WorldWideScience

Sample records for aluminum-molten salt contactor

  1. New Aluminum-Molten Salt Contactor for Pyrochemical Reprocessing of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    The demonstration of a new pyrometallurgical reprocessing route requires a technological breakthrough in the design of a new type of device compatible with temperatures up to 1000 deg. C. The authors discuss a pyro-processing device in which actinides are recovered by reductive extraction of actinide fluorides from molten fluoride salt contacted with a liquid aluminum phase. The liquid contactor must separate two liquid phases of the same density in a compact device of simple design with maximum efficiency at each chemical treatment stage, compatible with the thermal constraints and suitable for handling, assembly and disassembly in a hot cell. The liquid-liquid contactor ensures molten Al / molten salt separation using an openwork wall. The principle, patented in 2007, consists in using the surface tension and the interfacial tension properties of aluminum in contact with graphite or boron nitride. The Young-Laplace equation is used to calculate the openwork vessel dimensions. The satisfactory performance of this system was validated at laboratory scale by measuring the aluminum holdup in the openwork vessel with or without molten salt hydrostatic pressure. Mass transfer through the openwork material was also observed and verified by reductive extraction under inactive conditions (NdF3 recovery) and active conditions (UF4 recovery). (authors)

  2. V5 And V10 Contactor Testing With The Next Generation (CSSX) Solvent For The Savannah River Site Integrated Salt Disposition Process

    International Nuclear Information System (INIS)

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix(4)arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from ∼200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium (D(Cs)) in extraction from ∼15 to ∼60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H3BO3) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental program to test the full

  3. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental

  4. ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS

    Science.gov (United States)

    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  5. Engineering development studies for molten-salt breeder reactor processing No. 21

    International Nuclear Information System (INIS)

    The status of the following programs is reported: (1) continuous fluorinator development: autoresistance heating test AHT-4; (2) development of the metal transfer process; (3) salt-metal contactor development: experiments with a mechanically agitated, nondispersing contactor using water and mercury and in the salt-bismuth flowthrough facility; and (4) fuel reconstitution development: installation of equipment for a fuel reconstitution engineering experiment

  6. Characteristics of centrifugal rapid contactor, (3)

    International Nuclear Information System (INIS)

    Organic solvent yields the degradation product as a result of irradiation, in the extraction process of spent fuel reprocessing. The development of a centrifugal rapid contactor is required for the reduction of the solvent degradation by shortening the contact time. The effects of fine solid particles were investigated with a SGN-Robatel LX-208N contactor, following the uranium extraction and re-extraction performance tests. It was found as the experimental result that the considerable quantity of solids accumulated in the rotor of the centrifugal contactor. As for this experimental apparatus, the flow diagram for the centrifugal rapid contactor and auxiliary apparatuses is shown, which are the same system used for the uranium extraction and re-extraction tests. The schematic diagram, the typical stage construction and fluid transfer path of the LX-208 contactor are illustrated. The main specifications of the LX-208 contactor are as follows: the internal diameter of a rotating bowl 200 mm, the material SUS 316, the number of stages 8, and the total hold-up volume of the contactor 1.8 l. Most tests were carried out with aqueous feed only, because white Alundum is easily deposited in the rotor, and the particle concentration in effluent stream becomes undetectable when organic and aqueous feeds are supplied simultaneously. As the experimental results, the correlation of Alundum concentration in effluent and running time, the effect of rotor speed on effluent stream concentration, the particle size distribution curves for No. 6000 and No. 8000 white Alundum, the effect of flow rate on effluent stream concentration and the effect of flow rate on particle size distribution for both No. 6000 and No. 8000 white Alundum are presented. (Nakai, Y.)

  7. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  8. A vibration model for centrifugal contactors

    International Nuclear Information System (INIS)

    Using the transfer matrix method, we created the Excel worksheet ''Beam'' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (kB) of a motor after measuring the kB value for three different motors. The kB value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well

  9. Study on reliability technology of contactor relay

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-jin; ZHAO Jing-ying; WANG Hai-tao; YANG Chen-guang; SUN Shun-li

    2007-01-01

    In this paper, the reliability of contactor relay is studied. There are three main parts about reliability test and analysis. First, in order to analyze reliability level of contact relay, the failure ratio ranks are established as index base on the product level. Second, the reliability test method is put forward. The sample plan of reliability compliance test is gained from reliability sample theory. The failure criterion is ensured according to the failure modes of contactor relay. Third, after reliability test experiment, the analysis of failure physics is made and the failure reason is found.

  10. Nuclear material inventory estimation in solvent extraction contactors

    International Nuclear Information System (INIS)

    This report describes the development of simple nuclear material (uranium and plutonium) inventory relations for mixer-settler solvent extraction contactors used in reprocessing spent nuclear fuels. The relations are developed for light water reactor fuels where the organic phase is 30% tri-n-butylphosphate (TBP) by volume. For reprocessing plants using mixer-settler contactors as much as 50% of the nuclear material within the contactors is contained in A type (aqueous to organic extraction) contactors. Another very significant portion of the contactor inventory is in the partitioning contactors. The stripping contactors contain a substantial uranium inventory but contain a very small plutonium inventory (about 5 to 10% of the total contactor inventory). The simplified inventory relations developed in this work for mixer-settler contactors reproduce the PUBG databases within about a 5% standard deviation. They can be formulated to explicitly show the dependence of the inventory on nuclear material concentrations in the aqueous feed streams. The dependence of the inventory on contactor volumes, phase volume ratios, and acid and TBP concentrations are implicitly contained in parameters that can be calculated for a particular reprocessing plant from nominal flow sheet data. The terms in the inventory relations that represent the larger portion of the inventory in A type and partitioning contactors can be extended to pulsed columns virtually without change

  11. Recent advances in centrifugal contactors design

    International Nuclear Information System (INIS)

    Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs

  12. Rotating biological contactors: the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, Manuel A. [Ryerson Polytechnical Univ., Toronto, ON (Canada). Chemical Engineering Dept.; Smith, Tom [CMS Rotordisk Inc., Concord, ON (Canada); Vianna, Arlinda C. [Servico Nacional de Aprendizagem Industrial (SENAI), Salvador, BA (Brazil)

    1993-12-31

    In fifteen years, Rotating Biological Contactors (RBC) have become one of the most attractive technologies for secondary wastewater treatment. The present work is a review of the evolution of RBC technology in the last twenty years. In addition, the status of the technology in Canada is described, emphasizing industrial facilities and landfill leachate treatment. An enumeration of the most relevant development areas is included. (author). 34 refs., 3 figs., 7 tabs.

  13. Denitrification in anoxic rotating biological contactors

    OpenAIRE

    Teixeira, P; Oliveira, Rosário; Mota, M.

    2009-01-01

    Rotating Biological Contactors (RBCs) constitute a very unique and superior alternative for biodegradable matter and nitrogen removal on account of their feasibility, simplicity of design and operation, short start-up, low land area requirement, low energy consumption, low operating and maintenance cost and treatment efficiency, as well as easy scalability. It is well known that the performance of this type of reactors is controlled by a high number of design parameters. In thi...

  14. Desorption of trihalomethanes in gas liquid contactors

    International Nuclear Information System (INIS)

    Updated studies show that gastric cancer is related with the existence of trihalomethanes (THMs) in the drinking water. The trihalomethanes are sub products from the degradation of humic acids and your reaction with chlorine and bromine used like decontaminates. The desorption process is used to eliminate the THMs with air in contact with the water. The experimental design was used in three contactors. The contactors selected were: the bubbling's column, the packed column and the shaken tank without screen. There were selected three variable: initial concentration of THMs, the residence time and the turbulence degree (measured with the Reynolds number). The concentrations were made with a gas chromatograph. The objective of this project is to do a comparison with the gas liquid contactors more used in the industrial level to determinate which ones are the best in the desorption process. The conclusion of the experimental design is that the tank is the equipment with the best capacity to eliminate THMs. Too it includes other techniques to eliminate THMs of the water and your treatment

  15. Preliminary studies on design and control of centrifugal contactor

    International Nuclear Information System (INIS)

    As a centrifugal contactor is a type of extractor which has high mass-transfer efficiency with short contacting time, it is effective to increase throughput and to protect solvent from radiolytic degradation. An experimental apparatus to study the characteristics of this contactor is made of metacrylate resin. First, from the measured data of interface location between heavy and light phases, the pressure drop at weir is expressed as a function of flow rate and rotation speed. A useful formulation is obtained to calculate the average diameter of droplet and the settling length required in the contactor. Then, transient response of the contactor for step input is measured, and the dynamics of centrifugal contactor is found to be a process of second-order with dead time. A discrete PI control algorithm is proposed for DDC simulation. (author)

  16. Partitioning of Tank Waste Sludge in a 5-cm Centrifugal Contactor Under Caustic-Side Solvent Extraction Conditions

    International Nuclear Information System (INIS)

    A test program has been performed to evaluate the effect of solids on the hydraulic performance of a 5-cm centrifugal contactor under conditions present in the extraction section of the Caustic-Side Solvent Extraction (CSSX) process. In addition to determining if the ability to separate the aqueous and organic phases is affected by the presence of solids in a feed solution, the extent to which solids are accumulated in the contactor was also assessed. The reported task was motivated by the need to determine if removal of cesium from Savannah River Site tank waste can be performed using a contactor-based CSSX process without first removing sludge that is suspended in the feed solution. The ability to pass solids through the CSSX process could facilitate placement of CSSX upstream of a process in which alpha-decaying actinides and strontium are removed from the waste stream by precipitation with monosodium titanate (MST). This relative placement of the CSSX and MST processes is desirable because removal of cesium would greatly reduce the activity level of the feed stream to the MST process, thereby reducing the level of shielding needed and mitigating remote maintenance design features of MST equipment. Both results would significantly reduce the cost of the Salt Processing Project. Test results indicate conclusively that a large fraction of suspended sludge that enters the centrifugal contactor remains inside. It is expected that extended operation would result in continued accumulation of solids and that hydraulic performance would be adversely affected. Results also indicate that a fraction of the solids partitions to the phase boundary and could affect phase separation as contactor operations progress

  17. Characterization of fouling of membrane contactors

    DEFF Research Database (Denmark)

    Ciurkot, Kaludia; Zarebska, Agata; Christensen, Knud Villy

    2013-01-01

    In this study liquid-liquid membrane contactors have been tested for ammonia removal from model manure solution and undigested pig manure. The aim of this work is to compare the efficiency of ammonia removal by different hydrophobic membranes including the material’s influence on mass transfer of...... ammonia and membrane fouling tendency. The surface morphology of both clean and fouled membranes by model manure solution and undigested pig manure has been studied by: Optical and Atomic Force Microscopy and contact angle measurements. Based on the experimental results, it is concluded that real manure...... achieved higher ammonia removal than the synthetic model manure solution. This might be due to the larger particle size of the milled straw in the model solution compared to the size of suspended solids present in real manure. From the fouling autopsy, it was found that PTFE membranes are more prone to...

  18. CALmsu contactor for solvent extraction with integrated flowrate meters

    International Nuclear Information System (INIS)

    Mixer-settlers are widely used as contactors in solvent extraction processes. In the nuclear industry, solvent extraction techniques are used for the separation and purification of a range of materials. A major difficulty is faced in the nuclear industry due to the constraints on the design of the equipment and its operation by the presence of radioactive materials in process solutions. The development of CALmsu contactor was necessitated by the requirements of the operating environment in radiochemical plants. This contactor is a mixer-settler designed to use a CALMIX (combined air lifting and mixing device) static mixer. The CALMIX comprises two air lifts which raise the liquid phases to a highly turbulent mixing zone situated above the lifts. Its principle and construction are simple, and it is compact in size. It is a passive device and needs no maintenance. It has proved to be efficient during extensive testing. The simple and efficient CALmsu contactor internals are specially engineered for use of CALMIX mixer. It has been extensively tested in pilot plant for extraction and stripping of uranium, recovery of uranium from thorium by THOREX process and for treatment of degraded solvents. A model for the design of CALmsu contactors has been evolved and based on this model a software for engineering design of CALMIX and CALmsu contactors of throughput between 50 and 3000 lph has been developed. (author)

  19. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  20. Development of novel contactor for nuclear solvent extraction

    International Nuclear Information System (INIS)

    For current designs of radiochemical plants, solvent-extraction contactors with no periodic maintenance like pulse column are the first choice. In addition, as costs of specialty solvents for nuclear extraction are quite high, there is a demand for operation at extreme phase ratios. Recently a novel mixer-settler was visualized and developed for this kind of service. The mixer of the novel contactor is based on rotated helical tubes and does not involve any mechanical moving part. Mass-transfer runs were carried out with aqueous nitric acid and 30% TBP solvent at A/O of 0.25-200 (in extraction) and A/O of 0.25-10 (in back-extraction mode). The developed contactor exhibited nearly 100% efficiency for all the cases. (authors)

  1. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    Energy Technology Data Exchange (ETDEWEB)

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  2. STRINGFELLOW LEACHATE TREATMENT WITH RBC (ROTATING BIOLOGICAL CONTACTOR)

    Science.gov (United States)

    A study was conducted with a rotating biological contactor (RBC) for treatment of leachate from the Stringfellow hazardous waste site in Riverside County, California. The leachate was transported from California to Cincinnati, where a pilot sized RBC was installed at the U.S. EPA...

  3. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    Science.gov (United States)

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  4. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

    2005-04-29

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution

  5. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    International Nuclear Information System (INIS)

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar(regsign) L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar(regsign) L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar(regsign) L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar(regsign) L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar(regsign) L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar(regsign) L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution from

  6. The solvent extraction of Am(VI) using centrifugal contactors

    International Nuclear Information System (INIS)

    An engineering-scale centrifugal contactor test bed was built at Idaho National Laboratory to perform solvent extraction testing for the partitioning of hexavalent americium. The raffinate simulant feed was spiked with 243Am and 139Ce and treated with sodium bismuthate to oxidize americium to Am(VI), filtered and contacted with 1 M DAAP/dodecane using centrifugal contactors. Extraction efficiency comparable to batch contacts was obtained, indicating for the first time that Am(VI) can be maintained under process conditions. Contrary to expectations, stripping was not as effective as expected. However, this result may actually be advantageous to process design, since a scrub step, previously thought to be impossible due to rapid Am(VI) reduction, may now be considered for future flowsheet tests. (author)

  7. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    International Nuclear Information System (INIS)

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  8. Centrifugal contactor operations for UREX process flowsheet. An update

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-08-01

    The uranium extraction (UREX) process separates uranium, technetium, and a fraction of the iodine from the other components of the irradiated fuel in nitric acid solution. In May 2012, the time, material, and footprint requirements for treatment of 260 L batches of a solution containing 130 g-U/L were evaluated for two commercial annular centrifugal contactors from CINC Industries. These calculated values were based on the expected volume and concentration of fuel arising from treatment of a single target solution vessel (TSV). The general conclusions of that report were that a CINC V-2 contactor would occupy a footprint of 3.2 m 2 (0.25 m x 15 m) if each stage required twice the nominal footprint of an individual stage, and approximately 1,131 minutes or nearly 19 hours is required to process all of the feed solution. A CINC V-5 would require approximately 9.9 m 2 (0.4 m x 25 m) of floor space but would require only 182 minutes or ~ 3 hours to process the spent target solution. Subsequent comparison with the Modular Caustic Side Solvent Extraction Unit (MCU) at Savannah River Site (SRS) in October 2013 suggested that a more compact arrangement is feasible, and the linear dimension for the CINC V-5 may be reduced to about 8 m; a comparable reduction for the CINC V-2 yields a length of 5 m. That report also described an intermediate-scale (10 cm) contactor design developed by Argonne in the early 1980s that would better align with the SHINE operations as they stood in May 2012. In this report, we revisit the previous evaluation of contactor operations after discussions with CINC Industries and analysis of the SHINE process flow diagrams for the cleanup of the TSV, which were not available at the time of the first assessment.

  9. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    OpenAIRE

    Rongjun Su; Guangshan Zhang; Peng Wang; Shixiong Li; Ryan M. Ravenelle; JOHN C. CRITTENDEN

    2015-01-01

    Rotating biological contactors (RBC) are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW). The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%....

  10. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  11. CO2 absorption at elevated pressures using a hollow fiber membrane contactor

    NARCIS (Netherlands)

    Dindore, V.Y.; Brilman, D.W.F.; Feron, P.H.M.; Versteeg, G.F.

    2004-01-01

    Recently, hollow fiber membrane gas–liquid contactor-based processes have gained an increasing attention. Compared to conventional processes, these processes have numerous advantages. The membrane contactors provide a very high interfacial area per unit volume, independent regulation of gas and liqu

  12. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-10-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors.

  13. Rotating biological contactors for wastewater treatment - A review

    OpenAIRE

    Hassard, Francis; Biddle, Jeremy R.; Cartmell, Elise; Jefferson, Bruce; Tyrrel, Sean F.; Stephenson, Tom

    2014-01-01

    Rotating biological contactors (RBCs) for wastewater treatment began in the 1970s. Removal of organic matter has been targeted within organic loading rates of up to 120 g m−2 d−1 with an optimum at around 15 g m−2 d−1 for combined BOD and ammonia removal. Full nitrification is achievable under appropriate process conditions with oxidation rates of up to 6 g m−2 d−1 reported for municipal wastewater. The RBC process has been adapted for denitrification with reported removal rates of up to 14 g...

  14. Performance characteristics of cross-flow membrane contactors for liquid desiccant systems

    International Nuclear Information System (INIS)

    Highlights: • Different types of flat plate membrane contactors developed to eliminate carryover in liquid desiccant systems. • Two-dimensional steady-state model developed to predict performance of contactors. • The simulated results are found to be in good agreement with experimental findings. • Performance of the contactors depends significantly on the membrane characteristics. • Parametric analysis carried out to select best operating ranges of design parameters. - Abstract: Membrane based indirect contact liquid desiccant dehumidification technology subsides the serious concern of liquid desiccant droplet carryover observed in conventional direct contact liquid desiccant systems. In the membrane contactor the air and liquid desiccant streams flow in alternate channels in cross-flow arrangement, separated by micro-porous semi-permeable hydrophobic membranes. Only water vapor can pass through the membranes but liquid desiccant cannot permeate. A two-dimensional steady-state mathematical model for semipermeable membrane based indirect contactors as dehumidifiers for liquid desiccant dehumidification applications has been developed. The model can predict the air and desiccant parameters inside the dehumidifier and the outlet parameters for a given input parameters. Five different membrane contactors have been fabricated and series of experiments have been conducted to validate the mathematical model. Aqueous solution of lithium chloride has been used as desiccant. The maximum deviations between experimental and predicted values are within ±10% for outlet specific humidity and outlet enthalpy of air, ±15% deviation in dehumidification effectiveness and ±20% deviation in enthalpy effectiveness. The distributions of major parameters viz. temperature, humidity, concentration, etc., within the contactor have been presented. Parametric analysis has been carried out to study the effects of membrane characteristics, contactor design, fluid flow rates, ambient

  15. Indicators for technological, environmental and economic sustainability of ozone contactors.

    Science.gov (United States)

    Zhang, Jie; Tejada-Martinez, Andres E; Lei, Hongxia; Zhang, Qiong

    2016-09-15

    Various studies have attempted to improve disinfection efficiency as a way to improve the sustainability of ozone disinfection which is a critical unit process for water treatment. Baffling factor, CT10, and log-inactivation are commonly used indicators for quantifying disinfection credits. However the applicability of these indicators and the relationship between these indicators have not been investigated in depth. This study simulated flow, tracer transport, and chemical species transport in a full-scale ozone contactor operated by the City of Tampa Water Department and six other modified designs using computational fluid dynamics (CFD). Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone contactor designs and upgrades and developed a composite indicator to quantify the sustainability in technological, environmental and economic dimensions. PMID:27322565

  16. Simulation Study of AC Contactor Dynamic Contacts Contact Pressure Based on ADAMS

    Directory of Open Access Journals (Sweden)

    Gu Yungao

    2015-01-01

    Full Text Available A multi-body dynamics simulation model of CJ20-25 AC contactor was established with Pro/E(Pro/Engineerin this paper. A coupling simulation with machine, electric, magnetic on the contactor has been achieved in this model. Dynamic parameters which were called use the secondary development technology of ADAMS. The dynamic contact pressure signal of an AC contactor was obtained with ADAMS’s own simultaneous solution such as electromagnetic suction, kinematics and dynamics equations. The simulation results and actual measurement of contactor contact pressure signals are very similar. However, the complexity of the measured contacts vibration is greater than the simulation results because the actual working condition is more complex. This result provides a theoretical foundation to the dynamic contacts contact pressure test.

  17. OZONE CONTACTOR FLOW VISUALIZATION AND CHARACTERIZATION USING 3-DIMENSIONAL LASER INDUCED FLUORESCENCE

    Science.gov (United States)

    Hydrodynamics of ozone contactors have a crucial impact on efficient inactivation of pathogens such as Cryptosporidium as well as control of disinfection byproducts such as bromate. Improper mixing behaviors including short-circuiting, internal recirculation and presence...

  18. Identification And Characterization Of The Solids Found In Extraction Contactor SEP-401 In June 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.; Fink, S. D.

    2012-12-10

    The Modular Caustic-Side Solvent Extraction Unit (MCU) recently conducted an outage that included maintenance on the centrifugal contactors. Operations personnel observed solids or deposits in two contactors and attempted to collect samples for analyses by Savannah River National Laboratory (SRNL). The residues found in Extraction Contactor SEP-401 are a mixture of amorphous silica, aluminosilicate, titanium, and debris from low alloy steel. The solids contain low concentrations of plutonium and strontium. These isotopes are associated with the titanium that came from the monosodium titanate (MST) added in the Actinide Removal Process (ARP) most likely as leached Ti from the MST that precipitated subsequently in MCU. An attempt was also made to obtain samples from the contents of Wash Contactor SEP-702. However, sampling provide ineffective.

  19. Tests of a Higgins contactor for the engineering-scale resin loading of uranium

    International Nuclear Information System (INIS)

    The loading of uranium on weak-acid ion exchange resin is a basic step in the production of fuel particles for high-temperature gas-cooled reactors (HTGRs). In the work reported here, an engineering-scale continuous resin loader (2-in.-ID Higgins contactor) was tested with existing engineering-scale process equipment. The Higgins contactor was first successfully used to convert Na+-form resin to the H+-form; then it was evaluated as a uranium loader. Results show that the 2-in.-ID Higgins contactor can easily load 25 kg of uranium per day, indicating that a 4-in.-ID contactor could load 100 kg/day. Process control was achieved by monitoring and controlling the density, pH, and inventory volume of the uranium feed solution. This control scheme is amenable to remote operation

  20. REVIEW OF CURRENT RBC (ROTATING BIOLOGICAL CONTACTOR) PERFORMANCE AND DESIGN PROCEDURES

    Science.gov (United States)

    The rapid emergence of rotating biological contactor (RBC) technology as an alternative secondary wastewater treatment process has increased the need to review their performance history to provide information to the design engineer. This study, to review and compare current desig...

  1. Rotating arc cutoff with a Fluarc switch or a Rollarc contactor in SF6

    Science.gov (United States)

    Duplay, C.

    1983-05-01

    The principles of rotating arc cutoff are reviewed, and applications to circuit breakers and contactors are indicated. The Rollarc (trademark) contactor offers high cutoff power (10 KA at 7.2 KV) and an extremely low level of overvoltage. The Fluorarc (trademark) circuit breaker is similar to the Rollarc, using a magnetic coil to shift the arc, but uses knife switches which are separated from the coil/arc assembly. Fluorarc is sealed for life, and requires no maintenance.

  2. Simulation of citric acid production by rotating disk contactor.

    Science.gov (United States)

    Sakurai, A; Imai, H; Takenaka, Y; Sakakibara, M

    1997-12-20

    A simple model was presented to describe the time courses of citric acid production by a rotating disc contactor (RDC) using Aspergillus niger. The model is expressed by Monod-type cell growth, Luedeking-Piret-type citric acid production rate equations, and the diffusion equation for oxygen in the biofilm. The model contains five parameters which were determined by the nonlinear least squares method by fitting the numerical solution to the experimental data. In solving the equations, the cell density of the biofilm was estimated from the value of cellular mass per unit of biofilm area using an empirical equation. The experimental time courses in citric acid production period were well simulated with this model. The relation between the specific biofilm surface area and the rate of citric acid production was also explained by the simulation using the average values of five parameters of twelve runs. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 689-696, 1997. PMID:18642341

  3. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  4. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  5. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  6. Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors

    Energy Technology Data Exchange (ETDEWEB)

    David Meikrantz; Troy Garn; Nick Mann; Jack Law; Terry Todd

    2007-09-01

    Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge collector area. Foam buildup in the upper rotor head area can aspirate additional vapor from the contactor housing resulting in a complete loss of separation equilibrium. Variable speed drives are thus desirable to optimize and balance the operating parameters to help ensure acceptable performance. Proper venting of larger contactors is required to balance pressures across individual stages and prevent vapor lock due to foam aspiration.

  7. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  8. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.; Peters, T. B.; Poirier, M. R.; Fondeur, F. F.

    2013-07-31

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  9. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    International Nuclear Information System (INIS)

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05 M) concentration of the MaxCalix as well as a new suppressor, tris(3,7 dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the ''first stage'' D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet

  10. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    Science.gov (United States)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  11. Preliminary Study of Greywater Treatment through Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Ashfaq Ahmed Pathan

    2011-07-01

    Full Text Available The characteristics of the greywater vary from country to country and it depends upon the cultural and social behavior of the respective country. There was a considerable need to characterize and recycle the greywater. In this regard greywater was separated from the black water and analyzed for various physiochemical parameters. Among various greywater recycling treatment technologies, RBC (Rotating Biological Contactor is more effective treatment technique in reducing COD (Chemical Oxygen Demand and organic matters from the greywater. But this technology was not applied and tested in Pakistan. There was extensive need to investigate the RBC technology for greywater recycling at small scale before applying at mass scale. To treat the greywater, a single-stage RBC simulator was designed and developed at laboratory scale. An electric motor equipped with gear box to control the rotations of the disks was mounted on the tank. The simulator was run at the rate of 1.7 rpm. The disc area of the RBC was immersed about 40% in the greywater. Water samples were collected at each HRT (Hydraulic Retention Time and analyzed for the parameters such as pH, conductivity, TDS (Total Dissolved Solids, salinity, BOD5 (Biochemical Oxygen Demand, COD and suspended solids by using standard methods. The results are encouraging with percentage removal of BOD5 and COD being 53 and 60% respectively.

  12. A turbulent bed contactor: energetic efficiency for particle collection

    Directory of Open Access Journals (Sweden)

    M. L. Gimenes

    2007-03-01

    Full Text Available Particle collection experiments were conducted in a fluidizing irrigated bed to evaluate the performance of mobile packings: 38 x 50 mm plain oblate spheroids 38 mm ID plain spheres and alternative perforated spheres with a 38 mm ID and 10% and 25% free areas were used as fluidizing media in a 0.264 m diameter and 1.20 m high turbulent bed contactor (TBC. Particle collection experiments were carried out above the minimum fluidization velocity, using as particulate test powder polysized alumina (size 1.5 to 5.5 mm. Experimental results demonstrated that the perforated spheres performed better in collecting particles than the other packings tested. The efficiency of particle collection was analysed based on energy consumption in the TBC, using the energetic efficiency concept. It was verified that not much more energy was consumed per unit of gas flow in fluidized beds of perforated packings than in those of conventional plain sphere packings, since the perforated spheres were more energetically efficient for particle collection than plain spheres and oblate spheroid packings.

  13. Modeling and Hardware-in-the-loop Simulations of Contactor Dynamics : Mechanics, Electromagnetics and Software

    OpenAIRE

    Tjerngren, Jon

    2014-01-01

    This master thesis’s subject is to model an ABB contactor’s dynamics and to develop a hardware-in-the-loop simulation environment. The hardware-in-the-loop method utilizes computer models that are simulated in a real-time simulator. The real-time simulator is connected to hardware components. A contactor is an electrically controlled mechanical switching device and it is used in circuits where large currents can occur. In this thesis, the contactor is divided into three separate subsystems an...

  14. Extraction of uranium from in-situ leach solutions using the NIMCIX ion exchange contactor

    International Nuclear Information System (INIS)

    The NIMCIX ion exchange column is a multi-stage fluidized bed contactor to permit a counter-current flow of solution and resin in order to maximize extraction efficiency. Batch or continuous elution methods with fully automated or manual control systems may be selected for different process solution conditions. 8 refs

  15. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor

    NARCIS (Netherlands)

    Blanken, W.M.; Janssen, M.G.J.; Cuaresma, M.; Libor, Z.; Bhaiji, T.; Wijffels, R.H.

    2014-01-01

    Microalgae biofilms could be used as a production platform for microalgae biomass. In this study, a photobioreactor design based on a rotating biological contactor (RBC) was used as a production platform for microalgae biomass cultivated in biofilm. In the photobioreactor, referred to as Algadisk, m

  16. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    Science.gov (United States)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  17. Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors

    NARCIS (Netherlands)

    Dindore, V.Y.; Brilman, D.W.F.; Geuzebroek, F.H.; Versteeg, G.F.

    2004-01-01

    Membrane gas–liquid contactors can provide very high interfacial area per unit volume, independent regulation of gas and liquid flows and are insensitive to module orientation, which make them very attractive in comparison with conventional equipments for offshore application. However, the membrane

  18. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  19. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    International Nuclear Information System (INIS)

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized Goldilocks contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range 9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here, though

  20. Simulation studies of ammonia removal from water in a membrane contactor under liquid-liquid extraction mode.

    Science.gov (United States)

    Mandowara, Amish; Bhattacharya, Prashant K

    2011-01-01

    Simulation studies were carried out, in an unsteady state, for the removal of ammonia from water via a membrane contactor. The contactor had an aqueous solution of NH(3) in the lumen and sulphuric acid in the shell side. The model equations were developed considering radial and axial diffusion and convection in the lumen. The partial differential equations were converted by the finite difference technique into a series of stiff ordinary differential equations w.r.t. time and solved using MATLAB. Excellent agreement was observed between the simulation results and experimental data (from the literature) for a contactor of 75 fibres. Excellent agreement was also observed between the simulation results and laboratory-generated data from a contactor containing 10,200 fibres. Our model is more suitable than the plug-flow model for designing the operation of the membrane contactor. The plug-flow model over-predicts the fractional removal of ammonia and was observed to be limited when designing longer contactors. PMID:20843596

  1. Study on the performance of the hydraulic and mass-transfer with miniature centrifugal contactor

    International Nuclear Information System (INIS)

    The hydraulic performance and the mass-transfer properties of HNO3, Fe3+, Nd3+ are studied in H2O-30% TRPO-kerosene system at different conditions with single-stage φ = 10 mm miniature centrifugal contactor. The rotor's speed varies from 4000 r/min to 4500 r/min. The total throughput is less than 600 mL/h. the phase ratio(o/a) changes from 1/10 to 10/1. Under the above experimental conditions, the single contactor operates very well and gives good performance. The stage efficiencies of HNO3 and Nd3+ are about 90%. The Fe3+ extraction is very slow kinetically and the stage efficiency of Fe3+ is low

  2. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, K.E. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  3. Effects of solvent-extraction contactor selection on flowsheet and facility design

    International Nuclear Information System (INIS)

    The notion is developed that the selection of a solvent extraction contactor is part of a more general development of principles and philosophy guiding the overall plant design. Specifically, the requirements and constraints placed on the plant by the solvent extraction system must be consistent with those imposed by the other operations, which generally are more expensive and more complicated. Were a conservative philosophy employed throughout the plant, the choice of pulsed columns seem correct. Were the plant intended to employ modern techniques and state-of-the-art technology, particularly in remote maintenance and process control, the selection of centrifugal contactors seems appropriate. The process improvements attainable from employing more stages in a more tightly controlled solvent extraction system seem marginal at present when applied to conventional flowsheets, although the cost-benefit may be attractive in a modern plant. The potential for improvement through major flowsheet modification can not presently be assessed quantitatively

  4. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    International Nuclear Information System (INIS)

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup

  5. EFFECT OF ORGANIC LOADING RATES FOR TREATING GREY WATER IN ROTATING BIOLOGICAL CONTACTORS

    Directory of Open Access Journals (Sweden)

    S. Syed Enayathali

    2012-05-01

    Full Text Available The laboratory model of two-stage Rotating Biological Contactor (RBC which was used in the present study is a modified one, with a rovision to vary the speed of rotating blades. Grey wastewater was used to study the performance of the modified rotating biological contactor. The reactor had four rotating blades in each stage, having the size of 300 mm x100 mm x 10 mm, attached perpendicular to the shaft. The experiment was conducted for different influent COD loads and different speeds of rotating blades. Among the different speedsof rotational blades in treating grey water, the rotational speed of 3 rpm was found to yield better percent removal of COD at 95.07% as maximum, where as against the rotational speeds of 4.5 and 6 rpm, the treatment efficiency is 95.04% and 94.96% respectively

  6. The hydrodynamics of a Graesser ("raining bucket") contactor with a reverse micellar phase.

    Science.gov (United States)

    Jarudilokkul, S; Paulsen, E; Stuckey, D C

    2000-01-01

    A variety of contactor types have been assessed for the liquid-liquid extraction of proteins using reversed micelles; however, many of these contactors suffer from drawbacks such as emulsion formation and poor mass transfer performance. In this study, a small (1.25 L) Graesser "raining bucket" contactor was assessed for use with this system since it has the potential to ameliorate many of these problems. The aim of the work was to evaluate the hydrodynamics of the contactor in order to use this information for future work on mass transfer performance. Hydrodynamic characteristics such as the axial mixing coefficient were determined by residence time distribution studies using a tracer injection method. The effect of rotor speed and flow rate of each phase on axial mixing was investigated, and as a result of its unusual structure, i.e., falling/rising sheet, the interfacial mass transfer area in the Graesser was determined by image analysis. It was found that rotor speed had more influence on the axial mixing coefficient in the aqueous phase than in the reverse micellar phase. The axial mixing coefficient in each phase increased by increasing the flow rate of the same phase. The images obtained in a dropping cell showed that under the conditions of this study (3 rpm, 22 degrees C), the bucket pours one phase through the other in the form of a curtain or sheet. A new image technique was developed to determine the interfacial area of both phases, and it was found that the specific area was 8.6 m(2)/m(3), which was higher than in a spray column but considerably lower than in a RDC or a Graesser run at high rotational speed (50 rpm) without the addition of a surfactant. PMID:11101336

  7. Mechanical evolution of the rotating biological contactor into the 21st century.

    OpenAIRE

    Mba, David

    2003-01-01

    This paper presents a review on the evolution of the mechanical design of rotating biological contactors (RBCs) within the UK. The findings documented have been taken from the biggest mechanical survey on RBCs ever undertaken worldwide and focuses on 300 operational units. The paper looks at the main components of the RBC and discusses the evolution of each member. Mechanical deficiencies associated with each design are briefly presented, giving an insight into reasons for i...

  8. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli, N.M. Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  9. Entrainment of Solvent in Aqueous Stream from CINC V-5 Contactor

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S. D.; Restivo, M. L.; Peters, T. B.; Fowley, M. D.; Burns, D. B.; Smith, W. M. Jr.; Fondeur, F. F.; Crump, S. L.; Norato, M. A.; Herman, D. T.; Nash, C. A.

    2005-04-29

    Personnel completed a rapid study of organic entrainment during operation of a CINC V-5 contactor under prototypical conditions covering the range of expected MCU operation. The study only considered the entrainment of organic into the strip acid effluent destined for the Defense Waste Processing Facility. Based on this work, the following observations are noted: (1) Concentrations of total organic from the contactor discharge, based upon modifier measurements, in the acid typically averaged 330 ppm{sub m}, for a range to 190-610 ppm{sub m}. (2) Entrained droplet sizes remained below 18 microns for samples collected at the decanter outlet and below 11 microns for samples taken from the contactor discharge. (3) Scouting tests showed that a vendor coalescer material promotes coalescence of smaller size droplets from the decanter effluent. (4) Personnel observed a previously unreported organic impurity in the solvent used for this study. Additional efforts are needed to ascertain the source of the impurity and its implication on the overall process. (5) Process throughputs and planned operating conditions result in very stable hydraulics, suggesting that the MCU stripping stages will have spare operating capacity. (6) The V-5 contactors show operated with relatively cool surfaces under the planned operating conditions. (7) If operating conditions result in an imbalance of the relative mixing and separation conditions within the contactor, a very stable emulsion may result. In this instance, the emulsion remained stable for weeks. The imbalance in this study resulted from use of improperly sized weir plates. (8) Personnel demonstrated an effective means of recovering emulsified solvent following a non-optimal equipment configuration. The protocols developed may offer benefit for MCU and SWPF operations. (9) This study developed and demonstrated the effectiveness of several analytical methods for support of the Caustic-Side Solvent Extraction process including infrared

  10. PUMA - a new mathematical model for the rapid calculation of steady-state concentration profiles in mixer-settler extraction, partitioning, and stripping contactors using the Purex process

    International Nuclear Information System (INIS)

    The mathematical basis for a computer code PUMA (Plutonium-Uranium-Matrix-Algorithm) is described. The code simulates steady-state concentration profiles of solvent extraction contactors used in the Purex process, directly without first generating the transient behavior. The computational times are reduced, with no loss of accuracy, by about tenfold over those required by codes that generate the steady-state profiles via transient state conditions. Previously developed codes that simulate the steady-state conditions directly are not applicable to partitioning contactors, whereas PUMA is applicable to all contactors in the Purex process. Since most difficulties are encountered with partitioning contactors when simulating steady-state profiles via transient state conditions, it is with these contactors that the greatest saving in computer times is achieved

  11. Regeneration of Alkanol-amine Solutions in Membrane Contactor Based on Novel Poly-norbornene

    International Nuclear Information System (INIS)

    For the first time, a novel highly permeable glassy polymer, addition poly[bis(trimethylsilyl)tricyclo-nonene] (PBTMST), was proposed for its use in a gas-liquid membrane contactor for the regeneration of CO2 absorption liquids (desorption of CO2). This membrane material possesses a good chemical stability and high barrier properties for a number of alkanol-mines (30 wt% solutions of MEA, DEA, MDEA, AMP, DEAE or AEAE) under typical regeneration conditions (T = 100 deg. C). Studies on gas transport properties of PBTMST (100 deg. C and 1-40 bar) show that permeability coefficients of oxygen, nitrogen and carbon dioxide initially tend to decrease, and then level off after first 6-8 hours of operation. This behavior can be explained by partial relaxation of the free-volume structure of PBTMST, no chemical degradation of polymer material at high temperature was confirmed by IR analysis. At the same time, this membrane material preserves high gas permeability coefficients which are higher than those of conventional materials used in the membrane contactors. Gas-liquid membrane contactor based on dense PBTMST membrane shows a good, stable performance; particularly, CO2 loading in diethanolamine solution (30 wt%) can be reduced for 0.05-0.34 mole/mole by single pass through the membrane desorber at 100 deg. C and elevated pressure. It seems that desorption rate here is mainly controlled by liquid phase because decreasing of membrane thickness by 50% (from 31 to 21 μm) leads to improvement of DEA regeneration only by 1.5-8.5%. (authors)

  12. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  13. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device

    OpenAIRE

    Kraai, G. N.; Schuur, B.; van Zwol, F.; van de Bovenkamp, H. H.; Heeres, H. J.

    2009-01-01

    The base catalyzed production of biodiesel (FAME) from sunflower oil and methanol in a continuous centrifugal contactor separator (CCS) with integrated reaction and phase separation was studied. The effect of catalyst loading (sodium methoxide), temperature, rotational frequency and flow rates of the feed streams was investigated. An optimized and reproducible FAME yield of 96% was achieved at a feed rate of 12.6 mL min(-1) sunflower oil and a sixfold molar excess of MeOH (3.15 mL, min(-1)) c...

  14. A mathematical model for prediction of pertraction of uranium in hollow fiber contactor

    International Nuclear Information System (INIS)

    A mathematical model has been developed to predict the transport of uranium through Dispersed Liquid Membrane (DLM) configuration in hollow fiber contactor using TBP as extractant in dodecane diluent with sodium carbonate as strippant. The prediction of the model has been substantiated with experimental results. Parametric studies have been conducted and a few of them have been presented here. The model takes into account complexation reaction at the aqueous-organic interface at the pores of hollow fiber lumens and predicts the rate of change of concentration in the aqueous feed phase flowing through the lumens in re-circulating mode. (author)

  15. Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator

    OpenAIRE

    Abduh, Muhammad Yusuf; van Ulden, Wouter; Kalpoe, Vijay; van de Bovenkamp, Hendrik H.; Manurung, Robert; Heeres, Hero J.

    2013-01-01

    The synthesis of fatty acid ethyl esters (FAEE) from Jatropha curcas L. oil was studied in a batch reactor and a continuous centrifugal contactor separator (CCCS) using sodium ethoxide as the catalyst. The effect of relevant process variables like rotational speed, temperature, catalyst concentration, and molar ratio of ethanol to oil was investigated. Maximum yield of FAEE was 98?mol% for both the batch (70 degrees C, 600?rpm, 0.8% w/w of sodium ethoxide) and CCCS reactor configuration (60 d...

  16. Denitrification in an anoxic rotating biological contactor under two carbon/nitrogen ratios

    OpenAIRE

    Cortez, Susana; Teixeira, P; Oliveira, Rosário; Mota, M.

    2008-01-01

    The aim of the present work was to compare the performance of an anoxic bench-scale rotating biological contactor (RBC), in terms of the denitrification process, applied to treat synthetic wastewater under two carbon/nitrogen (C/N) molar ratios (1.5 and 3). The average removal efficiency in terms of nitrogen-nitrate was of about 90.4% at a C/N=1.5 lowering to 73.7% at a C/N=3. Considering carbon-acetate removal an overall efficiency of 82.0% and 63.6% was attained at a C/N rati...

  17. Extraction of zirconium from simulated acidic nitrate waste using liquid membrane in hollow fiber contactor

    International Nuclear Information System (INIS)

    The acidic waste raffinate stream of zirconium (Zr) purification plant contains about 2 gpl of Zr in about 2M free nitric acid. TBP, which is the most commonly used solvent in the nuclear industry, is not suitable for the extraction of Zr from this lean solution as its distribution coefficient is less than one. In house synthesized Mixed Alkyl Phosphine Oxide (MAPO) is a potential extractant for Zr from this lean stream. Intensification of this process for recovery of Zr has been attempted through use of efficient contactor, namely, hollow fiber module and efficient process, namely, simultaneous extraction and stripping across liquid membrane containing MAPO. Based on batch equilibrium studies selection of suitable concentration of extractant, composition of diluent, selection and concentration of strippant for the proposed liquid membrane system was made. The selected organic and strippant concentration was used to study suitability of application of Dispersion Liquid Membrane (DLM) in hollow fiber contactor for recovery Zr from solution simulated to Zr plant raffinate. Challenges related to stable operation of the liquid membrane system like stability of the organic phase in the micropores of lumen and stability of the dispersion during the pertraction were addressed through pressure balance across the lumen and choice of adequate dispersion condition respectively. (author)

  18. A study of the operational effectiveness of a disk-rotor contactor in a deasphalting installation

    Energy Technology Data Exchange (ETDEWEB)

    Kvetkov, B.A.; Anisimkov, Yu.P.; Boreysha, T.Yu.; Bronfin, I.B.; Chernyshov, S.D.; Golygin, M.I.; Mikita, V.P.; Shkolnikov, V.M.; Veselovskaya, L.F.

    1980-01-01

    Results are cited of many years of operation and study of an industrial rotary disk contactor (RDK) in the process of deasphalting of Western Siberian oils. The evaluation of the operational effectiveness of the rotary disk contactor was conducted from the output of the deparaffinated oil with a viscosity index (IV) of 90. The asphalt processed had a conditional viscosity at 80 degrees C of 22 to 28 seconds, a boil away at 500 degrees C of 15 to 20 percent, a potential content of oils with a viscosity index of 90 of 30 percent. The operational effectiveness of the apparatus was studied with the following parameters: diameter of the rotary disks of 1.8 and 1.5 meters; rotor rotation speed of 0.8; 16 and 24 revolutions per minute; a raw material productivity of 22 to 34 cubic meters per hour; a top temperature of 80 to 85 degrees C; a temperature gradient of 25 to 27 degrees and a propane to raw material ratio of 3.3 to 4.5 total.

  19. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants

    Institute of Scientific and Technical Information of China (English)

    SHAO Jiahui; FANG Xuliang; HE Yiliang; JIN Qiang

    2008-01-01

    Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditionalchlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaksin the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose.Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditionson the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration,liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9%was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically foundto be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammoniaremoval rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plantmembrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatmentplant, also paved the way towards a larger scale application.

  20. FOULING CHARACTERIZATION OF MEMBRANE CONTACTORS USED FOR THE RECOVERY AND CONCENTRATION OF AMMONIA FROM UNDIGESTED PIG SLURRY

    DEFF Research Database (Denmark)

    Zarebska, Agata; Norddahl, Birgir; Christensen, Knud Villy

    2012-01-01

    The main obstacle impeding implementation of membrane contactors for the recovery and concentration of ammonia from swine manure is the phenomena of membrane fouling. Fouling is defined as the accumulation of suspended or dissolved substances on the membrane surface and/or within its pores. Due t...

  1. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al2O3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  2. Determination of economically justified parameters of synchronous disconnection at low-voltage circuit switching via a synchronous vacuum contactor

    Directory of Open Access Journals (Sweden)

    A.V. Verkhola

    2014-04-01

    Full Text Available Dependence of a single switching procedure cost upon the contact opening delay time and delay-time spread is derived for a low-voltage synchronous vacuum contactor. For different cost levels, boundaries of permissible values of delay-time and delay-time spread are specified.

  3. Current–voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion

    International Nuclear Information System (INIS)

    This paper focuses on the net electron-emission current as a function of bias voltage of a plasma source that is being used as the cathodic element in a bare electrodynamic tether system. An analysis is made that enables an understanding of the basic issues determining the current–voltage (C–V) behaviour. This is important for the efficiency of the electrodynamic tether and for low impedance performance without relying on the properties of space plasma for varying orbital altitudes, inclinations, day–night cycles or the position of the plasma contactor relative to the wake of the spacecraft. The cathodic plasma contactor considered has a cylindrical discharge chamber (10 cm in diameter and ∼11 cm in length) and is driven by a hollow cathode. Experiments and a 1D spherical model are both used to study the contactor's C–V curves. The experiments demonstrate how the cathodic contactor would emit electrons into space for anode voltages in the range of 25–40 V, discharge currents in the range of 1–2.5 A, and low xenon gas flows of 2–4 sccm. Plasma properties are measured and compared with (3 A) and without net electron emission. A study of the dependence of relevant parameters found that the C–V behaviour strongly depends on electron temperature, initial ion energy and ion emission current at the contactor exit. However, it depended only weakly on ambient plasma density. The error in the developed model compared with the experimental C–V curves is within 5% at low electron-emission currents (0–2 A). The external ionization processes and high ion production rate caused by the discharge chamber, which dominate the C–V behaviour at electron-emission currents over 2 A, are further highlighted and discussed. (paper)

  4. Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion

    Science.gov (United States)

    Xie, Kan; Martinez, Rafael A.; Williams, John D.

    2014-04-01

    This paper focuses on the net electron-emission current as a function of bias voltage of a plasma source that is being used as the cathodic element in a bare electrodynamic tether system. An analysis is made that enables an understanding of the basic issues determining the current-voltage (C-V) behaviour. This is important for the efficiency of the electrodynamic tether and for low impedance performance without relying on the properties of space plasma for varying orbital altitudes, inclinations, day-night cycles or the position of the plasma contactor relative to the wake of the spacecraft. The cathodic plasma contactor considered has a cylindrical discharge chamber (10 cm in diameter and ˜11 cm in length) and is driven by a hollow cathode. Experiments and a 1D spherical model are both used to study the contactor's C-V curves. The experiments demonstrate how the cathodic contactor would emit electrons into space for anode voltages in the range of 25-40 V, discharge currents in the range of 1-2.5 A, and low xenon gas flows of 2-4 sccm. Plasma properties are measured and compared with (3 A) and without net electron emission. A study of the dependence of relevant parameters found that the C-V behaviour strongly depends on electron temperature, initial ion energy and ion emission current at the contactor exit. However, it depended only weakly on ambient plasma density. The error in the developed model compared with the experimental C-V curves is within 5% at low electron-emission currents (0-2 A). The external ionization processes and high ion production rate caused by the discharge chamber, which dominate the C-V behaviour at electron-emission currents over 2 A, are further highlighted and discussed.

  5. Phosphate salts

    Science.gov (United States)

    ... levels that are too high, and for preventing kidney stones. They are also taken for treating osteomalacia (often ... But intravenous phosphate salts should not be used. Kidney stones (nephrolithiasis). Taking potassium phosphate by mouth might help ...

  6. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  7. Numerical Simulation and Analysis of CO2 Removal in a Polypropylene Hollow Fiber Membrane Contactor

    Directory of Open Access Journals (Sweden)

    Zhien Zhang

    2014-01-01

    Full Text Available This present study shows a comprehensive 2D numerical model for removal of CO2 in a polypropylene (PP hollow fiber membrane contactor (HFMC using the computational fluid dynamics (CFD method. Monoethanolamine (MEA solution was used as the liquid absorbent in a nonwetting mode. The simulation results represented that higher liquid velocity and concentration and lower gas velocity and concentration led to higher percent of CO2 removal. The most proper parameters for CO2 removal were less than 1 mol m−3 gas concentration and 0.2 m s−1 gas flow rate, and for MEA the values were above 8 mol m−3 concentration and approximately 1 m s−1 liquid velocity. Furthermore, the model was validated with the experiment results. Therefore, the modeling results provided references to the selection of absorbents and operation parameters in the experimental study and pilot-scale applications.

  8. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    Science.gov (United States)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  9. Turbulent dispersion results from gel-sphere processes and application to centrifugal contactors

    International Nuclear Information System (INIS)

    Three different devices using controlled velocities of organic liquids were applied to disperse aqueous solutions as drops. One consisted of simple tubes of small diameters. A second contained motionless mixer units inside large tubes. The third employed couette flow of the organic liquid between a cylindrical rotor and a stationary cylinder. These devices were applied to gel-sphere processes in which the liquid drops are converted into solid gel spheres of hydrated metal oxides. The gel-sphere products are good, strong spheres and allow good measurement of the sphere and the drop-size distributions. The drop diameters must be controlled and predictable to allow preparation of product spheres of the desired sizes. Empirical correlations were determined for application to the gel-sphere processes. The theory of turbulent dispersion based on eddy velocities has been developed by Kolmorogoff, Hinze, and others. Davies reviewed this theory and the agreement of theory with four types of dispersion devices for energy dissipation rates of 6 to 400,000 W/g. The gel-sphere results for drop-size distribution are for energy dissipation rates of 10-3 to 1.5 W/g. Those combined results support the theory of turbulence as the dispersion mechanism over a range of 109 for the rate of energy dissipation. The turbulent dispersion with Couette flow is the mechanism for mixing in an advanced design of centrifugal contactors for solvent extraction. The theory of turbulence is applied to predict drop sizes and mixing power for centrifugal contactors as developed at Oak Ridge National Laboratory (ORNL). 14 refs., 7 figs., 6 tabs

  10. Mass transfer trials on U(VI) and Np(IV) in a single stage centrifugal contactor

    International Nuclear Information System (INIS)

    BNFL are currently involved in the development of novel PUREX process flowsheets. This programme incorporates chemical research into organic reagents for actinide control, experimental flowsheet testing through 1 cm α-active annular centrifugal contactor rig trials and computer modelling simulations. One flowsheet option for effective Np control uses acetic hydroxamic acid to selectively strip Np(IV) from a U(VI) product stream in 30% tri-n-butyl phosphate acid (30% TBP/OK) back into aqueous nitric acid. A recent centrifugal contactor rig trial designed to simulate the Np rejection flowsheet confirmed the viability of the process although a significantly lower experimental decontamination factor was obtained than expected from the computer simulation. As centrifugal contactors are characterised by high throughputs, and hence low residence time, is was believed that the discrepancy could be due to a poor understanding (and hence simulation) of Np(IV) mass transfer kinetics. In order to investigate actinide mass transfer a series of single stage 1 cm centrifugal contactor trials were commissioned. Initial trials focussed on U(VI) extraction both to develop the experimental protocol and to assess U(VI) mass transfer against the data available in the open literature. Experimental results indicated the rate of U(VI) mass transfer was determined mainly by physical parameters (i.e. residence time and phase mixing environments) with U(VI) and HNO3 concentrations of only limited influence (an indirect effect at low free TBP concentrations). Single stage centrifugal contactor mass transfer trials were undertaken on both Np(IV) extraction and Np(IV) back-extraction, the latter simulating the Np rejection flowsheet (Np(IV)/U(VI) back extraction into dilute nitric acid containing aceto-hydroxamic acid at high solvent to aqueous flowrate ratios). These results indicated that Np(IV) mass transfer in centrifugal contactors was far slower than previously estimated and that the

  11. Phosphate salts

    Science.gov (United States)

    ... for children 9-18 years of age. Phosphate salts are POSSIBLY UNSAFE if the amount of phosphate consumed (expressed as phosphorous) exceeds the tolerable upper intake level (UL). The ULs are 3 grams per day for children 1-8 years; and 4 grams per day ...

  12. Development of Membrane Materials for Gas-liquid Membrane Contactors for CO2 Capture from Natural Gas

    OpenAIRE

    Tomasa, Tina

    2013-01-01

    In this work, membrane materials are developed with the purpose to be used in a gas-liquid membrane contactor for CO2 capture from natural gas. The amine, methyl diethanolamine (MDEA), is to be used in the liquid phase as the absorbent. This requires a hydrophobic membrane material with high permeabilities and good compatibility with the absorption liquid.Poly(1-trimethysilyl-1-propyne) (PTMSP) is a glassy, high free volume polymer, which achieves the highest gas permeabilities of al known po...

  13. Development of Membrane Materials for Gas-liquid Membrane Contactors for CO2 Capture from Natural Gas

    OpenAIRE

    Tomasa, Tina

    2013-01-01

    In this work, membrane materials are developed with the purpose to be used in a gas-liquid membrane contactor for CO2 capture from natural gas. The amine, methyl diethanolamine (MDEA), is to be used in the liquid phase as the absorbent. This requires a hydrophobic membrane material with high permeabilities and good compatibility with the absorption liquid.Poly(1-trimethysilyl-1-propyne) (PTMSP) is a glassy, high free volume polymer, which achieves the highest gas permeabilities of al known po...

  14. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    OpenAIRE

    Sauder, L.A.; Peterse, F.; Schouten, S; Neufeld, J. D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creat...

  15. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.

  16. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.

  17. Gauge design for electrical contactor parts%电工触头零件的检具设计

    Institute of Scientific and Technical Information of China (English)

    赵延岭

    2015-01-01

    概述了电工触头检具的概念、种类、使用要求、设计原则和结构.介绍了检具材料选择、认证验收标准和维护等.分析了检具功能部件设计及原则 ,通过 TeSys接触器触头检具设计 ,举例说明了如何设计检测直观准确、高效可靠的电工触头检具 ,利用设定的检具系统重复性和再现性数据统计表格来快速判断检具是否合格.结果表明 ,在电工触头批量生产中使用检具测量是一种准确、快捷和高效的方法.%In this paper the conceptions ,types ,requirements ,design principles and structure of electrical contactor gauge were introduced ;material selection ,acceptance criteria and maintenance were illustrated ;the design principles of gauge features was analyzed .Taking TeSys contactor gauge design as an example ,it was explained how to design intuitive ;accu-rate ,efficient and reliable electrical contact gauge .The results showed that the use of the gauge measurements in electrical contactor production is an accurate ,fast and efficient way .

  18. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    Science.gov (United States)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  19. Supported liquid membrane extraction of 99mTc(VII) in a hollow fibre contactor

    International Nuclear Information System (INIS)

    Supported liquid membrane (SLM) extraction of 99mTc(VII) in a hollow fiber contactor was investigated in this study. Technetium in a form of pertechnetate was extracted in the three phase system, from the acidic donor solution through the organic phase placed in the membrane pores and then to the alkaline acceptor solution. Tri-n-octylamine as a well known selective extractant for the separation of technetium from molybdenum was applied for this purpose. The aim of this work was to characterize SLM extraction of 99mTc in order to investigate the applicability of this technique for the alternative, cyclotron production of 99mTc and other positron emitting isotopes of Tc. SLM extraction of 99mTc (VII) was performed in a membrane contactor consisting of a glass housing in a form of U-shaped glass tube and a single hollow fiber. The microporous hydrophobic polypropylene hollow fiber membrane (Hoechst-Celanese, USA) was used in this study. The inner diameter of the hollow fiber was 280 μm, the thickness of the wall was 190 μm, and the length of the hollow fiber was 120 mm. The donor solution was initially containing 13 kBq 99mTc (VII) in 1 dm3 0.9 % NaCl at pH=3-4 and fed along the lumen of the hollow fiber, either in continuous or recirculated mode of operation, by a peristaltic pump. The membrane was impregnated by soaking in the organic phase (50% tri-n-octylamine in hexane) for 1h, which was followed by washing in a water-bath in order to remove the excess of the solvent. The acceptor solution containing 0.1 mol·dm-3 NaOH was fed along the shell side in continuous mode of operation. The activity concentration of 99mTc in the donor and acceptor solution was determined using an automated γ-counter. The transport of 99mTc(VII) across the tri-n-octylamine-hexane based SLM as a function of the donor flow rate under continuous and recirculation mode of operation was investigated. The obtained results are discussed in terms of extraction efficiency, mass transfer

  20. Life Testing of the Hollow Cathode Plasma Contactor for the ProSEDS Mission

    Science.gov (United States)

    Vaughn, Jason A.; Schneider, Todd A.; Finckenor, Miria M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta 11 unmanned expendable booster. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma. A hollow cathode plasma contactor emits the collected electrons from the Delta II, completing the electrical circuit with the ambient plasma. The current flowing through the tether generates thrust based on the Lorentz Force Law. The thrust will be generated opposite to the velocity vector, slowing down the spacecraft and causing it to de-orbit in approximately 14 days compared to the normal 6 months. A 10-km non-conductive tether is between the conductive tether and an endmass containing several scientific instruments. The ProSEDS mission lifetime was set at I day because most of the primary objectives can be met in that time. The extended ProSEDS mission will be for as many days as possible, until the Delta 11 second stage burns up or the tether is severed by a micrometeoroid or space debris particle. The Hollow Cathode Plasma Contactor (HCPC) unit has been designed for a 12-day mission. Because of the science requirements to measure the background ambient plasma, the HCPC must operate on a duty cycle. Later in the ProSEDS mission, the HCPC is operated in a manner to allow charging of the secondary battery. Due to the unusual operating requirements by the ProSEDS mission, a development unit of the HCPC was built for thorough testing. This developmental unit was tested for a simulated ProSEDS mission, with measurements of the ability to start and stop during the duty cycle. These tests also provided valuable data for the ProSEDS software requirements. Qualification tests of the HCPC flight hardware are also discussed.

  1. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    Energy Technology Data Exchange (ETDEWEB)

    David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

    2009-09-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning

  2. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    International Nuclear Information System (INIS)

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a 'cold' environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a 'hot' or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning

  3. Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Meikrantz; T. G. Garn; J. D. Law; N. R. Mann; T. A. Todd

    2008-09-01

    TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samples was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.

  4. Characterization of biofilm of a rotating biological contactor treating synthetic wastewater.

    Science.gov (United States)

    Singh, V; Mittal, A K

    2012-01-01

    A four-stage rotating biological contactor (RBC) was designed and operated to treat synthetic wastewater containing 1,000 mg/l chemical oxygen demand (COD) and 112 mg/l NH(4)(+)-N. A mixed culture bacterial biofilm was developed consisting of a heterotrophic bacterium Paracoccus pantotrophus, nitrifiers and other heterotrophs. Applying the peculiar characteristics of P. pantotrophus of simultaneous heterotrophic nitrification and aerobic denitrification, high simultaneous removal of carbon and nitrogen could be achieved in the fully aerobic RBC. The microbial community structure of the RBC biofilm was categorized based on the nitrate reduction, biochemical reactions, gram staining and morphology. The presence of P. pantotrophus within the RBC biofilm was confirmed with an array of biochemical tests. Isolates from the four stages of RBC were grouped into complete denitrifiers, incomplete denitrifiers and non-denitrifiers. This categorization showed a higher relative abundance of P. pantotrophus in the first stage as compared with subsequent stages, in which other nitrifiers and heterotrophs were significantly present. High total nitrogen removal of upto 68% was in conformity with observations made using microbial categorization and biochemical tests. The high relative abundance of P. pantotrophus in the biofilm revealed that it could successfully compete with other heterotrophs and autotrophic nitrifiers in mixed bacterial biomass. PMID:22699350

  5. Vacuum interrupter, high reliability component of distribution switches, circuit breakers and contactors

    Institute of Scientific and Technical Information of China (English)

    SLADE Paul G.; LI Wang-pei; MAYO Stephen; SMITH R.Kirkland; TAYLOR Erik D.

    2007-01-01

    The use of vacuum interrupters (VIs) as the current interruption component for switches, circuit breakers, reclosers and contactors operating at distribution voltages has escalated since their introduction in the mid-1950's. This electrical product has developed a dominating position for switching and protecting distribution circuits. VIs are even being introduced into switching products operating at transmission voltages. Among the reasons for the VI's popularity are its compactness, its range of application, its low cost, its superb electrical and mechanical life and its ease of application. Its major advantage is its well-established reliability. In this paper we show how this reliability has been achieved by design, by mechanical life testing and by electrical performance testing. We introduce the "sealed for life" concept for the VI's integrity. We discuss this in terms of what is meant by a practical leak rate for VIs with a life of over 30 years. We show that a simple high voltage withstand test is an easy and effective method for monitoring the long-term vacuum integrity. Finally we evaluate the need for routine inspection of this electrical product when it is used in adverse ambient environments.

  6. Surface Charging Controlling of the Chinese Space Station with Hollow Cathode Plasma Contactor

    Science.gov (United States)

    Jiang, Kai; Wang, Xianrong; Qin, Xiaogang; Yang, Shengsheng; Yang, Wei; Zhao, Chengxuan; Chen, Yifeng; Shi, Liang; Tang, Daotan; Xie, Kan

    2016-07-01

    A highly charged manned spacecraft threatens the life of an astronaut and extravehicular activity, which can be effectively reduced by controlling the spacecraft surface charging. In this article, the controlling of surface charging on Chinese Space Station (CSS) is investigated, and a method to reduce the negative potential to the CSS is the emission electron with a hollow cathode plasma contactor. The analysis is obtained that the high voltage (HV) solar array of the CSS collecting electron current can reach 4.5 A, which can be eliminated by emitting an adequate electron current on the CSS. The theoretical analysis and experimental results are addressed, when the minimum xenon flow rate of the hollow cathode is 4.0 sccm, the emission electron current can neutralize the collected electron current, which ensures that the potential of the CSS can be controlled in a range of less than 21 V, satisfied with safety voltage. The results can provide a significant reference value to define a flow rate to the potential controlling programme for CSS.

  7. Performance of an in-situ rotating biological contactor in a recirculating aquaculture system.

    Science.gov (United States)

    Marin, P; Donoso-Bravo, A; Campos, J L; Ruiz-Filippi, G; Chamy, R

    2011-01-01

    The start-up and activation of a nitrifying rotating biological contactor (RBC) and its performance inside a culture tank of rainbow trout were studied. First, in a lab-scale operation, the system was fed with a synthetic medium containing a high ammonia concentration (567 mg NH(4)(+)-N L(-1)) and operated at a high hydraulic retention time (HRT) (6.5 days) to minimize the wash-out of the biomass and promote the biofilm formation. Then, both inlet ammonia concentration and HRT were decreased in order to obtain operational conditions similar to those of the culture tank. During this period, the RBC was able to treat an ammonia loading rate (ALR) of 0.64 g N-NH(4)(+) L(-1) d(-1) with a removal efficiency within 70-100%. Pilot-scale experiments were carried out in culture tanks of rainbow trout. The operation of a recirculating system with the RBC unit was compared with a recirculating system without biological treatment and with a flow-through system. The use of this in-situ nitrifying unit allowed working at a recirculation ratio of 90% without negative effects on either growth or the condition factor of fishes. Up to 70% of ammonia generated was removed and a removal rate of 1.41 g NH(4)(+)-N m(-2) d(-1) was reached. PMID:22156125

  8. Experimental design and statistical analysis in Rotating Disc Contactor (RDC) column

    Science.gov (United States)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Ariffin, Wan Nor Munirah

    2015-12-01

    The purpose of this paper is to examine the performance of the liquid-liquid extraction in Rotating Disc Contactor (RDC) Column that being used in industries. In this study, the performance of small diameter column RDC using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of design of the experiments (DOE) and also Multiple Linear Regression (MLR). The DOE method are used to estimated the effect of four independent. Otherwise, by using Multiple Linear Regression (MLR) is to justify the relationship between the input variables and output variables and also to determine which variable are more influence for both output variable. The input variables for both method include rotor speed (Nr); ratio of flow (Fd); concentration of continuous inlet (Ccin); concentration of dispersed inlet (Cdin); interaction between Nr with Fd; interaction between Nr with Ccin; interaction Nr with Cdin. Meanwhile the output variables are concentration of continuous outlet (Ccout) and concentration of dispersed outlet (Cdout) on RDC column performance. By using this two method, we have two linear model represent two output of Ccout and Cdout for MLR. Lastly, the researcher want to determine which input variable that give more influence to output variable by using this two method. Based on the result, we obtained that rotor speed (Nr) more influence to dependent variable, Ccout and concentration of continuous inlet (Ccin) more influence to dependent variable, Cdout according the two method that was used.

  9. Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor

    International Nuclear Information System (INIS)

    TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samples was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested

  10. CMP flowsheet development for the separation of actinides from ICPP sodium-bearing waste using centrifugal contactors

    International Nuclear Information System (INIS)

    Previous results of lab-scale batch contacts with sodium-bearing waste (SBW) simulant suggested a potential flowsheet for partitioning actinides using solvent extraction with dihexyl-N,N-diethylcarbamoylmethyl phosphonate (DHDECMP or simply CMP) as the extractant. The suggested baseline flowsheet includes: an extraction section to remove actinides from liquid SBW into the CMP solvent (0.75 M CMP, 1.0 M TBP in Isopar-L reg-sign); a thermally unstable complexant (TUCS) strip section to back-extract actinides; a sodium carbonate wash section for solvent cleanup; and a dilute HNO3 rinse section to re-acidify the solvent. The purpose of these studies was to test and develop a baseline CMP flowsheet for Idaho Chemical Processing Plant (ICPP) SBW under continuous, countercurrent conditions using centrifugal contactors. This flowsheet was tested in two experiments using the Centrifugal Contactor Mockup which consists of sixteen stages of 5.5 cm diameter centrifugal contactors (procured from Oak Ridge National Laboratory). All testing was performed using non-radioactive SBW simulant. Potential flowsheets were evaluated with regard to the behavior of the non-radioactive components potentially extracted by the CMP solvent. Specifically, the behavior of the matrix components, including Fe, Hg, and Zr, was studied. In addition, Nd was added to the SBW simulant as a surrogate for 241Am. In general, the behavior of the individual components closely paralleled that anticipated from batch testing. Based on the assumption that the behavior of Am will be very similar to the behavior of the Nd surrogate, eight extraction stages are more than sufficient to reduce the actinide content in the SBW to levels well below the NRC Class A LLW criteria of 10 nCi/g. Very little Fe or Zr were extracted from the SBW simulant, resulting in only 1% of the Fe and 4% of the Zr exiting in the high-activity waste (HAW) fraction

  11. Comparative non-dispersive solvent extraction of uranium and thorium using a hollow fiber contactor containing TBP/DHOA

    International Nuclear Information System (INIS)

    Non-dispersive solvent extraction of Uranium and Thorium was carried out from nitric acid medium using hollow fiber contactor containing TBP and DHOA as the carrier extractants. The effect of flow rate was studied while carrying out the extraction studies in counter current mode using 10 g/L solutions of the metal ions in 3 M HNO3 and 50 mL/minute was found to be most suitable for better separation efficiency. Stripping studies were also carried out using deionized water as the strippant for both the metal ions. (author)

  12. Characterization of an Autotrophic Nitrogen-Removing Biofilm from a Highly Loaded Lab-Scale Rotating Biological Contactor

    OpenAIRE

    Pynaert, Kris; Smets, Barth F.; Wyffels, Stijn; Beheydt, Daan; Siciliano, Steven D.; Verstraete, Willy

    2003-01-01

    In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH4+ wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% ± 5% of the influent N at the highest surface load of approximately 8.3 g of N m−2 day−1, with N2 as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 ± 7.6 and 76.5 ± 6.4 mg of...

  13. Hydrodynamic study of fine metallic powders in an original spouted bed contactor in view of chemical vapor deposition treatments

    OpenAIRE

    Caussat, Brigitte; Juarez, Fernando L.; Vahlas, Constantin

    2006-01-01

    An original gas–solid contactor was developed so as to treat by chemical vapor deposition, fine (mean diameter 23 μm) and dense (bulk density 7700 kg/m3) NiCoCrAlYTa powders with large size distribution. In order to avoid the presence of a distributor in the reactive zone, a spouted bed configuration was selected, consisting in a glass cylindrical column associated through a 60° cone to an inlet tube, connected at its bottom to a grid so as to support the powders at rest. A hydrodynamic study...

  14. Ammonia removal in the carbon contactor of a hybrid membrane process.

    Science.gov (United States)

    Stoquart, Céline; Servais, Pierre; Barbeau, Benoit

    2014-12-15

    The hybrid membrane process (HMP) coupling powdered activated carbon (PAC) and low-pressure membrane filtration is emerging as a promising new option to remove dissolved contaminants from drinking water. Yet, defining optimal HMP operating conditions has not been confirmed. In this study, ammonia removal occurring in the PAC contactor of an HMP was simulated at lab-scale. Kinetics were monitored using three PAC concentrations (1-5-10 g L(-1)), three PAC ages (0-10-60 days), two temperatures (7-22 °C), in ambient influent condition (100 μg N-NH4 L(-1)) as well as with a simulated peak pollution scenario (1000 μg N-NH4L(-1)). The following conclusions were drawn: i) Using a colonized PAC in the HMP is essential to reach complete ammonia removal, ii) an older PAC offers a higher resilience to temperature decrease as well as lower operating costs; ii) PAC concentration inside the HMP reactor is not a key operating parameter as under the conditions tested, PAC colonization was not limited by the available surface; iii) ammonia flux limited biomass growth and iv) hydraulic retention time was a critical parameter. In the case of a peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed reaching a 50% ammonia removal. Finally, a kinetic model based on these experiments is proposed to predict ammonia removal occurring in the PAC reactor of the HMP. The model determines the relative importance of the adsorption and biological oxidation of ammonia on colonized PAC, and demonstrates the combined role of nitrification and residual adsorption capacity of colonized PAC. PMID:25459222

  15. TRUEX flowsheet development as applied to ICPP sodium-bearing waste using centrifugal contactors

    International Nuclear Information System (INIS)

    Previous lab-scale work using batch contacts with sodium- bearing waste (SEW) simulant and samples of radioactive SEW from tank WM-185 suggested a potential flowsheet for partitioning actinides using solvent extraction (the TRUEX process). The suggested baseline flowsheet includes: an extraction section to remove actinides from liquid SEW into the TRUEX solvent (0.2 M CMP01 1.4 M TBP in Isopar-L); a dilute nitric acid scrub (0.07- 0.2 M HNO3) to back extract co-extracted matrix materials (primarily Fe, Zr, and HNO3) from the loaded solvent; thermally unstable complexants (TUCS) to back extract actinides; and a carbonate wash section for solvent cleanup. The purpose of the flowsheet development studies was to test and develop the baseline TRUEX flowsheet for ICPP SEW under continuous, countercurrent conditions using centrifugal contactors. All testing was performed using non-radioactive SEW simulant. Potential flowsheets were evaluated with regards to the behavior of the non-radioactive components known to be extracted by the TRUEX solvent. In general, the behavior of the individual components closely paralleled that anticipated from batch testing. The results indicate that eight extraction stages are more than sufficient to reduce the actinide content in the SEW to levels well below the NRC Class A LLW criteria of 10 nCi/g. Iron was effectively scrubbed from the organic and 5% ended up in the high-activity waste (HAW) fraction. Zirconium scrubbing was not as effective and as much as 60% of the Zr in the feed could end up in the HAW fraction. The TUCS strip was effective at quantitatively stripping all metals except mercury from the TRUEX solvent. Carbonate washing effectively back extracted mercury from the stripped solvent, resulting in 99.4% of the mercury selectively partitioned from the SEW

  16. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting

    International Nuclear Information System (INIS)

    Experiments on CO2 removal from flue gas using polypropylene (PP) hollow fiber membrane contactors were conducted in this study. Absorbents including aqueous potassium glycinate (PG) solution, aqueous solutions of monoethanolamine (MEA) and methyldiethanolamine (MDEA) were used to absorb CO2 in the experiments. Based on the wetting experimental results, aqueous PG solution can offer a higher surface tension than water, aqueous MEA and MDEA solutions. Aqueous PG solution has a lower potential of membrane wetting after a continuously steady operation for 40 h to maintain CO2 removal efficiency of about 90%. Under moderate operating conditions, effects of the temperature, flow rate, and concentration of absorbents, and the flow rate of flue gas as well as the volumetric concentration of carbon dioxide in the flue gas on the mass transfer rate of CO2 were studied on a pilot-scale test facility. Unlike conventional absorbents, the mass transfer decreases with an increasing liquid temperature when using aqueous PG solution. Results show that CO2 removal efficiency was above 90% and the mass transfer rate was above 2.0 mol/(m2 h) using the PG aqueous solution. It indicates that the hollow fiber membrane contactor has a great potential in the area of CO2 separation from flue gas when absorbent's concentration and liquid-gas pressure difference are designed elaborately. (author)

  17. Experimental study on the separation of CO{sub 2} from flue gas using hollow fiber membrane contactors without wetting

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shui-ping; Fang, Meng-Xiang; Zhang, Wei-Feng; Luo, Zhong-Yang; Cen, Ke-Fa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China); Wang, Shu-Yuan; Xu, Zhi-Kang [Institute of Polymer Science, Zhejiang University, Hangzhou 310027 (China)

    2007-05-15

    Experiments on CO{sub 2} removal from flue gas using polypropylene (PP) hollow fiber membrane contactors were conducted in this study. Absorbents including aqueous potassium glycinate (PG) solution, aqueous solutions of monoethanolamine (MEA) and methyldiethanolamine (MDEA) were used to absorb CO{sub 2} in the experiments. Based on the wetting experimental results, aqueous PG solution can offer a higher surface tension than water, aqueous MEA and MDEA solutions. Aqueous PG solution has a lower potential of membrane wetting after a continuously steady operation for 40 h to maintain CO{sub 2} removal efficiency of about 90%. Under moderate operating conditions, effects of the temperature, flow rate, and concentration of absorbents, and the flow rate of flue gas as well as the volumetric concentration of carbon dioxide in the flue gas on the mass transfer rate of CO{sub 2} were studied on a pilot-scale test facility. Unlike conventional absorbents, the mass transfer decreases with an increasing liquid temperature when using aqueous PG solution. Results show that CO{sub 2} removal efficiency was above 90% and the mass transfer rate was above 2.0 mol/(m{sup 2} h) using the PG aqueous solution. It indicates that the hollow fiber membrane contactor has a great potential in the area of CO{sub 2} separation from flue gas when absorbent's concentration and liquid-gas pressure difference are designed elaborately. (author)

  18. Preparation of Calcium Carbonate Nanoparticles with a Continuous Gas-liquid Membrane Contactor:Particles Morphology and Membrane Fouling

    Institute of Scientific and Technical Information of China (English)

    JIA Zhiqian; CHANG Qing; QIN Jin; MAMAT Aynur

    2013-01-01

    Nanosized calcium carbonate particles were prepared with a continuous gas-liquid membrane contactor.The effects of Ca(OH)2 concentration,CO2 pressure and liquid flow velocity on the particles morphology,pressure drop and membrane fouling were studied.With rising Ca(OH)2 concentrations,the average size of the particles increased.The effects of Ca(OH)2 concentration and CO2 pressure on particles were not apparent under the experimental conditions.When the Ca(OH)2 concentration and liquid flow velocity were high,or the CO2 pressure was low,the fouling on the membrane external surface at the contactor entrance was serious due to liquid leakage,whereas the fouling was slight at exit.The fouling on the membrane inner-surface at entrance was apparent due to adsorption of raw materials.The membrane can be recovered by washing with dilute hydrochloric acid and reused for at least 6 times without performance deterioration.

  19. CaBr{sub 2} hydrolysis for HBr production using a direct sparging contactor.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Panchal, C. B.; Doctor, R. D.; Energy Systems

    2009-09-01

    The calcium-bromine cycle being investigated is a novel continuous hybrid cycle for hydrogen production employing both heat and electricity. Calcium bromide (CaBr{sub 2}) hydrolysis generates hydrogen bromide (HBr) which is electrolyzed to produce hydrogen. The CaBr{sub 2} hydrolysis at 1050 K (777 C) is endothermic with the heat of reaction {delta}G{sub T} = 181.5 KJ/mol (43.38 kcal/mol) and the Gibbs free energy change is positive at 99.6 kJ/mol (23.81 kcal/mol). What makes this hydrolysis reaction attractive is both its rate and that well over half the thermodynamic requirements for water-splitting heat of reaction of {delta}G{sub T} = 285.8 KJ/mol (68.32 kcal/mol) are supplied at this stage using heat rather than electricity. Molten-phase calcium bromide reactors may overcome the technical barriers associated with earlier hydrolysis approaches using supported solid-phase calcium bromide studied in the Japanese UT-3 cycle. Before constructing the experiment two design concepts were evaluated using COMSOL{trademark} multi-physics models; (1) the first involved sparging steam into a calcium-bromide melt, while (2) the second considered a 'spray-dryer' contactor spraying molten calcium bromide counter-currently to upward-flowing steam. A recent paper describes this work. These studies indicated that sparging steam into a calcium-bromide melt is more feasible than spraying molten calcium bromide droplets into steam. Hence, an experimental sparging hydrolysis reactor using a mullite tube (ID 70 mm) was constructed capable of holding 0.3-0.5 kg (1.5-2.5 x 10{sup -3} kg mol) CaBr{sub 2} forming a melt with a maximum 0.08 m (8 cm) depth. Sparging steam at a steam rate of 0.02 mol/mol of CaBr{sub 2} per minute (1.2-2.3 x 10{sup -5} kg/s), into this molten bath promptly yielded HBr in a stable operation that converted up to 25% of the calcium bromide. The kinetic constant derived from the experimental data was 2.17 x 10{sup -12} kmol s{sup -1} m{sup -2} MPa

  20. Salt: a sacred substance.

    Science.gov (United States)

    De Santo, N G; Bisaccia, C; De Santo, R M; De Santo, L S; Petrelli, L; Gallo, L; Cirillo, M; Capasso, G

    1997-11-01

    Salt is the last relic of the ocean where life was born. Its presence has influenced the whole gamut of history and its name is linked to hundred of geographical locations. Its importance for nutrition is supported by the discovery of Aeneolithic salt cellars. Salt cellars and pyramids of salt have been included in paintings and other works of art. In Japan where salt was and still is obtained from the sea, a salt culture has developed that can be traced in the rituals of everyday life, including meal preparation, sports, and Shinto ceremonies. PMID:9350697

  1. Engineering development studies for molten-salt breeder reactor processing No. 18

    International Nuclear Information System (INIS)

    A water--mercury system was used to study the effect of geometric variations on mass transfer rates in rectangular contractors similar to those proposed for the molten-salt breeder reactor (MSBR) fuel reprocessing scheme. Since mass transfer rates were not accurately predicted by the Lewis correlation, other correlations were investigated. A correlation which was found to fit the experimental results is given. Mass transfer rates are being measured in a fluoride salt--bismuth contactor. Experimental results indicate that the mass transfer rates in the salt--bismuth system fall between the Lewis correlation and the modified correlation given above. Autoresistance heating tests were continued in the fluorinator mock-up using LiF--BeF2--ThF4 (72-16-12 mole percent) salt. The equipment was returned to operating condition, and five experiments were run. Although correct steady-state operation was not achieved, the results were encouraging. A two-dimensional electrical analog was constructed to study current flow through the electrode sidearm and other critical areas of the test vessel. These studies indicate that no regions of abnormally high current density existed in the first nine runs with the present autoresistance heating equipment. Localized heating had previously been the suspected cause for the failure to achieve proper operation of this equipment. (U.S.)

  2. Modeling the Transverse Shell-side Mass Transfer in Hollow Fiber Membrane Contactors at Low Reynolds Numbers

    Science.gov (United States)

    Kirsch, V. A.; Volkov, V. V.; Bildukevich, A. V.

    A method for calculating the external mass transfer in a contactor with a transverse confined flow of a viscous incompressible liquid (gas) past hollow fibers at low Reynolds numbers is proposed. The method is based on the concept of regular arrays of parallel fibers with a well-defined flowfield. As a simplest model system, a row of parallel fibers is considered, for which dependences of a drag force and an efficiency of a solute retention on the inter-fiber distance, membrane mass transfer coefficient, Peclet and Reynolds numbers are computed. The influence of the fluid inertia on the mass transport is studied. It is shown that a linear Stokes equations can be used for as higher Re numbers, as denser is the fiber array. In this case the flow field is independent on the Re number, and analytical solutions for the flowfield and fiber sorption efficiency (fiber Sherwood number) can be used.

  3. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste

    International Nuclear Information System (INIS)

    Highlights: • An improved total partitioning process for high level liquid waste was developed. • Genuine high level liquid waste was used in the hot test. • 72-Stage 10-mm-dia annular centrifugal contactors were used in the hot test. • The decontamination factors of actinides, Sr and Cs were very high. • The stripping efficiencies of actinides, Sr and Cs were very high. - Abstract: High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, 90Sr, 137Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P and T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 103, 2.25 × 104 and 1.68 × 104 after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation

  4. Operating Characteristics Test System for AC/DC Contactor%交直流接触器动作特性测试系统

    Institute of Scientific and Technical Information of China (English)

    林文贵; 许志红

    2014-01-01

    The operating characteristics test system of AC/DC contactor was introduced.It achieves phase selection in the closing and opening course of contactor.Keyence laser displacement sensor is used to achieve the test of displacement of contact and iron core changing over time.Moreover,the sound signal making in the closing course of contactor by electret microphone is captured.The voltage,current of coil and main circuit with three-phase contacts are obtained.All signals mentioned above transmitting to PC based on data-acquisition,the system achieves data processing,automatically measuring and saving.The test system provides technical support for contactor studying and simulation,control strategy verifying of AC/DC contactor.It is of theoretical and practical significance in the design and development of AC/DC contactor.%介绍了一套交/直流接触器动作特性测试系统。系统实现了对交流接触器的选相分/合闸控制,采用激光位移传感器实现触头与铁心动态位移测试,驻极体传声器采集接触器闭合过程声音信号,霍尔传感器采集线圈回路和三相触头回路电压电流信号;同时使用数据采集卡将信号采集到上位机,完成数据的处理分析、自动测量、数据存储等功能。系统为交直流接触器的仿真研究、控制方案等提供技术支持,对提高接触器的设计与开发水平具有理论和实际意义。

  5. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; Wollack, Edward J.; Wright, Kenneth H.

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  6. CaBr{sub 2} hydrolysis for HBr production using a direct sparging contactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianhong; Panchal, C.B.; Doctor, Richard D. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-09-15

    The calcium-bromine cycle being investigated is a novel continuous hybrid cycle for hydrogen production employing both heat and electricity. Calcium bromide (CaBr{sub 2}) hydrolysis generates hydrogen bromide (HBr) which is electrolyzed to produce hydrogen. The CaBr{sub 2} hydrolysis at 1050 K (777 C) is endothermic with the heat of reaction {delta}G{sub T} = 181.5 KJ/mol (43.38 kcal/mol) and the Gibbs free energy change is positive at 99.6 kJ/mol (23.81 kcal/mol). What makes this hydrolysis reaction attractive is both its rate and that well over half the thermodynamic requirements for water-splitting heat of reaction of {delta}G{sub T} = 285.8 KJ/mol (68.32 kcal/mol) are supplied at this stage using heat rather than electricity. Molten-phase calcium bromide reactors may overcome the technical barriers associated with earlier hydrolysis approaches using supported solid-phase calcium bromide studied in the Japanese UT-3 cycle. Before constructing the experiment two design concepts were evaluated using COMSOL trademark multi-physics models; 1) the first involved sparging steam into a calcium-bromide melt, while 2) the second considered a ''spray-dryer'' contactor spraying molten calcium bromide counter-currently to upward-flowing steam. A recent paper describes this work. These studies indicated that sparging steam into a calcium-bromide melt is more feasible than spraying molten calcium bromide droplets into steam. Hence, an experimental sparging hydrolysis reactor using a mullite tube (ID 70 mm) was constructed capable of holding 0.3-0.5 kg (1.5-2.5 x 10{sup -3} kg mol) CaBr{sub 2} forming a melt with a maximum 0.08 m (8 cm) depth. Sparging steam at a steam rate of 0.02 mol/mol of CaBr{sub 2} per minute (1.2-2.3 x 10{sup -5} kg/s), into this molten bath promptly yielded HBr in a stable operation that converted up to 25% of the calcium bromide. The kinetic constant derived from the experimental data was 2.17 x 10{sup -12} kmol s{sup -1} m{sup -2

  7. Molten salt electrolyte separator

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  8. Evaluation of an alkaline-side solvent extraction process for cesium removal from SRS tank waste using laboratory-scale centrifugal contactors

    International Nuclear Information System (INIS)

    An alkaline-side solvent extraction process for cesium removal from Savannah River Site (SRS) tank waste was evaluated experimentally using a laboratory-scale centrifugal contactor. Single-stage and multistage tests were conducted with this contactor to determine hydraulic performance, stage efficiency, and general operability of the process flowsheet. The results and conclusions of these tests are reported along with those from various supporting tests. Also discussed is the ability to scale-up from laboratory- to plant-scale operation when centrifugal contractors are used to carry out the solvent extraction process. While some problems were encountered, a promising solution for each problem has been identified. Overall, this alkaline-side cesium extraction process appears to be an excellent candidate for removing cesium from SRS tank waste

  9. Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase

    OpenAIRE

    McLeod, Andrew J.; Jefferson, Bruce; McAdam, Ewan

    2016-01-01

    A micro-porous hollow fibre membrane contactor (HFMC) operated in sweep-gas mode has been studied to enable the recovery of dissolved methane from water in concentrated form. At high sweep-gas flow rates, up to 97% dissolved methane removal efficiency is achievable which is sufficient to achieve carbon neutrality (around 88%). An increase in methane composition of the recovered sweep-gas was achievable through two primary mechanisms: (i) an increase in liquid velocity which improved dissolved...

  10. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  11. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  12. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  13. Hollow Fiber Membrane Contactors for Post-Combustion CO2 Capture: A Scale-Up Study from Laboratory to Pilot Plant

    Directory of Open Access Journals (Sweden)

    Chabanon E.

    2014-11-01

    Full Text Available Membrane contactors have been proposed for decades as a way to achieve intensified mass transfer processes. Post-combustion CO2 capture by absorption into a chemical solvent is one of the currently most intensively investigated topics in this area. Numerous studies have already been reported, unfortunately almost systematically on small, laboratory scale, modules. Given the level of flue gas flow rates which have to be treated for carbon capture applications, a consistent scale-up methodology is obviously needed for a rigorous engineering design. In this study, the possibilities and limitations of scale-up strategies for membrane contactors have been explored and will be discussed. Experiments (CO2 absorption from a gas mixture in a 30%wt MEA aqueous solution have been performed both on mini-modules and at pilot scale (10 m2 membrane contactor module based on PTFE hollow fibers. The results have been modelled utilizing a resistance in series approach. The only adjustable parameter is in fitting the simulations to experimental data is the membrane mass transfer coefficient (km, which logically plays a key role. The difficulties and uncertainties associated with scaleup computations from lab scale to pilot scale modules, with a particular emphasis on the km value, are presented and critically discussed.

  14. Hollow Fiber Membrane Contactors for Post-Combustion CO2 Capture: A Scale-Up Study from Laboratory to Pilot Plant

    International Nuclear Information System (INIS)

    Membrane contactors have been proposed for decades as a way to achieve intensified mass transfer processes. Post-combustion CO2 capture by absorption into a chemical solvent is one of the currently most intensively investigated topics in this area. Numerous studies have already been reported, unfortunately almost systematically on small, laboratory scale, modules. Given the level of flue gas flow rates which have to be treated for carbon capture applications, a consistent scale-up methodology is obviously needed for a rigorous engineering design. In this study, the possibilities and limitations of scale-up strategies for membrane contactors have been explored and will be discussed. Experiments (CO2 absorption from a gas mixture in a 30% wt MEA aqueous solution) have been performed both on mini-modules and at pilot scale (10 m2 membrane contactor module) based on PTFE hollow fibers. The results have been modelled utilizing a resistance in series approach. The only adjustable parameter is in fitting the simulations to experimental data is the membrane mass transfer coefficient (km), which logically plays a key role. The difficulties and uncertainties associated with scale-up computations from lab scale to pilot scale modules, with a particular emphasis on the km value, are presented and critically discussed. (authors)

  15. Power Consumption, Mixing Time, and Oxygen Mass Transfer in a Gas-Liquid Contactor Stirred with a Dual Impeller for Different Spacing

    Directory of Open Access Journals (Sweden)

    Hayder Mohammed Issa

    2016-01-01

    Full Text Available Multiple or dual impellers are widely implemented in stirred contactors used in various biological processes like fermentation, water treatment, and pharmaceutical production. The spacing between impellers is considered as a crucial factor in designing of these types of contactors resulting in variation of oxygen mass transfer, mixing time, or power consumption for such biological system. A study of three parts was conducted to characterize the effect of the spacing between impellers on the most important parameters that related to biological contactor performance: oxygen mass transfer coefficient kla from the gas phase (air to the liquid phase (water, mixing time, and power consumption for different operating rotational speeds (1.67–3.33 rps and for three different spacing positions. The used impellers system in the study is a dual impeller system which consists of an inverted and bladed rotated cone (IBRC and a pitched-blade up-flow propeller (PBPU. The experimental results showed that the shorter spacing (the lower PBPU in a higher position is more convenient, as the achieved oxygen mass transfer coefficient has showed an improvement in its values with lower mixing time and with a slight alteration in power consumption.

  16. SALT Science Conference 2015

    Science.gov (United States)

    Buckley, David; Schroeder, Anja

    The Southern African Large Telescope (SALT) has seen great changes in the last years following the beginning of full time science operations in 2011. The three first generation instruments, namely the SALTICAM imager, the Robert Stobie Spectrograph (RSS) and its multiple modes and finally in 2014, the new High Resolution Spectrograph (HRS), have commissioned it. The SALT community now eagerly anticipate the installation and commissioning of the near-infrared arm of RSS, likely to commence in 2016. The the third "Science with SALT" conference was held at the Stellenbosch Institute of Advanced Study from 1-5 June 2015. The goals of this conference were to: -Present and discuss recent results from SALT observations; -Anticipate scientific programs that will be carried out with new SALT instrumentation such as RSS-NIR; -Provide a scientific environment in which to foster inter-institutional and inter-facility collaborations between scientists at the different SALT partners; -Provide an opportunity for students and postdocs to become more engaged in SALT science and operations; -Encourage the scientific strategic planning that will be necessary to insure an important role for SALT in an era of large astronomical facilities in the southern hemisphere such as MeerKAT, the SKA, LSST, and ALMA; -Consider options for future instrumentation and technical development of SALT; and, -Present, discuss, and engage in the SALT Collateral Benefits program led by SAAO. Conference proceedings editors: David Buckley and Anja Schroeder

  17. Salt Weathering on Mars

    Science.gov (United States)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  18. Effect of Flow Rate and Disc Area Increment on the Efficiency of Rotating Biological Contactor for Treating Greywater

    Directory of Open Access Journals (Sweden)

    Ashfaq Ahmed Pathan

    2015-04-01

    Full Text Available The performance of greywater treatment through RBC (Rotating Biological Contactor is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m2. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m2 and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand COD (Chemical Oxygen Demand and TSS (Total Suspended Solid was observed 83, 57 and 90% respectively

  19. Effect of flow rate and disc area increment on the efficiency of rotating biological contactor for treating greywater

    International Nuclear Information System (INIS)

    The performance of greywater treatment through RBC (Rotating Biological Contactor) is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m/sup 2/. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m/sup 2/ and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand) COD (Chemical Oxygen Demand) and TSS (Total Suspended Solid) was observed 83, 57 and 90% respectively. (author)

  20. Low-salt diet

    Science.gov (United States)

    ... harmful to you, a salt substitute is a good way to lower the amount of sodium in your diet. Alternate Names Low-sodium diet; Salt restriction Images Low sodium diet References American Heart Association Nutrition Committee; Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, et al. Diet and ...

  1. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  2. Engineering development studies for molten-salt breeder reactor processing No. 19

    International Nuclear Information System (INIS)

    Fabrication and assembly of carbon steel vessels for metal transfer experiment MTE-3B was continued. Examination of the vessels and analysis of the salt and metal phases from the previously operated experiment MTE-3 was completed. Internal surfaces exposed to salts and bismuth appeared in excellent condition. Failure of the oxidation-resistant protective coating on the external surfaces allowed significant oxidation of these surfaces at the 6500C operating temperature, but was not extensive enough to affect the vessel integrity. A different protective coating with superior air-oxidation resistance was applied to the MTE-3B vessels. X-ray fluorescence analyses of the Li-Bi phase from the rare-earth stripper at the LiCl--Li-Bi interface contained significant amounts of iron and thorium. A 6-in. diam low-carbon steel stirred interface contactor was installed in the Salt-Bismuth Flowthrough Facility. Results from the first six runs using 97Zr and 237U tracers indicate that the salt-phase mass transfer coefficient based on 237U counting data is 37 +- 3 percent of the value predicted by the Lewis correlation for runs 1, 2, 3, and 5, and is 116 +- 10 percent of the Lewis value for runs 4 and 6. The mass transfer coefficients based on 97Zr counting data are felt to be less reliable than those based on 237U because of the inability to correct for self absorption of the 743.37 keV β- in the solid bismuth samples. Reaction of gaseous UF6 with UF4 dissolved in molten salt and the subsequent reduction with hydrogen of the resultant UF5 will be a flowthrough operation, and the main vessels will consist of a 36-liter feed tank, a UF6 absorption vessel, a hydrogen reduction column, and a receiver vessel. (U.S.)

  3. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  4. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  5. Crushed Salt Constitutive Model

    International Nuclear Information System (INIS)

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well

  6. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kan, E-mail: xiekan@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Farnell, Casey C.; Williams, John D. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524 (United States)

    2014-08-15

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10{sup −5 }Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  7. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  8. Mass transfer studies in miniature Rotating Disc Contactor (RDC) with 30% TBP/nitric acid biphasic system

    International Nuclear Information System (INIS)

    The rotating disc contactor is the widely used liquid-liquid extraction equipment for its high throughput and efficiency. In this work mass transfer performance of the miniature RDC column for the 30% TBP/nitric acid biphasic system was studied in terms of the operating variables such as rotor speed and flow rate of the aqueous and organic phase. The RDC column used in the experiments was shown. The column shell is made up of thick glass having diameter of 10.5 cm and height 100 cm. The rotor diameter is 5.3 cm and stator opening diameter is 6.3 cm. Totally 25 number of rotor discs were welded in the rotating shaft. This shaft was aligned in such a way that each rotor was placed in the centre of the compartment formed in between the two stator rings. The experiments were carried out to study the effect of rotor speed and superficial velocity of the dispersed and continuous phase on mass transfer efficiency. The organic solvent was made as the continuous phase and O/A ratio was set as 4 in both the continuous to dispersed phase(c-d) and dispersed to continuous phase (d-c) mass transfer experiments. The Number of Transfer Units (NTU) was estimated based on the solvent phase. The graphical representation of NTU was shown. The NTU value was observed as 4 and 3 respectively for extraction and stripping at the combined through put of 60 L/h and the rotor speed of 1000 rpm. This corresponds to the Height of Transfer Unit (HTU) value of 15 cm and 20 cm respectively for d-c and c-d mass transfer. The estimated overall mass transfer coefficient was increasing with rotor speed and superficial velocity of the liquid phases. The overall mass transfer coefficient also increases with increase in hold up

  9. Cooking without salt

    Science.gov (United States)

    ... salt. Herbs and spices on vegetables: Carrots -- Cinnamon, cloves, dill, ginger, marjoram, nutmeg, rosemary, sage Corn -- Cumin, ... chopped ¾ cup green peppers 2 tsp vegetable oil 1 8-oz can tomato sauce* 1 tsp ...

  10. What Are Bath Salts?

    Science.gov (United States)

    ... Blog Team Concert festivals are all about good music, good friends, and big crowds. But for some ... school, North Carolina: Are bath salts becoming more popular? Marsha Lopez Hi, Lauren. Nope! Actually quite the ...

  11. Molten salt reactor type

    International Nuclear Information System (INIS)

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF2-ThF4-UF4) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate

  12. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h-1. For a total throughput of 300 mL.h-1, the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the extraction

  13. 大容量交流接触器灭弧性能的试验研究%Experimental Research of Arc Extinction Performance of Big-Capacity AC Contactor

    Institute of Scientific and Technical Information of China (English)

    史亚闻; 曾萍; 葛顺锋

    2015-01-01

    This paper researched the effects of arc extinction performance of big-capacity AC contactors which are caused by the different structure of arc chamber according to the method of test waveform image and high speed photography.The research results show that the placement of guiding-arc flake,the shape of leading-arc flake and distance between leading-arc flake and arc splitters are crirical to enhancing arc extinction performance of AC contactors.In addition,this method of research can shorten the developing period of AC contactor and reduce the cost of contactors'R&D.%通过试验波形图和高速摄影的方法研究了不同灭弧室结构对大容量交流接触器灭弧性能的影响。研究结果表明,导弧片的布置和引弧片的形状以及灭弧栅片与引弧片之间的位置关系都会对交流接触器的灭弧性能起到至关重要的作用。同时该试验方法能够缩短交流接触器的研发周期,降低研发成本。

  14. Safe in salt

    International Nuclear Information System (INIS)

    The geologic history of the 'Germanic Basin', in which saline sediments were piled up in different strata over a period of nearly 100 million years, and the formation of 'salt deposits' as a consequence of tectonic movements (strata bends, dislocations of strata) in the north-west german region are described. As compact rock being 'harnessed' in the ground, mineral salt is completely impermeable to gases and liquids. Its plasticity prevents any formation of pores or crevasses resp. eliminates existing ones. This impermeable quality has been used technically for a long time in order to use solution-mined caverns for the storage of petroleum or gas without containers. Furthermore, for storing radioactive substances it is of particular importance that mineral salt has the highest thermal conductivity of all sedimentary rocks, so that a local heat up will be distributed quickly. All considerations on a safe storage stem from the fact that all actions take place within rock-mechanically homogeneous mineral salt. Bands of different rocks lead to discontinuities and may render a mechanical calculation impossible in some cases. A careful exploration of the internal structure of salt deposits is therefore one of the most important prerequisites for a safe storage of substances to be separated from the biosphere. (RB)

  15. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  16. Clean Salt integrated flowsheet

    International Nuclear Information System (INIS)

    The Clean Salt Process (CSP) is a novel waste management scheme that removes sodium nitrate and aluminum nitrate nonahydrate as decontaminated (low specific activity) salts from Hanford's high-level waste (HLW). The full scale process will separate the bulk of the waste that exists as sodium salts from the small portion of the waste that is by definition radioactive and dangerous. This report presents initial conceptual CSP flowsheets and demonstrates the benefit of integrating the process into the Tank Waste Remediation Systems (TWRS) Reference Flowsheet. Total HLW and low-level (LLW) volumes are reported for two different CSP integration options and are compared to the TWRS Reference Flowsheet values. The results for a single glass option eliminating LLW disposal are also reported

  17. Gas releases from salt

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  18. Mechanism for salt scaling

    Science.gov (United States)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  19. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  20. Salt repository design approach

    International Nuclear Information System (INIS)

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure

  1. Composition for preventing salt depositing

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylov, S.A.; Balakin, V.M.; Lezhenin, V.V.; Litvinets, Yu.I.; Marinin, N.S.; Talankin, V.S.; Yaryshev, G.M.

    1982-01-01

    A composition is proposed for preventing salt depositing which includes polyethylene-polyamine-N-methyl phosphonic acid or its salt and water. It is distinguished by the fact that in order to improve the degree of prevention of the salt depositing under low temperature conditions, it additionally contains ethylene glycol with the following ratio of components (% by mass): polyethylene polyamine-N-methylphosphonic acid or its salt 5-12; ethylene glycol 30-50; water--the rest.

  2. Salt acclimation processes in wheat.

    Science.gov (United States)

    Janda, Tibor; Darko, Éva; Shehata, Sami; Kovács, Viktória; Pál, Magda; Szalai, Gabriella

    2016-04-01

    Young wheat plants (Triticum aestivum L. cv. Mv Béres) were exposed to 0 or 25 mM NaCl for 11 days (salt acclimation). Thereafter the plants were irrigated with 500 mM NaCl for 5 days (salt stress). Irrigating the plants with a low concentration of NaCl successfully led to a reduction in chlorotic symptoms and in the impairment of the photosynthetic processes when the plants were exposed to subsequent high-dose salt treatment. After exposure to a high concentration of NaCl there was no difference in leaf Na content between the salt-acclimated and non-acclimated plants, indicating that salt acclimation did not significantly modify Na transport to the shoots. While the polyamine level was lower in salt-treated plants than in the control, salt acclimation led to increased osmotic potential in the leaves. Similarly, the activities of certain antioxidant enzymes, namely glutathione reductase, catalase and ascorbate peroxidase, were significantly higher in salt-acclimated plants. The results also suggest that while SOS1, SOS2 or NHX2 do not play a decisive role in the salt acclimation processes in young wheat plants; another stress-related gene, WALI6, may contribute to the success of the salt acclimation processes. The present study suggested that the responses of wheat plants to acclimation with low level of salt and to treatment with high doses of salt may be fundamentally different. PMID:26854409

  3. Quiz: What's the Buzz about Salt?

    Science.gov (United States)

    ... on. Feature: Too Much Salt Quiz: What's the buzz about salt? Past Issues / Spring - Summer 2010 Table ... Thing / Labels: For your health / Quiz: What's the buzz about salt? / Tasty Stand-Ins for Salt Spring / ...

  4. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    Science.gov (United States)

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection. PMID:26099849

  5. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    In the new nuclear fuel reprocessing extraction processes studies, a miniature short-residence-time annular centrifugal solvent extraction contactor and the assembly of multistage group system suitable for use in hot cells has been designed and tested for both hydrodynamic performance and mass transfer efficiency. The liquid hold-up of this unit is 6 to 9 mL and the inside diameter of the rotor is 12 mm. The superior separating capacities were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h-1. Essentially 100% stage efficiency was demonstrated in extraction of nitric acid in 30% tri-n-butyl phosphate in TPH with total throughputs lower than 1 L.h-1 at 4000 rpm. A total of 48 units have been built and equip a hot cell in the ATALANTE facility at Marcoule. (authors)

  6. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor

    KAUST Repository

    Sayess, Rassil R.

    2013-02-01

    Integrating microbial fuel cell (MFC) into rotating biological contactor (RBC) creates an opportunity for enhanced removal of COD and nitrogen coupled with energy generation from wastewater. In this study, a three-stage rotating bioelectrochemical contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance of the RBC-MFC unit was compared to a control reactor (referred to as RBC unit) that was operated under the same conditions but without current generation (i.e. open-circuit mode). The effect of hydraulic loading rate (HLR) and COD/N ratio on the performance of the two units was investigated. At low (3.05 gCOD g-1N) and high COD/N ratio (6.64 gCOD g-1N), both units achieved almost similar COD and ammonia-nitrogen removal. However, the RBC-MFC unit achieved significantly higher denitrification and nitrogen removal compared to the RBC unit indicating improved denitrification at the cathode due to current flow. The average voltage under 1000 Ω external resistance ranged between 0.03 and 0.30 V and between 0.02 and 0.21 V for stages 1 and 2 of the RBC-MFC unit. Pyrosequencing analysis of bacterial 16S rRNA gene revealed high bacterial diversity at the anode and cathode of both units. Genera that play a role in nitrification (Nitrospira; Nitrosomonas), denitrification (Comamonas; Thauera) and electricity generation (Geobacter) were identified at the electrodes. Geobacter was only detected on the anode of the RBC-MFC unit. Nitrifiers and denitrifiers were more abundant in the RBC-MFC unit compared to the RBC unit and were largely present on the cathode of both units suggesting that most of the nitrogen removal occurred at the cathode. © 2012 Elsevier Ltd.

  7. 中空纤维致密膜基吸收法在CO2脱除中的应用%Application of Nonporous Hollow Fiber Membrane Contactor in CO2 Removal

    Institute of Scientific and Technical Information of China (English)

    姜尚; 孙承贵; 贾静璇; 康国栋; 曹义鸣; 袁权

    2013-01-01

    In order to investigate the application potential of hollow fiber membrane contactors, a commercial nonporous polyimide hollow fiber membrane contactor (φ200) was tested by using tap water and seawater as absorbents to separate the CO2 from the gas mixture of CO2 and N2. The effects of liquid flow rate, liquid pressure, gas flow rate and gas pressure on the removal efficiency and overall mass transfer coefficient of CO2 were investigated. The experimental results indicate that the membrane resistance and liquid film resistance control the mass transfer when tap water and seawater are employed as absorbents. Furthermore, the removal efficiency is enhanced when the liquid/gas flow rate ratio increases. The nonporous hollow fiber contactor could perform a high CO2 removal with efficiency over 70%by optimizing the operation conditions. Finally, a stable operation process was achieved. This smooth mass transfer process indicates that the nonporous hollow fiber membrane eliminates bubbling problem and weeping problem that are frequently encountered in microporous hollow fiber contactor. Therefore, the non-porous hollow fiber contactor used in this experiment has great potential for application as a gas-liquid contactor.%  以商业φ200聚酰亚胺中空纤维致密膜大组件为接触器,淡水和海水为吸收剂,进行了CO2/N2混合气中CO2的脱除实验。考察了气液相压力和流量对CO2脱除率和过程总传质系数的影响。结果显示,液相压力对膜接触器的影响不大,而加大液/气相流量比可以提高CO2的脱除效率,通过控制操作条件可使膜接触器的CO2脱除率在70%以上。实验过程中,气液两相压力可在较宽范围内独立操作,且无鼓泡和漏液现象发生。研究表明中空纤维致密膜基接触器在CO2气体分离领域具有很好的应用潜力和前景。

  8. Research progress in study of electrophoretic membrane contactor%电泳膜接触器研究进展

    Institute of Scientific and Technical Information of China (English)

    邹文娴; 卢会霞; 王建友

    2013-01-01

    The electrophoretic membrane contactor (EMC) is a novel membrane separation technology in which porous membranes are stacked or replaced partial ion exchange membranes by porous membranes in conventional electrodialysis cell. The porous membranes act as the contact interface between the two liquid streams where the mass transfer takes place. The voltage,applied in a direction perpendicular to the flows,is the only driving force. This review paper described the principles of EMC. Cell configuration and operation mode of EMC were briefly discussed. The influences of important operation factors,such as pH of solution and electric field strength,polymer materials and molecular weight cutoff of porous membranes on the mass transfer of EMC process were analyzed in detail. Pollution status of the porous membranes during the operation of EMC was explored and the application potential of EMC in separation and purification of biomacromolecules was discussed. EMC further extends the application field of electrodialysis by using of porous membrane,which could be used in separation and purification of biomolecules greater than 500 Da. Membrane fouling could be effectively minimized due to external electric field.%电泳膜接触器(EMC)是在传统电渗析器中引入多孔膜,或用多孔膜代替部分离子交换膜的一种新型膜分离技术,其中多孔膜作为两液流的接触界面,提供传质的场所,垂直于液流方向的电场是唯一的驱动力。本文介绍了EMC的工作原理,并简要概述了EMC的膜堆构型及运行模式。详细分析了进料液pH值、电场强度等操作参数、多孔膜的材质和截留相对分子质量等对EMC过程传质的影响,且对EMC运行过程中多孔膜的污染状况进行了探讨,并展望了EMC在生物大分子分离和纯化中的应用潜力。EMC中多孔膜的引入,使得EMC可以用于相对分子质量大于500 Da的生物分子的分离与纯化,进一步拓宽了电渗

  9. Mixed salt crystallisation fouling

    CERN Document Server

    Helalizadeh, A

    2002-01-01

    The main purpose of this investigation was to study the mechanisms of mixed salt crystallisation fouling on heat transfer surfaces during convective heat transfer and sub-cooled flow boiling conditions. To-date no investigations on the effects of operating parameters on the deposition of mixtures of calcium sulphate and calcium carbonate, which are the most common constituents of scales formed on heat transfer surfaces, have been reported. As part of this research project, a substantial number of experiments were performed to determine the mechanisms controlling deposition. Fluid velocity, heat flux, surface and bulk temperatures, concentration of the solution, ionic strength, pressure and heat transfer surface material were varied systematically. After clarification of the effect of these parameters on the deposition process, the results of these experiments were used to develop a mechanistic model for prediction of fouling resistances, caused by crystallisation of mixed salts, under convective heat transfer...

  10. Frost formation with salt

    OpenAIRE

    Guadarrama-Cetina, J.; Mongruel, A. (Anne); González-Viñas, W.; Beysens, D.A. (Daniel A.)

    2015-01-01

    The formation of frost in presence of salt (NaCl) crystal is experimentally investigated on a hydrophobic surface. It presents several remarkable features due to the interplay of salty-water saturation pressure evolution, initially lower than the saturation pressure of ice and water, and the percolating propagation of ice dendrites from defects throughout the supercooled water droplet pattern. In particular, it is remarkable that nucleation of supercooled water and/or ice is prevented around ...

  11. Dynamics of salt playa polygons

    Science.gov (United States)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  12. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions, In this...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  13. Reactive halogen species above salt lakes and salt pans

    OpenAIRE

    Holla, Robert

    2013-01-01

    Salt lakes can be found on all continents and saline soils cover 2.5% of the land surface of the earth (FAO, 2012). This thesis investigates the presence of reactive halogen species (RHS) above salt lakes and saline soils to evaluate their relevance for tropospheric chemistry of the planetary boundary layer. Ground-based MAX-DOAS and LP-DOAS measurements were conducted at salt lakes and two other sites with high halogen content. Prior to this work, RHS were found at three salt ...

  14. Generic aspects of salt repositories

    International Nuclear Information System (INIS)

    The history of geological disposal of radioactive wastes in salt is presented from 1957 when a panel of the National Academy of Sciences-National Research Council recommended burial in bedded salt deposits. Early work began in the Kansas, portion of the Permian Basin where simulated wastes were placed in an abandoned salt mine at Lyons, Kansas, in the late 1960's. This project was terminated when the potential effect of nearby solution mining activities could not be resolved. Evaluation of bedded salts resumed a few years later in the Permian Basin in southeastern New Mexico, and search for suitable sites in the 1970's resulted in the formation of the National Waste Terminal Storage Program in 1976. Evaluation of salt deposits in many regions of the United States has been virtually completed and has shown that deposits having the greatest potential for radioactive waste disposal are those of the largest depositional basins and salt domes of the Gulf Coast region

  15. Bacterial degradation of bile salts

    OpenAIRE

    Philipp, Bodo

    2011-01-01

    Bile salts are surface-active steroid compounds. Their main physiological function is aiding the digestion of lipophilic nutrients in intestinal tracts of vertebrates. Many bacteria are capable of transforming and degrading bile salts in the digestive tract and in the environment. Bacterial bile salt transformation and degradation is of high ecological relevance and also essential for the biotechnological production of steroid drugs. While biotechnological aspects have been reviewed many time...

  16. Salt fluoridation and oral health

    Directory of Open Access Journals (Sweden)

    Thomas M. Marthaler

    2013-11-01

    Full Text Available The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the cariesprotective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Conclusions. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%. In Europe, meaningful percentages of users have been attained only in Germany (67% and Switzerland (85%. In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method.

  17. Salt and the glycaemic response.

    OpenAIRE

    Thorburn, A W; Brand, J C; Truswell, A S

    1986-01-01

    The possibility that salt increases plasma glucose and insulin responses to starchy foods was investigated. Six healthy adults took four morning test meals randomly: 50 g carbohydrate as cooked lentils or white bread, with or without 4.25 g of added salt (an amount within the range of salt found in a meal). When salt was added to the lentils the incremental area under the three hour plasma glucose curve was significantly greater than that for lentils alone (43.2 mmol.min/l v 11.1 mmol.min/l (...

  18. Fused salt electrolysis

    International Nuclear Information System (INIS)

    Working conditions for zirconium preparation by fused salt electrolysis were studied. For such purpose, a cell was built for operation under argon atmosphere. A graphite crucible served as anode, with steel cathodes. Proper design allowed cathode rechange under the inert atmosphere. Cathodic deposits of zirconium powder occluded salts from the bath. After washing with both water and hydrochloric acid, the metallic powder was consolidated by fusion. Optimum operating conditions were found to arise from an electrolyte of 12% potassium hexafluorzirconate -88% sodium chloride, at 820 deg C and 5 A/cm2 cathodic current density. Deposits contained 35% of metal and current efficiency reached 66%. The powder contained up to 600 ppm of chlorine and 1.700 ppm of fluorine; after fusion, those amounts decreased to 2 ppm and 3 ppm respectively, with low proportion of metallic impurities. Though oxygen proportion was 4.500 ppm, it should be lowered by improving working conditions, as well as working on an ampler scale. (Author)

  19. Theory Of Salt Effects On Protein Solubility

    Science.gov (United States)

    Dahal, Yuba; Schmit, Jeremy

    Salt is one of the major factors that effects protein solubility. Often, at low salt concentration regime, protein solubility increases with the salt concentration(salting in) whereas at high salt concentration regime, solubility decreases with the increase in salt concentration(salting out). There are no quantitative theories to explain salting in and salting out. We have developed a model to describe the salting in and salting out. Our model accounts for the electrostatic Coulomb energy, salt entropy and non-electrostatic interaction between proteins. We analytically solve the linearized Poisson Boltzmann equation modelling the protein charge by a first order multipole expansion. In our model, protein charges are modulated by the anion binding. Consideration of only the zeroth order term in protein charge doesn't help to describe salting in phenomenon because of the repulsive interaction. To capture the salting in behaviour, it requires an attractive electrostatic interaction in low salt regime. Our work shows that at low salt concentration, dipole interaction is the cause for salting in and at high salt concentration a salt-dependent depletion interaction dominates and gives the salting out. Our theoretical result is consistent with the experimental result for Chymosin protein NIH Grant No R01GM107487.

  20. CHED Events: Salt Lake City

    Science.gov (United States)

    Wink, Donald J.

    2009-03-01

    The Division of Chemical Education (CHED) Committee meetings planned for the Spring 2009 ACS Meeting in Salt Lake City will be in the Marriott City Center Hotel. Check the location of other CHED events, the CHED Social Event, the Undergraduate Program, Sci-Mix, etc. because many will be in the Salt Palace Convention Center.

  1. The Salt II Treaty

    International Nuclear Information System (INIS)

    The first strategic arms limitation talks resulted in two agreements: the Anti-Ballistic Missile Treaty and the Interim Agreement to Limit Strategic Offensive Arms. Senator Henry M. (Scoop) Jackson (D-Wa.) was concerned about the numerical advantage granted to the USSR by the Latter agreement and proposed an amendment that would prohibit future negotiators from granting the Soviet Union similar terms. This paper discusses the second round of SALT negotiations which opened in November 1972 and continued under presidents Richard M. Nixon, Gerald Ford, and Jimmy Carter. As the negotiators met, U.S. and Soviet scientists and engineers continued their work to develop new nuclear weapons and launchers. Particularly problematic were modern, large ballistic missiles, cruise missiles, and the Soviet Backfire bomber

  2. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  3. History Leaves Salts Behind

    Science.gov (United States)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which uses curium-244 to assess the elemental composition of rocks and soil. Only portions of the targets' full spectra are shown to highlight the significant differences in elemental concentrations between 'McKittrick' and 'Tarmac.' Intensities are plotted on a logarithmic scale.A nearby rock named Guadalupe similarly has extremely high concentrations of sulfur, but very little bromine. This 'element fractionation' typically occurs when a watery brine slowly evaporates and various salt compounds are precipitated in sequence.

  4. Salt Lake in Chaidamu Basin

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    Chaidamu Basin(柴达木盆地) is in the west of China. It covers an area(地区) of 220,000 square kilometres(平方公里). The number of salt lakes(盐湖) is more than twenty in it. Chaerhan(察尔汗) Salt Lake is the largest in this area. If you get here, you will find that in the lake there is no water but a thick layer(层) of salt. You can walk in it without difficulty, and cars can come and go across it. The thickest layer of salt in this basin is about fifty metres thick. People tried their best to use the salt to build house...

  5. Gas migration through salt rocks

    International Nuclear Information System (INIS)

    Salt as a host rock for a repository for radioactive waste may appear as a layered formation as observed at the WIPP site in the USA or as domed salt, which is abundant in the northern part of central Europe. Planned or actual repository sites like Gorleben, Morsleben or Asse in Germany are located in such salt domes. They have risen up in geological time from Permian salt beds until their upward movement has come to an end. Rock salt exists under geological conditions as an extremely dry material with a residual moisture content well below 1 %. Due to its crystalline nature, its permeability and porosity are very low. In addition, because of its plastic behaviour under stress salt has a high self-healing capacity. In fact, under undisturbed conditions, rock salt is considered as impermeable (permeability less than 10-22 m2). This is demonstrated impressively by brine inclusions which have been included millions of years ago and are kept in place until today. Thus, in considering conditions for two phase flow, undisturbed salt neither offers sufficient water nor appropriate hydraulic properties for scenarios involving normal two-phase flow to occur. Therefore, there is a fundamental difference to other host rock material, in that long term safety analyses for waste repositories in salt have, in general, to assume accident scenarios or some kind of faulted conditions to produce a scenario where gas production and two-phase flow become relevant. The main focus of those safety analyses is on compacted crushed salt as backfill material, possibly on seals and plugs for emplacement rooms or borehole closures and on the engineering disturbed zone (EDZ). (author)

  6. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  7. Salting-out and Salting-in in Polyelectrolyte Solutions

    Science.gov (United States)

    Zhang, Pengfei; Wu, Jianzhong; Wang, Zhen-Gang

    The phase behavior of polyelectrolyte (PE) solutions is governed by complicated interplay involving the mixing entropy, excluded volume, chain connectivity, and electrostatic interactions. Here we study the phase behavior of PE solutions in both salt-free condition and with added salt using a liquid-state (LS) theory based thermodynamic model. The LS model accounts or the hard-core repulsion by the Canahan-Starling equation of state, correlations due to chain connectivity by the first-order thermodynamic perturbation theory, and electrostatic correlations by the mean-spherical approximation. In comparison to the prediction from the well-known Voorn-Overbeek theory, the LS model predicts loop-type binodal curves in the salt-PE concentration diagram at temperatures slightly above the critical temperature of PE solution in salt-free case, consistent with the experimental study. The phase separated region shrinks with increasing temperature. Three scenarios of salting-out and salting-in phenomenon are predicted with addition of salts based, depending on the PE concentration.

  8. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    International Nuclear Information System (INIS)

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m2 d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries

  9. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor.

    Science.gov (United States)

    Sebaaly, Carine; Charcosset, Catherine; Stainmesse, Serge; Fessi, Hatem; Greige-Gerges, Hélène

    2016-03-15

    This work is dedicated to prepare liposomal dry powder formulations of inclusion complexes of clove essential oil (CEO) and its main component eugenol (Eug). Ethanol injection method and membrane contactor were applied to prepare liposomes at laboratory and large scale, respectively. Various liposomal formulations were tested: (1) free hydroxypropyl-β-cyclodextrin loaded liposomes; (2) drug in hydroxypropyl-β-cyclodextrin in liposomes (DCL); (3) DCL2 obtained by double loading technique, where the drug is added in the organic phase and the inclusion complex in the aqueous phase. Liposomes were characterized for their particle size, polydispersity index, Zeta potential, morphology, encapsulation efficiency of CEO components and Eug loading rate. Reproducible results were obtained with both injection devices. Compared to Eug-loaded liposomes, DCL and DCL2 improved the loading rate of Eug and possessed smaller vesicles size. The DPPH(•) scavenging activity of Eug and CEO was maintained upon incorporation of Eug and CEO into DCL and DCL2. Contrary to DCL2, DCL formulations were stable after 1 month of storage at 4°C and upon reconstitution of the dried lyophilized cakes. Hence, DCL in aqueous and lyophilized forms, are considered as a promising carrier system to preserve volatile and hydrophobic drugs enlarging their application in cosmetic, pharmaceutical and food industries. PMID:26794740

  10. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Anal [Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology (Bombay), Powai, Mumbai 400076 (India); Mukherji, Suparna [Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology (Bombay), Powai, Mumbai 400076 (India)], E-mail: mitras@iitb.ac.in

    2008-06-15

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m{sup 2} d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  11. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor.

    Science.gov (United States)

    Orandi, S; Lewis, D M; Moheimani, N R

    2012-09-01

    An indigenous mining algal-microbial consortium was immobilised within a laboratory-scale photo-rotating biological contactor (PRBC) that was used to investigate the potential for heavy metal removal from acid mine drainage (AMD). The microbial consortium, dominated by Ulothrix sp., was collected from the AMD at the Sar Cheshmeh copper mine in Iran. This paper discusses the parameters required to establish an algal-microbial biofilm used for heavy metal removal, including nutrient requirements and rotational speed. The PRBC was tested using synthesised AMD with the multi-ion and acidic composition of wastewater (containing 18 elements, and with a pH of 3.5 ± 0.5), from which the microbial consortium was collected. The biofilm was successfully developed on the PRBC's disc consortium over 60 days of batch-mode operation. The PRBC was then run continuously with a 24 h hydraulic residence time (HRT) over a ten-week period. Water analysis, performed on a weekly basis, demonstrated the ability of the algal-microbial biofilm to remove 20-50 % of the various metals in the order Cu > Ni > Mn > Zn > Sb > Se > Co > Al. These results clearly indicate the significant potential for indigenous AMD microorganisms to be exploited within a PRBC for AMD treatment. PMID:22644382

  12. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author)

  13. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    OpenAIRE

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a thorough knowledge of the physico-chemical properties of molten fluorides salts, which are one of the best options for the reactor fuel. This dissertation presents the thermodynamic description of the ...

  14. Does salt increase thirst?

    Science.gov (United States)

    Leshem, Micah

    2015-02-01

    Our diet is believed to be overly rich in sodium, and it is commonly believed that sodium intake increases drinking. Hence the concern of a possible contribution of dietary sodium to beverage intake which in turn may contribute to obesity and ill health. Here we examine whether voluntary, acute intake of a sodium load, as occurs in routine eating and snacking, increases thirst and drinking. We find that after ingesting 3.5 or 4.4 g NaCl (men) and 1.9 or 3.7 g (women) on nuts during 15 minutes, there is no increase in thirst or drinking of freely available water in the following 2 h compared with eating similar amounts of sugared or unflavored nuts. This suggests that routine ingestion of boluses of salt (~30-40% of daily intake for men, ~ 20-40% for women) does not increase drinking. Methodological concerns such as about nuts as vehicle for sodium suggest further research to establish the generalizability of this unexpected result. PMID:25447020

  15. CONTRIBUTION FROM DEICING SALT TO CHEMICAL COMPOSITION OF SALT SUPPLYED TO AREA UNDER THE BRIDGES

    Science.gov (United States)

    Takebe, Masamichi; Ohya, Makoto; Hirose, Nozomu; Ochibe, Keishi; Aso, Toshihiko

    Salt is known to accelerate the corrosion of weathering steel bridges. The origin of salt around girders is valuable information in terms of the maintenance for anti-corrosion of steel bridges. Salt around girders generally originates from sea-salt and deicing salt. Since salt of both origin increases in winter, contribution of deicing salt is hard to be estimated only from fluctuation of total abundance of salt around the bridge. In this study, abundance of Mg2+ as well as that of Cl- in salt sampled under bridges is analyzed. As a result, this study revealed that the supply of deicing salt declines Mg2+/Cl- ratio of salt on the girder. In addition, examination of Mg2+/Cl- ratio of salt sampled under the examined bridge near sea revealed that the fluctuation of quantity of air-born salt under the bridge is ascribed to the fluctuation of supply of sea salt.

  16. Microbiology of solar salt ponds

    Science.gov (United States)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  17. Salt movement in disturbed soils

    International Nuclear Information System (INIS)

    A literature review is presented of information on salt movement in disturbed soils, particularly in soils that have been disturbed by pipeline construction. The review has two main objectives: to assess climatic and soil conditions under which salts will move out of the root zone in a disturbed soil and to determine the rate at which salts will move in disturbed soils. A literature base was established using computer database and library searches, and a number of studies were reviewed. Many studies, dealing specifically with salt movement over time in disturbed soils under climatic and salt conditions similar to those found in Alberta, are summarized in tabular form. Data found in the literature tend to be sparse and incomplete, making firm conclusions about rates of salt movement difficult. In the brown soil zone, 5 years may be sufficient time for sodium absorption ratio and electrical conductivity levels, elevated during construction, to return to pre-construction conditions in coarse to moderately coarse textured soils. In medium to moderately fine textured soils, 10-26 years may be required. In the dark brown soil zone, 5 years is marginal for return to pre-construction conditions. Data in the black soil zone are limited and results inconsistent. 37 refs., 3 figs., 4 tabs

  18. Salting kinetics and salt diffusivities in farmed Pantanal caiman muscle

    Directory of Open Access Journals (Sweden)

    Telis Vânia Regina Nicoletti

    2003-01-01

    Full Text Available The legal Pantanal caiman (Caiman crocodilus yacare farming, in Brazil, has been stimulated and among meat preservation techniques the salting process is a relatively simple and low-cost method. The objective of this work was to study the sodium chloride diffusion kinetics in farmed caiman muscle during salting. Limited volumes of brine were employed, with salting essays carried at 3, 4 and 5 brine/muscle ratios, at 15%, 20% and 25% w/w brine concentrations, and brine temperatures of 10, 15 and 20ºC. The analytical solution of second Fick's law considering one-dimensional diffusion through an infinite slab in contact with a well-stirred solution of limited volume was used to calculate effective salt diffusion coefficients and to predict the sodium chloride content in the fillets. A good agreement was obtained between the considered analytical model and experimental data. Salt diffusivities in fillets were found to be in the range of 0.47x10-10 to 9.62x10-10 m²/s.

  19. Integrated AMP-PAN, TRUEX, and SREX Flowsheet Test to Remove Cesium, Surrogate Actinide Elements, and Strontium from INEEL Tank Waste Using Sorbent Columns and Centrifugal Contactors

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Ronald Scott; Law, Jack Douglas; Todd, Terry Allen; Wood, D. J.; Garn, Troy Gerry; Wade, Earlen Lawrence

    2000-02-01

    Three unit operations for the removal of selected fission products, actinides, and RCRA metals (mercury and lead) have been successfully integrated and tested for extended run times with simulated INEEL acidic tank waste. The unit operations were ion exchange for Cs removal, followed by TRUEX solvent extraction for Eu (actinide surrogate), Hg, and Re (Tc surrogate) removal, and subsequent SREX solvent extraction for Sr and Pb removal. Approximately 45 L of simulated INTEC tank waste was first processed through three ion exchange columns in series for selective Cs removal. The columns were packed with a composite ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) sorbent. The experimental breakthrough data were in excellent agreement with modeling predictions based on data obtained with much smaller columns. The third column (220 cm3) was used for polishing and Cs removal after breakthrough of the up-stream columns. The Cs removal was >99.83% in the ion exchange system without interference from other species. Most of the effluent from the ion exchange (IX) system was immediately processed through a TRUEX solvent extraction flowsheet to remove europium (americium surrogate), mercury and rhenium (technetium surrogate) from the simulated waste. The TRUEX flowsheet test was performed utilizing 23 stages of 3.3-cm centrifugal contactors. Greater than 99.999% of the Eu, 96.3% of the Hg, and 56% of the Re were extracted from the simulated feed and recovered in the strip and wash streams. Over the course of the test, there was no detectable build-up of any components in the TRUEX solvent. The raffinate from the TRUEX test was stored and subsequently processed several weeks later through a SREX solvent extraction flowsheet to remove strontium, lead, and Re (Tc surrogate) from the simulated waste. The SREX flowsheet test was performed using the same centrifugal contactors used in the TRUEX test after reconfiguration and the addition of three stages. Approximately 99.9% of

  20. Integrated AMP-PAN, TRUEX, and SREX Flowsheet Test to Remove Cesium, Surrogate Actinide Elements, and Strontium from INEEL Tank Waste Using Sorbent Columns and Centrifugal Contactors

    International Nuclear Information System (INIS)

    Three unit operations for the removal of selected fission products, actinides, and RCRA metals (mercury and lead) have been successfully integrated and tested for extended run times with simulated INEEL acidic tank waste. The unit operations were ion exchange for Cs removal, followed by TRUEX solvent extraction for Eu (actinide surrogate), Hg, and Re (Tc surrogate) removal, and subsequent SREX solvent extraction for Sr and Pb removal. Approximately 45 L of simulated INTEC tank waste was first processed through three ion exchange columns in series for selective Cs removal. The columns were packed with a composite ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) sorbent. The experimental breakthrough data were in excellent agreement with modeling predictions based on data obtained with much smaller columns. The third column (220 cm3) was used for polishing and Cs removal after breakthrough of the up-stream columns. The Cs removal was >99.83% in the ion exchange system without interference from other species. Most of the effluent from the ion exchange (IX) system was immediately processed through a TRUEX solvent extraction flowsheet to remove europium (americium surrogate), mercury and rhenium (technetium surrogate) from the simulated waste. The TRUEX flowsheet test was performed utilizing 23 stages of 3.3-cm centrifugal contactors. Greater than 99.999% of the Eu, 96.3% of the Hg, and 56% of the Re were extracted from the simulated feed and recovered in the strip and wash streams. Over the course of the test, there was no detectable build-up of any components in the TRUEX solvent. The raffinate from the TRUEX test was stored and subsequently processed several weeks later through a SREX solvent extraction flowsheet to remove strontium, lead, and Re (Tc surrogate) from the simulated waste. The SREX flowsheet test was performed using the same centrifugal contactors used in the TRUEX test after reconfiguration and the addition of three stages. Approximately 99.9% of

  1. The molten salt reactor adventure

    International Nuclear Information System (INIS)

    A personal history of the development of molten salt reactors in the United States is presented. The initial goal was an aircraft propulsion reactor, and a molten fluoride-fueled Aircraft Reactor Experiment was operated at Oak Ridge National Laboratory in 1954. In 1956, the objective shifted to civilian nuclear power, and reactor concepts were developed using a circulating UF4-ThF4 fuel, graphite moderator, and Hastelloy N pressure boundary. The program culminated in the successful operation of the Molten Salt Reactor Experiment in 1965 to 1969. By then the Atomic Energy Commission's goals had shifted to breeder development; the molten salt program supported on-site reprocessing development and study of various reactor arrangements that had potential to breed. Some commercial and foreign interest contributed to the program which, however, was terminated by the government in 1976. The current status of the technology and prospects for revived interest are summarized

  2. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  3. Canister compatibility with Carlsbad salt

    International Nuclear Information System (INIS)

    No significant reaction was found when candidate canister alloys were heated with salt from Carlsbad, New Mexico, for up to 5000 hours in sealed capsules and for up to 10,000 hours in unsealed capsules at temperatures (80 to 2250C) that bracket the maximum temperature calculated for reference Savannah River Plant (SRP) waste containers at 20-foot spacings in salt. Additional tests were made at 6000C in sealed capsules to characterize reactions that may occur between candidate canister alloys and any component of the salt that is released when decrepitation occurs. Under these extreme conditions there was no significant attack of Type 304L stainless steel. But, there was up to 20-mils attack of the low-carbon steel

  4. Field experiments in salt formations

    International Nuclear Information System (INIS)

    Field experiments in salt formations started as early as 1965 with Project Salt Vault in the Lyons Mine, Kansas, U.S.A., and with the purchase of the Asse salt mine by the German Federal Government. Underground tests concentrated on the heat dissipation around buried high-level radioactive wastes and the geomechanical consequences of their disposal. Near-field investigations cover the properties of water and gas release, radiolysis and corrosion. Further objectives of field experiments are the development and underground testing of a handling system for high-level wastes. The performance of an underground test disposal for such wastes is not only considered to be necessary for technical and scientific reasons but also for improving public acceptance of the concept of radioactive waste disposal. (author)

  5. Disposal of Radioactive Wastes in Natural Salt

    International Nuclear Information System (INIS)

    The proposed use of cavities in salt formations as a disposal site for radioactive wastes is based upon : 1. Existence of salt for geologic time periods, 2. The impermeability of salt to the passage of water; 3. The widespread geographical distribution of salt; 4. The extremely large quantities of salt available; 5. The structural strength of salt; 6. The relatively high thermal conductivity of salt in comparison with other general geologic formations; 7. The possible recovery of valuable fission products in the wastes injected into the salt; 8. The relative ease of forming cavities in salt by mining, and the even greater ease and low cost of developing solution cavities in salt; and 9. The low seismicity in the areas of major salt deposits. Radioactive liquid wastes can be stored in cavities in natural salt formations if the structural properties of the salt are not adversely affected by chemical interaction, pressure, temperature, and radiation. Analytical studies show that it is possible to-store 2-year-old 10,000 MWD/T, 800 gal/ton waste in a sphere of 10 ft diameter without exceeding a temperature of 200° F. Laboratory tests show that the structural properties and thermal conductivity of rock salt are not greatly altered by high radiation doses, although high temperatures increase the creep rate for both irradiated and unirradiated samples. Chemical interaction of liquid wastes with salt produces chlorine and other chlorine compound gases, but the volumes are not excessive. The migration of nuclides through the salt and deformation of the cavity and chamber can only be studied in undisturbed salt in situ. One-fifth-scale models have been run in a bedded salt deposit in Hutchinson, Kansas, and full-scale field tests are in progress. (author)

  6. Oxidation properties of "Solar Salt"

    OpenAIRE

    BENAISSA, Wassila; Carson, Douglas

    2011-01-01

    Solar Salt is a name sometimes given to a molten salt mixture made up of about 60% of sodium nitrate (NaNO3) and 40% of potassium nitrate (KNO3). This composition is near the eutectic point and is thermally stable until 600°C. It is popular in Industrial Solar Energy Projects and is used for storing energy in the form of heat to smooth out the peaks in electricity production. However for some technologies, combustible substances, like a thermal fluid for example, may come into contact with th...

  7. Oxidation of Pu(III) by nitric acid in tri-n-butyl phosphate solutions. Part II. Chemical methods for the suppression of oxidation to improve plutonium separation in contactor operation

    International Nuclear Information System (INIS)

    A systematic method has been used to screen a number of potential stabilizers (holding reductants) for Pu(III) in tri-n-butyl phosphate/diluent solutions used in irradiated fuel reprocessing systems. The conditions assumed were similar to those used in solvent extraction contactor operations. Of the reagents tested, oximes as a group appeared to be very effective. Acetaldoxime, in particular, was selected for extensive tests and was used as a Pu(III) stabilizer, in both the aqueous and organic phases, in contactor runs for plutonium partition from thorium and uranium. In the best results, the plutonium loss to the thorium/uranium stream was 2.8 X 10-5 g/l or 0.0046%; without using acetaldoxime, the loss was 12%. Rates of plutonium reduction in 1.5 M nitric acid have been compared for a number of reducing agents under identical conditions. Some derivatives of hydroxylamine were found to be much more effective than hydroxylamine itself

  8. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a thor

  9. Ultrasonic characterization of pork meat salting

    OpenAIRE

    García Pérez, José Vicente; PRADOS PEDRAZA, MARTA DE; Pérez-Muelas Picón, Mª Nieves; Carcel Carrión, Juan Andrés; Benedito Fort, José Javier

    2012-01-01

    [EN] Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 ºC for 1, 2, 4 and 7 days. During salting a...

  10. Sources of household salt in South Africa.

    Science.gov (United States)

    Jooste, Pieter L

    2005-01-01

    Marketing of non-iodized salt through unconventional distribution channels is one of the factors weakening the national salt iodization program in South Africa. The aim of this study was therefore to quantify the various sources of household salt, and to relate this information to socio-economic status. Questionnaire information was collected by personal interview during home visits from a multistage, cluster, probability sample of 2164 adults representative of the adult population. Nationally 77.7% of households obtained their table salt from the typical food shops distributing iodized salt. However, in the nine different provinces between 8 and 37.3% of households used unconventional sources, distributing mainly non-iodized salt, to obtain their household salt. These alternative sources include distributors of agricultural salt, small general dealer shops called spaza shops, in peri-urban and rural townships, street vendors and salt saches placed in the packaging of maize meal bags. Country-wide around 30% of low socio-economic households obtained their salt from unconventional sources compared to less than 5% in high socio-economic households, emphasizing the vulnerability of low socio-economic groups to the use of non-iodized salt. Intervention strategies should mobilize all role players involved in unconventional marketing channels of household salt to provide only iodized salt to consumers, as required by law. PMID:15927933

  11. Salt Lake 2002 mascot story

    OpenAIRE

    2014-01-01

    The story of the Salt Lake 2002 Olympic Winter Games Mascots is inspired from our culture. Centuries ago, the first inhabitants etched in stone the images of animals that shared their world. These simple pictograms became the foundation for cultural legends — oral stories that inspired generations to respect and admire the natural world of Utah..

  12. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply.

    Science.gov (United States)

    Žmitek, Katja; Pravst, Igor

    2016-01-01

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union's free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply. PMID:27438852

  13. Tasty Stand-Ins for Salt

    Science.gov (United States)

    ... Ginger Mint Nutmeg Oregano Paprika/smoked paprika Parsley Rosemary Salt-free seasoning mix Tarragon Thyme Use Condiments, ... Much of a Good Thing / Labels: For your health / Quiz: What's the buzz about salt? / Tasty Stand- ...

  14. Salt Diapirs in the Gulf Coast [gcdiapirg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Locations and shapes of salt diapirs were modified after the New Orleans Geological Society map, Salt tectonism of the U.S. Gulf Coast Basin (compiled by J.A....

  15. Preformulation investigation of some clopidogrel addition salts:

    OpenAIRE

    Benkič, Primož; Kristl, Albin; Plevnik, Miha; Ritlop, Gregor; Simonič, Igor; Smrkolj, Matej; Vrečer, Franc; Zupančič, Vinko

    2010-01-01

    Physico-chemical properties of active substances such as solubility, dissolution rate, chemical stability, pharmaceutical processibility, etc. can be improved by salt formation of active substances. Characterization of physical properties of such salts is important for selection of an optimal salt having required biopharmaceutical properties, stability and manufacturability. The present study deals with the preformulation study of selected clopidogrel acid addition salts, i.e. hydrogen sulfat...

  16. Evaluation of salt content in school meals

    OpenAIRE

    Viegas, C.A.C.L .; Torgal, J.; Graça, Pedro; Oliveira Martins, M.R.

    2015-01-01

    Objective High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals served in school canteens and consumersapos; perceptions about salt. Methods Meals, including all the components (bread, soup, and main dish) were retrieved from school canteens. Salt was quantified by...

  17. Evaluation of salt content in school meals

    OpenAIRE

    Cláudia Alexandra Colaço Lourenço Viegas; Jorge Torgal; Pedro Graça; Maria do Rosário Oliveira Martins

    2015-01-01

    OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals served in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish) were retrieved from school canteens. Salt was quantified by a...

  18. 'PolyMOB'-lithium salt complexes: from salt-in-polymer to polymer-in-salt electrolytes

    International Nuclear Information System (INIS)

    Lithium polyMOB has been investigated as the polymer in a polymer-in-salt type electrolyte incorporating the salts lithium perchlorate (LiClO4), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium tetrafluoroborate (LiBF4). While all salts give rubbery solids at high salt contents, only LiClO4 provides high conductivity because only in the case of LiClO4 is the lithium cation motion highly decoupled from the structural relaxation. The crystallization of the salt at high salt contents prevents a favorable combination of mechanical and electrical properties, but the system provides an excellent example of the principle of the polymer-in-salt ionic rubber electrolyte and the factors determining its performance

  19. Ultrasonic characterization of pork meat salting

    Science.gov (United States)

    García-Pérez, J. V.; De Prados, M.; Pérez-Muelas, N.; Cárcel, J. A.; Benedito, J.

    2012-12-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p<0.05) linear relationships were found between the ultrasonic velocity and the salt (R2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  20. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  1. Community solar salt production in Goa, India

    OpenAIRE

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now re...

  2. Experimental study on separation of CO2 by polypropylene hollow fiber membrane contactor%聚丙烯中空纤维膜组件分离烟气中的CO2

    Institute of Scientific and Technical Information of China (English)

    瞿如敏; 沙焱; 陈浩; 杨林军

    2013-01-01

    This research presented separation of CO2 from flue gas by polypropylene(PP) hollow fiber membrane contactors,using aqueous solution of monoethanolamine (MEA) as absorption solvents. Effects of operating conditions,water vapor and SO2 on the performance and integrity of the membrane were investigated. The results showed that the best liquid-gas ratio was 24 L/m3,the concentration of MEA was 0.6 mol/L and temperature at the contactor entrance had little effect on absorption efficiency. The concentration of CO2 had little effect on absorption efficiency when the concentration was in the range of 10%-20%. The adsorption of SO2 is prior to CO2,but it isn’t obvious for the low concentration of SO2. Adsorption of water vapor on the hole walls of membrane contactors forms capillary condensation,preventing the penetration of CO2.%膜吸收法在大型工业燃煤电厂二氧化碳(CO2)捕集方面具有很好的应用前景,但烟气组分对该技术效果影响还有待进一步研究。本文以单乙醇胺(MEA)为吸收剂,开展了疏水性聚丙烯(PP)中空纤维膜组件分离模拟烟气中的 CO2的实验研究,考察了吸收操作条件以及燃煤烟气中水汽和 SO2对膜组件吸收效率的影响。结果表明,试验的最佳液气比为24 L/m3;MEA的浓度为0.6 mol/L;膜组件进口的温度变化对吸收效率基本没有影响;CO2的浓度在10%~20%内变动对吸收效率影响不大。与CO2相比,SO2会优先发生吸收作用,而水汽则会吸附在聚丙烯中空纤维膜组件的孔壁上,产生毛细管凝聚现象,阻塞CO2的渗透吸收。

  3. Salt effects in electromembrane extraction

    DEFF Research Database (Denmark)

    Seip, Knut Fredrik; Jensen, Henrik; Kieu, Thanh Elisabeth;

    2014-01-01

    Electromembrane extraction (EME) was performed on samples containing substantial amounts of NaCl to investigate how the presence of salts affected the recovery, repeatability, and membrane current in the extraction system. A group of 17 non-polar basic drugs with various physical chemical...... properties were used as model analytes. When EME was performed in a hollow fiber setup with a supported liquid membrane (SLM) comprised of 2-nitrophenyl octyl ether (NPOE), a substantial reduction in recovery was seen for eight of the substances when 2.5% (w/v) NaCl was present. No correlation between...... this loss and the physical chemical properties of these substances was seen. The recovery loss was hypothesized to be caused by ion pairing in the SLM, and a mathematical model for the extraction recovery in the presence of salts was made according to the experimental observations. Some variations...

  4. Rice's Salt Tolerance Gene Cloned

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ In cooperation with US colleagues, CAS researchers have made significant progress in their studies into functional genes for key agronomic traits by cloning SKC1, a salt-tolerant functional gene of rice and making clear its biological functions and mechanisms. This pioneering work,which was reported in the Oct. issue of Nature Genetics (37:1141-1146), is believed to hold promise to increase the output of the crop plant in this country.

  5. Development of salt waste treatment technology

    International Nuclear Information System (INIS)

    To develop a proper waste conditioning technology for salt wastes, alpha- contaminated organic wastes, and long-lived fission products, which are presumed to generate from the pyrochemical dry processing of spent fuel, researches on LiCl salt waste treatment (including salt fixation, ion exchange of radionuclides and salt pre-treatment technique), molten salt oxidation of organic alpha wastes and recovery of radioiodine have been performed. In a research on the waste LiCl salt treatment, the characterization on a salt-loaded zeolite sample, prepared by an immobilization of the molten LiCl salt waste with zeolite A, suggested that an optimum mixing ratio, r (=LiCl/zeolite) was 1.0. Pre-treatment of salt waste was performed via gelation reaction with additives of phosphate and sodium silicate. Characteristics of the gel product after drying and thermal treatment were tested and evaluated to establish the proper reaction conditions on the conversion of salt waste into durable waste forms. Molten salt oxidation (MSO) is selected as the most promising technology for the treatment of alpha-contaminated waste, and its lab-scale test and theoretical model study revealed its good effectiveness in the treatment of the problematic waste, such as halogenated organics including toxic and radioactive metals. The optimal conditions to effectively recover iodine from silver ion- exchanged adsorbent(AgX) was established and confirmed through experiment using radioiodine tracer. Fundamental data for conversion the recovered iodine to target material powder of NaI were obtained

  6. Salt tolerance of desorption electrospray ionization (DESI).

    Science.gov (United States)

    Jackson, Ayanna U; Talaty, Nari; Cooks, R Graham; Van Berkel, Gary J

    2007-12-01

    The salt tolerance of desorption electrospray ionization (DESI) was systematically investigated by examining three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl (1:1) from different surfaces. At physiological salt concentrations, the individual drugs in each mixture were observed in each experiment. Even at salt concentrations significantly above physiological levels, particular surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest in low nanogram amounts. Salt adducts, which are observed even in the absence of added salt, could be eliminated by adding 0.1% 7 M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated better signal/noise characteristics for DESI. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution. PMID:17977744

  7. Salt transport in Songkhla Lake

    Directory of Open Access Journals (Sweden)

    Pornpinatepong, S.

    2005-07-01

    Full Text Available Salinity surveys in 1997 revealed that in the dry season salinity in Thale Sap Songkhla, Thale Sap and Thale Luang reached the maximum values of 30, 11 and 5 ppt, respectively. Among the complex system of the lake, Khlong Pak Ro showed a complicate seawater transport with a maximal salinity of 20 ppt. Incomplete mixing with a stratification at a depth of 2-3 m occured. The difference in salinity between the surface and the bottom was about 3 ppt. A vertically-averaged salt transport model was employed to simulate the salinity intrusion in the lake. The results showed quite good agreement with the observation. The model depicted a sharp drop of the water level at the entrance from the Gulf into the lake. The tidal energy then spread widely in Thale Sap Songkhla and continuously decreased to Thale Luang. The predicted salinity indicated that salt transport in the lake is governed by tide and water losses from the lake. Tidal movement generated a quasi-steady state of salinity in three months. The water losses for two months caused the salinity to rise 5.8 ppt/1 mm/day loss (~13 m3/sat Pak Ro. With a loss of 2.3 mm/day (~28 m3/s, the whole lake became brackish in three months. The salt entered the lake mainly through Khlong Luang, and only for 13 percent through Ao Thong Ben.

  8. Salt intake and hypertension therapy.

    Science.gov (United States)

    Milan, Alberto; Mulatero, Paolo; Rabbia, Franco; Veglio, Franco

    2002-01-01

    Hypertension is a risk factor for cardiovascular and renal organ damage. Environmental conditions affect the development of high blood pressure (BP), although genetic influences are also important. Current international guidelines recommend reducing dietary sodium to no more than 100 mmol (about 2.4 g sodium or approximately 6 g salt) per day to prevent BP rising; the current intake of sodium in industrialized countries is approximately double the recommended amount. Clinical trials (DASH and TOHP studies) have shown that dietary factors are fundamental in the prevention and control of BP. Low dietary sodium intake is particularly effective in preventing hypertension in subjects with an increased risk such as the overweight, borderline hypertensives or the elderly. A low-salt diet combined with anti-hypertensive therapies facilitates BP reduction independent of race. The hypotensive effect of calcium channel blockers is less dependent on salt intake than other drugs, such as ACE inhibitors or diuretics. Reduced sodium intake associated with other dietary changes (such as weight loss, and increasing potassium, calcium and magnesium intake) are important instruments for the prevention and therapy of hypertension. PMID:11936420

  9. Salt effects in electromembrane extraction.

    Science.gov (United States)

    Seip, Knut Fredrik; Jensen, Henrik; Kieu, Thanh Elisabeth; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2014-06-20

    Electromembrane extraction (EME) was performed on samples containing substantial amounts of NaCl to investigate how the presence of salts affected the recovery, repeatability, and membrane current in the extraction system. A group of 17 non-polar basic drugs with various physical chemical properties were used as model analytes. When EME was performed in a hollow fiber setup with a supported liquid membrane (SLM) comprised of 2-nitrophenyl octyl ether (NPOE), a substantial reduction in recovery was seen for eight of the substances when 2.5% (w/v) NaCl was present. No correlation between this loss and the physical chemical properties of these substances was seen. The recovery loss was hypothesized to be caused by ion pairing in the SLM, and a mathematical model for the extraction recovery in the presence of salts was made according to the experimental observations. Some variations to the EME system reduced this recovery loss, such as changing the SLM solvent from NPOE to 6-undecanone, or by using a different EME setup with more favorable volume ratios. This was in line with the ion pairing hypothesis and the mathematical model. This thorough investigation of how salts affect EME improves the theoretical understanding of the extraction process, and can contribute to the future development and optimization of the technique. PMID:24792700

  10. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  11. Physiological and Molecular Features of Puccinellia tenuiflora Tolerating Salt and Alkaline-Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xia Zhang; Liqin Wei; Zizhang Wang; Tai Wang

    2013-01-01

    Saline-alkali soil seriously threatens agriculture productivity; therefore,understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge.Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress,and is thus an ideal plant for studying this tolerance mechanism.In this study,we examined the salt and alkaline-salt stress tolerance of P.tenuiflora,and analyzed gene expression profiles under these stresses.Physiological experiments revealed that P.tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2CO3 (pH 11.0)for 6 d.We identified 4,982 unigenes closely homologous to rice and barley.Furthermore,1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments.Differentially expressed genes were overrepresented in functions of photosynthesis,oxidation reduction,signal transduction,and transcription regulation.Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure,photosynthesis,and protein synthesis.Comparing with salt stress,alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H+ transport and citric acid synthesis.These data indicate common and diverse features of salt and alkalinesalt stress tolerance,and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.

  12. High salt recruits aversive taste pathways.

    Science.gov (United States)

    Oka, Yuki; Butnaru, Matthew; von Buchholtz, Lars; Ryba, Nicholas J P; Zuker, Charles S

    2013-02-28

    In the tongue, distinct classes of taste receptor cells detect the five basic tastes; sweet, sour, bitter, sodium salt and umami. Among these qualities, bitter and sour stimuli are innately aversive, whereas sweet and umami are appetitive and generally attractive to animals. By contrast, salty taste is unique in that increasing salt concentration fundamentally transforms an innately appetitive stimulus into a powerfully aversive one. This appetitive-aversive balance helps to maintain appropriate salt consumption, and represents an important part of fluid and electrolyte homeostasis. We have shown previously that the appetitive responses to NaCl are mediated by taste receptor cells expressing the epithelial sodium channel, ENaC, but the cellular substrate for salt aversion was unknown. Here we examine the cellular and molecular basis for the rejection of high concentrations of salts. We show that high salt recruits the two primary aversive taste pathways by activating the sour- and bitter-taste-sensing cells. We also demonstrate that genetic silencing of these pathways abolishes behavioural aversion to concentrated salt, without impairing salt attraction. Notably, mice devoid of salt-aversion pathways show unimpeded, continuous attraction even to very high concentrations of NaCl. We propose that the 'co-opting' of sour and bitter neural pathways evolved as a means to ensure that high levels of salt reliably trigger robust behavioural rejection, thus preventing its potentially detrimental effects on health. PMID:23407495

  13. Coastal salt-marshes in Albania

    Directory of Open Access Journals (Sweden)

    JULIAN SHEHU

    2014-06-01

    Full Text Available The salt marshes of Albania comprise a narrow belt along the Adriatic and Ionian Seas. They have been the subject of a range of human activities causing habitat loss. Enclosure for agricultural use, ports and other infrastructure has reduced many salt marshes to a narrow fringe along estuary shores. Salt marshes are important for a range of interests. In particular they support a range of specialist plant communities and associated animals (especially breeding and wintering birds and often have a high nature conservation interest. They rarely exist in isolation and form an integral part of many estuaries, other tidal inlets and bays. The objectives of this study are flora and vegetation of salt marshes. In this study, on the basis of field surveys, is given a phytosociological classification of the Albanian salt marshes vegetation by the European standard methods of phytosociology (Zurich-Montpellier. The salt marsh communities of Albania are poor in endemism and generally similar to relevant vegetation types elsewhere in the Mediterranean. The flora of coastal salt marshes is differentiated into levels according to the plants' individual tolerance of salinity and water table levels. The flora of coastal salt marshes is differentiated into levels according to the plants' individual tolerance of salinity and water table levels. Coastal salt marshes of Albania are offered a number of 62 taxa, extended in 16 diverse families. The most presented families are Chenopodiaceae 24 %, followed by Poaceae and Asteraceae with 11%. Salt marshes are populated by halophytes, plants that can live under saline conditions. Plant species diversity is low, since the flora must be tolerant of salt and anoxic mud substrate [4]. The most common salt marsh plant communities in coastal area of Albania are salt meadows dominated by glasswort (Salicornia europaea, pioneer marsh communities, perennial vegetation of marine saline mud’s mainly composed of scrub such as

  14. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  15. 168 Hours Salt Fog Test

    International Nuclear Information System (INIS)

    This report explained the test conducted in salt fog chamber to evaluate the effectiveness of mild steel, coated with rust converter, for 168 hours in artificial seawater exposure. The samples were compared with mild steel coated with commercial primer. The tests were conducted followed ASTM B117. Individual pictures were taken of each sample before the tests began, at 24, 48, 72, 96, 120, 144 and 168 hours to see the progression of the corrosion. Results showed that the samples coated with rust converter provide a good significant protection against corrosion phenomenon than the samples coated with commercial primer that available in the market. (author)

  16. Salt transport in Songkhla Lake

    OpenAIRE

    Pornpinatepong, S.

    2005-01-01

    Salinity surveys in 1997 revealed that in the dry season salinity in Thale Sap Songkhla, Thale Sap and Thale Luang reached the maximum values of 30, 11 and 5 ppt, respectively. Among the complex system of the lake, Khlong Pak Ro showed a complicate seawater transport with a maximal salinity of 20 ppt. Incomplete mixing with a stratification at a depth of 2-3 m occured. The difference in salinity between the surface and the bottom was about 3 ppt. A vertically-averaged salt transport model was...

  17. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established

  18. Estimation of salt iodine in Pondicherry District.

    Science.gov (United States)

    Mohanty, B; Basu, S; Sarkar, Sonali

    2007-01-01

    A cross sectional survey was conducted in 2005 among 358 school children from 8 communities in the district of Pondicherry to assess the iodine content of salt at consumer level. School children were asked to bring salt consumed at their houses and 290 salt samples could finally be analysed. Only 26.2% of the population in the district were found to consume salt with more than 15 ppm iodine. Consumption of non-iodised salt was more in rural areas (96.4%) as compared to urban areas (71.3%). 39 salt samples from different retail shops in Pondicherry showed a mean value of 35.6+/-10.7 ppm. PMID:18232155

  19. Synthesis of Chitosan Quaternary Ammonium Salts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, 1HNMR and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.

  20. Micellar aggregates and hydrogels from phosphonobile salts

    OpenAIRE

    Babu, Ponnusamy; Chopra, D.; Row, Guru TN; Maitra, Uday

    2005-01-01

    The aggregation properties of novel bile acid analogs-phosphonobile salts (PBS)-have been studied. The critical micellar concentration of 23 and 24-phosphonobile salts were measured using fluorescence and P-31 NMR methods. All the ten synthesized phosphonobile salts formed gels at different pH ranges in water. The pH range at which individual PBSs could gelate water was narrow and influenced by the number and conformation of hydroxyl groups. A reversible thermochromic system has been develope...

  1. Salt taste inhibition by cathodal current

    OpenAIRE

    Hettinger, Thomas P.; Frank, Marion E.

    2009-01-01

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of −40 to −80 µA were applied to human subjects’ tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium su...

  2. Evaluation of salt content in school meals

    Directory of Open Access Journals (Sweden)

    Cláudia Alexandra Colaço Lourenço Viegas

    2015-04-01

    Full Text Available OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals served in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish were retrieved from school canteens. Salt was quantified by a portable salt meter. For food perception we constructed a questionnaire that was administered to high school students. RESULTS: A total of 798 food samples were analysed. Bread had the highest salt content with a mean of 1.35 g/100 g (SD=0.12. Salt in soups ranged from 0.72 g/100 g to 0.80 g/100 g (p=0.05 and, in main courses, from 0.71 g/100 to 0.97 g/100g (p=0.05. The salt content of school meals is high with a mean value of 2.83 to 3.82 g of salt per meal. Moreover, a high percentage of students consider meals neither salty nor bland, which shows they are used to the intensity/amount of salt consumed. CONCLUSION: The salt content of school meals is high, ranging from 2 to 5 times more than the Recommended Dietary Allowances for children, clearly exceeding the needs for this population, which may pose a health risk. Healthy choices are only possible in environments where such choices are possible. Therefore, salt reduction strategies aimed at the food industry and catering services should be implemented, with children and young people targeted as a major priority.

  3. Coastal salt-marshes in Albania

    OpenAIRE

    JULIAN SHEHU; ALMA IMERI; RUDINA KOCI; ALFRED MULLAJ

    2014-01-01

    The salt marshes of Albania comprise a narrow belt along the Adriatic and Ionian Seas. They have been the subject of a range of human activities causing habitat loss. Enclosure for agricultural use, ports and other infrastructure has reduced many salt marshes to a narrow fringe along estuary shores. Salt marshes are important for a range of interests. In particular they support a range of specialist plant communities and associated animals (especially breeding and wintering birds) and often h...

  4. The effect of organic salts on HPMC

    OpenAIRE

    Mongkolpiyawat, Jiraporn

    2012-01-01

    The presence of organic salts as drug counter-ions and buffers in hydroxypropylmethylcellulose (HPMC) matrices is often overlooked. This study investigates their potential to influence polymer solution properties and matrix drug release kinetics. A homologous series of aliphatic organic salts influenced solution and matrix properties in rank order of hydrocarbon chain length. Monovalent salts containing 1to4 C-atoms had little effect on polymer surface activity, but lowered sol:gel transit...

  5. Monitoring Change in Great Salt Lake

    Science.gov (United States)

    Naftz, David; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Carling, Gregory

    2013-08-01

    Great Salt Lake is the largest hypersaline lake in the Western Hemisphere and the fourth largest terminal lake in the world (Figure 1). The open water and adjacent wetlands of the Great Salt Lake ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere [Aldrich and Paul, 2002]. In addition, the area is of important economic value: Brine shrimp (Artemia franciscana) residing in Great Salt Lake support an aquaculture shrimp cyst industry with annual revenues as high as $60 million.

  6. Simulated waste package test in salt

    International Nuclear Information System (INIS)

    The Salt Repository Site Characterization Project Office (SRPO), of the US Department of Energy (DOE) Office of the Civilian Radioactive Waste Management (OCRWM), in cooperation with Federal Republic of Germany (FRG), simulated a waste package test at Asse Salt Mine (Asse). The purpose of this test was to determine the effect of heat produced by the decay of High-Level Radioactive Waste (HLW) on: Migration of brine moisture; Thermomechanical response of the salt; Geomechanical response of the room mined in salt; Corrosion on potential HLW waste package container materials; and Generation of gases. This paper describes the these performed, results obtained, and the performance of instruments and data acquisition system deployed

  7. Properties of dynamically compacted WIPP salt

    International Nuclear Information System (INIS)

    Dynamic compaction of mine-run salt is being investigated for the Waste Isolation Pilot Plant (WIPP), where compacted salt is being considered for repository sealing applications. One large-scale and two intermediate-scale dynamic compaction demonstrations were conducted. Initial fractional densities of the compacted salt range form 0.85 to 0.90, and permeabilities vary. Dynamically-compacted specimens were further consolidated in the laboratory by application of hydrostatic pressure. Permeability as a function of density was determined, and consolidation microprocesses were studied. Experimental results, in conjunction with modeling results, indicate that the compacted salt will function as a viable seal material

  8. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts.

    Science.gov (United States)

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji

    2015-12-21

    Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction analysis and NMR titration studies. PMID:26564098

  9. Granular Salt Summary: Reconsolidation Principles and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  10. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  11. Electrolytic orthoborate salts for lithium batteries

    Science.gov (United States)

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  12. Helping crops stand up to salt

    Energy Technology Data Exchange (ETDEWEB)

    Raeburn, P.

    1985-05-01

    A new approach to the problem of increasing soil salinity is to raise salt-tolerant plants. The search for such plants involves finding new applications for naturally occurring salt-resistant plants (halophytes), using conventional breeding techniques to identify and strengthen crop varieties known to have better-than-average salt tolerance, and applying recombinant DNA methods to introduce salt resistance into existing plants. One promising plant is salicornia, which produces oil high in polyunsaturates at a greater yield than soybeans. Two varieties of atriplex yield as much animal feed as alfalfa and can be harvested several times a year. Seed companies are supporting the research.

  13. Vacuum distillation of plutonium pyrochemical salts

    International Nuclear Information System (INIS)

    A pyrochemical process is developed to upgrade the safety of plutonium spent salts interim storage. The feed material, consisting of alkali or alkali-earth chlorides containing various Pu and Am species, is first oxidized to convert the actinides into oxides. Then the chlorides are removed by vacuum distillation which requires temperature from 750 degrees C to 1100 degrees C. After a comprehensive R and D program, full-scale equipment was built to test the distillation of active salts. Tests with NaCl/KCl oxidized spent salt give decontamination factor of chlorides higher than 20000. The distilled salt meets the radiologic requirements to be discarded as low level waste. (authors)

  14. Anion- interactions in layered structures of salts of 5-(hydroxyimino) quinolin-8-one and related salts

    Indian Academy of Sciences (India)

    Prithiviraj Khakhlary; Jubaraj B Baruah

    2015-01-01

    Relevance of anion- interactions in chloride, bromide, nitrate and perchlorate salts of 5-(hydroxyimino)quinolin-8-one are discussed. Structures of nitrate salt of 5-aminoquinoline as well as nitrate salt of 4-hydroxyquinazoline are compared with the structure of nitrate salt of 5-(hydroxyimino)quinolin-8-one. From such a comparison, two different arrangements of nitrate ions with respect to the respective cations are discerned. Nitrate ions are sandwiched between aromatic planes of cations in nitrate salts of 5-(hydroxyimino)quinolin-8-one or 4-hydroxyquinazoline; whereas, nitrate ions are in oblique positions with respect to aromatic planes of counter cations in nitrate salt of 5-aminoquinoline. Binding constants of different nitrate salts in solution are determined by UV-visible spectroscopic titrations. Solution study shows formation of ion-pairs of these salts in solution.

  15. ERG review of salt constitutive law, salt stress determinations, and salt corrosion and modeling studies

    International Nuclear Information System (INIS)

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1983 meeting of the ERG reviewed a RE/SPEC technical report containing a review of eight constitutive laws that have been proposed to model the creep of salt over the ranges of stress and temperature anticipated in a nuclear repository. This report documents the ERG's comments and recommendations on this subject and the ONWI responses to the specific points raised by the ERG

  16. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  17. Mined salt storage feasibility: Engineering study report

    International Nuclear Information System (INIS)

    This study addresses a method of eliminating the surface storage of mined salt at the Deaf Smith repository site. It provides rough estimates of the logistics and costs of transporting 3.7 million tons of salt from the repository to the salt disposal site near Carlsbad, New Mexico and returning it to the repository for decommissioning backfill. The study assumes that a railcar/truck system will be installed and that the excavated salt will be transported from the repository to an existing potash mine located near Carlsbad, New Mexico approximately 300 miles from the repository. The 3.7 million tons of salt required for repository decommissioning backfill can be stored in the potash mines along with the excess salt, with no additional capital costs required for either a railcar or a truck transportation system. The capital cost for facilities to reclaim the 3.7 million tons of salt from the potash mine is estimated to be $4,400,000 with either a rail or truck transportation system. Segregating the 3.7 million tons of backfill salt in a surface storage area at the potash mine requires a capital cost of $13,900,000 with a rail system or $11,400,000 with a truck system. Transportation costs are estimated at $0.08/ton-mile for rail and $0.13/ton-mile for truck. 2 figs., 5 tabs

  18. Skin Sensitizing Potency of Halogenated Platinum Salts.

    Science.gov (United States)

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  19. Metal salt catalysts for enhancing hydrogen spillover

    Science.gov (United States)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  20. Nitrate Salt Surrogate Blending Scoping Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  1. Synthesis, structure, and properties of azatriangulenium salts

    DEFF Research Database (Denmark)

    Laursen, B.W.; Krebs, Frederik C

    2001-01-01

    amines and, by virtue of its stepwise and irreversible nature, provides a powerful tool for the preparation of a wide variety of new heterocyclic carbenium salts. Several derivatives of the three new oxygen- and/or nitrogen-bridged triangulenium salts, azadioxa- (6), diazaoxa- (7), and...

  2. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables...

  3. Salt contamination assessment and remediation guidelines

    International Nuclear Information System (INIS)

    Environmental impacts associated with excess salt in oil and surface water or groundwater (a frequent occurrence in oil and gas production) may be manifested as degradation of soil chemical or physical properties, impaired vegetable growth and degraded surface or groundwater quality. Spill prevention is by far the most effective and most efficient way of avoiding these adverse effects and the attendant remediation costs. However, when spills do occur effective response, based on a comprehensive understanding of impacts, salt movements and remediation procedures can mitigate the adverse environmental effects. This guide is designed to assist those involved in the prevention, assessment, remediation and management of salt-contaminated sites. It summarizes the regulatory requirements in Alberta, including salt remediation objectives, and provides an overview of salt spill problems and effective site assessment and remediation procedures. Background information on the sources of salt, the movement of salt in soil and groundwater, and the adverse effects of salt on soil, vegetation and groundwater is provided in an appendix attached to the Guide. A selected bibliography and a glossary of terms are also included. 42 refs., tabs., figs

  4. Dam construction in salt rock

    International Nuclear Information System (INIS)

    Barriers are a major component of the satefy concept for the Gorleben repository. The construction and performance of dams are currently tested within the framework of a project carried out in the Asse salt mine. A measuring programme has been established to give evidence of the sealing capacities of a barrier consisting of an abatement, long-term sealing material, and a hydraulic sealing system. Tests are to be made to verify the barrier's performance for shorter of long time periods (up to about 500 years). The tests are assisted by computed models established for the project. The long-term safety aspects to be studied include such conditions as permeability changes due to mechanical impacts, circulation conditions at the roadside, and the serviceable life and efficiency of the sealing components. (DG)

  5. Salt disposal effects found small

    Science.gov (United States)

    Richman, Barbara T.

    Brine discharges into the Gulf of Mexico averaging more than 600,000 barrels per day for the past year have had ‘few significant effects‘ on the marine environment off the Texas coast, according to a preliminary analysis by scientists and engineers at the Texas A&M University. The brine, 8 times saltier than the surrounding seawater, is produced when salt from underground deposits on shore is dissolved and pumped into the Gulf as part of the Strategic Petroleum Reserve Program.Lead by Roy Hann, Jr., of the Texas Engineering Experiment Station, the team is analyzing discharge from Bryan Mound at Freeport, Tex., and from the West Hackberry site near Cameron, La. After a year of discharge off Freeport, the researchers found ‘no brine-caused differences in sediment temperatures and bottom-water dissolved-oxygen levels which accompany increased salinity,’ Hann said. In addition, overall compositions of fish and shrimp remained stable.

  6. Titanium for salt water service

    International Nuclear Information System (INIS)

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  7. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats

    DEFF Research Database (Denmark)

    Carlström, Mattias; Sällström, Johan; Skøtt, Ole; Larsson, Erik; Persson, A Erik G

    2007-01-01

    adulthood. Rats were operated at 3 weeks of age (after completed nephrogenesis) and then subjected to either normal or high-salt diets for 6 to 8 weeks. Four different experimental groups were used: sham-operated animals raised with normal-salt diet (controls) or high-salt diet (HS) and uninephrectomized...... renin concentrations during high sodium conditions and hypertrophic kidneys and hearts with various degrees of histopathologic changes. In conclusion, at a young age after completed nephrogenesis, uninephrectomy or chronic salt loading causes renal and cardiovascular injury with salt...

  8. Four salt phases of theophylline.

    Science.gov (United States)

    Buist, Amanda R; Kennedy, Alan R; Manzie, Craig

    2014-02-01

    The structures of two anhydrous salt phases of theophylline, namely 1,3-dimethyl-2,6-dioxo-7H-purin-9-ium tetrafluoroborate, C7H9N4O2(+)·BF4(-), and 1,3-dimethyl-2,6-dioxo-7H-purin-9-ium chloride, C7H9N4O2(+)·Cl(-), are reported together with the structures of two monohydrate salt forms, namely 1,3-dimethyl-2,6-dioxo-7H-purin-9-ium chloride monohydrate, C7H9N4O2(+)·Cl(-)·H2O, and 1,3-dimethyl-2,6-dioxo-7H-purin-9-ium bromide monohydrate, C7H9N4O2(+)·Br(-)·H2O. The monohydrate structures are mutually isostructural, with the cations and anions lying on crystallographic mirror planes (Z' = ½). The main intermolecular interaction motif is a hydrogen-bonding network in the same mirror plane. The tetrafluoroborate structure is based on planar hydrogen-bonded theopylline cation dimers; the anions interact with the dimers in a pendant fashion. The anhydrous chloride structure has Z' = 2 and in contrast to the other species it does not form planar hydrogen-bonded constructs, instead one-dimensional chains of cations and anions propagate parallel to the crystallographic c direction. An earlier report claiming to describe an anhydrous structure of theophylline hydrochloride is re-examined in light of these results. It is concluded that the earlier structure has been reported in the wrong space group and that it has been chemically misidentified. PMID:24508974

  9. Model calculations to formation of salt deposits

    International Nuclear Information System (INIS)

    The present work is a contribution from the geophysical side and its target is to explain the formation of long stretched salt deposits - salt walls - in a better manner than has been done sofar using model calculations. A few works have already been dedicated to this subject (they are treated in chapter 5). They all have the disadvantage however in not being able to represent the time sequence of the salt deposit generations. Precisely the latter is achieved in this work by including assumed initial interference. The values for the salt wall distance and its growth rate are improved upon. The Schleswig-Holstein salt deposit is taken as example. The model calculations are supported by model experiments. (orig.)

  10. Vitrification in the presence of salts

    International Nuclear Information System (INIS)

    Glass is an advantageous material for the immobilization of nuclear wastes because of the simplicity of processing and its unique ability to accept a wide variety of waste elements into its network structure. Unfortunately, some anionic species which are present in the nuclear waste streams have only limited solubility in oxide glasses. This can result in either vitrification concerns or it can affect the integrity, of the final vitrified waste form. The presence of immiscible salts can also corrode metals and refractories in the vitrification unit as well as degrade components in the off-gas system. The presence of a molten salt layer on the melt may alter the batch melting rate and increase operational safety concerns. These safety concerns relate to the interaction of the molten salt and the melter cooling fluids. Some preliminary data from ongoing experimental efforts examining the solubility of molten salts in glasses and the interaction of salts with melter component materials is included

  11. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  12. Origin and permeability of deep ocean salts

    Science.gov (United States)

    Hovland, M.; Rueslåtten, H.

    2009-04-01

    Large, buried salt bodies occur in numerous offshore rift-related sedimentary basins, worldwide. For most practical purposes, the conventional evaporite (solar evaporation of seawater) theory is adequate for explaining these occurrences. However, a new model for their formation has now been published (Hovland et al., 2006; 2007, 2008). This model relies on the properties of supercritical water, a fluid which does not dissolve salt (within specific temperature and pressure ranges). The model predicts that some of the large volumes of salt occurring underground in the Red Sea and also in the Mediterranean Sea, formed by forced hydrothermal circulation of seawater down to depths where it became superctical (i.e., temperatures above 405°C, and pressures above 300 bars). Thus, salt precipitated under-ground and filled up cracks and crevices and also formed massive accumulations, which partly flowed upwards as dense, hot brines, precipitating more solid salts upon cooling. In addition, Holness and Lewis (1997) have shown experimentally that salt bodies subjected to high pressures and elevated temperatures, acquire a permeability comparable to sand. This is because the crystalline structure of salt (halite) attains dihedral angles between salt crystals less than 60° at higher temperatures and pressures, allowing water to form continuous strings around all salt crystals. This allows hot dense brines to migrate through the salt. Thus, the salt may act as conduits for flow of brines and salt slurries from previously accumulated salt in the subsurface. If these brines reach the sea floor, they can also form brine-pools and layered salt bodies on the sea floor. An IODP Pre-proposal (No. 741-pre) is now actively promoting drilling some targets in order of checking out this new theory against the conventional evaporite model. It is hoped that European scientists will take up this question and actively promote drilling into salt bodies, for example in the Red Sea (The

  13. Thermodynamic investigation of fluoride salts for nuclear energy production

    OpenAIRE

    Beilmann, Markus

    2013-01-01

    In this work thermodynamic properties of molten fluoride salts and salt mixtures are investigated. Fluoride salts have advantageous properties to be used in energy producing systems based on the conversion from heat to energy like i.e in Molten Salt Reactors. For this purpose it is very important to have detailed information about the heat capacity of the pure salts and salt mixtures. To get a better understanding about the heat capacity in mixtures drop calorimetry measurements of mixture...

  14. Evaluation of dried salted pork ham and neck quality

    Directory of Open Access Journals (Sweden)

    Simona Kunová

    2015-12-01

    Full Text Available The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, for example length of drying and ripening period. The average moisture of dried salted pork ham was 63.77% and dried salted pork neck was 59.26%. The protein content was 24.87% in dried salted pork ham and significantly lower (20.51% in dried salted pork neck. The value of intramuscular fat in dried salted pork ham was 4.97% and 14.40% in dried salted pork neck. The salt content was 5.39% in dried salted pork ham and 4.83% in dried salted pork neck. The cholesterol content was 1.36 g.kg-1 in dried salted pork ham and significant lower in dried salted pork neck (0.60 g.kg-1. The value of lightness was 44.36 CIE L* in dried salted pork ham and significantly lower in dried salted pork neck (40.74 CIE L*. The pH value was 5.84 in dried salted pork ham and 5.80 in dried salted pork neck. The shear work was 9.99 kg.s-1 in dried salted pork ham and 6.34 in dried salted pork neck. The value of water activity (aw was 0.929 in dried salted pork ham and similar 0.921 in dried salted pork neck. 

  15. Different combination of drugs regarding the damage on organs targeting salt sensitivity or non-salt-sensitive hypertension

    Institute of Scientific and Technical Information of China (English)

    吴琪

    2013-01-01

    Objective To study the damage on organs from salt sensitivity hypertension or non-salt-sensitive hypertension and the selection of drug combination.Methods 120 hypertensive patients including 60 cases salt-sensitive(SS)

  16. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  17. Salt preferences of honey bee water foragers.

    Science.gov (United States)

    Lau, Pierre W; Nieh, James C

    2016-03-15

    The importance of dietary salt may explain why bees are often observed collecting brackish water, a habit that may expose them to harmful xenobiotics. However, the individual salt preferences of water-collecting bees were not known. We measured the proboscis extension reflex (PER) response of Apis mellifera water foragers to 0-10% w/w solutions of Na, Mg and K, ions that provide essential nutrients. We also tested phosphate, which can deter foraging. Bees exhibited significant preferences, with the most PER responses for 1.5-3% Na and 1.5% Mg. However, K and phosphate were largely aversive and elicited PER responses only for the lowest concentrations, suggesting a way to deter bees from visiting contaminated water. We then analyzed the salt content of water sources that bees collected in urban and semi-urban environments. Bees collected water with a wide range of salt concentrations, but most collected water sources had relatively low salt concentrations, with the exception of seawater and swimming pools, which had >0.6% Na. The high levels of PER responsiveness elicited by 1.5-3% Na may explain why bees are willing to collect such salty water. Interestingly, bees exhibited high individual variation in salt preferences: individual identity accounted for 32% of variation in PER responses. Salt specialization may therefore occur in water foragers. PMID:26823100

  18. Site characterization plan: Gulf Coast salt domes

    International Nuclear Information System (INIS)

    The National Waste Terminal Storage (NWTS) program of the US Department of Energy (DOE) is responsible for developing technology and providing facilities for safe, environmentally acceptable, permanent disposal of high-level nuclear waste. The Office of Nuclear Waste Isolation has been intensively investigating Gulf Coast Salt Dome Basin salt domes and bedded salt in Texas and Utah since 1978. In the Gulf Coast, the application of screening criteria in the region phase led to selection of eight domes for further study in the location phase. Further screening in the area phase identified four domes for more intensive study in the location phase: Oakwood Dome, Texas; Vacherie Dome, Louisiana; and Richton Dome and Cypress Creek Dome, Mississippi. For each dome, this Site Characterization Plan identifies specific hydrologic, geologic, tectonic, geochemical, and environmental key issues that are related to the DOE/NWTS screening criteria or affect the feasibility of constructing an exploratory shaft. The Site Characterization Plan outlines studies need to: (1) resolve issues sufficiently to allow one or more salt domes to be selected and compared to bedded salt sites in order to determine a prime salt site for an exploratory shaft; (2) conduct issue-related studies to provide a higher level of confidence that the preferred salt dome site is viable for construction of an exploratory shaft; and (3) provide a vehicle for state input to issues. Extensive references, 7 figures, 20 tables

  19. Molten salt synthesis of potassium hexatitanate

    Science.gov (United States)

    Zaremba, T.

    2012-09-01

    Potassium hexatitanate fibrous crystals have been synthesized by a conventional solid-state reaction and via molten salt process. The molten salt process has been shown to be effective in preparing fine and non-agglomerated K2Ti6O13 whiskers. The type of molten salt (KCl, NaCl-KCl) has a significant effect on the chemical composition of the whiskers. By using a eutectic mixture of NaCl and KCl, the replacement of potassium ions in solid potassium hexatitanate by smaller sodium ions from the chloride flux can be achieved. The characterization of the samples was carried out by means of XRD, SEM, EDX and WDX.

  20. Modeling of Salt Solubilities in Mixed Solvents

    DEFF Research Database (Denmark)

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  1. The role of salt salt domes and salt caves on creation of geoparks and geoturism development in Iran

    Czech Academy of Sciences Publication Activity Database

    Asadi, N.; Zare, M.; Bruthans, J.; Filippi, Michal

    Qeshm: Qeshm Free Zone Organization ; Sarzamin Tourism Studies, 2008 - (Larijani, M.; Kalantari, F.), s. 11-23 [International Conference of Geoparks and their role on geoturism /1./. Qeshm (IR), 27.01.2008-02.02.2008] R&D Projects: GA AV ČR KJB315040801 Institutional research plan: CEZ:AV0Z30130516 Keywords : salt dome * salt cave * geoturism Subject RIV: DB - Geology ; Mineralogy

  2. Liquid salt environment stress-rupture testing

    Science.gov (United States)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  3. Habitat--Offshore of Salt Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Salt Point map area, California. The vector data file is included in...

  4. South Bay Salt Ponds : Initial stewardship plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The California Department of Fish and Game and the U.S. Fish and Wildlife Service will operate and maintain the South Bay Salt Ponds under this Initial Stewardship...

  5. Simulated waste package test in salt

    International Nuclear Information System (INIS)

    The Salt Repository Site Characterization Project Office (SRPO), of the U.S. Department of Energy (DOE) Office of the Civilian Radioactive Waste Management (OCRWM), in cooperation with Federal Republic of Germany (FRG), simulated waste package test at Asse Salt Mine (Asse). The purpose of this test was to determine the effect of heat produced of the decay of High-Level Radioactive Waste (HLW) on: (1) Migration of brine moisture; (2) Thermomechanical response of the salt; (3) Geomechanical response of the room mined in salt; (4) Corrosion on potential HLW waste package container materials; and (5) Generation of gases. This paper describes the test performed, results obtained, and the performance of instruments and data acquisition system deployed

  6. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of thei formation, and the associated parameters

  7. Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance

    OpenAIRE

    Zörb, Christian; Sümer, Ali; Sungur, Ali; Flowers, Timothy J.; ÖZCAN, Hasan

    2013-01-01

    Salt-affected soils with high electrolyte contents limit the development of the majority of plants and serve as a habitat only for such species (halophytes) that can survive the conditions. To date, there is still much that is unknown about the physiological mechanisms, including ion relationships, that make plants salt-resistant. The primary aim of this study was to evaluate a method of ranking plants for their salt tolerance. A total of 11 coastal halophytes of the Kavak Delta were evaluate...

  8. ADR salt pill design and crystal growth process for hydrated magnetic salts

    Science.gov (United States)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  9. Potential for creation of a salt dome following disposal of radioactive waste in a salt layer

    International Nuclear Information System (INIS)

    The study aims at quantifying the possibility of creation of a salt dome from a salt layer in which heat-emitting radioactive waste would be buried. Volume 1 describes the results of numerical computer simulations, and of laboratory-scale models in centrifuges. Volume 2 envisages, in a geological perspective, the origin of salt domes, the mechanisms of their formation, and the associated parameters

  10. Salt Stress Proteins Induced in Listeria monocytogenes

    OpenAIRE

    Duché, Ophélie; Trémoulet, Frédéric; Glaser, Philippe; Labadie, Jean

    2002-01-01

    The ability of Listeria monocytogenes to tolerate salt stress is of particular importance, as this pathogen is often exposed to such environments during both food processing and food preservation. In order to understand the survival mechanisms of L. monocytogenes, an initial approach using two-dimensional polyacrylamide gel electrophoresis was performed to analyze the pattern of protein synthesis in response to salt stress. Of 400 to 500 visible proteins, the synthesis of 40 proteins (P < 0.0...

  11. Monitoring change in Great Salt Lake

    Science.gov (United States)

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  12. Iodized salt induced thyrotoxicosis: Bangladesh perspective.

    Science.gov (United States)

    Parveen, S; Latif, S A; Kamal, M M; Asaduzzaman, M; Akther, A; Laila, Z H

    2009-07-01

    The effects of iodized and non-iodized salt on the thyroid gland and its hormones T3, T4 and thyroid stimulating hormone (TSH) were studied in 200 individuals who were the residents of plain areas of greater Mymensingh district. The subjects were collected from the Center for Nuclear Medicine and Ultrasound, Mymensingh. Out of 200 individuals 150 were using iodized salt and 50 were using non-iodized salt. The iodized and non-iodized salt users were marked as study and control groups respectively. Blood samples were taken from both the groups and T3 and T4 in blood serum were determined by radioimmunoassay (RIA) while TSH was determined by immunoradiometricassay (IRMA). The mean concentration of T3 were 2.633 nmol/L and 2.223 nmol/L and T4 concentration were 122.444 nmol/L and 110.355 nmol/L in study and control group respectively. The mean TSH concentration was 5.044 mIU/L and 9.622 mIU/L in study and control group respectively. The data indicated that continuous and long term use of iodized salt increased both T3 and T4 and decreased TSH in study group. The results were significant (piodinated salt induced thyrotoxicosis (ISIT) in peoples living in plain areas of Bangladesh. We suggest close regular monitoring of T3, T4 and TSH and urinary excretion of iodine of individuals who are using iodized salt for better management of iodinated salt program in our setting. PMID:19623141

  13. High salt recruits aversive taste pathways

    OpenAIRE

    Oka, Yuki; Butnaru, Matthew; von Buchholtz, Lars; Ryba, Nicholas J.P.; Zuker, Charles S.

    2013-01-01

    In the tongue, distinct classes of taste receptor cells detect the five basic tastes, sweet, sour, bitter, sodium salt, and umami 1,2 . Among these qualities, bitter and sour stimuli are innately aversive, whereas sweet and umami are appetitive, and generally attractive to animals. In contrast, salty taste is unique in that increasing salt concentration fundamentally transforms an innately appetitive stimulus into a powerfully aversive one 3–7 . This appetitive-aversive balance helps maintain...

  14. Swiss survey on salt intake: main results

    OpenAIRE

    Chappuis Aline; Bochud Murielle; Glatz Nicolas; Vuistiner Philippe; Paccaud Fred; Burnier Michel

    2011-01-01

    [Contents] 1. Executive summary. 2. Introduction. 3. Methods. 4. Main results. 4.1. Participants. 4.2. Estimation of dietary salt intake using 24-hour urine collection. 4.3. Blood pressure and hypertension. 4.4. Anthropometric data (Body weight, height and body mass index BMI; prevalence of overweight and obesity; waist circumference;...). 4.5. Knowledge and behaviors towards salt. 5. Discussion.

  15. Swelling of phospholipids by monovalent salt

    OpenAIRE

    Petrache, Horia I.; Tristram-Nagle, Stephanie; Harries, Daniel; Kučerka, Norbert; Nagle, John F.; Parsegian, V. Adrian

    2005-01-01

    Critical to biological processes such as membrane fusion and secretion, ion-lipid interactions at the membrane-water interface still raise many unanswered questions. Using reconstituted phosphatidylcholine membranes, we confirm here that multilamellar vesicles swell in salt solutions, a direct indication that salt modifies the interactions between neighboring membranes. By varying sample histories, and by comparing with data from ion carrier-containing bilayers, we eliminate the possibility t...

  16. Results from the Salt Phase of SNO

    CERN Document Server

    Miknaitis, K; Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Bergevin, M; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Currat, C A; Dai, X; Dalnoki-Veress, F; Deng, H; Doe, P J; Dosanjh, R S; Doucas, G; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Frame, K; Frati, W; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heelan, L; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jelley, N A; Klein, J R; Kormos, L L; Kos, M S; Krüger, A; Kraus, C V; Krauss, C B; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Loach, J C; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Miin, C; Moffat, B A; Nally, C W; Neubauer, M S; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C V; Peeters, S J M; Poon, A W P; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Seibert, S R; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesic, G; Thomson, M; Thorman, M; Tsui, T; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Wan Chan Tseung, H; Wark, D L; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Wright, A; Yeh, M; Zuber, K

    2005-01-01

    The Sudbury Neutrino Observatory (SNO) has recently completed an analysis of data from the salt phase of the experiment, in which NaCl was added to the heavy-water neutrino target to enhance sensitivity to solar neutrinos. Results from the 391-day salt data set are summarized, including the measured solar neutrino fluxes, the electron energy spectrum from charged current interactions, and the day-night neutrino flux asymmetries. Constraints on neutrino mixing parameters including the new measurements are also given.

  17. IE Information No. 86-66: Potential for failure of replacement ac coils supplied by the Westinghouse Electric Corporation for use in Class 1E motor starters and contactors

    International Nuclear Information System (INIS)

    On June 19, 1986 Westinghouse Water Reactor Division (WRD) submitted a 10 CFR Part 21 report to the NRC indicating a higher-than-normal failure rate for ac coils. The report stated that most of the failures had been encountered during the initial hours of energization. These coils were manufactured at the Westinghouse Control Division (WCD) facility in Coamo, Puerto Rico, between June 1, 1984 and December 31, 1985 and are provided as replacement parts for use in motor starters and contactors. During early June 1986, Westinghouse concluded that the Class 1E coils used in certain motor starters and contractors in nuclear plants could be subject to failure. This conclusion was based on information from various non-nuclear customers about failures of similar coils. However, it should be noted that up to this time no nuclear power plant Class 1E coil failures had been reported to WRD. To correct the problem, WCD made a number of manufacturing changes that included revised materials and processes. Westinghouse tests performed on newly manufactured coils have indicated that the modified coils are not subject to the same failures as those coils manufactured during June 1, 1984 through December 31, 1985

  18. Application of Firbre-film Contactor in Coker LPG Sweetening Process%纤维膜接触器在焦化液化气脱硫醇中的应用

    Institute of Scientific and Technical Information of China (English)

    徐兵; 夏和青; 蒋春林

    2012-01-01

    介绍了利用纤维膜接触器技术脱除焦化液化气中硫醇的原理和工艺流程。脱硫醇后的液化气总硫含量基本维持在90 mg/m3以下,硫醇脱除率为96%左右,达到民用液化气标准,而且碱耗低,还可进一步回收丙烯,经济效益明显。%The reaction principle and technological process of fibre-film contactor in Coker LPG Sweetening Process was simply introduced.Removal ratio of mercaptan was 96%.The sulfur content in Coker LPG sweetening kept with less than 90%basically,which was up to the standard of civil LPG.The method can reduce soda consumption and recycle was more propylene with great influence in economy.

  19. Elevated 22Na uptake in aortae of Dahl salt-sensitive rats with high salt diet

    International Nuclear Information System (INIS)

    We examined the effects of high salt intake on blood pressure and vascular 22Na uptake in Dahl salt-sensitive (DS) rats. At 6 weeks of age, one group of 6 DS rats was placed on a low (0.4%) salt diet and the second group of 6 DS rats was placed on a high (8.0%) salt diet for a period of 4 weeks. Blood pressure recordings were made weekly. At 10 weeks of age, the animals were sacrificed and aortic 22Na uptake was measured. Total and amiloride sensitive (Na(+)-H+ antiport) components of 22Na uptake were measured from which was calculated the amiloride insensitive component. Na+, K(+)-pumps were inhibited for these vascular 22Na uptake experiments with ouabain to prevent Na+ efflux. DS rats on the high salt diet demonstrated significantly (P less than 0.01) higher blood pressure when compared to DS rats on a low salt diet. Similarly, DS rats on a high salt diet demonstrated significantly (P less than 0.05) higher total, amiloride sensitive and amiloride insensitive vascular 22Na uptake as compared to DS rats on low salt diet. The parallel increase in vascular 22Na uptake and blood pressure suggests a possible, key role of Na+ influx in the mechanism of salt induced hypertension of DS rats

  20. Nitrite toxicity of Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts

    Science.gov (United States)

    Sowers, A.; Young, S.P.; Isely, J.J.; Browdy, C.L.; Tomasso, J.R., Jr.

    2004-01-01

    The uptake, depuration and toxicity of environmental nitrite was characterized in Litopenaeus vannamei exposed in water containing low concentrations of artificial sea salt or mixed salts. In 2 g/L artificial sea salts, nitrite was concentrated in the hemolymph in a dose-dependent and rapid manner (steady-state in about 2 d). When exposed to nitrite in 2 g/L artificial sea salts for 4 d and then moved to a similar environment without added nitrite, complete depuration occurred within a day. Increasing salinity up to 10 g/L decreased uptake of environmental nitrite. Nitrite uptake in environments containing 2 g/L mixed salts (combination of sodium, potassium, calcium and magnesium chlorides) was similar to or lower than rates in 2 g/L artificial sea salt. Toxicity was inversely related to total dissolved salt and chloride concentrations and was highest in 2 g/L artificial sea salt (96-h medial lethal concentration = 8.4 mg/L nitrite-N). Animals that molted during the experiments did not appear to be more susceptible to nitrite than animals that did not molt. The shallow slope of the curve describing the relationship between toxicity and salinity suggests that management of nitrite toxicity in low-salinity shrimp ponds by addition of more salts may not be practical. ?? Copyright by the World Aquaculture Society 2004.

  1. SALT-4, Temperature and Stress from Radioactive Waste Disposal in Bedded Salts

    International Nuclear Information System (INIS)

    1 - Description of program or function: SALT4 is a two-dimensional, analytical/displacement-discontinuity code designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. SALT4 takes into account viscoelastic behavior in the pillars adjacent to excavations, transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock, and excavation sequence. SALT4 can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermal and thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. 2 - Method of solution: In SALT4, the temperature distribution and associated thermal stresses are approximated by analytic solutions for a line heat source in an elastic medium. The mechanical effects due to excavation of the repository openings are treated by the displacement-discontinuity method. 3 - Restrictions on the complexity of the problem: Although SALT4 was designed for analysis of bedded salt, it is also applicable to crystalline rock if the creep calculation is suppressed. The main disadvantage of SALT4 is that some of the assumptions made, i.e. temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars

  2. Ammonia Solubility in High Concentration Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  3. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  4. Ammonia Solubility in High Concentration Salt Solutions

    International Nuclear Information System (INIS)

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks

  5. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  6. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.; Ford, Joe; Fowler, Kyle; Hebditch, Max

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  7. Thermal Treatment of Salt-Loaded Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Lee, Jae Hee; Kim, Eung Ho; Kim, Joon Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    For disposal in a geological repository, the waste salts such as molten LiCl salt from an oxide fuel reduction process and molten LiCl-KCl eutectic salt from an electro refining process must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are known to be leach resistance and waste form durability. US Argonne National Laboratory (ANL) developed a ceramic waste form (CWF) fabrication technology for LiCl-KCl eutectic salt from ANL Experimental Breeder Reactor-II (EBR-II). The CWF, which was made by first occluding salt in zeolite A at 730 K and then encapsulating the zeolite in a borosilicate binder glass by a hot isostatic press (HIP) method or pressureless consolidation (PC) method, has the phase composition of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). US ANL showed that the chemical durability and leach resistance of the CWF were higher than those of glass waste form for high level waste from aqueous process, by a 7-day product consistency test (PCT). However, the waste form fabrication process for waste LiCl salt is somewhat different in mixing temperature from that for LiCl-KCl eutectic salt at US ANL. The former is mixed at 920 K, whereas, the later mixing is accomplished at 730 K. Such difference in mixing temperature results in the different major phase of SLZ, that is, zeolite Li-A from LiCl salt, and unchanged zeolite A from LiCl-KCl eutectic salt. This unchanged phase of zeolite A during an immobilization step is transformed to sodalite, which was known to be very high leach-resistant, in the step of encapsulating with borosilicate glass. In this work, we tried to investigate the transformation of major phase of SLZ, from zeolite Li-A to Na{sub 8}Cl{sub 2}-Sod using zeolite only sodalite, by a quantitative analysis with a software for X-ray diffractometer during the thermal treatment under 1170 K.

  8. Evidence of the Earliest Salt Production Found in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Being critical in the development of the human civilization, the ancient salt-making has been an important research issue for both historians and archaeologists. Since salt dissolves in water, it is difficult to tell whether the salt in archaeological samples was caused by human production of salt or underground water. So how to judge the existence of salt production has been a world-wide problem in archaeology and archaeometry.

  9. Heavy Metals Contamination of Table Salt Consumed in Iran

    OpenAIRE

    Cheraghali, Abdol Majid; Kobarfard, Farzad; Faeizy, Noroldin

    2010-01-01

    Lead, cadmium, mercury and arsenic are the most important heavy metals which may cause health risks following consumption of contaminated foods. Table salt is one the mostly used food additive with unique place in food consumption. Although purified table salt is expected to have lower level of contamination, some Iranians still prefer to use rock salt. Use of rock salt for food purposes has been banned by Iranian health authorities. In this study, heavy metal contamination of table salt cons...

  10. Effects of Salt on Wheat Flour Dough Fermentation

    OpenAIRE

    Toshiyuki Toyosaki; Yasuhide Sakane

    2013-01-01

    Most food chemistry characteristics in the dough fermentation of salt are not solved. Effects of salt on the acceleration process of wheat flour dough fermentation were studied, respectively. The mechanism of dough expansion influenced by salt and yeast was also investigated. The dough expansion rate with no salt reached a maximum of 18% in the 50 min dough fermentation time. In contrast, dough with 2.0% salt reached an expansion rate of 96% in 30 min of fermentation. Furthermore, the maximum...

  11. Chemical and physical parameters of dried salted pork meat

    Directory of Open Access Journals (Sweden)

    Petronela Cviková

    2016-07-01

    Full Text Available The aim of the present study was analysed and evaluated chemical and physical parameters of dried salted pork neck and ham. Dried salted meat is one of the main meat products typically produced with a variety of flavors and textures. Neck (14 samples and ham (14 samples was salted by nitrite salt mixture during 1week. The nitrite salt mixture for salting process (dry salting was used. This salt mixture contains: salt, dextrose, maltodextrin, flavourings, stabilizer E316, taste enhancer E621, nitrite mixture. The meat samples were dried at 4 °C and relative humudity 85% after 1 week salting. The weight of each sample was approximately 1 kg. After salting were vacuum-packed and analysed after 1 week. The traditional dry-cured meat such as dry-cured ham and neck obtained after 12 - 24 months of ripening under controlled conditions. The average protein content was significantly (p <0.001 lower in dried pork neck in comparison with dried salted pork ham. The average intramuscular fat was significantly (p <0.001 lower in dried pork ham in comparison with dried salted pork neck. The average moisture was significantly lower (p ≤0.05 in dried salted ham in comparison with dried pork neck. The average pH value was 5.50 in dried salted pork ham and 5.75 in dried salted pork neck. The content of arginine, phenylalanine, isoleucine, leucine and threonine in dried salted ham was significantly lower (p <0.001 in comparison with dried salted pork neck. The proportion of analysed amino acids from total proteins was 56.31% in pork salted dried ham and 56.50% in pork salted dried neck.  Normal 0 21 false false false EN-GB X-NONE X-NONE Normal 0 21 false false false SK X-NONE X-NONE

  12. Drying of salted fish. Comparison between different methods and species

    OpenAIRE

    Gísli Kristjánsson 1988

    2013-01-01

    Dried salted fish is a popular seafood product in Southern Europe and South America. Large quantities of the salted fish from Iceland are further processed into dried salted products in Portugal before they are sold to the consumer in Portugal or exported to Brazil. By drying the salted fish in Iceland an added value could be achieved in the country before the fish is exported. In this thesis experiments were performed to gather knowledge of drying of salted fish in Icelandic conventional tun...

  13. Functionalization of nanomaterials with aryldiazonium salts.

    Science.gov (United States)

    Mohamed, Ahmed A; Salmi, Zakaria; Dahoumane, Si Amar; Mekki, Ahmed; Carbonnier, Benjamin; Chehimi, Mohamed M

    2015-11-01

    This paper reviews the surface modification strategies of a wide range of nanomaterials using aryldiazonium salts. After a brief history of diazonium salts since their discovery by Peter Griess in 1858, we will tackle the surface chemistry using these compounds since the first trials in the 1950s. We will then focus on the modern surface chemistry of aryldiazonium salts for the modification of materials, particularly metallic, semiconductors, metal oxide nanoparticles, carbon-based nanostructures, diamond and clays. The successful modification of sp(2) carbon materials and metals by aryldiazonium salts paved the way to innovative strategies for the attachment of aryl layers to metal oxide nanoparticles and nanodiamonds, and intercalation of clays. Interestingly, diazotized surfaces can easily trap nanoparticles and nanotubes while diazotized nanoparticles can be (electro)chemically reduced on electrode/materials surfaces as molecular compounds. Both strategies provided organized 2D surface assembled nanoparticles. In this review, aryldiazonium salts are highlighted as efficient coupling agents for many types of molecular, macromolecular and nanoparticulate species, therefore ensuring stability to colloids on the one hand, and the construction of composite materials and hybrid systems with robust and durable interfaces/interphases, on the other hand. The last section is dedicated to a selection of patents and industrial products based on aryldiazonium-modified nanomaterials. After nearly 160 years of organic chemistry, diazonium salts have entered a new, long and thriving era for the benefit of materials, colloids, and surface scientists. This tempts us to introduce the terminology of "diazonics" we define as the science and technology of aryldiazonium salt-derived materials. PMID:26299313

  14. The effect of the salt viscosity on future evolution of the Gorleben salt diapir, Germany

    DEFF Research Database (Denmark)

    Chemia, Zurab; Schmeling, H.; Koyi, H.

    2009-01-01

    . Decreasing salt viscosity allows the previously “stationary” anhydrite blocks to sink. If the effective viscosity of salt in post-depositional stage of the Gorleben diapir falls below this threshold value, induced internal flow due to the present anhydrite layer might disturb any repository within the diapir....

  15. Characterization of the molten salt reactor experiment fuel and flush salts

    International Nuclear Information System (INIS)

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These open-quotes staticclose quotes properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions

  16. Novel graphite salts of high oxidizing potential

    Energy Technology Data Exchange (ETDEWEB)

    McCarron, E.M. III

    1980-08-01

    The intercalation of graphite by the third-transition-series metal hexafluorides has yielded the graphite salts, C/sub 8//sup +/OsF/sub 6//sup -/, C/sub 8//sup +/IrF/sub 6//sup -/ and C/sub 12//sup 2 +/PtF/sub 6//sup 2 -/. The fluoroplatinate salt represents the highest electron withdrawal from the graphite network yet achieved. Analogues to the Os and Ir salts have been obtained both by fluorination of Group V pentaflouride intercalates, C/sub 8/MF/sub 5/ (M = As, Sb), and by the interaction of the dioxygenyl salts with graphite (8C + O/sub 2/MF/sub 6/ ..-->.. C/sub 8/MF/sub 6/ + O/sub 2/+). Non-intercalating binary fluorides have been observed to intercalate in the presence of a fluorine-rich environment (e.g., 8C + PF/sub 5/ + 1/2 F/sub 2/ ..-->.. C/sub 8/PF/sub 6/). GeF/sub 4/, which also does not spontaneously intercalate graphite, has been observed to interact with graphite in the presence of 2 atmospheres of fluorine overpressure to give the fluoroplatinate salt analogue, C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/. This material is in equilibrium with the pentafluorogermanate at ordinary pressures and temperatures. C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/ ..-->.. C/sub 12//sup +/GeF/sub 5//sup -/ + 1/2 F/sub 2/. C/sub 12/GeF/sub 6/ must have an oxidizing potential close to that of fluorine itself. The graphite fluorometallate salts are both electronic and ionic (F/sup -/) conductors. For the C/sub 8//sup +/MF/sub 6//sup -/ salts, a maximum electronic conductivity an order of magnitude greater than the parent graphite has been observed for stage two. The high oxidizing potential, coupled with the fluoride ion transport capability of the graphite salts, has been exploited in the construction of solid-state galvanic cells. These cells use the graphite fluorometallate salts as electrode materials in combination with a superionic fluoride-ion-conducting solid electrolyte.

  17. Borehole locations on seven interior salt domes

    International Nuclear Information System (INIS)

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued

  18. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  19. Molten salts and energy related materials.

    Science.gov (United States)

    Fray, Derek

    2016-08-15

    Molten salts have been known for centuries and have been used for the extraction of aluminium for over one hundred years and as high temperature fluxes in metal processing. This and other molten salt routes have gradually become more energy efficient and less polluting, but there have been few major breakthroughs. This paper will explore some recent innovations that could lead to substantial reductions in the energy consumed in metal production and in carbon dioxide production. Another way that molten salts can contribute to an energy efficient world is by creating better high temperature fuel cells and novel high temperature batteries, or by acting as the medium that can create novel materials that can find applications in high energy batteries and other energy saving devices, such as capacitors. Carbonate melts can be used to absorb carbon dioxide, which can be converted into C, CO and carbon nanoparticles. Molten salts can also be used to create black silicon that can absorb more sunlight over a wider range of wavelengths. Overall, there are many opportunities to explore for molten salts to play in an efficient, low carbon world. PMID:27276650

  20. Solution, thermal and optical properties of bis(pyridinium salt)s as ionic liquids

    International Nuclear Information System (INIS)

    Bis(pyridinium salt)s containing different alkyl chain lengths and various organic counterions were prepared by the ring-transmutation reaction of bis(pyrylium tosylate) with aliphatic amines in dimethyl sulfoxide at 130–135 °C for 18 h and their tosylate counterions were exchanged to other anions such as triflimide, methyl orange, and dioctyl sulfosuccinate by the metathesis reaction in a common organic solvent. Their chemical structures were established by using 1H, 19F, and 13C NMR spectra. The thermal properties of bis(pyridinium salt)s were studied by DSC and TGA measurements. Some of the dicationic salts provided low melting points below 100 °C and some of them displayed amorphous properties. Polarized optical microscopy studies revealed the crystal structures prior to melting temperatures in some cases. Their optical properties were examined by using UV–Vis and photoluminescent spectrometers; and they emitted blue light both in the solution and solid states regardless of their microstructures, counterions, and the polarity of organic solvents. However, most of these salts exhibited hypsochromic shifts in their emission peaks in the solid state when compared with those of their solution spectra. Due to unique properties of methyl orange anion as a pH indicator, two of the salts showed different color change in varying concentrations of triflic acid in common organic solvents, demonstrating their potential use as an acid sensor in methanol, acetonitrile and acetone. Highlights: ► Luminescent dicationic salts were synthesized by ring-transmutation and metathesis reactions. ► Thermal and optical properties of dicationic salts are affected by the size of anion structures. ► Due to the methyl orange counterions, some dicationic salts showed pH- sensing property

  1. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  2. Micellar aggregates and hydrogels from phosphonobile salts.

    Science.gov (United States)

    Babu, Ponnusamy; Chopra, D; Row, T N Guru; Maitra, Uday

    2005-10-21

    The aggregation properties of novel bile acid analogs-phosphonobile salts (PBS)-have been studied. The critical micellar concentration of 23 and 24-phosphonobile salts were measured using fluorescence and 31P NMR methods. All the ten synthesized phosphonobile salts formed gels at different pH ranges in water. The pH range at which individual PBSs could gelate water was narrow and influenced by the number and conformation of hydroxyl groups. A reversible thermochromic system has been developed (with 23-phosphonodeoxycholate at pH 3.3), which changes color upon gelation. The investigation of the first hydrogels derived from trihydroxy bile acid analogs 1 and 6 was made using fluorescence, 31P NMR, X-ray crystallography, circular dichroism and SEM. The present studies reveal that the gel network consists of a chiral, fibrous structure possessing hydrophobic interiors. PMID:16211104

  3. Transient behaviour of deep underground salt caverns

    International Nuclear Information System (INIS)

    This work deals with the transient behaviour of deep underground salt caverns. It has been shown that a cavern is a complex system, in which there are mechanical, thermal, chemical and hydraulic evolutions. The importance of the transient evolutions, particularly the role of the 'reverse' creep in the interpretation of the tightness test in a salt cavern is revealed. Creep is characterized by a formulation of the behaviour law which presents the advantage, in a practical point of view, to only have a reduced number of parameters while accounting of the essential of what it is observed. The initiation of the rupture in the effective traction in a salt cavern rapidly pressurized is discussed. A model fitted to a very long term behaviour (after abandonment) is developed too. In this case too, a lot of phenomena, more or less coupled, occur, when the existing literature took only into account some phenomena. (O.M.)

  4. Glyme-lithium salt phase behavior.

    Science.gov (United States)

    Henderson, Wesley A

    2006-07-01

    Phase diagrams are reported for glyme mixtures with simple lithium salts. The glymes studied include monoglyme (DME), diglyme, triglyme, and tetraglyme. The lithium salts include LiBETI, LiAsF6, LiI, LiClO4, LiBF4, LiCF3SO3, LiBr, LiNO3, and LiCF3CO2. The phase diagrams clearly illustrate how solvate formation and thermophysical properties are dictated by the ionic association strength of the salt (i.e., the properties of the anions) and chain length of the solvating molecules. This information provides critical predictive capabilities for solvate formation and ionic interactions common in organometallic reagents and battery electrolytes. PMID:16805630

  5. Precipitates/Salts Model Sensitivity Calculation

    International Nuclear Information System (INIS)

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO2) on the chemical evolution of water in the drift

  6. The Medicinal Plants of Salt Range

    Directory of Open Access Journals (Sweden)

    Habib Ahmad

    2002-01-01

    Full Text Available Besides preserving mines of salts, minerals, fossils, archeological and cultural heritage; the mountainous terrain of the Salt Range also has immense potential for its biodiversity in the broadly overlapping � the subtropical dry evergreen and the thorny subtropical semi deciduous� types of forest ecologies. Olea ferruginea, Acacia modesta, Reptonia buxifolia and Salvadora oleoides represent the apparent arboreal landscape of the terrain. More than 92 medicinal plants are not only used for curing ailments ranging from mild infections to the chronic ulcers but are also contributing a lot to the rural economy of the area. Floral diversity in general, the species of Litsea, Neolitsea and Colchicum in particular, are exposed to severe collection and the habitat loss pressures. Commonly known medicinal plants of the Salt Range, Punjab and their therapeutic uses are presented in this paper.

  7. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  8. Electrical conduction in transition-metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Grado-Caffaro, M.A.; Grado-Caffaro, M. [Scientific Consultants, Madrid (Spain)

    2016-08-01

    We predict that a given transition-metal salt as, for example, a K{sub 2}CuCl{sub 4}.2H{sub 2}O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  9. Tendzin Phuntso's Chemistry of Salts

    Institute of Scientific and Technical Information of China (English)

    ZhangSheng; CaiJingfeng

    2003-01-01

    An examination of large quantities of Tibetan data for a project entitled "Alchemy and Alchemic Medicines of Tibet revealed that ancient Tibetan terminology for and classification of inorganic salts have much in common with modern chemistry. This is particularly true of research conducted by Tendzin Phuntso (born in 1672 in Gongjo Count, Chamdo, Tibet) and his representative work, "gso rig gcesb dus rin chen phreng ba bzugs so". This work summarizes Tibetan recognition of inorganic salts in chemistry over the course of 1000 years or more, and is of great significance in the world history of science and technolgy.

  10. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  11. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrite salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  12. Electrical conduction in transition-metal salts

    International Nuclear Information System (INIS)

    We predict that a given transition-metal salt as, for example, a K2CuCl4.2H2O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  13. The enigma of cooking salt crystals

    International Nuclear Information System (INIS)

    Two Soviet experts, Vladimir Gromov and Valentin Krylov, have discovered an unexpected phenomenon on irradiating cooking salt crystals with electrons. When the crystals are subsequently ground the rate at which they are dissolved increases, but not always. The electrons cause the salt molecules to polarize thus creating an internal electric field. This acts against the double electric layer which is inevitably formed in the part of the solution touching the crystal surface. So, if the permittivity of the solution is much greater than that of the molecules of the crystal, the rate of dissolution is increased, and vice versa. (G.T.H.)

  14. Asymmetric Hydrogenation of 3-Substituted Pyridinium Salts.

    Science.gov (United States)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-07-01

    The use of an equivalent amount of an organic base leads to high enantiomeric excess in the asymmetric hydrogenation of N-benzylated 3-substituted pyridinium salts into the corresponding piperidines. Indeed, in the presence of Et3 N, a Rh-JosiPhos catalyst reduced a range of pyridinium salts with ee values up to 90 %. The role of the base was elucidated with a mechanistic study involving the isolation of the various reaction intermediates and isotopic labeling experiments. Additionally, this study provided some evidence for an enantiodetermining step involving a dihydropyridine intermediate. PMID:27140832

  15. Extractive Distillation with Salt in Solvent

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Extractive distillation with salt in solvent is a new process for producing anhydrous ethanol by combining the principle of "salt effect" and some traditional extractive distillation methods. Compared with the common extractive distillation the performance of solvent is improved, the recycling amount of solvent is reduced to 1/4-1/5, and the number of theoretical plates is reduced to 1/3. Energy consumption and cost of equipment are also reduced and continuous production is realized. High efficiency and low solvent wastage make this technique feasible.

  16. Archaeological and chemical evidence for early salt production in China

    Science.gov (United States)

    Flad, Rowan; Zhu, Jiping; Wang, Changsui; Chen, Pochan; von Falkenhausen, Lothar; Sun, Zhibin; Li, Shuicheng

    2005-01-01

    Salt production and trade is thought to be critical to the development of all states and emergent empires. Until now, however, scientific evidence of early salt production has rarely been presented, and no studies of early Chinese salt production have provided unequivocal proof. Here, we report x-ray fluorescence, x-ray diffraction, and scanning electron microscopy (SEM) analyses that demonstrate that salt was the primary product during the first millennium before Christ (B.C.) at Zhongba in Central China. This work provides an early example of salt production discovered in China and presents a methodology for evaluating salt production sites in other regions. PMID:16116100

  17. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  18. [Less salt--more health. Croatian action on salt and health (CRASH)].

    Science.gov (United States)

    Jelaković, Bojan; Kaić-Rak, Antoinette; Milicić, Davor; Premuzić, Vedran; Skupnjak, Berislav; Reiner, Zeljko

    2009-01-01

    Developed part of the world has realized that excessive salt intake is harmful for humans' health. Several countries have their own national programmes for reducing salt intake, and the most successful are Finland, Japan and Great Britain. National programme that was launched in Great Britain several decades ago (CASH) achieved most and should serve as an example and model for others. In 2005 this programme evolved into the World action on salt and health (WASH). According to the EU plan, salt intake should be also cut down, and salt content should be labelled on all food articles. In 2006, the First Croatian Congress on Hypertension announced Declaration of salt reducing programme in Croatia, and in 2007 at the 6th Croatian Congress on Atherosclerosis Croatian action on salt and health (CRASH), and national programme for reducing salt intake were launched. In 2008 we have started with mapping of sodium intake (determined from urine sodium excretion), and CRASH has organized several educational activities for general population, but also for physicians and nurses. CRASH and national programme are organized by Croatian Academy of Medical Science, Croatian Society of Hypertension, Croatian Atherosclerosis Society, Croatian Cardiac Society, and School of Medicine, University of Zagreb. Associations of nurses are involved in all activities, as well as students and patients. Negotiations with food industry have started. Croatian Food Agency and companies for public relations and collaboration with media are included in this important programme. Croatian Ministry of Health and Social Care supports these activities, and CRASH is included in the action of the World Health Organization on mapping sodium intake in European countries. CRASHjoins WASH and will organize several activities for the World Salt Awareness Week, which is in 2009 focused on salt eaten outside the home. We hope that Croatia will soon follow countries who have already achieved success in this struggle

  19. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  20. Environmentally safe salt replacement for fracturing fluids

    International Nuclear Information System (INIS)

    The use of salts, such as potassium chloride (KCl) and sodium chloride (NaCl), as temporary clay stabilizers during oil well drilling completions and servicing has been in practice for many years. Their effectiveness in this practice has been well established through out the industry. However, because of the bulk and potential environmental hazards associated with the salts, many operators have begun to search out alternatives to their use. This paper discusses recent research which has developed a relationship between physical properties of various cations (K+, Na+, etc.) and their efficiency as temporary clay stabilizers. These physical properties were then utilized to synthesize an organic cation with a higher efficiency as a clay stabilizer than the typical salts now used in the oil industry. This allows much lower salt concentrations to be used to obtain the same clay stabilizing effectiveness. The liquid product has proven to be much easier to handle and transport. It has been shown to be environmentally compatible and is biodegradable in this diluted form. Its effectiveness in fracturing operations has been extensively proven in numerous treatments in various formations throughout the U.S. and Canada

  1. The Path to Nitrate Salt Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-16

    The topic is presented in a series of slides arranged according to the following outline: LANL nitrate salt incident as thermal runaway (thermally sensitive surrogates, full-scale tests), temperature control for processing, treatment options and down selection, assessment of engineering options, anticipated control set for treatment, and summary of the overall steps for RNS.

  2. Organometallic Salts Generate Optical Second Harmonics

    Science.gov (United States)

    Marder, Seth R.; Perry, Joseph W.

    1991-01-01

    Series of organometallic salts exhibit large second-order dielectric susceptibilities, as evidenced by generation of second harmonics when illuminated at visible and near-infrared wavelengths. Investigations of these and related compounds continue with view toward development of materials for use as optical second-harmonic generators, electro-optical modulators, optical switches, piezoelectric sensors, and parametric crystals.

  3. Al/Cl2 molten salt battery

    Science.gov (United States)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  4. Electrolytes. From dilute solutions to fused salts

    International Nuclear Information System (INIS)

    Solutions with composition extending continuously from molecular liquids such as water to fused salts are relatively unusual but of considerable interest. Conductance and thermodynamic properties are considered for several examples. New equations for the activities of the respective components represent the data more accurately than previous treatments and delineate the similarities and differences between such systems and nonelectrolyte solutions

  5. Constitutive behavior of reconsolidating crushed salt

    International Nuclear Information System (INIS)

    The constitutive model used to describe deformation of crushed salt is presented in this paper. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--are combined to form the basis for the constitutive model governing deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Recently completed creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from shear consolidation tests and a combination of shear and hydrostatic tests produces two sets of material parameter values for the model. Changes in material parameter values from test group to test group indicate the empirical nature of the model but show significant improvement over earlier work. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on fitting statistics and ability of the model to predict test data, the model appears to capture the creep consolidation behavior of crushed salt quite well

  6. Crushed-salt constitutive model update

    International Nuclear Information System (INIS)

    Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well

  7. Ecology of Great Salt Pond, Block Island

    Science.gov (United States)

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  8. Fluorescent carbon dot–molecular salt hydrogels

    OpenAIRE

    Cayuela, Angelina; Kennedy, Stuart R.; Soriano, Laura; Jones, Christopher D.; Valcárcel, M.; Steed, Jonathan W.

    2015-01-01

    The incorporation of functionalised carbon nanodots within a novel low molecular weight salt hydrogel derived from 5-aminosalicylic acid is reported. The carbon dots result in markedly enhanced gelation properties, while inclusion within the hydrophobic gel results in a dramatic fluorescence enhancement for the carbon nanomaterials. The resulting hybrid CD gels exhibit a useful sensor response for heavy metal ions, particularly Pb2+.

  9. Salt repository project closeout status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  10. Salt repository project closeout status report

    International Nuclear Information System (INIS)

    This report provides an overview of the scope and status of the US Department of Energy (DOE's) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs

  11. Specific Investigations Related to Salt Rock Behaviour

    DEFF Research Database (Denmark)

    Vons, L. H.; Zelikson, A.; Charo, L.;

    1986-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. Studies...

  12. Hybrid Molten Salt Reactor (HMSR) System Study

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  13. Salt and ice crystallisation in porous sandstones

    Science.gov (United States)

    Ruedrich, Joerg; Siegesmund, Siegfried

    2007-03-01

    Salt and ice crystallisation in the pore spaces causes major physical damage to natural building stones. The damaging effect of these processes can be traced back to physically induced stress inside of the rock while crystallizing. The increasing scientific research done during the past century has shown that there are numerous parameters that have an influence on the weathering resulting from these processes. However, the working mechanisms of the stress development within the rock and its material dependency are still subject to discussion. This article gives an overview of salt and ice weathering. Additionally, laboratory results of various sandstones examined are presented. Salt crystallisation tests and freeze/thaw tests were done to obtain information about how crystallisation weathering depends on material characteristics such as pore space, water transportation, and mechanical features. Simultaneous measuring of the length alternating during the salt and ice crystallisation has revealed detailed information on the development of crystal in the pore spaces as well as the development of stress. These findings can help to understand the damaging mechanisms.

  14. Surface functionalization by molten salt electrolytic processes

    International Nuclear Information System (INIS)

    The attention has been paid to surface functionalization by molten salt electrolytic processes. Three topics on the experimental results obtained by the authors are described: the electrochemical formation of zirconium metal film and zirconium alloy film on ceramic, surface nitriding of titanium by electrochemical process and an anodic oxide film formation on nickel. (author)

  15. Advanced heat exchanger development for molten salts

    International Nuclear Information System (INIS)

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical Engineers

  16. Heat transfer behavior of molten nitrate salt

    Science.gov (United States)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  17. Tank 41-H salt level fill history 1985 to 1987

    International Nuclear Information System (INIS)

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H

  18. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    Directory of Open Access Journals (Sweden)

    Nadin Pade

    2014-12-01

    Full Text Available The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.

  19. STUDY OF SALT WHEY TREATMENT WITH ELECTRO DIALYSIS

    Directory of Open Access Journals (Sweden)

    Permyakov A. V.

    2014-10-01

    Full Text Available The results of the effect of the electro dialysis treatment on the composition and properties of salt whey are presented. The main regularities of the demineralization process of salt whey and its efficiency are determined

  20. Seafloor character--Offshore of Salt Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents the seafloor-character map Offshore of Salt Point, California (raster data file is included in "SeafloorCharacter_SaltPoint.zip," which...

  1. Salts separation and removing method from material deposited on molten salt electrolyzing cathode

    International Nuclear Information System (INIS)

    Deposition materials on a cathode obtained by processing highly radioactive drainage discharged from spent fuel reprocessing steps and electrolyzing them in molten salts are incorporated with salts such as LiCl-KCl used as an electrolysis bath. Cadmium is added to the cathode deposition materials comprising lanthanoid and/or actinoid, and melted to form a molten material. The molten material are solidified by cooling to separate a metal portion and salts from the cathode deposition materials. The metal portion is kept at a temperature at which cadmium metal is evaporated to remove cadmium. Subsequently, the metal portion is kept at a temperature at which an intermetallic compound and/or an alloy of cadmium and lanthanoid and/or actinoid is decomposed to remove cadmium. Since salts can be removed efficiently from cathode deposition materials, aimed actinoid metals can be recovered at a high purity. (I.N.)

  2. Effect of subsurface drainage on salt movement and distribution in salt-affected soils

    International Nuclear Information System (INIS)

    This study was carried out to evaluate different subsurface drainage treatments (combinations of depth and spacing) on salt movement and distribution. The soil is clay and the drainage was designed according to the steady-state condition (Hooghoudt's equation). Three spacings and two depths resulted in six drainage treatments. Soil samples represented the initial state of every treatment and after 14 months they (cotton followed by wheat) were analysed. The data show that drain depth has its effective role in salt leaching, while drain spacing has its effect on salt distribution in the soil profile. The leaching rate of each specific ion is also affected by the different drainage treatments. In general, the salt movement and distribution should be taken into consideration when evaluating the design of drainage systems. (author)

  3. An innovative spraying setup to obtain uniform salt(s) mixture deposition to investigate hot corrosion

    Science.gov (United States)

    Mannava, Venkateswararao; Swaminathan, A. Vignesh; Kamaraj, M.; Kottada, Ravi Sankar

    2016-02-01

    A hot corrosion study via molten salt deposition and its interaction with creep/fatigue play a critical role in predicting the life of gas turbine engine components. To do systematic hot corrosion studies, deposition of molten salts on specimens should be uniform with good adherence. Thus, the present study describes an in-house developed spraying setup that produces uniform and reliable molten salt deposition in a repeatable fashion. The efficacy of the present method was illustrated by depositing 90 wt. % Na2SO4 + 5 wt. % NaCl + 5 wt. % NaV O3 salt mixture on hot corrosion coupons and on creep specimens, and also by comparing with other deposition methods.

  4. saltPAD: A New Analytical Tool for Monitoring Salt Iodization in Low Resource Settings

    Directory of Open Access Journals (Sweden)

    Nicholas M. Myers

    2016-03-01

    Full Text Available We created a paper test card that measures a common iodizing agent, iodate, in salt. To test the analytical metrics, usability, and robustness of the paper test card when it is used in low resource settings, the South African Medical Research Council and GroundWork performed independ‐ ent validation studies of the device. The accuracy and precision metrics from both studies were comparable. In the SAMRC study, more than 90% of the test results (n=1704 were correctly classified as corresponding to adequately or inadequately iodized salt. The cards are suitable for market and household surveys to determine whether salt is adequately iodized. Further development of the cards will improve their utility for monitoring salt iodization during production.

  5. Flood Insurance Study, City of South Salt Lake, Utah, Salt Lake County

    OpenAIRE

    Federal Emergency Management Agency

    1994-01-01

    This Flood Insurance Study investigates the existence and severity of flood hazards in the City of South Salt Lake, Salt Lake County, Utah, and aids in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. This study has developed flood risk data for various areas of the community that will be used to establish actuarial flood insurance rates and assist the community in its efforts to promote sound flood plain management. Minimum flood...

  6. The Salt (Science-Arts-Language-Technology) Comenius Project: Primary School Students' Views about Salt

    OpenAIRE

    Ursula ONDRATSCHEK; BALIM, Ali Günay; Suat TURKOGUZ

    2015-01-01

    This study aimed to investigate students' views towards salt structure, properties and application areas. "The SALT Comenius Project" initiated activities in 2012. This project was conducted with 10 European countries including Turkey, Germany, Italy, Poland, Greece, Spain, Estonia, Austria, Romania, and Scotland. The aim of this project is to develop friendships between primary school students through science, art, language, technology, and culture and to increase students' attention toward...

  7. Demand characteristics for imported cod products in Portugal frozen, salted & dried and salted

    OpenAIRE

    Asche, Frank; Gordon, Daniel V.

    2015-01-01

    The demand function represents the fundamental building block in economics and provides important information for investment and policy purposes. The aim of this paper is to characterize and measure the demand structure for imported cod products to Portugal. A PCAIDS model is used to identify own- and cross-price elasticities of demand for frozen, salted & dried and salted cod products. The estimated elasticities of demand are then used in combination with a demand growth index to measure shi...

  8. Petrofabric changes in heated and irradiated salt from Project Salt Vault, Lyons, Kansas

    International Nuclear Information System (INIS)

    Rock salt was heated and irradiated in situ by implanted radioactive wastes during the Project Salt Vault experiment which was carried out at Lyons, Kansas, in the abandoned Carey Salt mine between 1965 and 1967. It was found that irradiation results in coloration of the salt, producing colors ranging from blue-black nearest the radiation source, to pale blue and purple farther from the source. Bleached areas are common in the radiation-colored salt, many representing trails produced by the migration of fluid inclusions towards the heat source. These visible trails are thought to have formed during the cooling down of the salt after the removal of the heaters and radiation sources. The distribution of primary structures in the salt suggests that little migration, if any, occurred during the course of the experiment. It is proposed that radiolysis of the brine within the inclusions may have led to the production of gases which impeded or prevented migration. Evidence of strain was observed in slip planes at 4 in. (10 cm) and between 5.5 and 10 in. (13.5 to 25.4 cm) from the array hole. Deformed bleached areas in the salt between the areas were slip planes are developed suggest that slight plastic deformation or flow may have occurred at 6 in. (15 cm) from the array hole. Differential thermal analysis shows that the maximum amount of stored energy also occurs at 6 in. (15 cm) from the array hole. This region may therefore represent the zone where the combined effect of stress and radiation was greatest

  9. Ditosylate Salt of Itraconazole and Dissolution Enhancement Using Cyclodextrins

    OpenAIRE

    Kumar, Neeraj; Shishu; Bansal, Gulshan; Kumar, Sandeep; Jana, Asim Kumar

    2012-01-01

    Salt formation has been a promising approach for improving the solubility of poorly soluble acidic and basic drugs. The aim of the present study was to prepare the salt form of itraconazole (ITZ), a hydrophobic drug to improve the solubility and hence dissolution performance. Itraconazolium ditolenesulfonate salt (ITZDITOS) was synthesized from ITZ using acid addition reaction with p-toluenesulfonic acid. Salt characterization was performed using 1H NMR, mass spectrometry, Fourier transform i...

  10. Salt Content Impacts Food Preferences and Intake among Children

    OpenAIRE

    Bouhlal, Sofia; Chabanet, Claire; Issanchou, Sylvie; Nicklaus, Sophie

    2013-01-01

    Decreasing dietary sodium intake, which can be achieved by reducing salt content in food, is recommended. Salt contributes to the taste of foods and makes them more enjoyable. Whether a food is liked or disliked is an important determinant of food intake, especially among children. However, the role of salt in children's food acceptance has received little attention. The impact of salt content on children's hedonic rating and intake of two foods was investigated in children. Using a within-su...

  11. IODINE SALT CONSUMPTION IN INDONESIAN HOUSEHOLDS: BASELINE HEALTH SURVEY 2007

    OpenAIRE

    Ni Ketut Aryastami; Dwi Susilowati; Yuslely Usman

    2012-01-01

    Background: Iodine Deficiency Disorder (100) reduction program has been implemented since 1976. According to the National Economic Survey 2002, the average consumption of iodized salt was 6. 26 grams. The results of Iodine Salt Survey (SGY) 2003 showed that the consumption of iodine salt at the household level was 73.2%, meanwhile, the baseline health survey (Riskesdas) 2007 showed there was reduction of iodine salt consumption towards 60.2%. Methods: Type of study was secondary data analysis...

  12. Combined heterogeneous distribution of salt and aroma in food enhances salt perception.

    Science.gov (United States)

    Emorine, Marion; Septier, Chantal; Andriot, Isabelle; Martin, Christophe; Salles, Christian; Thomas-Danguin, Thierry

    2015-05-01

    Aroma-taste interactions and heterogeneous spatial distribution of tastants were used as strategies for taste enhancement. This study investigated the combination of these two strategies through the effect of heterogeneous salt and aroma distribution on saltiness enhancement and consumer liking for hot snacks. Four-layered cream-based products were designed with the same total amount of sodium and ham aroma but varied in their spatial distribution. Unflavoured products containing the same amount of salt and 35% more salt were used as references. A consumer panel (n = 82) rated the intensity of salty, sweet, sour, bitter and umami tastes as well as ham and cheese aroma intensity for each product. The consumers also rated their liking for the products in a dedicated sensory session. The results showed that adding salt-associated aroma (ham) led to enhancement of salty taste perception regardless of the spatial distribution of salt and aroma. Moreover, products with a higher heterogeneity of salt distribution were perceived as saltier (p salty taste perception. Furthermore, heterogeneous products were well liked by consumers compared to the homogeneous products. PMID:25856503

  13. Production of carboxylic acid and salt co-products

    Energy Technology Data Exchange (ETDEWEB)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  14. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 26 to 34 percent. Calcium hydroxide 3 percent maximum. Water 14 percent maximum. Arsenic 3 parts per... blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the...

  15. 40 CFR 721.9490 - Coco alklydimethyl amine salts (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Coco alklydimethyl amine salts... Specific Chemical Substances § 721.9490 Coco alklydimethyl amine salts (generic). (a) Chemical substances... coco alkyldimethyl amine salts (PMNs P-98-412/414/415/416/417) are subject to reporting under...

  16. Environment annual report: Salt Lake 2002 Olympic Winter Games

    OpenAIRE

    2014-01-01

    Protecting and improving the environment is integral to every aspect of the Salt Lake 2002 Olympic Winter Games. Salt Lake Organizing Committee for Olympic Winter Games of 2002 is planning a variety of programs to both conserve and enhance the region’s environment, leaving the Salt Lake area a better, cleaner place than it was before the Games.

  17. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  18. Development of High-temperature Molten Salt Transport Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Park, G. I.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The pyrochemical process, which has been developed by Korea Atomic Energy Research Institute (KAERI) since 1997, consists of processes such as pretreatment, oxide reduction, electrorefining, electrowinning, and waste salt treatment. In pyroprocessing, high-temperature molten salt transport technologies are required because the molten salt used in an electrorefiner should be transported to next process, the electrowinning process to recover U/TRU/RE after the electrorefining process is finished. However, there have been few transport studies on high temperature molten salt. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technology is a crucial prerequisite. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated. In addition, the performance test of the apparatus in the system was then carried out. After the electrorefining process, the molten salt used is transported to an electrowinning system to recover U/TRU/RE, and a high temperature molten salt transfer technology by suction is now being developed. To develop engineering-scale salt transport technology, a PRIDE salt transport system was designed and installed a Ar cell, 2{sup nd} of the PRIDE facility for engineering-scale salt transport demonstration, and its performance was confirmed from blank and performance tests for the PRIDE salt transport system.

  19. Recent Trends in Bird Abundance on Rhode Island Salt Marshes

    Science.gov (United States)

    Salt marsh habitat is under pressure from development on the landward side, and sea level rise from the seaward side. The resulting loss of habitat is potentially disastrous for salt marsh dependent species. To assess the population status of three species of salt marsh dependent...

  20. On the salt-induced activation of lyophilized enzymes in organic solvents: Effect of salt kosmotropicity on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Ru, M.T.; Hirokane, S.Y.; Lo, A.S.; Dordick, J.S.; Reimer, J.A.; Clark, D.S.

    2000-03-01

    The dramatic activation of enzymes in nonaqueous media upon co-lyophilization with simple inorganic salts has been investigated as a function of the Jones-Dole B coefficient, a thermodynamic parameter for characterizing the salt's affinity for water and its chaotropic (water-structure breaking) or kosmotropic (water-structure making) character. In general, the water content, active-site content, and transesterification activity of freeze-dried subtilisin Carlsberg preparations containing >96% w/w salt increased with increasing kosmotropicity of the activating salt. Degrees of activation relative to the salt-free enzyme ranged from 33-fold for chaotropic sodium iodide to 2,480-fold for kosmotropic sodium acetate. Exceptions to the general trend can be explained by the mechanical properties and freezing characteristics of the salts undergoing lyophilization. The profound activating effect can thus be attributed in part to the stabilizing (salting-out) effect of kosmotropic salts and the phenomenon of preferential hydration.

  1. Analysis of allochthonous salt and salt welds in the northern Gulf of Mexico utilizing 3D seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, J.A.; House, W.M. [Amoco Production Co., Houston, TX (United States)

    1996-12-31

    The widespread availability of 3D seismic data sets in the northern Gulf of Mexico has resulted in the emergence of new play concepts such as subsalt exploration. Time and depth migrations of these 3D data allow interpreters to develop a detailed understanding of the geological processes that contribute to the structural and stratigraphic framework of the Gulf. These data provide excellent imaging of structural features, and result in the correct spatial positioning of those structural elements. Analysis of the geometrical relationships between allochthonous salt, salt welds and subsalt reflectors aids in the development of salt emplacement models. These models are subsequently tied to other elements of the hydrocarbon system such as fluid migration and reservoir development. Salt sheets and horizontal salt welds often separate distinct structural domains in the supra salt and subsalt section, and complex structural deformation above salt or a salt weld may not translate into the subsalt section.

  2. Analysis of allochthonous salt and salt welds in the northern Gulf of Mexico utilizing 3D seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, J.A.; House, W.M. (Amoco Production Co., Houston, TX (United States))

    1996-01-01

    The widespread availability of 3D seismic data sets in the northern Gulf of Mexico has resulted in the emergence of new play concepts such as subsalt exploration. Time and depth migrations of these 3D data allow interpreters to develop a detailed understanding of the geological processes that contribute to the structural and stratigraphic framework of the Gulf. These data provide excellent imaging of structural features, and result in the correct spatial positioning of those structural elements. Analysis of the geometrical relationships between allochthonous salt, salt welds and subsalt reflectors aids in the development of salt emplacement models. These models are subsequently tied to other elements of the hydrocarbon system such as fluid migration and reservoir development. Salt sheets and horizontal salt welds often separate distinct structural domains in the supra salt and subsalt section, and complex structural deformation above salt or a salt weld may not translate into the subsalt section.

  3. Molten-salt reactor program. Semiannual progress report for period ending February 29, 1976

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1976-08-01

    Separate abstracts and indexing were prepared for sections dealing with MSBR design and development; chemistry of fuel-salt and coolant-salt systems and analytical methods; materials development; fuel processing for molten-salt reactors; and salt production. (DG)

  4. Salt content impacts food preferences and intake among children.

    Directory of Open Access Journals (Sweden)

    Sofia Bouhlal

    Full Text Available Decreasing dietary sodium intake, which can be achieved by reducing salt content in food, is recommended. Salt contributes to the taste of foods and makes them more enjoyable. Whether a food is liked or disliked is an important determinant of food intake, especially among children. However, the role of salt in children's food acceptance has received little attention. The impact of salt content on children's hedonic rating and intake of two foods was investigated in children. Using a within-subject crossover design, we recruited 75 children (8-11 years to participate in five lunches in their school cafeteria. The target foods were green beans and pasta. The added salt content was 0, 0.6 or 1.2 g/100 g. The children's intake (g of all lunch items was measured. The children provided their hedonic rating of the food, a preference ranking and a saltiness ranking in the laboratory. Children could rank the foods according to salt content, and they preferred the two saltier options. A food-specific effect of salt content on intake was observed. Compared to the intermediate level (0.6 g salt/100 g, not adding salt decreased green bean intake (-21%; p = 0.002, and increasing the salt content increased pasta intake (+24%; p<0.0001. Structural Equation Modeling was used to model the relative weights of the determinants of intake. It showed that the primary driver of food intake was the child's hunger; the second most important factor was the child's hedonic rating of the food, regardless of its salt content, and the last factor was the child's preference for the particular salt content of the food. In conclusion, salt content has a positive and food-specific effect on intake; it impacted food preferences and intake differently in children. Taking into account children's preferences for salt instead of their intake may lead to excessive added salt.

  5. Low Retinol Levels Differentially Modulate Bile Salt-Induced Expression of Human and Mouse Hepatic Bile Salt Transporters

    NARCIS (Netherlands)

    Hoeke, Martijn O.; Plass, Jacqueline R. M.; Heegsma, Janette; Geuken, Mariska; van Rijsbergen, Duncan; Baller, Julius F. W.; Kuipers, Folkert; Moshage, Han; Jansen, Peter L. M.; Faber, Klaas Nico

    2009-01-01

    The farnesoid X receptor/retinoid X receptor-alpha (FXR/RXR alpha) complex regulates bile salt homeostasis, in part by modulating transcription of the bile salt export pump (BSEP/ABCB11 I) and small heterodimer partner (SHP/NR0B2). FXR is activated by bile salts, RXR alpha by the vitamin A derivativ

  6. Low retinol levels differentially modulate bile salt-induced expression of human and mouse hepatic bile salt transporters

    NARCIS (Netherlands)

    M.O. Hoeke; J.R.M. Plass; J. Heegsma; M. Geuken; D. van Rijsbergen; J.F.W. Baller; F. Kuipers; H. Moshage; P.L.M. Jansen; K.N. Faber

    2009-01-01

    The farnesoid X receptor/retinoid X receptor-alpha (FXR/RXRalpha) complex regulates bile salt homeostasis, in part by modulating transcription of the bile salt export pump (BSEP/ABCB11) and small heterodimer partner (SHP/NR0B2). FXR is activated by bile salts, RXRalpha by the vitamin A derivative 9-

  7. Evaluation of dried salted pork ham and neck quality

    OpenAIRE

    Simona Kunová; Juraj Čuboň; Ondřej Bučko; Miroslava Kačániová; Jana Tkáčová; Lukáš Hleba; Peter Haščík; Ľubomír Lopašovský

    2015-01-01

    The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, f...

  8. First salt making in Europe: an overview from Neolithic times

    OpenAIRE

    Olivier Weller

    2015-01-01

    This paper deals with the origin of salt production and discusses different approaches ranging from technology, ethnoarchaeology and paleoenvironmental studies to chemical analyses. Starting from the current research on the Neolithic exploitation of salt in Europe, we examine the types and nature of the salt resources (sea water, salt springs, soil or rock), the diversity of archaeological evidence of forms of salt working. We also scrutinize the types of production for these early forms of s...

  9. Impact of Light Salt Substitution for Regular Salt on Blood Pressure of Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Carolina Lôbo de Almeida Barros

    2015-02-01

    Full Text Available Background: Studies have shown sodium restriction to have a beneficial effect on blood pressure (BP of hypertensive patients. Objective: To evaluate the impact of light salt substitution for regular salt on BP of hypertensive patients. Methods: Uncontrolled hypertensive patients of both sexes, 20 to 65 years-old, on stable doses of antihypertensive drugs were randomized into Intervention Group (IG - receiving light salt and Control Group (CG - receiving regular salt. Systolic BP (SBP and diastolic BP (DBP were analyzed by using casual BP measurements and Home Blood Pressure Monitoring (HBPM, and sodium and potassium excretion was assessed on 24-hour urine samples. The patients received 3 g of salt for daily consumption for 4 weeks. Results: The study evaluated 35 patients (65.7% women, 19 allocated to the IG and 16 to the CG. The mean age was 55.5 ± 7.4 years. Most participants had completed the Brazilian middle school (up to the 8th grade; n = 28; 80.0%, had a family income of up to US$ 600 (n = 17; 48.6% and practiced regular physical activity (n = 19; 54.3%. Two patients (5.7% were smokers and 40.0% consumed alcohol regularly (n = 14. The IG showed a significant reduction in both SBP and DBP on the casual measurements and HBPM (p < 0.05 and in sodium excretion (p = 0.016. The CG showed a significant reduction only in casual SBP (p = 0.032. Conclusions: The light salt substitution for regular salt significantly reduced BP of hypertensive patients.

  10. Screening specifications for Gulf Coast salt domes

    International Nuclear Information System (INIS)

    A reconnaissance survey of the salt domes of Mississippi, Louisiana, and east Texas is being planned to identify study areas for potential sites for radioactive waste disposal. Preliminary screening specifications were derived for each of the geological evaluation criteria by application of the significant factors that will have an impact on the reconnaissance survey. The procedure for the derivation of each screening specification is discussed. The screening specifications are the official OWI values to be used for the first-cut acceptance for salt dome study areas along the Gulf Coast. The derivation of the screening specifications is illustrated by (1) a statement of the geological evaluation criterion, (2) a discussion of the pertinent factors affecting the criterion, and (3) the evaluation of the value of the specification

  11. Salt stress-induced protein phosphorylation

    International Nuclear Information System (INIS)

    Protein phosphorylation induced by salt stress in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with (32P)-Phosphate. NaCl induced the phosphorylation of a 14 Kd polypeptide. Pulse-chase experiments revealed that the phosphorylated molecules of this polypeptide are only stable while the stress is present. Phosphorylated 14 Kd polypeptides could be detected in radicles of salt-shocked seedlings after 6 hours stress period. 14 Kd polypeptide phosphorylation was also observed in seeds germinating in the presence of abscisic acid (ABA). The amount of phosphorylated 14 Kd polypeptide was significantly increased in seeds treated simultaneously with NaCl and ABA

  12. Salt-induced aggregation of stiff polyelectrolytes

    International Nuclear Information System (INIS)

    Molecular dynamics simulation techniques are used to study the process of aggregation of highly charged stiff polyelectrolytes due to the presence of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one polyelectrolyte meeting others at right angles, and the kinetic pathway to bundle formation is found to be similar to that of flocculation dynamics of colloids as described by Smoluchowski. The aggregation process is found to favor the formation of finite bundles of 10-11 filaments at long times. Comparing the distribution of the cluster sizes with the Smoluchowski formula suggests that the energy barrier for the aggregation process is negligible. Also, the formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration.

  13. Molten salts database for energy applications

    CERN Document Server

    Serrano-López, Roberto; Cuesta-López, Santiago

    2013-01-01

    The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

  14. Electrokinetic removal of salt from brick masonry

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Rörig-Dalgaard, Inge

    2006-01-01

    A method to effectively remove salts from masonry is lacking. The present study aims at determining the removal efficiency of salts from bricks in an applied low current electric DC field. At first an investigation on removal of NaCl and Na(NO3)2 from spiked bricks in laboratory scale was conducted...... electrodes, a cathode and an anode, that were placed on a masonry wall of an old stable. The masonry had a high concentration of nitrates and problems with hygroscopic moisture. The electrodes consisted of reinforcement steel in carbonate-rich clay. The clay was chosen mainly to improve electric contact...... between metal and masonry and to hinder the acid produced at the anode in reaching the masonry. In the first set of electrodes the clay was too dry, and electric current was only applied for 7 days. Still the highest concentrations of nitrates and chlorides in the clay measured after these 7 days was...

  15. Biodegradation of leather tanned with inorganic salts

    OpenAIRE

    Bacardit Dalmases, Anna; Jorba, Montse; Font Vallès, Joaquim; Shendrik, Alexander; Ollé Otero, Lluís

    2011-01-01

    This paper aims to evaluate the physical, chemical and biological processes associated with the deterioration of leather tanned with inorganic salts. The samples of leather were exposed during eight months to outdoor weathering, and then their properties were evaluated. The results indicate that biodegration starts with dehydration, a partial scission of the protein chain of the collagen, detanning and a loss of oils due to volatilization and/or decomposition.

  16. Niche modelling of salt marsh plant species

    International Nuclear Information System (INIS)

    This study sought to extend the niche model of Spartina anglica to other salt marsh species, and to include tidal submergence in the models. The method used and preliminary data analysis are described. Tidal level and submergence niche models are examined, and niche width, niche overlap and species interaction are considered. Tidal level models and submergence niche models are compared for the 5 most common species. (UK)

  17. Treatment of Sewer Water Using Alum Salt

    OpenAIRE

    Qaid M. Saleem; Yousif Mohamed Algamal; Majed H. Shtaiwi; Mohammad S. Aldahmashi

    2014-01-01

    This investigation was carried out to study the effect of addition of different concentrations of alum salt used in the treatment of sewer water of the pond and also to study the physico-chemical parameters such as pH ,electrical conductivity ,salinity and total sediments besides that the bacteriological analysis such as total viable count (TVC) or standard plate count (SPC) and total coliform count (MPN) content were analysed in the water sample collected from the pond estimation of viable...

  18. Hydrogeological investigations at the Asse salt mine

    International Nuclear Information System (INIS)

    On the basis of recordings of water gauge indicators for the hydrological years 1982-1987, annual hydrograph curves for the water table in borings, groundwater table hydrograph curves, natural vertical flow, as well as the times and proportionate height of ground water recharge at the Asse salt mine are established. On the basis of the hydrograph curves for tritium content in ground water, the age of the tritium model was determined. (DG)

  19. Molten-Salt Depleted-Uranium Reactor

    OpenAIRE

    Dong, Bao-Guo; Dong, Pei; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results...

  20. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  1. Electromagnetic process to purify nuclear molten salts

    OpenAIRE

    Mestre Molist, Marta

    2011-01-01

    The separation between actinides and fission products could be realized by a pyrometallurgical liquid/liquid extraction process. Thanks to an oxide-reductive reaction, a mass exchange occurs at the interface between a polluted molten salt layer and a containment loquid metal layer. The aims of this project is to develop the diffusion process which occurs and the thermodynamics process associated to this phenomena. This work consist in two parts: -An experimental prototype industrial type inst...

  2. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  3. Supplemental Cooling for Nitrate Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Mitchell S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  4. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  5. Tagging Salt Tolerant Gene Using PCR Markers in Soybean

    Institute of Scientific and Technical Information of China (English)

    GUO Bei; QIU Li-juan; SHAO Gui-hua; CHANG Ru-zhen; LIU Li-hong; XU Zhan-you; LI Xiang-hua; SUN Jian-ying

    2001-01-01

    The purpose of this study was to screen and identify PCR markers associated with salt tolerant gene in soybean( Glycine soja L. ) so that salt tolerance can be identified efficiently and accurately. Between these tolerant and sensitivity to salt and three crosses were tested in this experiment. By BSA method, two codominant PCR markers were identified through the salt tolerant (sensitive) cuitivars bulks and the salt tolerant (sensitive) individual bulks of a F2 population. There was a 600bp band in the sensitive individuals and a 700bp band or two 700bp/600bp bands in the tolerant individuals. The markers were closely linked with salt tolerant/sensitive alleles. Moreover the markers were tested in the other two F2 populations from "salt tolerant cultivar × sensitive cuitivar" and confirmed by 12 salt tolerance cultivars and 13 salt sensitive cultivars with different genetic background. It indicated that the markers (700bp and 600bp) could be applied in salt tolerant identification of the soybean germplasm resources, and markers-assisted selection in salt tolerant breeding of soybean. The markers, its obtained method and application were patented for invention in 1998.

  6. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Heatherly, Dennis Wayne [ORNL; Williams, David F [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; Caja, Joseph [Electrochemical Systems, Inc.; Caja, Mario [ORNL; Jordan, John [Texas A& M University, Kingsville; Salinas, Roberto [Texas A& M University, Kingsville

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  7. Synthesis and Self-Assembly of Triangulenium Salts

    DEFF Research Database (Denmark)

    Shi, Dong

    -processed self-assembling method was developed to make aggregates with uniform morphologies and excellent stabilities in an equilibrium state either with pure ATOTA+ salts or with mixed systems of ATOTA+ salts and lipid molecules in aqueous media. Special emphasis was given to effects of the counterions in......-assembly and triangulenium salts. Chapters 3 to 6 are mainly focused on the synthesis and self-assembly of trioxatriangulenium salts in aqueous media. In particular, chapter 3 reports a direct selfassembly of a synthetic triangulenium salt mixed with DMPC lipid (5/95 by molar ratio) to make mono disperse......This thesis describes the design and synthesis of asymmetrically substituted amphiphilic tis(dialkylamino)trioxiatriangulenium (ATOTA+) salts with different counter ions. Attention was focused on exploring the assembling properties of the ATOTA+ salts in aqueous media. A direct vortexing...

  8. Reference repository design concept for bedded salt

    International Nuclear Information System (INIS)

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood

  9. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  10. Early Holocene Great Salt Lake, USA

    Science.gov (United States)

    Oviatt, Charles G.; Madsen, David B.; Miller, David M.; Thompson, Robert S.; McGeehin, John P.

    2015-07-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5-10.2 cal ka BP; 10-9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column - a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  11. Coupled triaxial testing of rock salt specimens

    International Nuclear Information System (INIS)

    This paper describes an apparatus that permits simultaneous measurement of several coupled geomechanical and geophysical parameters on intact specimens of rock salt saturated with brine and subjected to triaxial test conditions. Representative experimental results are presented for hydraulic permeability, electrical resistivity, and p-wave velocity which were determined while the test specimen equilibrated at a confining pressure of 6.2 MPa (900 psi) and a pore pressure of 2.75 MPa (400 psi), during axial loading and deformation. The results are cross-correlated with the applied (differential) axial stress. The electrical resistivity measurements involved phase-sensitive detection with a 4-terminal electrode configuration, thus permitting determination of absolute values as well as relative changes in electrical resistivity of the salt. The extremely low permeability of rock salt and corrosive nature of saturated brine required development of special sample preparation and jacketing techniques, as well as wetted apparatus parts made from Hastelloy, and the use of the transient pulse technique for permeability determinations

  12. Salt Repository Project transportation program plan

    International Nuclear Information System (INIS)

    The Salt Repository Project (SRP) has the responsibility to develop a comprehensive transportation program plan (TrPP) that treats the transportation of workers, supplies, and high-level radioactive waste to the site and the transportation of salt, low-level, and transuranic wastes from the site. The TrPP has developed a systematic approach to transportation which is directed towards satisfying statutes, regulations, and directives and is guided by a hierarchy of specific functional requirements, strategies, plans, and reports. The TrPP identifies and develops the planning process for transportation-related studies and provides guidance to staff in performing and documenting these activities. The TrPP also includes an explanation of the responsibilities of the organizational elements involved in these transportation studies. Several of the report chapters relate to identifying routes for transporting nuclear waste to the site. These include a chapter on identifying an access corridor for a new rail route leading to the site, identifying and evaluating emergency-response preparedness capabilities along candidate routes in the state, and identifying alternative routes from the state border, ports, or in-state reactors to the site. The TrPP also includes plans for identifying salt disposal routes and a discussion of repository/transportation interface requirements. 89 refs., 6 figs

  13. Thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    One of the most practical and rational approaches for establishing the idealistic Thorium resource utilization program has been presented, which might be effective to solve the principal energy problems, concerning safety, proliferation and terrorism, resource, power size and fuel cycle economy, for the next century. The first step will be the development of Small Molten-Salt Reactors as a flexible power station, which is suitable for early commercialization of Th reactors not necessarily competing with proven Large Solid-Fuel Reactors. Therefore, the more detailed design works and practical R and D planning should be performed under the international cooperations soon, soundly depending on the basic technology established by ORNL already. R and D cost would be surprisingly low. This reactor(MSR) seems to be idealistic not only in power-size, siting, safety, safeguard and economy, but also as an effective partner of Molten-Salt Fissile Breeders(MSB) in order to establish the simplest and economical Thorium molten-salt breeding fuel cycle named THORIMS-NES in all over the world including the developing countries and isolated areas. This would be one of the most practical replies to the Lilienthal's appeal of 'A NEW START' in Nuclear Energy. (author)

  14. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  15. Americium separations from high salt solutions

    International Nuclear Information System (INIS)

    Americium (III) exhibits an unexpectedly high affinity for anion-exchange material from the high-salt evaporator bottoms solutions--an effect which has not been duplicated using simple salt solutions. Similar behavior is observed for its lanthanide homologue, Nd(III), in complex evaporator bottoms surrogate solutions. There appears to be no single controlling factor--acid concentration, total nitrate concentration or solution ionic strength--which accounts for the approximately 2-fold increase in retention of the trivalent ions from complex solutions relative to simple solutions. Calculation of species activities (i.e., water, proton and nitrate) in such concentrated mixed salt solutions is difficult and of questionable accuracy, but it is likely that the answer to forcing formation of anionic nitrate complexes of americium lies in the relative activities of water and nitrate. From a practical viewpoint, the modest americium removal needs (ca. 50--75%) from nitric acid evaporator bottoms allow sufficient latitude for the use of non-optimized conditions such as running existing columns filled with older, well-used Reillex HPQ. Newer materials, such as HPQ-100 and the experimental bifunctional resins, which exhibit higher distribution coefficients, would allow for either increased Am removal or the use of smaller columns. It is also of interest that one of the experimental neutral-donor solid-support extractants, DHDECMP, exhibits a similarly high level of americium (total alpha) removal from EV bottoms and is much less sensitive to total acid content than commercially-available material

  16. Replacement of salt by a novel potassium- and magnesium-enriched salt alternative improves the cardiovascular effects of ramipril.

    OpenAIRE

    Mervaala, E. M.; Paakkari, I.; Laakso, J; Nevala, R.; Teräväinen, T. M.; Fyhrquist, F; Vapaatalo, H.; Karppanen, H.

    1994-01-01

    1. The influence of salt (sodium chloride; NaCl) (an additional 6% in the diet) and that of a novel sodium-reduced, potassium-, magnesium-, and L-lysine-enriched salt alternative on the cardiovascular effects of ramipril was studied in stroke-prone spontaneously hypertensive rats in a 6-week study. The intake of sodium chloride was adjusted to the same level by adding the salt alternative at a 1.75 times higher amount than regular salt. 2. Salt produced a marked rise in blood pressure and ind...

  17. Comparative study of wild and transformed salt tolerant bacterial strains on Triticum aestivum growth under salt stress

    OpenAIRE

    Shazia Afrasayab; Muhammad Faisal; Shahida Hasnain

    2010-01-01

    Eleven salt tolerant bacteria isolated from different sources (soil, plants) and their transformed strains were used to study their influence on Triticum aestivum var. Inqlab-91 growth under salt (100 mM NaCl) stress. Salt stress caused reduction in germination (19.4%), seedling growth (46%) and fresh weight (39%) in non-inoculated plants. In general, both wild and transformed strains stimulated germination, seedling growth and fresh weight in salt free and salt stressed conditions. At 100 mM...

  18. IODINE SALT CONSUMPTION IN INDONESIAN HOUSEHOLDS: BASELINE HEALTH SURVEY 2007

    Directory of Open Access Journals (Sweden)

    Ni Ketut Aryastami

    2012-11-01

    Full Text Available Background: Iodine Deficiency Disorder (100 reduction program has been implemented since 1976. According to the National Economic Survey 2002, the average consumption of iodized salt was 6. 26 grams. The results of Iodine Salt Survey (SGY 2003 showed that the consumption of iodine salt at the household level was 73.2%, meanwhile, the baseline health survey (Riskesdas 2007 showed there was reduction of iodine salt consumption towards 60.2%. Methods: Type of study was secondary data analysis with cross-sectional design utilizing the Riskesdas 2007's data. Sample was selected purposively according to the previous SGY's survey based on the endemically criteria namely highly endemic, mediocre and non endemic. Results: The results of the analysis were there was discrepancy of iodine salt consumption among urban and rural areas as well as mother's education level. The iodine salt consumption was higher in the urban area (65.5% compare to the rural area (52.9%. The higher the education of mothers the better the iodine salt consumed. The usage of iodine salt in the households based on salt quick test was 60.2%, meanwhile, according to the salt titration it was only 23.4%. The results of Excretion Iodine Urine showed that the iodine intake among the school children (age of 6-12 years old was 12.8% and was still below the cut-off point prevalence, which is greater than 50%. The conclusion of this analysisis that there was evidence of iodine salt reduction consumed at the household level. Conversely, there was inclination of the percentage of iodine urine level among the school children in Indonesia in the year 2007. It is recommended that policy analysis need to be conducted due to the achievement of the Universal Salt iodization target, especially in the endemic areas to asses the existence of the IDO prevalence. Key words: Iodine salt at the households, Iodine salt consumption, urine iodine excretion

  19. Pressure-driven brine migration in a salt repository

    International Nuclear Information System (INIS)

    The traditional view is that salt is the ideal rock for isolation of nuclear waste because it is ''dry'' and probably ''impermeable.'' The existence of salt through geologic time is prima facie evidence of such properties. Experiments and experience at potential salt sites for geologic repositories have indicated that while porosity and permeability of salt are low, the salt may be saturated with brine. If this hypothesis is correct, then it is possible to have brine flow due to pressure differences within the salt. If there is pressure-driven brine migration in salt repositories then it is paramount to know the magnitude of such flow because inward brine flow would affect the corrosion rate of nuclear waste containers and outward brine flow might affect radionuclide transport rates. Brine exists in natural salt as inclusions in salt crystals and in grain boundaries. Brine inclusions in crystals move to nearby grain boundaries when subjected to a temperature gradient, because of temperature-dependent solubility of salt. Brine in grain boundaries moves under the influence of a pressure gradient. When salt is mined to create a waste repository, brine from grain boundaries will migrate into the rooms, tunnels and boreholes because these cavities are at atmospheric pressure. After a heat-emitting waste package is emplaced and backfilled, the heat will impose a temperature gradient in the surrounding salt that will cause inclusions in the nearby salt to migrate to grain boundaries within a few years, adding to the brine that was already present in the grain boundaries. The formulation of brine movement with salt as a thermoelastic porous medium, in the context of the continuum theory of mixtures, has been described. In this report we show the mathematical details and discuss the results predicted by this analysis

  20. Salting the landscapes in Transbaikalia: natural and technogenic factors

    Science.gov (United States)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine

  1. Overexpression of SOS (Salt Overly Sensitive)Genes Increases Salt Tolerance in Transgenic Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qing Yang; Zhi-Zhong Chen; Xiao-Feng Zhoua; Hai-Bo Yin; Xia Li; Xiu-Fang Xin; Xu-Hui Hong; Jian-Kang Zhu; Zhizhong Gong

    2009-01-01

    Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHXl + SOS3, SOS1, SOS2 + SOS3, or SOS1 + SOS2 + SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHXl + SOS3, 50S2 + SOS3, or SOS1 + SOS2 +SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.

  2. Extended storage-in-place or MSRE fuel salt and flush salt

    International Nuclear Information System (INIS)

    The solidified fuel salt and flush salt from the Molten Salt Reactor Experiment (MSRE) have been stored at the Oak Ridge National Laboratory (ORNL) since the reactor was shut down in 1969. The fluoride salt eutectic, containing 37 kg of uranium plus plutonium and fission products, is safely contained in three heavy-walled Hastelloy tanks, which are located inside a reinforced concrete cell. Removal of these salts to a remote location is not feasible until an appropriate repository has been identified, built, and placed in operation. Since this may take many years, extended storage-in-place was critically evaluated. The evaluation, which involved a preliminary assessment of several options for enhancing the integrity of in-place storage, including containment improvements, the addition of chemical getters and neutron poisons, and entombment in concrete, showed that this approach was a rational and safe solution to the problem for the short term. Entombment is essentially nonreversible, but the other options are open-ended; they do not limit the future selection of a final disposal option. Specific actions and improvements that would enhance safe containment during extended storage and would also be of future benefit, regardless of which disposal option is finally selected, were identified. 20 refs., 5 figs., 22 tabs

  3. Salt stripping: a pyrochemical approach to the recovery of plutonium electrorefining salt residues

    International Nuclear Information System (INIS)

    A pyrochemical process has been developed to take the salt residue from the plutonium electrorefining process and strip the plutonium from it. The process, called salt stripping, uses calcium as a reducing/coalescing agent. In a one-day operation, greater than 95% of the plutonium can be recovered as a metallic button. As much as 88% of the residue is either reused as metal or discarded as a clean salt. A thin layer of black salts, which makes up the bulk of the unrecovered Pu, is a by-product of the initial reductions. A number of black salts can be collected together and re-reduced in a second step. Greater than 88% of this plutonium can be successfully recovered in this second stage with the resulting residues being discardable. The processing time, number of processor hours, and the volume of secondary residues are greatly reduced over the classical aqueous recovery methods. In addition, the product metal is of sufficient quality to be fed directly to the electrorefining process for purification. 8 figures, 7 tables

  4. Salt-specific stability and denaturation of a short salt-bridge forming alpha-helix

    CERN Document Server

    Dzubiella, Joachim

    2008-01-01

    The structure of a single alanine-based Ace-AEAAAKEAAAKA-Nme peptide in explicit aqueous electrolyte solutions (NaCl, KCl, NaI, and KF) at large salt concentrations (3-4 M) is investigated using 1 microsecond molecular dynamics (MD) computer simulations. The peptide displays 71 alpha-helical structure without salt and destabilizes with the addition of NaCl in agreement with experiments of a somewhat longer version. It is mainly stabilized by direct and indirect (i+4)EK salt bridges between the Lys and Glu side chains and a concomitant backbone shielding mechanism. NaI is found to be a stronger denaturant than NaCl, while the potassium salts hardly show influence. Investigation of the molecular structures reveals that consistent with recent experiments Na+ has a much stronger affinity to side chain carboxylates and backbone carbonyls than K+, thereby weakening salt bridges and secondary structure hydrogen bonds. At the same time the large I- has a considerable affinity to the nonpolar alanine in line with rece...

  5. Energy Efficient Buildings, Salt Lake County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through

  6. High Salt Intake Increases Copeptin but Salt Sensitivity Is Associated with Fluid Induced Reduction of Copeptin in Women

    Directory of Open Access Journals (Sweden)

    Irina Tasevska

    2014-01-01

    Full Text Available This study investigated if copeptin is affected by high salt intake and whether any salt-induced changes in copeptin are related to the degree of salt sensitivity. The study was performed on 20 men and 19 women. In addition to meals containing 50 mmol NaCl daily, capsules containing 100 mmol NaCl and corresponding placebo capsules were administered during 4 weeks each, in random order. Measurements of 24 h blood pressure, body weight, 24 h urinary volume, and fasting plasma copeptin were performed at high and low salt consumption. Copeptin increased after a high compared to low dietary salt consumption in all subjects 3,59 ± 2,28 versus 3,12 ± 1,95 (P = 0,02. Copeptin correlated inversely with urinary volume, at both low (r = −0,42; P = 0,001 and high (r = −0,60; P < 0,001 salt consumption, as well as with the change in body weight (r = −0,53; P < 0,001. Systolic salt sensitivity was inversely correlated with salt-induced changes of copeptin, only in females (r = −0,58; P = 0,017. As suppression of copeptin on high versus low salt intake was associated with systolic salt sensitivity in women, our data suggest that high fluid intake and fluid retention may contribute to salt sensitivity.

  7. The simplified convergence rate calculation for salt grit backfilled caverns in rock salt

    International Nuclear Information System (INIS)

    Within the research and development project 3609R03210 of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, different methods were investigated, which are used for the simplified calculation of convergence rates for mining cavities in salt rock that have been backfilled with crushed salt. The work concentrates on the approach of Stelte and on further developments based on this approach. The work focuses on the physical background of the approaches. Model specific limitations are discussed and possibilities for further development are pointed out. Further on, an alternative approach is presented, which implements independent material laws for the convergence of the mining cavity and the compaction of the crushed salt backfill.

  8. Microbial successions and metabolite changes during fermentation of salted shrimp (saeu-jeot with different salt concentrations.

    Directory of Open Access Journals (Sweden)

    Se Hee Lee

    Full Text Available To investigate the effects of salt concentration on saeu-jeot (salted shrimp fermentation, four sets of saeu-jeot samples with 20%, 24%, 28%, and 32% salt concentrations were prepared, and the pH, bacterial and archaeal abundances, bacterial communities, and metabolites were monitored during the entire fermentation period. Quantitative PCR showed that Bacteria were much more abundant than Archaea in all saeu-jeot samples, suggesting that bacterial populations play more important roles than archaeal populations even in highly salted samples. Community analysis indicated that Vibrio, Photobacterium, Psychrobacter, Pseudoalteromonas, and Enterovibrio were identified as the initially dominant genera, and the bacterial successions were significantly different depending on the salt concentration. During the early fermentation period, Salinivibrio predominated in the 20% salted samples, whereas Staphylococcus, Halomonas, and Salimicrobium predominated in the 24% salted samples; eventually, Halanaerobium predominated in the 20% and 24% salted samples. The initially dominant genera gradually decreased as the fermentation progressed in the 28% and 32% salted samples, and eventually Salimicrobium became predominant in the 28% salted samples. However, the initially dominant genera still remained until the end of fermentation in the 32% salted samples. Metabolite analysis showed that the amino acid profile and the initial glycerol increase were similar in all saeu-jeot samples regardless of the salt concentration. After 30-80 days of fermentation, the levels of acetate, butyrate, and methylamines in the 20% and 24% salted samples increased with the growth of Halanaerobium, even though the amino acid concentrations steadily increased until approximately 80-107 days of fermentation. This study suggests that a range of 24-28% salt concentration in saeu-jeot fermentation is appropriate for the production of safe and tasty saeu-jeot.

  9. Microbial successions and metabolite changes during fermentation of salted shrimp (saeu-jeot) with different salt concentrations.

    Science.gov (United States)

    Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2014-01-01

    To investigate the effects of salt concentration on saeu-jeot (salted shrimp) fermentation, four sets of saeu-jeot samples with 20%, 24%, 28%, and 32% salt concentrations were prepared, and the pH, bacterial and archaeal abundances, bacterial communities, and metabolites were monitored during the entire fermentation period. Quantitative PCR showed that Bacteria were much more abundant than Archaea in all saeu-jeot samples, suggesting that bacterial populations play more important roles than archaeal populations even in highly salted samples. Community analysis indicated that Vibrio, Photobacterium, Psychrobacter, Pseudoalteromonas, and Enterovibrio were identified as the initially dominant genera, and the bacterial successions were significantly different depending on the salt concentration. During the early fermentation period, Salinivibrio predominated in the 20% salted samples, whereas Staphylococcus, Halomonas, and Salimicrobium predominated in the 24% salted samples; eventually, Halanaerobium predominated in the 20% and 24% salted samples. The initially dominant genera gradually decreased as the fermentation progressed in the 28% and 32% salted samples, and eventually Salimicrobium became predominant in the 28% salted samples. However, the initially dominant genera still remained until the end of fermentation in the 32% salted samples. Metabolite analysis showed that the amino acid profile and the initial glycerol increase were similar in all saeu-jeot samples regardless of the salt concentration. After 30-80 days of fermentation, the levels of acetate, butyrate, and methylamines in the 20% and 24% salted samples increased with the growth of Halanaerobium, even though the amino acid concentrations steadily increased until approximately 80-107 days of fermentation. This study suggests that a range of 24-28% salt concentration in saeu-jeot fermentation is appropriate for the production of safe and tasty saeu-jeot. PMID:24587230

  10. Bedded salt in Ontario : geology, solution mining and cavern storage

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T. [Ontario Ministry of Natural Resources, London, ON (Canada). Petroleum Resources Centre

    2009-07-01

    This presentation discussed bedded salt geology in Ontario in relation to cavern storage and solution mining. Ontario's salt basin forms part of the Michigan basin. The salt formed as reefs surrounding the shallow basin restricted the flow of water. Salt then formed as the water evaporated. The bedded salt occurs in several layers underlying up to 16,000 km{sup 2} in the province. Subsurface resources used in the area include salt cavern hydrocarbon storage; oil and gas reservoirs; and natural gas reservoir storage. The Salina Group stratigraphy is comprised of several separate salt beds with a maximum combined thickness of 90 m. The Salina salt beds exhibit evidence of dissolution after deposition. There are currently 20 active solution mining wells in operation in the Windsor and Goderich regions. There are currently 112 wells and 70 caverns used for cavern storage in Ontario that are used to store approximately 27 million bbl of liquefied petroleum gas (LPG) and oil. Non-salt layers in the salt beds can interfere with both solution mining and cavern storage operations. tabs., figs.

  11. Physical chemistry and evolution of salt tolerance in halobacteria

    Science.gov (United States)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  12. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  13. Effects of Salt on Wheat Flour Dough Fermentation

    Directory of Open Access Journals (Sweden)

    Toshiyuki Toyosaki

    2013-02-01

    Full Text Available Most food chemistry characteristics in the dough fermentation of salt are not solved. Effects of salt on the acceleration process of wheat flour dough fermentation were studied, respectively. The mechanism of dough expansion influenced by salt and yeast was also investigated. The dough expansion rate with no salt reached a maximum of 18% in the 50 min dough fermentation time. In contrast, dough with 2.0% salt reached an expansion rate of 96% in 30 min of fermentation. Furthermore, the maximum dough expansion rate with 8.0% salt was 58% in 20 min. Lipid peroxidation catalyzed by baker’s yeast was observed in the dough fermentation process following the addition of salt. Although the baker’s yeast catalyzed lipid peroxidation salt triggered the reaction. The hydroperoxide produced in the induced lipid peroxidation reaction was found to play an unspecified role in the expansion phenomenon of dough. Based on these findings, we examined how salt is associated with the dough fermentation phenomenon. We hypothesized that the presence of salt would induce the following two chemical phenomena: 1 Salt enhances cross-linkages between gliadin and glutelin, which in turn leads to increased gluten content. 2 While baker’s yeast catalyzes lipid peroxidation, salt potentiates this reaction. We speculated that hydroperoxide, produced in lipid peroxidation, would accelerate the dough fermentation process, thereby resulting in a higher dough expansion rate. These results revealed some new findings in the biochemical effects of salt in bread making, which could break new ground in the bread-making industry.

  14. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.C.

    2001-09-18

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  15. The effect of hydrocarbons on the microstructural evolution in rock salt: a case study on hydrocarbon bearing Ara salt from the South Oman Salt Basin

    Science.gov (United States)

    Schmatz, Joyce; Urai, Janos L.; Wübbeler, Franziska M. M.; Sadler, Marc

    2014-05-01

    It has been shown that dilatant deformation promotes the incorporation of hydrocarbons into typically low permeable rock salt (Schoenherr et al., 2007). However, there is not much knowledge on subsequent mechanisms related to recrystallization processes, which cause morphological and chemical changes of the carbonic inclusions. This work aims to contribute to an increased understanding of fluid inclusion dynamics related to grain boundary migration recrystallization and hence to facilitate the interpretation of complex microstructures in recrystallized, multiphase salt rocks. In this case study we investigate hydrocarbon-impregnated salt from the Cambrian Ara Group in the South Oman Salt Basin. The samples were cored from cm-m thick anhydrite-salt sequences overlying hydrocarbon bearing carbonate stringers in 3300 m depth. The anhydrite layers consist mainly of fine-grained anhydrite, which contains calcite, dolomite, and olivine inclusions. Solid bitumen and lighter hydrocarbon phases are observed in between the anhydrite grains and along cracks. Anhydrite layers host salt veins, which contain fragments of anhydrite. These fragments do not differ in composition or structure from the host material and the related vein microstructures indicate crack-seal mechanisms. Halite in the salt layers is almost entirely recrystallized with solid inclusions consisting of anhydrite, calcite, dolomite and olivine with hydrocarbon-coatings present inside grains and along grain boundaries. Solid inclusions cause pinning indicated by a decreased recrystallized grain size and by the presence of grains with preserved substructures representing earlier deformation phases. We observe two types of carbonic inclusions: I) solid bitumen coatings along grain boundaries and microcracks, interpreted to be incorporated into the salt in an overpressure state that allowed dilatancy of the salt, and II) less degraded, liquid hydrocarbons along grain boundaries in the vicinity of the anhydrite

  16. Fluctuation spectroscopy in organic charge transfer salts

    International Nuclear Information System (INIS)

    Quasi-twodimensional organic charge-transfer salts show certain analogies to the High-Temperature Cuprate Superconductors (HTSC), e.g., the layered structure where conducting and insulating sheets do alternate as well as the direct proximity of the antiferromagnetic insulating ground state to the superconducting phase. At higher temperatures the formation of a pseudo-gap in the density of states is discussed also. In contrast to the HTSC the electronic properties of the organic charge-transfer salts can be easily influenced by external parameters such as hydrostatic or chemical pressure - in a generalized phase diagram the usage of different anions X can be mapped on the axis W/U as well, see Sec. 4.2 - or moderate temperatures. In the quasi-twodimensional K-(BEDT-TTF)2X salts, e.g., a moderate pressure of p ∝ 250 bar is sufficient to shift the antiferromagnetic-insulating system (X=Cu[N(CN)2]Cl) to the metallic side of the phase diagram showing even superconductivity below a critical temperature of Tc ∝ 12.8 K. Doping as in the HTSC and the undesirable disorder accompanied with it is not necessary to induce a metal-to-insulator transition. Therefore the experimental requirements are more easily met in this class of materials compared to other strongly correlated electron systems. All this makes the organic charge-transfer salts ideal model systems to study fundamental concepts of theoretical solid state physics some of which have been of academical interest only so far. In this work fluctuation spectroscopy has been used for the first time to investigate the low-frequency dynamics of the TT-electron system in the quasi-twodimensional organic charge-transfer salts K-(BEDT-TTF)2X with the aim to gain information about the temperature, pressure and magnetic field dependence of the power spectral density of the resistance noise and therefore about the dynamics of the charge carrier fluctuations. Especially in the vicinity of correlation driven ordering phenomena

  17. Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure

    OpenAIRE

    Sarkkinen Essi S; Kastarinen Mika J; Niskanen Tarja H; Karjalainen Pia H; Venäläinen Taisa M; Udani Jay K; Niskanen Leo K

    2011-01-01

    Abstract Background High salt intake is linked to hypertension whereas a restriction of dietary salt lowers blood pressure (BP). Substituting potassium and/or magnesium salts for sodium chloride (NaCl) may enhance the feasibility of salt restriction and lower blood pressure beyond the sodium reduction alone. The aim of this study was to determine the feasibility and effect on blood pressure of replacing NaCl (Regular salt) with a novel mineral salt [50% sodium chloride and rich in potassium c...

  18. A system for separation, salt encapsulation and disposal of lava-like fuel-containing mass from the 4-th block Chernobyl nuclear power station in salt mines

    International Nuclear Information System (INIS)

    The offered here system of separations, salt capsulation and disposal LFCM in salt mines completely corresponds to these principles. Basic elements of the system are: the technological scheme of separation LFCM on activity and isotope structure with selection of valuable components by means of enrichment of mineral ore dressing; the technological scheme of conditioning LFCM with use artificial salt structures - salt capsules; disposal LFCM in spent space of salt mines; storehouse of high-active LFCM in salt formations

  19. Supai salt karst features: Holbrook Basin, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  20. Mass transfer in a salt repository

    International Nuclear Information System (INIS)

    To meet regulatory requirements for radioactive waste in a salt repository it is necessary to predict the rates of corrosion of the waste container, the release rates of radionuclides from the waste package, and the cumulative release of radionuclides into the accessible environment. The mechanisms that may control these rates and an approach to predicting these rates from mass-transfer theory are described. This new mechanistic approach is suggested by three premises: (a) a brine inclusion originally in a salt crystal moves along grain boundaries after thermal-induced migration out of the crystal, (b) brine moves along a grain boundary under the influence of a pressure gradient, and (c) salt surrounding a heat-generating waste package will soon creep and consolidate as a monolithic medium surrounding and in contact with the waste package. After consolidation there may be very little migration of intergranular and intragranular brine to the waste package. The corrosion rate of the waste container may then be limited by the rate at which brine reaches the container and may be calculable from mass-transfer theory, and the rate at which dissolved radionuclides leave the waste package may be limited by molecular diffusion in intragranular brine and may be calculable from mass-transfer theory. If porous nonsalt interbeds intersect the waste-package borehole, the release rate of dissolved radionuclides to interbed brine may also be calculable from mass-transfer theory. The logic of these conclusions is described, as an aid in formulating the calculations that are to be made

  1. Consolidation and permeability of salt in brine

    Energy Technology Data Exchange (ETDEWEB)

    Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

    1981-07-01

    The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0)/sup 3/), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl/sub 2/ showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85/sup 0/C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste.

  2. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  3. Salt Kinematics and InSAR

    Science.gov (United States)

    Aftabi, Pedarm; Talbot, hristopher; Fielding, Eric

    2005-01-01

    As part of a long-term attempt to learn how the climatic and tectonic signal interact to shape a steady state mountain monitored displacement of a markers in SE termination and also near the summit of a small viscous salt fountain extruding onto the Central plateau of Iran. The marker displacements relate to the first InSAR interferograms of salt extrusion (980913 to 990620) calculated Earth tides, winds, air pressures and temperatures. In the first documented staking exercise, hammered wooden stakes vertically through the surgical marl (c. 1 Ocm deep) onto the top of crystalline salt. These stakes installed in an irregular array elongate E-W along the c.50 m high cliff marking the effective SE terminus of the glacier at Qum Kuh(Centra1 Iran) ,just to the E of a NE trending river cliff about 40 m high. We merely measured the distances between pairs of stakes with known azimuth about 2 m apart to calculate sub horizontal strain in a small part of Qum Kuh. Stakes moved and micro strains for up to 46 pairs of stakes (p strain= ((lengthl-length2)/1engthl) x 10-1) was calculated for each seven stake epochs and plotted against their azimuth on simplified array maps. The data fit well the sine curves cxpected of the maximum and minimum strain ellipses. The first documented stakes located on the SE where the InSAR image show -1 1 to 0 mm pink to purple, 0 to lOmm purple to blue, and show high activity of salt in low activity area of the InSAR image (980913 to 990620).Short term micro strains of stake tie lines record anisotropic expansions due to heating and contraction due to cooling. All epochs changed between 7 to 1 17 days (990928 to000 1 16), showed 200 to 400 micro strain lengthening and shortening. The contraction and extension existed in each epoch, but the final strain was extension in E-W in Epoch land 6, contraction in E-W direction during epochs 2-3-4-5 and 7. The second pair of stakes hammered about 20 cm deep into the deep soils(more than 1 m) , near summit

  4. Earth subsidences in the Asse salt mine

    International Nuclear Information System (INIS)

    Earth subsidences in the Asse salt mine occur in the carstifiable Mesozoic flank rocks (containing Ruddle, Middle Shell-lime and Gypsum Keuper), more seldom in Zechstein gypsum. Of the 278 earth subsidences which have been mapped up to now, 184 originated in the Ruddle, 59 in the Middle Shell-lime and 35 in the Zechstein. Earth subsidences in the Keuper have not been recorded. As recent occurrences have shown earth subsidences are still developing in the flank rocks. For the purpose of dating the remaining ones, their fillings were examined by means of groove probing and lithostratigraphical dating. Samples taken were also analyzed palynologically. (orig.)

  5. The uranium determination in commercial iodinated salt

    International Nuclear Information System (INIS)

    This method extends a classical determination of uranium and thorium in natural waters to a new series of solid inorganic and / or organic samples. A technique based on chemical separations using cation / anion exchange columns was used. The UV-VIS absorption spectroscopy was employed for the determination of cations. The limit of detection using characteristic band absorptions of colored complexes of Arsenazo III with these cations is in the 0.25 - 0.50 ppb range. These values are usually expected for natural samples. Finally, an improved correlation on absorption spectra of uranium, iron and thorium concentrations has been done. An iodinated sodium salt was taken into account as example. (authors)

  6. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  7. Deformation-assisted fluid percolation in rock salt

    Science.gov (United States)

    Ghanbarzadeh, Soheil; Hesse, Marc A.; Prodanović, Maša; Gardner, James E.

    2015-11-01

    Deep geological storage sites for nuclear waste are commonly located in rock salt to ensure hydrological isolation from groundwater. The low permeability of static rock salt is due to a percolation threshold. However, deformation may be able to overcome this threshold and allow fluid flow. We confirm the percolation threshold in static experiments on synthetic salt samples with x-ray microtomography. We then analyze wells penetrating salt deposits in the Gulf of Mexico. The observed hydrocarbon distributions in rock salt require that percolation occurred at porosities considerably below the static threshold due to deformation-assisted percolation. Therefore, the design of nuclear waste repositories in salt should guard against deformation-driven fluid percolation. In general, static percolation thresholds may not always limit fluid flow in deforming environments.

  8. Large-scale dynamic compaction of natural salt

    International Nuclear Information System (INIS)

    A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10-14m2. This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant

  9. Centuries of Human-Driven Change in Salt Marsh Ecosystems

    Science.gov (United States)

    Gedan, K. Bromberg; Silliman, B. R.; Bertness, M. D.

    2009-01-01

    Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

  10. Emulsifying salt increase stability of cheese emulsions during holding

    DEFF Research Database (Denmark)

    Hougaard, Anni Bygvrå; Sijbrandij, Anna G.; Varming, Camilla;

    2015-01-01

    In cheese powder production, cheese is mixed and melted with water and emulsifying salt to form an emulsion (cheese feed) which is required to remain stable at 60°C for 1h and during further processing until spray drying. Addition of emulsifying salts ensures this, but recent demands for reduction...... of sodium and phosphate in foods makes production of cheese powder without or with minimal amounts of emulsifying salts desirable. The present work uses a centrifugation method to characterize stability of model cheese feeds. Stability of cheese feed with emulsifying salt increased with holding time at 60°C......, especially when no stirring was applied. No change in stability during holding was observed in cheese feeds without emulsifying salt. This effect is suggested to be due to continued exerted functionality of the emulsifying salt, possibly through reorganizations of the mineral balance....

  11. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    Science.gov (United States)

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed. PMID:27192825

  12. Evidence of a salt refuge: chytrid infection loads are suppressed in hosts exposed to salt.

    Science.gov (United States)

    Stockwell, M P; Clulow, J; Mahony, M J

    2015-03-01

    With the incidence of emerging infectious diseases on the rise, it is becoming increasingly important to identify refuge areas that protect hosts from pathogens and therefore prevent population declines. For the chytrid fungus Batrachochytrium dendrobatidis, temperature and humidity refuge areas for amphibian hosts exist but are difficult to manipulate. Other environmental features that may affect the outcome of infection include water quality, drying regimes, abundance of alternate hosts and isolation from other hosts. We identified relationships between water bodies with these features and infection levels in the free-living hosts inhabiting them. Where significant relationships were identified, we used a series of controlled experiments to test for causation. Infection loads were negatively correlated with the salt concentration of the aquatic habitat and the degree of water level fluctuation and positively correlated with fish abundance. However, only the relationship with salt was confirmed experimentally. Free-living hosts inhabiting water bodies with mean salinities of up to 3.5 ppt had lower infection loads than those exposed to less salt. The experiment confirmed that exposure to sodium chloride concentrations >2 ppt significantly reduced host infection loads compared to no exposure (0 ppt). These results suggest that the exposure of amphibians to salt concentrations found naturally in lentic habitats may be responsible for the persistence of some susceptible species in the presence of B. dendrobatidis. By manipulating the salinity of water bodies, it may be possible to create refuges for declining amphibians, thus allowing them to be reintroduced to their former ranges. PMID:25416999

  13. Mechanical analyses of WIPP disposal rooms backfilled with either crushed salt or crushed salt-bentonite

    International Nuclear Information System (INIS)

    In this paper numerical calculations of disposal room configurations at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM are presented. Specifically, the behavior of either crushed salt or a crushed salt- bentonite mixture, when used as a backfill material in disposal rooms, is modeled in conjunction with the creep behavior of the surrounding intact salt. The backfill consolidation model developed at Sandia National Laboratories was implemented into the SPECTROM-32 finite element program. This model includes nonlinear elastic as well as deviatoric and volumetric creep components. Parameters for the models were determined from laboratory tests with deviatoric and hydrostatic loadings. The performance of the intact salt creep model previously implemented into SPECTROM-32 is well documented. Results from the SPECTROM-32 analyses were compared to a similar study conducted by Sandia National Laboratories using the SANCHO finite element program. The calculated deformations and stresses from the SPECTROM-32 and SANCHO analyses agree reasonably well despite differences in constitutive models and modeling methodology. These results provide estimates of the backfill consolidation through time. The trends in the backfill consolidation can then be used to estimate the permeability of the backfill and subsequent radionuclide transport

  14. Brazilian pre-salt geology at the AAPG meeting in Rio; Brazil pre-salt

    Energy Technology Data Exchange (ETDEWEB)

    Abrantes, Dayse

    2010-07-01

    New discoveries in the Brazilian areas Tupi, Jupiter Guard and Iara suggest that the Brazilian reserves are large, close to 50 billion barrels. Petrobas has announced that it has finalized the drilling of another well in the Tupi area, which confirms the potential of the pre-salt reservoirs in that area. (AG)

  15. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    International Nuclear Information System (INIS)

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment

  16. Metal speciation in salt marsh sediments: Influence of halophyte vegetation in salt marshes with different morphology

    Science.gov (United States)

    Pedro, Sílvia; Duarte, Bernardo; Raposo de Almeida, Pedro; Caçador, Isabel

    2015-12-01

    Salt marshes provide environmental conditions that are known to affect metal speciation in sediments. The elevational gradient along the marsh and consequent differential flooding are some of the major factors influencing halophytic species distribution and coverage due to their differential tolerance to salinity and submersion. Different species, in turn, also have distinct influences on the sediment's metal speciation, and its metal accumulation abilities. The present work aimed to evaluate how different halophyte species in two different salt marshes could influence metal partitioning in the sediment at root depth and how that could differ from bare sediments. Metal speciation in sediments around the roots (rhizosediments) of Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima was determined by sequentially extracting operationally defined fractions with solutions of increasing strength and acidity. Rosário salt marsh generally showed higher concentrations of all metals in the rhizosediments. Metal partitioning was primarily related to the type of metal, with the elements' chemistry overriding the environment's influence on fractionation schemes. The most mobile elements were Cd and Zn, with greater availability being found in non-vegetated sediments. Immobilization in rhizosediments was predominantly influenced by the presence of Fe and Mn oxides, as well as organic complexes. In the more mature of both salt marshes, the differences between vegetated and non-vegetated sediments were more evident regarding S. fruticosa, while in the younger system all halophytes presented significantly different metal partitioning when compared to that of mudflats.

  17. Salt bridge as a gatekeeper against partial unfolding.

    Science.gov (United States)

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. PMID:26916981

  18. Optimization of salt concentration in PEG-based crystallization solutions

    OpenAIRE

    Yamanaka, Mari; Inaka, Koji; Furubayashi, Naoki; Matsushima, Masaaki; Takahashi, Sachiko; Tanaka, Hiroaki; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo

    2010-01-01

    Although polyethylene glycol (PEG) is the most widely used precipitant in protein crystallization, the concentration of co-existing salt in the solution has not been well discussed. To determine the optimum salt concentration range, several kinds of protein were crystallized in a 30% PEG 4000 solution at various NaCl concentrations with various pH levels. It was found that, if crystallization occurred, the lowest effective salt concentration depended on the pH of the protein solution and the ...

  19. BLOOD PRESSURE CHANGE WITH AGE IN SALT-SENSITIVE TEENAGERS

    Institute of Scientific and Technical Information of China (English)

    Tao Ye; Zhi-quan Liu; Jian-jun Mu; Xi-han Fu; Jun Yang; Bao-lin Gao; Xiao-hong Zhang

    2004-01-01

    Objective To observe blood pressure change with age in salt-sensitive teenagers whose salt sensitivity were determined by repeated testing.Methods Salt sensitivity was determined through intravenous infusion of normal saline combined with volume-depletion by oral diuretic furosemide in 55 teenagers. After five years, salt sensitivity was re-examined and subject blood pressure was followed up. Blood pressure changes in salt-sensitive teenagers were compared to that of non-salt sensitive teenagers over five years.Results After 5 years, the repetition rate of salt sensitivity determined by intravenous saline loading is 92.7%. In teenagers with salt sensitivity on the baseline, both the systolic blood pressure increments and increment rates were much higher than non-salt sensitive teenagers (12.7±12.1 mmHg vs. 2.8±5.2 mmHg, P< 0.01; 12.2%± 12.0% vs. 2.5% ±4.4%, P< 0.001,respectively). There was a similar trend for diastolic blood pressure (8.4 ± 6.4 mmHg vs. 3.7 ± 6.4 mmHg, P = 0.052; 13.2% ±10.6 % vs. 6.8%± 10.1%, P = 0.053, respectively).Conclusions Salt sensitivity determined by intravenous saline loading showed good reproducibility. Blood pressure increments with age were much higher in salt-sensitive teenagers than non-salt sensitive teenagers, especially in terms of systolic blood pressure.

  20. Evaluation of Zero Velocity Deicer Spreader and Salt Spreader

    OpenAIRE

    Nantung, Tommy E.

    2001-01-01

    Increasing traffic volumes and declining resources have led to a need for innovative winter maintenance strategies, techniques, equipment and materials while not sacrificing the safety of the traveling public. Any reduction of salt usage will ease fund for other maintenance operations while minimizing salt runoff on surface and ground waters and effect of road salt on roadside vegetation. In the past, conventional spreaders have been designed for sand and are generally incapable of metering t...

  1. Salt-Induced Counterion-Mobility Anomaly in Polyelectrolyte Electrophoresis

    OpenAIRE

    Fischer, Sebastian; Naji, Ali; Netz, Roland R.

    2009-01-01

    We study the electrokinetics of a single polyelectrolyte chain in salt solution using hydrodynamic simulations. The salt-dependent chain mobility compares well with experimental DNA data. The mobility of condensed counterions exhibits a salt-dependent change of sign, an anomaly that is also reflected in the counterion excess conductivity. Using Green's function techniques this anomaly is explained by electrostatic screening of the hydrodynamic interactions between chain and counterions.

  2. Development of foundry cores based on inorganic salts

    OpenAIRE

    Jelínek, Petr; Mikšovský, František; Beňo, Jaroslav; Adámková, Eliška

    2013-01-01

    The aim of this study is to describe the possibilities of using salt cores for gravity, low-pressure or high-pressure die-casting technology. Determinations of the primary, secondary and final residual strengths were carried out in order to evaluate the possibilities of the salt-core utilization. Furthermore, this contribution is focused on developing composite salts with better mechanical properties. The solubility of these cores and a possibility of their reclamation in a closed cy...

  3. Evaluation of salt split technique of immunofluorescence in bullous pemphigoid

    OpenAIRE

    Satyapal Seema; Amladi Sangeeta; Jerajani H

    2002-01-01

    Recent studies suggest that salt split skin is a more sensitive substrate than intact skin for immunofluorescence diagnosis of bullous pemphigoid. We undertook this study to define the role of salt split technique of immunofluorescence findings in 32 clinical and histopothology confirmed cases of bullous pemphigoid. Both direct and indirect immunofluorescences were performed using normal and split skin. Direct immunofluorescence positivity of 100% was noted with both routine and salt s...

  4. Salt minerals and waters from soils in Konya and Kenya

    OpenAIRE

    Vergouwen, L.

    1981-01-01

    This study deals with the relation between the mineralogical composition of salt assemblages and the composition of groundwaters from which these salts precipitated. A comparison was made between salts and waters sampled in the Konya Basin in Turkey and waters sampled in three different regions in Kenya.The chemical composition of waters from rivers entering the Konya Basin is different from the composition of those from rivers in Kenya. The initial composition of these rivers determines the ...

  5. Molten salt converter reactors: from DMSR to SmAHTR

    International Nuclear Information System (INIS)

    Molten salt reactors were developed extensively from the 1950s to 1970s as a thermal breeder alternative on the Thorium-233U cycle. Simplified designs running as fluid fuel converters without salt processing as well as TRISO fueled, salt cooled reactors both hold much promise as potential small modular reactors and as larger base load producers. A background will be presented along with the most likely routes forward for a Canadian development program. (author)

  6. The synthesis of cementitious compounds in molten salts

    OpenAIRE

    Sheikh, R. A.

    2016-01-01

    This thesis describes an investigation into the synthesis of cementitious compounds in molten salts. These compounds are produced in energy-intensive industries (EIIs), such as the cement process, and are responsible for emitting significant quantities of carbon dioxide (CO2) emissions. Molten salt synthesis (MSS) involves dissolving compounds in a molten salt and reacting in solution. If the MSS of cementitious compounds can occur at lower temperatures than EIIs, this could lead to fewer qua...

  7. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  8. Numerical modeling of deformation in salt basins: Technical report

    International Nuclear Information System (INIS)

    The report describes the dominant physical mechanisms and the material properties influence in the formation of natural salt deformation features within a salt basin. Numerical analysis techniques include one-dimensional, closed-form analytical solutions; one-dimensional analytical solutions employing a numerical propagator matrix technique; and a two-dimensional, finite-element, viscoplastic numerical code (MANTLE). The published works of earlier investigators were reviewed, along with conventional applications of the one-dimensional, closed-form solutions. Earlier work was extended to more complex multilayered, thin interbed systems, using a numerical propagator matrix. Nonlinear salt properties and two-dimensional mechanisms were modeled, including horizontal tectonic strain, predeposition-of-salt basement faulting, and postdeposition-of-salt basement faulting, with vertical shear stress produced in the overlying salt. The study concludes that the conventional analyses using assumed effective viscosities for salt and density-inversion mechanics are incorrect, first-order or major perturbations in a bedded salt formation require the application of shear stress to initiate the appropriate growth rate, a condition of postdeposition basement faulting is the probable mechanism to initiate such shear stress, and interbed and internal salt fabric (second-order and higher) deformation characteristics can be strongly asymmetric to the major deformation surfaces in the region of basement faulting/shear stress location. 28 refs., 70 figs., 3 tabs

  9. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  10. Salt content in canteen and fast food meals in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Lassen, Anne Dahl; Hansen, Kirsten;

    2010-01-01

    Background: A high salt (NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design: For...... the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in- house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total...

  11. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  12. Salt content in canteen and fast food meals in Denmark

    OpenAIRE

    Rasmussen, Lone Banke; Lassen, Anne Dahl; Hansen, Kirsten; Knuthsen, Pia; Saxholt, Erling; Fagt, Sisse

    2010-01-01

    Background: A high salt (NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design: For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with inhouse catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly sele...

  13. Study on the Functional Peptides in Low Salt Sufu Making

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaofeng; Li Lite; Wang Jiahuai; Masayoshi Saito; Eizo Tatsumi

    2002-01-01

    Sufu in this project was preparedwith Actinomucor elegans (CICC-3118) as thestarter and with soybean as the material.Different with the sufu with 10% salt producedby traditional process, a sufu product with 6%salt was produced in this project by reducingthe salt content in salting process. To determinepeptides, the water-soluble extracts obtainedsaparetly from frozen dried powders of soybean,tofu, pehtze, salted pehtze and sufu ripening for50 days were analyzed by high-pressure lipidchromatography (HPLC). Antioxidative activityand antihypertensive activity of the extract dueto the peptides contained were evaluatedrespectively by radical scavenging ability andangiotensin converting enzyme (ACS) inhibitoryactivity.According to the HPLC patterns, thepeptides content was nearly zero in soybeanand tofu, but increased gradually duringmaturing in the further process of makingpehtze, salted pehtze and final product sufu.Correspondingly, the antioxidative andantihypertensive activities of the extractsstrengthened with maturing. For our product,sufu with 6% salt, the antioxidative andantihypertensive activities reached peak valuesat about 30 d maturing, and still remainedmedium values in final product sufu. Incomarison, the antioxidative and antihypertensiveactivities for the sufu with 10% salt reachedpeack values at 40 d maturing, but remainedmedium values inferior to those for the sufu with6% salt.

  14. Cyanoplatinate (II) salts as luminescent materials for scintillation counting

    DEFF Research Database (Denmark)

    Bergsøe, P.; Hansen, P.Gregers; Jacobsen, C.F.

    1962-01-01

    Eleven cyanoplatinate (II) salts have been studied under excitation with fast, charged particles. The salts were prepared via the barium compound, and crystals were grown from aqueous solutions. The formulae were determined by standard analytical procedures. Four of the salts were not previously...... scintillation efficiencies for α-particle excitation are smaller; in terms of the ratio α/β of relative efficiencies (light output per MeV dissipated) one obtains 0.17. Possible applications of these materials are discussed, and because the abundance of high Z material makes the salts especially attractive for...

  15. Effect of Irradiation on Anisakis Larvae in Salted Herring

    International Nuclear Information System (INIS)

    The authors describe experiments to test the practicability of using irradiation to kill Anisakis marina larvae in lightly salted herring (Clupea harengus), The lower salt concentration used since the second world war for the preservation of gibbed herring is insufficient to kill the parasites that may be harmful to the consumer. The nematodes were subjected to irradiation, either in water or saline suspension, or pressed between salted herring fillets or in situ in salted gibbed herring. The results were disappointing. In aqueous suspensions, a salt concentration of 6% and a dose of 1.0 Mrad resulted in 100% kill, but appreciable numbers survived (although many of these were inactive) at lower irradiation dosages and at lower salt concentrations. It was noted that for doses of either 0 or 0.3 Mrad the highest proportion of survivals occurred in 3% salt solutions. In testing the effect of irradiation on parasites in the fish or placed between fillets the dosages were limited, because of flavour and colour changes, to 0.3 Mrad for salted ripened herring, and 0.6 Mrad for 5-day-old lightly salted herring. Substantial numbers of nematodes survived these doses. (author)

  16. Candidate molten salt investigation for an accelerator driven subcritical core

    OpenAIRE

    SOOBY Elizabeth; Baty, Austin; BENES ONDREJ; McIntyre, Peter; Pogue, Nathaniel; Salanne, Mathieu; Sattarov, Akhdiyor

    2013-01-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. Molecular dynamics (MD) codes have been used to estimate properties of the molt...

  17. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  18. Nickel based alloys compatibility with fuel salts for molten salt reactor with thorium and uranium support

    International Nuclear Information System (INIS)

    R and D on molten salt reactors (MSR) in Europe are concentrated now on fast/intermediate spectrum concepts which were recognised as long-term alternative to solid fuelled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarises results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salts on tellurium attack and to develop means of controlling tellurium cracking in the special Ni - based alloys recently developed for large power units: molten salt actinide recycler and transmuter (MOSART) and molten salt fast reactor (MSFR). Tellurium corrosion of Ni-based alloys was tested in the temperature range from 730 deg. C up to 800 deg. C in stressed and unloaded conditions with fuel LiF-BeF2-UF4 and LiF-BeF2-ThF4-UF4 salt mixtures at different [U(IV)]/[U(III)] ratios from 0.7 up to 500. Following Russian and French Ni-based alloys (in mass%): HN80M-VI (Mo-12, Cr-7.6, Nb-1.5), HN80MTY (Mo-13, Cr-6.8, Al-1.1, Ti-0.9), HN80MTW (Mo-9.4, Cr-7.0, Ti-1.7, W-5.5) and EM-721 (W-25.2, Cr-5.7, Ti-0.17) were used for the study in the corrosion facility. The HN80MTY alloy has shown the best resistance against Te cracking and after test mechanical properties. (authors)

  19. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils

    Directory of Open Access Journals (Sweden)

    Kawtar Bennani

    2013-08-01

    Full Text Available Plant scientists are investigating the potential of previously unexploited legume species where environmental and biological stresses constrain the use of more conventional forage crops or where these species are better suited to the needs of sustainable agriculture. Trifolium isthmocarpum Brot., Moroccan clover, occurs as a weed in different habitats in Morocco. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated; however, it has not been widely studied despite its good palatability. The salt tolerance was studied between natural field conditions and glasshouse. The extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The plants maintained high nodulation capacity (ranging between 60% and 97% and nitrogenase activities (average 2.04 µmol C2H4 plant-1 h-1 in different habitats. Shoot systems of plants collected from salt-affected soils exhibited higher concentrations of Na+ and Cl- than those collected from healthy soils. Greenhouse experiments showed that germination percentage and vigor value of the studied species was not significantly (P > 0.05 affected at 160 mM NaCl, and that 25% of the germination ability was maintained when growing on substrats containing 240 mM NaCl. The growth rate of seedlings was not signicantly affected by 160 mM NaCl but was reduced by 38% under 240 mM NaCl. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 8% and water content at saturation increased by about 12% at high salt concentrations in the growing medium. This study suggest recommending the cultivation of T. isthmocarpum in salt-affected soils, which are widespread and pose a problem for the farmers of Morocco and other countries in the world’s arid belt.

  20. Molten salt reactor related research in Switzerland

    International Nuclear Information System (INIS)

    Switzerland represented by the Paul Scherrer Institute (PSI) is a member of the Generation IV International Forum (GIF). In the past, the research at PSI focused mainly on HTR, SFR, and GFR. Currently, a research program was established also for Molten Salt Reactors (MSR). Safety is the key point and main interest of the MSR research at the Nuclear Energy and Safety (NES) department of PSI. However, it cannot be evaluated without knowing the system design, fuel chemistry, salt thermal-hydraulics features, safety and fuel cycle approach, and the relevant material and chemical limits. Accordingly, sufficient knowledge should be acquired in the other individual fields before the safety can be evaluated. The MSR research at NES may be divided into four working packages (WP): WP1: MSR core design and fuel cycle, WP2: MSR fuel behavior at nominal and accidental conditions, WP3: MSR thermal-hydraulics and decay heat removal system, WP4: MSR safety, fuel stream, and relevant limits. The WPs are proposed so that there are research topics which can be independently studied within each of them. The work plan of the four WPs is based on several ongoing or past national and international projects relevant to MSR, where NES/PSI participates. At the current stage, the program focuses on several specific and design independent studies. The safety is the key point and main long-term interest of the MSR research at NES. (author)

  1. Transient simulation of molten salt central receiver

    Science.gov (United States)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  2. Highlights of the Salt Extraction Process

    Science.gov (United States)

    Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor

    2013-11-01

    This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.

  3. Salt-induced contraction of polyelectrolyte brushes

    International Nuclear Information System (INIS)

    We present an experimental study dedicated to understanding the behaviour of polyelectrolyte chains when salt goes into a polyelectrolyte brush. We use the ability of asymmetric neutral-charged diblock copolymers to anchor to a selective interface or to self-assemble in water, to examine polyelectrolyte brushes both in planar and in spherical geometries. Using neutron reflectivity, the monomer profile of planar brushes has been found to switch from a Gaussian profile to a parabolic profile, showing that at large spatial scale a salted planar brush behaves like a neutral one in good solvent. Using small angle neutron scattering, it is found that spherical brushes exhibit the same behaviour at a large spatial scale although polyelectrolyte chains remain rod-like at a small spatial scale whatever the salinity is. The charged chains inside a polyelectrolyte brush could be viewed as 'surveyor's chains', which fold their rod-like segments of persistence length lp. In the last part, spherical polyelectrolyte brushes in contact have been examined. Their behaviour is discussed in terms of interdigitation or contraction of the brushes

  4. Excavation Damaged Zones In Rock Salt Formations

    International Nuclear Information System (INIS)

    Salt formations have long been proposed as potential host rocks for nuclear waste disposal. After the operational phase of a repository the openings, e.g., boreholes, galleries, and chambers, have to be sealed in order to avoid the release of radionuclides into the biosphere. For optimising the sealing techniques knowledge about the excavation damaged zones (EDZ) around these openings is essential. In the frame of a project performed between 2004 and 2007, investigations of the EDZ evolution were performed in the Stassfurt halite of the Asse salt mine in northern Germany. Three test locations were prepared in the floor of an almost 20 year old gallery on the 800-m level of the Asse mine: (1) the drift floor as existing, (2) the new drift floor shortly after removing of a layer of about 1 m thickness of the floor with a continuous miner, (3) the new drift floor 2 years after cutting off the 1-m layer. Subject of investigation were the diffusive and advective gas transport and the advective brine transport very close to the opening. Spreading of the brine was tracked by geo-electric monitoring in order to gain information about permeability anisotropy. Results obtained showed that EDZ cut-off is a useful method to improve sealing effectiveness when constructing technical barriers. (authors)

  5. Cation-Exchange Equilibria with Fused Salts

    International Nuclear Information System (INIS)

    Solute distributions of alkali metal, alkaline- earth, transition metal, and actinide ions have been studied in fused salt-cation exchanger systems. The fused salts employed were alkali halides and nitrates. The cation exchangers used were natural zeolites, synthetic zeolites, high-porosity glasses, and molten oxide mixtures. The molten exchangers were composed of Na2O and B2O3 in various proportions. The relative quantities not only determined the exchanger capacity and electrolyte penetration but also produced distribution coefficients for a given solute which varied over several orders of magnitude. Moreover, they produced marked reversals in the selectivity series. Additional studies on the anion distributions, miscibility diagrams, vapour pressures and diffusion rates in these systems have elucidated the mechanisms involved and the relation of selectivity to solute properties, system thermodynamics, exchanger structure and available functional groups. In the region of high Na2O composition, the distribution coefficients for mono-, di- and trivalent cations in NaCl have not only the same order of selectivity found in Dowex 50-HCl systems but also similar values for the distribution coefficients. The results are summarized qualitatively and compared to behaviour in aqueous systems (Table VII). (author)

  6. Geochemical simulation of the formation of brine and salt minerals based on Pitzer model in Caka Salt Lake

    Institute of Scientific and Technical Information of China (English)

    LIU Xingqi; CAI Keqin; YU Shengsong

    2004-01-01

    The geochemical simulation of the formation of brine and salt minerals based on Pitzer model was made in Caka Salt Lake. The evolution of the mixed surface-water and the mineral sequences were calculated and compared with the hydrochemical compositions of the brine and the salt minerals of the deposit in Caka Salt Lake. The results show that the formation temperature of the lake is between 0℃ and 5℃, which is well identical with other studies. The mixing of salt-karst water with the surface waters, neglected by the former researchers, is very important to the formation of the lake, indicating that the initial waters resulting in the formation of the lake are multi-source. It is the first time to use Pitzer model in China for making geochemical simulation of the formation and evolution of inland salt lake and satisfactory results have been achieved.

  7. Salt movements and faulting of the overburden - can numerical modeling predict the fault patterns above salt structures?

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Wesenberg, Rasmus; Damsgaard, Anders

    Salt deformation has been the topic of numerous studies through the 20th century and up until present because of the close relation between commercial hydrocarbons and salt structure provinces of the world (Hudec & Jackson, 2007). The fault distribution in sediments above salt structures influences...... radiating fault patterns. Here we use a modified version of the numerical spring-slider model introduced by Malthe-Sørenssen et al.(1998a) for simulating the emergence of small scale faults and fractures above a rising salt structure. The three-dimensional spring-slider model enables us to control the....... The modeling shows that purely vertical movement of the salt introduces a mesh of concentric normal faults in the overburden, and that the frequency of radiating faults increases with the amount of lateral movements across the salt-overburden interface. The two end-member fault patterns (concentric vs...

  8. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  9. The dynamic network model (DNET): a model for determining salt dissolution rates and incorporating feedback effects in salt dissolution processes

    International Nuclear Information System (INIS)

    For nuclear waste isolation in deep, geologic formations, transport in groundwater appears to be one of the more likely means for radioactive waste to migrate from the repository to the biosphere. With respect to a repository in bedded salt, transport in groundwater would, for most breachment scenarios, have to be preceded by dissolution of all or portions of the salt layers surrounding the repository. The Dynamic Network (DNET) model provides a capability for investigating the rate of salt dissolution with a variety of disruptive events and processes and also provides a capability for investigating the effects of feedback mechanisms such as thermal expansion, subsidence, fracture formation and salt creep

  10. Cross-sectional survey of salt content in cheese: a major contributor to salt intake in the UK

    OpenAIRE

    Hashem, Kawther M; He, Feng J.; Jenner, Katharine H; MacGregor, Graham A.

    2014-01-01

    Objective To investigate the salt (sodium chloride) content in cheese sold in UK supermarkets. Study design We carried out a cross-sectional survey in 2012, including 612 cheeses available in UK supermarkets. Methods The salt content (g/100 g) was collected from product packaging and nutrient information panels of cheeses available in the top seven retailers. Results Salt content in cheese was high with a mean (±SD) of 1.7±0.58 g/100 g. There was a large variation in salt content between diff...

  11. Salt Repository Project: Data report on corrosion results obtained from excess-salt corrosion test Matrix 1

    International Nuclear Information System (INIS)

    The test discussed in this data report was directed at determining the response of the reference A216 grade WCA steel when it is exposed to anoxic excess-salt conditions at 1500C. The environment used in the test was intended to duplicate the intrusion brine scenario (i.e., the formation of brine by the intrusion of water from an outside source into the repository, with the formation of brine through dissolution of salt from the repository horizon). The salt-brine environment used in the test therefore reflected the expected gross salt composition of the repository horizon

  12. An approach to better understanding of salt weathering on stone monuments - the "petraSalt" research project

    Science.gov (United States)

    Heinrichs, K.; Azzam, R.

    2012-04-01

    Salt weathering is known as a major cause of damage on stone monuments. However, processes and mechanisms of salt weathering still can not be explained satisfactorily. From the expertś point of view, better understanding of salt weathering deserves further comprehensive in-situ investigation jointly addressing active salt weathering processes and controlling factors. The 'petraSalt' research project takes this approach. The rock-cut monuments of Petra / Jordan were selected for studies, since stone type and spectra of monument exposure regimes, environmental influences, salt loading and weathering damage are representative for many stone monuments worldwide. The project aims at real-time / real-scale weathering models that depict characteristic interdependencies between stone properties, monument exposure regimes, environmental influences, salt loading and salt weathering damage. These models are expected to allow reliable rating and interpretation of aggressiveness and damage potential of the salt weathering regimes considering their variability under range of lithology, monument exposure scenarios, environmental conditions and time. The methodological approach systematically combines assessment of weathering damage (type, extent, spatial distribution and progression of damage), assessment of monument exposure characteristics and environmental influences acting on the monuments (monument orientation / geometry, lithology, rain impact, water run-off, rising humidity, wind impact, insolation, heating-cooling and drying-wetting behaviour, etc.), engineering geological studies (structural discontinuities and related failure processes) and investigation of salt loading (type, concentration, spatial distribution and origin of salt, salt crystallization / dissolution, phase transitions, etc.). Besides established methods, very innovative technologies are applied in the course of investigation such as high-resolution 3D terrestrial laser scanning (TLS) and wireless

  13. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs. The effects of processing on blanket performance have been assessed for three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The level of salt processing was found to have little effect on the behavior of the blanket during reactor operation; however, significant effects were observed during the decay period after reactor shutdown

  14. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China); Yang, Z. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Department of Pathology, Xi' an, China, Department of Pathology, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Yuan, Z.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China)

    2014-03-03

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13{sup BN} rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.

  15. Comparative study of wild and transformed salt tolerant bacterial strains on Triticum aestivum growth under salt stress

    Directory of Open Access Journals (Sweden)

    Shazia Afrasayab

    2010-12-01

    Full Text Available Eleven salt tolerant bacteria isolated from different sources (soil, plants and their transformed strains were used to study their influence on Triticum aestivum var. Inqlab-91 growth under salt (100 mM NaCl stress. Salt stress caused reduction in germination (19.4%, seedling growth (46% and fresh weight (39% in non-inoculated plants. In general, both wild and transformed strains stimulated germination, seedling growth and fresh weight in salt free and salt stressed conditions. At 100 mM NaCl, Staphylococcus xylosus ST-1 caused 25% increments in seedling length over respective control. Soluble protein content significantly enhanced (49% under salt stress as compared to salt free control. At 100 mM NaCl parental strain PT-5 resulted about 32% enhancement in protein content over respective control treatment. Salt stress induced the promotion of auxin content in seedlings. Overall, Bacillus subtilis HAa2 and transformed E. coli-SP-7-T, caused 33% and 30% increases in auxin content, respectively, were recorded under salt stress in comparison to control.

  16. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    International Nuclear Information System (INIS)

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13BN rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure

  17. Laboratory investigation of crushed salt consolidation and fracture healing

    International Nuclear Information System (INIS)

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from -5 md to 110 md, respectively. The lowest final porosity (0.05) and permeability (-5 md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing

  18. Laboratory investigation of crushed salt consolidation and fracture healing

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  19. Landfill leachate treatment in rotating biological contactors

    OpenAIRE

    Cortez, Susana

    2010-01-01

    Tese de doutoramento em Engenharia Química e Biológica Sanitary landfilling is the most used and accepted method to eliminate municipal solid waste worldwide due to its economic advantages. The generation of leachate is an inevitable consequence of this practice. Landfill leachate is a high-strength wastewater with great chemical complexity and diversity. In order to avoid discharges to the environment causing negative impacts to the biota or public health, it must be properly collected an...

  20. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...