characterized by combining AMS with traditional analytical and chromatographic techniques. Future directions for this and other possible studies are discussed.

  7. Method of forming aluminum oxynitride material and bodies formed by such methods

    Science.gov (United States)

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  8. Evaluation of aluminum resistance in hybrids of Brachiaria decumbens Stapf.

    Directory of Open Access Journals (Sweden)

    Keise Mara Belmonte de Oliveira

    2015-12-01

    Full Text Available The objective of this work was to evaluate hybrids of Brachiaria decumbens for root vigor and aluminum resistance as components of edaphic adaptation. One hundred intraspecific hybrids and their parents were evaluated in a greenhouse solutionculture. Significant differences for both traits indicate that there is genetic variability amongst hybrids. The parents had a similar performance for root growth, but differed significantly for aluminum resistance. Twenty three and seven hybrids were superior to cv. Basilisk for root vigor and aluminum resistance, respectively, but most of them were not coincident for both traits. Aluminum resistance seemed to vary quantitatively, since the majority of the hybrids were placed around the mean and fewer in the extremes. The estimate of heritability based on progeny means for aluminum resistance (0.27 was lower than for root vigor (0.69. The method used was efficient in discriminating hybrids, and identified the best ones for edaphic adaptation.

  9. Polytypic transformations of aluminum hydroxide: A mechanistic investigation

    Institute of Scientific and Technical Information of China (English)

    Thimmasandra Narayan Ramesh

    2012-01-01

    The diffusion of ammonia vapors into a solution of aluminum nitrate or ferric nitrate results in the precipitation of their respective hydroxides and oxyhydroxides.Polymorphic phase formation of aluminum hydroxide is controlled by the rate of crystallization.The PXRD patterns of products obtained via vapor phase diffusion revealed that poorly ordered aluminum hydroxide is formed during the initial stages of crystallization.After 8 days,the formation of the bayerite phase of aluminum hydroxide was observed.Upon prolonged exposure to ammonia vapors,bayerite was transformed into gibbsite.The infrared spectrum of the product confirmed the presence of different polytypic phases of aluminum hydroxide.The results demonstrated that the crystal structure of metal hydroxides is controlled by the rate of crystallization,nature of the metal ion,site selectivity and specificity and preparative conditions.

  10. Neutral electrolyte aluminum air battery with open configuration

    Institute of Scientific and Technical Information of China (English)

    HAN Bin; LIANG Guangchuan

    2006-01-01

    A kind of new long life aluminum air batteries with open configuration was developed, using aluminum alloy doped with Ga, In, Sn, Bi, Pb and Mn as anode, NaCl solution as electrolyte and air electrode as cathode. The polarization curves of aluminum electrode and air electrode were tested. And the cell's performance was tested to calculate the utilization of aluminum electrode and the energy density. It is shown that, in the 3.5% NaCl solution, the cell can discharge at 0.29 A for 140 h with the working voltage keeping over 1.1 V. The utilization ratio of aluminum anode is over 44%, and the life of battery is longer than 2400 h.

  11. Molding of Aluminum Foams by Using Hot Powder Extrusion

    Directory of Open Access Journals (Sweden)

    Yoshitaka Tanino

    2012-06-01

    Full Text Available In order to form aluminum foams directly from powder, a combined process of hot powder extrusion and molding is proposed. Aluminum powder mixed with a foaming agent is extruded into the mold through the die heated to a temperature higher than the melting point, and the mold is filled with the aluminum foam. When a stainless steel pipe is used for a simple mold, an aluminum foam bar is obtained of which the relative density varies between 0.2 and 0.3. The molding of aluminum foam by using three types of mold shape shows the influence of gravity and friction. The effect of gravity is significant when a large step exists at the connection between the mold inlet and the die outlet, and friction is dominant in cases where foam is mold in a narrow space.

  12. Developments of electrical joints for aluminum-stabilized superconducting cables

    CERN Document Server

    Curé, B

    1999-01-01

    Electrical joints for the aluminum-stabilized conductors of the LHC experiment magnets have been studied. Two techniques have been tested: electron beam welding and MIG welding. The joint resistance was measured as a function of the magnetic field on ring shaped samples using the MA.RI.S.A. test facility, wherein current is induced in the test conductor by a varying magnetic field. The resistance is obtained by measuring either the voltage drop or the decay time. Calculation and finite-element simulation have been performed in order to separate the effect of both the copper-aluminum contact resistivity and the aluminum resistivity from the effect due to the joint technique (joint configuration, resistivity of the filler material, increasing of aluminum resistivity in the welding zone). The copper-aluminum contact resistivity and the current transfer length were obtained by measurements of the joint resistance of butt welded samples. (2 refs).

  13. Achieving Carbon Neutrality in the Global Aluminum Industry

    Science.gov (United States)

    Das, Subodh

    2012-02-01

    In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.

  14. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Science.gov (United States)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R. K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-04-01

    Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  15. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  16. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  17. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    Science.gov (United States)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  18. Poly-Si films with low aluminum dopant containing by aluminum-induced crystallization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Typically, highly p-doped (2×10 18 cm -3 ) poly-Si films fabricated by the aluminum induced layer exchange (ALILE) process are not suitable for solar cell absorber layers. In this paper, the fabrication of high-quality, continuous polycrystalline silicon (poly-Si) films with lower doping concentrations (2×10 16 cm -3 ) using aluminum-induced crystallization (AIC) is reported. Secondary-ion-mass spectroscopy (SIMS) results showed that annealing at different temperature profiles leads to a variety of Al concentrations. Hall Effect measurements revealed that Al dopant concentration depends on the annealing temperature and temperature profile. Raman spectral analysis indicated that samples prepared via AIC contain some regions with small grains.

  19. Research on the methods to determine metallic aluminum content in aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Material Structure Department, Changjiang River Scientific Research Institute, Wuhan 430010 (China); Song Wulin, E-mail: wulins@126.com [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China) and Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Lv Jie [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen Xia [Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie Changsheng [State Key Lab of Materials Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-04-15

    The high reactivity of aluminum nanoparticles (ANPs) made the determination of their metallic aluminum (Al) content difficult. Volumetric, thermogravimetry and permanganatometric methods were utilized to determine Al content. The reacted solution after volumetric measurement was further studied by transmission electron microscopy (TEM) and select area electron diffraction (SAED), which revealed that there were unreacted Al particles. Peaks indexed to metallic Al were found in the X-ray diffraction (XRD) pattern of the powders after thermogravimetry analysis (TGA). The side reactions between ANPs and water made the result of permanganatometric measurement underestimated as by the former methods. A modified titration method, using anhydrous alcohol as solvent, was performed to reduce the influence of water. The Al content of the ANPs produced by electro-exploded wire using this method was consistent with the quantitative phase analysis by Rietveld refinement.

  20. The use of surface modification techniques for the corrosion protection of aluminum and aluminum alloys

    International Nuclear Information System (INIS)

    Surface modification techniques such as ion beam assisted deposition (IBAD) and radio frequency plasma enhanced chemical vapor deposition (PECVD) offer a means to produce surfaces with unique and improved properties. This paper reviews the advantages of the IBAD and PECVD processes and discusses the preparation and pitting corrosion behavior of IBAD modified aluminum surfaces and PECVD coatings on a 7075 aluminum alloy. Pitting potential values for the base materials and for the base materials with silicon nitride IBAD, tantalum oxide IBAD, or PECVD diamond-like carbon coatings were determined in deaerated 0.1M NaCl solutions. The thickness of the modified region ranged from 0.01 to 5.0 microm. All three coatings improved the resistance to pit initiation

  1. Surface Acidity of Amorphous Aluminum Hydroxide

    Institute of Scientific and Technical Information of China (English)

    K. FUKUSHI; K. TSUKIMURA; H. YAMADA

    2006-01-01

    The surface acidity of synthetic amorphous Al hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous Al hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH>10). The solution analyses after and during the titration experiments showed that the solubility of amorphous aluminum hydroxide, Ksp =aAl3+/a3H+,was 1010.3,The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved Al species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.

  2. Prompt Reaction of Aluminum in Detonating Explosives

    International Nuclear Information System (INIS)

    The potential of aluminum (Al) reaction to boost detonation energy has been studied for decades, most recently spurred by the availability of nanometer-sized particles. A literature review is consistent with results from the small-scale shock reactivity test (SSRT). In this test, <1/2-g samples in confinement are shock loaded on one end, and the output at the other end dents a soft witness block. For samples in which 0.3 g of cyclotetramethylenetetranitramine (HMX) was mixed with 8 μm Al, the deepest dent occurred at 15% Al. When ammonium perchlorate (AP) was mixed with the same Al, the increased dents were consistent with changes in detonation velocity previously reported on similar mixtures. One outcome of this study is a new interpretation for the participation of Al in large scale gap tests on plastic-bonded explosives, which was discussed by Bernecker at this meeting in 1987

  3. Corrosion behavior of W implanted aluminum

    International Nuclear Information System (INIS)

    Ion implantation is a technique that allows the insertion of various elements in the superficial part of materials, forming surface alloys. Moreover there is the possibility of forming solutions beyond the limits of solubility imposed by the thermodynamic relationships, which is of particular interest when the low solubility of the alloys avoids them to reach the desired level of a certain element in order to improve a certain property. The present investigation looks at the influence of tungsten implanted in aluminum, from the point of view of improved corrosion resistance. Comparative electrochemical results in neutral and alkaline solutions in the presence of chlorides are presented. The results show that for pH's where AlOOH is insoluble the WO3 stabilizes the oxide film, making the alloy less prone to pitting corrosion

  4. Aluminum Reduction and Nitridation of Bauxite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhikuan; ZHANG Dianwei; XU Enxia; HOU Xinmei; DONG Yanling

    2007-01-01

    The application of bauxite with low Al2O3 content has been studied in this paper and β-SiAlON has been obtained from two kinds of bauxites (Al203 content 68.08 mass% and 46.30 mass% respectively) by aluminum reduction and nitridation method.The sequence of reactions has been studied using thermal analysis (TG-DTA),X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) with EDS.Compared with carbon thermal reduction and nitridation of aluminosilicates employed presently,the reaction in the system of bauxite-Al-N2 occurs at lower temperature.β-SiAlON appears as one of the main products from 1573K and exists' stably in the range of the present experimental temperature.The microstructure of β-SiAlON obtained at 1773 K is short column with 5-10μm observed by SEM.

  5. Starlike aluminum-carbon aromatic species.

    Science.gov (United States)

    Wu, Yan-Bo; Jiang, Jin-Liang; Lu, Hai-Gang; Wang, Zhi-Xiang; Perez-Peralta, Nancy; Islas, Rafael; Contreras, Maryel; Merino, Gabriel; Wu, Judy I-Chia; Schleyer, Paul von Ragué

    2011-01-10

    Is it possible to achieve molecules with starlike structures by replacing the H atoms in (CH)(n)(q) aromatic hydrocarbons with aluminum atoms in bridging positions? Although D(4h) C(4)Al(4)(2-) and D(2) C(6)Al(6) are not good prospects for experimental realization, a very extensive computational survey of fifty C(5)Al(5)(-) isomers identified the starlike D(5h) global minimum with five planar tetracoordinate carbon atoms to be a promising candidate for detection by photoelectron detachment spectroscopy. BOMD (Born-Oppenheimer molecular dynamics) simulations and high-level theoretical computations verified this conclusion. The combination of favorable electronic and geometric structural features (including aromaticity and optimum C-Al-C bridge bonding) stabilizes the C(5)Al(5)(-) star preferentially. PMID:21207593

  6. Magnetic coupling in granular aluminum superconducting films

    International Nuclear Information System (INIS)

    The maximum coupling force F/sub cm/ in a Giaever superconducting transformer is measured in granular aluminum films at significantly higher fields and lower temperatures than in previous work. A new method to determine F/sub cm/ by measuring the critical current in one film only is presented. The results are in excellent quantitative agreement with the one-reciprocal-lattice-vector approximation to the theoretical analysis in its region of validity, i.e., at high fields. For low fields, F/sub cm/ is consistent with the temperature dependence of the low-field approximation over the entire reduced-temperature (t = T/T/sub c/) range (0.36< t<0.96

  7. Analysis and Nanomold Design for Aluminum Nanoimprinting

    Directory of Open Access Journals (Sweden)

    Te-Hua Fang

    2014-11-01

    Full Text Available The nanoforging process and mechanism of pure aluminum samples is studied using molecular dynamics (MD simulations based on embedded atom method (EAM potential function. The effects of the forging temperature and the forging velocity are evaluated in terms of molecular trajectories, internal energy, and a radial distribution function. The simulation results clearly show that the internal energy of the workpiece exerted on it during the forging process have high energy with decreasing forging temperature ; however, with increasing forging velocity, the internal energy have higher energy. During the forging process, a special atomic structure in (011 and (0 slip planes was observed, and that represents the site of generation of dislocation and growth nucleation. When severe plastic deformation occurs, the density of the workpiece varied. The forged workpiece has similar distributions of atomic density after the loading for various forging temperatures and forging velocities.

  8. Proteomics of aluminum tolerance in plants.

    Science.gov (United States)

    Zheng, Lu; Lan, Ping; Shen, Ren Fang; Li, Wen Feng

    2014-03-01

    Aluminum (Al) toxicity is a major constraint for plant root development and growth as well as crop yield in acidic soils, which constitute approximately 40% of the potentially arable lands worldwide. The mechanisms of Al tolerance in plants are not well understood. As a whole systems approach, proteomic techniques have proven to be crucial as a complementary strategy to explore the mechanism in Al toxicity. Review here focuses on the potential of proteomics to unravel the common and plant species-specific changes at proteome level under Al stress, via comparative analysis of the Al-responsive proteins uncovered by recent proteomic studies using 2DE. Understanding the mechanisms of Al tolerance in plants is critical to generate Al resistance crops for developing sustainable agriculture practices, thereby contributing to food security worldwide. PMID:24339160

  9. Deformation stages of technical aluminum at reverse

    Science.gov (United States)

    Vaulina, O. Yu; Durnovtseva, A. N.; Shvagrukova, E. V.

    2016-02-01

    Durability and reliability of machines and mechanisms are determined, mainly, by their fatigue resistance as far as, in the most cases, variable load impacts on machine components. Accordingly, the problem of fatigue failure is extremely topical, still. Its complexity is connected with a wide range of factors. First of all, at cyclic load the compatibility relations of a material surface layer, which is loaded over the yield point and the elastic-loaded substrate layer, play a very important role. This fact determines involvement into plastic flow and failure of all the scale hierarchy of deformation structural levels. Reverse loading under the condition of the elastic-loaded substrate layer causes strong localization of plastic deformation in the surface layers. In the deformation localization areas the material reaches its limit state, when fatigue cracks arise and expand. The paper presents the mechanisms of fatigue deformation for technical aluminum at various fatigue stages.

  10. A High-Fe Aluminum Matrix Welding Filler Metal for Hardfacing Aluminum-Silicon Alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A high-Fe containing aluminum matrix filler metal for hardfacing aluminum-silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as-cast and as-welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al-Si-Fe-Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al-Si-Mg-Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper-eutectic aluminum-silicon alloy with 27% Si and 1% Ni.

  11. Ballistic Experiments with Titanium and Aluminum Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gogolewski, R.; Morgan, B.R.

    1999-11-23

    During the course of the project we conducted two sets of fundamental experiments in penetration mechanics in the LLNL Terminal Ballistics Laboratory of the Physics Directorate. The first set of full-scale experiments was conducted with a 14.5mm air propelled launcher. The object of the experiments was to determine the ballistic limit speed of 6Al-4V-alloy titanium, low fineness ratio projectiles centrally impacting 2024-T3 alloy aluminum flat plates and the failure modes of the projectiles and the targets. The second set of one-third scale experiments was conducted with a 14.5mm powder launcher. The object of these experiments was to determine the ballistic limit speed of 6Al-4V alloy titanium high fineness ratio projectiles centrally impacting 6Al-4V alloy titanium flat plates and the failure modes of the projectiles and the target. We employed radiography to observe a projectile just before and after interaction with a target plate. Early on, we employed a non-damaging ''soft-catch'' technique to capture projectiles after they perforated targets. Once we realized that a projectile was not damaged during interaction with a target, we used a 4-inch thick 6061-T6-alloy aluminum witness block with a 6.0-inch x 6.0-inch cross-section to measure projectile residual penetration. We have recorded and tabulated below projectile impact speed, projectile residual (post-impact) speed, projectile failure mode, target failure mode, and pertinent comments for the experiments. The ballistic techniques employed for the experiments are similar to those employed in an earlier study.

  12. Aluminum multicharged ion generation from laser plasma

    International Nuclear Information System (INIS)

    Highlights: • Multicharged Al ions are generated by a ns laser pulse ablation of an Al target in UHV. • Time-of-flight and electrostatic retarding field ion energy analyzers are used to detect the laser-generated MCIs. • For 5 kV accelerating voltage, laser energy of 90 mJ, up to Al+4 with ∼0.65 nC total ion charge is detected. • Raising accelerating voltage increases the charge extraction from the laser plasma and the energy of MCIs. • Ion extraction is dependent on electric field between Al target and extraction mesh. - Abstract: Multicharged aluminum ions are generated by a ns Q-switched Nd:YAG laser pulse ablation of an aluminum target in an ultrahigh vacuum. Time-of-flight and electrostatic retarding field ion energy analyzers are used to detect the laser-generated multicharged ions. The experiments are conducted using laser pulse energies of 45–90 mJ focused on the Al target surface by a lens with an 80-cm focal length to 0.0024 cm2 spot area and incident at 45° with the Al target surface. With the increase in the laser pulse energy, a slow increase in the number of ions generated is observed. The generation of ions with a higher charge state is also observed with the increase in the laser pulse energy. For 5 kV accelerating voltage applied to the Al target and using laser energy of 90 mJ, up to Al+4 with ∼0.65 nC total ion charge is delivered to the detector which is located 140 cm away from the Al target. Raising accelerating voltage increases the charge extraction from the laser plasma and the energy of multicharged ions

  13. Gas evolution in aluminum electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Aleixandre, C.; Albella, J.M.; Martinez-Duart, J.M.

    1984-03-01

    Gas evolution in aluminum electrolytic capacitors constitutes one of their main drawbacks in comparison to other types of capacitors lacking a liquid electrolyte. In this respect, one of the most common causes of failure shown by liquid electrolyte capacitors is electrolyte leakage through the seal or even explosions produced by internal pressure buildup. In order to prevent these hazards, some substances, known as depolarizers, are usually added to the capacitor electrolyte with the purpose of absorbing the hydrogen evolved at the cathode (1, 2). Although the gas evolution problem in electrolytic capacitors has been known for a long time, there is a lack of literature on both direct measurements of the gas evolved and assessments of the amount of depolarizer active for the hydrogen absorption process. Aluminum electrolytic capacitors of 100..mu..F and 40V nominal voltage, miniature type (diam 8 mm, height 18.5 mm), were manufactured under standard specifications. The capacitors were filled with about 0.5 ml of an electrolyte consisting essentially of a solution of boric, adipic, and phosphoric acids in ethylene glycol. Picric acid and p-benzoquinone in molar concentrations of 0.01M and 0.05M, respectively, were added as depolarizers, yielding an electrolyte with a resistivity of about 80 ..cap omega..-cm and a pH of 5.1. The pressure inside the capacitors was monitored by a conventional Ushaped manometer made from a capillary glass tube filled with distilled water. The number of mols of gas generated in the capacitor (/eta/ /SUB g/ ) was calculated from the measured pressure (sensitivity 0.1 mm Hg) and the value of the internal volume of the manometercapacitor system.

  14. Painting rusted steel: The role of aluminum phosphosilicate

    International Nuclear Information System (INIS)

    Highlights: •Aluminum phosphosilicate is an acid pigment which could act as mild phosphating agent. •Aluminum phosphosilicate can phosphatize iron oxides on rusted surfaces. •Aluminum phosphosilicate is compatible with acid binders. •Aluminum phosphosilicate could replace chromate in complete painting schemes. •Aluminum phosphosilicate primers improve paints adhesion on rusted surfaces. -- Abstract: Surface preparation is a key factor for the adequate performance of a paint system. The aim of this investigation is to employ a wash-primer to accomplish the chemical conversion of rusted surface when current cleaning operations are difficult to carry out. The active component of the wash-primer was aluminum phosphosilicate whose electrochemical behavior and the composition of the generated protective layer, both, were studied by electrochemical techniques and scanning electron microscopy (SEM), respectively. Primed rusted steel panels were coated with an alkyd system to perform accelerated tests in the salt spray chamber and electrochemical impedance measurements (EIS). These tests were conducted in parallel with a chromate wash primer and the same alkyd system. Results showed that the wash-primer containing aluminum phosphosilicate could be used satisfactorily to paint rusted steel exhibiting a similar performance to the chromate primer

  15. Characterization of aluminum nanopowders after long-term storage

    International Nuclear Information System (INIS)

    Highlights: • The aluminum nanopowders produced by electrical explosion of wires after long-term storage (27 and 10 years) under natural conditions are characterized. • The phase composition and thermal stability of aluminum nanopowders after long-term storage are determined. • The surface chemical changes in the aged aluminum nanopowders are examined. • The high reactivity of aluminum nanopowder is due to the presence of the protective oxide–hydroxide layer on the particles surface. - Abstract: The characteristics of aluminum nanopowders obtained by electrical explosion of wires, passivated by air and stored for a long time under natural conditions are analyzed. The aluminum nanopowder produced in hydrogen had been stored for 27 years; the nanopowders produced in argon and nitrogen had been stored for 10 years. The powders were studied using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transform infrared spectrometry (FTIR). The influence of the obtaining conditions and storage period of nanopowders on their thermal stability under heating in air is shown. The aluminum nanopowders after long-term storage in air under ambient conditions are found to be extremely active

  16. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  17. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Highlights: • Laminate squeeze casting shortens infiltration distance to half the fabric thickness. • Oxide scale on aluminum sheets serves as initial carbon–aluminum diffusion barrier. • Liquid infiltrates fiber fabrics from their respective neighboring aluminum layers. • Hydrostatic pressure in molten aluminum preserves the laminate configuration. • A good carbon fiber–aluminum matrix interface bond is achieved. - Abstract: Carbon fiber reinforced aluminum matrix composites show an excellent combination of lightweight, mechanical properties, ease of processing and low costs. However, standard liquid infiltration squeeze casting often requires complex preforms in order to control fiber configuration and distribution. It also requires relatively high pressures to overcome the pressure drop across the preform, which can lead to preform compaction and damage and can limit the maximum component thickness that can be thoroughly infiltrated. Therefore, a laminate squeeze casting process is investigated as alternative whereby alternate layers of fiber fabrics and aluminum sheets are hot consolidated. Liquid infiltrates the fiber fabrics from their two respective neighboring aluminum layers, thereby reducing the infiltration distance from the entire component height to only half the thickness of individual fiber layers. This results in a rapid and thorough infiltration. Composites with fiber contents between 7 and 14 vol% are successfully fabricated. Despite complete melting of the aluminum layers at 850 °C, optical and scanning electron microscopy investigations show that hydrostatic pressure practically preserves the laminate configuration during fabrication and no fiber agglomeration occurs. The composites show good fiber–matrix bonding. No noticeable fiber damage is observed despite some carbide formation primarily at interfaces. A composite hardness over 50% higher compared to the reference 6061 matrix alloy is achieved at a carbon fiber content of 7

  18. Predicting the residual aluminum level in water treatment process

    Directory of Open Access Journals (Sweden)

    J. Tomperi

    2013-06-01

    Full Text Available In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease. Thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP was analyzed and the residual aluminum in drinking water was predicted using Multiple Linear Regression (MLR and Artificial Neural Network (ANN models. The purpose was to find out which variables affect the amount of residual aluminum and create simple and reliable prediction models which can be used in an early warning system (EWS. Accuracy of ANN and MLR models were compared. The new nonlinear scaling method based on generalized norms and skewness was used to scale all measurement variables to range [−2...+2] before data-analysis and modeling. The effect of data pre-processing was studied by comparing prediction results to ones achieved in an earlier study. Results showed that it is possible to predict the baseline level of residual aluminum in drinking water with a simple model. Variables that affected the most the amount of residual aluminum were among others: raw water temperature, raw water KMnO4 and PAC/KMnO4 (Poly-Aluminum Chloride/Potassium permanganate-ratio. The accuracies of MLR and ANN models were found to be almost the same. Study also showed that data pre-processing affects to the final prediction result.

  19. In-situ processing of aluminum nitride particle reinforced aluminum alloy composites

    Science.gov (United States)

    Zheng, Qingjun

    Discontinuously reinforced aluminum alloy composites (DRACs) have potential applications in automotive, electronic packaging, and recreation industries. Conventional processing of DRACs is by incorporation of ceramic particles/whiskers/fibers into matrix alloys. Because of the high cost of ceramic particles, DRACs are expensive. The goal of this work was to develop a low-cost route of AlN-Al DRACs processing through bubbling and reacting nitrogen and ammonia gases with aluminum alloy melt in the temperature range of 1373--1523 K. Thermodynamic analysis of AlN-Al alloy system was performed based on Gibbs energy minimization theory. AlN is stable in aluminum, Al-Mg, Al-Si, Al-Zn, and Al-Li alloys over the whole temperature range for application and processing of DRACs. Experiments were carried out to form AlN by bubbling nitrogen and ammonia gases through aluminum, Al-Mg, and Al-Si alloy melts. Products were characterized with XRD, SEM, and EDX. The results showed that in-situ processing of AlN reinforced DRACs is technically feasible. Significant AlN was synthesized by bubbling deoxidized nitrogen and ammonia gases. When nitrogen gas was used as the nitrogen precursor, the AlN particles formed in-situ are small in size, (interface. In comparison with nitrogen gas, bubbling ammonia led to formation of AlN particles in smaller size (about 2 mum or less) at a significantly higher rate. Ammonia is not stable and dissociated into nitrogen and hydrogen at reaction temperatures. The hydrogen functions as oxygen-getter at the interface and benefits chemisorption of nitrogen, thereby promoting the formation of AlN. The overall process of AlN formation was modeled using two-film model. For nitrogen bubbling gas, the whole process is controlled by chemisorption of nitrogen molecules at the gas bubble - aluminum melt interface. For ammonia precursor, the rate of the overall process is limited by the mass transfer of nitrogen atoms in the liquid boundary layer. The models agree

  20. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  1. New Process for Grain Refinement of Aluminum. Final Report; FINAL

    International Nuclear Information System (INIS)

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today

  2. New Process for Grain Refinement of Aluminum. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  3. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  4. Using Neural Networks to Predict the Hardness of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    B. Zahran

    2015-02-01

    Full Text Available Aluminum alloys have gained significant industrial importance being involved in many of the light and heavy industries and especially in aerospace engineering. The mechanical properties of aluminum alloys are defined by a number of principal microstructural features. Conventional mathematical models of these properties are sometimes very complex to be analytically calculated. In this paper, a neural network model is used to predict the correlations between the hardness of aluminum alloys in relation to certain alloying elements. A backpropagation neural network is trained using a thorough dataset. The impact of certain elements is documented and an optimum structure is proposed.

  5. Mechanical relationship in steel-aluminum solid to liquid bonding

    Institute of Scientific and Technical Information of China (English)

    张鹏; 杜云慧; 刘汉武; 曾大本; 崔建忠; 巴立民

    2003-01-01

    The bonding of solid steel plate to liquid aluminum was studied by using rapid solidification. The relationship between the bonding parameters such as preheat temperature of steel plate, temperature of aluminum liquid and bonding time, and the interfacial shear strength of bonding plate was established by artificial neural networks perfectly. This relationship was optimized with a genetic algorithm. The optimum bonding parameters are: 226 ℃ for preheat temperature of steel plate, 723 ℃ for temperature of aluminum liquid and 15.8 s for bonding time, and the largest interfacial shear strength of bonding plate is 71.6 MPa.

  6. The corrosion of aluminum in dilute solutions: laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Draley, J.E.; Arendt, J.W.; English, G.C.; Story, E.F.; Wainscott, M.M.; Berger, R.W.

    1945-06-19

    After it had been decided that aluminum was to be used as a corrosion-resistant material with good heat transfer properties, it was desired to determine the operating conditions to be used in the water-cooled Handford plant in order to avoid danger of corrosion penetration of thin aluminum parts. The studies here reported were undertaken with the object of determining these conditions by investigating the effects of all the known variables which might influence the corrosion behavior of aluminum in a water-coolded plant at HEW. The addition of hydrogen peroxide to the testing solutions was the only effort made to simulate special conditions at the plant.

  7. Effect of shock compression on aluminum particles in condensed media

    International Nuclear Information System (INIS)

    Specimens consisting of either spherical or flake aluminum particles saturated with liquid heptane were subjected to reflected shock pressures on the order of 20-30 GPa. Postmortem analysis of the spherical powder shows that while average size does not significantly change, surface morphology is no longer spherical but sharp edged with evidence of shear and particle break-up. A similar analysis for flakes shows break down to finer particles one order less than the original flake size. This suggests that the oxide layer was damaged and that bare aluminum was exposed, thus increasing aluminum particle sensitivity to reaction

  8. Application of accelerator mass spectrometry in aluminum metabolism studies

    International Nuclear Information System (INIS)

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.)

  9. The Microstructure and Properties of Diffusion Layer of Spray Aluminum

    Institute of Scientific and Technical Information of China (English)

    YE Hong; YAN Zhonglin; SUN Zhifu

    2005-01-01

    After diffusion processing of thermal spraying, aluminum on 20 # steel is discussed in this article. Variations of microstructure, composition as well as microhardness and corrosion resistance of diffusion layer of spray aluminum were explored by means of X- ray diffraction, scanning electron microscopy (SEM) and electron probe microanalysis ( EPMA ). The result shows that the diffusion layer of spray aluminum consists of η phase ( Fe2 Al5 ), ζ phase ( FeAl2 ), β1 phase ( Fe3Al ), β1 phase ( Fe3 Al ) and α phase from surface to substrate. There are balanced transitions between phases. The layer has extra high hardncss and corrosion resistance.

  10. Guizhou Aluminum Enterprises Trapped in Dilemma, Industrial Chain Needs Further Extension

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Recently,relevant institutions organized survey of Guizhou aluminum enterprises,according to survey results,at present Guizhou aluminum enterprises have entered dilemma,enterprise profits shrank continually.In recent years as the nationwide electrolytic aluminum industry quickly expanded,electrolytic aluminum

  11. Guangxi Baise Extends Industrial Chain to Combat Loss in Aluminum Business

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>"For each tonne of aluminum being produced,the upstream enterprise on the aluminum industrial chain will suffer loss about 2000yuan."Said Liang Xiao,Deputy Director of Pingguo Industrial Park Management Committee under the Guangxi Baise City,one of the four major aluminum industry bases in China,on August 11.Extending aluminum

  12. HIGH ALUMINUM HLW GLASSES FOR HANFORD'S WTP

    International Nuclear Information System (INIS)

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al2O3 concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the

  13. CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER

    Directory of Open Access Journals (Sweden)

    Luiza Esteves

    2015-07-01

    Full Text Available Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer, which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS. The Scanning Electron Microscopy (SEM and the Energy Dispersive Spectroscopy (EDS were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.

  14. Study on the Inter-electrode Process of Aluminum Electrolysis

    Science.gov (United States)

    Yang, Youjian; Gao, Bingliang; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei

    2016-02-01

    The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode-cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas-liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm-2 is approximately 50 pct.

  15. High quality optically polished aluminum mirror and process for producing

    Science.gov (United States)

    Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)

    2005-01-01

    A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.

  16. The solidification of aluminum production waste in geopolymer matrix

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš

    2014-01-01

    Roč. 84, DEC 1 (2014), s. 657-662. ISSN 0959-6526 Institutional support: RVO:67985891 Keywords : aluminum waste * solidification * recycling * geopolymer Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.844, year: 2014

  17. Low activation R-tokamak with aluminum alloy

    International Nuclear Information System (INIS)

    An aluminum alloy system is considered as an alternative of the first phase design of the R-tokamak. The 1-D calculation showed that the radiation level outside the vacuum vessel could be reduced by a factor of 30 about half a month after a D-T shot, when the aluminum alloy system is adopted instead of a stainless steel system. The aluminum system has weak mechanical strength, is highly conductive, and shows overaging effect at a certain low temperature. Accordingly, it is necessary to overcome these points. The highly conductive aluminum case leads to considerable increase in power consumption. Various problems on the toroidal coils, the vacuum system, and the limiter were studied. The optimization of the device parameters was investigated. (Kato, T.)

  18. Measurement of Thermodynamic Properties of Titanium Aluminum Alloys

    Science.gov (United States)

    Mehrotra, Gopal

    1995-01-01

    This final report is a summary of the work done by Professor Mehrotra at NASA Lewis Research Center. He has worked extensively on the measurement of thermodynamic properties of titanium aluminum alloys over the past six years.

  19. Modification of the aluminum for making offset printing plates

    Directory of Open Access Journals (Sweden)

    NENAD ILIC

    2000-12-01

    Full Text Available Aluminum as the base of offset printing plates should make good contact with wetting agents and the light sensitive layer and should be resistant to wear and cracking. In order to achieve this, the aluminum is roughened and eventually anodized. A thin, electrochemically deposited chromium layer is used as the non-printing element in bimetallic offset printing forms. Chromium shows excellent wettability and wear resistance. The possibility of chemical deposition of chromium on aluminum from an alkaline solution is examined in this paper. The presence of chromium was confirmed and measured by EDAX. A difference in the spectral reflection characteristic between chromium-treated and non-treated specimens was also detected. An influence of a chromium layer on an aluminum surface was examined by water drop spreading. Chromium-treated samples showed better wettability than non-treated samples, but they are less wettable than anodized samples.

  20. Stability of FDTS monolayer coating on aluminum injection molding tools

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...

  1. Age hardening in beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Three different alloys of beryllium-aluminum-silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight percent, Be-47.5Al-2.5Ag, Be-47Al-3Ag, and Be-46Al-4Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which separates from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatic pressing. Samples of hot isostatically pressed material were solution treated at 550 C for 1 h, followed by a water quench. Aging temperatures were 150, 175, 200, and 225 C for times ranging from half an hour to 65 h. Results indicate that peak hardness was reached in 36--40 h at 175 C and 12--16 h at 200 C aging temperature, relatively independent of alloy composition

  2. Higher Strength, Lighter Weight Aluminum Spacecraft Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program proposes to develop a bulk processing technology for producing ultra fine grain (UFG) aluminum alloy structures. The goal is to...

  3. PTFE-ALUMINUM films serve as neutral density filters

    Science.gov (United States)

    Burks, H. D.

    1966-01-01

    Polytetrafluoroethylene /PTFE/ films coated with aluminum films act as neutral density filters in the wavelength range 0.3 to 2.1 microns. These filters are effective in the calibration of photometric systems.

  4. REGENERATION OF CHROMATED ALUMINUM DEOXIDIZERS. IMPROVED DIAPHRAGM FABRICATION AND PERFORMANCE

    Science.gov (United States)

    In the metal finishing industry highly concentrated hexavalent chromium solutions are used extensively to deoxidize aluminum surfaces prior to anodizing, conversion coatings, prepaint preparation, welding and adhesive bonding. A regeneration process was conceived and tested to re...

  5. Fabrication of anodic aluminum oxide with incorporated chromate ions

    Science.gov (United States)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  6. The development of recycle-friendly automotive aluminum alloys

    Science.gov (United States)

    Das, Subodh K.; Green, J. A. S.; Kaufman, J. Gilbert

    2007-11-01

    The continuing growth of aluminum alloy usage in transportation applications, notably passenger automobiles and minivans, and the demonstrated economic benefits of recycling aluminum-rich vehicles increase the need to seriously consider the desirability of designing recycling-friendly alloys. This article focuses on that aspect of the recycling process for passenger vehicles. The goals are to illustrate the opportunities afforded by identifying and taking full advantage of potential metal streams in guiding the development of new alloys that use those streams. In speculating on several possible aluminum recovery practices and systems that might be used in recycling passenger vehicles, likely compositions are identified and preliminary assessments of their usefulness for direct recycling are made. Specific compositions for possible new recycle-friendly alloys are suggested. In addition, recommendations on how the aluminum enterprise, including industry, academia, and government, can work together to achieve the aggressive but important goals described here are discussed.

  7. Paint-Bonding Improvement for 2219 Aluminum Alloy

    Science.gov (United States)

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  8. Metastable nanosized aluminum powder as a reactant in energetic formulations

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J. [Los Alamos National Lab., NM (United States); Tepper, F. [Argonide Corp., Sanford, FL (United States); Ivanov, G.V. [Inst. of Petroleum Chemistry, Tomsk (Russian Federation); Lerner, M.I.; Davidovich, V. [Republic Engineering Center, Tomsk (Russian Federation)

    1998-12-01

    Aluminum powder is an important ingredient in many propellant, explosives and pyrotechnic applications. The production of nanosized aluminum powder by the electroexplosion of metal wire has been practices in the former USSR since the mid 1970`s. Differential scanning calorimetry, differential thermal analysis and x-ray phase analysis was performed on aluminum powder both before and after air passivation, as well as aluminum that was protected under kerosene, pentane, toluene and hexane. Earlier Soviet reports of unexplained thermal releases and metastable behavior have been investigated. Anomalous behavior previously reported included phase transformations at temperatures far below melting with the release of heat and chemoluminescence and self sintering of particles with a heat release large enough to melt the powders.

  9. Super Polishing of Aluminum 6061-T6 Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative 2D super-polishing process for Aluminum 6061-T6 planar mirrors which removes diamond point turning (DPT) grooves and attains rms surface finishes...

  10. Novel titanium-aluminum joints for cryogenic cold finger structures

    Science.gov (United States)

    Meehan, H. M.; Sweet, R. C.

    For optimum performance, the sensors employed in airborne detection and surveillance systems must be maintained at low temperatures. The containing wall of the expansion volume of a Stirling cycle cooler may provide the low temperature surface for mounting the sensors. IR detectors are commonly mounted on copper heat exchanger surfaces. A stainless steel member is employed to thermally isolate and structurally stabilize such surfaces. It is pointed out that the use of an aluminum-titanium cold finger results in a considerable weight reduction. The present investigation is concerned with an attempt to obtain such structures with the aid of a technique involving the casting of molten aluminum onto an appropriately dimensioned and positioned titanium member, taking into account the fact that aluminum readily wets and bonds to clean titanium surfaces. The casting is then machined to provide the form and structure desired. It is concluded that aluminum-titanium cast structures offer good potential for use as cryogenic cold finger assemblies.

  11. Chongqing Hechuan District Plans to Build 10 Billion Yuan Size Aluminum Industry Park

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Recently,the reporter learned from Chongqing Hechuan District Aluminum Industry Integration Enterprise Discussion Meeting that Hechuan District would build aluminum industrial park at Caojie Development Park,and strive to fulfill 10 billion yuan output value within 3 to 5 years.It has been learned that Hechuan District currently has 29 aluminum product enterprises(including enterprises with aluminum and aluminum products as raw material),in which 9

  12. Effect of Copper Content on etching Response of Aluminum in Alkaline and Acid Solutions

    OpenAIRE

    Dahlstrøm, Morten

    2012-01-01

    Copper are used as an alloying element in aluminum alloys to increase the strength of the material. By mixing copper and aluminum the good corrosion resistance of the pure aluminum decreases giving the alloy a lower corrosion resistance. After years of investigation on corrosion of aluminum alloys several results have shown increasing corrosion rates of aluminum that have been alloyed with both copper and zinc, giving a “grainy appearance” on the surface of the alloy. By adding copp...

  13. Response of Atmospheric Methane Consumption by Maine Forest Soils to Exogenous Aluminum Salts†

    OpenAIRE

    Nanba, K.; King, Gary M.

    2000-01-01

    Atmospheric methane consumption by Maine forest soils was inhibited by additions of environmentally relevant levels of aluminum. Aluminum chloride was more inhibitory than nitrate or sulfate salts, but its effect was comparable to that of a chelated form of aluminum. Inhibition could be explained in part by the lower soil pH values which resulted from aluminum addition. However, significantly greater inhibition by aluminum than by mineral acids at equivalent soil pH values indicated that inhi...

  14. Effects of organic solutes on chemical reactions of aluminum

    Science.gov (United States)

    Lind, Carol J.; Hem, John David

    1975-01-01

    Concentrations of organic matter in the general range of 1-10 milligrams per litre organic carbon are common in natural water, and many naturally occurrin7 organic compounds form aluminum complexes. The aluminum concentrations in near-neutral pH solutions may be 10-100 times higher than the values predicted from solubility data if formation of such organic complexes is ignored. The processes of polymerization of aluminum hydroxide and precipitation of gibbsite are inhibited by the presence of the organic flavone compound quercetin in concentrations as low as 10 x -5.3 mole per litre. Quercetin forms a complex, with a probable molar ratio of 1:2 aluminum to quercetin, that has a formation constant (f12) of about 10 12. A complex with a higher aluminum-quercetin ratio also was observed, but this material tends to evolve into a compound of low solubility that removes aluminum from solution. In the presence of both dissolved aluminum and aqueous silica, low concentrations of quercetin improved the yield of crystallized kaolinite and halloysite. Small amounts of well-shaped kaolinite and halloysite crystals were identified by electron microscopy in solutions with pH's in the range 6.5-8.5 after 155 days aging in one experimer t and 481 days aging in a repeated experiment. The bulk of the precipitated material was amorphous to X-rays, and crystalline material was too small a proportion of the total to give identifiable X-ray diffraction peaks. The precipitates had aluminum-silicon ratios near 1, and their solubility corresponded to that found by Hem, Roberson, Lind, and Polzer (1973) for similar aluminosilicate precipitated in the absence of organic solutes. The improved yield of crystalline material obtained in the presence of quercetin probably is the result of the influence of the organic compound on the aluminum hydroxide polymerization process. Natural water containing color imparted by organic material tends to be higher in aluminum than would be predicted by p

  15. Aluminum tolerance association mapping in triticale

    Directory of Open Access Journals (Sweden)

    Niedziela Agnieszka

    2012-02-01

    Full Text Available Abstract Background Crop production practices and industrialization processes result in increasing acidification of arable soils. At lower pH levels (below 5.0, aluminum (Al remains in a cationic form that is toxic to plants, reducing growth and yield. The effect of aluminum on agronomic performance is particularly important in cereals like wheat, which has promoted the development of programs directed towards selection of tolerant forms. Even in intermediately tolerant cereals (i.e., triticale, the decrease in yield may be significant. In triticale, Al tolerance seems to be influenced by both wheat and rye genomes. However, little is known about the precise chromosomal location of tolerance-related genes, and whether wheat or rye genomes are crucial for the expression of that trait in the hybrid. Results A mapping population consisting of 232 advanced breeding triticale forms was developed and phenotyped for Al tolerance using physiological tests. AFLP, SSR and DArT marker platforms were applied to obtain a sufficiently large set of molecular markers (over 3000. Associations between the markers and the trait were tested using General (GLM and Multiple (MLM Linear Models, as well as the Statistical Machine Learning (SML approach. The chromosomal locations of candidate markers were verified based on known assignments of SSRs and DArTs or by using genetic maps of rye and triticale. Two candidate markers on chromosome 3R and 9, 15 and 11 on chromosomes 4R, 6R and 7R, respectively, were identified. The r2 values were between 0.066 and 0.220 in most cases, indicating a good fit of the data, with better results obtained with the GML than the MLM approach. Several QTLs on rye chromosomes appeared to be involved in the phenotypic expression of the trait, suggesting that rye genome factors are predominantly responsible for Al tolerance in triticale. Conclusions The Diversity Arrays Technology was applied successfully to association mapping studies

  16. Ecotoxicology of aluminum to fish and wildlife

    Science.gov (United States)

    Sparling, D.W.; Lowe, T.P.; Campbell, P.G.C.

    1997-01-01

    The toxicity of aluminum has been studied extensively in fish, less so in invertebrates, amphibians, and birds, and not at all in reptiles and free-ranging mammals. For aquatic organisms, Al bioavailability and toxicity are intimately related to ambient pH; changes in ambient acidity may affect Al solubility, dissolved Al speciation, and organism sensitivity to Al. At moderate acidity (pH 5.5 to 7.0), fish and invertebrates may be stressed due to Al adsorption onto gill surfaces and subsequent asphyxiation. At pH 4.5 to 5.5, Al can impair ion regulation and augment the toxicity of H+. At lower pH, elevated Al can temporarily ameliorate the toxic effects of acidity by competing for binding sites with H+. Aluminum toxicity in aquatic environments is further affected by the concentration of ligands such as dissolved organic matter, fluoride, or sulfate, and of other cations such as Ca and Mg which compete for cellular binding sites. Although risk of Al toxicity is often based on a model of free-ion (Al3+) activity, recent evidence suggests that factors determining Al toxicity may be more complex. In general, aquatic invertebrates are less sensitive to Al toxicity and acidity than fish; thus acidified, Al-rich waters may actually reduce predation pressure. Fish may be affected by asphyxiation at moderate acidic conditions or electrolyte imbalances at lower pH. In amphibians, embryos and young larvae are typically more sensitive than older larvae. Early breeding amphibians, which lay eggs in ephemeral ponds and streams subject to spring runoff, are most at risk from Al and acidification; those that breed later in the year in lakes or rivers are least vulnerable. Birds and mammals are most likely exposed through dietary ingestion of soil or Al-contaminated foods. Concentrations > 1000 mg.kg-1 in food may be toxic to young birds and mammals. Clinical signs in these animals are consistent with rickets because Al precipitates with P in the gut. Suggestions for additional

  17. Solar plane propulsion motors with precompressed aluminum stator windings.

    OpenAIRE

    Widmer, J.D.; Spargo, C. M.; Atkinson, G.J.; Mecrow, B.C.

    2014-01-01

    This paper reports a propulsion motor for a solar-powered aircraft. The motor uses precompressed aluminum stator windings, with a fill factor of greater than 75%, in a permanent magnet synchronous machine. The motor performance is compared empirically to an identical machine with conventionally wound copper windings. It is shown that there are many advantages to using compressed aluminum windings in terms of weight reduction, thermal improvement, and lower cost, for the same loss and electrom...

  18. Impact loading of an aluminum/alumina composite

    OpenAIRE

    Johnson, J.; Hixson, R.; Gray, G

    1994-01-01

    The combined demands of increased strength and reduced weight in modern dynamic structural applications require improved understanding of composite materials subject to impact conditions. In order to isolate and identify individual contributions to composite material behavior under these conditions, an experimental and theoretical program was undertaken to examine dynamic behavior of an aluminum/alumina composite consisting of a 6061-T6 aluminum matrix containing elastic, spherical Al2O3 incl...

  19. Hydrogen Embrittlement of Aluminum: the Crucial Role of Vacancies

    OpenAIRE

    Lu, Gang; Kaxiras, Efthimios

    2005-01-01

    We report first-principles calculations which demonstrate that vacancies can combine with hydrogen impurities in bulk aluminum and play a crucial role in the embrittlement of this prototypical ductile solid. Our studies of hydrogen-induced vacancy superabundant formation and vacancy clusterization in aluminum lead to the conclusion that a large number of H atoms (up to twelve) can be trapped at a single vacancy, which over-compensates the energy cost to form the defect. In the presence of tra...

  20. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    OpenAIRE

    Jokhio, Muhammad Hayat; Panhwer, Muhammad Ibrahim; Unar, Mukhtiar Ali

    2016-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is ava...

  1. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    OpenAIRE

    Muhammad Hayat Jokhio; Muhammad Ibrahim Panhwar; Mukhtiar Ali Unar

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient inf...

  2. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  3. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    OpenAIRE

    Sun, Jie; Sun, Yingchun

    2007-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system pH value played an important role in this experiment. The growth rate is 12 nm/h at room temperature. Post-growth annealing not only densifies and purifies the films, but results in film crystallization a...

  4. Reactions of aluminum with uranium fluorides and oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  5. Fatigue in Aluminum Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Rom, Søren; Agerskov, Henning

    2014-01-01

    Fatigue damage accumulation in aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series on welded plate test...... normally used in the design against fatigue in aluminum bridges, may give results which are unconservative. The validity of the results obtained from Miner’s rule will depend on the distribution of the load history in tension and compression....

  6. Fracture Mechanics Prediction of Fatigue Life of Aluminum Highway Bridges

    DEFF Research Database (Denmark)

    Rom, Søren; Agerskov, Henning

    2015-01-01

    Fracture mechanics prediction of the fatigue life of aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined from fracture mechanics analyses and the results obtained have been compared with results from experimental investigations. The...... against fatigue in aluminum bridges, may give results which are unconservative. Furthermore, it was in both investigations found that the validity of the results obtained from Miner's rule will depend on the distribution of the load history in tension and compression....

  7. Retention of riveted aluminum leg bands by wild turkeys

    Science.gov (United States)

    Diefenbach, Duane R.; Vreeland, Wendy C.; Casalena, Mary Jo; Schiavone, Michael V.

    2016-01-01

    In order for mark–recapture models to provide unbiased estimates of population parameters, it is critical that uniquely identifying tags or marks are not lost. We double-banded male and female wild turkeys with aluminum rivet bands and estimated the probability that a bird would be recovered with both bands aluminum bands, we believe they are an effective marking technique for wild turkeys and, for most studies, will minimize any concern about the assumption that marks are not lost.

  8. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  9. Electrorefining of aluminum alloy in ionic liquids at low temperatures

    OpenAIRE

    Kamavaram V.; Mantha D.; Reddy R.G.

    2003-01-01

    The electrorefining of aluminum alloy (A360) in ionic liquids at low temperatures has been investigated. The ionic liquid electrolyte was prepared by mixing anhydrous AlCl3 and 1-Butyl-3- methylimidazolium chloride (BMIC) in appropriate proportions. The effect of the cell voltage temperature, and the composition of the electrolyte on the electrorefining process has been studied. The characterization of the deposited aluminum was performed using scanning electron microscopy (SEM) and X-ray dif...

  10. The Aluminum Smelting Process and Innovative Alternative Technologies

    OpenAIRE

    Kvande, Halvor; Drabløs, Per Arne

    2014-01-01

    Objective: The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. Methods: This article is based on a study of the extensive chemical and medical literature on primary aluminum production. Results: At present, there are two main technological challenges for the process—to reduce energy consumption and to mitigate greenh...

  11. Predicting the residual aluminum level in water treatment process

    Directory of Open Access Journals (Sweden)

    J. Tomperi

    2012-06-01

    Full Text Available In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP was analyzed and the residual aluminum in drinking water was predicted using Multiple Linear Regression (MLR and Artificial Neural Network (ANN models. The purpose was to find out which variables affect the amount of residual aluminum and create simple and reliable prediction models which can be used in an early warning system (EWS. Accuracy of ANN and MLR models were compared. The new nonlinear scaling method based on generalized norms and skewness was used to scale all measurement variables to range [−2...+2] before data-analysis and modeling. The effect of data pre-processing was studied by comparing prediction results to ones achieved in an earlier study. Results showed that it is possible to predict the baseline level of residual aluminum in drinking water with a simple model. Variables that affected the most the amount of residual aluminum were among others: raw water temperature, raw water KMnO4 and PAC / KMnO4-ratio. The accuracies of MLR and ANN models were found to be almost equal. Study also showed that data pre-processing affects to the final prediction result.

  12. Melting Characteristics for Radioactive Aluminum Wastes in Electric Arc Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Song, Pyung Seob; Ahn, Jun Hyung; Cho, Wang Kyu; Jung, Chong Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Min, Byung Youn; Kang, Yong [School of Chemical Emgineering, Chungnam National University, Daejeon (Korea, Republic of)

    2006-03-15

    The characteristics of the aluminum waste melting and the distribution of the radioactive nuclides have been investigated for the estimation on the volume reduction and the decontamination of the aluminum wastes from the decommissioning of the TRIGA MARK II and III research reactors at the Korea Atomic Energy Research Institute(KAERI). The aluminum wastes were melted with the use of the fluxes such as flux A : NaCl-KCl-Na{sub 3}AlF{sub 6}, flux B : NaCl-NaF-KF, flux C : CaF{sub 2}, and flux D : LiF-KCl-BaCl{sub 2} in the DC graphite arc furnace. For the assessment of the distribution of the radioactive nuclides during the melting of the aluminum, the aluminum materials were contaminated by the surrogate nuclides such as cobalt(Co), cesium(Cs) and strontium(Sr). The fluidity of aluminum melt was increased with the addition of the fluxes, which has slight difference according to the type of fluxes. The formation of the slag during the aluminum melting added the flux type C and D was larger than that with the flux A and B. The rate of the slag formation linearly increased with increasing the flux concentration. The results of the XRD analysis showed that the surrogate nuclide was transferred to the slag, which can be easily separated from the melt and then they combined with aluminum oxide to form a more stable compound. The distribution ratio of cobalt in ingot to that in slag was more than 40% at all types of fluxes. Since vapor pressures of cesium and strontium were higher than those that of the host metals at the melting temperature, their removal efficiency from the ingot phase to the slag and the dust phase was by up to 98%.

  13. Melting Characteristics for Radioactive Aluminum Wastes in Electric Arc Furnace

    International Nuclear Information System (INIS)

    The characteristics of the aluminum waste melting and the distribution of the radioactive nuclides have been investigated for the estimation on the volume reduction and the decontamination of the aluminum wastes from the decommissioning of the TRIGA MARK II and III research reactors at the Korea Atomic Energy Research Institute(KAERI). The aluminum wastes were melted with the use of the fluxes such as flux A : NaCl-KCl-Na3AlF6, flux B : NaCl-NaF-KF, flux C : CaF2, and flux D : LiF-KCl-BaCl2 in the DC graphite arc furnace. For the assessment of the distribution of the radioactive nuclides during the melting of the aluminum, the aluminum materials were contaminated by the surrogate nuclides such as cobalt(Co), cesium(Cs) and strontium(Sr). The fluidity of aluminum melt was increased with the addition of the fluxes, which has slight difference according to the type of fluxes. The formation of the slag during the aluminum melting added the flux type C and D was larger than that with the flux A and B. The rate of the slag formation linearly increased with increasing the flux concentration. The results of the XRD analysis showed that the surrogate nuclide was transferred to the slag, which can be easily separated from the melt and then they combined with aluminum oxide to form a more stable compound. The distribution ratio of cobalt in ingot to that in slag was more than 40% at all types of fluxes. Since vapor pressures of cesium and strontium were higher than those that of the host metals at the melting temperature, their removal efficiency from the ingot phase to the slag and the dust phase was by up to 98%.

  14. Recrystallization Texture of Plane Strain Compressed Aluminum Single Crystal

    OpenAIRE

    Lee, Dong Nyung

    1996-01-01

    Butler, Blicharski and Hu found a rotated cube recrystallization texture after annealing an aluminum crystal with the (112)[111¯] and (112)[1¯1¯1] deformation texture, which was obtained by plane strain compressing the aluminum single crystal with an initial orientation of (001)[110]. The unexplained formation of the rotated recrystallization has been discussed based on a recrystallization model recently suggested by the present author.

  15. Oriented aluminum nanocrystals in a one-step process

    International Nuclear Information System (INIS)

    Aluminum coatings were deposited on glass substrates by chemical vapor deposition using N-methylpiperidine (nmp) stabilized dichloroalane [Cl2AlH·2nmp] as aluminum precursor. With regard to temperature, the experimental conditions were varied between 75 °C and 125 °C for the precursor and between 250 °C and 450 °C for the substrate. Depending on these parameters, highly textured layers could be deposited. The substrates have been consistently covered by a layer of idiomorphic, mostly distorted octahedra of aluminum single crystals. The morphologies of the structures and the degree of orientation of the crystals were investigated by a scanning electron microscopy and X-ray diffraction measurements. The high order of [111] orientation was found to decrease with increasing precursor and substrate temperature. We propose a mechanism for the generation of the octahedral structures based on the formation of mesocrystals. On heating, the dichloroalane (stabilized with nmp) loses the nmp ligands together with hydrogen and chlorine. The amine (nmp) seems to trigger the formation of aluminum crystals depending on the temperature and thus influences the texture of the Al-layer and the formation of well-formed octahedron-like structures. - Highlights: • An original chemical gas phase synthesis of aluminum single crystals is shown. • N-methylpiperidine triggers a preferred crystal growth in [111] direction. • A decomposition mechanism of the dichloroalane adduct is discussed. • Agglomeration to larger aluminum meso-crystals is observed at a higher gas flow

  16. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  17. Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum

    Science.gov (United States)

    Hsu, Fu-Yuan

    2016-06-01

    In aluminum gravity casting, as liquid aluminum fell through a vertical sprue and impacted on the horizontal flat surface, a phenomenon known as hydraulic jump ( i.e., flow transition from super-critical to sub-critical flows) was observed. As the jump was transformed, a reverse eddy motion on the surface of the jump was created. This motion entrained aluminum oxide film from the surface into aluminum melt. This folded film (so-called "bifilm" defect) was engulfed by the melt and caused its quality to deteriorate. To understand this phenomenon, aluminum casting experiments and computational modeling were conducted. In the casting experiment, a radius ( R j) to the point where the circular hydraulic jump occurred was measured. This is the circular region of `irregular surface feature', a rough oxidized surface texture near the center area of the castings. To quantify contents of the bifilm defects in the outer region of the jump, the samples in this region were sectioned and re-melted for doing re-melted reduced pressure test (re-melt RPT). An "area-normalized" bifilm index map was plotted to analyze bifilms' population in the samples. The flow transition in the hydraulic jump of liquid aluminum depended on three pressure heads: inertial, gravitational, and surface-tension pressures. A new theoretical equation containing surface tension for describing the flow transition of liquid metal was proposed.

  18. Characteristics of the Decontamination by the Melting of Aluminum Waste

    International Nuclear Information System (INIS)

    Effects of the aluminum melting temperature, melting time and a kind of flux agents on the distribution of surrogate nuclide were investigated in the electric furnace at the aluminum melting including surrogate radionuclides(Co, Cs, Sr) in order to establish the fundamental research of the melting technology for the metallic wastes from the decommissioning of the TRIGA research reactor. It was verified that the fluidity of aluminum melt was increased by adding flux agent but it was slightly varied according to the sort of flux agents. The results of the XRD analysis showed that the surrogate nuclides move into the slag phase and then they were combined with aluminum oxide to form more stable compound. The weight of the slag generated from aluminum melting test increased with increasing melting temperature and melting time and the increase rate of the slag depended on the kind of flux agents added in the aluminum waste. The concentration of the cobalt in the ingot phase decreased with increasing reaction temperature but it increased in the slag phase up to 90% according to the experimental conditions. The volatile nuclides such as Cs and Sr considerably transferred from the ingot phase to the slag and dust phase.

  19. Characteristics of the Decontamination by the Melting of Aluminum Waste

    Energy Technology Data Exchange (ETDEWEB)

    Song, Pyung Seob; Choi, Wang Kyu; Min, Byung Youn; Kim, Hak I; Jung, Chong Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-06-15

    Effects of the aluminum melting temperature, melting time and a kind of flux agents on the distribution of surrogate nuclide were investigated in the electric furnace at the aluminum melting including surrogate radionuclides(Co, Cs, Sr) in order to establish the fundamental research of the melting technology for the metallic wastes from the decommissioning of the TRIGA research reactor. It was verified that the fluidity of aluminum melt was increased by adding flux agent but it was slightly varied according to the sort of flux agents. The results of the XRD analysis showed that the surrogate nuclides move into the slag phase and then they were combined with aluminum oxide to form more stable compound. The weight of the slag generated from aluminum melting test increased with increasing melting temperature and melting time and the increase rate of the slag depended on the kind of flux agents added in the aluminum waste. The concentration of the cobalt in the ingot phase decreased with increasing reaction temperature but it increased in the slag phase up to 90% according to the experimental conditions. The volatile nuclides such as Cs and Sr considerably transferred from the ingot phase to the slag and dust phase.

  20. Production of aluminum orthophosphate and basic aluminum polyphosphate under hydrothermal conditions

    Science.gov (United States)

    Adkhamov, A. A.; Iaroslavskii, I. M.; Popolitov, V. I.; Umarov, B. S.; Iliaev, A. B.

    Berlinite (AlPO4) crystals, which are used in piezoelectronic devices, have been produced by hydrothermal synthesis using the methods proposed by Stanley (1954) and Kolb and Laudise (1978). Also, the possibility of AlPO4 crystallization from metastable aluminophosphate glass has been investigated. It is found that berlinite can be crystallized by slowly raising the temperature in the retrograde solubility region; the crystal growth temperature can be reduced by using metastable aluminophosphate glass. Basic aluminum polyphosphate crystals, which decompose with the formation of Al(PO3)3, have been produced and investigated.

  1. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    OpenAIRE

    Takashi Harumoto; Yohei Tamura; Takashi Ishiguro

    2015-01-01

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabri...

  2. Spin-orbit effects in aluminum photoionization

    International Nuclear Information System (INIS)

    The eigenchannel R-matrix approach, in conjunction with the multichannel quantum-defect theory and the LS→jj recoupling frame transformation, is used to calculate the photoionization spectrum of Al I below the 3s3p 1Po ionization threshold (photon energies in the range 0.44≤ℎω≤0.98 Ry). Relativistic channel mixing is incorporated in the calculations by a recoupling frame transformation and by the inclusion of experimental fine-structure threshold energies. This mixing enables autoionization of resonances whose decay would otherwise be forbidden in the pure LS-coupling scheme. The calculated J-dependent energies and widths agree well with those of experimental resonances. The complicated relativistic spectrum, with up to 11 interacting channels, provides an experimentally realizable testing ground for studies of statistical properties of resonances. The spectrum below the 3s3p 3Po ionization threshold exhibits the Wigner and Porter-Thomas distributions of positions and widths of resonances, respectively. While portions of the aluminum spectrum appear to be random, according to these measures, there remains much underlying regularity in the level spacing and width distributions

  3. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  4. Aluminum plasma produced by a nitrogen laser

    International Nuclear Information System (INIS)

    13 mJ laser pulses from a nitrogen laser were focused onto an aluminum target in air. The target surface was perpendicular to the axis of the laser beam. A peak energy density of 1.3 J/cm2 and a power density of 80 MW/cm2 were achieved with a laser pulse duration of 16 ns. This high power density produced a transient plasma cloud that expanded explosively into the surrounding atmosphere. An initial electron density of about 1 x 1019 cm-3 and an electron temperature of about 2 eV were determined by optical spectroscopy. The line of sight was parallel to the surface and perpendicular to the laser beam axis. The height of the line of sight above the target surface was varied in order to gather data about the whole plasma cloud. In about 500 ns the plasma cloud expands to about 0.5 mm above the target surface, cools down to about 1.2 eV and is tenfold reduced in electron density. The initial expansion velocity was determined to be about 2 km/s. (orig.)

  5. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  6. Efficient Synthesis of an Aluminum Amidoborane Ammoniate

    Directory of Open Access Journals (Sweden)

    Junzhi Yang

    2015-08-01

    Full Text Available A novel species of metal amidoborane ammoniate, [Al(NH2BH363−][Al(NH363+] has been successfully synthesized in up to 95% via the one-step reaction of AlH3·OEt2 with liquid NH3BH3·nNH3 (n = 1~6 at 0 °C. This solution based reaction method provides an alternative pathway to the traditional mechano-chemical ball milling methods, avoiding possible decomposition. MAS 27Al NMR spectroscopy confirms the formulation of the compound as an Al(NH2BH363− complex anion and an Al(NH363+ cation. Initial dehydrogenation studies of this aluminum based M-N-B-H compound demonstrate that hydrogen is released at temperatures as low as 65 °C, totaling ~8.6 equivalents of H2 (10.3 wt % upon heating to 105 °C. This method of synthesis offers a promising route towards the large scale production of metal amidoborane ammoniate moieties.

  7. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  8. Fluorescent lighting with aluminum nitride phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  9. An update on toxicology of aluminum phosphide

    Directory of Open Access Journals (Sweden)

    Moghadamnia Ali

    2012-09-01

    Full Text Available Abstract Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the “rice tablet”. AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposesand also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  10. An Update on Toxicology of Aluminum Phosphide

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moghhadamnia

    2012-09-01

    Full Text Available Aluminum phosphide (AlP is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. In Iran it is known as the "rice tablet". AlP has currently aroused interest with increasing number of cases in the past four decades due to increased use in agricultural and non-agricultural purposes and also its easy availability in the markets has increased its misuse to commit suicide. Upon contact with moisture in the environment, AlP undergoes a chemical reaction yielding phosphine gas, which is the active pesticidal component. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. It was reported that AlP has a mortality rate more than 50% of intoxication cases. Poisoning with AlP has usually occurred in attempts to suicide. It is a more common case in adults rather than teen agers. In some eastern countries it is a very common agent with rapid action for suicide. Up to date, there is no effective antidote or treatment for its intoxication. Also, some experimental results suggest that magnesium sulfate, N-acetyl cysteine (NAC, glutathione, vitamin C and E, beta-carotenes, coconut oil and melatonin may play an important role in reducing the oxidative outcomes of phosphine. This article reviews the experimental and clinical features of AlP intoxication and tries to suggest a way to encounter its poisoning.

  11. Characterization of Aluminum Tolerance in Rye

    International Nuclear Information System (INIS)

    Large insert libraries, cosmid, yeast artificial chromosomes (YACs), bacteriophage P1, bacterial artificial chromosomes (BACs), and P1-derived artificial chromosomes (PACs), have proven to be valuable tools for gene cloning, physical mapping, and comparative genomics. Of all the large insert libraries, BAC libraries are the most widely used, because of their ease of creation, large insert size, and stability. This report describes a simplified method for plant BAC library construction, which involves isolation and partial digestion of intact nuclei, selection of appropriate size of DNA via pulsed-field gel (PFG) electrophoresis, elution of DNA from agarose gels, ligation of DNA into the BAC vector, electroporation of the ligation mix into Escherichia coli cells and estimation of insert sizes. The whole process takes 1-3 months depending on the genome size and coverage required. We used this approach to produce a BAC library from different rye (Secale cereale L.) for utilization in our attempts to clone the gene complex controlling aluminum tolerance. (author)

  12. Processing, Dynamic Deformation and Fragmentation of Heterogeneous Materials (Aluminum-Tungsten Composites and Aluminum-Nickel Laminates)

    OpenAIRE

    Chiu, Po-Hsun

    2014-01-01

    Two types of heterogeneous reactive materials, Aluminum- Tungsten composites and Aluminum-Nickel laminates were investigated. The current interest in these materials is their ability to combine the high strength and energy output under critical condition of the mechanical deformation which may include their fragmentation. Mesoscale properties of reactive materials are very important for the generation of local hot spots to ignite reactions and generate critical size of debris suitable for fas...

  13. A comparison of the aging kinetics of a cast alumina-6061 aluminum composite and a monolithic 6061 aluminum alloy.

    OpenAIRE

    Hafley, Johanna L.

    1989-01-01

    Electrical resistivity and hardness measurements were conducted during isothermal aging treatments of an alumina particulate reinforced 6061 aluminum metal matrix composite and a monolithic 6061 aluminum control material. Transmission electron microscopy was utilized to examine the microstructural changes accompanying the changes in the resistivity of the monolithic during aging. In addition, differential scanning calorimetry was used to investigate the growth kinetics and thermal stability o...

  14. Strain-rate Sensitivity of Aluminum 2024-T6/TiB2 Composites and Aluminum 2024-T6

    Institute of Scientific and Technical Information of China (English)

    ZHU Dezhi; ZHENG Zhenxing; CHEN Qi

    2015-01-01

    Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content (up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the TiB2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/TiB2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading.

  15. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  16. Mixed domain models for the distribution of aluminum in high silica zeolite SSZ-13.

    Science.gov (United States)

    Prasad, Subramanian; Petrov, Maria

    2013-01-01

    High silica zeolite SSZ-13 with Si/Al ratios varying from 11 to 17 was characterized by aluminum-27 and silicon-29 NMR spectroscopy. Aluminum-27 MAS and MQMAS NMR data indicated that in addition to tetrahedral aluminum sites, a fraction of aluminum sites are present in distorted tetrahedral environments. Although in samples of SSZ-13 having high Si/Al ratios all aluminum atoms are expected to be isolated, silicon-29 NMR spectra revealed that in addition to isolated aluminum atoms (Si(1Al)), non-isolated aluminum atoms (Si(2Al)) exist in the crystals. To model these contributions of the various aluminum atoms, a mixed-domain distribution was developed, using double-six membered rings (D6R) as the basic building units of SSZ-13. A combination of different ideal domains, one containing isolated and the other with non-isolated aluminum sites, has been found to describe the experimental silicon-29 NMR data. PMID:23830719

  17. Atmospheric pressure plasma treatment of flat aluminum surface

    International Nuclear Information System (INIS)

    Highlights: • DCSBD plasma is applicable for activation and cleaning of flat aluminum surfaces. • Decrease in the value of the contact angle after 1 s plasma treatment was 93%. • EDX measurements confirmed removal of oil contamination by 50% decreasing of carbon. • XPS analyze shown decrease of carbon content and increase of aluminum hydroxide and oxyhydroxide. - Abstract: The atmospheric pressure ambient air and oxygen plasma treatment of flat aluminum sheets using the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD) were investigated. The main objective of this study is to show the possibility of using DCSBD plasma source to activate and clean aluminum surface. Surface free energy measurements, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDX) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used for the characterization of the aluminum surface chemistry and changes induced by plasma treatment. Short plasma exposure times (several seconds) led to a significant increase in the surface free energy due to changes of its polar components. Various ageing effects, depending on the storage conditions were observed and discussed. Effects of air and oxygen plasmas on the removal of varying degrees of artificial hydrocarbon contamination of aluminum surfaces were investigated by the means of EDX, ATR-FTIR and XPS methods. A significant decrease in the carbon surface content after the plasma treatment indicates a strong plasma cleaning effect, which together with high energy efficiency of the DCSBD plasma source points to potential benefits of DCSBD application in processing of the flat aluminum surfaces

  18. Proteome analysis of roots of wheat seedlings under aluminum stress.

    Science.gov (United States)

    Oh, Myeong Won; Roy, Swapan Kumar; Kamal, Abu Hena Mostofa; Cho, Kun; Cho, Seong-Woo; Park, Chul-Soo; Choi, Jong-Soon; Komatsu, Setsuko; Woo, Sun-Hee

    2014-02-01

    The root apex is considered the first sites of aluminum (Al) toxicity and the reduction in root biomass leads to poor uptake of water and nutrients. Aluminum is considered the most limiting factor for plant productivity in acidic soils. Aluminum is a light metal that makes up 7 % of the earth's scab dissolving ionic forms. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated without or with 100 and 150 μM AlCl3 for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentration of K(+), Mg(2+) and Ca(2+) were decreased, whereas Al(3+) and P2O5 (-) concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum increased with morin staining. A proteome analysis was performed to identify proteins, which are responsible to aluminum stress in wheat roots. Proteins were extracted from roots and separated by 2-DE. A total of 47 protein spots were changed under Al stress. Nineteen proteins were significantly increased such as sadenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and/or, 28 protein spots were significantly decreased such as heat shock protein 70, O-methytransferase 4, enolase, and amylogenin. Our results highlight the importance and identification of stress and defense responsive proteins with morphological and physiological state under Al stress. PMID:24357239

  19. Growth process of helium bubbles in aluminum

    International Nuclear Information System (INIS)

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal at 200 to 6450C for 1 hr to 100 hr was observed by transmission electronmicroscopy and possible mechanisms are discussed. The effects of helium concentration and cold work were investigated. Helium bubbles are detectable only by annealing above 5500C for 1 hr in both the annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of the bubble distribution are divided into two categories, irrespective of helium concentration and cold work; (1) fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even by the anneal just below the melting point, and (2) the coarsened and nonuniform bubble distribution ranging from 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. From these two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment (1) the growth of bubbles by Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of the intermediate size bubble is explained in this way. (auth.)

  20. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  1. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  2. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    International Nuclear Information System (INIS)

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly

  3. Experimental studies on the axial crash behavior of aluminum foam-filled hat sections

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-chun; FAN Zi-jie; GUI Liang-jin; WANG Zheng-hong; FU Zi-lai

    2006-01-01

    Drop hammer tests were carried out to study the axial crash behavior of aluminum foam-filled hat sections.First,the axial crash tests of the empty hat sections,aluminum foam and the aluminum foam-filled hat sections were carried out;then,based upon the test results,the axial crash behavior of the aluminum foam-filled hat sections were analyzed.It was found that aluminum foam filling can increase the energy absorption capacities of the hat sections.Compared with the non-filled structures,aluminum foamfilled structures were much more stable and needed less mass to absorb the specified energy.

  4. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  5. Hybrid Aluminum Composite Materials Based on Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Tatiana S. Koltsova

    2015-09-01

    Full Text Available We investigated formation of carbon nanofibers grown by chemical deposition (CVD method using an acetylene-hydrogen mixture on the surface of micron-sized aluminum powder particles. To obtain uniform distribution of the carbon nanostructures on the particles we deposited nickel catalyst on the surface by spraying from the aqueous solution of nickel nitrate. It was found that increasing the time of the synthesis lowers the rate of growth of carbon nanostructures due to the deactivation of the catalyst. The Raman spectroscopy measurements confirm the presence of disordered carbon corresponding to CNFs in the specimen. X-ray photoelectron spectroscopy showed the presence of aluminum carbide in the hot pressed samples. An aluminum composite material prepared using 1 wt.% CNFs obtained by uniaxial cold pressing and sintering showed 30% increase in the hardness compared to pure aluminum, whereas the composites prepared by hot pressing showed 80% increase in the hardness. Composite materials have satisfactory ductility. Thus, the aluminum based material reinforced with carbon nanostructures should be appropriate for creating high-strength and light compacts for aerospace and automotive applications and power engineering.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7355

  6. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  7. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    Science.gov (United States)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-05-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  8. Hydrogen generation through massive corrosion of deformed aluminum in water

    Energy Technology Data Exchange (ETDEWEB)

    Czech, E.; Troczynski, T. [Materials Engineering Department, University of British Columbia, 309-6350 Stores Rd., Vancouver, BC V6T 1Z4 (Canada)

    2010-02-15

    Aluminum, one of most reactive metals, rapidly corrodes in strong acidic or alkaline solutions but passivates at pH of about 5-9. We have determined that the passivation of aluminum in this range of pH, and in particular in regular tap water, can be substantially prevented after milling of aluminum with water-soluble inorganic salts (referred to as ''WIS''), such as KCl or NaCl. Ensuing corrosion of Al in tap water, with accompanying release of hydrogen and precipitation of aluminum hydroxide, at normal pressure and moderate temperatures ({proportional_to}55 C) is rapid and substantial. For example, {proportional_to}92% of the Al in the Al-WIS system when milled for 1 h and {proportional_to}81% when milled for 15 min, corrodes in 1 h, with the release of 1.5 mol of hydrogen per each mole of Al consumed in the reaction. Besides gaseous hydrogen, only solid aluminum hydroxides were formed as the reaction byproducts, opening up the possibility of straightforward recycling of the system. The effects of WIS concentration, chemistry of other additives, powder particle size, temperature, and milling conditions on the reaction kinetics are reported. (author)

  9. Electrorefining of aluminum alloy in ionic liquids at low temperatures

    Directory of Open Access Journals (Sweden)

    Kamavaram V.

    2003-01-01

    Full Text Available The electrorefining of aluminum alloy (A360 in ionic liquids at low temperatures has been investigated. The ionic liquid electrolyte was prepared by mixing anhydrous AlCl3 and 1-Butyl-3- methylimidazolium chloride (BMIC in appropriate proportions. The effect of the cell voltage temperature, and the composition of the electrolyte on the electrorefining process has been studied. The characterization of the deposited aluminum was performed using scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The influence of experimental parameters such as cell voltage and concentration of AlCl3 in the electrolyte on the deposit morphology was discussed. The composition of the aluminum deposits was analyzed using X-ray fluorescence spectrometer (XRF. Aluminum deposits with purity higher than 99.89 % were obtained. At a cell voltage of 1.0 V vs. Al/Al(III, the energy consumption was about 3 kWh/kg-Al. The main advantage of the process is low energy consumption compared to the existing industrial aluminum refining process.

  10. Fluoride and aluminum in teas and tea-based beverages

    Directory of Open Access Journals (Sweden)

    Hayacibara Mitsue Fujimaki

    2004-01-01

    Full Text Available OBJECTIVE: To evaluate fluoride and aluminum concentration in herbal, black, ready-to-drink, and imported teas available in Brazil considering the risks fluoride and aluminum pose to oral and general health, respectively. METHODS: One-hundred and seventy-seven samples of herbal and black tea, 11 types of imported tea and 21 samples of ready-to-drink tea were divided into four groups: I-herbal tea; II-Brazilian black tea (Camellia sinensis; III-imported tea (Camellia sinensis; IV-ready-to-drink tea-based beverages. Fluoride and aluminum were analyzed using ion-selective electrode and atomic absorption, respectively. RESULTS: Fluoride and aluminum levels in herbal teas were very low, but high amounts were found in black and ready-to-drink teas. Aluminum found in all samples analyzed can be considered safe to general health. However, considering 0.07 mg F/kg/day as the upper limit of fluoride intake with regard to undesirable dental fluorosis, some teas exceed the daily intake limit for children. CONCLUSIONS: Brazilian and imported teas made from Camellia sinensis as well as some tea-based beverages are sources of significant amounts of fluoride, and their intake may increase the risk of developing dental fluorosis.

  11. Load partitioning in aluminum syntactic foams containing ceramic microspheres

    International Nuclear Information System (INIS)

    Syntactic foams were fabricated by pressure-infiltrating liquid aluminum (commercial purity and 7075-Al) into a packed preform of silica-mullite hollow microspheres. These foams were subjected to a series of uniaxial compression stresses while neutron or synchrotron X-ray diffraction measurements of elastic strains in the matrix and the microspheres were obtained. As for metal matrix composites with monolithic ceramic reinforcement, load transfer in the pure aluminum foams is apparent between the two phases during elastic deformation, and is affected at higher stresses by matrix plasticity. Calculating effective stresses from the lattice strains shows that the microspheres unload the pure aluminum matrix by a factor of about 2. In the aluminum alloy foams, an in situ reaction between silica and the melt leads to the conversion of silica to alumina in the microsphere walls and the precipitation of silicon particles in the matrix. This affects the load transfer between the matrix and the reinforcement (microspheres and particles), and increases the macroscopic foam stiffness by over 40%, as compared to the pure aluminum foams. Composite micromechanical modeling provides good predictions of the elastic moduli of the syntactic foams, capturing the effects of load transfer and suggesting that significant stiffness improvements can be achieved in syntactic foams by the use of microspheres with stiff walls and/or by the incorporation of a stiff reinforcing phase within the metallic matrix

  12. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    International Nuclear Information System (INIS)

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  13. High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays.

    Science.gov (United States)

    Olson, Jana; Manjavacas, Alejandro; Basu, Tiyash; Huang, Da; Schlather, Andrea E; Zheng, Bob; Halas, Naomi J; Nordlander, Peter; Link, Stephan

    2016-01-26

    Chromatic devices such as flat panel displays could, in principle, be substantially improved by incorporating aluminum plasmonic nanostructures instead of conventional chromophores that are susceptible to photobleaching. In nanostructure form, aluminum is capable of producing colors that span the visible region of the spectrum while contributing exceptional robustness, low cost, and streamlined manufacturability compatible with semiconductor manufacturing technology. However, individual aluminum nanostructures alone lack the vivid chromaticity of currently available chromophores because of the strong damping of the aluminum plasmon resonance in the visible region of the spectrum. In recent work, we showed that pixels formed by periodic arrays of Al nanostructures yield far more vivid coloration than the individual nanostructures. This progress was achieved by exploiting far-field diffractive coupling, which significantly suppresses the scattering response on the long-wavelength side of plasmonic pixel resonances. In the present work, we show that by utilizing another collective coupling effect, Fano interference, it is possible to substantially narrow the short-wavelength side of the pixel spectral response. Together, these two complementary effects provide unprecedented control of plasmonic pixel spectral line shape, resulting in aluminum pixels with far more vivid, monochromatic coloration across the entire RGB color gamut than previously attainable. We further demonstrate that pixels designed in this manner can be used directly as switchable elements in liquid crystal displays and determine the minimum and optimal numbers of nanorods required in an array to achieve good color quality and intensity. PMID:26639191

  14. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    Science.gov (United States)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-03-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  15. Fracture toughness of steel--aluminum deformation welds

    International Nuclear Information System (INIS)

    A study of the fracture toughness (in this case, G/sub Ic/) of steel--aluminum deformation welds using a specially developed double cantilever beam fracture toughness specimen is presented. Welds made at 3500C were heat treated at 360, 380, 400, 420, and 4400C. An intermetallic reaction product layer of Fe2Al5 is formed at the steel--aluminum interface with increasing heat treating temperature and time by a process of nucleation and growth of discrete particles. A transition in toughness from a higher average G/sub Ic/ value (6097 N/m) to a very low average G/sub Ic/ value (525 N/m) is observed. The decrease in toughness is accompanied by an increase in Fe2Al5 particle diameter from 4 to 8 μm. Failure at the higher toughness values is characterized by ductile rupture through the aluminum. At the lower toughness values, failure occurs between the aluminum and the Fe2Al5 reaction product layer. A void layer forming by a vacancy condensation mechanism in the aluminum adjacent to the Fe2Al5 is shown to cause the embrittlement

  16. Heat Transfer and Acoustic Properties of Open Cell Aluminum Foams

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties. A water heating system and silencers were organized as a first step for its applications. The temperature increase between the top and bottom of the foam became larger as the cell size increased in the heat transfer measurement. Sound absorption ratio of the close cell foams was 60%-100%,whereas the open cell aluminum foam showed only 10%-20% of sound absorption at low frequency. When the prototype electric water heater manufactured by combining aluminum open cell foam with a heater was heated to 100-400℃, the highest temperature of water was in the range of 16-46℃. This suggests that there could be potential for this type of heater to be used as a commercial electric water heater. Sound silencer made with the aluminum open cell foam was applied to exit of exhaustion side at air pressure line. Sound silencing effect of open-celled aluminum foam showed that the noise level went down by introducing smaller cell size foam.

  17. Fluoride and aluminum release from restorative materials using ion chromatography

    Directory of Open Access Journals (Sweden)

    Zeynep Okte

    2012-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the amounts of fluoride and aluminum released from different restorative materials stored in artificial saliva and double-distilled water. Material and METHODS: Cylindrical specimens (10 x 1 mm were prepared from 4 different restorative materials (Kavitan Plus, Vitremer, Dyract Extra, and Surefil. For each material, 20 specimens were prepared, 10 of which were stored in 5 mL artificial saliva and 10 of which were stored in 5 mL of double-distilled water. Concentrations of fluoride and aluminum in the solutions were measured using ion chromatography. Measurements were taken daily for one week and then weekly for two additional weeks. Data were analyzed using two-way ANOVA and Duncan's multiple range tests (p<0.05. RESULTS: The highest amounts of both fluoride and aluminum were released by the resin-modified glass ionomer cement Vitremer in double-distilled water (p<0.05. All materials released significantly more fluoride in double-distilled water than in artificial saliva (p<0.05. In artificial saliva, none of the materials were observed to release aluminum. CONCLUSION: It was concluded that storage media and method of analysis should be taken into account when the fluoride and aluminum release from dental materials is assessed.

  18. 77 FR 62535 - Hydro Aluminum North America, Inc., Midwest Region, Including On-Site Leased Workers From...

    Science.gov (United States)

    2012-10-15

    ... Employment and Training Administration Hydro Aluminum North America, Inc., Midwest Region, Including On- Site Leased Workers From Employment Group, Aerotek, and Manpower, Kalamazoo, Michigan; Hydro Aluminum North... and former workers of Hydro Aluminum North America, Inc., Kalamazoo, Michigan. The subject...

  19. Thin films of aluminum nitride and aluminum gallium nitride for cold cathode applications

    Science.gov (United States)

    Sowers, A. T.; Christman, J. A.; Bremser, M. D.; Ward, B. L.; Davis, R. F.; Nemanich, R. J.

    1997-10-01

    Cold cathode structures have been fabricated using AlN and graded AlGaN structures (deposited on n-type 6H-SiC) as the thin film emitting layer. The cathodes consist of an aluminum grid layer separated from the nitride layer by a SiO2 layer and etched to form arrays of either 1, 3, or 5 μm holes through which the emitting nitride surface is exposed. After fabrication, a hydrogen plasma exposure was employed to activate the cathodes. Cathode devices with 5 μm holes displayed emission for up to 30 min before failing. Maximum emission currents ranged from 10-100 nA and required grid voltages ranging from 20-110 V. The grid currents were typically 1 to 104 times the collector currents.

  20. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J

    2008-09-04

    Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat

  1. Mechanical behavior of open cell aluminum foams

    Science.gov (United States)

    Zhou, Jikou

    Open cell metallic foams are relatively new materials with increasingly applications due to their attractive combinations of physical, chemical, mechanical and optical properties. Since plastic deformation in the struts involves dislocation motion, dislocation slip bands are used to track the initiation/propagation and locations of plastic deformation in individual struts. We find that the onset of plastic deformation in struts is far beyond the observable strut/cell shape changes, and both plastic bending and buckling are strut deformation modes. To measure the strut mechanical properties, an existing micro-scale tensile tester was updated to test the individual struts extracted from foams using electro-discharged machining. The micro-tensile testing results show that the foam struts are typically more ductile and one time stronger than the corresponding fully dense alloy. To integrate the measured strut and foam properties, a four-strut structure unit is identified as a structural representative of the open cell foam structure. Based on the observed strut deformation modes, mechanics analysis is performed on the structure unit to predict the foam stiffness and strength. The predictions are in good agreement with the measured data, suggesting the significance of the studies on the foam strut properties and deformation. This model also predicts the bounds of the foam strengths. Under cyclic compression, foams fail due to damage accumulation in individual struts, in which surface cracks initiate and grow. At low stress levels, surface cracks are formed in multiple struts that are distributed across the foam block. This results in an abrupt strain jump due to the crush of foam block, upon foam failure. To meet applications requirements, open cell aluminum foams are usually annealed or strengthened. The studies are carried out in the foams in the as-fabricated (F), annealed (O) and T6-strengthed (T6) conditions. We find that annealing and T6 strengthening

  2. Viscosity of aluminum under shock-loading conditions

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Juan; Liu Fu-Sheng; Zhang Ming-Jian; Sun Yan-Yun

    2011-01-01

    A reliable data treatment method is critical for viscosity measurements using the disturbance amplitude damping method of shock waves. In this paper the finite difference method is used to obtain the numerical solutions for the disturbance amplitude damping behaviour of the sinusoidal shock front in a flyer-impact experiment. The disturbance amplitude damping curves are used to depict the numerical solutions of viscous flow. By fitting the experimental data to the numerical solutions of different viscosities, we find that the effective shear viscosity coefficients of shocked aluminum at pressures of 42, 78 and 101 GPa are (1500±100) Pa. s, (2800±100) Pa. s and (3500±100) Pa. s respectively. It is clear that the shear viscosity of aluminum increases with an increase in shock pressure, so aluminum does not melt below a shock pressure of 101 GPa. This conclusion is consistent with the sound velocity measurement.

  3. In vitro interactions between macrophages and aluminum-containing adjuvants.

    Science.gov (United States)

    Rimaniol, Anne-Cécile; Gras, Gabriel; Clayette, Pascal

    2007-09-17

    Intramuscular administration of aluminum-adjuvanted vaccines induces an infiltration of aluminum-containing macrophages between muscle fibers. In vitro stimulation of human monocyte-derived macrophages with aluminum hydroxide (AlOOH) induces similar intracellular crystalline inclusions as well as phenotypical and functional modifications. We compared in this study the ability of other adjuvants to exert similar changes in macrophages in vitro. All mineral salts, i.e. aluminic (AlOOH, AlPO(4)) and non-aluminic mineral adjuvants (CaPO(4), FePO(4)) but not emulsion were able to increase macrophages capacity to potentiate autologous memory T lymphocyte proliferation, while only aluminic adjuvants induced CD83 expression and increased CD86 on macrophages. All together, this suggests that aluminic and non-aluminic adjuvants exerted their immunoactivities by distinct mechanisms on macrophages. PMID:17689842

  4. Characterization of 2024-T3: An aerospace aluminum alloy

    International Nuclear Information System (INIS)

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al2CuMg (S-phase) and the CuAl2 (θ') phases indicated precipitation strengthening in the aluminum alloy

  5. Solubility of Aluminum in Cryolite-Based Melts

    Science.gov (United States)

    Danielik, V.; Fellner, P.; Sýkorová, A.; Thonstad, J.

    2010-04-01

    The solubility of aluminum in NaF-AlF3-Al2O3 melts was investigated between 800 °C and 960 °C. The amount of dissolved metal in rapidly cooled samples was analyzed by the reaction with hydrochloric acid under the formation of hydrogen—the volume of which then was determined. Four thermodynamic models that describe the high-temperature equilibrium of aluminum reactions with the NaF-AlF3 melt were proposed. The best fit for the experimental data was obtained by assuming the existence of a monovalent aluminum species, AlF and {text{AlF}}_{ 2}^{ - } , as well as elemental sodium.

  6. Refractory Characteristics of Aluminum Dross-Kaolin Composite

    Science.gov (United States)

    Adeosun, S. O.; Akpan, E. I.; Dada, M. O.

    2014-11-01

    The suitability of using aluminum dross waste and kaolin to produce refractory bricks is experimentally studied. Thirty brick samples of different blends are produced, dried at 30°C, dried further at 110°C, and fired at 1200°C. The firing temperature point, bulk density, apparent porosity, thermal conductivity, thermal shock, loss on ignition, permeability, shatter index, and shrinkage of the bricks blends are determined. The results show that some blend samples have good refractory characteristics with mixing ratio 4:1:2 (representing weight in grams of aluminum dross, plastic clay, and kaolin, respectively). The evaluations of studied properties reveal the possibility for aluminum dross waste to be used as matrix in refractory bricks.

  7. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510oC) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  8. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    HARRINGTON SJ

    2011-01-06

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  9. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  10. Residual stress in quenched 7075 aluminum alloy thick plates

    Institute of Scientific and Technical Information of China (English)

    林高用; 张辉; 朱伟; 彭大暑; 梁轩; 周鸿章

    2003-01-01

    The influence of quenching water temperature, pre-stretching amount and aging temperature and times on residual stress in 7075 aluminum thick plate was studied by the measurement of residual stress using drilling hole method. The results indicate that residual stress decreases by 30% with increasing quenching water temperature from 40 ℃ to 80 ℃, 20% with increasing aging temperature from 100 ℃ to 180 ℃,and 20% with increasing aging times from 5 h to 25 h. Also, residual stress decreases to zero with increasing pre-stretching amount to approximately 2%. Hence, residual stress in 7075 aluminum thick plate is reduced by the control of quenching water temperature at 80 ℃ and with pre-stretching amount of about 2%. An optimal aging temperature and time should be systemically investigated to obtain combination of high mechanical performances and lower residual stress for manufacturing of 7075 aluminum alloy thick plates.

  11. Axenic aerobic biofilms inhibit corrosion of copper and aluminum.

    Science.gov (United States)

    Jayaraman, A; Ornek, D; Duarte, D A; Lee, C C; Mansfeld, F B; Wood, T K

    1999-11-01

    The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm. PMID:10616712

  12. A Case of Recurrent Renal Aluminum Hydroxide Stone

    Directory of Open Access Journals (Sweden)

    Basri Cakıroglu

    2014-01-01

    Full Text Available Renal stone disease is characterized by the differences depending on the age, gender, and the geographic location of the patients. Seventy-five percent of the renal stone components is the calcium (Ca. The most common type of the stones is the Ca oxalate stones, while Ca phosphate, uric acid, struvite, and sistine stones are more rarely reported. Other than these types, triamterene, adenosine, silica, indinavir, and ephedrine stones are also reported in the literature as case reports. However, to the best of our knowledge, aluminum hydroxide stones was not reported reported before. Herein we will report a 38-years-old woman with the history of recurrent renal colic disease whose renal stone was determined as aluminum hydroxide stone in type. Aluminum mineral may be considered in the formation of kidney stones as it is widely used in the field of healthcare and cosmetics.

  13. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na2SO4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (Rp) was detected for the samples anodized in 20% phosphoric acid

  14. Conceptual Design of the Aluminum Reflector Antenna for DATE5

    Science.gov (United States)

    Qian, Yuan; Kan, Frank W.; Sarawit, Andrew T.; Lou, Zheng; Cheng, Jing-Quan; Wang, Hai-Ren; Zuo, Ying-Xi; Yang, Ji

    2016-08-01

    DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.

  15. Aluminum chloride restoration of in-situ leached uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Grant, D.C.; Burgman, H.A.

    1984-01-01

    During in-situ uranium mining using ammonium bicarbonate lixiviant, the ammonium exchanges with cations on the ore's clay. After mining is complete, the ammonium may desorb into post-leach ground water. For the particular ore studied, other elements (uranium and selenium) that are mobilized during the leaching process, have also been found in post-leach ground water. Laboratory column tests, used to simulate the leaching process, have shown that aluminum chloride can rapidly remove ammonium from the ore and, thus, greatly reduce the subsequent ammonium leakage level into ground water. The aluminum chloride has also been found to reduce the leakage levels of uranium and selenium. In addition, the aluminum chloride treatment produces a rapid increase in permeability.

  16. Aluminum chloride restoration of in situ leached uranium ores

    International Nuclear Information System (INIS)

    During in situ uranium mining using ammonium bicarbonate lixiviant, the ammonium exchanges with cations on the ore's clay. After mining is complete, the ammonium may desorb into post-leach ground water. For the particular ore studied, other chemicals (i.e., uranium and selenium) which are mobilized during the leach process, have also been found in the post-leach ground water. Laboratory column tests, used to simulate the leaching process, have shown that aluminum chloride can rapidly remove ammonium from the ore and thus greatly reduce the subsequent ammonium leakage level into ground water. The aluminum chloride has also been found to reduce the leakage levels of uranium and selenium. In addition, the aluminum chloride treatment produces a rapid improvement in permeability

  17. Aluminum chloride restoration of in situ leached uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Grant, D.C.; Burgman, M.A.

    1982-09-01

    During in situ uranium mining using ammonium bicarbonate lixiviant, the ammonium exchanges with cations on the ore's clay. After mining is complete, the ammonium may desorb into post-leach ground water. For the particular ore studied, other chemicals (i.e., uranium and selenium) which are mobilized during the leach process, have also been found in the post-leach ground water. Laboratory column tests, used to simulate the leaching process, have shown that aluminum chloride can rapidly remove ammonium from the ore and thus greatly reduce the subsequent ammonium leakage level into ground water. The aluminum chloride has also been found to reduce the leakage levels of uranium and selenium. In addition, the aluminum chloride treatment produces a rapid improvement in permeability.

  18. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    International Nuclear Information System (INIS)

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  19. Thermal compatibility studies of unirradiated uranium silicide dispersed in aluminum

    International Nuclear Information System (INIS)

    Powder metallurgy dispersions of uranium silicides in an aluminum matrix have been developed by the international Reduced Enrichment for Research and Test Reactors program as a new generation of proliferation-resistant fuels. A major issue of concern is the compatibility of the fuel with the matrix material and the dimensional stability of this fuel type. A total of 45 miniplate-type fuel plates were annealed at 4000C for up to 1981 hours. A data base for the thermal compatibility of unirradiated uranium silicide dispersed in aluminum was established. No modification tested of a standard fuel plate showed any significant reduction of the plate swelling. The cause of the thermal growth of silicide fuel plates was determined to be a two-step process: (1) the reaction of the uranium silicide with aluminum to form U(AlSi)3 and (2) the release of hydrogen and subsequent creep and pillowing of the fuel plate. 9 references, 4 figures, 6 tables

  20. Thermal Stress Behavior of Aluminum Nanofilms under Heat Cycling

    International Nuclear Information System (INIS)

    In-situ thermal stress in aluminum nanofilms with silicon oxide glass (SOG) passivation was investigated by using synchrotron radiation at the SPring-8. Aluminum films of varying thickness (10, 20, 50 nm) were deposited on thermally oxidized silicon wafers by RF magnetron sputtering. Each specimen was heated in air over two cycles between room temperature and 300 deg. C. The following results were obtained: (1) {111} planes of aluminum nanofilm crystals were oriented parallel to the substrate normal; (2) the intensity of 111 diffraction was almost independent of temperature except in the case of the 50-nm-thick film; (3) the FWHM of 111 diffraction was almost independent of temperature at any given film thickness; and (4) for all films, the thermal stress varied linearly with heating temperature, and the hysteresis between the heating and cooling steps disappeared

  1. Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking.

    Science.gov (United States)

    Duempelmann, Luc; Casari, Daniele; Luu-Dinh, Angélique; Gallinet, Benjamin; Novotny, Lukas

    2015-12-22

    We fabricate and characterize large-area plasmonic substrates that feature asymmetric periodic nanostructures made of aluminum. Strong coupling between localized and propagating plasmon resonances leads to characteristic Fano line shapes with tunable spectral positions and widths. Distinctive colors spanning the entire visible spectrum are generated by tuning the system parameters, such as the period and the length of the aluminum structures. Moreover, the asymmetry of the aluminum structures gives rise to a strong symmetry broken color rendering effect, for which colors are observed only from one side of the surface normal. Using a combination of immersed laser interference lithography and nanoimprint lithography, our color rendering structures can be fabricated on areas many inches in size. We foresee applications in anticounterfeiting, photovoltaics, sensing, displays, and optical security. PMID:26498131

  2. Updating a 1950s-generation aluminum smelter

    Science.gov (United States)

    Chaudhry, O. S.; Prasad, R. N.

    1992-11-01

    Hindalco's aluminum electrolysis cells were initially installed in 1962, and the technology was based on 1950s-generation pots. Although Hindalco expanded its aluminums melting capacity from 20,000 tonnes per year to 175,000 tonnes per year, the basic design of the pots remained unchanged. In view of energy price increases, and to keep pace with the latest developments in aluminum smelting technology, Hindalco undertook efforts to modernize its facilities. In spite of numerous constraints, the Hindalco smelter has been able to achieve performance nearly equivalent to that of 1980s-generation pots by retrofitting new technologies. This has resulted in considerable savings in electrical energy consumption and raw materials usage.

  3. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  4. New all aluminum alloy ultrahigh vacuum system and fittings

    International Nuclear Information System (INIS)

    The Al-ICF ALFLAT FLANGE corresponds to the ordinary stainless steel Conflat flange. The Al-ICF ALFLAT FLANGE is made of special aluminum alloy 2219-T87 by forging. It has the highest strength at elevated high temperature among all aluminum alloys as well as superior weldability and stress corrosion cracking resistivity. CrN or TiC coating on the flange surface by ion plating. The CrN or TiC treatment on the surface gave nearly protection against sticking between the knife edge of the flange and the aluminum gasket and surface scratching. Sealing surface of the knife edge for the Helicoflex is finished to a smooth mirror surface by a diamond tool. (author)

  5. Experimental study on activating welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  6. Comments on process of duplex coatings on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  7. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.;

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted in...... parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated in...

  8. Wear of aluminum and hypoeutectic aluminum-silicon alloys in boundary-lubricated pin-on disk sliding

    Science.gov (United States)

    Ferrante, J.; Brainard, W. A.

    1979-01-01

    The friction and wear of pure aluminum and a number of hypoeutectic aluminum-silicon alloys (with 3 to 12 wt %Si) were studied with a pin-on-disk apparatus. The contacts were lubricated with mineral oil and sliding was in the boundary-lubrication regime at 2.6 cm/sec. Surfaces were analyzed with photomicrographs, scanning electron microscopy, X-ray dispersive analysis, and diamond pyramid hardness measurements. There were two wear regimes for the alloys - high and low - whereas pure aluminum exhibited a high wear rate throughout the test period. Wear rate decreased and the transition stress from high to low wear increased with increasing hardness. There was no correlation between friction coefficient and hardness. A least squares curve fit indicated a wear-rate dependence greater than the inverse first power of hardness. The lower wear rates of the alloys may be due to the composites of silicon platelets in aluminum resulting in increased hardness and thus impairing the shear of the aluminum.

  9. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    Science.gov (United States)

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  10. Optimized wave-mixing in single and compact aluminum nanoantennas

    CERN Document Server

    de Corny, Maeliss Ethis; Laurent, Guillaume; Jeannin, Mathieu; Olgeirsson, Logi; Drezet, Aurélien; Huant, Serge; Dantelle, Géraldine; Nogues, Gilles; Bachelier, Guillaume

    2016-01-01

    The outstanding optical properties for plasmon resonances in noble metal nanoparticles enable the observation of non-linear optical processes such as second-harmonic generation (SHG) at the nanoscale. Here, we investigate the SHG process in single rectangular aluminum nanoantennas and demonstrate a doubly resonant regime in very compact nanostructures. In this regime, we highlight a nonlinear intensity eight times higher compared to a single resonant enhancement. Quantitative agreement is obtained between experimental and simulated far-field SHG maps taking into account the real experimental configuration (focusing and substrate). This allows identifying the physical origin of the SHG in small aluminum nanoantennas as arising mainly from local surface sources.

  11. Aluminum Elicits Exocellular Phosphatidylethanolamine Production in Pseudomonas fluorescens

    OpenAIRE

    Appanna, V. D.; Pierre, M. S.

    1996-01-01

    Pseudomonas fluorescens ATCC 13525 was found to grow in a minimal mineral medium supplemented with millimolar amounts of aluminum, a known environmental toxicant. During the stationary phase of growth, the trivalent metal was localized in a phosphatidylethanolamine (PE)-containing residue. The concentration of PE in pellets ranged from 1.7 to 13.9 mg ml of culture(sup-1) in media supplemented with 1 to 30 mM aluminum. Although the gelatinous residue was observed during the stationary phase of...

  12. Pitting behavior of 2024 aluminum alloy in nitrate solutions

    International Nuclear Information System (INIS)

    Pitting of 2024 aluminum alloy was investigated in chloride-containing nitrate solutions. Potentiostatic and potentiokinetic experiments followed by examination of the sample surface were performed in order to relate the pitting behavior of the alloy to its microstructure. The SEM examination showed that copper-rich particles were preferential sites for pitting. These particles started dissolving during the polarization in nitrate solutions due to the agressivity of nitrate ions toward copper. In the presence of chloride ions, these particles were completely dissolved. Nitrate ions on the other hand appeared to have a very strong inhibitory effect toward pitting in the aluminum matrix. (author)

  13. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  14. Forming analysis and application for aluminum-alloy material

    Institute of Scientific and Technical Information of China (English)

    Wei Yuansheng

    2012-01-01

    The increase in car ownership brought about by energy shortages, and environmental crises became more acute. The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency. In addition to that, lightweight body is the key. Aluminum, magnesium alloy as significant materials of lightweight, and the application amount in the car body is a significant upward trend. However, there is high cost of material, with im- mature applied technology and a series of bottleneck problems. All of them affect general application of lightweight mate- rials. This paper focuses on forming process issues for aluminum, magnesium alloy and the solutions to achieve.

  15. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina;

    1993-01-01

    The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be...

  16. Initial Stages of Recrystallization in Aluminum of Commercial Purity

    DEFF Research Database (Denmark)

    Hansen, Niels; Bay, Bent

    1979-01-01

    In commercial aluminum with a purity of 99.4 pct, the formation and growth of recrystallization nuclei were studied by techniques such asin-situ annealing in a high voltage electron microscope, transmission electron microscopy and light microscopy. Sample parameters were the initial grain size (370...... by the FeAl3 particles present in the commercial aluminum as impurities. The nucleation temperatures determined by high voltage electron microscopy and transmission electron microscopy decrease markedly when the initial grain size is decreased both after 50 and 90 pct cold rolling; a less pronounced...

  17. A model for recovery kinetics of aluminum after large strain

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels

    2012-01-01

    A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardness...... for conditions where recovery and recrystallization overlap. The model is applied to the isothermal recovery at temperatures between 140 and 220°C of commercial purity aluminum deformed to true strain 5.5. EBSD measurements have been carried out to detect the onset of discontinuous recrystallization...

  18. Hot corrosion resistance of nickel-chromium-aluminum alloys

    Science.gov (United States)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  19. The corrosion protection of 2219-T87 aluminum by anodizing

    Science.gov (United States)

    Danford, M. D.

    1991-01-01

    Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils).

  20. Measurement of friction coefficient in aluminum sheet warm forming

    Institute of Scientific and Technical Information of China (English)

    GUO Zheng-hua; LI Zhi-gang; HUANG Chong-jiu; DONG Xiang-huai

    2005-01-01

    Aluminum alloy sheets are used more and more to manufacture auto panels. Because the friction behavior is very complicated, it is necessary to study the friction during the aluminum sheet warm forming process. The author has designed a new probe sensor based on an online tribotest method which directly measures friction coefficient in the forming process. Experiments of cup drawing have been conducted and the friction coefficients under different forming conditions have been measured. The results indicate that the forming parameters, such as forming temperature, blankholding force and lubrication status have great effect upon the friction coefficient.

  1. Investigation of aluminum-steel joint formed by explosion welding

    Science.gov (United States)

    Kovacs-Coskun, T.; Volgyi, B.; Sikari-Nagl, I.

    2015-04-01

    Explosion welding is a solid state welding process that is used for the metallurgical joining of metals. Explosion cladding can be used to join a wide variety of dissimilar or similar metals [1]. This process uses the controlled detonation of explosives to accelerate one or both of the constituent metals into each other in such a manner as to cause the collision to fuse them together [2]. In this study, bonding ability of aluminum and steel with explosion welding was investigated. Experimental studies, microscopy, microhardness, tensile and bend test showed out that, aluminum and steel could be bonded with a good quality of bonding properties with explosion welding.

  2. The importance of fragment size distribution on underwater aluminum ignition

    International Nuclear Information System (INIS)

    In the study of postulated severe accidents for uranium-aluminum-fueled research reactors, it is necessary to consider the possibility and consequences of fuel/coolant interactions. In the event of a severe accident, where the fuel melts and comes into contact with the coolant, an explosion of considerable violence may occur due to the very fast heat transfer rates involved in the process; this is referred to as thermal interaction. However, when a chemical reaction between the molten aluminum and water occurs simultaneously, its contribution to the energetics of the explosion will produce a much more damaging explosion, referred to as an ignition-type interaction

  3. Tank 12 Sludge Characterization and Aluminum Dissolution Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Hay, M.; Zeigler, K; Stone, M.

    2010-05-05

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of {approx}7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low ({approx}20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40

  4. Ergonomics assessment in an aluminum factory in Iceland

    OpenAIRE

    Gudjonsdottir, Anna

    2015-01-01

    The purpose of this study was to do an ergonomic assessment in aluminum factory and to write a literature review of factory work and health. The results from the ergonomic assessment where then compared to the literature. The aluminum factory in which the ergonomic assessment was carried out was the Rio Tinto Alcan factory in Iceland. The reason why I did choose to do the assessment there was my work experience as summer worker for 2 summers in the factory’s casthouse. What was found in t...

  5. Molten aluminum: Recent advances in weighing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    Stefansson, P. [Hydro Equipment AS, Oslo (Norway); Vee, O.I. [Procon a/s, Oslo (Norway); Sigfusson, T.I. [Univ. of Iceland, Reykjavik (Iceland). Science Inst.

    1996-10-01

    Logistics of molten metal is an important aspect of the efficiency of any aluminum smelter operation. The paper discusses a tapping method developed by Hydro Aluminum which has proven superior to the conventional crane or forklift tapping of potroom metal. The overall manning can be halved by the extensive rationalization of this method. The remote computer operated control of molten metal transfer by electronic scales mounted on the tapping vehicle is explained. As the metal needs no skimming, the dross/skim generation and sodium content of metal is shown with collected data. The impact and advantages of this novel engineering on the casthouse is finally explained and discussed in detail.

  6. Qingtongxia Aluminum Carrying Out Off-site Renovation in Ningdong Energy & Chemical Base

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Recently,the off-site renovation project of Qingtongxia Aluminum commenced the con- struction in Linhe General Industrial Park of Ningdong Energy & Chemical Base,symboliz- ing a concrete step of Qingtongxia Aluminum

  7. Aluminum Enterprises Say No to Output Reduction in Despite of Persistent Losses

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>In despite of half-a-year losses, there is no sign of massive output reduction of electrolytic aluminum enterprises. Zhang Rufeng, a senior analyst of the aluminum industry, told the reporter that the

  8. The Market is Concerned With the Actual Effect Caused by Output Reduction of 4 Aluminum Enterprises

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>According to China Non-ferrous Metal Industry Association,the 20 key domestic aluminum enterprises’ joint statement of output reduction caused a huge stir.Other aluminum enterprises gave positive response to the proposal of output

  9. Weiqiao Group’s Annual Production Capacity of Aluminum Might Top 600,000 tons

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Weiqiao Pioneering Group is poised to become the "top player" in the domestic aluminum in-dustry.Its subordinate Aluminum and Power Company is currently constructing early stage power plant in Changshan

  10. China’s Aluminum Alloy Die Castings Industry has Promising Prospects

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Engine aluminum alloy engine block die casting experienced rapid development in recent years. Domestic enterprises introduced large die casting machine automatic production lines, and developed large aluminum alloy die cast-

  11. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    International Nuclear Information System (INIS)

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed

  12. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, H.B. Jr.

    1999-10-21

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed.

  13. EVALUATION OF PROCESS SYSTEMS FOR EFFECTIVE MANAGEMENT OF ALUMINUM FINISHING WASTEWATERS AND SLUDGES

    Science.gov (United States)

    Innovative processes for use in treatment of wastewaters and sludges produced in anodizing, etching and painting extruded aluminum were investigated. Results of the research can be immediately implemented at many aluminum-finishing plants where sludge disposal restrictions and co...

  14. 46 CFR 160.035-6 - Construction of aluminum oar-, hand-, and motor-propelled lifeboats.

    Science.gov (United States)

    2010-10-01

    ... sternpost, and the propeller shaft stern tube to the sternpost. When using 6061-T6 aluminum, the welded area... aluminum, the welded area is to be checked by a nondestructive test method such as X-ray, ultrasonic...

  15. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants

    OpenAIRE

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B.; Matsushita, Taku; Shirasaki, Nobutaka

    2013-01-01

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual al...

  16. Effect of cerium addition on microstructure and texture of aluminum foil for electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    王海燕; 李文学; 任慧平; 黄丽颖; 王向阳

    2010-01-01

    Anode foil of aluminum electrolytic capacitor,which requires large surface area for high capacitance,were prepared by rolling,annealing and electrochemical etching.Effects of cerium addition on the capacitance of aluminum electrolytic capacitors were investigated.Microstructure of the aluminum foil surface was observed by optical microscopy(OM) and scanning electron microscopy(SEM).Electron back scattered diffraction(EBSD) was also employed to reveal texture evolvement of cold-rolled aluminum foil after ann...

  17. Due To Surplus in Aluminum Capacity, a Number of Enterprises Experienced Loss to Varying Degrees

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Beginning from 2002,in China’s aluminum industry,aluminum output began to show surplus due to dwindling demand from downstream industry;in 2008 China’s aluminum surplus was expected to reach 500,000 tonnes.In recent years,capacity surplus in the aluminum industry has become widely known,in the final analysis,the reason is related to the accelerating speed of capacity

  18. Defects in aluminum foam with superfi ne open-cell structure

    OpenAIRE

    Wang Fang; Zhang Zhimin; Li Baocheng

    2008-01-01

    The infiltration casting process for producing aluminum foam includes three steps: preparing precursor using NaCl particles, infi ltrating molten aluminum and cleaning NaCl precursor. Defects occur during the preparation of aluminum foam with superfi ne open-cell structure, and infl uence the pore structure and performance of aluminum foam materials. The types of the defect and their forming mechanisms are analyzed in this paper. The defects include point defects and linear metal defects, and...

  19. Role of ethanol on aluminum induced biochemical changes on rat brain

    OpenAIRE

    Nayak, Parsunpriya; Kumar Das, Subir; Vasudevan, D M

    2006-01-01

    Aluminum and alcohol, both are well-accepted neurotoxin. The plausible mechanisms for their neurotoxicity are also common. Therefore, the effect of ethanol on aluminum induced biochemical changes in rat brain is being studied. In the present study, ethanol exposure significantly affected the aluminum and protein content of brain. The activities of acid phosphatase and alkaline phosphatase were also changed. Aluminum exposure, on the other hand, contributed significantly in the alterations of ...

  20. Effects of Korean Red Ginseng marc with aluminum sulfate against pathogen populations in poultry litters

    OpenAIRE

    Chung, Tae Ho; Park, Chul; Choi, In Hag

    2015-01-01

    Background The aim of this study was to evaluate the effects of Korean Red Ginseng marc with aluminum sulfate as litter amendments on ammonia, soluble reactive phosphorus, and pathogen populations in poultry litters. Methods Increasing levels of Korean Red Ginseng marc with aluminum sulfate were applied onto the surface of rice hull as a top-dress application; untreated rice hulls served as controls. Results: Treatment with Korean Red Ginseng marc with aluminum sulfate or aluminum sulfate alo...

  1. A New Ceramic Substrate Glaze with High Resistance to Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    Ming ZHOU; Ke LI; Da SHU; Jiao ZHANG; Baode SUN; Jun WANG

    2003-01-01

    Corrosion resistance of ceramic substrate glazes to molten aluminum was studied in this paper. The glazes can spreadslightly in aluminum alloy according to SEM examination of solidified interface between the glazes and aluminumalloy. The components of B2O3-P2O5 glazes were not detected with electron probe at the side of aluminum alloynear the interface, but the components of boron-free glaze were detected. It is shown that borophosphate glazes canresist the corrosion of molten aluminum.

  2. Electrodeposition of Vanadium Oxide/Manganese Oxide Hybrid Thin Films on Nanostructured Aluminum Substrates

    OpenAIRE

    Rehnlund, David; Valvo, Mario; Edström, Kristina; Nyholm, Leif

    2014-01-01

    Electrodeposition of functional coatings on aluminum electrodes in aqueous solutions often is impeded by the corrosion of aluminum. In the present work it is demonstrated that electrodeposition of vanadium, oxide films on nanostructured aluminum substrates can be achieved in acidic electrolytes employing a novel strategy in which a thin interspacing layer of manganese oxide is first electrodeposited on aluminum microrod substrates. Such deposited films, which were studied using SEM, XPS, XRD,...

  3. Flow characteristics of aluminum coated boron steel in hot press forming

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hwan JANG; Jae-Ho LEE; Byeong-Don JOO; Young-Hoon MOON

    2009-01-01

    The flow characteristics of aluminum coated boron steel in hot press forming were investigated. Furthermore, the effects of aluminum coated layer on press forming were analyzed during deep drawing. The results show that aluminum coated boron steel exhibits a high sensitivity on temperature and strain rate. Aluminum coating layer appears in surface flaking in a temperature range of 700-800 ℃, but smooth surface is formed above 900 ℃.

  4. Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats

    OpenAIRE

    Belaïd-Nouira, Yosra; Bakhta, Hayfa; Haouas, Zohra; Flehi-Slim, Imen; Ben Cheikh, Hassen

    2013-01-01

    Despite the reports on safety concerns regarding the relationship between aluminum salts and neurological and bone disease, many countries continue to use aluminum as phosphate binders among patients with renal failure. In search for a diet supplement that could reduce aluminum toxicity related to renal failure, we carried out this prospective animal study in which the fenugreek seeds were assessed for their effects on rats nephrotoxicity induced by aluminum chloride (AlCl3). Oral AlCl3 admin...

  5. Effect of anneal pre-treatment of polycrystalline aluminum sheets on synthesis of highly-ordered anodic aluminum oxide membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Anodic aluminum oxide (AAO) membranes with large ordered pore domains were successfully prepared by adopting the anneal pre-treatment of polycrystalline alu- minum sheets. A statistical method with Gaussian distribution was introduced to quantitatively study the size of the domain with ordered pores. The largest average area of ordered pore domains was 2.6 μm2±0.11 μm2. The corresponding AAO membrane was synthesized by aluminum sheets annealed at 893 K for 24 h.

  6. Domestic aluminum enterprises "stored electricity" in winter for the sake of self rescue

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Although the majority of industry insiders held pessimistic views toward aluminum price in this year, electrolytic aluminum enterprises must try hard to seek survival in limited space. In order to overcome the power problem which accounts for over 40% of electrolytic aluminum cost,

  7. MIIT: Aluminum Processing Industry will Focus on Work in Four Aspects

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Aluminum processing is a key component of China’s nonferrous metals industry.After many years of rapid development,China has become the world’s biggest manufacturer and consumer of aluminum products,and its overall strength has improved obviously.In 2014,the output of China’s aluminum processing products reached

  8. Guangxi Shanglin Aluminum Plant cross-regional technical upgrade project(phase 1)put into operation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The project(Phase 1)of cross-regional techni- cal upgrade of the aluminum plant of Guangxi Shanglin Nannan Industrial Co.was completed and put into operation on June 8,2007.The plant is a cross-regional technical upgrade pro- ject of Nanning Aluminum Plant,featuring the integration of coal,electricity and aluminum.

  9. The Current Situation and Prospect of Chinese Aluminum Use Carbon Supply and Demand

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>China has basically eliminated the practice of aluminum production with self-baking cell. The demand for carbon anode for aluminum has been growing in recent years corresponding to the output of aluminum,which has promoted the rapid growth of carbon anode industry.

  10. Zhongfu Industry Co., Ltd Plans to Invest an Additional 155 million yuan in Aluminum Processing

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On December 8,Zhongfu Industry Co.,Ltd announced that it planned to authorize its subsidiary Linzhou City Linfeng Aluminum Industry Co.,Ltd to add 155 million yuan investment into Linzhou City Linfeng Aluminum Electric & Aluminum Product Co.,Ltd.

  11. Guangdong Aluminum to Raise RMB 3 billion for New Production Base in Guizhou

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On July 7, a loan signing ceremony was held between the Guangdong Aluminum Group, China Construction Bank, Hua Xia Bank and Guangzhou Bank Consortium. It is reported that these banks will provide Guangdong Aluminum Group with RMB 30 billion for an alu-minum oxide and supporting bauxite mining project in Guizhou.

  12. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  13. 49 CFR 178.506 - Standards for metal drums other than steel or aluminum.

    Science.gov (United States)

    2010-10-01

    ... aluminum. 178.506 Section 178.506 Transportation Other Regulations Relating to Transportation PIPELINE AND... drums other than steel or aluminum. (a) The following are the identification codes for metal drums other than steel or aluminum: (1) 1N1 for a non-removable head metal drum; and (2) 1N2 for a removable...

  14. 78 FR 67116 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Science.gov (United States)

    2013-11-08

    ... Review, 74 FR 21781 (May 11, 2009); and Aluminum Extrusions From the People's Republic of China: Notice... ``Zhongshan Gold Mountain Aluminum Factory Ltd.'' See Initiation Notice, 78 FR at 38937. However, according to... Determination, 76 FR 18521 (April 4, 2011), and accompanying Issues and Decision Memorandum (Aluminum...

  15. 75 FR 44184 - Aluminum tris(O-ethylphosphonate), Butylate, Chlorethoxyfos, Clethodim, et al.; Proposed...

    Science.gov (United States)

    2010-07-28

    ... AGENCY 40 CFR Part 180 Aluminum tris(O-ethylphosphonate), Butylate, Chlorethoxyfos, Clethodim, et al..., etofenprox, fenbutatin-oxide, fosthiazate, propetamphos, and tebufenozide; the fungicides aluminum tris(O... for aluminum tris(O-ethylphosphonate) on pineapple fodder and forage because they are not...

  16. 40 CFR 180.415 - Aluminum tris (O-ethylphosphonate); tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum tris (O-ethylphosphonate... Tolerances § 180.415 Aluminum tris (O-ethylphosphonate); tolerances for residues. (a) General. Tolerances are established for residues of the fungicide aluminum tris(O-ethylphosphonate) in or on the following...

  17. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Science.gov (United States)

    2010-06-21

    ... countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum Extrusions From the People's Republic of China: Initiation of Countervailing Duty Investigation, 75 FR 22114... International Trade Administration Aluminum Extrusions from the People's Republic of China: Notice...

  18. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2010-08-19

    ...: Initiation of Antidumping Duty Investigation, 75 FR 22109 (April 27, 2010). On August 4, 2010, the Aluminum... International Trade Administration Aluminum Extrusions from the People's Republic of China: Postponement of... antidumping duty investigation on Aluminum Extrusions from the People's Republic of China.\\1\\ The notice...

  19. 29 CFR Appendix D to Subpart P of... - Aluminum Hydraulic Shoring for Trenches

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Aluminum Hydraulic Shoring for Trenches D Appendix D to.... 1926, Subpt. P, App. D Appendix D to Subpart P of Part 1926—Aluminum Hydraulic Shoring for Trenches (a) Scope. This appendix contains information that can be used when aluminum hydraulic shoring is...

  20. Article having an improved platinum-aluminum-hafnium protective coating

    Science.gov (United States)

    Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)

    2005-01-01

    An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.