WorldWideScience

Sample records for aluminum tolerance genes

  1. [Isolation of maize genes related to aluminum tolerance].

    Science.gov (United States)

    Tang, Hua; Zheng, Yong-Lian; He, Li-Yuan; Li, Jian-Sheng

    2005-10-01

    To investigate gene expression profile in response to aluminum stress and to cloning the key genes related to aluminum tolerance, are crucial to genetic improvement of plant aluminum tolerance. In this study, suppression subtractive hybridization method was adopted to construct SSH-cDNA libraries at seedling stage of two maize inbred lines (Fig. 1), of which Mo17 is sensitive to aluminum toxicity and TL94B is tolerant. As a result, a forward SSH-cDNA library including 762 clones and a reverse SSH-cDNA library including 382 clones were constructed for Mo17. In the same way, a forward SSH-cDNA library including 760 clones and a reverse SSH-cDNA library including 380 clones were constructed for TL94B. Identification of these SSH-cDNA libraries shows that the length of inserted fragments ranges from 250 bp to 1.0 kb (Fig. 2), of which nearly 18% are positive clones. Through differential hybridization screening (Fig. 3), 124 and 47 positive clones were screened from forward and reverse SSH-cDNA libraries of Mo17 respectively; 103 and 64 positive clones from forward and reverse SSH-cDNA libraries of TL94B respectively. Total 338 positive clones from four SSH-cDNA libraries were sequenced, and all of the sequences of inserted fragments were analyzed using bioinformatical methods. A total of 232 kinds of EST sequences were obtained. Among these ESTs, 70.2% had significant homology with known genes, and the remaining 29.8% were function-unknown including 21 kinds of newly found ESTs (Table 1). An aluminum tolerant gene, GDP dissociation inhibitor gene, was detected its expression character by Northern hybridization (Fig. 4). These results indicate that the responses of maize to aluminum stress involve the interactions among different signal/metabolism pathways, such as signal transduction of stress-related factors, transcription and regulation of responsive genes, synthesis and transport of substances, changes in cell structures and functions.

  2. Association and linkage analysis of aluminum tolerance genes in maize.

    Directory of Open Access Journals (Sweden)

    Allison M Krill

    Full Text Available BACKGROUND: Aluminum (Al toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. METHODOLOGY: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. CONCLUSIONS: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL, Zea mays aluminum-activated malate transporter2 (ALMT2, S-adenosyl-L-homocysteinase (SAHH, and Malic Enzyme (ME. These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.

  3. Transcriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Abhijit A. Daspute

    2017-08-01

    Full Text Available Aluminum (Al rhizotoxicity is one of the major environmental stresses that decrease global food production. Clarifying the molecular mechanisms underlying Al tolerance may contribute to the breeding of Al-tolerant crops. Recent studies identified various Al-tolerance genes. The expression of these genes is inducible by Al. Studies of the major Arabidopsis thaliana Al-tolerance gene, ARABIDOPSIS THALIANA ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (AtALMT1, which encodes an Al-activated malate transporter, revealed that the Al-inducible expression is regulated by a SENSITIVE TO PROTON RHIXOTOXICITY 1 (STOP1 zinc-finger transcription factor. This system, which involves STOP1 and organic acid transporters, is conserved in diverse plant species. The expression of AtALMT1 is also upregulated by several phytohormones and hydrogen peroxide, suggesting there is crosstalk among the signals involved in the transcriptional regulation of AtALMT1. Additionally, phytohormones and reactive oxygen species (ROS activate various transcriptional responses, including the expression of genes related to increased Al tolerance or the suppression of root growth under Al stress conditions. For example, Al suppressed root growth due to abnormal accumulation of auxin and cytokinin. It activates transcription of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and other phytohormone responsive genes in distal transition zone, which causes suppression of root elongation. On the other hand, overexpression of Al inducible genes for ROS-detoxifying enzymes such as GLUTATHIONE–S-TRANSFERASE, PEROXIDASE, SUPEROXIDE DISMUTASE enhances Al resistance in several plant species. We herein summarize the complex transcriptional regulation of an Al-inducible genes affected by STOP1, phytohormones, and ROS.

  4. Overexpression of B11 Gene in Transgenic Rice Increased Tolerance to Aluminum Stress

    Directory of Open Access Journals (Sweden)

    Devi Media Siska

    2017-04-01

    Full Text Available Rice cultivation on acid soils is mainly constrained by aluminum (Al toxicity. However, rice has tolerance mechanism to Al stress, which is controlled by many genes. B11 gene is one of the Al- tolerance gene candidate isolated from rice var. Hawara Bunar. It has not been known whether overexpression of the gene in Al-sensitive rice is able to increase Al tolerance. The research objective was to analyze root morphological and physiological responses of transgenic rice overexpressing B11 gene to Al stress. The experiment was carried out using five rice genotypes including two varieties (Hawara Bunar and IR64 and three T4 generation of transgenic lines, that are T8-2-4, T8-12-5, and T8-15-41. All rice genotypes were grown in nutrient solution for 24 h (adaptation period, and then were exposed to 15 ppm Al for 72 h (treatment period and recovered in normal nutrient solution for 48 h (recovery period. The result showed that the overexpression of the B11 gene in T8-2-4, T8-12-5, and T8-15-41 transgenic lines improved tolerance to Al stress based on root growth characters, accumulation of Al, root cell membrane lipid peroxidation, and root tip cell structure.

  5. Searching for RFLP markers to identify genes for aluminum tolerance in maize

    International Nuclear Information System (INIS)

    Paiva, E.; Lopes, M.A.; Parentoni, S.N.; Martins, P.R.; Torres, G.A.

    1998-01-01

    The objective of this study was to identify restriction fragment length polymorphism (RFLP) markers linked to Quantitative Trait Loci (QTL) that control aluminum (Al) tolerance in maize. The strategy used was bulked segregant analysis (BSA) and the genetic materials utilized were the F 2 , F 3 and F 4 populations derived from a cross between the Al-susceptible inbred line L53 and Al-tolerant inbred line L1327. The populations were evaluated in a nutrient solution containing a toxic concentration of Al (6 ppm) and relative seminal root length (RSRL) was used as a phenotypic measure of tolerance. Seedlings of the F 2 population with the highest and lowest RSRL values were transplanted to the field and subsequently selfed to obtain F 3 and F 4 families. The efficiency of the phenotypic index for selection was found to be greater when mean values were used instead of individual RSRL values. F 3 and F 4 families were then evaluated in nutrient solution to identify those that were not segregating. One hundred and thirteen probes, with an average interval of 30 cM, covering the 10 maize chromosomes were tested for their ability to discriminate the parental lines. Fifty four of these probes were polymorphic with 46 showing codominance. These probes were hybridized with DNA from two F 3 contrasting, bulks and three probes on chromosome 8 were found to be able distinguish the F 3 contrasting bulks on the basis of band position and intensity. DNA of families from the F 3 bulks hybridized with these probes showed the presence of heterozygous individuals. These three selected probes were also hybridized with DNA from F 2 individuals. Two of them showed a significant regression coefficient with the character. However, each of these probes explained only about 10% of the phenotypic variance observed in 70 F 2 individuals. One of the probes UMC 103 was hybridized with DNA from 168 F 4 families and the regression analysis of RFLP data showed a significant regression coefficient

  6. Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI1 gene derived from plants.

    Science.gov (United States)

    Ezaki, B; Sivaguru, M; Ezaki, Y; Matsumoto, H; Gardner, R C

    1999-02-15

    Eleven aluminum stress-induced genes derived from plants (wheat, Arabidopsis and tobacco) were introduced into Saccharomyces cerevisiae to test if expression of these genes confers Al tolerance. Al sensitivity tests showed that expression of two genes, either an Arabidopsis gene for blue copper binding protein (BCB), or a tobacco gene for the GDP dissociation inhibitor (NtGDI1), conferred Al tolerance. Determinations of total content and localization of Al ions in these transformants suggested that the BCB gene product functions in restricting Al uptake, while expression of the NtGDI1 gene promotes release of Al ions after uptake.

  7. Aluminum tolerance association mapping in triticale

    Directory of Open Access Journals (Sweden)

    Niedziela Agnieszka

    2012-02-01

    Full Text Available Abstract Background Crop production practices and industrialization processes result in increasing acidification of arable soils. At lower pH levels (below 5.0, aluminum (Al remains in a cationic form that is toxic to plants, reducing growth and yield. The effect of aluminum on agronomic performance is particularly important in cereals like wheat, which has promoted the development of programs directed towards selection of tolerant forms. Even in intermediately tolerant cereals (i.e., triticale, the decrease in yield may be significant. In triticale, Al tolerance seems to be influenced by both wheat and rye genomes. However, little is known about the precise chromosomal location of tolerance-related genes, and whether wheat or rye genomes are crucial for the expression of that trait in the hybrid. Results A mapping population consisting of 232 advanced breeding triticale forms was developed and phenotyped for Al tolerance using physiological tests. AFLP, SSR and DArT marker platforms were applied to obtain a sufficiently large set of molecular markers (over 3000. Associations between the markers and the trait were tested using General (GLM and Multiple (MLM Linear Models, as well as the Statistical Machine Learning (SML approach. The chromosomal locations of candidate markers were verified based on known assignments of SSRs and DArTs or by using genetic maps of rye and triticale. Two candidate markers on chromosome 3R and 9, 15 and 11 on chromosomes 4R, 6R and 7R, respectively, were identified. The r2 values were between 0.066 and 0.220 in most cases, indicating a good fit of the data, with better results obtained with the GML than the MLM approach. Several QTLs on rye chromosomes appeared to be involved in the phenotypic expression of the trait, suggesting that rye genome factors are predominantly responsible for Al tolerance in triticale. Conclusions The Diversity Arrays Technology was applied successfully to association mapping studies

  8. Genetic analysis of aluminum tolerance in Brazilian barleys

    Directory of Open Access Journals (Sweden)

    Minella Euclydes

    2002-01-01

    Full Text Available Aluminum (Al toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.

  9. Proteomics of aluminum tolerance in plants.

    Science.gov (United States)

    Zheng, Lu; Lan, Ping; Shen, Ren Fang; Li, Wen Feng

    2014-03-01

    Aluminum (Al) toxicity is a major constraint for plant root development and growth as well as crop yield in acidic soils, which constitute approximately 40% of the potentially arable lands worldwide. The mechanisms of Al tolerance in plants are not well understood. As a whole systems approach, proteomic techniques have proven to be crucial as a complementary strategy to explore the mechanism in Al toxicity. Review here focuses on the potential of proteomics to unravel the common and plant species-specific changes at proteome level under Al stress, via comparative analysis of the Al-responsive proteins uncovered by recent proteomic studies using 2DE. Understanding the mechanisms of Al tolerance in plants is critical to generate Al resistance crops for developing sustainable agriculture practices, thereby contributing to food security worldwide. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tolerance of arabica coffee cultivars for aluminum in nutritive solution

    Directory of Open Access Journals (Sweden)

    Célia Maria Peixoto de Macedo

    2011-10-01

    Full Text Available This work aimed to evaluate the Coffea arabica cultivars for aluminum toxicity tolerance, in modified Hoagland solution. A completely randomized design with five repetitions in a factorial 4 x 4 (cultivar x combinations of aluminum was used. After 44 days of the sowing, were transferred ten seedlings each cultivar germinated in the absence of Al3+ to solution without Al3+, and ten for solution with Al3+; ten seedlings each cultivar germinated in presence of Al3+ to solution without Al3+, and ten for solution with Al3+. In the treatment with aluminum, the element was added to the nutritive solution in the concentration of 0.83 mmol L-1 as Al2(SO43.16H2O. The cultivars Catuaí Amarelo IAC 62 and Iapar 59 were tolerant to the aluminum; cultivar Oeiras presented intermediate tolerance, while cultivar Obatã IAC 1669-20 was sensitive. The tolerance of the coffee cultivars to the aluminum during the initial development of the seedlings did not depend on the presence of aluminum in the germination phase.

  11. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) toxicity is a major constraint for crop production on acid soils that comprise approximately 50% of arable land in the tropics and subtropics. Rice is the most Al tolerant cereal crop, and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natur...

  12. Identification and characterization of acidity-tolerant and aluminum ...

    African Journals Online (AJOL)

    An acidity-tolerant, aluminum resistant bacterium was isolated from tea soils in Kagoshima Experimental Station (Japan). Based on the morphological, physiological and biochemical characteristics and 16S rDNA nucleotide sequence analysis, the bacterium was identified as Bacillus sp. An 3 (DQ234657) in Bacillus cereus ...

  13. 40 CFR 180.415 - Aluminum tris (O-ethylphosphonate); tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum tris (O-ethylphosphonate... Tolerances § 180.415 Aluminum tris (O-ethylphosphonate); tolerances for residues. (a) General. Tolerances are established for residues of the fungicide aluminum tris(O-ethylphosphonate) in or on the following food...

  14. Natural variation underlies alterations in NRAT1 expression and function that play a key role in rice aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) toxicity is a major constraint for crop production on acid soils which comprise approximately 40% of arable land in the tropics and subtropics. Rice is the most Al tolerant cereal crop, and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natu...

  15. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  16. Different Aluminum Tolerance among Indica, Japonica and Hybrid Rice Varieties

    Directory of Open Access Journals (Sweden)

    Shu Chang

    2015-05-01

    Full Text Available Hydroponic cultures were conducted to compare the aluminum (Al tolerance among different rice (Oryza sativa L. varieties, including indica, japonica and their hybrids. The results showed that the root growth of rice plant was inhibited in different degrees among Al treated varieties. The Al tolerance observed through relative root elongation indicated that five japonica varieties including Longjing 9, Dharial, LGC 1, Ribenyou and Koshihikari were relatively more tolerant than indica varieties. Most indica varieties in this study, such as Aus 373 and 9311 (awnless, were sensitive to Al toxicity. The Al tolerance of most progenies from japonica × indica or indica × japonica crosses was constantly consistent with indica parents. The differences of Al tolerance among Longjing 9 (japonica, Yangdao 6 (indica and Wuyunjing 7 (japonica were studied. Biomass and the malondial-dehyde content of Yangdao 6 under Al exposure decreased and increased, respectively, while there was no significant effect on those of Longjing 9 and Wuyunjing 7. Remarkable reduction of root activities was observed in all these three rice varieties. Significantly higher Al content in roots was found in Yangdao 6 compared to Longjing 9 or Wuyunjing 7.

  17. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance

    Directory of Open Access Journals (Sweden)

    Huan Li

    2016-07-01

    Full Text Available Seedlings of aluminum-tolerant ‘Xuegan’ (Citrus sinensis and Al-intolerant ‘sour pummelo’ (Citrus grandis were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ, we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance.

  18. Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance.

    Science.gov (United States)

    Li, Huan; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Lu, Yi-Bin; Chen, Li-Song

    2016-07-21

    Seedlings of aluminum-tolerant 'Xuegan' (Citrus sinensis) and Al-intolerant 'sour pummelo' (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl₃·6H₂O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance.

  19. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride.

    Science.gov (United States)

    Parks, David A; Tittmann, Bernhard R

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for non-destructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminum-nitride- based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 x 10(18) neutron/cm(2) and 5.8 x 10(18) neutron/ cm(2), respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  20. Combining ability of grain sorghum lines selected for aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Cicero Beserra Menezes

    2014-03-01

    Full Text Available The purpose of this study was to estimate combining ability of 58 sorghum lines previously selected for Aluminum (Al tolerance. One hundred sixty-five hybrids were evaluated at three levels of Al saturation (0%, 20% and 50% at the same season. General Combining Ability (GCA effects were significant for female lines for all three traits. GCA effects for male lines were significant only for plant height. Specific Combining Ability (SCA effects were significant only for flowering time. The ratio GCA to SCA was greater than the unity, indicating the prevalence of additive effects for the control of Al tolerance. F7, F14, F17, F20, F21, F24, F29, F31, F41, F42, F48, F51, F54 and F55 lines contributed to increase yield, while F29, F48 and F51 also contributed to reduce flowering time. M2 was the best male line since it contributed to increase yield and plant height, and to reduce flowering time.

  1. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean.

    Science.gov (United States)

    Zhang, Shuang; Zhou, Jia; Wang, Guihua; Wang, Xiurong; Liao, Hong

    2015-12-01

    Arbuscular mycorrhizal (AM) fungi protect plants against aluminum (Al) toxicity, but the mechanisms of Al and phosphorus (P) interactions in relation to Al tolerance in mycorrhizal plants are only poorly understood. In this study, varying Al and P treatments were applied to soybean plants cultivated in the presence or absence of three different AM fungi. The results showed that plants in symbiotic association with Gigaspora margarita displayed higher Al tolerance than Rhizophagus irregularis or Glomus claroideum. The effectiveness of G. margarita appeared to be associated with more abundant arbuscules and less affected intraradical hyphae compared to no Al controls. The highest levels of Al toxicity mitigation were observed with the combination of high P availability and AM fungal inoculation, which was associated with a concomitant increase in the expression of the AM-inducible phosphate (Pi) transporter gene GmPT9 in soybean. Taken together, these results suggest that AM symbiosis can alleviate Al toxicity in soybean through enhanced P nutrition, as well as, the alteration of the abundance of mycorrhizal infection structures. These findings highlight the importance of P nutrition status in ameliorating Al toxicity in mycorrhizal plants.

  2. Rapid screening for aluminum tolerance in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Carlos Daniel Giaveno

    2000-12-01

    Full Text Available A significant decrease in maize grain yield due to aluminum toxicity is considered to be one of the most important agricultural problems for tropical regions. Genetic improvement is a useful approach to increase maize yield in acid soils, but this requires a rapid and reliable method to discriminate between genotypes. In our work we investigated the feasibility of using hematoxylin staining (HS to detect Al-tolerant plants at the seedling stage. The original population along with two populations obtained after one cycle of divergent selection were evaluated by net root growth (NRG and HS after 7 days in nutrient solution. Results showed a negative correlation between NRG and HS in all populations, in which sensitive plants, characterized by low NRG, exhibited more intense staining than tolerant plants. These results indicate that HS is a useful procedure for selecting Al-tolerant maize seedlings.A importante diminuição nos rendimentos de milho causados pela toxidez produzida pelo alumínio é considerada um dos mais importantes problemas nas regiões tropicais. O melhoramento genético é uma metodologia útil para aumentar os rendimentos do milho em solos ácidos, requerendo um método rápido e seguro que permita diferenciar os diferentes genótipos. O objetivo deste trabalho foi avaliar a possibilidade de utilizar a técnica da coloração com hematoxilina (HS na detecção de plântulas tolerantes ao alumínio. Duas populações obtidas de um ciclo de seleção divergente e a original, foram avaliadas depois de sete dias em solução nutritiva utilizando os parâmetros NRG (crescimento líquido da raiz principal e HS. Os resultados apresentaram uma correlação negativa entre NRG e HS em todas as populações devido ao fato de que as plântulas suscetíveis, caracterizadas por um baixo NRG, apresentaram uma coloração mais intensa do que as tolerantes. Nossos resultados permitem concluir que a técnica de coloração com hematoxilina

  3. Melhoramento do trigo: I. Hereditariedade da tolerância à toxicidade do alumínio Wheat breeding: I - Inheritance of tolerance to aluminum toxicity in wheat

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1981-01-01

    áveis pela tolerância a essas concentrações mostrou uma quebra gradual da dominância à medida que a concentração de alumínio foi aumentada.Four wheat cultivars showing different reactions to Al toxicity under field conditions and presenting a great variation in plant height were screened in nutrient solution with different concentrations of aluminum. The tall Brazilian cultivar, 'BH-1146' was tolerant to 10 ppm of Al; 'Atlas-66' developed in North Carolina was tolerant to 6 ppm but moderately tolerant to 10 ppm of aluminum. The dwarf cultivar Tordo, a Tom Thumb source of dwarfism, was tolerant to 2 ppm but totally sensitive at 6 ppm. The Mexican semidwarf cultivar Siete Cerros, a Niorin-10 derivative, was sensitive to 2 ppm of Al. Parents, F1 and F2 generations from the crosses between tolerant ('BH-1146' and 'Atlas-66' and sensitive ('Tordo' and 'Siete Cerros' cultivars to 6 ppm were screened under 3 ppm and the same genotypes plus the backcrosses to both types of parents (BCª and BCb were screened at 6 ppm. Parents, F1 and F2 progenies from BCª and BCb involving the cross BH-1146/Siete Cerros were retested under 3 and 6 ppm of Al. Parents, F1 and F2 for the cross between 'BH-1146' and 'Atlas-66' were screened under 6 and 10 ppm of Al. At 2 and 3 ppm of Al, parents, F1 and F2 from the cross Tordo/Siete Cerros were studied. The results obtained suggest that 'BH-1146' differs from Atlas-66, Siete Cerros and Tordo by one pair of dominant gene. This pair of gene was efficient even at 10 ppm of aluminum, so should be used in a breeding program towards aluminum tolerance when high levels of this element are involved. The cultivar Atlas-66 showed to have two pairs of dominant genes for Al tolerance but when the aluminum concentration increased from 3 and 6 to 10 ppm these pairs of genes became less efficient. 'Tordo' differs from 'Siete Cerros' by a pair of dominant gene for tolerance at 2 ppm of Al. So 'Tordo' would be useful as a source of tolerance when low levels of

  4. Tolerance of upland rice cultivars to aluminum and acidic pH

    Directory of Open Access Journals (Sweden)

    Lucas B. de Freitas

    Full Text Available ABSTRACT Although the upland rice has been known by its moderate tolerance to aluminum, the presence of exchangeable aluminum in acidic soils may inhibit and compromise the adequate plant growth. However, there are few reports detailing modern cultivars used by Brazilian farmers with respect to their susceptibility to aluminum toxicity. This study aimed to characterize the cultivars currently used in the upland rice production with respect to their tolerance to aluminum and their growth under low pH conditions without aluminum. The treatments were arranged in a randomized block design, in a 2 x 9 factorial scheme: presence and absence of aluminum in the nutrient solution and nine upland rice cultivars (BRS Monarca, BRS Pepita, BRS Bonança, BRS Primavera, BRS Sertaneja, Maravilha, IAC 202, ANCambará and ANa7007, with four replicates. Based on the distribution of upland rice cultivars in quartiles, they were divided into two groups; aluminum-tolerant group: BRS Pepita, BRS Primavera and ANa7007; and aluminum-susceptible group: BRS Monarca, BRS Bonança, BRS Sertaneja, Maravilha, IAC 202 and ANCambará.

  5. Physiological and molecular analysis of selected Kenyan maize lines for aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance. 112 Kenyan maize accessio...

  6. Genetic architecture of aluminum tolerance in rice (Oryza sativa determined through genome-wide association analysis and QTL mapping.

    Directory of Open Access Journals (Sweden)

    Adam N Famoso

    2011-08-01

    Full Text Available Aluminum (Al toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1 were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype-genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs

  7. Actin is bundled in activation-tagged tobacco mutants that tolerate aluminum.

    Science.gov (United States)

    Ahad, Abdul; Nick, Peter

    2007-01-01

    A panel of aluminum-tolerant (AlRes) mutants was isolated by protoplast-based T-DNA activation tagging in the tobacco cultivar SR1. The mutants fell into two phenotypic classes: a minority of the mutants were fertile and developed similarly to the wild type (type I), the majority was male-sterile and grew as semi-dwarfs (type II). These traits, along with the aluminum tolerance, were inherited in a monogenic dominant manner. Both types of mutants were characterized by excessive bundling of actin microfilaments and by a strongly increased abundance of actin, a phenotype that could be partially phenocopied in the wild type by treatment with aluminum chloride. The actin bundles could be dissociated into finer strands by addition of exogenous auxin in both types of mutants. However, actin microfilaments and leaf expansion were sensitive to blockers of actin assembly in the wild type and in the mutants of type I, whereas they were more tolerant in the mutants of type II. The mutants of type II displayed a hypertrophic development of vasculature, manifest in form of supernumerary leaf veins and extended xylem layers in stems and petioles. Whereas mutants of type I were characterized by a normal, but aluminum-tolerant polar auxin-transport, auxin-transport was strongly promoted in the mutants of type II. The phenotype of these mutants is discussed in terms of reduced endocytosis leading, concomitantly with aluminum tolerance, to changes in polar auxin transport.

  8. Identification of STOP1-Like Proteins Associated With Aluminum Tolerance in Sweet Sorghum (Sorghum bicolor L.

    Directory of Open Access Journals (Sweden)

    Sheng Huang

    2018-02-01

    Full Text Available Aluminum (Al toxicity in acidic soils affects crop production worldwide. C2H2-type zinc finger transcription factor STOP1/ART1-mediated expression of Al tolerance genes has been shown to be important for Al resistance in Arabidopsis, rice and other crop plants. Here, we identified and characterized four STOP1-like proteins (SbSTOP1a, SbSTOP1b, SbSTOP1c, and SbSTOP1d in sweet sorghum, a variant of grain sorghum (Sorghum bicolor L.. Al induced the transcription of the four SbSTOP1 genes in both time- and Al concentration-dependent manners. All SbSTOP1 proteins localized to the cell nucleus, and they showed transcriptional activity in a yeast expression system. In the HEK 293 coexpression system, SbSTOP1d showed transcriptional regulation of SbSTAR2 and SbMATE, indicating the possible existence of another SbSTOP1 and SbSTAR2-dependent Al tolerance mechanism in sorghum apart from the reported SbMATE-mediated Al exclusion mechanism. A transgenic complementation assay showed that SbSTOP1d significantly rescued the Al-sensitivity characteristic of the Atstop1 mutant. Additionally, yeast two-hybrid and bimolecular fluorescence complementation (BiFC assays showed that SbSTOP1d interacted with SbSTOP1b and SbSTOP1d itself, suggesting that SbSTOP1 may function as a homodimer and/or heterodimer. These results indicate that STOP1 plays an important role in Al tolerance in sweet sorghum and extend our understanding of the complex regulatory mechanisms of STOP1-like proteins in response to Al toxicity.

  9. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification.

    Directory of Open Access Journals (Sweden)

    Haixia Chen

    Full Text Available Hydrangea (Hydrangea macrophylla is a well known Al-accumulating plant, showing a high level of aluminum (Al tolerance and accumulation. Although the physiological mechanisms for detoxification of Al and the roles of Al in blue hydrangea sepals have been reported, the molecular mechanisms of Al tolerance and accumulation are poorly understood in hydrangea. In this study, we conducted a genome-wide transcriptome analysis of Al-response genes in the roots and leaves of hydrangea by RNA sequencing (RNA-seq. The assembly of hydrangea transcriptome provides a rich source for gene identification and mining molecular markers, including single nucleotide polymorphism (SNP and simple sequence repeat (SSR. A total of 401,215 transcripts with an average length of 810.77 bp were assembled, generating 256,127 unigenes. After annotation, 4,287 genes in the roots and 730 genes in the leaves were up-regulated by Al exposure, while 236 genes in the roots and 719 genes in the leaves were down-regulated, respectively. Many transporters, including MATE and ABC families, were involved in the process of Al-citrate complex transporting from the roots in hydrangea. A plasma membrane Al uptake transporter, Nramp aluminum transporter was up-regulated in roots and leaves under Al stress, indicating it may play an important role in Al tolerance by reducing the level of toxic Al. Although the exact roles of these candidate genes remain to be examined, these results provide a platform for further functional analysis of the process of detoxification of Al in hydrangea.

  10. Combining drought and aluminum toxicity tolerance to improve ...

    African Journals Online (AJOL)

    Moisture stress and aluminium toxicity in sorghum production can be overcome by breeding for tolerance. This study was set up to determine the response of sorghum (Sorghum bicolor L.) genotypes to post- anthesis drought and aluminium toxicity. Sorghum inbred P1 with stay green drought tolerance was crossed with P2, ...

  11. Polyphenol-Aluminum Complex Formation: Implications for Aluminum Tolerance in Plants.

    Science.gov (United States)

    Zhang, Liangliang; Liu, Ruiqiang; Gung, Benjamin W; Tindall, Steven; Gonzalez, Javier M; Halvorson, Jonathan J; Hagerman, Ann E

    2016-04-20

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al(3+) and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and 6. We used spectrophotometric titration and chemometric modeling to determine stability constants and stoichiometries for the aluminum-phenol (AlL) complexes. The structures and spectral features of aluminum-methyl gallate complexes were evaluated with quantum chemical calculations. The high molecular weight polyphenols formed Al3L2 complexes with conditional stability constants (β) ∼ 1 × 10(23) at pH 6 and AlL complexes with β ∼ 1 × 10(5) at pH 4. Methyl gallate formed AlL complexes with β = 1 × 10(6) at pH 6 but did not complex aluminum at pH 4. At intermediate metal-to-polyphenol ratios, high molecular weight polyphenols formed insoluble Al complexes but methyl gallate complexes were soluble. The high molecular weight polyphenols have high affinities and solubility features that are favorable for a role in aluminum detoxification in the environment.

  12. Isolation of cowpea genes conferring drought tolerance ...

    African Journals Online (AJOL)

    The main objective of this study was to identify and isolate the genes conferring drought tolerance in cowpea. A cDNA library enriched for cowpea genes expressed specifically during responses to drought was constructed. A procedure called suppression subtractive hybridisation (SSH) was successfully employed to obtain ...

  13. Effects of exogenous salicylic acid on cell wall polysaccharides and aluminum tolerance of trichosanthes kirilowii

    International Nuclear Information System (INIS)

    Xu, G.; Liu, D.; Xio, Y.; Liu, P.; Gao, P. P.; Cao, L.; Wu, Y.

    2015-01-01

    A hydroponic experiment was conducted to study the effects of exogenous salicylic acid (SA) on root length, relative aluminum content in the apical cell wall, acid phosphatase (APA) and pectin methyl esterase (PME) activity, root pectin, hemicellulose 1(HC1), and hemicellulose 2 (HC2) contents of Anguo Trichosanthes kirilowii (Al-tolerant genotype) and Pujiang T. kirilowii (Al-sensitive genotype) under 800 micro mol/L of aluminum stress. The results showed that the growth of Al-tolerant Anguo T. kirilowii and Al-sensitive Pujiang T. kirilowii was inhibited when exposed to 800 micro mol/L of aluminum solution. APA and PME activities were also enhanced for both genotypes. The contents of relative aluminum, pectin, HC1, and HC2, as well as Al accumulation in the root tips were increased under aluminum toxicity. Pujiang T. kirilowii showed higher enzyme activity and cell wall polysaccharide contents than Anguo T. kirilowii. In addition, the root cell wall pectin, HC1, and HC2 contents of Pujiang T. kirilowii were increased by a large margin, showing its greater sensitivity to aluminum toxicity. Root length is an important indicator of aluminum toxicity, and has an important relationship with cell wall polysaccharide content. Aluminum toxicity led to the accumulation of pectin and high PME activity, and also increased the number of free carboxyl groups, which have more aluminum binding sites. Membrane skim increased extensively with the increase in APA activity, damaging membrane structure and function. Different SA concentrations can decrease enzyme activity and cell wall polysaccharide content to some extent. With the addition of different SA concentrations, the root relative aluminum content, cell wall polysaccharide content, APA and PME activities decreased. Aluminum toxicity to both genotypes of T. kirilowii was relieved in different degrees as exogenous SA concentration increased. Inter-simple sequence repeat (ISSR) marker was used to examine the genetic distance

  14. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    Science.gov (United States)

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  15. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-01-01

    Full Text Available Aluminum (Al is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104 was cloned from cabbage (Brassica oleracea. BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La, cadmium (Cd, zinc (Zn, or copper (Cu. Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.

  16. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India

    Science.gov (United States)

    Awasthi, Jay Prakash; Saha, Bedabrata; Regon, Preetom; Sahoo, Smita; Chowra, Umakanta; Pradhan, Amit; Roy, Anupam; Panda, Sanjib Kumar

    2017-01-01

    Aluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it’s concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR) protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h irrespective of the dose used in the study. PMID:28448589

  17. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress.

    Science.gov (United States)

    Wang, Chao; Wang, Chang Yi; Zhao, Xue Qiang; Chen, Rong Fu; Lan, Ping; Shen, Ren Fang

    2013-10-01

    Rhodotorula taiwanensis RS1 is a high-aluminum (Al)-tolerant yeast that can survive in Al concentrations up to 200mM. The mechanisms for the high Al tolerance of R. taiwanensis RS1 are not well understood. To investigate the molecular mechanisms underlying Al tolerance and toxicity in R. taiwanensis RS1, Al toxicity-induced changes in the total soluble protein profile were analyzed using two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry. A total of 33 differentially expressed proteins responding to Al stress were identified from approximately 850 reproducibly detected proteins. Among them, the abundance of 29 proteins decreased and 4 increased. In the presence of 100mM Al, the abundance of proteins involved in DNA transcription, protein translation, DNA defense, Golgi functions and glucose metabolism was decreased. By contrast, Al treatment led to increased abundance of malate dehydrogenase, which correlated with increased malate dehydrogenase activity and the accumulation of intracellular citrate, suggesting that Al-induced intracellular citrate could play an important role in detoxification of Al in R. taiwanensis RS1. © 2013.

  18. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  19. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.

    Science.gov (United States)

    Awasthi, Jay Prakash; Saha, Bedabrata; Regon, Preetom; Sahoo, Smita; Chowra, Umakanta; Pradhan, Amit; Roy, Anupam; Panda, Sanjib Kumar

    2017-01-01

    Aluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH Eastern India 80% soil are acidic). Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check) were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root) of rice seedlings due to Al (100 μM) toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it's concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR) protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h irrespective of the dose used in the study.

  20. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.

    Directory of Open Access Journals (Sweden)

    Jay Prakash Awasthi

    Full Text Available Aluminum (Al is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH <5. Acidic soil significantly limits crop production mainly due to Al3+ toxicity worldwide, impacting approximately 50% of the world's arable land (in North-Eastern India 80% soil are acidic. Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root of rice seedlings due to Al (100 μM toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it's concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h

  1. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil.

    Science.gov (United States)

    Da Mota, Fabio Faria; Gomes, Eliane Aparecida; Marriel, Ivanildo Evodio; Paiva, Edilson; Seldin, Lucy

    2008-05-01

    Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.

  2. Genetic variability and inheritance to aluminum tolerance in nutrient solution in triticale

    Directory of Open Access Journals (Sweden)

    Allan Henrique Silva

    2014-03-01

    Full Text Available Triticale has shown different behavior to aluminum toxicity (A1(3+ when applied nutrient solution. This study had the objective of evaluating 19 triticale lines inserted at International Maize and Wheat Improvement Center (CIMMYT, IAC-5 cultivar and two control cultivars of wheat in the presence of 0, 3, 6, 9, 12 and 15 mg L- 1 of Al3+. Afterwards, four genotypes being two tolerant and two sensitive were chosen to obtain the F1's, F2's, RC1's and RC2's generations, in all possible crossing. The seedlings were submitted to 6 mg L- 1 of Al3+ and analyzed later on (tolerant and sensitive by the chi-square method. The root growth was also obtained to estimate the genetic parameters involved in the character control. The trials were carried out in laboratories, in nutritive solution. The genotypes were tolerant to 15 mg L- 1 of Al3+, exception the line 14 (P3, sensitive to 3 mg L- 1 of Al3+ and the line 13, 17 and the cultivar IAC-5 (P4, sensitive to 6 mg L- 1 of Al3+, the line 15 sensitive to 12 mg L- 1 of Al3+ and the lines 16 and 18 sensitive to 15 mg L- 1 of Al3+. It was concluded that the inheritance to tolerance to aluminum toxicity is dominant and governed by a pair of alleles. The genetic parameters involved in the root growth control in solution containing 6 mg L- 1 of Al3+ also revealed simple inheritance, suggesting a selection in the first segregating generations.

  3. Aluminum tolerance on genotypes of signal grass Tolerância ao alumínio em genótipos de capim-braquiária

    Directory of Open Access Journals (Sweden)

    Gislayne de Araujo Bitencourt

    2011-02-01

    Full Text Available The objective of this work was to evaluate aluminum tolerance of five genotypes of Urochloa decumbens (D24, CD24-2, CD24-27, CD24-45 e D62 and five genotypes of Urochloa ruziziensis (R30, R44, R46, R50 and R125 in hydroponic system. Uniform tillers were collected from these genotypes and transferred to two solutions: solution 1 (200 μM CaCl2, pH 4.2 and solution 2 (200 μM CaCl2 + 200 μM AlCl3, pH 4.2. Twenty-one days later, the roots of the plants were separated, stained and digitalized for analysis of the length and diameter of the main root. The experiment was conducted in a completely randomized design, in factorial (genotypes × doses with three replications. A significant interaction occurred between genotype and dose for length and width of the main root, and the results presented in average, a significant difference for most genotypes. The means of main root length in the absence and presence of aluminum were not significant for D62 (U. decumbens cv. Basilisk, CD24-45 and R46. Means were not significant for the diameter of the main root for CD24-2, CD24-27 and D62. Genotype D62 was the only one classified as tolerant to aluminum and R50 the only one classified as sensitive. Most evaluated genotypes showed medium to low tolerance. This classification was based on confidence intervals (IC 99% for the mean of the relative tolerance indices estimated for length and diameter of the main root. These results can be used in the choice of progenitors aiming at developing segregating populations for studies of inheritance and mapping of genes and/or loci related to aluminum tolerance in Urochloa.O objetivo neste trabalho foi avaliar a tolerância ao alumínio de cinco genótipos de Urochloa decumbens (D24, CD24-2, CD24-27, CD24-45 e D62 e cinco de Urochloa ruziziensis (R30, R44, R46, R50 e R125 em cultivo hidropônico. Desses genótipos, foram coletados perfilhos uniformes que foram transferidos para duas soluções: solução 1 (200 μM CaCl2

  4. Quantitative iTRAQ Proteomics Revealed Possible Roles for Antioxidant Proteins in Sorghum Aluminum Tolerance.

    Science.gov (United States)

    Zhou, Dangwei; Yang, Yong; Zhang, Jinbiao; Jiang, Fei; Craft, Eric; Thannhauser, Theodore W; Kochian, Leon V; Liu, Jiping

    2016-01-01

    Aluminum (Al) toxicity inhibits root growth and limits crop yields on acid soils worldwide. However, quantitative information is scarce on protein expression profiles under Al stress in crops. In this study, we report on the identification of potential Al responsive proteins from root tips of Al sensitive BR007 and Al tolerant SC566 sorghum lines using a strategy employing iTRAQ and 2D-liquid chromatography (LC) coupled to MS/MS (2D-LC-MS/MS). A total of 771 and 329 unique proteins with abundance changes of >1.5 or abundant in the tolerant line than in the sensitive one after Al treatment, while opposite trends were observed for proteins involved in lignin biosynthesis. Higher levels of ROS accumulation in root tips of the sensitive line due to decreased activity of antioxidant enzymes could lead to higher lignin production and hyper-accumulation of toxic Al in cell walls. These results indicated that activities of peroxidases and the balance between production and consumption of ROS could be important for Al tolerance and lignin biosynthesis in sorghum.

  5. Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria

    Directory of Open Access Journals (Sweden)

    Bruno Lima Soares

    2014-06-01

    Full Text Available Cowpea (Vigna unguiculata cultivation in northern and northeastern Brazil provides an excellent source of nutrients and carbohydrates for the poor and underprivileged. Production surplus leads to its consumption in other regions of Brazil and also as an export commodity. Its capacity to establish relationships with atmospheric nitrogen-fixing bacteria is crucial to the reduction of production costs and the environmental impact of nitrogen fertilizers. This study assessed the symbiotic efficiency of new strains of symbiotic nitrogen-fixing bacteria with cowpea and their tolerance to pH and aluminum. Twenty-seven strains of bacteria from different soils were evaluated under axenic conditions. These strains were compared to the following inoculant strains: INPA03-11B, UFLA03-84 and BR3267 and two controls that were not inoculated (with and without mineral nitrogen. Six strains and the three strains approved as inoculants were selected to increase the dry weight production of the aerial part (DWAP and were tested in pots with soil that had a high-density of nitrogen-fixing native rhizobia. In this experiment, three strains (UFLA03-164, UFLA03-153, and UFLA03-154 yielded higher DWAP values. These strains grow at pH levels of 5.0, 6.0, 6.8 and at high aluminum concentration levels, reaching 10(9 CFU mL-1. In particular UFLA03-84, UFLA03-153, and UFLA03-164 tolerate up to 20 mmol c dm-3 of Al+3. Inoculation with rhizobial strains, that had been carefully selected according to their ability to nodulate and fix N2, combined with their ability to compete in soils that are acidic and contain high levels of Al, is a cheaper and more sustainable alternative that can be made available to farmers than mineral fertilizers.

  6. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis.

    Science.gov (United States)

    Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Zhu, Jiaojiao; Pan, Junting; Wang, Weidong; Chang, Pinpin; Cui, Chuanlei; Shen, Jiazhi; Fang, Wanping; Zhu, Xujun; Wang, Yuhua

    2017-10-01

    Tea plant (Camellia sinensis (O.) Kuntze) can survive from high levels of aluminum (Al) in strongly acidic soils. However, the mechanism driving its tolerance to Al, the predominant factor limiting plant growth in acid condition, is still not fully understood. Here, two-year-old rooted cuttings of C. sinensis cultivar 'Longjingchangye' were used for Al resistance experiments. We found that the tea plants grew better in the presence of 0.4 mM Al than those grew under lower concentration of Al treatments (0 and 0.1 mM) as well as higher levels treatment (2 and 4 mM), confirming that appropriate Al increased tea plant growth. Hematoxylin staining assay showed that the apical region was the main accumulator in tea plant root. Subsequently, immunolocalization of pectins in the root tip cell wall showed a rise in low-methyl-ester pectin levels and a reduction of high-methyl-ester pectin content with the increasing Al concentration of treatments. Furthermore, we observed the increased expressions of C. sinensis pectin methylesterase (CsPME) genes along with the increasing de-esterified pectin levels during response to Al treatments. Additionally, the levels of organic acids increased steadily after treatment with 0.1, 0.4 or 2 mM Al, while they dropped after treatment with 4 mM Al. The organic acids secretion from root followed a similar trend. Similarly, a gradual increase in malate dehydrogenase (MDH), citrate synthase (CS) and glycolate oxidase (GO) enzyme activities and relevant metabolic genes expression were detected after the treatment of 0.1, 0.4 or 2 mM Al, while a sharp decrease was resulted from treatment with 4 mM Al. These results confirm that both pectin methylesterases and organic acids contribute to Al tolerance in C. sinensis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    tropics. Improving drought tolerance and productivity is one of the most difficult tasks for cereal breeders. The diffi- culty arises from the diverse strategies adopted by plants themselves to combat drought stress depending on the timing,. Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.).

  8. A potato NOA gene increased salinity tolerance in Arabidopsis ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... the ACTIN gene was used as internal standard (Table 1). Analysis of transgenic plants for tolerance to salt stress. A. thaliana ecotype Colnumbia, Atnoa1, and transgenic plants with were used for analysis of salt tolerance. Plant survival assay. Four-week-old plants grown in potting soil with three repetitions.

  9. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  10. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  11. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  12. Rapid activation of catalase followed by citrate efflux effectively improves aluminum tolerance in the roots of chick pea (Cicer arietinum).

    Science.gov (United States)

    Sharma, Manorma; Sharma, Vinay; Tripathi, Bhumi Nath

    2016-05-01

    The present study demonstrates the comparative response of two contrasting genotypes (aluminum (Al) tolerant and Al sensitive) of chick pea (Cicer arietinum) against Al stress. The Al-tolerant genotype (RSG 974) showed lesser inhibition of root growth as well as lower oxidative damages, measured in terms of the accumulation of H2O2 and lipid peroxidation compared to the Al-sensitive genotype (RSG 945). The accumulation of Al by roots of both genotypes was almost equal at 96 and 144 h after Al treatment; however, it was higher in Al-tolerant than Al-sensitive genotype at 48 h after Al treatment. Further, the Al-mediated induction of superoxide dismutase (SOD) activity was significantly higher in Al-tolerant than Al-sensitive genotype. Ascorbate peroxidase (APX) activity was almost similar in both genotypes. Al treatment promptly activated catalase activity in Al-tolerant genotype, and it was remarkably higher than that of Al-sensitive genotype. As another important Al detoxification mechanism, citrate efflux was almost equal in both genotypes except at 1000 μM Al treatment for 96 and 144 h. Further, citrate carrier and anion channel inhibitor experiment confirmed the contribution of citrate efflux in conferring Al tolerance in Al-tolerant genotype. Based on the available data, the present study concludes that rapid activation of catalase (also SOD) activity followed by citrate efflux effectively improves Al tolerance in chick pea.

  13. Tolerance associated gene expression following allogeneic hematopoietic cell transplantation.

    Directory of Open Access Journals (Sweden)

    Joseph Pidala

    Full Text Available Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT. In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT and non-tolerant (n = 17, median 39.5 post-HCT HCT recipients and healthy control subjects (n = 10 for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL group and 122 for non-tolerant (non-TOL. These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted.

  14. [Mapping and cloning of low phosphorus tolerance genes in soybeans].

    Science.gov (United States)

    Dan, Zhang; Haina, Song; Hao, Cheng; Deyue, Yu

    2015-04-01

    Soybean is a major source of edible oil and phytoprotein. Low phosphorus available in soil is an important factor limiting the current soybean production. Effective ways to solve the problem include identification of germplasms and genes tolerant to low-phosphorus stress, and cultivation of soybean varieties with high phosphorus efficiency. Recently many researches have been carrying out investigations to map and clone genes related to phosphorus efficiency in soybeans. However, due to the complexity of the soybean genome and little knowledge of functional genes, it has been difficult to understand the mechanism of soybean tolerance to low phosphorus. Although quantitative trait locus (QTL) mapping related to low phosphorus tolerance has made some progress, it remains elusive to obtain accurate candidate genes for molecular breeding applications, due to the limited accuracy of QTL. Even for the cloned soybean low phosphorus tolerance genes, the molecular mechanisms are largely unknown, further limiting the application to breeding. In this review, we summarize the progresses on mapping, cloning and functional characterization of soybean low phosphorus tolerance genes.

  15. Herança da tolerância ao alumínio em populações híbridas de trigo Inheritance of aluminum tolerance in wheat hybrid populations

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO DE OLIVEIRA CAMARGO

    2000-03-01

    Full Text Available Plântulas originárias de populações híbridas, em geração F2, de 26 cruzamentos entre cultivares de trigo tolerantes (BH-1146, IAC-227, IAC-24, IAC-60, C-3, IAC-5, IAC-18 e IAC-21 e sensíveis (Anahuac 75, IAC-287, IAC-289, Siete Cerros e Veery "S" à toxicidade de alumínio e de 18 cruzamentos entre cultivares tolerantes (BH-1146, IAC-227, IAC-24, IAC-60, C-3, IAC-5, IAC-21, C-17, IAC-74 e IAC-18 foram avaliadas em relação à tolerância a 3 mg/L de Al3+, empregando soluções nutritivas. A tolerância à toxicidade de alumínio foi medida pela capacidade de crescimento da raiz primária central em solução nutritiva completa, após um tratamento de 48 horas em solução contendo 3 mg/L de Al3+. Avaliando-se as plântulas das populações F2 provindas de cruzamentos entre cultivares tolerantes e sensíveis, verificou-se que a tolerância à toxicidade de Al3+ foi dominante, e que em 24 dos cruzamentos, as cultivares tolerantes diferiram das sensíveis por um par de genes. Não foi detectada diferença entre as cultivares tolerantes em relação ao par de genes dominantes em relação à tolerância. Qualquer uma dessas cultivares poderá ser utilizada como fonte de tolerância num programa de cruzamentos em que essa característica for desejada.Seedlings originated from hybrid populations, in F2 generation, from 26 crosses between tolerant wheat cultivars (BH-1146, IAC-227, IAC-24, IAC-60, C-3, IAC-5, IAC-18 and IAC-21 and sensitive cultivars (Anahuac 75, IAC-287, IAC-289, Siete Cerros and Veery "S" to aluminum toxicity and from 18 crosses between tolerant cultivars (BH-1146, IAC-227, IAC-24, IAC-60, C-3, IAC-5, IAC-21, C-17, IAC-74 and IAC-18 were evaluated for tolerance to 3 mg/L of Al3+, using nutrient solutions. It was considered tolerant the plant that was able to show root regrowth of the central primary root in the complete nutrient solution after a treatment of 48 hours in solution containing 3 mg/L of Al3+. The evaluation of

  16. RAPD tagging of salt tolerance gene in rice

    International Nuclear Information System (INIS)

    Ding, H.; Zhang, G.; Guo, Y.; Chen, S.; Chen, S.

    1998-01-01

    Salinity, which is critical in determining the growth and development of plants, is a major problem affecting ever-increasing areas throughout the world. A salt tolerant rice mutant (M-20) was obtained from accession 77-170 (Oryza sativa) through EMS mutagenesis and selection in vitro. The use of 220 10-mer RAPD primers allowed the identification of a new molecular marker, whose genetic distance from a salt tolerance gene is about 16.4 cM. (author)

  17. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich

    2015-07-01

    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  18. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley.

    Science.gov (United States)

    Ahmed, Imrul Mosaddek; Nadira, Umme Aktari; Cao, Fangbin; He, Xiaoyan; Zhang, Guoping; Wu, Feibo

    2016-04-01

    The drought-stimulated gene expression of NCED, SUS, and KS - DHN and ABA signal cross-talk with other phytohormones maintains barley root growth under drought stress at pH 4.0 plus polyethylene glycol plus aluminum. Aluminum (Al) toxicity and drought are two major factors that limit barley production. In this work, the individual and combined effects of Al/acid and polyethylene glycol (PEG 6000) induced drought stress that suppressed root growth and caused oxidative damage as characterized by increased H2O2 and O2(.-) accumulation. The wild-barley genotypes, XZ5 and XZ29, exhibited a higher tolerance than the two cultivars Dayton (Al tolerant) and Tadmor (drought tolerant) under combined stress (pH 4.0 + PEG + Al). The oxidative damage induced by PEG was more severe at pH 4.0 than at pH 6.0. In XZ29, the highest root secretion of malate and citrate was recorded, and the least Al uptake in the four genotypes. In XZ5, a peak accumulation of ABA and minor synthesis of zeatin riboside and ethylene were found being essential in maintaining primary root elongation and root hair development. PEG-induced drought stress repressed Al uptake in root tips, with a lower increase in callose formation and HvMATE (Hordeum vulgare multidrug and toxic compound exudation) expression compared to Al-induced callose production. Stress by pH 4.0 + PEG + Al up-regulated 9-cis-epoxycarotenoid dioxygenase (NCED) which is involved in ABA biosynthesis. Such treatment stimulated the regulation of ABA-dependent genes sucrose synthase (SUS) and KS-type dehydrin (KS-DHN) in root tips. Our results suggest that the tolerance ranking to pH 4.0 + PEG + Al stress in Tibetan wild barley by gene expression is closely correlated to physiological indices. The results show that acclimatisation to pH 4.0 + PEG + Al stress involves specific responses in XZ5 and XZ29. The present study provides insights into the effects of Al/acid and drought combined stress on the abundance of physiological indices in the

  19. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity.

    Science.gov (United States)

    Jiang, Huan-Xin; Yang, Lin-Tong; Qi, Yi-Ping; Lu, Yi-Bin; Huang, Zeng-Rong; Chen, Li-Song

    2015-11-16

    Limited information is available on aluminum (Al)-toxicity-responsive proteins in woody plant roots. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were treated for 18 weeks with nutrient solution containing 0 (control) or 1.2 mM AlCl3 · 6H2O (+Al). Thereafter, we investigated Citrus root protein profiles using isobaric tags for relative and absolute quantification (iTRAQ). The aims of this work were to determine the molecular mechanisms of plants to deal with Al-toxicity and to identify differentially expressed proteins involved in Al-tolerance. C. sinensis was more tolerant to Al-toxicity than C. grandis. We isolated 347 differentially expressed proteins from + Al Citrus roots. Among these proteins, 202 (96) proteins only presented in C. sinensis (C. grandis), and 49 proteins were shared by the two species. Of the 49 overlapping proteins, 45 proteins were regulated in the same direction upon Al exposure in the both species. These proteins were classified into following categories: sulfur metabolism, stress and defense response, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, cell transport, biological regulation and signal transduction, cell wall and cytoskeleton metabolism, and jasmonic acid (JA) biosynthesis. The higher Al-tolerance of C. sinensis may be related to several factors, including: (a) activation of sulfur metabolism; (b) greatly improving the total ability of antioxidation and detoxification; (c) up-regulation of carbohydrate and energy metabolism; (d) enhancing cell transport; (e) decreased (increased) abundances of proteins involved in protein synthesis (proteiolysis); (f) keeping a better balance between protein phosphorylation and dephosphorylation; and (g) increasing JA biosynthesis. Our results demonstrated that metabolic flexibility was more remarkable in C. sinenis than in C. grandis roots, thus improving the Al-tolerance of C. sinensis. This provided the most integrated view of

  20. Aluminum-Tolerant Pisolithus Ectomycorrhizas Confer Increased Growth, Mineral Nutrition, and Metal Tolerance to Eucalyptus in Acidic Mine Spoil

    Directory of Open Access Journals (Sweden)

    Louise Egerton-Warburton

    2015-01-01

    Full Text Available Ectomycorrhizal fungi (ECM may increase the tolerance of their host plants to Al toxicity by immobilizing Al in fungal tissues and/or improving plant mineral nutrition. Although these benefits have been demonstrated in in vitro (pure culture or short-term nutrient solution (hydroponic experiments, fewer studies have examined these benefits in the field. This study examined the growth, mineral nutrition, and Al levels in two Eucalyptus species inoculated with three Pisolithus ecotypes that varied in Al tolerance (in vitro and grown in mine spoil in the greenhouse and field. All three ecotypes of Pisolithus improved Eucalyptus growth and increased host plant tolerance to Al in comparison to noninoculated plants. However, large variations in plant growth and mineral nutrition were detected among the Pisolithus-inoculated plants; these differences were largely explained by the functional properties of the Pisolithus inoculum. Seedlings inoculated with the most Al-tolerant Pisolithus inoculum showed significantly higher levels of N, P, Ca, Mg, and K and lower levels of Al than seedlings inoculated with Al-sensitive ecotypes of Pisolithus. These findings indicate an agreement between the fungal tolerance to Al in vitro and performance in symbiosis, indicating that both ECM-mediated mineral nutrient acquisition and Al accumulation are important in increasing the host plant Al tolerance.

  1. Trigo: tolerância ao alumínio em solução nutritiva Wheat: tolerance to aluminum in nutrient solutions

    Directory of Open Access Journals (Sweden)

    Camargo

    1987-01-01

    Full Text Available Foi estudado o comportamento diferencial de 21 cultivares de trigo em soluções nutritivas, com arejamento, contendo seis concentrações de Al3+ (0, 2, 4, 6, 8 e 10 mg/litro, à temperatura constante de 25 ± 1°C, e pH 4,0. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após 48 horas em solução contendo uma concentração conhecida de alumínio. Os cultivares BH-1146, IAC-18, IAC-28, IAC-5, IAC-74, IAC-13, PAT-72247, IAC-22, BR-2, IAC-21 e IAC-24 foram considerados como tolerantes por exibir crescimento da raiz primária central após tratamento em solução contendo 10 mg/litro de Al3+; os cultivares IAC-17, IAC-161, Mitacoré e CEP-7780 mostraram reação de média tolerância ao Al3+, por apresentar crescimento da raiz primária central após tratamento em soluções contendo 6 mg/litro de Al3+; os cultivares CNT-8, Alondra S-46, IAC-162, Paraguay-281 e IAC-23 foram considerados sensíveis ao Al3+, por mostrar crescimento das raízes primárias após tratamento em soluções contendo 2 mg/litro de Al3+, e o 'Anahuac' demonstrou-se muito sensível ao Al3+, não exibindo crescimento das raízes primárias após tratamento em soluções contendo 2 mg/litro de Al3+.Twenty one wheat cultivars were studied in aerated nutrient solutions for aluminum tolerance with six different levels, 0, 2, 4, 6, 8 and 10 mg/litro of Al3+, under constant temperature, 25° ± 1°C and pH 4.0. Aluminum tolerance was evaluated by measuring the root growth in an aluminum-free complete nutrient solution after a treatment of 48 hours in an aluminum solution. The cultivars BH-1146, IAC-18, IAC-28, IAC-5, IAC-74, IAC-13, PAT-72247, IAC-22, BR-2, IAC-21 and IAC-24 were considered as tolerant because they exhibited growth of the central primary root after a treatment in solutions with 10 mg/l of Al3+. However cultivars IAC-17, IAC-161, Mitacoré and CEP-7780 showed moderate tolerance to Al3+ because

  2. Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism.

    Science.gov (United States)

    Silva, I R; Novais, R F; Jham, G N; Barros, N F; Gebrim, F O; Nunes, F N; Neves, J C L; Leite, F P

    2004-11-01

    Aluminum (Al) tolerance mechanisms in crop plants have been extensively researched, but our understanding of the physiological mechanisms underlying Al tolerance in trees is still limited. To investigate Al tolerance in eucalypts, seedlings of six species (Eucalyptus globulus Labill., Eucalyptus urophylla S.T. Blake, Eucalyptus dunnii Maiden, Eucalyptus saligna Sm., Eucalyptus cloeziana F. J. Muell. and Eucalyptus grandis w. Hill ex Maiden) and seedlings of six clones of Eucalyptus species were grown for 10 days in nutrient solutions containing Al concentrations varying from 0 to 2.5 microM (0 to 648 microM Al3+ activities). Root elongation of most species was inhibited only by high Al3+ activities. Low to intermediate Al3+ activities were beneficial to root elongation of all species and clones. Among the species tested, E. globulus and E. urophylla were more tolerant to Al toxicity, whereas E. grandis and E. cloeziana were more susceptible to Al-induced damage. Although E. globulus seedlings were tolerant to Al toxicity, they were highly sensitive to lanthanum (La), indicating that the tolerance mechanism is specific for Al. Fine roots accumulated more Al and their elongation was inhibited more than that of thick roots. In E. globulus, accumulation of Al in root tips increased linearly with increasing Al concentration in the nutrient solution. The majority of Al taken up was retained in the root system, and the small amounts of Al translocated to the shoot system were found mainly in older leaves. No more than 60% of the Al in the thick root tip was in an exchangeable form in the apoplast that could be removed by sequential citrate rinses. Gas chromatography/mass spectrometry and ion chromatography analyses indicated that root exposure to Al led to a greater than 200% increase in malic acid concentration in the root tips of all eucalypt species. The increase in malate concentration in response to Al treatment correlated with the degree of Al tolerance of the

  3. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  4. Associated mechanisms of aluminum tolerance in plants/ Mecanismos associados à tolerância ao alumínio em plantas

    Directory of Open Access Journals (Sweden)

    Cecília Estima Sacramento dos Reis

    2007-10-01

    Full Text Available Aluminum toxicity is one of the major limiting factor regarding plant development in acid soils. The use of liming for correcting soil pH is not viable for some of acid soil areas (technique or economic reasons, making the development of Al tolerant genotypes the best alternative. Thus, the tolerance mechanisms as well as the genetic basis of Al tolerance has deserved special attention in the scientific community. In the last years, a significant progress has been achieved towards these goals, as well as in developing cultivars adapted to acid soils. The Al tolerance mechanisms are divided basically in two classes: the exclusion mechanisms that act after absorption or blocking its entry in the root system and those involved in detoxification, complexing the Al in specific organelles, mainly in the vacuoles. In many species, physiological mechanisms have been reported as responsible for the activation of organic acids (mainly citrate and malate that act as Al quelating agents, however many process are not yet understood and cleared. Currently, the basis for the internal detoxification is becoming clear through organic acid complexes and there sequestering by the vacuoles. Other potential mechanisms are the target for discussions.A toxicidade do alumínio é um dos principais fatores limitantes do desenvolvimento das plantas em solos ácidos. Pelo fato da utilização de corretivos da acidez do solo não ser a estratégia mais viável em muitas situações com solos ácidos (por razões técnicas e econômicas, o desenvolvimento de genótipos tolerantes ao Al tem sido o caminho mais focado, assim a investigação dos mecanismos de tolerância bem como as bases genéticas da tolerância ao Al têm merecido atenção especial pela pesquisa científica. Nos últimos anos, foi gerado um significativo progresso no entendimento das bases dos mecanismos de tolerância ao Al, assim como no desenvolvimento de cultivares mais adaptados as condições de

  5. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L.

    Science.gov (United States)

    Yang, Zhi-Min; Wang, Jin; Wang, Song-Hua; Xu, Lang-Lai

    2003-05-01

    Aluminum-induced exudation of organic acids from roots has been proposed as a mechanism for Al tolerance in plants. To better understand the regulatory process leading to efflux of organic acids, the possible involvement of salicylic acid (SA) in regulating Al-induced citrate release in Cassia tora L. was identified. The response of citrate efflux to exogenous SA was concentration-dependent. Application of SA at 5 microM in solution containing 20 microM Al increased citrate efflux to levels 1.76-fold higher than in controls (20 microM Al alone). However, inhibition of citrate release was observed when SA concentrations increased to more than 20 microM. Increased citrate efflux due to the SA treatment was associated with decreased inhibition of root growth and Al content in root tips, suggesting that exogenous SA could confer Al tolerance by increasing citrate efflux. We also examined citrate synthase activities (EC 4.1.3.7) and citrate concentrations in root tips exposed to Al and/or SA. However, both citrate synthase activities and citrate accumulation remained unaffected. These results indicate that SA-promotion of Al-induced citrate efflux is not correlated with increase in citrate production. Total endogenous SA concentrations were measured in root tips and the SA concentrations were significantly enhanced by Al at levels of 10-50 microM.

  6. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance

    Directory of Open Access Journals (Sweden)

    Yu eChen

    2016-02-01

    Full Text Available Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum, a halophytic perennial grass species, using the yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high quality entry library was constructed, which contained 9.9×106 clones with an average inserted fragments length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including 5 Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and 5 Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be mainly involved in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes from seashore paspalum could be associated with regulating pathways involved in phytochelatin synthesis, HSFA4-relsted stress protection, CYP450 complex and sugar metabolism. The 18 salinity-tolerance genes and 5 Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance.

  7. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.

    Science.gov (United States)

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance.

  8. Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in Citrus roots.

    Science.gov (United States)

    Yang, Lin-Tong; Jiang, Huan-Xin; Qi, Yi-Ping; Chen, Li-Song

    2012-05-01

    The objective was to determine the possible links between the expression levels of genes involved in alternative glycolytic pathways, phosphorus (P) scavenging and recycling and Citrus tolerance to aluminum (Al) and/or P-deficiency. 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl(3)·6H(2)O × 0, 50 and 200 μM KH(2)PO(4). C. sinensis displayed more tolerant to Al and P-deficiency than C. grandis. Under Al stress, C. sinensis accumulated more Al in roots and less Al in shoots than C. grandis. P concentration was higher in C. sinensis shoots and roots than in C. grandis ones. C. sinensis roots secreted more malate and citrate than C. grandis ones when exposed to Al. Al-induced-secretion of malate and citrate by excised roots from Al-treated seedlings decreased with increasing P supply. Al-induced-secretion of malate and citrate from roots and Al precipitation by P in roots might be responsible for Al-tolerance of C. sinensis. qRT-PCR analysis showed that Al-activated malate transporter (ALMT1), ATP-dependent phosphofructokinase (ATP-PFK), pyrophosphate-dependent phosphofructokinase (PPi-PFK), tonoplast adenosine-triphosphatase subunit A (V-ATPase A), tonoplast pyrophosphatase (V-PPiase), pyruvate kinase (PK), acid phosphatase (APase), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (ME) and malate dehydrogenase (MDH) genes might contribute to the tolerance of Citrus to Al and/or P-deficiency, but any single gene could not explain the differences between the two species. Citrus tolerance to Al and/or P-deficiency might be caused by the coordinated regulation of gene expression involved in alternative glycolytic pathways, P scavenging and recycling.

  9. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions

    Science.gov (United States)

    Xiaoqing Yu; Guihua Bai; Shuwei Liu; Na Luo; Ying Wang; Douglas S. Richmond; Paula M. Pijut; Scott A. Jackson; Jianming Yu; Yiwei. Jiang

    2013-01-01

    Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse...

  10. Relative abundance of Delta(5)-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice.

    Science.gov (United States)

    Khan, M Shahadat Hossain; Tawaraya, Keitarou; Sekimoto, Hiroshi; Koyama, Hiroyuki; Kobayashi, Yuriko; Murayama, Tetsuya; Chuba, Masaru; Kambayashi, Mihoko; Shiono, Yoshihito; Uemura, Matsuo; Ishikawa, Satoru; Wagatsuma, Tadao

    2009-01-01

    We investigated variations in aluminum (Al) tolerance among rice plants, using ancestor cultivars from the family line of the Al-tolerant and widely cultivated Japonica cultivar, Sasanishiki. The cultivar Rikuu-20 was Al sensitive, whereas a closely related cultivar that is a descendant of Rikuu-20, Rikuu-132, was Al tolerant. These two cultivars were compared to determine mechanisms underlying variations in Al tolerance. The sensitive cultivar Rikuu-20 showed increased permeability of the plasma membrane (PM) and greater Al uptake within 1 h of Al treatment. This could not be explained by organic acid release. Lipid composition of the PM differed between these cultivars, and may account for the difference in Al tolerance. The tolerant cultivar Rikuu-132 had a lower ratio of phospholipids to Delta(5)-sterols than the sensitive cultivar Rikuu-20, suggesting that the PM of Rikuu-132 is less negatively charged and less permeabilized than that of Rikuu-20. We used inhibitors of Delta(5)-sterol synthesis to alter the ratio of phospholipids to Delta(5)-sterols in both cultivars. These inhibitors reduced Al tolerance in Rikuu-132 and its Al-tolerant ancestor cultivars Kamenoo and Kyoku. In addition, Rikuu-132 showed a similar level of Al sensitivity when the ratio of phospholipids to Delta(5)-sterols was increased to match that of Rikuu-20 after treatment with uniconazole-P, an inhibitor of obtusifoliol-14alpha-demethylase. These results indicate that PM lipid composition is a factor underlying variations in Al tolerance among rice cultivars.

  11. Coordination between Apoplastic and Symplastic Detoxification Confers Plant Aluminum Resistance1[C][W][OPEN

    Science.gov (United States)

    Zhu, Xiao Fang; Lei, Gui Jie; Wang, Zhi Wei; Shi, Yuan Zhi; Braam, Janet; Li, Gui Xin; Zheng, Shao Jian

    2013-01-01

    Whether aluminum toxicity is an apoplastic or symplastic phenomenon is still a matter of debate. Here, we found that three auxin overproducing mutants, yucca, the recessive mutant superroot2, and superroot1 had increased aluminum sensitivity, while a transfer DNA insertion mutant, xyloglucan endotransglucosylase/hydrolases15 (xth15), showed enhanced aluminum resistance, accompanied by low endogenous indole-3-acetic acid levels, implying that auxin may be involved in plant responses to aluminum stress. We used yucca and xth15 mutants for further study. The two mutants accumulated similar total aluminum in roots and had significantly reduced cell wall aluminum and increased symplastic aluminum content relative to the wild-type ecotype Columbia, indicating that altered aluminum levels in the symplast or cell wall cannot fully explain the differential aluminum resistance of these two mutants. The expression of Al sensitive1 (ALS1), a gene that functions in aluminum redistribution between the cytoplasm and vacuole and contributes to symplastic aluminum detoxification, was less abundant in yucca and more abundant in xth15 than the wild type, consistent with possible ALS1 function conferring altered aluminum sensitivity in the two mutants. Consistent with the idea that xth15 can tolerate more symplastic aluminum because of possible ALS1 targeting to the vacuole, morin staining of yucca root tip sections showed more aluminum accumulation in the cytosol than in the wild type, and xth15 showed reduced morin staining of cytosolic aluminum, even though yucca and xth15 had similar overall symplastic aluminum content. Exogenous application of an active auxin analog, naphthylacetic acid, to the wild type mimicked the aluminum sensitivity and distribution phenotypes of yucca, verifying that auxin may regulate aluminum distribution in cells. Together, these data demonstrate that auxin negatively regulates aluminum tolerance through altering ALS1 expression and aluminum distribution

  12. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  13. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance.

    Science.gov (United States)

    Kusunoki, Kazutaka; Nakano, Yuki; Tanaka, Keisuke; Sakata, Yoichi; Koyama, Hiroyuki; Kobayashi, Yuriko

    2017-02-01

    Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance. © 2016 John Wiley & Sons Ltd.

  14. TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12

    NARCIS (Netherlands)

    Volkers, R.J.M.; Ballerstedt, H.; Ruijssenaars, H.; Bont, J.A.M. de; Winde, J.H. de; Wery, J.

    2009-01-01

    Pseudomonas putida S12 is well known for its remarkable solvent tolerance. Transcriptomics analysis of this bacterium grown in toluene-containing chemostats revealed the differential expression of 253 genes. As expected, the genes encoding one of the major solvent tolerance mechanisms, the solvent

  15. Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells.

    Science.gov (United States)

    Alexandrov, Peter N; Zhao, Yuhai; Pogue, Aileen I; Tarr, Matthew A; Kruck, Theo P A; Percy, Maire E; Cui, Jian-Guo; Lukiw, Walter J

    2005-11-01

    Disturbances in metal-ion transport, homeostasis, overload and metal ion-mediated catalysis are implicated in neurodegenerative conditions such as Alzheimer's disease (AD). The mechanisms of metal-ion induced disruption of genetic function, termed genotoxicity, are not well understood. In these experiments we examined the effects of non-apoptotic concentrations of magnesium-, iron- and aluminum-sulfate on gene expression patterns in untransformed human neural (HN) cells in primary culture using high density DNA array profiling and Western immunoassay. Two week old HN cells were exposed to low micromolar magnesium, iron, or aluminum for 7 days, representing trace metal exposure over one-third of their lifespan. While total RNA yield and abundance were not significantly altered, both iron and aluminum were found to induce HSP27, COX-2, betaAPP and DAXX gene expression. Similarly up-regulated gene expression for these stress-sensing, pro-inflammatory and pro-apoptotic elements have been observed in AD brain. The combination of iron and aluminum together was found to be particularly effective in up-regulating these genes, and was preceded by the evolution of reactive oxygen intermediates as measured by 2',7'-dichlorofluorescein diacetate assay. These data indicate that physiologically relevant amounts of iron and aluminum are capable of inducing Fenton chemistry-triggered gene expression programs that may support downstream pathogenic responses and brain cell dysfunction.

  16. Salt and heavy metal tolerance and expression levels of candidate tolerance genes among four extremophile Cochlearia species with contrasting habitat preferences

    NARCIS (Netherlands)

    Nawaz, Ismat; Iqbal, Mazhar; Bliek, Mattijs; Schat, Henk

    2017-01-01

    To test the concept of a general “mineral stress tolerance”, we compared four extremophile Cochlearia species for salt (NaCl), zinc (Zn) and cadmium (Cd) tolerance and accumulation, and for expression of candidate tolerance genes for salt and Zn tolerance. Salt tolerance decreased in the order C.

  17. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  18. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean.

    Science.gov (United States)

    Liu, Juge; Li, Yang; Wang, Wei; Gai, Junyi; Li, Yan

    2016-03-11

    Multidrug and toxic compound extrusion (MATE) family is an important group of the multidrug efflux transporters that extrude organic compounds, transporting a broad range of substrates such as organic acids, plant hormones and secondary metabolites. However, genome-wide analysis of MATE family in plant species is limited and no such studies have been reported in soybean. A total of 117 genes encoding MATE transporters were identified from the whole genome sequence of soybean (Glycine max), which were denominated as GmMATE1 - GmMATE117. These 117 GmMATE genes were unevenly localized on soybean chromosomes 1 to 20, with both tandem and segmental duplication events detected, and most genes showed tissue-specific expression patterns. Soybean MATE family could be classified into four subfamilies comprising ten smaller subgroups, with diverse potential functions such as transport and accumulation of flavonoids or alkaloids, extrusion of plant-derived or xenobiotic compounds, regulation of disease resistance, and response to abiotic stresses. Eight soybean MATE transporters clustered together with the previously reported MATE proteins related to aluminum (Al) detoxification and iron translocation were further analyzed. Seven stress-responsive cis-elements such as ABRE, ARE, HSE, LTR, MBS, as well as a cis-element of ART1 (Al resistance transcription factor 1), GGNVS, were identified in the upstream region of these eight GmMATE genes. Differential gene expression analysis of these eight GmMATE genes in response to Al stress helps us identify GmMATE75 as the candidate gene for Al tolerance in soybean, whose relative transcript abundance increased at 6, 12 and 24 h after Al treatment, with more fold changes in Al-tolerant than Al-sensitive cultivar, which is consistent with previously reported Al-tolerance related MATE genes. A total of 117 MATE transporters were identified in soybean and their potential functions were proposed by phylogenetic analysis with known plant MATE

  19. Tolerância ao alumínio em cultivares de aveia branca sob cultivo hidropônico Tolerance to the aluminum in oat cultivars under hydroponic culture

    Directory of Open Access Journals (Sweden)

    José Antonio Gonzalez da Silva

    2007-01-01

    Full Text Available O emprego do cultivo hidropônico para avaliar a tolerância à toxicidade pelo alumínio em genótipos de aveia pode ser feito por meio da medida da retomada do crescimento de raiz. Avaliaram-se 12 cultivares de aveia branca indicadas para o cultivo no Sul do Brasil com o intuito de caracterizar a tolerância ao alumínio, de maneira a ser estrategicamente recomendadas e/ou incluídas em blocos de cruzamento na obtenção de constituições genéticas de elevado potencial produtivo e tolerante ao íon metálico. Foram utilizadas doses de 10, 15 e 20 mg L-1 de alumínio na solução hidropônica e o delineamento experimental adotado foi o completamente casualizado, com três repetições, seguindo o esquema fatorial (12 x 3. As doses empregadas são altamente eficientes na identificação de genótipos de aveia tolerantes e sensíveis ao alumínio tóxico. As cultivares UPF 16, URS 21, UFRGS 14, UPF 19 e UFRGS 17 expressam tolerância.The use of hidroponic culture to evaluate tolerance to aluminum toxicity in oat genotypes can be performed by measuring root regrowth, allowing phenotypically to discriminate tolerant genetic constitutions sensitivity. Twelve white oat cultivars indicated for cultivation in Southern Brazil were evaluated aiming at to characterize their aluminum tolerance, in order to use them as parents in crosses or to recommend them for in cultivation regions. Aluminum concentration of 10, 15 and 20 mg L-1 were used in the hydroponic solution arranged in complete randomized blocks with three replications in 12 x 3 factorial designs. Concentrations of 10, 15 and 20 mg L-1 were highly efficient for the identification of tolerant and sensitive oat genotypes. Cultivars UPF 16, URS 21, UFRGS 14, UPF 19 and UFRGS 17 showed aluminum.

  20. Boron Supply Enhances Aluminum Tolerance in Root Border Cells of Pea (Pisum sativum by Interacting with Cell Wall Pectins

    Directory of Open Access Journals (Sweden)

    Xue Wen Li

    2017-05-01

    Full Text Available Aluminum (Al toxicity is the primary factor limiting crop growth in acidic soils. Boron (B alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accumulation and adsorption were investigated using entire cells, cell wall and pectin of root border cells (RBCs of pea (Pisum sativum, to reveal the mechanism of B in interacting with alkali-soluble and chelator-soluble pectin for an increased Al tolerance in RBCs. The results show that B could rescue RBCs from Al-induced cell death by accumulating more Al in the cell wall, predominately in alkali-soluble pectin. Boron also promotes Al3+ adsorption and inhibits Al3+ desorption from alkali-soluble pectin. Thus, more Al3+ is immobilized within the alkali-soluble pectin fraction and less in the chelator-soluble pectin, rendering Al3+ less mobile. Boron induces an increase of RG-II (KDO,2-keto-3-deoxyoctonic acid content for forming more borate-RGII complexes, and the decrease of pectin methyl-esterification, thus creates more negative charges to immobilize Al3+ in cell wall pectin. The study provides evidence that abundant B supply enhances the immobilization of Al in alkali-soluble pectin, thus most likely reducing the entry of Al3+ into the symplast from the surroundings.

  1. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2016-11-01

    Full Text Available Aluminum is a neurotoxic metal with known health effects in animals and humans. Glutathione-S-transferase (GST genes and enzymes play a major role in detoxification of several heavy metals. Besides a direct relationship with oxidative stress; aluminum decreases GST enzyme activities. Using data from 116 Jamaican children; age 2–8 years; with Autism Spectrum Disorder (ASD and 116 sex- and age-matched typically developing (TD children; we investigated the association of polymorphisms in three GST genes (GSTP1; GSTM1; and GSTT1 with mean blood aluminum concentrations in children with and without ASD. Using log-transformed blood aluminum concentration as the dependent variable in a linear regression model; we assessed the additive and interactive effects of ASD status and polymorphisms in the three aforementioned GST genes in relation to blood aluminum concentrations. Although none of the additive effects were statistically significant (all p > 0.16; we observed a marginally significant interaction between GSTP1 Ile105Val (rs1695 and ASD status (p = 0.07; even after controlling for parental education level and consumption of avocado; root vegetables; and tuna (canned fish. Our findings indicate a significantly lower (p < 0.03 adjusted geometric mean blood aluminum concentration for TD children who had the Val/Val genotype (14.57 µg/L; compared with those with Ile/Ile or Ile/Val genotypes who had an adjusted geometric mean of 23.75 µg/L. However; this difference was not statistically significant among the ASD cases (p = 0.76. Our findings indicate that ASD status may be a potential effect modifier when assessing the association between GSTP1 rs1695 and blood aluminum concentrations among Jamaican children. These findings require replication in other populations.

  2. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder

    Science.gov (United States)

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Pitcher, Meagan R.; Bressler, Jan; Hessabi, Manouchehr; Loveland, Katherine A.; Christian, MacKinsey A.; Grove, Megan L.; Shakespeare-Pellington, Sydonnie; Beecher, Compton; McLaughlin, Wayne; Boerwinkle, Eric

    2016-01-01

    Aluminum is a neurotoxic metal with known health effects in animals and humans. Glutathione-S-transferase (GST) genes and enzymes play a major role in detoxification of several heavy metals. Besides a direct relationship with oxidative stress; aluminum decreases GST enzyme activities. Using data from 116 Jamaican children; age 2–8 years; with Autism Spectrum Disorder (ASD) and 116 sex- and age-matched typically developing (TD) children; we investigated the association of polymorphisms in three GST genes (GSTP1; GSTM1; and GSTT1) with mean blood aluminum concentrations in children with and without ASD. Using log-transformed blood aluminum concentration as the dependent variable in a linear regression model; we assessed the additive and interactive effects of ASD status and polymorphisms in the three aforementioned GST genes in relation to blood aluminum concentrations. Although none of the additive effects were statistically significant (all p > 0.16); we observed a marginally significant interaction between GSTP1 Ile105Val (rs1695) and ASD status (p = 0.07); even after controlling for parental education level and consumption of avocado; root vegetables; and tuna (canned fish). Our findings indicate a significantly lower (p aluminum concentration for TD children who had the Val/Val genotype (14.57 µg/L); compared with those with Ile/Ile or Ile/Val genotypes who had an adjusted geometric mean of 23.75 µg/L. However; this difference was not statistically significant among the ASD cases (p = 0.76). Our findings indicate that ASD status may be a potential effect modifier when assessing the association between GSTP1 rs1695 and blood aluminum concentrations among Jamaican children. These findings require replication in other populations. PMID:27834815

  3. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...... the current models of restraint and benevolence, other ways of understanding the politics of democratic pluralism might be developed, which will enable us to conceive of tolerance's future in terms different than those currently on offer. Tolerance: A Sensorial Orientation to Politics develops...

  4. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Brunel Dominique

    2008-10-01

    Full Text Available Abstract Background Plants from temperate regions are able to withstand freezing temperatures due to a process known as cold acclimation, which is a prior exposure to low, but non-freezing temperatures. During acclimation, a large number of genes are induced, bringing about biochemical changes in the plant, thought to be responsible for the subsequent increase in freezing tolerance. Key regulatory proteins in this process are the CBF1, 2 and 3 transcription factors which control the expression of a set of target genes referred to as the "CBF regulon". Results To assess the role of the CBF genes in cold acclimation and freezing tolerance of Arabidopsis thaliana, the CBF genes and their promoters were sequenced in the Versailles core collection, a set of 48 accessions that maximizes the naturally-occurring genetic diversity, as well as in the commonly used accessions Col-0 and WS. Extensive polymorphism was found in all three genes. Freezing tolerance was measured in all accessions to assess the variability in acclimated freezing tolerance. The effect of sequence polymorphism was investigated by evaluating the kinetics of CBF gene expression, as well as that of a subset of the target COR genes, in a set of eight accessions with contrasting freezing tolerance. Our data indicate that CBF genes as well as the selected COR genes are cold induced in all accessions, irrespective of their freezing tolerance. Although we observed different levels of expression in different accessions, CBF or COR gene expression was not closely correlated with freezing tolerance. Conclusion Our results indicate that the Versailles core collection contains significant natural variation with respect to freezing tolerance, polymorphism in the CBF genes and CBF and COR gene expression. Although there tends to be more CBF and COR gene expression in tolerant accessions, there are exceptions, reinforcing the idea that a complex network of genes is involved in freezing tolerance

  5. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  6. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  7. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  8. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  9. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Directory of Open Access Journals (Sweden)

    David Jespersen

    Full Text Available Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L. x creeping bentgrass (Agrostis stolonifera L. hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease, antioxidant defense (catalase and glutathione-S-transferase, energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, cell expansion (expansin, and stress protection (heat shock proteins HSP26, HSP70, and HSP101. Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  10. Quantitative Trait Locus Mapping of Salt Tolerance and Identification of Salt-Tolerant Genes in Brassica napus L

    Directory of Open Access Journals (Sweden)

    Lina Lang

    2017-06-01

    Full Text Available Salinity stress is one of typical abiotic stresses that seriously limit crop production. In this study, a genetic linkage map based on 532 molecular markers covering 1341.1 cM was constructed to identify the loci associated with salt tolerance in Brassica napus. Up to 45 quantitative trait loci (QTLs for 10 indicators were identified in the F2:3 populations. These QTLs can account for 4.80–51.14% of the phenotypic variation. A major QTL, qSPAD5 on LG5 associated with chlorophyll can be detected in three replicates. Two intron polymorphic (IP markers in this QTL region were developed successfully to narrow down the QTL location to a region of 390 kb. A salt tolerance related gene Bra003640 was primary identified as the candidate gene in this region. The full length of the candidate gene was 1,063 bp containing three exons and two introns in B. napus L. The open reading frame (ORF is 867 bp and encodes 287 amino acids. Three amino acid differences (34, 54, and 83 in the conserved domain (B-box were identified. RT-qPCR analysis showed that the gene expression had significant difference between the two parents. The study laid great foundation for salt tolerance related gene mapping and cloning in B. napus L.

  11. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    Science.gov (United States)

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  12. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms

    DEFF Research Database (Denmark)

    Nilsson, Carl Martin Peter; Rybtke, Morten; Givskov, Michael

    2016-01-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant...... library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower...... and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating...

  13. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice

    OpenAIRE

    Shimo, Hugo; Ishimaru, Yasuhiro; An, Gynheung; Yamakawa, Takashi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2011-01-01

    The contamination of food crops by cadmium (Cd) is a major concern in food production because it can reduce crop yields and threaten human health. In this study, knockout rice plants (Oryza sativa) tagged with the gene trap vector pGA2707 were screened for Cd tolerance, and the tolerant line lcd was obtained. The lcd mutant showed tolerance to Cd on agar plates and in hydroponic culture during early plant development. Metal concentration measurements in hydroponically grown plants revealed si...

  14. Detection of drought tolerant genes within seedling apple rootstocks in Syria

    Science.gov (United States)

    This investigation was conducted to detect the drought tolerant genes (four genes) within seedling apple rootstocks derived from five apple genotypes, including Syrian apple cultivars. The results showed that the gene MdPepPro (a cyclophilin) was found in all studied genotypes and their progenies e...

  15. Cloning of genes and developing transgenic crops with enhanced tolerance to salinity and drought (abstract)

    International Nuclear Information System (INIS)

    Bansal, K.C.; Chinnusamy, V.; Tayal, D.; Das, A.; Goel, D.; Yadav, V.; Singh, A.K.; Lakhshmi, K.

    2005-01-01

    Abiotic stresses represent the most limiting factors affecting agricultural productivity. In India more than 60% of total cultivated land is still rainfed and crops experience frequent droughts. Thus, we need to develop transgenic crops tolerant to drought, and other related abiotic stress factors such as salinity, low and high temperature stresses. At the National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute (ICAR), we have initiated a programme on developing transgenic crops tolerant to a range of abiotic stresses. The major emphasis is on developing transgenic potato, tomato, mustard, rice and wheat. While, transgenic plants of potato. tomato and mustard have already been generated with osmotin gene and are at different stages of testing, other key genes imparting tolerance to abiotic stresses are being isolated from different species for producing transgenic rice and wheat cultivars tolerant to multiple stresses. Genes that have been isolated in our laboratory include ascorbate peroxidase gene (TaApx) and genes encoding transcription factor, CBFs (TaCBF2 and TaCBP3) from a drought tolerant wheat cultivar (C306), Lea1 cDNA from Brassica species, codA from Arthrobacter globiformis, and otsBA operon from E. coli. Apart from these stress-related genes, we have isolated a few stress-inducible promoters for deploying them in gene stacking in developing transgenic crops with enhanced tolerance to multiple abiotic stresses. The results will be presented. (author)

  16. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    Science.gov (United States)

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize.

    Science.gov (United States)

    Zhang, Hongwei; Uddin, Mohammed Shalim; Zou, Cheng; Xie, Chuanxiao; Xu, Yunbi; Li, Wen-Xue

    2014-03-01

    Plants with tolerance to low-phosphorus (P) can grow better under low-P conditions, and understanding of genetic mechanisms of low-P tolerance can not only facilitate identifying relevant genes but also help to develop low-P tolerant cultivars. QTL meta-analysis was conducted after a comprehensive review of the reports on QTL mapping for low-P tolerance-related traits in maize. Meta-analysis produced 23 consensus QTL (cQTL), 17 of which located in similar chromosome regions to those previously reported to influence root traits. Meanwhile, candidate gene mining yielded 215 genes, 22 of which located in the cQTL regions. These 22 genes are homologous to 14 functionally characterized genes that were found to participate in plant low-P tolerance, including genes encoding miR399s, Pi transporters and purple acid phosphatases. Four cQTL loci (cQTL2-1, cQTL5-3, cQTL6-2, and cQTL10-2) may play important roles for low-P tolerance because each contains more original QTL and has better consistency across previous reports. © 2014 Institute of Botany, Chinese Academy of Sciences.

  18. Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast

    DEFF Research Database (Denmark)

    Erbasol, Isil; Bozdag, Gonensin Ozan; Koc, Ahmet

    2013-01-01

    Manganese (Mn) is an essential micronutrient in plants. However increased Mn levels are toxic to plant cells. Metal tolerance proteins (MTPs), member of cation diffusion facilitator protein (CDF) family, have important roles in metal homeostatis in different plant species and catalyse efflux...... in planta localization and function as the Arabidopsis Mn-CDF homolog AtMTP11 and this conservation shows the evolutionary importance of these vesicular proteins in heavy metal homeostatis among plant species....... of excess metal ions. In this study, we identified and characterized two MTP genes from Beta vulgaris spp. maritima (B. v. ssp. maritima). Overexpression of these two genes provided Mn tolerance in yeast cells. Sequence analyses displayed BmMTP10 and BmMTP11as members of the Mn-CDF family. Functional...

  19. In vitro selection of mutants: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.; Bastola, D.R.; Deutch, C.E.; Pethe, V.V.; Petrusa, L.

    2001-01-01

    Regulation of differentially expressed genes in plants may be involved in inducing tolerance to stress. Isogenic salt-sensitive and salt-tolerant alfalfa lines were investigated for molecular differences in their response to salt. The genes, which are differentially induced by salt in the salt-tolerant alfalfa cells and are also regulated by salt at the whole plant level, were cloned. Both transcriptional and post- transcriptional mechanisms influenced salt-induced product accumulation in the salt-tolerant alfalfa. The salt-tolerant plants doubled proline concentration rapidly in roots, while salt-sensitive plants showed a delayed response. To understand the regulatory system in the salt-tolerant alfalfa, two genes that are expressed in roots were studied. Alfin1 encodes a zinc-finger type putative DNA transcription factor conserved in alfalfa, rice and Arabidopsis, and MsPRP2 encodes a protein that serves as a cell wall- membrane linker in roots. Recombinant Alfin1 protein was selected, amplified, cloned and its consensus sequence was identified. The recombinant Alfin1 also bound specifically to fragments of the MsPRP2 promoter in vitro, containing the Alfin1 binding consensus sequence. The results show unambiguously binding specificity of Alfin1 DNA, supporting its role in gene regulation. Alfin1 function was tested in transformed alfalfa in vivo by over-expressing Alfin1 from 35S CaMV promoter. The transgenic plants appeared normal. However, plants harboring the anti-sense construct did not grow well in soil, indicating that Alfin1 expression was essential. Alfin1 over-expression in transgenic alfalfa led to enhanced levels of MsPRP2 transcript accumulation, demonstrating that Alfin1 functioned in vivo in gene regulation. Since MsPRP2 gene is also induced by salt, it is likely that Alfin1 is an important transcription factor for gene regulation in salt-tolerant alfalfa, and an excellent target for manipulation to improve salt tolerance. (author)

  20. Tolerância de cultivares de arroz a diferentes níveis de alumínio em solução nutritiva Rice cultivars tolerance to different levels of aluminum in nutrient solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1983-01-01

    relation to their tolerance to aluminum toxicity, at temperature of 25 ± 1°C and 30 ± 1°C using five different aluminum levels in 8.3 liter pots with 330 seedlings/pot, under controlled growth conditions. The tolerance was measured taking into account the root growth in an aluminum-free complete nutrient solution after a previous aluminum treatment. With an excessive amount of Al3+, the primary roots did not grow at all and remained thickened at the tip, showing a typical aluminum injury. In nutrient solutions at a temperature of 25 ± 1°C the rice cultivars IAC-899 and IR-841 were sensitive to the Al3+ concentration of 10mg/l of Al3+; IR-43, IR-45 and IR-8 were sensitive to 20mg/l and the cultivars IR-42 and CICA-4 were sensitive to 40mg/l; IAC-435, IAC-164, Pérola, Batatais, Pratão Precoce, Blue Bonnet, IAC-120, IAC-47, IAC-1246, IAC-25, IAC-165, Pratão, Dou-ado Precoce and CICA-8 showed tolerance to 40mg/l. In nutrient solutions at a temperature of 30 ± 1°C all cultivars presented tolerance to the Al3+ concentrations of 5, 10 and 20mg/l of Al+3. The cultivars Dourado Precoce, CICA-4, IR-42, IR-43, IR-45, IR-8, IAC-899, IR-665-4-5-5 and IR-841 were sensitive to 40mg/l of Al3+. Under the same conditions the following cultivars were considered tolerant to aluminum concentration of 40mg/l: IAC-47, Blue Bonnet, IAC-1246, IAC-164, Pratão, Pratão Precoce, CICA-8, IAC-435, IAC-120, IAC-25, IAC-165, Pérola and Batatais. The rice cultivars under study were ranked into classes of aluminum tolerance: tolerant: IAC-435, IAC-120, IAC-47, IAC-1246, IAC-25, IAC-165, IAC-164, Pérola, Batatais, Pratão Precoce, Blue Bonnet; moderately tolerant: Pratão, Dourado Precoce and CICA-8; and sensitive: CICA-4, IR-42, IR-43, IR-45, IR-8, IAC-899, IR-665-4-5-5 and IR-841.

  1. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Lu, Lingli; Lin, Xianyong

    2015-12-15

    Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  3. Over-expression of Sub1 A, a submergence tolerance gene from ...

    African Journals Online (AJOL)

    Sub1A, an ethylene-response-factor-like (ERE-like) gene, mediates the extinguished submergence tolerance of rice. To gain further insight into the function of Sub1A in other species, we transformed tobacco plants with the gene under the control of the ubiquitin promoter. Compared to the wild-type plants, transgenic plants ...

  4. Water deficit and aluminum interactive effects on generation of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars differing in stress tolerance.

    Science.gov (United States)

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Rajpoot, Ritika; Rani, Anjana; Pandey, Akhilesh Kumar; Dubey, R S

    2016-01-01

    Aluminum (Al) is a major constraint to crop productivity in acid soils, whereas water deficit severely limits crop production in arid and semi-arid regions of the world. The objective of the present study was to examine the effects of both stresses, Al excess and water deficit, individually and in combination on the production of the reactive oxygen species (ROS) superoxide anion (O2˙(-)), hydrogen peroxide (H2O2), hydroxyl radical, and lipid peroxidation and the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (sensitive to water deficit and Al) and Vandana (tolerant to water deficit and Al). When 15-day grown seedlings were exposed to water deficit (created with 15% polyethylene glycol, PEG-6000) or Al (1 mM AlCl3) treatment or both treatments together for 24-72 h, the lengths and fresh weights of root/shoot declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Biochemical determinations and histochemical studies revealed that under a similar level of water deficit, Al, or combined treatment, seedlings of sensitive cultivar showed a higher level of production of O2˙(-), H2O2, hydroxyl radical, and lipid peroxides compared to the tolerant seedlings. Seedlings of tolerant cultivars, both in roots and shoots, had constitutively higher activity levels of antioxidative enzymes SOD, CAT, and GPX and showed a greater increase in activity under water deficit or Al treatment alone or in combination compared to the similarly treated seedlings of sensitive cultivar. Our results suggest that a lower constitutive level of ROS and a high antioxidative enzyme capacity are associated with tolerance to both water deficit and Al excess in rice seedlings.

  5. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field.

    Science.gov (United States)

    Bailey, Bryan A; Melnick, Rachel L; Strem, Mary D; Crozier, Jayne; Shao, Jonathan; Sicher, Richard; Phillips-Mora, Wilberth; Ali, Shahin S; Zhang, Dapeng; Meinhardt, Lyndel

    2014-09-01

    Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  6. Bioinformatics approach of salt tolerance gene in mangrove plant Rhizophora stylosa

    Science.gov (United States)

    Basyuni, M.; Sumardi

    2017-01-01

    This study descibes bioinformatics approach on the analyze of the salt tolerance genes in mangrove plant, Rhizophora stylosa on DDBJ/EMBL/GenBank as well as similarity, phylogenetic, potential peptide, and subcellular localization. The DNA sequence between salt tolerance gene from R. stylosa exhibited 42-11% between themselves The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the salt-tolerant genes in R. stylosa, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, first branch of Cu/Zn SOD and reverse transcriptase genes, the second branch consists of the majority genes and the last group was MAP3K alpha protein kinase only. The present study, therefore, suggested that salt tolerance genes form distinct clusters in the tree.

  7. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Polymerase chain reaction (PCR) performed on 10 diverse cultivars that involved Japonica, Indica and local accessions, revealed 12 polymorphic candidate genes. Seven polymorphic candidate genes were then utilized to genotype 148 individuals of CT9993 × IR62266 doubled haploid (DH) mapping population.

  8. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.

    Science.gov (United States)

    Yang, Jungwoo; Bae, Ju Yun; Lee, Young Mi; Kwon, Hyeji; Moon, Hye-Yun; Kang, Hyun Ah; Yee, Su-Bog; Kim, Wankee; Choi, Wonja

    2011-08-01

    Since elevated ethanol is a major stress during ethanol fermentation, yeast strains tolerant to ethanol are highly desirable for the industrial scale ethanol production. A technology called global transcriptional machinery engineering (gTME), which exploits a mutant library of SPT15 encoding the TATA-binding protein of Saccharomyces cerevisiae (Alper et al., 2006; Science 314: 1565-1568), seems to a powerful tool for creating ethanol-tolerant strains. However, the ability of created strains to tolerate high ethanol on rich media remains unproven. In this study, a similar strategy was used to obtain five strains with enhanced ethanol tolerance (ETS1-5) of S. cerevisiae. Comparing global transcriptional profiles of two selected strains ETS2 and ETS3 with that of the control identified 42 genes that were commonly regulated with twofold change. Out of 34 deletion mutants available from a gene knockout library, 18 were ethanol sensitive, suggesting that these genes were closely associated with ethanol tolerance. Eight of them were novel with most being functionally unknown. To establish a basis for future industrial applications, strains iETS2 and iETS3 were created by integrating the SPT15 mutant alleles of ETS2 and ETS3 into the chromosomes, which also exhibited enhanced ethanol tolerance and survival upon ethanol shock on a rich medium. Fermentation with 20% glucose for 24 h in a bioreactor revealed that iETS2 and iETS3 grew better and produced approximately 25% more ethanol than a control strain. The ethanol yield and productivity were also substantially enhanced: 0.31 g/g and 2.6 g/L/h, respectively, for control and 0.39 g/g and 3.2 g/L/h, respectively, for iETS2 and iETS3. Thus, our study demonstrates the utility of gTME in generating strains with enhanced ethanol tolerance that resulted in increase of ethanol production. Strains with enhanced tolerance to other stresses such as heat, fermentation inhibitors, osmotic pressure, and so on, may be further created by

  9. Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance.

    Science.gov (United States)

    Amenós, Montse; Corrales, Isabel; Poschenrieder, Charlotte; Illés, Peter; Baluska, Frantisek; Barceló, Juan

    2009-03-01

    A relationship between aluminum (Al) toxicity, endocytosis, endosomes and vesicle recycling in the root transition zone has recently been demonstrated. Here the importance of filamentous actin (F-actin)-based vesicle trafficking for Al tolerance has been investigating in maize varieties differing in their Al sensitivities. More Al was internalized into root tip cells of the Al-sensitive variety 16x36 than in the Al-tolerant variety Cateto. The actin cytoskeleton and vesicle trafficking were primary targets for Al toxicity in the root tips of the sensitive variety. Visualization of boron-cross-linked rhamnogalacturonan II (RGII)-containing brefeldin A (BFA) compartments revealed that Al inhibited the formation of these compartments, especially in variety 16x36. The time sequence of Al effects on pectin recycling matches the growth effects of Al in this sensitive variety. These results support the hypothesis that Al binding to pectin-rich cell walls can contribute to reversible inhibition of root elongation. Al-induced alterations on F-actin were most evident in the central part of the transition zone of Al-sensitive 16x36, where Al was localized inside the nucleoli. In relation to this observation, a role for symplastic Al in both irreversible growth inhibition and amelioration of BFA-induced inhibition of root elongation is discussed.

  10. Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis

    Science.gov (United States)

    2014-01-01

    Background Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. Results The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. Conclusions Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As. PMID:24734953

  11. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms.

    Science.gov (United States)

    Nilsson, Martin; Rybtke, Morten; Givskov, Michael; Høiby, Niels; Twetman, Svante; Tolker-Nielsen, Tim

    2016-09-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant library for genes that are important for biofilm-associated antimicrobial tolerance provided evidence that the dlt genes play a role in the tolerance of S. mutans biofilms towards gentamicin. The minimum bactericidal concentration for biofilm cells (MBC-B) for a dltA transposon mutant was eight-fold lower than that of the wild-type. The minimum bactericidal concentration for planktonic cells (MBC-P) was only slightly reduced, indicating that the mechanism involved in the observed antimicrobial tolerance has a predominant role specifically in biofilms. Experiments with a knockout dltA mutant and complemented strain confirmed that the dlt genes in S. mutans play a role in biofilm-associated tolerance to gentamicin. Confocal laser scanning microscopy analyses of biofilms grown on glass slides showed that the dltA mutant produced roughly the same amount of biofilm as the wild-type, indicating that the reduced antimicrobial tolerance of the dltA mutant is not due to a defect in biofilm formation. The products of the dlt genes have been shown to mediate alanylation of teichoic acids, and in accordance the dltA mutant showed a more negatively charged surface than the wild-type, which likely is an important factor in the reduced tolerance of the dltA mutant biofilms towards the positively charged gentamicin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement

    OpenAIRE

    Bressan, Ray; Bohnert, Hans; Zhu, Jian-Kang

    2009-01-01

    Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles, transgenic approaches to improv...

  13. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.)

    OpenAIRE

    Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen

    2017-01-01

    Alfalfa (Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1) gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild ...

  14. Identification of Listeria monocytogenes Genes Involved in Salt and Alkaline-pH Tolerance

    OpenAIRE

    Gardan, Rozenn; Cossart, Pascale; Labadie, Jean

    2003-01-01

    The capacity of Listeria monocytogenes to tolerate salt and alkaline stresses is of particular importance, as this pathogen is often exposed to such environments during food processing and food preservation. We screened a library of Tn917-lacZ insertional mutants in order to identify genes involved in salt and/or alkaline tolerance. We isolated six mutants sensitive to salt stress and 12 mutants sensitive to salt and alkaline stresses. The position of the insertion of the transposon was locat...

  15. Abiotic stress tolerance: from gene discovery in model organisms to crop improvement.

    Science.gov (United States)

    Bressan, Ray; Bohnert, Hans; Zhu, Jian-Kang

    2009-01-01

    Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles, transgenic approaches to improving stress tolerance in crops remarkably parallels breeding principles with a greatly expanded germplasm base and will succeed eventually.

  16. Tolerância de cultivares de trigo a diferentes níveis de alumínio em solução nutritiva e no solo Tolerance op wheat cultivars to different levels of aluminum toxicity

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1981-01-01

    Full Text Available Foram estudados dez cultivares de trigo em soluções nutritivas contendo cinco diferentes níveis de alumínio tóxico. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após um período prévio de 48 horas em solução contendo uma concentração conhecida de alumínio. Os cultivares Siete Cerros e Tobari-66 foram sensíveis, respectivamente, a 1 e 3 ppm de alumínio. 'Alondra-S-46', 'Alondra-S-45' e 'IAC-17' foram sensíveis a 6 ppm; 'BH-1146', 'IAC-5', 'IAC-18', 'IAC-13' e 'Londrina' foram tolerantes a 10 ppm, porém 'BH-1146', 'IAC-18' e 'IAC-13' foram mais tolerantes que 'IAC-5' e 'Londrina'. Os cultivares BH-1146, IAC-17, Alondra-S-46, Tobari-66 e Siete Cerros foram cultivados em vasos contendo solo ácido mostrando a presença de alumínio. Metade do número de vasos recebeu uma aplicação de calcário. Os resultados desse experimento mostraram que o cultivar BH-1146 diferiu significativamente em produção de grãos por planta de 'Tobari-66', 'Alondra-S-46', 'IAC-17' e 'Siete Cerros'. Esse resultado confirmou a tolerância ao alumínio do cultivar BH-1146, observada quando se empregou solução nutritiva com a presença desse elemento.Ten wheat cultivars were studied to aluminum toxicity using five different levels of this element. The tolerance was measured taking into account the root growth in a aluminum-free complete nutrient solution after a previous Al treatment. With toxic amounts of Al, the primary roots did not grow at all and remained thickned at the tip as a typical Al injury. The wheat cultivars Siete Cerros and Tobari-66 were sensitive to 1 and 3 ppm of aluminum, respectively. The cultivars Alondra-S-46, Alondra-S-45 and IAC-17 were sensitive to 6 ppm. The cultivars BH-1146, IAC-5, IAC-18, IAC-13 and Londrina showed tolerance to 10 ppm but BH-1146, IAC-18 and IAC-13 were more tolerant than IAC-5 and Londrina. The cultivars BH-1146, IAC-17, Alondra-S-46

  17. Trigo duro: tolerância à toxicidade do alumínio em soluções nutritivas e no solo Durum wheat: tolerance to aluminum toxicity in nutrient solution and in the soil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1992-01-01

    Full Text Available Estudou-se o comportamento de 23 linhagens e cultivares de trigo duro (Triticum durum L., introduzidos do Centro Internacional de Melhoramento de Milho e Trigo (CIMMYT, México, juntamente com um cultivar de triticale e seis de trigo (Triticum aestivum L, em soluções nutritivas contendo seis concentrações de Al3+ (0, 1, 2, 3, 4 e 6 mg/litro, à temperatura constante de 25 ± 1°C, e pH 4,0. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após 48 horas em solução contendo uma concentração conhecida de alumínio. Todos os germoplasmas de trigo duro estudados e os cultivares de trigo Siete Cerros e Anahuac foram sensíveis à concentração de 1 mg/litro de Al3+. O cultivar de trigo Alondra-S-46 mostrou-se sensível a 4mg/litro de Al3+; o de triticale Chiva e os de trigo BH-1146, IAC-24 e IAC-60 exibiram tolerância à presença de 6 mg/litro de Al3+ nas soluções. Os mesmos genótipos foram também estudados em experimentos em solo ácido (V% = 14 e H + Al = 8,9 meq/100cm³ e em solo corrigido (V% = 65 e H + AI = 2,9 meq/100cm³. As produções de trigo duro em solo ácido foram baixas, variando de 939 a 2.243 kg/ha, comparadas com as dos cultivares de trigo e triticale tolerantes ao Al3+, as quais variaram de 3.584 a 4.922 kg/ha. No experimento em solo corrigido, a melhor linhagem de trigo duro (Avetoro "S" x Anhinga "S" - Pelicano "S" x D 67.2 produziu 4.128 kg/ha, em comparação com o triticale Chiva, 4547 kg/ha, e o melhor trigo IAC-24, 4.906 kg/ha. Esses resultados confirmaram a necessidade de ser incorporada tolerância ao Al3+ nos genótipos de trigo duro visando a seu cultivo em solos ácidos.Twenty three durum wheat inbred lines, one triticale and six bread wheat cultivars were studied in aerated nutrient solutions for aluminum tolerance with six different levels of aluminum (0, 1, 2, 3,4 and 6 mg/I, under constant temperature, 25 ± 1°C and pH 4.0. Aluminum

  18. Gene Therapy Induces Antigen-Specific Tolerance in Experimental Collagen-Induced Arthritis.

    Directory of Open Access Journals (Sweden)

    Sara Tengvall

    Full Text Available Here, we investigate induction of immunological tolerance by lentiviral based gene therapy in a mouse model of rheumatoid arthritis, collagen II-induced arthritis (CIA. Targeting the expression of the collagen type II (CII to antigen presenting cells (APCs induced antigen-specific tolerance, where only 5% of the mice developed arthritis as compared with 95% of the control mice. In the CII-tolerized mice, the proportion of Tregs as well as mRNA expression of SOCS1 (suppressors of cytokine signaling 1 increased at day 3 after CII immunization. Transfer of B cells or non-B cell APC, as well as T cells, from tolerized to naïve mice all mediated a certain degree of tolerance. Thus, sustainable tolerance is established very early during the course of arthritis and is mediated by both B and non-B cells as APCs. This novel approach for inducing tolerance to disease specific antigens can be used for studying tolerance mechanisms, not only in CIA but also in other autoimmune diseases.

  19. Key genes involved in desiccation tolerance and dormancy across life forms.

    Science.gov (United States)

    Costa, Maria Cecília D; Farrant, Jill M; Oliver, Melvin J; Ligterink, Wilco; Buitink, Julia; Hilhorst, Henk M W

    2016-10-01

    Desiccation tolerance (DT, the ability of certain organisms to survive severe dehydration) was a key trait in the evolution of life in terrestrial environments. Likely, the development of desiccation-tolerant life forms was accompanied by the acquisition of dormancy or a dormancy-like stage as a second powerful adaptation to cope with variations in the terrestrial environment. These naturally stress tolerant life forms may be a good source of genetic information to generate stress tolerant crops to face a future with predicted higher occurrence of drought. By mining for key genes and mechanisms related to DT and dormancy conserved across different species and life forms, unique candidate key genes may be identified. Here we identify several of these putative key genes, shared among multiple organisms, encoding for proteins involved in protection, growth and energy metabolism. Mutating a selection of these genes in the model plant Arabidopsis thaliana resulted in clear DT-, dormancy- and other seed-associated phenotypes, showing the efficiency and power of our approach and paves the way for the development of drought-stress tolerant crops. Our analysis supports a co-evolution of DT and dormancy by shared mechanisms that favour survival and adaptation to ever-changing environments with strong seasonal fluctuations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    Science.gov (United States)

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Bioprospecting for Genes that Confer Biofuel Tolerance to Escherichia Coli Using a Genomic Library Approach

    Science.gov (United States)

    Tomko, Timothy

    Microorganisms are capable of producing advanced biofuels that can be used as 'drop-in' alternatives to conventional liquid fuels. However, vital physiological processes and membrane properties are often disrupted by the presence of biofuel and limit the production yields. In order to make microbial biofuels a competitive fuel source, finding mechanisms for improving resistance to the toxic effects of biofuel production is vital. This investigation aims to identify resistance mechanisms from microorganisms that have evolved to withstand hydrocarbon-rich environments, such as those that thrive near natural oil seeps and in oil-polluted waters. First, using genomic DNA from Marinobacter aquaeolei, we constructed a transgenic library that we expressed in Escherichia coli. We exposed cells to inhibitory levels of pinene, a monoterpene that can serve as a jet fuel precursor with chemical properties similar to existing tactical fuels. Using a sequential strategy of a fosmid library followed by a plasmid library, we were able to isolate a region of DNA from the M. aquaeolei genome that conferred pinene tolerance when expressed in E. coli. We determined that a single gene, yceI, was responsible for the tolerance improvements. Overexpression of this gene placed no additional burden on the host. We also tested tolerance to other monoterpenes and showed that yceI selectively improves tolerance. Additionally, we used genomic DNA from Pseudomonas putida KT2440, which has innate solvent-tolerance properties, to create transgenic libraries in an E. coli host. We exposed cells containing the library to pinene, selecting for genes that improved tolerance. Importantly, we found that expressing the sigma factor RpoD from P. putida greatly expanded the diversity of tolerance genes recovered. With low expression of rpoDP. putida, we isolated a single pinene tolerance gene; with increased expression of the sigma factor our selection experiments returned multiple distinct tolerance

  3. Relative expression of genes related with cold tolerance in ...

    African Journals Online (AJOL)

    Low temperature is one of the main abiotic stresses affecting rice yield in Chile. Alterations in phenology and physiology of the crop are observed after a cold event. The objective of this work was to study the relative expression of genes related with cold stress in Chilean cultivars of rice. For this, we analyzed the expression ...

  4. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    with an elaborate literature survey for candidate gene products and/or regulatory sequences associated with enhanced drought ... PHT, plant height; PL, panicle length; PVC, polyvinyl chloride; QTL, quantitative trait loci; RCBD, randomized complete block design;. RN, root number ... The CG approach has been utilized suc-.

  5. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    So Young Yi

    2017-11-01

    Full Text Available Synechocystis salt-responsive gene 1 (sysr1 was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1–2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.

  6. Tolerância de porta-enxertos de videira ao alumínio do solo Tolerance to soil aluminum by grapevine rootstocks

    Directory of Open Access Journals (Sweden)

    José Carlos Fráguas

    1999-07-01

    Full Text Available Onze porta-enxertos e duas cultivares americanas de videira (Vitis spp foram avaliadas mediante níveis de saturação por Al no solo (Cambissolo Húmico álico, objetivando alcançar a tolerância diferenciada ao Al. O trabalho foi conduzido em casa de vegetação, com seis tratamentos completamente casualizados e quatro repetições, na Embrapa-Centro Nacional de Pesquisa de Uva e Vinho, em Bento Gonçalves, RS, no período de 1987 a 1990. As características avaliadas foram: altura das plantas, comprimento das raízes, peso da matéria seca da parte aérea e das raízes e teores de P, K, Ca e Mg em folhas e raízes. Diante dos acréscimos ou aumentos verificados em cada característica (variação % e por cultivar, foi possível estabelecer a tolerância diferenciada das cultivares. O teor de K na parte aérea não foi afetado pelos níveis de saturação por Al, enquanto os teores de Ca e Mg foram os mais afetados. O teor de P teve um comportamento estável entre os níveis de saturação por Al. As cultivares Isabel e Cunningham apresentaram diferença na tolerância ao Al do solo; a Cunningham teve melhor comportamento. Os porta-enxertos R99, Rupestris du Lot e Kober 5BB, juntamente com Isabel, foram os mais sensíveis ao Al, e P1103, 101-14 e 196-17Cl foram os mais tolerantes.Eleven grapevine rootstocks were evaluated through Al saturation levels in samples of the Cambissol Humic soil, to settle a differentiated tolerance by Al. The work was conducted in greenhouse with six randomized treatments, whose characteristics used were: plant height, root length, dry weight of aerial and root portions, and concentration of P, K, Ca and Mg in the leaves and roots. Through of the increase and/or decrease observed in each characteristic (variation %, it was possible to evaluate a differentiated tolerance of cultivars. The responses of K were not affected by the Al saturation levels. The Ca and Mg were the most affected by Al. P showed a stable

  7. Differential response of plants to aluminum. A review

    Directory of Open Access Journals (Sweden)

    Valencia R. Rubén A.

    2012-04-01

    Full Text Available

    Aluminum toxicity is a major limiting factor to the growth and development of plants in acidic soils worldwide, occurring in 40% of arable soils. The root seems to be the object of aluminum toxicity, particularly the apex, producing a rapid inhibition of cell division and elongation of the root. Fortunately, plants differ in their ability to tolerate aluminum and grow in acidic soils. Tolerance mechanisms have commonly been defined in genetic and physiological terms, however, tolerance mechanisms are not the same in all species, moreover, in certain species, mechanisms can operate simultaneously producing tolerance through their combined effects; the genetic control of tolerance can be very complex and involve many genes. The toxic action of aluminum, according to several studies, can be reduced by internal or external Al chelation with different organic compounds such as organic acids, proteins and polysaccharides, although this type of tolerance mechanism is very controversial and highly debated.

  8. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.

    Science.gov (United States)

    Tian, Ran; Losilla, Mauricio; Lu, Ying; Yang, Guang; Zakon, Harold

    2017-02-13

    Nocturnally active gymnotiform weakly electric fish generate electric signals for communication and navigation, which can be energetically taxing. These fish mainly inhabit the Amazon basin, where some species prefer well-oxygenated waters and others live in oxygen-poor, stagnant habitats. The latter species show morphological, physiological, and behavioral adaptations for hypoxia-tolerance. However, there have been no studies of hypoxia tolerance on the molecular level. Globins are classic respiratory proteins. They function principally in oxygen-binding and -delivery in various tissues and organs. Here, we investigate the molecular evolution of alpha and beta hemoglobins, myoglobin, and neuroglobin in 12 gymnotiforms compared with other teleost fish. The present study identified positively selected sites (PSS) on hemoglobin (Hb) and myoglobin (Mb) genes using different maximum likelihood (ML) methods; some PSS fall in structurally important protein regions. This evidence for the positive selection of globin genes suggests that the adaptive evolution of these genes has helped to enhance the capacity for oxygen storage and transport. Interestingly, a substitution of a Cys at a key site in the obligate air-breathing electric eel (Electrophorus electricus) is predicted to enhance oxygen storage of Mb and contribute to NO delivery during hypoxia. A parallel Cys substitution was also noted in an air-breathing African electric fish (Gymnarchus niloticus). Moreover, the expected pattern under normoxic conditions of high expression of myoglobin in heart and neuroglobin in the brain in two hypoxia-tolerant species suggests that the main effect of selection on these globin genes is on their sequence rather than their basal expression patterns. Results indicate a clear signature of positive selection in the globin genes of most hypoxia-tolerant gymnotiform fishes, which are obligate or facultative air breathers. These findings highlight the critical role of globin genes in

  9. Genetically engineered Rice with transcription factor DREB genes for abiotic stress tolerance(abstract)

    International Nuclear Information System (INIS)

    Datta, S.K.; Datta, K.

    2005-01-01

    Water stress (drought and Salinity) is the most severe limitation to rice productivity. Several breeding approaches (MAS, QTL) applied to suitable genotypes are in place at IRRI and elsewhere. Phenotyping of water stress tolerance is in progress with potential predictability. Dr. Shinozaki's group has cloned a number of transcription factor genes, which have been shown to work in Arabidopsis to achieve drought, cold, and salinity tolerant plants. None of these genes have as yet displayed their potential functioning in rice. Genetic engineering aims at cross talk between different stress signaling pathways leading to stress tolerance. Osmotic Adjustment (OA) is an effective component of abiotic stress (drought and salinity) tolerance in many plants including rice. When plant experiences water stress, OA contributes to turgor maintenance of both shoots and roots. Conventional breeding could not achieve the OA in rice excepting a few rice cultivars, which are partially adapted to water-stress conditions. Several stress-related genes have now been cloned and transferred in to enhance the osmolytes and some transgenic lines showed increased tolerance to osmotic stress. A few strategies could be effectively deployed for a better understanding of water-stress tolerance in rice and to develop transgenic rice, which can survive for a critical period of water-stress conditions: 1) Switching on of transcription factor regulating the expression of several genes related to abiotic stress, 2) Use of a suitable stress inducible promoter driving the target gene for an efficient and directed expression in plants, 3) Understanding of phenotyping and GxE in a given environment, 4) Selection of a few adaptive rice cultivars suitable in drought/salinity prone areas, 5) Microarray, proteomics, QTL and MAS may expedite the cloning and characterizing the stress induced genes, and 6) Finally, the efficient transformation system for generating a large number of transgenic rice of different

  10. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses

    DEFF Research Database (Denmark)

    Sandve, Simen R; Rudi, Heidi; Asp, Torben

    2008-01-01

    of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we...

  11. The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato1

    Science.gov (United States)

    Gisbert, Carmina; Rus, Ana M.; Bolarín, M. Carmen; López-Coronado, J. Miguel; Arrillaga, Isabel; Montesinos, Consuelo; Caro, Manuel; Serrano, Ramon; Moreno, Vicente

    2000-01-01

    Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K+ concentration and decreasing intracellular Na+ during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K+ to Na+ ratios showed that transgenic lines were able to retain more K+ than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast. PMID:10806256

  12. Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response

    Science.gov (United States)

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Wu, Liyou; Parsons, Andrea B; Palumbo, Anthony V; Zhou, Jizhong

    2008-01-01

    Background Iron homeostasis is a key metabolism for most organisms. In many bacterial species, coordinate regulation of iron homeostasis depends on the protein product of a Fur gene. Fur also plays roles in virulence, acid tolerance, redox-stress responses, flagella chemotaxis and metabolic pathways. Results We conducted physiological and transcriptomic studies to characterize Fur in Shewanella oneidensis, with regard to its roles in iron and acid tolerance response. A S. oneidensisfur deletion mutant was defective in growth under iron-abundant or acidic environment. However, it coped with iron depletion better than the wild-type strain MR-1. Further gene expression studies by microarray of the fur mutant confirmed previous findings that iron uptake genes were highly de-repressed in the mutant. Intriguingly, a large number of genes involved in energy metabolism were iron-responsive but Fur-independent, suggesting an intimate relationship of energy metabolism to iron response, but not to Fur. Further characterization of these genes in energy metabolism suggested that they might be controlled by transcriptional factor Crp, as shown by an enriched motif searching algorithm in the corresponding cluster of a gene co-expression network. Conclusion This work demonstrates that S. oneidensis Fur is involved in iron acquisition and acid tolerance response. In addition, analyzing genome-wide transcriptional profiles provides useful information for the characterization of Fur and iron response in S. oneidensis. PMID:18366600

  13. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect

    Science.gov (United States)

    Teets, Nicholas M.; Peyton, Justin T.; Colinet, Herve; Renault, David; Kelley, Joanna L.; Kawarasaki, Yuta; Lee, Richard E.; Denlinger, David L.

    2012-01-01

    Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world’s southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions. PMID:23197828

  14. Characterization of Transcription Factor Gene OsDRAP1 Conferring Drought Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Liyu Huang

    2018-02-01

    Full Text Available HIGHLIGHTSOverexpressing and RNA interfering OsDRAP1 transgenic rice plants exhibited significantly improved and reduced drought tolerance, but accompanied with negative effects on development and yield.The dehydration responsive element binding (DREBs genes are important transcription factors which play a crucial role in plant abiotic stress tolerances. In this study, we functionally characterized a DREB2-like gene, OsDRAP1 conferring drought tolerance (DT in rice. OsDRAP1, containing many cis-elements in its promoter region, was expressed in all organs (mainly expressed in vascular tissues of rice, and induced by a variety of environmental stresses and plant hormones. Overexpressing OsDRAP1 transgenic plants exhibited significantly improved DT; while OsDRAP1 RNA interfering plants exhibited significantly reduced DT which also accompanied with significant negative effects on development and yield. Overexpression of OsDRAP1 has a positive impact on maintaining water balance, redox homeostasis and vascular development in transgenic rice plants under drought stress. OsDRAP1 interacted with many genes/proteins and could activate many downstream DT related genes, including important transcription factors such as OsCBSX3 to response drought stress, indicating the OsDRAP1-mediated pathways for DT involve complex genes networks. All these results provide a basis for further complete understanding of the OsDRAP1 mediated gene networks and their related phenotypic effects.

  15. Characterization of Transcription Factor GeneOsDRAP1Conferring Drought Tolerance in Rice.

    Science.gov (United States)

    Huang, Liyu; Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Qin, Qiao; Sun, Fan; Hu, Fengyi; Zhao, Yan; Li, Zichao; Fu, Binying; Li, Zhikang

    2018-01-01

    HIGHLIGHTS Overexpressing and RNA interfering OsDRAP1 transgenic rice plants exhibited significantly improved and reduced drought tolerance, but accompanied with negative effects on development and yield. The dehydration responsive element binding (DREBs) genes are important transcription factors which play a crucial role in plant abiotic stress tolerances. In this study, we functionally characterized a DREB2-like gene, OsDRAP1 conferring drought tolerance (DT) in rice. OsDRAP1 , containing many cis -elements in its promoter region, was expressed in all organs (mainly expressed in vascular tissues) of rice, and induced by a variety of environmental stresses and plant hormones. Overexpressing OsDRAP1 transgenic plants exhibited significantly improved DT; while OsDRAP1 RNA interfering plants exhibited significantly reduced DT which also accompanied with significant negative effects on development and yield. Overexpression of OsDRAP1 has a positive impact on maintaining water balance, redox homeostasis and vascular development in transgenic rice plants under drought stress. OsDRAP1 interacted with many genes/proteins and could activate many downstream DT related genes, including important transcription factors such as OsCBSX3 to response drought stress, indicating the OsDRAP1 -mediated pathways for DT involve complex genes networks. All these results provide a basis for further complete understanding of the OsDRAP1 mediated gene networks and their related phenotypic effects.

  16. Effects of short-term acid and aluminum exposure on the parr-smolt transformation in Atlantic salmon (Salmo salar): disruption of seawater tolerance and endocrine status.

    Science.gov (United States)

    Monette, Michelle Y; Björnsson, Björn Thrandur; McCormick, Stephen D

    2008-08-01

    Episodic acidification resulting in increased acidity and inorganic aluminum (Al(i)) is known to interfere with the parr-smolt transformation of Atlantic salmon (Salmo salar), and has been implicated as a possible cause of population decline. To determine the extent and mechanism(s) by which short-term acid/Al exposure compromises smolt development, Atlantic salmon smolts were exposed to either control (pH 6.7-6.9) or acid/Al (pH 5.4-6.3, 28-64 microgl(-1) Al(i)) conditions for 2 and 5 days, and impacts on freshwater (FW) ion regulation, seawater (SW) tolerance, plasma hormone levels and stress response were examined. Gill Al concentrations were elevated in all smolts exposed to acid/Al relative to controls confirming exposure to increased Al(i). There was no effect of acid/Al on plasma ion concentrations in FW however, smolts exposed to acid/Al followed by a 24h SW challenge exhibited greater plasma Cl(-) levels than controls, indicating reduced SW tolerance. Loss of SW tolerance was accompanied by reductions in gill Na(+),K(+)-ATPase (NKA) activity and Na(+),K(+),2Cl(-) (NKCC) cotransporter protein abundance. Acid/Al exposure resulted in decreased plasma insulin-like growth factor (IGF-I) and 3,3',5'-triiodo-l-thyronine (T(3)) levels, whereas no effect of treatment was seen on plasma cortisol, growth hormone (GH), or thyroxine (T(4)) levels. Acid/Al exposure resulted in increased hematocrit and plasma glucose levels in FW, but both returned to control levels after 24h in SW. The results indicate that smolt development and SW tolerance are compromised by short-term exposure to acid/Al in the absence of detectable impacts on FW ion regulation. Loss of SW tolerance during short-term acid/Al exposure likely results from reductions in gill NKA and NKCC, possibly mediated by decreases in plasma IGF-I and T(3).

  17. New genes involved in osmotic stress tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ramon Gonzalez

    2016-09-01

    Full Text Available Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis, or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.

  18. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae

    Science.gov (United States)

    Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quirós, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva

    2016-01-01

    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context. PMID:27733850

  19. Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings.

    Science.gov (United States)

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2014-01-01

    Plant growth and productivity are greatly affected due to changes in the environmental conditions. In the present investigation, the interactive effects of two important abiotic stresses, i.e., water deficit and Al toxicity, were examined in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (water deficit/Al sensitive) and Vandana (water deficit/Al tolerant). When 15 days grown seedlings were exposed to water deficit (created with 15 % polyethylene glycol 6000) or Al (1 mM AlCl3) treatment or both the treatments together for 48 h, the lengths of root/shoot, relative water content, and chlorophyll greatly declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Seedlings subjected to water deficit or Al treatment alone or in combination showed increased intensity of the isoenzyme activity bands of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) in in-gel activity staining studies. Water deficit caused decrease in intensity of catalase (CAT) activity bands; however, when seedlings were exposed to AlCl3 alone or in combination with water deficit, the intensity of the CAT isoforms increased in both the rice cultivars. The level of expression of the activity bands of SOD, CAT, GPX, and APX was always higher in the seedlings of tolerant cv. Vandana compared to the sensitive cv. Malviya-36 under both controls as well as stress treatments. Higher intensity of isozymes representing higher activity levels of antioxidative enzymes in the rice seedlings and their further increase under water deficit, Al exposure, or in combination of both the stresses appears to serve as useful marker for specifying a combination of water deficit and Al tolerance in rice.

  20. Disruption of immunological tolerance: role of AIRE gene in autoimmunity.

    Science.gov (United States)

    Rizzi, M; Ferrera, F; Filaci, G; Indiveri, F

    2006-02-01

    The mechanism underlying the generation of T and B autoreactive clones in autoimmune diseases is still unknown. Among genetic factors implicated in autoimmunity, Autoimmune Regulator gene (AIRE) is one of the candidates to better understand the complex scenario of autoimmune manifestations. AIRE mutations are responsible for the development of autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) with monogenic autosomal recessive inheritance; it has been shown that AIRE regulates the negative selection of autoreactive T cells clones, driving the transcription of tissue-specific antigens in thymic epithelial cells. In various autoimmune manifestations correlated or not to APECED, AIRE variants act in a semidominant manner, leading to a reduction in AIRE protein amount per cell, and consequently to a marked decrease in ectopic proteins expression in the thymus. The co-occurrence of autoimmune diseases in the same individual has prompted several studies aimed to recognize shared patho-physiological mechanisms; in this scenario small reductions in function could explain the predisposition to autoimmunity in AIRE-heterozygous carriers of missense mutations; further studies to investigate whether the AIRE gene is involved in determining these autoimmune manifestations should be carried out.

  1. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaojuan, E-mail: xiaojuanwang@lzu.edu.cn [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Song, Yu [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Environment Management College of China, Qinhuangdao 066004 (China); Ma Yanhua [Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhuo Renying [Key Lab of Tree Genomics, Research Institute of Subtropical of Forest, Chinese Academy of Forest, Fuyang 311400 (China); Jin Liang [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China)

    2011-12-15

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: > Evaluate Cd tolerance in wide sources of alfalfa accessions. > Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. > Cloned differentially expressed metallothionein (MT) genes. > Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. > MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  2. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Wang Xiaojuan; Song, Yu; Ma Yanhua; Zhuo Renying; Jin Liang

    2011-01-01

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: → Evaluate Cd tolerance in wide sources of alfalfa accessions. → Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. → Cloned differentially expressed metallothionein (MT) genes. → Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. → MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  3. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  4. Association Mapping of Ferrous, Zinc, and Aluminum Tolerance at the Seedling Stage in Indica Rice using MAGIC Populations

    Directory of Open Access Journals (Sweden)

    Lijun Meng

    2017-10-01

    Full Text Available Excessive amounts of metal are toxic and severely affect plant growth and development. Understanding the genetic control of metal tolerance is crucial to improve rice resistance to Fe, Zn, and Al toxicity. The multi-parent advanced generation inter-cross (MAGIC populations were genotyped using a 55 K rice SNP array and screened at the seedling stage for Fe, Zn, and Al toxicity using a hydroponics system. Association analysis was conducted by implementing a mixed linear model (MLM for each of the five MAGIC populations double cross DC1 (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1, double cross DC2 (founders of double cross were FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127, eight parents population 8way (founders were SAGC-08, HHZ5-SAL9-Y3-Y1, BP1976B-2-3-7-TB-1-1, PR33282-B-8-1-1-1-1-1, FFZ1, CT 16658-5-2-2SR-2-3-6MP, IR 68, IR 02A127, DC12 (DC1+DC2 and rice multi-parent recombinant inbred line population RMPRIL (DC1+DC2+8way. A total of 21, 30, and 21 QTL were identified for Fe, Zn, and Al toxicity tolerance, respectively. For multi tolerance (MT as Fe, Zn, and Al tolerance-related traits, three genomic regions, MT1.1 (chr.1: 35.4–36.3 Mb, MT1.2 (chr.1: 35.4–36.3 Mb, and MT3.2 (chr.3: 35.4-36.2 Mb harbored QTL. The chromosomal regions MT2.1 (chr.2: 2.4–2.8 Mb, MT2.2 (chr.2: 24.5–25.8 Mb, MT4 (chr.4: 1.2 Mb Mb, MT8.1 (chr.8: 0.7–0.9 Mb, and MT8.2 (chr.8: 2.2–2.4 Mb harbored QTL for Fe and Zn tolerance, while MT2.3 (chr.2: 30.5–31.6 Mb, MT3.1 (chr.3: 12.5–12.8 Mb, and MT6 (chr.6: 2.0–3.0 Mb possessed QTL for Al and Zn tolerance. The chromosomal region MT9.1 (chr.9: 14.2–14.7 Mb possessed QTL for Fe and Al tolerance. A total of 11 QTL were detected across different MAGIC populations and 12 clustered regions were detected under different metal conditions, suggesting that these genomic regions might constitute valuable regions for further marker-assisted selection (MAS in breeding

  5. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance.

    Science.gov (United States)

    Liu, Jun; Guo, Ting; Shen, Xiaoning; Xu, Jiahui; Wang, Junzhi; Wang, Yanyan; Liu, Dong; Niu, Huanqing; Liang, Lei; Ying, Hanjie

    2016-07-10

    A mutant strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii M11, which exhibited ferulic acid tolerance up to 0.9g/L, was generated using atmospheric pressure glow discharge and high-throughput screening. Comparative genomic analysis revealed that this strain harbored a mutation of the Cbei_4693 gene, which encodes a hypothetical protein suspected to be an NADPH-dependent FMN reductase. After disrupting the Cbei_4693 gene in C. beijerinckii NCIMB 8052 using the ClosTron group II intron-based gene inactivation system, we obtained the Cbei_4693 gene inactivated mutant strain, C. beijerinckii 4693::int. Compared with C. beijerinckii NCIMB 8052, 6.23g/L of butanol was produced in P2 medium containing 0.5g/L of ferulic acid by 4693::int, and the ferulic acid tolerance was also significantly increased up to 0.8g/L. These data showed, for the first time, that the Cbei_4693 gene plays an important role in regulating ferulic acid tolerance in ABE fermentation by C. beijerinckii. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    Science.gov (United States)

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014

  7. Expressing the sweet potato orange gene in transgenic potato improves drought tolerance and marketable tuber production.

    Science.gov (United States)

    Cho, Kwang-Soo; Han, Eun-Heui; Kwak, Sang-Soo; Cho, Ji-Hong; Im, Ju-Seong; Hong, Su-Young; Sohn, Hwang-Bae; Kim, Yun-Hee; Lee, Shin-Woo

    2016-01-01

    Potato (Solanum tuberosum L.) is generally considered to be sensitive to drought stress. Even short periods of water shortage can result in reduced tuber production and quality. We previously reported that transgenic potato plants expressing the sweet potato orange gene (IbOr) under the control of the stress-inducible SWPA2 promoter (referred to as SOR plants) showed increased tolerance to methyl viologen-mediated oxidative stress and high salinity, along with increased carotenoid contents. In this study, in an effort to improve the productivity and environmental stress tolerance of potato, we subjected transgenic potato plants expressing IbOr to water-deficient conditions in the greenhouse. The SOR plants exhibited increased tolerance to drought stress under greenhouse conditions. IbOr expression was associated with slightly negative phenotypes, including reduced tuber production. Controlling IbOr expression imparted the same degree of drought tolerance while ameliorating these negative phenotypic effects, leading to levels of tuber production similar to or better than those of wild-type plants under drought stress conditions. In particular, under drought stress, drought tolerance and the production of marketable tubers (over 80g) were improved in transgenic plants compared with non-transgenic plants. These results suggest that expressing the IbOr transgene can lead to significant gains in drought tolerance and tuber production in potato, thereby improving these agronomically important traits. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato.

    Directory of Open Access Journals (Sweden)

    Degao Liu

    Full Text Available Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L. Lam. line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19 plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.

  9. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Grison, R.; Grezes-Besset, B.; Lucante, N. [Rustica Prograin Genetique, Mondonville (France)] [and others

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  10. Micro-evolution of toxicant tolerance: from single genes to the genome's tangled bank.

    Science.gov (United States)

    van Straalen, Nico M; Janssens, Thierry K S; Roelofs, Dick

    2011-05-01

    Two case-studies published 55 years ago became textbook examples of evolution in action: DDT resistance in houseflies (Busvine) and the rise of melanic forms of the peppered moth (Kettlewell). Now, many years later, molecular studies have elucidated in detail the mechanisms conferring resistance. In this paper we focus on the case of metal tolerance in a soil-living arthropod, Orchesella cincta, and provide new evidence on the transcriptional regulation of a gene involved in stress tolerance, metallothionein. Evolution of resistance is often ascribed to cis-regulatory change of such stress-combatting genes. For example, DDT resistance in the housefly is due to insertion of a mobile element into the promoter of Cyp6g1, and overexpression of this gene allows rapid metabolism of DDT. The discovery of these mechanisms has promoted the idea that resistance to environmental toxicants can be brought about by relatively simple genetic changes, involving up-regulation, duplication or structural alteration of a single-gene. Similarly, the work on O. cincta shows that populations from metal-polluted mining sites have a higher constitutive expression of the cadmium-induced metallothionein (Mt) gene. Moreover, its promoter appears to include a large degree of polymorphism; Mt promoter alleles conferring high expression in cell-based bioreporter assays were shown to occur at higher frequency in populations living at polluted sites. The case is consistent with classical examples of micro-evolution through altered cis-regulation of a key gene. However, new data on qPCR analysis of gene expression in homozygous genotypes with both reference and metal-tolerant genetic backgrounds, show that Mt expression of the same pMt homozygotes depends on the origin of the population. This suggests that trans-acting factors are also important in the regulation of Mt expression and its evolution. So the idea that metal tolerance in Orchesella can be viewed as a single-gene adaptation must be

  11. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum.

    Science.gov (United States)

    Monette, Michelle Y; Yada, Takashi; Matey, Victoria; McCormick, Stephen D

    2010-08-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 micrpg l(-1) Al), acid and low Al (LAl: pH 5.4, 11 microg l(-1) Al), acid and moderate Al (MAl: pH 5.3, 42 microg l(-1) Al), and acid and high Al (HAl: pH 5.4, 56 microg l(-1) Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na(+)/K(+)-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl(-) channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al

  12. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    Science.gov (United States)

    Monette, M.Y.; Yada, T.; Matey, V.; McCormick, S.D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4??gl-1 Al), acid and low Al (LAl: pH 5.4, 11??gl-1 Al), acid and moderate Al (MAl: pH 5.3, 42??gl-1 Al), and acid and high Al (HAl: pH 5.4, 56??gl-1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na+/K+-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl- channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose that when smolts are

  13. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    International Nuclear Information System (INIS)

    Monette, Michelle Y.; Yada, Takashi; Matey, Victoria; McCormick, Stephen D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 μg l -1 Al), acid and low Al (LAl: pH 5.4, 11 μg l -1 Al), acid and moderate Al (MAl: pH 5.3, 42 μg l -1 Al), and acid and high Al (HAl: pH 5.4, 56 μg l -1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24 h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na + /K + -ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl - channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose

  14. Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers' yeast.

    Science.gov (United States)

    Kim, Yu-Young; Kim, Do-Young; Shim, Donghwan; Song, Won-Yong; Lee, Joohyun; Schroeder, Julian I; Kim, Sanguk; Moran, Nava; Lee, Youngsook

    2008-06-06

    Cadmium causes the generation of reactive oxygen species, which in turn causes cell damage. We isolated a novel gene from a wheat root cDNA library, which conferred Cd(II)-specific tolerance when expressed in yeast (Saccharomyces cerevisiae). The gene, which we called TaTM20, for Triticum aestivum transmembrane 20, encodes a putative hydrophobic polypeptide of 889 amino acids, containing 20 transmembrane domains arranged as a 5-fold internal repeating unit of 4 transmembrane domains each. Expression of TaTM20 in yeast cells stimulated Cd(II) efflux resulting in a decrease in the content of yeast intracellular cadmium. TaTM20-induced Cd(II) tolerance was maintained in yeast even under conditions of reduced GSH. These results demonstrate that TaTM20 enhances Cd(II) tolerance in yeast through the stimulation of Cd(II) efflux from the cell, partially independent of GSH. Treatment of wheat seedlings with Cd(II) induced their expression of TaTM20, decreasing subsequent root Cd(II) accumulation and suggesting a possible role for TaTM20 in Cd(II) tolerance in wheat.

  15. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance.

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    Full Text Available Alfalfa (Medicago sativa L., a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye under the control of an oxidative stress-inducible peroxidase (SWPA2 promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants, three lines (SOR2, SOR3, and SOR8 selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.

  16. Resistance gene analogs involved in tolerant cassava--geminivirus interaction that shows a recovery phenotype.

    Science.gov (United States)

    Louis, Bengyella; Rey, Chrissie

    2015-12-01

    The current literature describes recovery from virus-induced symptoms as a RNA silencing defense, but immunity-related genes, including the structurally specific resistance gene analogs (RGAs) that may play a key role in tolerance and recovery is not yet reported. In this study, the transcriptome data of tolerant cassava TME3 (which exhibits a recovery phenotype) and susceptible cassava T200 infected with South African cassava mosaic virus were explored for RGAs. Putative resistance protein analogs (RPAs) with amide-like indole-3-acetic acid-Ile-Leu-Arg (IAA-ILR) and leucine-rich repeat (LRR)-kinase conserved domains were unique to TME3. Common responsive RPAs in TME3 and T200 were the dirigent-like protein, coil-coil nucleotide-binding site (NBS) and toll-interleukin-resistance, disease resistance zinc finger chromosome condensation-like protein (DZC), and NBS-apoptosis repressor with caspase recruitment (ARC)-LRR domains. Mutations in RPAs in the MHD motif of the NBS-ARC2 subdomain associated with the recovery phase in TME3 were observed. Additionally, a cohort of 25 RGAs mined solely during the recovery process in TME3 was identified. Phylogenetic and expression analyses support that diverse RGAs are differentially expressed during tolerance and recovery. This study reveals that in cassava, a perennial crop, RGAs participate in tolerance and differentially accumulate during recovery as a complementary defense mechanism to natural occurring RNA silencing to impair viral replication.

  17. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    Science.gov (United States)

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  18. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton.

    Directory of Open Access Journals (Sweden)

    Sundaram Kuppu

    Full Text Available Water-deficit stress is a major environmental factor that limits agricultural productivity worldwide. Recent episodes of extreme drought have severely affected cotton production in the Southwestern USA. There is a pressing need to develop cotton varieties with improved tolerance to water-deficit stress for sustainable production in water-limited regions. One approach to engineer drought tolerance is by delaying drought-induced senescence via up-regulation of cytokinin biosynthesis. The isopentenyltransferase gene (IPT that encodes a rate limiting enzyme in cytokinin biosynthesis, under the control of a water-deficit responsive and maturation specific promoter P(SARK was introduced into cotton and the performance of the P(SARK::IPT transgenic cotton plants was analyzed in the greenhouse and growth chamber conditions. The data indicate that P(SARK::IPT-transgenic cotton plants displayed delayed senescence under water deficit conditions in the greenhouse. These plants produced more root and shoot biomass, dropped fewer flowers, maintained higher chlorophyll content, and higher photosynthetic rates under reduced irrigation conditions in comparison to wild-type and segregated non-transgenic lines. Furthermore, P(SARK::IPT-transgenic cotton plants grown in growth chamber condition also displayed greater drought tolerance. These results indicate that water-deficit induced expression of an isopentenyltransferase gene in cotton could significantly improve drought tolerance.

  19. Discovery of error-tolerant biclusters from noisy gene expression data.

    Science.gov (United States)

    Gupta, Rohit; Rao, Navneet; Kumar, Vipin

    2011-11-24

    An important analysis performed on microarray gene-expression data is to discover biclusters, which denote groups of genes that are coherently expressed for a subset of conditions. Various biclustering algorithms have been proposed to find different types of biclusters from these real-valued gene-expression data sets. However, these algorithms suffer from several limitations such as inability to explicitly handle errors/noise in the data; difficulty in discovering small bicliusters due to their top-down approach; inability of some of the approaches to find overlapping biclusters, which is crucial as many genes participate in multiple biological processes. Association pattern mining also produce biclusters as their result and can naturally address some of these limitations. However, traditional association mining only finds exact biclusters, which limits its applicability in real-life data sets where the biclusters may be fragmented due to random noise/errors. Moreover, as they only work with binary or boolean attributes, their application on gene-expression data require transforming real-valued attributes to binary attributes, which often results in loss of information. Many past approaches have tried to address the issue of noise and handling real-valued attributes independently but there is no systematic approach that addresses both of these issues together. In this paper, we first propose a novel error-tolerant biclustering model, 'ET-bicluster', and then propose a bottom-up heuristic-based mining algorithm to sequentially discover error-tolerant biclusters directly from real-valued gene-expression data. The efficacy of our proposed approach is illustrated by comparing it with a recent approach RAP in the context of two biological problems: discovery of functional modules and discovery of biomarkers. For the first problem, two real-valued S.Cerevisiae microarray gene-expression data sets are used to demonstrate that the biclusters obtained from ET

  20. Profiling dehydrin gene sequence and physiological parameters in drought tolerant and susceptible spring wheat cultivars

    International Nuclear Information System (INIS)

    Baloch, M.J.; Jatoi, W.A.

    2012-01-01

    Physiological and yield traits such as stomatal conductance (mmol m-/sup 2/s/sup -1/), Leaf relative water content (RWC %) and grain yield per plant were studied in a separate experiment. Results revealed that five out of sixteen cultivars viz. Anmol, Moomal, Sarsabz, Bhitai and Pavan, appeared to be relatively more drought tolerant. Based on morphophysiological results, studies were continued to look at these cultivars for drought tolerance at molecular level. Initially, four well recognized primers for dehydrin genes (DHNs) responsible for drought induction in T. durum L., T. aestivum L. and O. sativa L. were used for profiling gene sequence of sixteen wheat cultivars. The primers amplified the DHN genes variably like Primer WDHN13 (T. aestivum L.) amplified the DHN gene in only seven cultivars whereas primer TdDHN15 ( T. durum L.) amplified all the sixteen cultivars with even different DNA banding patterns some showing second weaker DNA bands. Third primer TdDHN16 (T. durum L.) has shown entirely different PCR amplification prototype, specially showing two strong DNA bands while fourth primer RAB16C (O. sativa L.) failed to amplify DHN gene in any of the cultivars. Examination of DNA sequences revealed several interesting features. First, it identified the two exon/one intron structure of this gene (complete sequences were not shown), a feature not previously described in the two database cDNA sequences available from T. aestivum L. (gi|21850). Secondly, the analysis identified several single nucleotide polymorphisms (SNPs), positions in gene sequence. Although complete gene sequence was not obtained for all the cultivars, yet there were a total of 38 variable positions in exonic (coding region) sequence, from a total gene length of 453 nucleotides. Matrix of SNP shows these 37 positions with individual sequence at positions given for each of the 14 cultivars (sequence of two cultivars was not obtained) included in this analysis. It demonstrated a considerab le

  1. Characterization of gene expression associated with drought avoidance and tolerance traits in a perennial grass species.

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    Full Text Available To understand molecular mechanisms of perennial grass adaptation to drought stress, genes associated with drought avoidance or tolerance traits were identified and their expression patterns were characterized in C4 hybrid bermudagrass [Cynodon dactylon (L. Pers.×C. transvaalensis Burtt Davy, cv. Tifway] and common bermudagrass (C. dactylon, cv. C299. Plants of drought-tolerant 'Tifway' and drought-sensitive 'C299' were exposed to drought for 5 d (mild stress and 10 d (severe stress by withholding irrigation in a growth chamber. 'Tifway' maintained significantly lower electrolyte leakage and higher relative water content than 'C299' at both 5 and 10 d of drought stress. Four cDNA libraries via suppression subtractive hybridization analysis were constructed and identified 277 drought-responsive genes in the two genotypes at 5 and 10 d of drought stress, which were mainly classified into the functional categories of stress defense, metabolism, osmoregulation, membrane system, signal and regulator, structural protein, protein synthesis and degradation, and energy metabolism. Quantitative-PCR analysis confirmed the expression of 36 drought up-regulated genes that were more highly expressed in drought-tolerant 'Tifway' than drought-sensitive 'C299', including those for drought avoidance traits, such as cuticle wax formation (CER1 and sterol desaturase, for drought tolerance traits, such as dehydration-protective proteins (dehydrins, HVA-22-like protein and oxidative stress defense (superoxide dismutase, dehydroascorbate reductase, 2-Cys peroxiredoxins, and for stress signaling (EREBP-4 like protein and WRKY transcription factor. The results suggest that the expression of genes for stress signaling, cuticle wax accumulation, antioxidant defense, and dehydration-protective protein accumulation could be critically important for warm-season perennial grass adaptation to long-term drought stress.

  2. Transcriptome sequencing of the naked mole rat (Heterocephalus glaber and identification of hypoxia tolerance genes

    Directory of Open Access Journals (Sweden)

    Bang Xiao

    2017-12-01

    Full Text Available The naked mole rat (NMR; Heterocephalus glaber is a small rodent species found in regions of Kenya, Ethiopia and Somalia. It has a high tolerance for hypoxia and is thus considered one of the most important natural models for studying hypoxia tolerance mechanisms. The various mechanisms underlying the NMR's hypoxia tolerance are beginning to be understood at different levels of organization, and next-generation sequencing methods promise to expand this understanding to the level of gene expression. In this study, we examined the sequence and transcript abundance data of the muscle transcriptome of NMRs exposed to hypoxia using the Illumina HiSeq 2500 system to clarify the possible genomic adaptive responses to the hypoxic underground surroundings. The RNA-seq raw FastQ data were mapped against the NMR genome. We identified 2337 differentially expressed genes (DEGs by comparison of the hypoxic and control groups. Functional annotation of the DEGs by gene ontology (GO analysis revealed enrichment of hypoxia stress-related GO categories, including ‘biological regulation’, ‘cellular process’, ‘ion transport’ and ‘cell-cell signaling’. Enrichment of DEGs in signaling pathways was analyzed against the Kyoto Encyclopedia of Genes and Genomes (KEGG database to identify possible interactions between DEGs. The results revealed significant enrichment of DEGs in focal adhesion, the mitogen-activated protein kinase (MAPK signaling pathway and the glycine, serine and threonine metabolism pathway. Furthermore, inhibition of DEGs (STMN1, MAPK8IP1 and MAPK10 expression induced apoptosis and arrested cell growth in NMR fibroblasts following hypoxia. Thus, this global transcriptome analysis of NMRs can provide an important genetic resource for the study of hypoxia tolerance in mammals. Furthermore, the identified DEGs may provide important molecular targets for biomedical research into therapeutic strategies for stroke and cardiovascular diseases.

  3. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  4. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice.

    Science.gov (United States)

    Shimo, Hugo; Ishimaru, Yasuhiro; An, Gynheung; Yamakawa, Takashi; Nakanishi, Hiromi; Nishizawa, Naoko K

    2011-11-01

    The contamination of food crops by cadmium (Cd) is a major concern in food production because it can reduce crop yields and threaten human health. In this study, knockout rice plants (Oryza sativa) tagged with the gene trap vector pGA2707 were screened for Cd tolerance, and the tolerant line lcd was obtained. The lcd mutant showed tolerance to Cd on agar plates and in hydroponic culture during early plant development. Metal concentration measurements in hydroponically grown plants revealed significantly less Cd in the shoots of lcd plants compared with wild-type (WT) shoots. When cultured in the field in soil artificially contaminated with low levels of Cd, lcd showed no significant difference in the Cd content of its leaf blades; however, the Cd concentration in the grains was 55% lower in 2009 and 43% lower in 2010. There were no significant differences in plant dry weight or seed yield between lcd and wild-type plants. LCD, a novel gene, is not homologous to any other known gene. LCD localized to the cytoplasm and nucleus, and was expressed mainly in the vascular tissues in the roots and phloem companion cells in the leaves. These data indicate that lcd may be useful for understanding Cd transport mechanisms and is a promising candidate rice line for use in combating the threat of Cd to human health.

  5. Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening.

    Science.gov (United States)

    Chen, Yu; Zong, Junqin; Tan, Zhiqun; Li, Lanlan; Hu, Baoyun; Chen, Chuanming; Chen, Jingbo; Liu, Jianxiu

    2015-04-01

    Though a large number of salt-tolerant genes were identified from Glycophyte in previous study, genes involved in salt-tolerance of halophyte were scarcely studied. In this report, an important halophyte turfgrass, Zoysia matrella, was used for systematic excavation of salt-tolerant genes using full-length cDNA expression library in yeast. Adopting the Gateway-compatible vector system, a high quality entry library was constructed, containing 3 × 10(6) clones with an average inserted fragments length of 1.64 kb representing a 100% full-length rate. The yeast expression library was screened in a salt-sensitive yeast mutant. The screening yielded dozens of salt-tolerant clones harboring 16 candidate salt-tolerant genes. Under salt-stress condition, these 16 genes exhibited different transcription levels. According to the results, we concluded that the salt-tolerance of Z. matrella might result from known genes involved in ion regulation, osmotic adjustment, as well as unknown pathway associated with protein folding and modification, RNA metabolism, and mitochondrial membrane translocase, etc. In addition, these results shall provide new insight for the future researches with respect to salt-tolerance. Crown Copyright © 2015. Published by Elsevier Masson SAS. All rights reserved.

  6. Oral Tolerance: A New Tool for the Treatment of Gastrointestinal Inflammatory Disorders and Liver-Directed Gene Therapy

    Directory of Open Access Journals (Sweden)

    Yaron Ilan

    1999-01-01

    Full Text Available Oral tolerance is a method of downregulating an immune response by feeding antigens. The use of oral tolerance toward adenoviruses and colitis-extracted proteins for long term gene therapy and alleviation of experimental colitis, and the mechanisms of tolerance induction are presented. Adenoviruses are efficient vectors in liver-directed gene therapy; however, the antiviral immune response precludes the ability to achieve long term gene expression and prohibits the ability to reinject the recombinant virus. Oral tolerance induction via feeding of viral-extracted proteins prevented the antiadenoviral humoral and cellular immune responses, thus enabling long term gene therapy using these viruses. Moreover, pre-existing immune response to the virus was overcome by tolerance induction, enabling prolonged gene expression in a presensitized host. Inflammatory bowel diseases are immune-mediated disorders where an imbalance between proinflammatory (T helper cell type 1 and anti-inflammatory (T helper cell type 2 cytokines are thought to play a role in the pathogenesis. In the experimental colitis model, the feeding of colitis-extracted proteins downregulated the anticolon immune response. Tolerance induction toward colitis-extracted proteins ameliorated colonic inflammation as shown by decreased diarrhea and reduction of colonic ulcerations, intestinal and peritoneal adhesions, wall thickness and edema. Histological parameters for colitis were markedly improved in tolerized animals. In both models, tolerized animals developed an increase in transforming growth factor-beta, interleukin-4 and interleukin-10, and a decrease in the mRNA of interferon-gamma lymphocytes and serum levels. Adoptive transfer of tolerized lymphocytes enabled the transfer of tolerance toward adenoviruses and colon-extracted proteins. Thus, oral tolerance induces suppressor lymphocytes that mediate immune response downregulation by induction of a shift from a proinflammatory T

  7. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus.

    Directory of Open Access Journals (Sweden)

    Mingming Cui

    Full Text Available Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae, is an important pest of sea buckthorn (Hippophae rhamnoides, which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.

  8. [Construction of transgenic tobacco expressing tomato GGPS2 gene and analysis of its low light tolerance].

    Science.gov (United States)

    Li, Cuiping; Dong, Weihua; Zhang, Xingguo

    2015-05-01

    To explore the influence of low light on the synthesis of carotenoids, chlorophyll and the adaptability of transgenic plants with tomato Solanum lycopersicon L. GGPS2 gene, we constructed a vector containing a GGPS2 gene with green fluorescent protein (GFP) as report gene under the control of a cauliflower mosaic virus 35S promoter and introduced it into tobacco Nicotiana tabacum L. cv. Wisconsin 38 by Agrobacterium tumefaciens-mediated transformation. PCR analysis of the DNA from kanamycin resistant tobacco indicated that the transgenic tobacco containing the nptII gene, SlaGGPS2 gene and without contamination of Agrobacterium. We also detected the root tip of kanamycin resistant tobacco showing characteristic fluorescence. The contents of carotenoid, chlorophyll and photosynthesis of transgenic tobacco increased in comparison with wild tobacco after low light treatment. In addition, leaf mass per unit area, total dry weight, ratio of root to shoot in transgenic tobacco were all higher than that of the wild tobacco, which proved that the transgenic tobacco could increase the accumulation of biomass and promote it transport to root. The transgenic tobacco with SlaGGPS2 gene can increase the contents of carotenoid, chlorophyll, enhance the photosynthetic rate, promote the biomass accumulation and its distribution to root. Hence, the transgenic tobacco with SlaGGPS2 gene had increased low light tolerance and the SlaGGPS2 gene maybe can be used in other crops.

  9. O pH das soluções nutritivas no comportamento de cultivares de trigo à toxicidade de alumínio Effect of pH in nutrient solution on tolerance to aluminum toxicity in wheat cultivars

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1984-01-01

    Full Text Available Foram estudados nove cultivares de trigo em soluções nutritivas contendo quatro níveis de alumínio (0, 5, 10 e 20mg/litro combinados com três níveis de pH (4,0, 5,0 e 6,0. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após um período de permanência de 48 horas em solução contendo determinados níveis de pH e de alumínio. Os cultivares BH-1146, IAC-18, IAC-13 e C-3 foram tolerantes; IAC-17 e Alondra-4546 foram moderadamente tolerantes, e Síete Cerros, Super-x e CNT-8 foram sensíveis à presença de quantidades crescentes de Al3+ nas soluções de tratamentos quando foi mantido o pH 4,0. Todos os cultivares foram tolerantes às dosagens de alumínio estudadas quando foram mantidos os níveis de pH 5,0 ou 6,0. Ficou confirmado que um controle rigoroso do pH da solução tratamento é um fator de grande importância no estudo da toxicidade do alumínio a diferentes cultivares de trigo.The aluminum tolerance of nine wheat cultivars was studied in nutrient solutions using three different levels of pH combined with four different concentrations of this element. The tolerance was evaluated by measuring the root growth in an aluminum-free complete nutrient solution after a previous treatment in aluminum added solutions (0, 5, 10 and 20mg/l under a particular pH (4.0, 5.0 and 6.0. The wheat cultivars BH-1146, IAC-18, IAC-13 and C-3 presented tolerance, IAC-17 and Alondra-4546 showed moderate tolerance and Siete Cerros, Super-x and CNT-8 were sensitive to the presence of increasing concentrations of Al3+ in the treatment solution under pH 4.0. All cultivars were tolerant to the different concentrations of aluminum under pH 5.0 and 6.0. The aluminum toxicity symptom (inhibition of root growth was dependent on the pH and the amount of aluminum in the treatment solution. For the same level of aluminum, toxicity symptoms increased, when the pH decreased in the solution from 6

  10. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Guangshun Zheng

    2017-12-01

    Full Text Available Alfalfa (Medicago sativa L. is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1 gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.

  11. Overexpression of Bacterial mtlD Gene in Peanut Improves Drought Tolerance through Accumulation of Mannitol

    Directory of Open Access Journals (Sweden)

    Tengale Dipak Bhauso

    2014-01-01

    Full Text Available In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L. crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated.

  12. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen

    2017-01-01

    Alfalfa ( Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 ( AtEDT1 ) gene into alfalfa via Agrobacterium -mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.

  13. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene.

    Science.gov (United States)

    Amara, Imen; Capellades, Montserrat; Ludevid, M Dolors; Pagès, Montserrat; Goday, Adela

    2013-06-15

    Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Monette, Michelle Y., E-mail: michelle.monette@yale.edu [Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA 01003 (United States); USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376 (United States); Yada, Takashi [Freshwater Fisheries Research Department, National Research Institute of Fisheries Science, Nikko (Japan); Matey, Victoria [Department of Biology, San Diego State University, San Diego, CA 92182 (United States); McCormick, Stephen D. [Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA 01003 (United States); USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376 (United States)

    2010-08-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 {mu}g l{sup -1} Al), acid and low Al (LAl: pH 5.4, 11 {mu}g l{sup -1} Al), acid and moderate Al (MAl: pH 5.3, 42 {mu}g l{sup -1} Al), and acid and high Al (HAl: pH 5.4, 56 {mu}g l{sup -1} Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24 h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na{sup +}/K{sup +}-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl{sup -} channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time

  15. SELEÇÃO PARA TOLERÂNCIA AO ALUMÍNIO EM SOJA TROPICAL SELECTION FOR ALUMINUM TOLERANCE IN TROPICAL SOYBEANS

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Spehar

    2007-09-01

    Full Text Available

    A acidez do solo é fator limitante para a maioria das plantas cultivadas no Cerrado Brasileiro. A toxidez causada por alumínio (Al é especialmente séria na subsuperfície, que permanece ácida após o uso de corretivos, por impedir o crescimento radicular e causar suscetibilidade à seca e desbalanceamento nutricional. Aqui objetivou-se a seleção de genótipos de soja com maior tolerância ao Al, pela associação de experimentos em hidroponia e no campo. Cruzamentos incluindo genótipos selecionados no Cerrado foram realizados. Sementes de indivíduos contrastantes, selecionados em hidroponia na geração F2 pelo crescimento radicular, foram obtidas para avaliação de progênies em F3, no campo, e em F4, novamente em hidroponia. Rendimento de grãos e de biomassa das progênies selecionadas foram superiores aos genitores, no experimento em solo ácido. Esses resultados foram confirmados pelo desempenho em hidroponia, indicando que o método de seleção pode ser empregado com êxito em programas de melhoramento para adaptação de cultivos a condições de acidez subsuperficial do solo.

    PALAVRAS-CHAVE: Acidez sub-superficial; Glycine max; estresse; genótipo; melhoramento de plantas.

    Soil acidity is a limiting factor for most of the cultivated plants in the Brazilian Savannah. Toxicity caused by aluminum (Al is especially serious in the acid subsurface, which remains acidic after soil has been amended, by hindering root growth and causing drought susceptibility and nutritional unbalance. This research aimed at selecting soybean with increased tolerance to Al through association of hydroponics and field experiments. Crosses including savannah adapted genotypes were obtained. Seeds of contrasting individuals, selected in hydroponics at F2 generation for root

  16. Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Mingzhu Dou

    2016-12-01

    Full Text Available Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.

  17. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera.

    Science.gov (United States)

    Sanchita; Singh, Ruchi; Mishra, Anand; Dhawan, Sunita S; Shirke, Pramod A; Gupta, Madan M; Sharma, Ashok

    2015-11-01

    Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.

  18. Characterization of a candidate gene for drought tolerance in #Coffea#: the #CcDREB1D# gene, in contrasting genotypes of #Coffea canephora# and related species

    OpenAIRE

    Costa Alves, Gabriel

    2015-01-01

    Coffee is the world's second most valuable traded commodity after crude oil. Like for other crops, drought is the key factor affecting plant development, flowering, productivity, fruits development and their quality. In such a context, the generation of drought-tolerant coffee varieties has now turned into one of the priorities of many research institutes. In coffee, several candidate genes for drought tolerance have been identified. This was the case of CcDR EB1D that showed increased gene e...

  19. Sequence-Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean

    Directory of Open Access Journals (Sweden)

    Sujan Mamidi

    2016-07-01

    Full Text Available White mold, caused by the necrotrophic fungus (Lib. de Bary, is a major disease of common bean ( L.. WM7.1 and WM8.3 are two quantitative trait loci (QTL with major effects on tolerance to the pathogen. Advanced backcross populations segregating individually for either of the two QTL, and a recombinant inbred (RI population segregating for both QTL were used to fine map and confirm the genetic location of the QTL. The QTL intervals were physically mapped using the reference common bean genome sequence, and the physical intervals for each QTL were further confirmed by sequence-based introgression mapping. Using whole-genome sequence data from susceptible and tolerant DNA pools, introgressed regions were identified as those with significantly higher numbers of single-nucleotide polymorphisms (SNPs relative to the whole genome. By combining the QTL and SNP data, WM7.1 was located to a 660-kb region that contained 41 gene models on the proximal end of chromosome Pv07, while the WM8.3 introgression was narrowed to a 1.36-Mb region containing 70 gene models. The most polymorphic candidate gene in the WM7.1 region encodes a BEACH-domain protein associated with apoptosis. Within the WM8.3 interval, a receptor-like protein with the potential to recognize pathogen effectors was the most polymorphic gene. The use of gene and sequence-based mapping identified two candidate genes whose putative functions are consistent with the current model of pathogenicity.

  20. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism

    Directory of Open Access Journals (Sweden)

    Khaled M. Hazzouri

    2018-02-01

    Full Text Available Sodium (Na+ accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare. A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+ and potassium (K+ content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These

  1. Mapping ofHKT1;5Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism.

    Science.gov (United States)

    Hazzouri, Khaled M; Khraiwesh, Basel; Amiri, Khaled M A; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K; Nelson, David; Mansour, Alain L; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled

    2018-01-01

    Sodium (Na + ) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5 -like gene was a major gene in the QTL for salt tolerance, named Nax2 . In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley ( Hordeum vulgare ). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na + ) and potassium (K + ) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na + and K + were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results

  2. Search for genes responsible for the remarkably high acetic acid tolerance of a Zygosaccharomyces bailii-derived interspecies hybrid strain.

    Science.gov (United States)

    Palma, Margarida; Roque, Filipa de Canaveira; Guerreiro, Joana Fernandes; Mira, Nuno Pereira; Queiroz, Lise; Sá-Correia, Isabel

    2015-12-16

    Zygosaccharomyces bailii is considered the most problematic acidic food spoilage yeast species due to its exceptional capacity to tolerate high concentrations of weak acids used as fungistatic preservatives at low pH. However, the mechanisms underlying its intrinsic remarkable tolerance to weak acids remain poorly understood. The identification of genes and mechanisms involved in Z. bailii acetic acid tolerance was on the focus of this study. For this, a genomic library from the highly acetic acid tolerant hybrid strain ISA1307, derived from Z. bailii and a closely related species and isolated from a sparkling wine production plant, was screened for acetic acid tolerance genes. This screen was based on the transformation of an acetic acid susceptible Saccharomyces cerevisiae mutant deleted for the gene encoding the acetic acid resistance determinant transcription factor Haa1. The expression of 31 different DNA inserts from ISA1307 strain genome was found to significantly increase the host cell tolerance to acetic acid. The in silico analysis of these inserts was facilitated by the recently available genome sequence of this strain. In total, 65 complete or truncated ORFs were identified as putative determinants of acetic acid tolerance and an S. cerevisiae gene homologous to most of them was found. These include genes involved in cellular transport and transport routes, protein fate, protein synthesis, amino acid metabolism and transcription. The role of strong candidates in Z. bailii and S. cerevisiae acetic acid tolerance was confirmed based on homologous and heterologous expression analyses. ISA1307 genes homologous to S. cerevisiae genes GYP8, WSC4, PMT1, KTR7, RKR1, TIF3, ILV3 and MSN4 are proposed as strong candidate determinants of acetic acid tolerance. The ORF ZBAI_02295 that contains a functional domain associated to the uncharacterised integral membrane proteins of unknown function of the DUP family is also suggested as a relevant tolerance determinant

  3. Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars.

    Science.gov (United States)

    Roselló, Maite; Poschenrieder, Charlotte; Gunsé, Benet; Barceló, Juan; Llugany, Mercè

    2015-11-01

    Rice (Oryza sativa) is a highly Al-tolerant crop. Among other mechanisms, a higher expression of STAR1/STAR2 (sensitive to Al rhizotoxicity1/2) genes and of Nrat1 (NRAMP Aluminium Transporter 1), and ALS1 (Aluminium sensitive 1) can at least in part be responsible for the inducible Al tolerance in this species. Here we analysed the responses to Al in two contrasting rice varieties. All analysed toxicity/tolerance markers (root elongation, Evans blue, morin and haematoxylin staining) indicated higher Al-tolerance in variety Nipponbare, than in variety Modan. Nipponbare accumulated much less Al in the roots than Modan. Aluminium supply caused stronger expression of STAR1 in Nipponbare than in Modan. A distinctively higher increase of Al-induced abscisic acid (ABA) accumulation was found in the roots of Nipponbare than in Modan. Highest ABA levels were observed in Nipponbare after 48 h exposure to Al. This ABA peak was coincident in time with the highest expression level of STAR1. It is proposed that ABA may be required for cell wall remodulation facilitated by the enhanced UDP-glucose transport to the walls through STAR1/STAR2. Contrastingly, in the roots of Modan the expression of both Nrat1 coding for a plasma membrane Al-transporter and of ALS1 coding for a tonoplast-localized Al transporter was considerably enhanced. Moreover, Modan had a higher Al-induced expression of ASR1 a gene that has been proposed to code for a reactive oxygen scavenging protein. In conclusion, the Al-exclusion strategy of Nipponbare, at least in part mediated by STAR1 and probably regulated by ABA, provided better protection against Al toxicity than the accumulation and internal detoxification strategy of Modan mediated by Nrat1, ALS1 and ARS1. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Prachy; Mukherjee, Prasun K.; Sherkhane, Pramod D.; Kale, Sharad P. [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Eapen, Susan, E-mail: eapenhome@yahoo.com [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-08-15

    Highlights: {yields} Transgenic plants expressing a TvGST gene were tested for tolerance, uptake and degradation of anthracene. {yields} Transgenic plants were more tolerant to anthracene and take up more anthracene from soil and solutions compared to control plants. {yields} Using in vitro T{sub 1} seedlings, we showed that anthracene-a three fused benzene ring compound was phytodegraded to naphthalene derivatives, having two benzene rings. {yields} This is the first time that a transgenic plant was shown to have the potential to phytodegrade anthracene. - Abstract: Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of {sup 14}C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T{sub 0} and T{sub 1}) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.

  5. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene

    International Nuclear Information System (INIS)

    Dixit, Prachy; Mukherjee, Prasun K.; Sherkhane, Pramod D.; Kale, Sharad P.; Eapen, Susan

    2011-01-01

    Highlights: → Transgenic plants expressing a TvGST gene were tested for tolerance, uptake and degradation of anthracene. → Transgenic plants were more tolerant to anthracene and take up more anthracene from soil and solutions compared to control plants. → Using in vitro T 1 seedlings, we showed that anthracene-a three fused benzene ring compound was phytodegraded to naphthalene derivatives, having two benzene rings. → This is the first time that a transgenic plant was shown to have the potential to phytodegrade anthracene. - Abstract: Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of 14 C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T 0 and T 1 ) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.

  6. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression.

    Science.gov (United States)

    Serebrovska, Tetiana V; Portnychenko, Alla G; Drevytska, Tetiana I; Portnichenko, Vladimir I; Xi, Lei; Egorov, Egor; Gavalko, Anna V; Naskalova, Svitlana; Chizhova, Valentina; Shatylo, Valeriy B

    2017-09-01

    The present study aimed at examining beneficial effects of intermittent hypoxia training (IHT) under prediabetic conditions. We investigate the effects of three-week IHT on blood glucose level, tolerance to acute hypoxia, and leukocyte mRNA expression of hypoxia inducible factor 1α (HIF-1α) and its target genes, i.e. insulin receptor, facilitated glucose transporter-solute carrier family-2, and potassium voltage-gated channel subfamily J. Seven healthy and 11 prediabetic men and women (44-70 years of age) were examined before, next day and one month after three-week IHT (3 sessions per week, each session consisting 4 cycles of 5-min 12% O 2 and 5-min room air breathing). We found that IHT afforded beneficial effects on glucose homeostasis in patients with prediabetes reducing fasting glucose and during standard oral glucose tolerance test. The most pronounced positive effects were observed at one month after IHT termination. IHT also significantly increased the tolerance to acute hypoxia (i.e. SaO 2 level at 20th min of breathing with 12% O 2 ) and improved functional parameters of respiratory and cardiovascular systems. IHT stimulated HIF-1α mRNA expression in blood leukocytes in healthy and prediabetic subjects, but in prediabetes patients the maximum increase was lagged. The greatest changes in mRNA expression of HIF-1α target genes occurred a month after IHT and coincided with the largest decrease in blood glucose levels. The higher expression of HIF-1α was positively associated with higher tolerance to hypoxia and better glucose homeostasis. In conclusion, our results suggest that IHT may be useful for preventing the development of type 2 diabetes. Impact statement The present study investigated the beneficial effects of intermittent hypoxia training (IHT) in humans under prediabetic conditions. We found that three-week moderate IHT induced higher HIF-1α mRNA expressions as well as its target genes, which were positively correlated with higher tolerance

  7. Melhoramento do trigo: III. Evidência de controle genético na tolerância ao manganês e alumínio tóxico em trigo Wheat breeding: III. Evidence of genetic control in the tolerance to manganese and aluminum toxicity in wheat

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1983-01-01

    Full Text Available Os cultivares Siete Cerros, tolerante, e BH-1146, sensível a elevadas doses de manganês, foram cruzados, obtendo-se sementes em gerações F1 e F2 desse cruzamento. As plantas dos cultivares pais e das gerações F1 e F2 foram cultivadas em soluções nutritivas contendo doses variadas de manganês (0,11; 300; 600 e 1.200mg/litro e testadas em outra solução nutritiva contendo 3mg/litro de alumínio. O comprimento das raízes primárias centrais das plantas dos genótipos estudados, após quinze dias de cultivo em soluções nutritivas contendo diferentes concentrações de manganês, serviu de base para avaliar a tolerância a esse elemento. Esse comprimento, após 72 horas de crescimento em solução nutritiva normal seguidas de 48 horas de crescimento em solução nutritiva contendo 3mg/litro de alumínio, foi utilizado para a avaliação da tolerância ao alumínio. Os valores da herdabilidade em sentido amplo para a tolerância a concentrações crescentes de manganês e para 3mg/litro de alumínio foram altos, indicando que grande parte da variabilidade encontrada nas populações segregantes para tolerância ao manganês e ao alumínio foram de origem genética, sugerindo que as seleções para estas características seriam efetivas a partir das gerações F2 e F3. Os dados mostraram que seria possível transferir, por meio de cruzamento entre os cultivares BH-1146 e Siete Cerros, a tolerância ao manganês do 'Siete Cerros' para o 'BH-1146' ou a tolerância ao alumínio deste para o 'Siete Cerros'.The cultivar Siete Cerros (P1 with tolerance to manganese toxicity and the cultivar BH-1146 (P2 showing sensitivity to manganese, were crossed. It was obtained the F1 and F2 generations of this cross. P1, P2, F1 and F2, where cultivated in nutrient solutions containing 0.11, 300, 600 and 1,200mg/l of manganese and they also were tested in other nutrient solution with 3mg/l of aluminum. The length of the central primary root of plants of each

  8. [Cloning and expression of organic solvent tolerant lipase gene from Staphylococcus saprophyticus M36].

    Science.gov (United States)

    Tang, Yanchong; Lu, Yaping; Lü, Fengxia; Bie, Xiaomei; Guo, Yao; Lu, Zhaoxin

    2009-12-01

    Lipases are important biocatalysts that are widely used in food processing and bio-diesel production. However, organic solvents could inactivate some lipases during applications. Therefore, the efficient cloning and expression of the organic solvent-tolerant lipase is important to its application. In this work, we first found out an organic solvent-tolerant lipase from Staphylococcus saprophyticus M36 and amplified the 741 bp Lipase gene lip3 (GenBank Accession No. FJ979867), by PCR, which encoded a 31.6 kD polypeptide of 247 amino acid residues. But the lipase shared 83% identity with tentative lip3 gene of Staphylococcus saprophyticus (GenBank Accession No. AP008934). We connected the gene with expression vector pET-DsbA, transformed it into Escherichia coli BL21 (DE3), and obtained the recombinant pET-DsbA-lip3. With the induction by 0.4 mmol/L of isopropyl beta-D-thiogalactopyranoside at pH 8.0, OD600 1.0, 25 degrees C for 12 h, the lipase activity reached up to 25.8 U/mL. The lipase expressed was stable in the presence of methanol, n-hexane, and isooctane, n-heptane.

  9. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance.

    Science.gov (United States)

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-03-23

    Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. In tobacco (Nicotiana tabacum 'Xanthi'), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines displayed different anthocyanin colors (e.g., pale red: T 0 -P, red: T 0 -R, and strong red: T 0 -S), resulting from varying levels of biosynthetic gene transcripts. Under salt stress, the T 2 generation had higher total polyphenol content, radical (DPPH, ABTS) scavenging activities, antioxidant-related gene expression, as well as overall greater salt and drought tolerance than wild type (WT). We propose that Del overexpression elevates transcript levels of anthocyanin biosynthetic and antioxidant-related genes, leading to enhanced anthocyanin production and antioxidant activity. The resultant increase of anthocyanin and antioxidant activity improves abiotic stress tolerance.

  10. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet.

    Directory of Open Access Journals (Sweden)

    Ramanna Hema

    Full Text Available Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD, were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.

  11. Stable Expression of mtlD Gene Imparts Multiple Stress Tolerance in Finger Millet

    Science.gov (United States)

    Hema, Ramanna; Vemanna, Ramu S.; Sreeramulu, Shivakumar; Reddy, Chandrasekhara P.; Senthil-Kumar, Muthappa; Udayakumar, Makarla

    2014-01-01

    Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet. PMID:24922513

  12. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage.

    Science.gov (United States)

    Osman, Khalid A; Tang, Bin; Wang, Yaping; Chen, Juanhua; Yu, Feng; Li, Liu; Han, Xuesong; Zhang, Zuxin; Yan, Jianbin; Zheng, Yonglian; Yue, Bing; Qiu, Fazhan

    2013-01-01

    Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL), QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging), 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1) were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.

  13. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage.

    Directory of Open Access Journals (Sweden)

    Khalid A Osman

    Full Text Available Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL, QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging, 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1 were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.

  14. Aluminum: Reflective Aluminum Chips

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    This fact sheet reveals how the use of reflective aluminum chips on rooftops cuts down significantly on heat absorption, thus decreasing the need for air conditioning. The benefits, including energy savings that could reach the equivalent of 1.3 million barrels of oil annually for approximately 100,000 warehouses, are substantial.

  15. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean.

    Directory of Open Access Journals (Sweden)

    Youjing Wang

    Full Text Available The WRKY transcription factors play an important role in the regulation of transcriptional reprogramming associated with plant abiotic stress responses. In this study, the WRKY transcription factor MsWRKY11, containing the plant-specific WRKY zinc finger DNA-binding motif, was isolated from alfalfa. The MsWRKY11 gene was detected in all plant tissues (root, stem, leaf, flower, and fruit, with high expression in root and leaf tissues. MsWRKY11 was upregulated in response to a variety of abiotic stresses, including salinity, alkalinity, cold, abscisic acid, and drought. Overexpression of MsWRKY11 in soybean enhanced the salt tolerance at the seedling stage. Transgenic soybean had a better salt-tolerant phenotype, and the hypocotyls were significantly longer than those of wild-type seeds after salt treatment. Furthermore, MsWRKY11 overexpression increased the contents of chlorophyll, proline, soluble sugar, superoxide dismutase, and catalase, but reduced the relative electrical conductivity and the contents of malonaldehyde, H2O2, and O2-. Plant height, pods per plant, seeds per plant, and 100-seed weight of transgenic MsWRKY11 soybean were higher than those of wild-type soybean, especially OX2. Results of the salt experiment showed that MsWRKY11 is involved in salt stress responses, and its overexpression improves salt tolerance in soybean.

  16. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaojuan; Song, Yu; Ma, Yanhua; Zhuo, Renying; Jin, Liang

    2011-12-01

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis

    NARCIS (Netherlands)

    Alonso-Blanco, C.; Gomez-Mena, C.; Llorente, F.; Koornneef, M.; Salinas, J.; Martinez-Zapater, J.M.

    2005-01-01

    Natural variation for freezing tolerance is a major component of adaptation and geographic distribution of plant species. However, little is known about the genes and molecular mechanisms that determine its naturally occurring diversity. We have analyzed the intraspecific freezing tolerance

  18. Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model.

    Science.gov (United States)

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Katz, Nathan; Zhu, Yanqing; Lin, Gloria; Choa, Ruth; Bagel, Jessica; O'Donnell, Patricia; Fitzgerald, Caitlin A; Langan, Therese; Wang, Ping; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2016-09-01

    High fidelity animal models of human disease are essential for preclinical evaluation of novel gene and protein therapeutics. However, these studies can be complicated by exaggerated immune responses against the human transgene. Here we demonstrate that dogs with a genetic deficiency of the enzyme α-l-iduronidase (IDUA), a model of the lysosomal storage disease mucopolysaccharidosis type I (MPS I), can be rendered immunologically tolerant to human IDUA through neonatal exposure to the enzyme. Using MPS I dogs tolerized to human IDUA as neonates, we evaluated intrathecal delivery of an adeno-associated virus serotype 9 vector expressing human IDUA as a therapy for the central nervous system manifestations of MPS I. These studies established the efficacy of the human vector in the canine model, and allowed for estimation of the minimum effective dose, providing key information for the design of first-in-human trials. This approach can facilitate evaluation of human therapeutics in relevant animal models, and may also have clinical applications for the prevention of immune responses to gene and protein replacement therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize

    Science.gov (United States)

    Pei, Laming; Wang, Jiemin; Li, Kunpeng; Li, Yongjun; Li, Bei; Gao, Feng; Yang, Aifang

    2012-01-01

    Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress. PMID:22952696

  20. Proteomic Analysis of Pseudomonas putida Reveals an Organic Solvent Tolerance-Related Gene mmsB

    Science.gov (United States)

    Ni, Ye; Song, Liang; Qian, Xiaohong; Sun, Zhihao

    2013-01-01

    Organic solvents are toxic to most microorganisms. However, some organic-solvent-tolerant (OST) bacteria tolerate the destructive effects of organic solvent through various accommodative mechanisms. In this work, we developed an OST adapted strain Pseudomonas putida JUCT1 that could grow in the presence of 60% (v/v) cyclohexane. Two-dimensional gel electrophoresis was used to compare and analyze the total cellular protein of P. putida JUCT1 growing with or without 60% (v/v) cyclohexane. Under different solvent conditions, five high-abundance protein spots whose intensity values show over 60% discrepancies were identified by MALDI-TOF/TOF spectra. Specifically, they are arginine deiminase, carbon-nitrogen hydrolase family putative hydrolase, 3-hydroxyisobutyrate dehydrogenase, protein chain elongation factor EF-Ts, and isochorismatase superfamily hydrolase. The corresponding genes of the latter three proteins, mmsB, tsf, and PSEEN0851, were separately expressed in Escherichia coli to evaluate their effect on OST properties of the host strain. In the presence of 4% (v/v) cyclohexane, E. coli harboring mmsB could grow to 1.70 OD660, whereas cell growth of E. coli JM109 (the control) was completely inhibited by 2% (v/v) cyclohexane. Transformants carrying tsf or PSEEN0851 also showed an increased resistance to cyclohexane and other organic solvents compared with the control. Of these three genes, mmsB exhibited the most prominent effect on increasing OST of E. coli. Less oxidation product of cyclohexane was detected because mmsB transformants might help keep a lower intracellular cyclohexane level. This study demonstrates a feasible approach for elucidating OST mechanisms of microorganisms, and provides molecular basis to construct organic-solvent-tolerant strains for industrial applications. PMID:23409067

  1. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    International Nuclear Information System (INIS)

    Arif, A.; Mohsin, A.M.; Shafiq, S.; Zafar, Y.; Hameed, S.M.; Arif, M.; Javed, M.; Gaxiola, R.A.

    2005-01-01

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  2. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis.

    Science.gov (United States)

    Tao, Jian-Jun; Wei, Wei; Pan, Wen-Jia; Lu, Long; Li, Qing-Tian; Ma, Jin-Biao; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2018-02-09

    Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.

  3. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.

    Science.gov (United States)

    Hazarika, Pranjal; Rajam, Manchikatla Venkat

    2011-04-01

    Recent findings have implicated the role of polyamines (putrescine, spermidine and spermine) in stress tolerance. Therefore, the present work was carried out with the goal of generating transgenic tomato plants with human S-adenosylmethionine decarboxylase (samdc) gene, a key gene involved in biosynthesis of polyamines, viz. spermidine and spermine and evaluating the transgenic plants for tolerance to both biotic and abiotic stresses. Several putative transgenic tomato plants with normal phenotype were obtained, and the transgene integration and expression was validated by PCR, Southern blot analysis and RT-PCR analysis, respectively. The transgenic plants exhibited high levels of polyamines as compared to the untransformed control plants. They also showed increased resistance against two important fungal pathogens of tomato, the wilt causing Fusarium oxysporum and the early blight causing Alternaria solani and tolerance to multiple abiotic stresses such as salinity, drought, cold and high temperature. These results suggest that engineering polyamine accumulation can confer tolerance to both biotic and abiotic stresses in plants.

  4. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Mohammad Sayyar Khan

    2015-07-01

    Full Text Available Global agriculture in the context of growing and expanding populations is under huge pressure to provide increased food, feed, and fiber. The recent phenomenon of climate change has further added fuel to the fire. It has been practically established now that the global temperature has been on the increase with associated fluctuations in annual rainfall regimes, and the resultant drought and flood events and increasing soil and water salinization. These challenges would be met with the introduction and utilization of new technologies coupled with conventional approaches. In recent years, transgenic technology has been proved very effective in terms of production of improved varieties of crop plants, resistant to biotic stresses. The abiotic stresses such as salt and drought are more complex traits, controlled by many genes. Transgenic plant development for these stresses has utilized many single genes. However, much emphasis has been placed on genes catalyzing the biosynthetic pathways of osmoprotectants. This review focuses on the current status of research on osmoprotectant genes and their role in abiotic stress tolerance in transgenic plants.

  5. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Directory of Open Access Journals (Sweden)

    J Scott Lockhart

    Full Text Available Recent evidence has implicated single-stranded DNA-binding protein (SSB expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.

  6. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel

    2008-01-01

    as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying......'s improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis...

  7. Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer.

    Science.gov (United States)

    Jeong, M J; Park, S C; Byun, M O

    2001-10-31

    In the previous experiment, we isolated and characterized glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of the oyster mushroom, Pleurotus sajor-caju. Expression levels of the GPD gene in the mycelia of P sajor-caju was significantly increased by exposing the mycelia to abiotic stresses, such as salt, cold, heat, and drought. We also showed that GPD confers abiotic stress resistance when introduced into yeast cells. The survival rate of the transgenic yeast cell that harbored the GPD gene was significantly higher when the yeast cells were subjected to salt, cold, heat, and drought stresses, compared with the yeast that was transformed with the pYES2 vector alone. In order to investigate the functional role of the P. sajor-caju GPD gene in higher plant cells, the complete P. sajor-caju GPD cDNA was fused into the CaMV35S promoter and then introduced into potato plants. Putative potato transformants were screened by using PCR. Twenty-one transformants were further analyzed with RT-PCR to confirm the expression of P. sajor-caju GPD. A RT-PCR Southern blot analysis revealed that 12 transgenics induced the P. sajor-caju GPD gene expression. A bioassay of these transformants revealed that the P. sajor-caju GPD gene was enough to confer salt stress resistance in the potato plant cell system. Results showed that P. sajor-caju GPD, which was continuously expressed in transgenic potato plants under normal growing conditions, resulted in improved tolerance against salt loading.

  8. [EFFECT OF Akt1 GENE TRANSFECTION ON HYPOXIA TOLERANCE OF BONE MARROW MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Yu, Fengxu; Chen, Yongen; Chen, Feng; Xia, Jiyi; Liu, Hongduan; Fu, Yong; Li, Miaoling; Liao, Bin

    2016-04-01

    To investigate whether Akt1 gene transfection mediated by recombinant lentivirus (LVs) in the bone marrow mesenchymal stem cells (BMSCs) could enhance the ability of hypoxia tolerance so as to provide a theoretical basis for improving the effectiveness of stem cells transplantation. LVs was used as transfection vector, enhanced green fluorescent protein (EGFP) was used as markers to construct the pLVX-EGFP-3FLAG virus vector carrying the Akt1 gene. The 3rd generation BMSCs from 3-5 weeks old Sprague Dawley rats were transfected with pLVX-EGFP virus solution as group B and with pLVX-EGFP-3PLAG virus solution as group C; and untransfected BMSCs served as control group (group A). At 2-3 days after transfection, the expression of green fluorescent was observed by fluorescence microscope; and at 48 hours after transfection, Western blot method was used to detect the expression of Akt1 protein in groups B and C. BMSCs of groups B and C were given hypoxia intervention with 94% N₂, 1% O₂, and 5% CO₂ for 0, 3, 6, 9, and 12 hours (group B1 and group C1). The flow cytometry was used to analyze the cell apoptosis rate and cell death rate, and the MTT method to analyze the cell proliferation, and Western blot to detect the expression of apoptosis related gene Caspase-3. After transfection, obvious green fluorescence was observed in BMSCs under fluorescence microscopy in groups B and C, the transfection efficiency was about 60%. Akt1 expression of group C was significantly higher than that of group B (t = 17.525, P = 0.013). The apoptosis rate and cell death rate of group B1 increased gradually with time, and difference was significant (P transfection mediated by recombinant LVs could significantly improve hypoxia tolerance of BMSCs by inhibiting the apoptosis, which could provide new ideas for improving the effectiveness of stem cells transplantation.

  9. Screening of Genes Involved in Isooctane Tolerance in Saccharomyces cerevisiae by Using mRNA Differential Display

    OpenAIRE

    Miura, Shigenori; Zou, Wen; Ueda, Mitsuyoshi; Tanaka, Atsuo

    2000-01-01

    A Saccharomyces cerevisiae strain, KK-211, isolated by the long-term bioprocess of stereoselective reduction in isooctane, showed extremely high tolerance to the solvent, which is toxic to yeast cells, but, in comparison with its wild-type parent, DY-1, showed low tolerance to hydrophilic organic solvents, such as dimethyl sulfoxide and ethanol. In order to detect the isooctane tolerance-associated genes, mRNA differential display (DD) was employed using mRNAs isolated from strains DY-1 and K...

  10. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  11. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Lili Zhuang

    Full Text Available Dehydration-Responsive Element Binding proteins (DREB/C-repeat (CRT Binding Factors (CBF have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L., which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000] or salt stress (150 mM NaCl. Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or 'dwarfism', both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits.

  12. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress.

    Science.gov (United States)

    Chen, Yun; Feng, Li; Wei, Ning; Liu, Zhi-Hao; Hu, Shan; Li, Xue-Bao

    2017-06-01

    PYR/PYL/RCAR proteins are putative abscisic acid (ABA) receptors that play important roles in plant responses to biotic and abiotic stresses. In this study, 27 predicted PYL proteins were identified in cotton (Gossypium hirsutum). Sequence analysis showed they are conserved in structures. Phylogenetic analysis showed that cotton PYL family could be categorized into three groups. Yeast two-hybrid assay revealed that the GhPYL proteins selectively interacted with some GhPP2C proteins. Quantitative RT-PCR analysis indicated that the most of nine GhPYL genes were down-regulated, while the other three were up-regulated in cotton under drought stress. Overexpression of GhPYL10/12/26 in Arabidopsis conferred the transgenic plants increased ABA sensitivity during seed germination and early seedling growth. On the contrary, the transgenic seedlings displayed better growth status and longer primary roots under normal conditions and mannitol stress, compared with wild type. Furthermore, the transgenic plants showed the enhanced drought tolerance, relative to wild type, when they were suffered from drought stress. Expression of some stress-related genes in transgenic plants was significant higher than that in wild type under osmotic stress. Thus, our data suggested that these cotton PYL genes may be involved in plant response and defense to drought/osmotic stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Genome-Wide Functional Profiling Reveals Genes Required for Tolerance to Benzene Metabolites in Yeast

    Science.gov (United States)

    North, Matthew; Tandon, Vickram J.; Thomas, Reuben; Loguinov, Alex; Gerlovina, Inna; Hubbard, Alan E.; Zhang, Luoping; Smith, Martyn T.; Vulpe, Chris D.

    2011-01-01

    Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease. PMID:21912624

  14. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Shiyi Zhou

    Full Text Available Aquaporin (AQP proteins have been shown to transport water and other small molecules through biological membranes, which is crucial for plants to combat stress caused by drought. However, the precise role of AQPs in drought stress response is not completely understood in plants. In this study, a PIP2 subgroup gene AQP, designated as TaAQP7, was cloned and characterized from wheat. Expression of TaAQP7-GFP fusion protein revealed its localization in the plasma membrane. TaAQP7 exhibited high water channel activity in Xenopus laevis oocytes and TaAQP7 transcript was induced by dehydration, and treatments with polyethylene glycol (PEG, abscisic acid (ABA and H(2O(2. Further, TaAQP7 was upregulated after PEG treatment and was blocked by inhibitors of ABA biosynthesis, implying that ABA signaling was involved in the upregulation of TaAQP7 after PEG treatment. Overexpression of TaAQP7 increased drought tolerance in tobacco. The transgenic tobacco lines had lower levels of malondialdehyde (MDA and H(2O(2, and less ion leakage (IL, but higher relative water content (RWC and superoxide dismutase (SOD and catalase (CAT activities when compared with the wild type (WT under drought stress. Taken together, our results show that TaAQP7 confers drought stress tolerance in transgenic tobacco by increasing the ability to retain water, reduce ROS accumulation and membrane damage, and enhance the activities of antioxidants.

  15. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Wang, Feibing; Zhu, Hong; Kong, Weili; Peng, Rihe; Liu, Qingchang; Yao, Quanhong

    2016-07-01

    A basic helix-loop-helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis. In plants, transcriptional regulation is the most important tools for increasing flavonoid biosynthesis. The AmDEL gene, as a basic helix-loop-helix transcription factor gene from Antirrhinum, has been shown to increase flavonoids accumulation in tomato. However, its role in tolerance to abiotic stresses has not yet been investigated. In this study, the codon-optimized AmDEL gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AmDEL protein was localized to the nucleus. Expression analysis in yeast showed that the full length of AmDEL exhibited transcriptional activation. Overexpression of AmDEL significantly increased flavonoids accumulation and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR analysis showed that overexpression of AmDEL resulted in the up-regulation of genes involved in flavonoid biosynthesis, proline biosynthesis and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol reductase, pyrroline-5-carboxylate synthase, superoxide dismutase and peroxidase were also increased. Further components analyses indicated that the significant increase of proline and relative water content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. These findings imply functions of AmDEL in accumulation of flavonoids and tolerance to salt and drought stresses. The AmDEL gene has the potential to be used to increase

  16. Gene Expression Profiling of Iron Deficiency Chlorosis Sensitive and Tolerant Soybean Indicates Key Roles for Phenylpropanoids under Alkalinity Stress

    Directory of Open Access Journals (Sweden)

    Brian M. Waters

    2018-01-01

    Full Text Available Alkaline soils comprise 30% of the earth and have low plant-available iron (Fe concentration, and can cause iron deficiency chlorosis (IDC. IDC causes soybean yield losses of $260 million annually. However, it is not known whether molecular responses to IDC are equivalent to responses to low iron supply. IDC tolerant and sensitive soybean lines provide a contrast to identify specific factors associated with IDC. We used RNA-seq to compare gene expression under combinations of normal pH (5.7 or alkaline pH (7.7, imposed by 2.5 mM bicarbonate, or pH 8.2 imposed by 5 mM bicarbonate and normal (25 μM or low (1 μM iron conditions from roots of these lines. Thus, we were able to treat pH and Fe supply as separate variables. We also noted differential gene expression between IDC sensitive and tolerant genotypes in each condition. Classical iron uptake genes, including ferric-chelate reductase (FCR and ferrous transporters, were upregulated by both Fe deficiency and alkaline stress, however, their gene products did not function well at alkaline pH. In addition, genes in the phenylpropanoid synthesis pathway were upregulated in both alkaline and low Fe conditions. These genes lead to the production of fluorescent root exudate (FluRE compounds, such as coumarins. Fluorescence of nutrient solution increased with alkaline treatment, and was higher in the IDC tolerant line. Some of these genes also localized to previously identified QTL regions associated with IDC. We hypothesize that FluRE become essential at alkaline pH where the classical iron uptake system does not function well. This work could result in new strategies to screen for IDC tolerance, and provide breeding targets to improve crop alkaline stress tolerance.

  17. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-06-01

    Full Text Available Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL, “HO”, and a heat-sensitive cabbage line (HSCL, “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13 were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS. Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  18. Identification of heavy metal pollutant tolerance-associated genes in Avicennia marina (Forsk.) by suppression subtractive hybridization.

    Science.gov (United States)

    Zhang, Jicheng; Yu, Jinfeng; Hong, Hualong; Liu, Jingchun; Lu, Haoliang; Yan, Chongling

    2017-06-15

    The halophytic Avicennia marina (Forsk.) is one of the pioneer mangroves along the south coast of China. It is an appropriate material for understanding molecular mechanisms of heavy metal tolerance in mangrove plants. A forward and a reverse cDNA library was constructed by PCR-based suppressive subtractive hybridization (SSH) to isolate these tolerance-associated genes from A. marina leaves. A total of 99 ESTs obtained from the forward and reverse libraries showed significant differential expressions. Twenty-nine genes selected by SSH were studied by real-time PCR in order to analyze their expression level. Most of these genes' expression increased in leaves under Cd stress, which suggests that these genes contribute to the heavy metal tolerance in A. marina. The diversity of these genes indicated that heavy metal stress resulted in a complex response in mangrove plants. This could prove a useful approach for further exploring the molecular mechanisms behind such heavy metal tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance.

    Science.gov (United States)

    Liu, Degao; Wang, Lianjun; Liu, Chenglong; Song, Xuejin; He, Shaozhen; Zhai, Hong; Liu, Qingchang

    2014-01-01

    Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system.

  20. An Ipomoea batatas Iron-Sulfur Cluster Scaffold Protein Gene, IbNFU1, Is Involved in Salt Tolerance

    Science.gov (United States)

    Song, Xuejin; He, Shaozhen; Zhai, Hong; Liu, Qingchang

    2014-01-01

    Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system. PMID:24695556

  1. Tolerância de genótipos de trigo comum, trigo duro e triticale à toxicidade de alumínio em soluções nutritivas Tolerance of bread wheat, durum wheat and triticale genotypes to aluminum toxicity in nutrient solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    2006-01-01

    Full Text Available Foi estudado o comportamento diferencial de 12 genótipos de trigo comum (Triticum aestivum L., um genótipo de trigo duro (Triticum durum L., e um de triticale (Triticosecale sp em soluções nutritivas de tratamento contendo duas concentrações salinas (1/5 e 1/10 da completa e seis concentrações de alumínio ( 0, 2, 4, 6, 8 e 10 mg L-1, à temperatura de 25 ± 1ºC e pH 4,0. Foram utilizadas dez plântulas por parcela e quatro repetições. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após permanecer 48 horas em solução nutritiva completa, contendo uma concentração conhecida de alumínio combinada com cada uma das concentrações salinas. Os genótipos de trigo comum IAC-289, IAC-350 e IAC-370 e a cultivar controle Anahuac, e os genótipos de trigo duro IAC-1003 e de triticale IAC-5 foram os mais sensíveis a níveis crescentes de Al3+nas soluções nutritivas de tratamento e, portanto, somente seriam indicados para cultivo em solos corrigidos. Os genótipos de trigo comum IAC-24 e IAC-378 e a cultivar controle BH-1146 destacaram-se pela tolerância à toxicidade de Al3+, com potencial para uso em solos ácidos e como fontes genéticas de tolerância nos futuros cruzamentos. Os sintomas de toxicidade de alumínio foram maiores com a elevação da concentração de alumínio e da diminuição das concentrações de sais da solução nutritiva para todos os genótipos estudados.Twelve bread wheat (Triticum aestivum L., one durum wheat (Triticum durum L. and one triticale (Triticosecale sp genotypes were studied in nutrient solutions with a high salt concentration in experiment 1 and a weak salt concentration in experiment 2, for aluminum tolerance at six levels: 0, 2, 4, 6, 8 and 10 mg L-1, under temperature 25 ± 1ºC and pH 4,0. Four replications were used per experiment. Aluminum tolerance was evaluated by measuring root growth in an aluminum-free complete

  2. Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    Full Text Available The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors against factor VIII (FVIII. The current method for eradicating inhibitors, termed immune tolerance induction (ITI, is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8 gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.

  3. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Science.gov (United States)

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu

    2015-01-01

    An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  4. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Aftab Ahmad

    Full Text Available An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8 as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'. The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  5. Tolerance induction to cytoplasmic beta-galactosidase by hepatic AAV gene transfer: implications for antigen presentation and immunotoxicity.

    Directory of Open Access Journals (Sweden)

    Ashley T Martino

    2009-08-01

    Full Text Available Hepatic gene transfer, in particular using adeno-associated viral (AAV vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein.AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic beta-galactosidase (beta-gal was performed in immune competent mice, followed by a secondary beta-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in approximately 2% of hepatocytes almost completely protected from inflammatory T cell responses against beta-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, approximately 10% of hepatocytes continued to express beta-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8(+ T cell responses to beta-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer.These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.

  6. Expression of the Autoimmune Regulator Gene and Its Relevance to the Mechanisms of Central and Peripheral Tolerance

    OpenAIRE

    Perniola, Roberto

    2012-01-01

    The autoimmune polyendocrine syndrome type 1 (APS-1) is a monogenic disease due to pathogenic variants occurring in the autoimmune regulator (AIRE) gene. Its related protein, AIRE, activates the transcription of genes encoding for tissue-specific antigens (TsAgs) in a subset of medullary thymic epithelial cells: the presentation of TsAgs to the maturating thymocytes induces the apoptosis of the autoreactive clones and constitutes the main form of central tolerance. Dysregulation of thymic AIR...

  7. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants.

    Science.gov (United States)

    Garg, Bharti; Gill, Sarvajeet S; Biswas, Dipul K; Sahoo, Ranjan K; Kunchge, Nandkumar S; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis.

  8. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Boru Zhou

    2014-06-01

    Full Text Available Cadmium (Cd is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD activity and chlorophyll concentration, but decreases of peroxidase (POD activity and malondialdehyde (MDA accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  9. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco.

    Science.gov (United States)

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-06-10

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  10. Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil.

    Science.gov (United States)

    Lee, Sin Hang

    2012-12-01

    Medical practitioners in nine countries submitted samples of Gardasil (Merck & Co.) to be tested for the presence of human papillomavirus (HPV) DNA because they suspected that residual recombinant HPV DNA left in the vaccine might have been a contributing factor leading to some of the unexplained post-vaccination side effects. A total of 16 packages of Gardasil were received from Australia, Bulgaria, France, India, New Zealand, Poland, Russia, Spain and the United States. A nested polymerase chain reaction (PCR) method using the MY09/MY11 degenerate primers for initial amplification and the GP5/GP6-based nested PCR primers for the second amplification were used to prepare the template for direct automated cycle DNA sequencing of a hypervariable segment of the HPV L1 gene which is used for manufacturing of the HPV L1 capsid protein by a DNA recombinant technology in vaccine production. Detection of HPV DNA and HPV genotyping of all positive samples were finally validated by BLAST (Basic Local Alignment Search Tool) analysis of a 45-60 bases sequence of the computer-generated electropherogram. The results showed that all 16 Gardasil samples, each with a different lot number, contained fragments of HPV-11 DNA, or HPV-18 DNA, or a DNA fragment mixture from both genotypes. The detected HPV DNA was found to be firmly bound to the insoluble, proteinase-resistant fraction, presumably of amorphous aluminum hydroxyphosphate sulfate (AAHS) nanoparticles used as adjuvant. The clinical significance of these residual HPV DNA fragments bound to a particulate mineral-based adjuvant is uncertain after intramuscular injection, and requires further investigation for vaccination safety. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Structural characterization of the thermally-tolerant pectin methylesterase purified from Citrus sinensis fruit and its gene sequence

    Science.gov (United States)

    Despite the longstanding importance for the thermally-tolerant pectin methylesterase (TT-PME) activity in citrus juice processing and product quality, unequivocal identification of the protein and its corresponding gene has remained elusive. We purified TT-PME from sweet orange [Citrus sinensis (L.)...

  12. AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Engström, Karin; Hallström, Björn M

    2017-01-01

    the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic...

  13. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    Science.gov (United States)

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display.

    Science.gov (United States)

    Miura, S; Zou, W; Ueda, M; Tanaka, A

    2000-11-01

    A Saccharomyces cerevisiae strain, KK-211, isolated by the long-term bioprocess of stereoselective reduction in isooctane, showed extremely high tolerance to the solvent, which is toxic to yeast cells, but, in comparison with its wild-type parent, DY-1, showed low tolerance to hydrophilic organic solvents, such as dimethyl sulfoxide and ethanol. In order to detect the isooctane tolerance-associated genes, mRNA differential display (DD) was employed using mRNAs isolated from strains DY-1 and KK-211 cultivated without isooctane, and from strain KK-211 cultivated with isooctane. Thirty genes were identified as being differentially expressed in these three types of cells and were classified into three groups according to their expression patterns. These patterns were further confirmed and quantified by Northern blot analysis. On the DD fingerprints, the expression of 14 genes, including MUQ1, PRY2, HAC1, AGT1, GAC1, and ICT1 (YLR099c) was induced, while the expression of the remaining 16 genes, including JEN1, PRY1, PRY3, and KRE1, was decreased, in strain KK-211 cultivated with isooctane. The genes represented by HAC1, PRY1, and ICT1 have been reported to be associated with cell stress, and AGT1 and GAC1 have been reported to be involved in the uptake of trehalose and the production of glycogen, respectively. MUQ1 and KRE1, encoding proteins associated with cell surface maintenance, were also detected. Based on these results, we concluded that alteration of expression levels of multiple genes, not of a single gene, might be the critical determinant for isooctane tolerance in strain KK-211.

  15. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans.

    Science.gov (United States)

    Gond, S K; Torres, M S; Bergen, M S; Helsel, Z; White, J F

    2015-04-01

    Bacteria were isolated from surface disinfected seeds of eight modern corn types and an ancestor of corn, 'teosinte' and identified using 16S rDNA sequences. From each of the modern corn types we obtained Bacillus spp. (including, Bacillus amyloliquefaciens and Bacillus subtilis); while from teosinte we obtained only Pantoea agglomerans and Agrobacterium species. Of these bacteria, only P. agglomerans could actively grow under hypersaline conditions and increase salt tolerance of tropical corn seedlings. In laboratory and greenhouse experiments where plants were watered with a 0.2 mol l(-1) NaCl solution, P. agglomerans was found to enhance the capacity of tropical corn to grow compared to uninoculated controls. The total dry biomass was significantly higher in P. agglomerans-treated plants compared to controls under saline water. Gene expression analysis showed the up-regulation of the aquaporin gene family especially plasma membrane integral protein (ZmPIP) genes in P. agglomerans-treated plants. The plasma membrane integral protein type 2 (PIP2-1) gene in tropical corn seedlings was highly up-regulated by P. agglomerans treatment under salt stress conditions. Microscopic examination of P. agglomerans inoculated seedlings revealed that the bacterium colonized root meristems densely, and as roots developed, the bacterium became sparsely located in cell junctions. The enhancement of salt tolerance capacity in tropical corn, an important food crop, has the capacity to increase its cultivation area and yield in saline soils. The application of rhizobacteria to improve salt tolerance of tropical corn is ecofriendly and cost effective. We show that P. agglomerans isolated from teosinte (an ancestor of corn) induces salt tolerance in tropical corn and up-regulation of aquaporin genes. This study shows that microbes that increase salt tolerance may be used to enhance crop growth in saline soils. © 2014 The Society for Applied Microbiology.

  16. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available BACKGROUND: Sterol glycosyltrnasferases (SGT are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant's adaptation to abiotic stress. METHODOLOGY: The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses--salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA and the 3D structures were predicted by using Discovery Studio Ver. 2.5. RESULTS: The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. CONCLUSIONS: Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found

  17. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  18. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance.

    Science.gov (United States)

    Bouchabke-Coussa, Oumaya; Quashie, Marie-Luce; Seoane-Redondo, Jose; Fortabat, Marie-Noelle; Gery, Carine; Yu, Agnes; Linderme, Daphné; Trouverie, Jacques; Granier, Fabienne; Téoulé, Evelyne; Durand-Tardif, Mylène

    2008-12-07

    Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Overall our findings suggest that the ESKIMO1 gene plays a major role in plant response to water

  19. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  20. Evaluation of engraftment and immunological tolerance after reduced intensity conditioning in a rhesus hematopoietic stem cell gene therapy model.

    Science.gov (United States)

    Uchida, N; Weitzel, R P; Evans, M E; Green, R; Bonifacino, A C; Krouse, A E; Metzger, M E; Hsieh, M M; Donahue, R E; Tisdale, J F

    2014-02-01

    Reduced intensity conditioning (RIC) is desirable for hematopoietic stem cell (HSC) targeted gene therapy; however, RIC may be insufficient for efficient engraftment and inducing immunological tolerance to transgenes. We previously established long-term gene marking in our rhesus macaque autologous HSC transplantation model following 10 Gy total body irradiation (TBI). In this study, we evaluated RIC transplantation with 4 Gy TBI in two rhesus macaques that received equal parts of CD34(+) cells transduced with green fluorescent protein (GFP)-expressing lentiviral vector and empty vector not expressing transgenes. In both animals, equivalently low gene marking between GFP and empty vectors was observed 6 months post-transplantation, even with efficient transduction of CD34(+) cells in vitro. Autologous lymphocyte infusion with GFP marking resulted in an increase of gene marking in lymphocytes in a control animal with GFP tolerance, but not in the two RIC-transplanted animals. In vitro assays revealed strong cellular and humoral immune responses to GFP protein in the two RIC-transplanted animals, but this was not observed in controls. In summary, 4 Gy TBI is insufficient to permit engraftment of genetically modified HSCs and induce immunological tolerance to transgenes. Our findings should help in the design of conditioning regimens in gene therapy trials.

  1. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    Science.gov (United States)

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  2. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum Seedlings and Identification of Salt Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Jiangtao Liu

    2016-03-01

    Full Text Available Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS. We further identified 1663 differentially-expressed genes (DEGs between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO, using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.

  3. A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Guan, Qingmei; Wu, Jianmin; Yue, Xiule; Zhang, Yanyan; Zhu, Jianhua

    2013-08-01

    Salt stress is an important environmental factor that significantly limits crop productivity worldwide. Studies on responses of plants to salt stress in recent years have identified novel signaling pathways and have been at the forefront of plant stress biology and plant biology in general. Thus far, research on salt stress in plants has been focused on cytoplasmic signaling pathways. In this study, we discovered a nuclear calcium-sensing and signaling pathway that is critical for salt stress tolerance in the reference plant Arabidopsis. Through a forward genetic screen, we found a nuclear-localized calcium-binding protein, RSA1 (SHORT ROOT IN SALT MEDIUM 1), which is required for salt tolerance, and identified its interacting partner, RITF1, a bHLH transcription factor. We show that RSA1 and RITF1 regulate the transcription of several genes involved in the detoxification of reactive oxygen species generated by salt stress and that they also regulate the SOS1 gene that encodes a plasma membrane Na(+)/H(+) antiporter essential for salt tolerance. Together, our results suggest the existence of a novel nuclear calcium-sensing and -signaling pathway that is important for gene regulation and salt stress tolerance.

  4. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Deyholos, Michael K. [Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9 (Canada); Chen, Qin [Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave., South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1 (Canada); Chen, Chao; Ji, Wei [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  5. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  6. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  7. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    International Nuclear Information System (INIS)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-01-01

    Highlights: ► We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. ► Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. ► The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. ► GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  8. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Sukweenadhi, Johan; Singh, Priyanka; Yang, Deok-Chun

    2017-07-01

    Panax ginseng is an important cash crop in the Asian countries due to its pharmaceutical effects, however the plant is exposed to various abiotic stresses, lead to reduction of its quality. One of them is the Aluminum (Al) accumulation. Plant growth promoting bacteria which able to tolerate heavy metals has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas. In this study, twelve bacteria strains were isolated from rhizosphere of diseased Korean ginseng roots located in Gochang province, Republic of Korea and tested for their ability to grow in Al-embedded broth media. Out of them, four strains (Pseudomonas simiae N3, Pseudomonas fragi N8, Chryseobacterium polytrichastri N10, and Burkholderia ginsengiterrae N11-2) were able to grow. The strains could also show other plant growth promoting activities e.g. auxins and siderophores production and phosphate solubilization. P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 strains were able to support the growth of Arabidopsis thaliana stressed by Al while P. fragi N8 could not. Plants inoculated with P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 showed higher expression level of Al-stress related genes, AtAIP, AtALS3 and AtALMT1, compared to non-bacterized plants. Expression profiles of the genes reveal the induction of external mechanism of Al resistance by P. simiae N3 and B. ginsengiterrae N11-2 and internal mechanism by C. polytrichastri N10. Korean ginseng seedlings treated with these strains showed higher biomass, particularly the foliar part, higher chlorophyll content than non-bacterized Al-stressed seedlings. According to the present results, these strains can be used in the future for the cultivation of ginseng in Al-persisted locations. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. A fungal transcription factor gene is expressed in plants from its own promoter and improves drought tolerance.

    Science.gov (United States)

    Martínez, Félix; Arif, Anjuman; Nebauer, Sergio G; Bueso, Eduardo; Ali, Rashid; Montesinos, Consuelo; Brunaud, Veronique; Muñoz-Bertomeu, Jesús; Serrano, Ramón

    2015-07-01

    A fungal gene encoding a transcription factor is expressed from its own promoter in Arabidopsis phloem and improves drought tolerance by reducing transpiration and increasing osmotic potential. Horizontal gene transfer from unrelated organisms has occurred in the course of plant evolution, suggesting that some foreign genes may be useful to plants. The CtHSR1 gene, previously isolated from the halophytic yeast Candida tropicalis, encodes a heat-shock transcription factor-related protein. CtHSR1, with expression driven by its own promoter or by the Arabidopsis UBQ10 promoter, was introduced into the model plant Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation and the resulting transgenic plants were more tolerant to drought than controls. Fusions of the CtHSR1 promoter with β-glucuronidase reporter gene indicated that this fungal promoter drives expression to phloem tissues. A chimera of CtHSR1 and green fluorescence protein is localized at the cell nucleus. The physiological mechanism of drought tolerance in transgenic plants is based on reduced transpiration (which correlates with decreased opening of stomata and increased levels of jasmonic acid) and increased osmotic potential (which correlates with increased proline accumulation). Transcriptomic analysis indicates that the CtHSR1 transgenic plants overexpressed a hundred of genes, including many relevant to stress defense such as LOX4 (involved in jasmonic acid synthesis) and P5CS1 (involved in proline biosynthesis). The promoters of the induced genes were enriched in upstream activating sequences for water stress induction. These results demonstrate that genes from unrelated organisms can have functional expression in plants from its own promoter and expand the possibilities of useful transgenes for plant biotechnology.

  10. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  11. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    Science.gov (United States)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  12. Functional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance.

    Science.gov (United States)

    Liu, Mingying; Qiu, Wenming; He, Xuelian; Zheng, Liu; Song, Xixi; Han, Xiaojiao; Jiang, Jing; Qiao, Guirong; Sang, Jian; Liu, Mingqing; Zhuo, Renying

    2016-01-01

    Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library screening for genes related to cadmium tolerance identified a gene resembling the rubber elongation factor gene designated as SaREFl. The heterologous expression of SaREFl rescued the growth of a transformed Cd-sensitive strain (ycf1). Furthermore, SaREFl-expressing Arabidopsis plants were more tolerant to cadmium stress compared with wild type by measuring parameters of root length, fresh weight and physiological indexes. When under four different heavy metal treatments, we found that SaREFl responded most strongly to Cd and the root was the plant organ most sensitive to this heavy metal. Yeast two-hybrid screening of SaREFl as a bait led to the identification of five possible interacting targets in Sedum alfredii Hance. Among them, a gene annotated as prenylated Rab acceptor 1 (PRA1) domain protein was detected with a high frequency. Moreover, subcellular localization of SaREF1-GFP fusion protein revealed some patchy spots in cytosol suggesting potential association with organelles for its cellular functions. Our findings would further enrich the connotation of REF-like genes and provide theoretical assistance for the application in breeding heavy metal-tolerant plants.

  13. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress.

    Directory of Open Access Journals (Sweden)

    Qian Xu

    Full Text Available Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and developmental processes. The in vitro roles of expansins regulating plant heat tolerance are not well understood. The objectives of this study were to isolate and clone an expansin gene in a perennial grass species (Poa pratensis and to determine whether over-expression of expansin may improve plant heat tolerance. Tobacco (Nicotiana tabacum was used as the model plant for gene transformation and an expansin gene PpEXP1 from Poa pratensis was cloned. Sequence analysis showed PpEXP1 belonged to α-expansins and was closely related to two expansin genes in other perennial grass species (Festuca pratensis and Agrostis stolonifera as well as Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Transgenic tobacco plants over-expressing PpEXP1 were generated through Agrobacterium-mediated transformation. Under heat stress (42°C in growth chambers, transgenic tobacco plants over-expressing the PpEXP1 gene exhibited a less structural damage to cells, lower electrolyte leakage, lower levels of membrane lipid peroxidation, and lower content of hydrogen peroxide, as well as higher chlorophyll content, net photosynthetic rate, relative water content, activity of antioxidant enzyme, and seed germination rates, compared to the wild-type plants. These results demonstrated the positive roles of PpEXP1 in enhancing plant tolerance to heat stress and the possibility of using expansins for genetic modification of cool-season perennial grasses in the development of heat-tolerant germplasm and cultivars.

  14. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    Science.gov (United States)

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  15. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  16. The choline oxidase gene codA confers salt tolerance to transgenic Eucalyptus globulus in a semi-confined condition.

    Science.gov (United States)

    Yu, Xiang; Kikuchi, Akira; Matsunaga, Etsuko; Morishita, Yoshihiko; Nanto, Kazuya; Sakurai, Nozomu; Suzuki, Hideyuki; Shibata, Daisuke; Shimada, Teruhisa; Watanabe, Kazuo N

    2013-06-01

    The performance of tree species is influenced by environmental factors and growth stages. To evaluate the practical performance of transgenic tree species, it is insufficient to grow small, young trees under controlled conditions, such as in a growth chamber. Three transgenic Eucalyptus globulus lines, carrying the choline oxidase gene, were investigated for their salt tolerance and expression of the transgene at the young plantlet stage in a special netted-house. To clarify the characteristics at the young as well during the later stages, salt tolerance and the properties of the transgenic lines at large juvenile and adult stages were evaluated in the special netted-house. All transgenic lines showed high glycinebetaine content, particularly in young leaves. Trees of the transgenic line 107-1 showed low damage because of salinity stress based on the results from the chlorophyll analysis and malondialdehyde content, and they survived the high-salt-shock treatment at the large juvenile and adult stages. Only this line showed salt tolerance at all stages in the special netted-house. In this evaluation in the special netted-house, the tolerant line among young plantlets might perform better at all stages. Since evaluation in these special netted-house mimics field evaluation, line 107-1 is a potential tolerant line.

  17. Cloning a T-DNA-Linked Phosphate Gene that mediates Salt Tolerance on Mutant of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Njoroge, N.C; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were used to unravel genetic mechanisms underlying salt tolerance in plants. Over a period of two weeks, kanamycin homozygous (KK) seeds of the mutant NN143 attain germination levels of 65% and 77% on 175mM Nacl and 300mM mannitol respectively. Under these conditions of osmotic stress, the wild type seeds were incapable of germination. The mutant was also capable of germination on a medium containing 2μM abscisic acid (ABA). After two weeks on 2μM ABA, it attained 100% germination and the wild type did not germinate. The ABA level in the mutant was 40% higher than the wild type. Segregation analysis indicated that salt tolerance in the mutant is T-DNA linked. Genetic analysis of the F1 and F2 generations indicated that the salt tolerance trait in the mutant is dominant. The putative salt tolerance gene of mutant NN143 was cloned by plasmid rescue and sequence data indicated involvement of a protein phosphatase. The possible mechanism underlying salt tolerance in the mutant is discussed.(author)

  18. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  19. DPP4 gene variation affects GLP-1 secretion, insulin secretion, and glucose tolerance in humans with high body adiposity

    DEFF Research Database (Denmark)

    Böhm, Anja; Wagner, Robert; Machicao, Fausto

    2017-01-01

    , inter-individual variance in the responsiveness to DPP-4 inhibitors was reported. Thus, we asked whether genetic variation in the DPP4 gene affects incretin levels, insulin secretion, and glucose tolerance in participants of the TÜbingen Family study for type-2 diabetes (TÜF). RESEARCH DESIGN...... determined. RESULTS: We identified a variant, i.e., SNP rs6741949, in intron 2 of the DPP4 gene that, after correction for multiple comparisons and appropriate adjustment, revealed a significant genotype-body fat interaction effect on glucose-stimulated plasma GLP-1 levels (p = 0.0021). Notably, no genotype......-BMI interaction effects were detected (p = 0.8). After stratification for body fat content, the SNP negatively affected glucose-stimulated GLP-1 levels (p = 0.0229), insulin secretion (p = 0.0061), and glucose tolerance (p = 0.0208) in subjects with high body fat content only. CONCLUSIONS: A common variant, i...

  20. Expression of the Autoimmune Regulator Gene and Its Relevance to the Mechanisms of Central and Peripheral Tolerance

    Directory of Open Access Journals (Sweden)

    Roberto Perniola

    2012-01-01

    Full Text Available The autoimmune polyendocrine syndrome type 1 (APS-1 is a monogenic disease due to pathogenic variants occurring in the autoimmune regulator (AIRE gene. Its related protein, AIRE, activates the transcription of genes encoding for tissue-specific antigens (TsAgs in a subset of medullary thymic epithelial cells: the presentation of TsAgs to the maturating thymocytes induces the apoptosis of the autoreactive clones and constitutes the main form of central tolerance. Dysregulation of thymic AIRE expression in genetically transmitted and acquired diseases other than APS-1 may contribute to further forms of autoimmunity. As AIRE and its murine homolog are also expressed in the secondary lymphoid organs, the extent and relevance of AIRE participation in the mechanisms of peripheral tolerance need to be thoroughly defined.

  1. Differences in salinity tolerance and gene expression between two populations of Atlantic cod (Gadus morhua) in response to salinity stress

    DEFF Research Database (Denmark)

    Larsen, Peter Foged; Eg Nielsen, Einar; Meier, Kristian

    2012-01-01

    in salinity tolerance and gene expression among Atlantic cod (Gadus morhua) from two populations distributed across a steep salinity gradient, we observed high mortality (45% North Sea cod and 80% Baltic Sea cod) in a reciprocal common garden setup. Quantitative RT-PCR assays for expression of hsp70 and Na....... The findings strongly suggest that Atlantic cod are adapted to local saline conditions, despite relatively low levels of neutral genetic divergence between populations...

  2. Transcriptome sequencing and identification of cold tolerance genes in hardy Corylus species (C. heterophylla Fisch floral buds.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available BACKGROUND: The genus Corylus is an important woody species in Northeast China. Its products, hazelnuts, constitute one of the most important raw materials for the pastry and chocolate industry. However, limited genetic research has focused on Corylus because of the lack of genomic resources. The advent of high-throughput sequencing technologies provides a turning point for Corylus research. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive database for the Corylus heterophylla Fisch floral buds. RESULTS: The C. heterophylla Fisch floral buds transcriptome was sequenced using the Illumina paired-end sequencing technology. We produced 28,930,890 raw reads and assembled them into 82,684 contigs. A total of 40,941 unigenes were identified, among which 30,549 were annotated in the NCBI Non-redundant (Nr protein database and 18,581 were annotated in the Swiss-Prot database. Of these annotated unigenes, 25,311 and 10,514 unigenes were assigned to gene ontology (GO categories and clusters of orthologous groups (COG, respectively. We could map 17,207 unigenes onto 128 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG database. Additionally, based on the transcriptome, we constructed a candidate cold tolerance gene set of C. heterophylla Fisch floral buds. The expression patterns of selected genes during four stages of cold acclimation suggested that these genes might be involved in different cold responsive stages in C. heterophylla Fisch floral buds. CONCLUSION: The transcriptome of C. heterophylla Fisch floral buds was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the C. heterophylla Fisch floral buds transcriptome. Candidate genes potentially involved in cold tolerance were identified, providing a material basis for future molecular mechanism analysis of C. heterophylla Fisch floral buds tolerant to cold stress.

  3. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi

    2016-02-01

    The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.

  4. Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta

    NARCIS (Netherlands)

    Roelofs, Dick; Janssens, Thierry K S; Timmermans, Martijn J T N; Nota, Benjamin; Mariën, Janine; Bochdanovits, Zoltán; Ylstra, Bauke; Van Straalen, Nico M

    Field-selected tolerance to heavy metals has been reported for Orchesella cincta (Arthropoda: Collembola) populations occurring at metal-contaminated mining sites. This tolerance correlated with heritable increase in metal excretion efficiency, less pronounced cadmium (Cd)-induced growth reduction

  5. Differential gene expression profiles associated with heavy metal tolerance in the soil insect Orchesella cincta.

    NARCIS (Netherlands)

    Roelofs, D.; Mariën, J.; van Straalen, N.M.

    2007-01-01

    Field-selected tolerance to heavy metals has been reported for Orchesella cincta (Arthropoda: Collembola, springtails) populations occurring at metal-contaminated mining sites. Metal tolerance in O. cincta is correlated with heritable increase of excretion efficiency, decrease in cadmium-induced

  6. Differential gene expression profiles associated with heavy metal tolerance in the soil insect Orchesella cincta

    NARCIS (Netherlands)

    Roelofs, Dick; Mariën, Janine; van Straalen, Nico M

    Field-selected tolerance to heavy metals has been reported for Orchesella cincta (Arthropoda: Collembola, springtails) populations occurring at metal-contaminated mining sites. Metal tolerance in O. cincta is correlated with heritable increase of excretion efficiency, decrease in cadmium-induced

  7. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  8. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  9. The Opuntia streptacantha OpsHSP18 Gene Confers Salt and Osmotic Stress Tolerance in Arabidopsis thaliana

    Science.gov (United States)

    Salas-Muñoz, Silvia; Gómez-Anduro, Gracia; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Margarita; Jiménez-Bremont, Juan Francisco

    2012-01-01

    Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl) and osmotic (glucose and mannitol) stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl) and osmotic (274 mM mannitol) stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively) with respect to the WT (18.75 and 53.75%, respectively). Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions. PMID:22949853

  10. Crescimento radicular e produção de ácidos orgânicos em cultivares de soja com diferentes tolerâncias ao alumínio Root growth and production of organic acids by soybean cultivars with different tolerance to aluminum

    Directory of Open Access Journals (Sweden)

    Orival Gastão Menosso

    2001-11-01

    Full Text Available A elucidação dos mecanismos que definem o comportamento diferencial entre genótipos de soja quanto à toxidez de Al facilita a utilização da variabilidade genética existente ou produzida. O objetivo deste trabalho foi avaliar a influência do Al no crescimento radicular, na modificação do pH da solução e no conteúdo de ácidos orgânicos em extratos de raízes de cultivares de soja tolerantes ao Al, FT-1 e FT-6 (Veneza e sensíveis, IAC-13 e Paraná. As plantas cresceram por nove dias em solução contendo 50 mg L-1 de Ca e 0,0 e 0,2 mg L-1 de Al, com pH inicial de 4,76. Houve maior crescimento de raízes nas cultivares tolerantes e não houve alterações do pH da solução relacionadas à tolerância das cultivares ao alumínio. A presença do Al reduziu o conteúdo dos ácidos cítrico, lático, succínico, oxálico e málico, em ambos os grupos de cultivares avaliados, porém com maior redução no grupo das cultivares sensíveis. O ácido cítrico foi encontrado em maior quantidade nas cultivares tolerantes. A capacidade das cultivares de soja FT-1 e FT-6 (Veneza de alterar o conteúdo de ácidos orgânicos não-voláteis, principalmente o ácido cítrico, que pode complexar o Al, indica que este mecanismo pode ser muito importante para a tolerância a esse elemento.The understanding of the mechanisms for the differential performance of soybean genotypes in relation to Al toxicity is important to explore the existing or produced genetic variability. The objective of this study was to determine the Al influence on root growth, solution pH modifications and organic acid content in root extracts of Al tolerant, FT-1 and FT-6 (Veneza and sensitive, IAC-13 and Paraná, soybean cultivars. Plants were grown during nine days in a solution containing 50 mg L-1 of calcium and 0.0 and 0.2 mg L-1 of aluminum. The solution pH at the beginning was 4.76. Root growth in Al solutions of the tolerant soybean cultivars was higher than that of the

  11. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  12. Aluminum Analysis.

    Science.gov (United States)

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  13. Seleção de genótipos de Brachiaria Ruziziensis quanto ao alumínio em solução nutritiva: II: Avaliação da tolerância ao alumínio Brachiaria Ruziziensis genotypes selection: II: Evaluation of the aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Balbino Miguel

    2011-01-01

    Full Text Available O alumínio, em solos ácidos, é um dos principais responsáveis pela baixa produtividade de culturas. O objetivo deste trabalho foi avaliar a variabilidade genética da Brachiaria ruziziensis para a tolerância ao alumínio. Foram utilizados 10 genótipos da espécie referida, crescidas em vasos com 0, 30 e 60 mg/L de alumínio em solução nutritiva. Foi utilizado o delineamento inteiramente casualizado em esquema fatorial, com seis repetições e parcelas de uma planta por vaso. Foram avaliados: a produção de massa verde da parte aérea e raízes (MVPA e MVR, a produção de matéria seca da parte aérea e raízes (MSPA e MSR, o incremento no crescimento da parte aérea e das raízes (IPA e IR, expresso pela diferença entre o crescimento final e o inicial, e o incremento no número de perfilhos (INP. O aumento nas concentrações de alumínio provocou decréscimos para as médias de todas as características avaliadas, excetuando o IR. A ausência de diferenças do genótipo 8 para seis das sete características analisadas, com exceção da MVPA, demonstra ser ela a mais promissora para estudos posteriores em melhoramento, visando maior produtividade em solos ácidos. Os resultados evidenciaram a existência de variabilidade genética entre os genótipos avaliados para a tolerância ao alumínio tóxico, sendo possível identificar materiais mais produtivos na presença desse metal.In acid soils, the aluminum is responsible for the low cultures productivity. The objective of this work was to evaluate the Brachiaria ruziziensis genetic variability for the aluminum tolerance.10 genotypes of that species were used, grown in vases with 0, 30 and 60 mg/L of aluminum in nutritious solution. A completely randomized design under 10 x 3 factorial, with six replicates. The following variables were evaluated: the green mass production of the aerial part and roots (MVPA and MVR, the dry matter production of the aerial part and roots (MSPA and MSR

  14. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yanlong Wang

    Full Text Available We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli, Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology and KEGG (Kyoto encyclopedia of genes and genomes enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species scavenging, membrane proteins and ABC (ATP binding cassette transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  15. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Science.gov (United States)

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  16. A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds.

    Science.gov (United States)

    Costa, Maria Cecília D; Righetti, Karima; Nijveen, Harm; Yazdanpanah, Farzaneh; Ligterink, Wilco; Buitink, Julia; Hilhorst, Henk W M

    2015-08-01

    During re-establishment of desiccation tolerance (DT), early events promote initial protection and growth arrest, while late events promote stress adaptation and contribute to survival in the dry state. Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose desiccation tolerance (DT) while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). To gain temporal resolution and identify relevant genes in this process, data from a time series of microarrays were used to build a gene co-expression network. The network has two regions, namely early response (ER) and late response (LR). Genes in the ER region are related to biological processes, such as dormancy, acquisition of DT and drought, amplification of signals, growth arrest and induction of protection mechanisms (such as LEA proteins). Genes in the LR region lead to inhibition of photosynthesis and primary metabolism, promote adaptation to stress conditions and contribute to seed longevity. Phenotyping of 12 hubs in relation to re-establishment of DT with T-DNA insertion lines indicated a significant increase in the ability to re-establish DT compared with the wild-type in the lines cbsx4, at3g53040 and at4g25580, suggesting the operation of redundant and compensatory mechanisms. Moreover, we show that re-establishment of DT by polyethylene glycol and ABA occurs through partially overlapping mechanisms. Our data confirm that co-expression network analysis is a valid approach to examine data from time series of transcriptome analysis, as it provides promising insights into biologically relevant relations that help to generate new information about the roles of certain genes for DT.

  17. Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli.

    Science.gov (United States)

    Gupta, S D; Lee, B T; Camakaris, J; Wu, H C

    1995-08-01

    It has been suggested previously that copper transport in Escherichia coli is mediated by the products of at least six genes, cutA, cutB, cutC, cutD, cutE, and cutF. A mutation in one or more of these genes results in an increased copper sensitivity (D. Rouch, J. Camakaris, and B. T. O. Lee, p. 469-477, in D. H. Hamer and D. R. Winge, ed., Metal Ion Homeostasis: Molecular Biology and Chemistry, 1989). Copper-sensitive cutC and cutF mutants were transformed with a genomic library of E. coli, and copper-tolerant transformants were selected. Two distinct clones were identified, each of which partially restores copper tolerance in both the cutC and cutF mutants of E. coli. Subcloning, physical mapping, and sequence analysis have revealed that the cutC gene is located at 42.15 min on the E. coli genome and encodes a cytoplasmic protein of 146 amino acids and that the cutF gene is located at 4.77 min on the E. coli genome and is allelic to the nlpE gene independently identified by Silhavy and coworkers (W. B. Snyder, L. J. B. Davis, P. N. Danese, C. L. Cosma, and T. J. Silhavy, J. Bacteriol. 177:4216-4223, 1995). Results from the genetic mapping of the copper-sensitive mutations in the cutF mutant and sequencing of the cutC and cutF (nlpE) alleles from both cutC and cutF mutants indicate that both the cutC and cutF mutants are in fact double mutants altered in these two genes, and mutations in both the genes appear to be required for the copper-sensitive phenotype in each mutant.

  18. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    Science.gov (United States)

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression.

  19. Overexpression of a chrysanthemum transcription factor gene DgNAC1 improves the salinity tolerance in chrysanthemum.

    Science.gov (United States)

    Wang, Ke; Zhong, Ming; Wu, Yin-Huan; Bai, Zhen-Yu; Liang, Qian-Yu; Liu, Qing-Lin; Pan, Yuan-Zhi; Zhang, Lei; Jiang, Bei-Bei; Jia, Yin; Liu, Guang-Li

    2017-04-01

    DgNAC1, a transcription factor of chrysanthemum, was functionally verified to confer salt stress responses by regulating stress-responsive genes. NAC transcription factors play effective roles in resistance to different abiotic stresses, and overexpressions of NAC TFs in Arabidopsis have been proved to be conducive in improving salinity tolerance. However, functions of NAC genes in chrysanthemum continue to be poorly understood. Here, we performed physiology and molecular experiments to evaluate roles of DgNAC1 in chrysanthemum salt stress responses. In this study, DgNAC1-overexpressed chrysanthemum was obviously more resistant to salt over the WT (wild type). Specifically, the transgenic chrysanthemum showed a higher survival rate and lower EC (electrolyte conductivity) than WT under salt stress. The transgenic chrysanthemum also showed fewer accumulations of MDA (malondialdehyde) and reactive oxygen species (H 2 O 2 and O 2 - ), greater activities of SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase), as well as more proline content than WT under salt stress. Furthermore, stress-responsive genes in transgenic chrysanthemum were greater up-regulated than in WT under salinity stress. Thus, all results revealed that DgNAC1 worked as a positive regulator in responses to salt stress and it may be an essential gene for molecular breeding of salt-tolerant plants.

  20. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    Science.gov (United States)

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Chen, Tingting; Yang, Qingchuan; Zhang, Xinquan; Ding, Wang; Gruber, Margaret

    2012-09-01

    A novel orthologue of ethylene response factor gene, MsERF11, was isolated from alfalfa in this study. It has an open reading frame of 807 bp, encoding a predicted polypeptide of 268 amino acids. Sequence similarity analysis clearly suggested that MsERF11 encoded an ethylene response factor protein. The results of transient expression of MsERF11 in onion epidermal cells indicated that MsERF11 is a nuclear protein. The expression pattern of MsERF11 gene was analyzed by real-time quantitative PCR and a higher level of expression was observed in leaves than was observed in roots, stems, flower buds and flowers. Furthermore, the expression was induced by PEG6000, NaCl, Al2(SO4)3 and six different hormones. Over-expressing MsERF11 resulted in enhanced tolerances to salt stress in transgenic Arabidopsis plants. This research indicates that MsERF11 has the potential to be used for improving crop's salt tolerance in areas where salinity is a limiting factor for agricultural productivity. MsERF11 was isolated from alfalfa. Its expression was induced by different abiotic stresses and hormones. Over-expressing MsERF11 resulted in enhanced salt tolerance in transgenic Arabidopsis plants.

  3. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  4. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  5. Contribution of seedling vigour and anoxia/hypoxia-responsive genes to submergence tolerance in Vietnamese lowland rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Hien Thi Thu Vu

    2016-09-01

    Full Text Available A direct-seeded rice cultivation system has been widely adopted in Asian countries. Optimum germination and vigorous seedling growth under submergence are key traits for the practice of direct seeding. We studied the post-germination seedling vigour in Vietnamese lowland rice accessions based on three bio-parameters, shoot elongation growth under five-day submergence in water-filled test-tubes, seedling recovery rate five days after transferring submerged seedlings to pots with soil and seedling survival rate 21 days after sowing seeds in nursery beds and immediate incubation under submergence. A large diversity was found in seedling vigour thus estimated among the accessions. Significantly high correlations were observed among all three bio-parameters, verifying the contribution of seedling vigour to the manifestation of submergence tolerance at this critical stage of rice development. To examine the roles of anoxia/hypoxia-responsive genes, the expression of 17 candidate genes was studied by reverse transcription polymerase chain reaction (RT-PCR and compared between selected vigorous and non-vigorous groups of accessions. Transcripts of all but two genes showed marked accumulation in submerged seedlings. No differences, however, were found between the two contrasting groups. The observed common and coordinate expression of anoxia/hypoxia-induced genes suggests that they might assume roles in attaining baseline tolerance against submergence stress. It was also suggested that some unknown genetic factors are operating in determining cultivar/genotype-specific levels of submergence tolerance as assessed by post-germination seedling vigour.

  6. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance.

    Science.gov (United States)

    Jain, Deepti; Chattopadhyay, Debasis

    2010-02-09

    Chickpea (C. arietinum L.) ranks third in food legume crop production in the world. However, drought poses a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Unfortunately, cultivated chickpea has a high morphological but narrow genetic diversity, and understanding the genetic processes of this plant is hindered by the fact that the chickpea genome has not yet been sequenced and its EST resources are limited. In this study, two chickpea varieties having contrasting levels of drought-tolerance were analyzed for differences in transcript profiling during drought stress treatment by withdrawal of irrigation at different time points. Transcript profiles of ESTs derived from subtractive cDNA libraries constructed with RNA from whole seedlings of both varieties were analyzed at different stages of stress treatment. A series of comparisons of transcript abundance between two varieties at different time points were made. 319 unique ESTs available from different libraries were categorized into eleven clusters according to their comparative expression profiles. Expression analysis revealed that 70% of the ESTs were more than two fold abundant in the tolerant cultivar at any point of the stress treatment of which expression of 33% ESTs were more than two fold high even under the control condition. 53 ESTs that displayed very high fold relative expression in the tolerant variety were screened for further analysis. These ESTs were clustered in four groups according to their expression patterns. Annotation of the highly expressed ESTs in the tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Results from this study may help in targeting useful genes for improving drought tolerance in chickpea.

  7. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L. varieties differing in drought tolerance

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasis

    2010-02-01

    Full Text Available Abstract Background Chickpea (C. arietinum L. ranks third in food legume crop production in the world. However, drought poses a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Unfortunately, cultivated chickpea has a high morphological but narrow genetic diversity, and understanding the genetic processes of this plant is hindered by the fact that the chickpea genome has not yet been sequenced and its EST resources are limited. In this study, two chickpea varieties having contrasting levels of drought-tolerance were analyzed for differences in transcript profiling during drought stress treatment by withdrawal of irrigation at different time points. Transcript profiles of ESTs derived from subtractive cDNA libraries constructed with RNA from whole seedlings of both varieties were analyzed at different stages of stress treatment. Results A series of comparisons of transcript abundance between two varieties at different time points were made. 319 unique ESTs available from different libraries were categorized into eleven clusters according to their comparative expression profiles. Expression analysis revealed that 70% of the ESTs were more than two fold abundant in the tolerant cultivar at any point of the stress treatment of which expression of 33% ESTs were more than two fold high even under the control condition. 53 ESTs that displayed very high fold relative expression in the tolerant variety were screened for further analysis. These ESTs were clustered in four groups according to their expression patterns. Conclusions Annotation of the highly expressed ESTs in the tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Results from this study may help in targeting useful genes for improving drought tolerance in chickpea.

  8. Avaliação de nove linhagens de milho em cruzamentos dialélicos quanto à tolerância ao alumínio Evaluation of nine maize inbred lines in diallel cross in relation to aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Geraldo Magela de Almeida Cançado

    2002-04-01

    Full Text Available Avaliaram-se nove linhagens endogâmicas de milho e seus cruzamentos quanto à tolerância ao alumínio (Al, em um dialelo incompleto. Foram utilizados os índices fenotípicos de comprimento relativo de raiz seminal (CRRS, comprimento líquido de raiz seminal (CLRS e coloração por hematoxilina, determinados após sete dias de crescimento em solução nutritiva contendo 222 mimoles L-1 de Al. Os resultados dos cruzamentos dialélicos demonstraram que os efeitos aditivos foram mais importantes que os efeitos não-aditivos para os três índices avaliados. As linhagens L13, L724, L723 e L16 seriam as mais indicadas para a obtenção de híbridos visando tolerância ao Al, por apresentarem os melhores valores de capacidade geral de combinação e por participarem dos cruzamentos de melhor capacidade específica de combinação. Uma correlação de 0,76 foi observada entre os índices CLRS e a coloração por hematoxilina, de 0,63 entre CLRS e CRRS e de 0,27 entre CRRS e coloração por hematoxilina. A coloração por hematoxilina demonstrou ser uma valiosa ferramenta para programas de melhoramento de milho que visam a seleção de genótipos com maior tolerância ao alumínio.Nine maize inbred lines and their hybrid combinations were evaluated in incomplete diallel crosses to study the aluminum (Al tolerance behavior. The phenotypic indexes used to determine Al tolerance were the relative seminal-root length (RSRL, the net seminal-root length (NSRL and the hemathoxylin staining, determined after seven days of growth in nutrient solution with 222 mumoles L-1 of Al. The diallel crosses results showed that additive effects were more important than not additive effects, for all indexes evaluated. Maize lines L13, L724, L723, and L16 showed better behaviour for general combining ability (GCA and specific combining ability (SCA and are the more indicated for obtaining Al-tolerant hybrids. The correlation observed between NSRL and hematoxylin staining

  9. Systematic Isolation and Characterization of Cadmium Tolerant Genes in Tobacco: A cDNA Library Construction and Screening Approach.

    Directory of Open Access Journals (Sweden)

    Mei Zhang

    Full Text Available Heavy metal pollution is a major limiting factor that severely affects plant growth worldwide, and the accumulation of heavy metal in the plant may be hazardous to human health. To identify the processes involved in cadmium detoxification, we constructed a cDNA library of tobacco roots acclimated to cadmium (Cd stress. According to the results of functional screening cDNA library with a yeast Cd-sensitive mutant, ycf1Δ, we obtained a series of candidate genes that were involved in Cd response. Sequence analysis and yeast functional complementation of 24 positive cDNA clones revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular metabolism, and signal transduction showed Cd detoxification effects in yeast. The real time RT-PCR analyses revealed that some Cd tolerance/ detoxification genes may be able to anticipate in other stresses such as biotic defense and water balance in tobacco. Taken together, our data suggest that plants' acclimation to Cd stress is a highly complex process associated with broad gene functions. Moreover, our results provide insights into the Cd detoxification mechanisms along with the antioxidant system, defense gene induction, and calcium signal pathway.

  10. Systematic Isolation and Characterization of Cadmium Tolerant Genes in Tobacco: A cDNA Library Construction and Screening Approach.

    Science.gov (United States)

    Zhang, Mei; Mo, Hui; Sun, Wen; Guo, Yan; Li, Jing

    2016-01-01

    Heavy metal pollution is a major limiting factor that severely affects plant growth worldwide, and the accumulation of heavy metal in the plant may be hazardous to human health. To identify the processes involved in cadmium detoxification, we constructed a cDNA library of tobacco roots acclimated to cadmium (Cd) stress. According to the results of functional screening cDNA library with a yeast Cd-sensitive mutant, ycf1Δ, we obtained a series of candidate genes that were involved in Cd response. Sequence analysis and yeast functional complementation of 24 positive cDNA clones revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular metabolism, and signal transduction showed Cd detoxification effects in yeast. The real time RT-PCR analyses revealed that some Cd tolerance/ detoxification genes may be able to anticipate in other stresses such as biotic defense and water balance in tobacco. Taken together, our data suggest that plants' acclimation to Cd stress is a highly complex process associated with broad gene functions. Moreover, our results provide insights into the Cd detoxification mechanisms along with the antioxidant system, defense gene induction, and calcium signal pathway.

  11. Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium.

    Science.gov (United States)

    Song, Mengke; Yang, Ying; Jiang, Longfei; Hong, Qing; Zhang, Dayi; Shen, Zhenguo; Yin, Hua; Luo, Chunling

    2017-01-01

    A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  13. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    Science.gov (United States)

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  14. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.

    Science.gov (United States)

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.

  15. Identification of alcohol stress tolerance genes ofSynechocystissp. PCC 6803 using adaptive laboratory evolution.

    Science.gov (United States)

    Matsusako, Takuya; Toya, Yoshihiro; Yoshikawa, Katsunori; Shimizu, Hiroshi

    2017-01-01

    Synechocystis sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance. Isobutanol-tolerant strains of Synechocystis sp. PCC 6803 were obtained by long-term passage culture experiments using medium containing 2 g/L isobutanol. These evolved strains grew on medium containing 5 g/L isobutanol on which the parental strain could not grow. Mutation analysis of the evolved strains revealed that they acquired resistance ability due to combinatorial malfunctions of slr1044 ( mcpA ) and slr0369 ( envD ), or slr0322 ( hik43 ) and envD . The tolerant strains demonstrated stress resistance against isobutanol as well as a wide variety of alcohols such as ethanol, n -butanol, and isopentanol. As a result of introducing an ethanol-producing pathway into the evolved strain, its productivity successfully increased to 142% of the control strain. Novel mutations were identified that improved the stress tolerance ability of various alcohols in Synechocystis sp. PCC 6803.

  16. Linhagens diaplóides de trigo: produção de grãos, características agronômicas e tolerância à toxicidade de alumínio Dihaploid wheat lines: grain yield, agronomic characteristics and tolerance to aluminum toxicity

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO DE OLIVEIRA CAMARGO

    1999-01-01

    spike. All of them were tolerant to aluminum toxicity except IAC-287 (sensitive control.

  17. Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation.

    Directory of Open Access Journals (Sweden)

    Markus Arnoldini

    2014-08-01

    Full Text Available Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment.

  18. Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 gene

    Directory of Open Access Journals (Sweden)

    Dong An

    2016-12-01

    Full Text Available Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.

  19. Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis Thaliana drought tolerance.

    Science.gov (United States)

    Huang, Ya-Chen; Huang, Wen-Lii; Hong, Chwan-Yang; Lur, Hur-Shen; Chang, Men-Chi

    2012-11-27

    Actin depolymerizing factors (ADFs) are small actin-binding proteins. Many higher-plant ADFs has been known to involve in plant growth, development and pathogen defense. However, in rice the temporal and spatial expression of OsADF gene family and their relationship with abiotic stresses tolerance is still unknown. Here we reported the first comprehensive gene expression profile analysis of OsADF gene family. The OsADF genes showed distinct and overlapping gene expression patterns at different growth stages, tissues and abiotic stresses. We also demonstrated that both OsADF1 and OsADF3 proteins were localized in the nucleus. OsADF1 and OsADF3 were preferentially expressed in vascular tissues. Under ABA or abiotic stress treatments, OsADF3::GUS activity was enhanced in lateral roots and root tips. Ectopically overexpressed OsADF3 conferred the mannitol- and drought-stress tolerance of transgenic Arabidopsis seedlings by increasing germination rate, primary root length and survival. Several drought-tolerance responsive genes (RD22, ABF4, DREB2A, RD29A, PIP1; 4 and PIP2; 6) were upregulated in transgenic Arabidopsis under drought stress. These results suggested that OsADF gene family may participate in plant abiotic stresses response or tolerance and would facilitate functional validation of other OsADF genes.

  20. GENETIC STABILITY ANALYSIS OF RB GENE IN GENETICALLY MODIFIED POTATO LINES TOLERANT TO Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Edy Listanto

    2016-02-01

    Full Text Available Development of potato cultivars with high levels of broad spectrum resistance is a key long-term management strategy against late blight disease caused by Phytophthora infestans. Six progeny lines of hybridization between transgenic potato Katahdin SP951 with non-transgenic Granola and Atlantic were selected based on agronomical characteristics and resistance to late blight disease. The study aimed to analyze the number of insertions and stability of inserted RB gene in the transgenic potato lines. The research was carried out through plant DNA extraction, southern blot analysis and polymerase chain reaction (PCR. Southern blot analysis was used to detect the number of inserts integrated into potato genome, while PCR analysis was used to detect stability of RB gene from generation to generation. The results showed that the progenies obtained from hybridization between Atlantic and transgenic Katahdin SP951 (lines No. 20 and 27 and between Granola and transgenic Katahdin SP951 (line No. 69 contained one copy number of RB gene, according to the probing of nptII. The result is similar to that of inserted RB gene found in the parental transgenic Katahdin SP951. The presence of RB gene in four different generations (G0, G1, G2 and G3 showed stable integration of the gene into the plant genome. The single copy number of RB gene will repress the occurrence of silencing gene expression. The stability analysis of RB gene can determine that the gene is still present in plant genome after several generations.

  1. Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water.

    Science.gov (United States)

    Bailey, Allison; De Wit, Pierre; Thor, Peter; Browman, Howard I; Bjelland, Reidun; Shema, Steven; Fields, David M; Runge, Jeffrey A; Thompson, Cameron; Hop, Haakon

    2017-09-01

    Ocean acidification is the increase in seawater p CO 2 due to the uptake of atmospheric anthropogenic CO 2 , with the largest changes predicted to occur in the Arctic seas. For some marine organisms, this change in p CO 2 , and associated decrease in pH, represents a climate change-related stressor. In this study, we investigated the gene expression patterns of nauplii of the Arctic copepod Calanus glacialis cultured at low pH levels. We have previously shown that organismal-level performance (development, growth, respiration) of C. glacialis nauplii is unaffected by low pH. Here, we investigated the molecular-level response to lowered pH in order to elucidate the physiological processes involved in this tolerance. Nauplii from wild-caught C. glacialis were cultured at four pH levels (8.05, 7.9, 7.7, 7.5). At stage N6, mRNA was extracted and sequenced using RNA-seq. The physiological functionality of the proteins identified was categorized using Gene Ontology and KEGG pathways. We found that the expression of 151 contigs varied significantly with pH on a continuous scale (93% downregulated with decreasing pH). Gene set enrichment analysis revealed that, of the processes downregulated, many were components of the universal cellular stress response, including DNA repair, redox regulation, protein folding, and proteolysis. Sodium:proton antiporters were among the processes significantly upregulated, indicating that these ion pumps were involved in maintaining cellular pH homeostasis. C. glacialis significantly alters its gene expression at low pH, although they maintain normal larval development. Understanding what confers tolerance to some species will support our ability to predict the effects of future ocean acidification on marine organisms.

  2. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Science.gov (United States)

    Bevilacqua, Caroline Borges; Basu, Supratim; Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  3. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  4. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Xiaoqian Chu

    Full Text Available WRKY transcription factors constitute a very large family of proteins in plants and participate in modulating plant biological processes, such as growth, development and stress responses. However, the exact roles of WRKY proteins are unclear, particularly in non-model plants. In this study, Gossypium hirsutum WRKY41 (GhWRKY41 was isolated and transformed into Nicotiana benthamiana. Our results showed that overexpression of GhWRKY41 enhanced the drought and salt stress tolerance of transgenic Nicotiana benthamiana. The transgenic plants exhibited lower malondialdehyde content and higher antioxidant enzyme activity, and the expression of antioxidant genes was upregulated in transgenic plants exposed to osmotic stress. A β-glucuronidase (GUS staining assay showed that GhWRKY41 was highly expressed in the stomata when plants were exposed to osmotic stress, and plants overexpressing GhWRKY41 exhibited enhanced stomatal closure when they were exposed to osmotic stress. Taken together, our findings demonstrate that GhWRKY41 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure and by regulating reactive oxygen species (ROS scavenging and the expression of antioxidant genes.

  5. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    Directory of Open Access Journals (Sweden)

    Asis Shrestha

    Full Text Available Manganese (Mn is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.. A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170 with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  6. Effects of acute salt stress on modulation of gene expression in a Malaysian salt-tolerant indigenous rice variety, Bajong.

    Science.gov (United States)

    Yeo, Brandon Pei Hui; Bhave, Mrinal; Hwang, Siaw San

    2018-01-01

    The small genome size of rice relative to wheat and barley, together with its salt sensitivity, make it an ideal candidate for studies of salt stress response. Transcriptomics has emerged as a powerful technique to study salinity responses in many crop species. By identifying a large number of differentially expressed genes (DEGs) simultaneously after the stress induction, it can provide crucial insight into the immediate responses towards the stressor. In this study, a Malaysian salt-tolerant indigenous rice variety named Bajong and one commercial rice variety named MR219 were investigated for their performance in plant growth and ion accumulation properties after salt stress treatment. Bajong was further investigated for the changes in leaf's transcriptome after 6 h of stress treatment using 100 mM NaCl. Based on the results obtained, Bajong is found to be significantly more salt tolerant than MR219, showing better growth and a lower sodium ion accumulation after the stress treatment. Additionally, Bajong was analysed by transcriptomic sequencing, generating a total of 130 millions reads. The reads were assembled into de novo transcriptome and each transcript was annotated using several pre-existing databases. The transcriptomes of control and salt-stressed samples were then compared, leading to the discovery of 4096 DEGs. Based on the functional annotation results obtained, the enrichment factor of each functional group in DEGs was calculated in relation to the total reads obtained. It was found that the group with the highest gene modulation was involved in the secondary metabolite biosynthesis of plants, with approximately 2.5% increase in relation to the total reads obtained. This suggests an extensive transcriptional reprogramming of the secondary metabolic pathways after stress induction, which could be directly responsible for the salt tolerance capability of Bajong.

  7. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Shuang-Shuang; Sun, Le; Dong, Xinran; Lu, Sun-Jie; Tian, Weidong; Liu, Jian-Xiang

    2016-07-01

    Two salt hypersensitive mutants she1 and she2 were identified through genetic screening. SHE1 encodes a cellulose synthase CESA6 while SHE2 encodes a cellulose synthase-interactive protein CSI1. Both of them are involved in cellulose deposition. Our results demonstrated that the sustained cellulose synthesis is important for salt stress tolerance in Arabidopsis. © 2015 Institute of Botany, Chinese Academy of Sciences.

  8. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples.

    Science.gov (United States)

    Wang, Rong-Kai; Cao, Zhong-Hui; Hao, Yu-Jin

    2014-01-01

    MYB transcription factors (TFs) involve in plant abiotic stress tolerance and response in various plant species. In this study, rapid amplification of cDNA ends (RACE) was conducted to isolate the R2R3-MYB TF gene MdSIMYB1 from apples (Malus × domestica). The gene transcripts were abundant in the leaves, flowers and fruits, compared to other organs, and were induced by abiotic stresses and plant hormones. We observed the subcellular localization of an MdSIMYB1-GFP fusion protein in the nucleus. Furthermore, the MdSIMYB1 gene was introduced into the tobacco genome and ectopically expressed in transgenic lines. The results indicate that MdSIMYB1 transgenic tobacco seed germination is insensitive to abscisic acid and NaCl treatment. Additionally, it was found that the ectopic expression of MdSIMYB1 enhanced the tolerance of plants to high salinity, drought and cold tolerance by upregulating the stress-responsive genes NtDREB1A, NtERD10B and NtERD10C. Meanwhile, the transgenic tobacco exhibited robust root growth because of the enhanced expression of the auxin-responsive genes NtIAA4.2, NtIAA4.1 and NtIAA2.5 under stress conditions, which is conducive to stress tolerance. Finally, transgenic apple lines were obtained and tested. Transgenic apple lines that were overexpressing MdSIMYB1 exhibited a higher tolerance to abiotic stress than the wild-type control, but suppression of MdSIMYB1 resulted in lower tolerance. Our results indicate that MdSIMYB1 may be utilized as a target gene for enhancing stress tolerance in important crops. © 2013 Scandinavian Plant Physiology Society.

  9. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  10. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.

    Science.gov (United States)

    Endo, Masaki; Kumagai, Masahiko; Motoyama, Ritsuko; Sasaki-Yamagata, Harumi; Mori-Hosokawa, Satomi; Hamada, Masao; Kanamori, Hiroyuki; Nagamura, Yoshiaki; Katayose, Yuichi; Itoh, Takeshi; Toki, Seiichi

    2015-01-01

    Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies.

    Science.gov (United States)

    Laurenza, Incoronata; Pallocca, Giorgia; Mennecozzi, Milena; Scelfo, Bibiana; Pamies, David; Bal-Price, Anna

    2013-11-01

    The major advantage of the neuronal cell culture models derived from human stem cells is their ability to replicate the crucial stages of neurodevelopment such as the commitment of human stem cells to the neuronal lineage and their subsequent stages of differentiation into neuronal and glial-like cell. In these studies we used mixed neuronal/glial culture derived from the NTERA-2 (NT-2) cell line, which has been established from human pluripotent testicular embryonal carcinoma cells. After characterization of the different stages of cell differentiation into neuronal- and glial-like phenotype toxicity studies were performed to evaluate whether this model would be suitable for developmental neurotoxicity studies. The cells were exposed during the differentiation process to non-cytotoxic concentrations of methylmercury chloride, lead chloride and aluminum nitrate for two weeks. The toxicity was then evaluated by measuring the mRNA levels of cell specific markers (neuronal and glial). The results obtained suggest that lead chloride and aluminum nitrate at low concentrations were toxic primarily to astrocytes and at the higher concentrations it also induced neurotoxicity. In contrast, MetHgCl was toxic for both cell types, neuronal and glial, as mRNA specific for astrocytes and neuronal markers were affected. The results obtained suggest that a neuronal mixed culture derived from human NT2 precursor cells is a suitable model for developmental neurotoxicity studies and gene expression could be used as a sensitive endpoint for initial screening of potential neurotoxic compounds. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress.

    Science.gov (United States)

    Checker, Vibha G; Chhibbar, Anju K; Khurana, Paramjit

    2012-10-01

    Coping with different kinds of biotic and abiotic stresses is the foundation of sustainable agriculture. Although conventional breeding and marker-assisted selection are being employed in mulberry (Morus indica L.) to develop better varieties, nonetheless the longer time periods required for these approaches necessitates the use of precise biotechnological approaches for sustainable agriculture. In an attempt to improve stress tolerance of mulberry, an important plant of the sericulture industry, an encoding late embryogenesis abundant gene from barley (HVA1) was introduced into mulberry plants by Agrobacterium-mediated transformation. Transgenic mulberry with barley Hva1 under a constitutive promoter actin1 was shown to enhance drought and salinity tolerance. Here, we report that overexpression of barley Hva1 also confers cold tolerance in transgenic mulberry. Further, barley Hva1 gene under control of a stress-inducible promoter rd29A can effectively negate growth retardation under non-stress conditions and confer stress tolerance in transgenic mulberry. Transgenic lines display normal morphology to enhanced growth and an increased tolerance against drought, salt and cold conditions as measured by free proline, membrane stability index and PSII activity. Protein accumulation was detected under stress conditions confirming inductive expression of HVA1 in transgenics. Investigations to assess stress tolerance of these plants under field conditions revealed an overall better performance than the non-transgenic plants. Enhanced expression of stress responsive genes such as Mi dnaJ and Mi 2-cysperoxidin suggests that Hva1 can regulate downstream genes associated with providing abiotic stress tolerance. The investigation of transgenic lines presented here demonstrates the acquisition of tolerance against drought, salt and cold stress in plants overexpressing barley Hva1, indicating that Arabidopsis rd29A promoter can function in mulberry.

  13. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings.

    Science.gov (United States)

    Xiang, Yanli; Sun, Xiaopeng; Gao, Shan; Qin, Feng; Dai, Mingqiu

    2017-03-06

    Drought is a major abiotic stress that causes the yearly yield loss of maize, a crop cultured worldwide. Breeding drought-tolerant maize cultivars is a priority requirement of world agriculture. Clade A PP2C phosphatases (PP2C-A), which are conserved in most plant species, play important roles in abscisic acid (ABA) signaling and plant drought response. However, natural variations of PP2C-A genes that are directly associated with drought tolerance remain to be elucidated. Here, we conducted a candidate gene association analysis of the ZmPP2C-A gene family in a maize panel consisting of 368 varieties collected worldwide, and identified a drought responsive gene ZmPP2C-A10 that is tightly associated with drought tolerance. We found that the degree of drought tolerance of maize cultivars negatively correlates with the expression levels of ZmPP2C-A10. ZmPP2C-A10, like its Arabidopsis orthologs, interacts with ZmPYL ABA receptors and ZmSnRK2 kinases, suggesting that ZmPP2C-A10 is involved in mediating ABA signaling in maize. Transgenic studies in maize and Arabidopsis confirmed that ZmPP2C-A10 functions as a negative regulator of drought tolerance. Further, a causal natural variation, deletion allele-338, which bears a deletion of ERSE (endoplasmic reticulum stress response element) in the 5'-UTR region of ZmPP2C-A10, was detected. This deletion causes the loss of endoplasmic reticulum (ER) stress-induced expression of ZmPP2C-A10, leading to increased plant drought tolerance. Our study provides direct evidence linking ER stress signaling with drought tolerance and genetic resources that can be used directly in breeding drought-tolerant maize cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  15. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Science.gov (United States)

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  16. Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes

    Czech Academy of Sciences Publication Activity Database

    Baloun, J.; Nevrtalová, E.; Kováčová, V.; Hudzieczek, V.; Čegan, R.; Vyskot, B.; Hobza, Roman

    2014-01-01

    Roč. 171, č. 13 (2014), s. 1188-1196 ISSN 0176-1617 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : Copper * Genes coding ROS-eliminating and Cu-transporting proteins * RNA-Seq database Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.557, year: 2014

  17. Expression of acyl-lipid Delta12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato.

    Science.gov (United States)

    Amiri, Reza Maali; Yur'eva, Natalia O; Shimshilashvili, Khristina R; Goldenkova-Pavlova, Irina V; Pchelkin, Vasiliy P; Kuznitsova, Elmira I; Tsydendambaev, Vladimir D; Trunova, Tamara I; Los, Dmitry A; Jouzani, Gholamreza Salehi; Nosov, Alexander M

    2010-03-01

    We report the expression profile of acyl-lipid Delta12-desaturase (desA) gene from Synechocystis sp. PCC6803 and its effect on cell membrane lipid composition and cold tolerance in prokaryotic (Escherichia coli) and eukaryotic (Solanum tuberosum) cells. For this purpose, a hybrid of desA and reporter gene encoding thermostable lichenase (licBM3) was constructed and used to transform these cells. The expression of this hybrid gene was measured using qualitative (Petri dish test, electrophoregram and zymogram) and quantitative methods (spectrometry and gas liquid chromatography assays). The maximum level of linoleic acid in the bacterial cells containing hybrid gene was 1.9% of total fatty acids. Cold stress tolerance assays using plant damage index and growth parameters showed that cold tolerance was enhanced in primary transgenic lines because of increased unsaturated fatty acid concentration in their lipids. The greatest content of 18:2 and 18:3 fatty acids in primary transgenic plants was observed for lines 2 (73%) and 3 (41%). Finally, our results showed that desaturase could enhance tolerance to cold stress in potato, and desaturase and lichenase retain their functionality in the structure of the hybrid protein where the enzymatic activity of target gene product was higher than in the case of reporter lichenase gene absence in the construction.

  18. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    International Nuclear Information System (INIS)

    O'Connor, Meeghan A.; Koza-Taylor, Petra; Campion, Sarah N.; Aleksunes, Lauren M.; Gu, Xinsheng; Enayetallah, Ahmed E.; Lawton, Michael P.; Manautou, José E.

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430 2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene expression

  19. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Meeghan A., E-mail: meeghan.oconnor@boehringer-ingelheim.com [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368 (United States); Koza-Taylor, Petra, E-mail: petra.h.koza-taylor@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Campion, Sarah N., E-mail: sarah.campion@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Aleksunes, Lauren M., E-mail: aleksunes@eohsi.rutgers.edu [Rutgers University, Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854 (United States); Gu, Xinsheng, E-mail: xinsheng.gu@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Enayetallah, Ahmed E., E-mail: ahmed.enayetallah@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Lawton, Michael P., E-mail: michael.lawton@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Manautou, José E., E-mail: jose.manautou@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States)

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430{sub 2} GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene

  20. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan.

    Science.gov (United States)

    Yoshimura, Yasuyuki; Matsuo, Kazuhito; Yasuda, Koji

    2006-01-01

    Natural out-crossing rates were evaluated for conventional soybeans (Glycine max (L.) Merr.) cultivated adjacent to genetically modified (GM) glyphosate-tolerant soybeans under field conditions during a four-year period in Japan. A total of 107 846 progeny of 2772 plants harvested from conventional varieties were screened for glyphosate herbicide tolerance. The highest out-crossing rates, 0.19% in 2001 and 0.16% in 2002, were observed in adjacent rows 0.7 m from the pollen source. The highest rate in 2004 was 0.052%, which was observed at 2.1 m. No out-crossing was observed in the rows 10.5 m from the pollen source over the four-year period. The farthest distances between receptor and pollen source at which out-crossing was observed were 7 m in 2001, 2.8 m in 2002, and 3.5 m in 2004. The greatest airborne pollen density during the flowering period, determined by Durham pollen samplers located between the rows of each variety, was 0.368 grains.cm(-2).day(-1), with the average value at 0.18 grains.cm(-2).day(-1), indicating that the possibility of out-crossing by wind is minimal. Thrips species and predatory Hemiptera visited the soybean flowers more frequently during the four-year period than any other common pollinators, such as bees.

  1. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.).

    Science.gov (United States)

    Pandit, Awadhesh; Rai, Vandna; Bal, Subhashis; Sinha, Shikha; Kumar, Vinod; Chauhan, Mahesh; Gautam, Raj K; Singh, Rakesh; Sharma, Prakash C; Singh, Ashok K; Gaikwad, Kishor; Sharma, Tilak R; Mohapatra, Trilochan; Singh, Nagendra K

    2010-08-01

    Identification of genes for quantitative traits is difficult using any single approach due to complex inheritance of the traits and limited resolving power of the individual techniques. Here a combination of genetic mapping and bulked transcriptome profiling was used to narrow down the number of differentially expressed salt-responsive genes in rice in order to identify functional polymorphism of genes underlying the quantitative trait loci (QTL). A population of recombinant inbred lines (RILs) derived from cross between salt-tolerant variety CSR 27 and salt-sensitive variety MI 48 was used to map QTL for salt ion concentrations in different tissues and salt stress susceptibility index (SSI) for spikelet fertility, grain weight, and grain yield. Eight significant QTL intervals were mapped on chromosomes 1, 8, and 12 for the salt ion concentrations and a QTL controlling SSI for spikelet fertility was co-located in one of these intervals on chromosome 8. However, there were total 2,681 genes in these QTL intervals, making it difficult to pinpoint the genes responsible for the functional differences for the traits. Similarly, transcriptome profiling of the seedlings of tolerant and sensitive parents grown under control and salt-stress conditions showed 798 and 2,407 differentially expressed gene probes, respectively. By analyzing pools of RNA extracted from ten each of extremely tolerant and extremely sensitive RILs to normalize the background noise, the number of differentially expressed genes under salt stress was drastically reduced to 30 only. Two of these genes, an integral transmembrane protein DUF6 and a cation chloride cotransporter, were not only co-located in the QTL intervals but also showed the expected distortion of allele frequencies in the extreme tolerant and sensitive RILs, and therefore are suitable for future validation studies and development of functional markers for salt tolerance in rice to facilitate marker-assisted breeding.

  2. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    Science.gov (United States)

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A ß-D: -xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance.

    Science.gov (United States)

    Falara, Vasiliki; Manganaris, George A; Ziliotto, Fiorenza; Manganaris, Athanasios; Bonghi, Claudio; Ramina, Angelo; Kanellis, Angelos K

    2011-06-01

    A transcriptome analysis was applied on two peach (Prunus persica L.) cultivars with different sensitivity to low temperature regimes to identify genes that might be involved in tolerance to extended low temperature storage. Peach fruit from 'Morettini No2' to 'Royal Glory', cultivars sensitive and tolerant to chilling injury (CI), respectively, were harvested at commercial maturity stage and allowed to ripen at room temperature (shelf-life, 25°C) or subjected to 4 and 6 weeks of cold storage (0°C, 95% R.H.) followed by ripening at room temperature. The use of μPEACH 1.0 microarray platform identified a number of genes that were differentially expressed in 'Morettini No2' and 'Royal Glory' fruit after the extended storage period. Based on their possible involvement in physiological processes related to cold storage and on their differential expression pattern, two heat shock proteins, a β-D-xylosidase, an expansin, a dehydrin and a pathogenesis-related (PR) protein were further selected for detailed analysis via RNA blot analysis. It is suggested that β-D: -xylosidase and PR-4B precursor genes could be related to the different tolerance to CI observed in the two peach cultivars since generally higher expression levels were observed in cv. 'Royal Glory', the tolerant one. These two genes could play a role in peach tolerance to chilling injury.

  4. Rice Yellow Mottle Virus stress responsive genes from susceptible and tolerant rice genotypes

    Directory of Open Access Journals (Sweden)

    Siré Christelle

    2008-03-01

    Full Text Available Abstract Background The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification. Results The present data, obtained through the cDNA-AFLP technique, demonstrate differential responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (Oryza sativa indica, and partially resistant Azucena (O. s. japonica. This RNA profiling provides a new original dataset that will enable us to gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4 subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress responsive (RSR transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped previously identified deregulated proteins and genes involved in partial resistance and thus constructed the first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10 were found to be not randomly distributed. Seven genes were identified in the susceptible and partially resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus infection, many concomitant plant gene expression changes may be associated with host changes caused by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC transporters were regulated throughout the kinetics of infection and differentiated susceptible and

  5. An InDel in the Promoter ofAl-ACTIVATED MALATE TRANSPORTER9Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance.

    Science.gov (United States)

    Ye, Jie; Wang, Xin; Hu, Tixu; Zhang, Fengxia; Wang, Bing; Li, Changxin; Yang, Tianxia; Li, Hanxia; Lu, Yongen; Giovannoni, James J; Zhang, Yuyang; Ye, Zhibiao

    2017-09-01

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in crops such as tomato ( Solanum lycopersicum ). Here, we integrated a metabolite-based genome-wide association study with linkage mapping and gene functional studies to characterize the genetics of malate accumulation in a global collection of tomato accessions with broad genetic diversity. We report that TFM6 (tomato fruit malate 6), which corresponds to Al-ACTIVATED MALATE TRANSPORTER9 (Sl -ALMT9 in tomato), is the major quantitative trait locus responsible for variation in fruit malate accumulation among tomato genotypes. A 3-bp indel in the promoter region of Sl -ALMT9 was linked to high fruit malate content. Further analysis indicated that this indel disrupts a W-box binding site in the Sl -ALMT9 promoter, which prevents binding of the WRKY transcription repressor Sl-WRKY42, thereby alleviating the repression of Sl -ALMT9 expression and promoting high fruit malate accumulation. Evolutionary analysis revealed that this highly expressed Sl -ALMT9 allele was selected for during tomato domestication. Furthermore, vacuole membrane-localized Sl-ALMT9 increases in abundance following Al treatment, thereby elevating malate transport and enhancing Al resistance. © 2017 American Society of Plant Biologists. All rights reserved.

  6. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino.

    Science.gov (United States)

    Sabella, Erika; Luvisi, Andrea; Aprile, Alessio; Negro, Carmine; Vergine, Marzia; Nicolì, Francesca; Miceli, Antonio; De Bellis, Luigi

    2018-01-01

    Recently, Xylella fastidiosa was reported in Italy, associated with the "Olive Quick Decline Syndrome". The cv. Leccino exhibits an evident tolerance with a slow disease progression compared with the other cultivars. Between the mechanisms proposed to explain the putative tolerance of some hosts to X. fastidiosa diseases, lignin deposition plays an important role. Analysis of phenolic compounds in healthy and infected Leccino and Cellina di Nardò leaves showed, in the two cultivars, a reduction of hydroxytyrosol glucoside (usually associated with drought and cold stress) and, only in Leccino, an increase of quinic acid, precursor of lignin. To determine if lignin biosynthesis is involved in defence response, we investigated the expression of genes coding for entry-point enzymes in different branches of the phenylpropanoid pathway. In stems of Cellina di Nardò infected plants, Cinnamate-4-Hydroxylase (C4H) and 4-Coumarate:CoA Ligase (4CL) resulted strongly down-regulated, indicating a plant disease response since the inhibition of C4H is reported to promote the accumulation of benzoic acid and salicylic acid as defence signals. Instead, in the cv. Leccino, Cinnamoyl-CoA Reductase (CCR, reported to be strongly induced during the formation of lignin defence response associated) was up-regulated in the stem of infected plants; moreover, Polyphenol oxidase (PPO), coding for an enzyme involved in the hydroxytyrosol biosynthesis, was down-regulated. The quantification of lignin in healthy and infected branches of both cultivars, showed a significant increase of total lignin in infected Leccino compared with the sensitive cultivar; moreover, histochemical observations of stem sections exhibited a different lignin distribution in the sclerenchyma and in the xylem tissue of infected Leccino plants compared to sections of healthy ones. Results suggest a critical role for lignin in X. fastidiosa tolerance of cv. Leccino. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances

    Directory of Open Access Journals (Sweden)

    Xiatian eWang

    2015-08-01

    Full Text Available The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled ten unigenes from expressed sequence tags (ESTs of wheat and designated them as TaWRKY44–TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA, H2O2 and gibberellin (GA. The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC, soluble sugar, proline and superoxide dismutase (SOD content, as well as higher activities of catalase (CAT and peroxidase (POD, but less ion leakage (IL, lower contents of malondialdehyde (MDA, and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression.

  8. Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes

    Czech Academy of Sciences Publication Activity Database

    Baloun, Jiří; Nevrtalová, Eva; Kováčová, Viera; Hudzieczek, Vojtěch; Čegan, Radim; Vyskot, Boris; Hobza, Roman

    2014-01-01

    Roč. 171, č. 13 (2014), s. 1188-1196 ISSN 0176-1617 R&D Projects: GA ČR(CZ) GBP501/12/G090; GA MŠk LO1204 Institutional support: RVO:68081707 Keywords : Copper * Genes coding ROS-eliminating and Cu-transporting proteins * RNA-Seq database Subject RIV: BO - Biophysics Impact factor: 2.557, year: 2014

  9. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Jun Cheul Ahn

    2013-03-01

    Full Text Available The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.

  10. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Li, Zhenyi; Long, Ruicai; Zhang, Tiejun; Wang, Zhen; Zhang, Fan; Yang, Qingchuan; Kang, Junmei; Sun, Yan

    2017-03-01

    Heat shock proteins (HSPs) are a ubiquitously expressed class of protective proteins that play a key role in plant response to stressful conditions. This study aimed to characterize and investigate the function of an HSP gene in alfalfa (Medicago sativa). MsHSP70, which contains a 2028-bp open reading frame, was identified through homology cloning. MsHSP70 shares high sequence identity (94.47%) with HSP70 from Medicago truncatula. Expression analysis of MsHSP70 in alfalfa organs revealed a relatively higher expression level in aerial organs such as flowers, stems and leaves than in roots. MsHSP70 was induced by heat shock, abscisic acid (ABA) and hydrogen peroxide. Transgenic Arabidopsis seedlings overexpressing MsHSP70 were hyposensitive to polyethylene glycol (PEG) and ABA treatments, suggesting that exogenous expression of MsHSP70 enhanced Arabidopsis tolerance to these stresses. Examination of physiological indexes related to drought and ABA stress demonstrated that in comparison with non-transgenic plants, T3 transgenic Arabidopsis plants had an increased proline content, higher superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. Furthermore, higher relative water content (RWC) was detected in transgenic plants compared with non-transgenic plants under drought stress. These findings clearly indicate that molecular manipulation of MsHSP70 in plants can have substantial effects on stress tolerance.

  11. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  12. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato.

    Science.gov (United States)

    Meng, Xia; Wang, Jie-Ru; Wang, Guo-Dong; Liang, Xiao-Qing; Li, Xiao-Dong; Meng, Qing-Wei

    2015-03-01

    LeAN2 is an anthocyanin-associated R2R3-MYB transcription factor, but little is known about its function in imparting thermo-tolerance to higher plants. To examine the function of LeAN2 in the regulation of heat stress in tomato, LeAN2 was isolated and transgenic tomato plants were obtained. Overexpression of LeAN2 under the control of the CaMV35S promoter in tomato induced the up-regulation of several structural genes in the anthocyanin biosynthetic pathway as well as anthocyanin accumulation in transgenic tomato plants. Transgenic tomato plants showed enhanced tolerance to heat stress by maintaining higher fresh weight (FW), net photosynthetic rate (Pn) and maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with wild-type (WT) plants. Furthermore, transgenic plants showed higher non-enzymatic antioxidant activity, lower levels of reactive oxygen species (ROS), and higher contents of D1 protein than that in WT plants under heat stress. These results indicate that LeAN2 had an important function in heat stress resistance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Characteristics of Three Thioredoxin Genes and Their Role in Chilling Tolerance of Harvested Banana Fruit.

    Science.gov (United States)

    Wu, Fuwang; Li, Qing; Yan, Huiling; Zhang, Dandan; Jiang, Guoxiang; Jiang, Yueming; Duan, Xuewu

    2016-09-09

    Thioredoxins (Trxs) are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata) fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT) and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H₂O₂. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis.

  14. Characteristics of Three Thioredoxin Genes and Their Role in Chilling Tolerance of Harvested Banana Fruit

    Directory of Open Access Journals (Sweden)

    Fuwang Wu

    2016-09-01

    Full Text Available Thioredoxins (Trxs are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H2O2. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis.

  15. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra.

    Directory of Open Access Journals (Sweden)

    Weidong Gao

    Full Text Available Late embryogenesis abundant (LEA genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA was transformed into Xiaohei poplar (Populussimonii × P. nigra via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR and ribonucleic acid (RNA gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11 showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  16. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).

    Science.gov (United States)

    Gao, Weidong; Bai, Shuang; Li, Qingmei; Gao, Caiqiu; Liu, Guifeng; Li, Guangde; Tan, Feili

    2013-01-01

    Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  17. The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration.

    Science.gov (United States)

    Egea, Isabel; Albaladejo, Irene; Meco, Victoriano; Morales, Belén; Sevilla, Angel; Bolarin, Maria C; Flores, Francisco B

    2018-02-12

    Breeding for drought-tolerant crops is a pressing issue due to the increasing frequency and duration of droughts caused by climate change. Although important sources of variation for drought tolerance exist in wild relatives, the mechanisms and the key genes controlling tolerance in tomato are little known. The aim of this study is to determine the drought response of the tomato wild relative Solanum pennellii (Sp) compared with the cultivated tomato Solanum lycopersicum (Sl). The paper investigates the physiological and molecular responses in leaves of Sp and Sl plants without stress and moderate drought stress. Significant physiological differences between species were found, with Sp leaves showing greater ability to avoid water loss and oxidative damage. Leaf transcriptomic analysis carried out when leaves did not as yet show visual dehydration symptoms revealed important constitutive expression differences between Sp and Sl species. Genes linked to different physiological and metabolic processes were induced by drought in Sp, especially those involved in N assimilation, GOGAT/GS cycle and GABA-shunt. Up-regulation in Sp of genes linked to JA/ET biosynthesis and signaling pathways was also observed. In sum, genes involved in the amino acid metabolism together with genes linked to ET/JA seem to be key actors in the drought tolerance of the wild tomato species.

  18. Eficiência de índices fenotípicos de comprimento de raiz seminal na avaliação de plantas individuais de milho quanto à tolerância ao alumínio Efficiency of root length phenotypic index in the evaluation of individual maize plants for aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Martins

    1999-10-01

    Full Text Available O objetivo deste trabalho foi testar a eficiência do comprimento relativo de raiz seminal (CRRS e do comprimento líquido de raiz seminal (CLRS como indicadores fenotípicos quanto à tolerância ao alumínio na avaliação de plantas individuais de milho. Plântulas de genótipos tolerantes e suscetíveis ao Al foram submetidas a solução nutritiva contendo nível tóxico deste elemento, por um período de sete dias, após o qual, determinaram-se os valores de CRRS e CLRS. Os resultados obtidos quando se utilizaram valores médios para CRRS e CLRS mostraram que ambos os índices foram capazes de discriminar com eficiência os materiais tolerantes dos suscetíveis. Entretanto, quando foram utilizados os valores de CRRS e CLRS obtidos a partir de plantas individuais, observou-se a existência de plantas tolerantes com valores típicos de plantas suscetíveis, o que indica que a avaliação fenotípica de plantas individuais pelos dois índices está sujeita a erros significativos, principalmente na caracterização de plantas suscetíveis. Portanto, em estudos para mapeamento de "quantitative trait loci" (QTLs ligados à tolerância ao Al, nos quais utilizam-se estes índices fenotípicos, o mais apropriado é avaliar famílias F3, onde é possível obter valores médios para CRRS e CLRS e utilizar estas médias para representar os valores fenotípicos das respectivas plantas F2.The objective of this work was to verify the efficiency of the relative seminal root length (RSRL and net seminal root length (NSRL as phenotypic indexes for aluminum tolerance in individual maize plants. Seedlings of Al tolerant and susceptible genotypes were grown in nutrient solution containing toxic level of Al for a period of seven days, after which the values of RSRL and NSRL were determined. The results obtained when mean values of RSRL and NSRL were utilized showed that both indexes were able to discriminate tolerant from susceptible maize genotypes. However

  19. Two P5CS genes from common bean exhibiting different tolerance ...

    Indian Academy of Sciences (India)

    carboxylate synthetase (P5CS) is the rate-limiting enzyme in proline biosynthesis in plants. Plasmid DNA (pCHF3-PvP5CS1 and pCHF3-PvP5CS2) containing the selectable neomycin phosphotransferase gene for kanamycin resistance and ...

  20. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, H.; Jiskrová, E.; Vojta, P.; Mrízová, K.; Kokáš, F.; Majeská Čudějková, M.; Bergougnoux, V.; Plíhal, O.; Klimešová, J.; Novák, Ondřej; Dzurová, L.; Frébort, I.; Galuszka, P.

    2016-01-01

    Roč. 33, č. 5 (2016), s. 692-705 ISSN 1871-6784 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : ROOT-GROWTH * OXIDASE/DEHYDROGENASE GENES * BETA-GLUCOSIDASE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.813, year: 2016

  1. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes

    DEFF Research Database (Denmark)

    Ahmed, Vasim; Verma, Manoj K.; Gupta, Shashank

    2018-01-01

    /halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harbouring BCAA_ABCtp, GSDH, STK_Pknb and duf3445 genes. Furthermore, transposon...

  2. Saussurea involucrata SiDhn2 gene confers tolerance to drought stress in upland cotton

    International Nuclear Information System (INIS)

    Liu, B.; Zhu, J.; Mu, J.; Zhu, J.; Liang, Z.; Zhang, L.

    2017-01-01

    Severe water shortage has long been acknowledged as one major limiting factor for global cotton production, and cultivation of cotton varieties with strong drought resistance is of important economic and social significances. In this study, the Xinjiang upland cotton variety Xinluzao 42 was transformed with the SiDhn2 gene by optimized agrobacterium transformation system. The integration of SiDhn2 gene into cotton genome was confirmed by PCR and Southern blot hybridization, and the drought resistance of transgenic and corresponding receptor cotton plants and their physiological indexes under drought stress were detailedly analyzed. Multiple physiological and biochemical indexes including soluble sugar content, free proline content, chlorophyll content, relative water content, net photosynthetic rate, transpiration rate, intercellular CO/sub 2/ concentration in transgenic cotton expressing SiDhn2 gene under drought stress were significantly higher than those of receptor cotton. More importantly, the transgenic cotton plants exhibited remarkably decreased boll abscission rate and highly increased seed yield, indicating the significant role of SiDhn2 gene in cotton drought resistance and its great application potential in agricultural production. (author)

  3. Recycling of automotive aluminum

    OpenAIRE

    Cui, Jirang; Roven, Hans Jørgen

    2010-01-01

    With the global warming of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits. In this work, recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling, use of aluminum alloys in automotive applications, automotive recycling process, and new technologies in aluminum scrap process. Literature survey shows that newly developed t...

  4. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery.

    Science.gov (United States)

    Reis, Micael; Silva, Ana C; Vieira, Cristina P; Vieira, Jorge

    2016-07-07

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. Copyright © 2016 Reis et al.

  5. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Vasim Ahmed

    2018-02-01

    Full Text Available Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.

  6. Characterization of a Type 1 Metallothionein Gene from the Stresses-Tolerant Plant Ziziphus jujuba

    Directory of Open Access Journals (Sweden)

    Mingxia Yang

    2015-07-01

    Full Text Available Plant metallothioneins (MTs are a family of low molecular weight, cysteine-rich, and metal-binding proteins, which play an important role in the detoxification of heavy metal ions, osmotic stresses, and hormone treatment. Sequence analysis revealed that the open-reading frame (ORF of ZjMT was 225 bp, which encodes a protein composed of 75 amino acid residues with a calculated molecular mass of 7.376 kDa and a predicated isoelectric point (pI of 4.83. ZjMT belongs to the type I MT, which consists of two highly conserved cysteine-rich terminal domains linked by a cysteine free region. Our studies showed that ZjMT was primarily localized in the cytoplasm and the nucleus of cells and ZjMT expression was up-regulated by NaCl, CdCl2 and polyethylene glycol (PEG treatments. Constitutive expression of ZjMT in wild type Arabidopsis plants enhanced their tolerance to NaCl stress during the germination stage. Compared with the wild type, transgenic plants accumulate more Cd2+ in root, but less in leaf, suggesting that ZjMT may have a function in Cd2+ retension in roots and, therefore, decrease the toxicity of Cd2+.

  7. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  8. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes

    Science.gov (United States)

    Fan, Qingqing; Song, Aiping; Jiang, Jiafu; Zhang, Ting; Sun, Hainan; Wang, Yinjie; Chen, Sumei; Chen, Fadi

    2016-01-01

    WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG) treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway. PMID:26938878

  9. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Qingqing Fan

    Full Text Available WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.

  10. Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome

    DEFF Research Database (Denmark)

    Leder, Lena; Kolehmainen, Marjukka; Narverud, Ingunn

    2016-01-01

    -related genes in peripheral blood mononuclear cells (PBMCs) during a 2-h oral glucose tolerance test (OGTT) in individuals with MetS. METHODS: A Nordic multicenter randomized dietary study included subjects (n = 213) with MetS, randomized to a ND group or a control diet (CD) group applying an isocaloric study...

  11. A ζ-carotene desaturase gene, IbZDS, increases β-carotene and lutein contents and enhances salt tolerance in transgenic sweetpotato.

    Science.gov (United States)

    Li, Ruijie; Kang, Chen; Song, Xuejin; Yu, Ling; Liu, Degao; He, Shaozhen; Zhai, Hong; Liu, Qingchang

    2017-09-01

    ζ-Carotene desaturase (ZDS) is one of the key enzymes in carotenoid biosynthesis pathway. However, the ZDS gene has not been applied to carotenoid improvement of plants. Its roles in tolerance to abiotic stresses have not been reported. In this study, the IbZDS gene was isolated from storage roots of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Nongdafu 14. Its overexpression significantly increased β-carotene and lutein contents and enhanced salt tolerance in transgenic sweetpotato (cv. Kokei No. 14) plants. Significant up-regulation of lycopene β-cyclase (β-LCY) and β-carotene hydroxylase (β-CHY) genes and significant down-regulation of lycopene ε-cyclase (ε-LCY) and ε-carotene hydroxylase (ε-CHY) genes were found in the transgenic plants. Abscisic acid (ABA) and proline contents and superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants under salt stress. The salt stress-responsive genes encoding pyrroline-5-carboxylate reductase (P5CR), SOD, CAT, ascorbate peroxidase (APX) and POD were found to be significantly up-regulated in the transgenic plants under salt stress. This study indicates that the IbZDS gene has the potential to be applied for improving β-carotene and lutein contents and salt tolerance in sweetpotato and other plants. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    Science.gov (United States)

    Endo, Ayako; Nakamura, Toshihide; Ando, Akira; Tokuyasu, Ken; Shima, Jun

    2008-04-15

    Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  13. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Tokuyasu Ken

    2008-04-01

    Full Text Available Abstract Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Results Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Conclusion Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  14. Melhoramento do trigo: XXVII. Estimativas de variância, herdabilidade e correlações em populações híbridas para produção de grãos, tolerância a toxicidade de alumínio e altura das plantas Wheat breeding: XXVII. Variance, heritability and correlations in hybrid populations for grain yield, tolerance to aluminum toxicity and plant height

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1992-01-01

    éticas.Crosses were made involving the cultivars: BH-1146, tall and aluminum tolerant, IAC-24, semidwarf and aluminum tolerant and Anahuac, semidwarf and aluminum sensitive. Parents, F1's, F2's and reciprocal backcrosses were tested for their seedling reaction to 6mg/l of Al3+ in nutrient solution, in laboratory condition, and evaluated for grain yield and plant height at maturity in an experiment using pots, under a screen house in 1988 conditions at Experimental Center of Campinas, State of São Paulo, Brazil. Narrow sense heritabilities estimates were moderate to high for plant height (0.432-0.799 and for aluminum tolerance (0.425-0.922 and low for grain yield (0.037-0.195. Phenotypic correlations between grain yield and plant height were positive and significant for all populations under study. Phenotypic correlations between grain yield and aluminum tolerance were non significant (except for the population BH-1146 x IAC-24. The phenotypic correlation between plant height and aluminum tolerance was only positive and significant for the population BH-1146 x IAC-24. Results suggest it would be possible to select semidwarf plants, with aluminum tolerance and with high yield potential if large segregating populations were used to identify desired genotypes originated from eventual recombinations.

  15. Thermal tolerance in the keystone species Daphnia magna-a candidate gene and an outlier analysis approach.

    Science.gov (United States)

    Jansen, M; Geerts, A N; Rago, A; Spanier, K I; Denis, C; De Meester, L; Orsini, L

    2017-04-01

    Changes in temperature have occurred throughout Earth's history. However, current warming trends exacerbated by human activities impose severe and rapid loss of biodiversity. Although understanding the mechanisms orchestrating organismal response to climate change is important, remarkably few studies document their role in nature. This is because only few systems enable the combined analysis of genetic and plastic responses to environmental change over long time spans. Here, we characterize genetic and plastic responses to temperature increase in the aquatic keystone grazer Daphnia magna combining a candidate gene and an outlier analysis approach. We capitalize on the short generation time of our species, facilitating experimental evolution, and the production of dormant eggs enabling the analysis of long-term response to environmental change through a resurrection ecology approach. We quantify plasticity in the expression of 35 candidate genes in D. magna populations resurrected from a lake that experienced changes in average temperature over the past century and from experimental populations differing in thermal tolerance isolated from a selection experiment. By measuring expression in multiple genotypes from each of these populations in control and heat treatments, we assess plastic responses to extreme temperature events. By measuring evolutionary changes in gene expression between warm- and cold-adapted populations, we assess evolutionary response to temperature changes. Evolutionary response to temperature increase is also assessed via an outlier analysis using EST-linked microsatellite loci. This study provides the first insights into the role of plasticity and genetic adaptation in orchestrating adaptive responses to environmental change in D. magna. © 2017 John Wiley & Sons Ltd.

  16. Transgenic petunia with the iron(III-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Directory of Open Access Journals (Sweden)

    Yoshiko Murata

    Full Text Available Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III to iron(II and the uptake of iron(II by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III. Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems

  17. A stress inducible SUMO conjugating enzyme gene (SaSce9 from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Karan Ratna

    2012-10-01

    Full Text Available Abstract Background SUMO (Small Ubiquitin related Modifier conjugation is a post translational regulatory process found in all eukaryotes, mediated by SUMO activating enzyme, SUMO conjugating enzyme, and SUMO ligase for the attachment of SUMO to its target protein. Although the mechanism for regulation of SUMO conjugation pathway genes under abiotic stress has been studied to certain extent, the role of SUMO conjugating enzyme in improving abiotic stress tolerance to plant is largely unexplored. Here, we have characterized a SUMO conjugating enzyme gene ‘SaSce9’ from a halophytic grass Spartina alterniflora and investigated its role in imparting abiotic stress tolerance. Results SaSce9 gene encodes for a polypeptide of 162 amino acids with a molecular weight of ~18 kD and isoelectric point 8.43. Amino acid sequence comparisons of SaSce9 with its orthologs from other plant species showed high degree (~85-93% of structural conservation among each other. Complementation analysis using yeast SCE mutant, Ubc9, revealed functional conservation of SaSce9 between yeast and S. alterniflora. SaSce9 transcript was inducible by salinity, drought, cold, and exogenously supplied ABA both in leaves and roots of S. alterniflora. Constitutive overexpression of SaSce9 in Arabidopsis through Agrobacterium mediated transformation improved salinity and drought tolerance of Arabidopsis. SaSce9 overexpressing Arabidopsis plants retained more chlorophyll and proline both under salinity and drought stress. SaSce9 transgenic plants accumulated lower levels of reactive oxygen under salinity stress. Expression analysis of stress responsive genes in SaSce9 Arabidopsis plants revealed the increased expression of antioxidant genes, AtSOD and AtCAT, ion antiporter genes, AtNHX1 and AtSOS1, a gene involved in proline biosynthesis, AtP5CS, and a gene involved in ABA dependent signaling pathway, AtRD22. Conclusions These results highlight the prospect of improving abiotic

  18. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  19. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  20. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a in Arabidopsis Enhances Tolerance to Alkaline Stress.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants.

  1. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    Science.gov (United States)

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  2. Expression Profiling of Abiotic Stress-Inducible Genes in response to Multiple Stresses in Rice (Oryza sativa L. Varieties with Contrasting Level of Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Supratim Basu

    2014-01-01

    Full Text Available The present study considered transcriptional profiles and protein expression analyses from shoot and/or root tissues under three abiotic stress conditions, namely, salinity, dehydration, and cold, as well as following exogenous abscisic acid treatment, at different time points of stress exposure in three indica rice varieties, IR-29 (salt sensitive, Pokkali, and Nonabokra (both salt tolerant. The candidate genes chosen for expression studies were HKT-1, SOS-3, NHX-1, SAPK5, SAPK7, NAC-1, Rab16A, OSBZ8, DREBP2, CRT/DREBP, WRKY24, and WRKY71, along with the candidate proteins OSBZ8, SAMDC, and GST. Gene expression profile revealed considerable differences between the salt-sensitive and salt-tolerant rice varieties, as the expression in the latter was higher even at the constitutive level, whereas it was inducible only by corresponding stress signals in IR-29. Whether in roots or shoots, the transcriptional responses to different stressors peaked following 24 h of stress/ABA exposure, and the transcript levels enhanced gradually with the period of exposure. The generality of stress responses at the transcriptional level was therefore time dependent. Heat map data also showed differential transcript abundance in the three varieties, correlating the observation with transcript profiling. In silico analysis of the upstream regions of all the genes represented the existence of conserved sequence motifs in single or multiple copies that are indispensable to abiotic stress response. Overall, the transcriptome and proteome analysis undertaken in the present study indicated that genes/proteins conferring tolerance, belonging to different functional classes, were overrepresented, thus providing novel insight into the functional basis of multiple stress tolerance in indica rice varieties. The present work will pave the way in future to select gene(s for overexpression, so as to generate broad spectrum resistance to multiple stresses simultaneously.

  3. Vernalization requirement and the chromosomal VRN1-region can affect freezing tolerance and expression of cold-regulated genes in Festuca pratensis

    Directory of Open Access Journals (Sweden)

    Åshild eErgon

    2016-02-01

    Full Text Available Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation. Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s. Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds., a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14, LOS2 and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation-reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks

  4. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants.

    Directory of Open Access Journals (Sweden)

    Zhong-Hui Cao

    Full Text Available The MYB proteins comprise one of the largest families of transcription factors (TFs in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses.

  5. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants.

    Science.gov (United States)

    Cao, Zhong-Hui; Zhang, Shi-Zhong; Wang, Rong-Kai; Zhang, Rui-Fen; Hao, Yu-Jin

    2013-01-01

    The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses.

  6. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae.

    Science.gov (United States)

    Imai, R; Chang, L; Ohta, A; Bray, E A; Takagi, M

    1996-05-08

    During periods of water deficit, plants accumulate late embryogenesis-abundant (LEA) proteins which are thought to protect cells from stresses associated with dehydration. One of these genes, le25, is expressed in tomato leaves and roots in response to water deficit and abscisic acid accumulation. To study the function of this protein and to test the effect of overproduction of the LE25 protein in Saccharomyces cerevisiae (Sc), a recombinant plasmid in which le25 is expressed under the control of the GAL1 promoter was constructed. The content of LE25 was high in Sc cells transformed with the recombinant plasmid. The transformant exhibited several stress-tolerant phenotypes. Growth of the transformant in a medium with 1.2 M NaCl was improved, as compared to a control strain. While the control strain showed a long lag phase of 40 h, le25-expressing cells showed a shortened lag phase of 10 h. However, no growth improvement was observed in a medium with 2 M sorbitol. In addition, the transformant had an increased survival rate after freezing stress, but not after high-temperature stress. These results, together with its predicted secondary structure, may indicate that LE25 functions as an ion scavenger.

  7. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism?

    Science.gov (United States)

    2013-01-01

    Background Cultivated rice species (Oryza sativa L. and O. glaberrima Steud.) are generally considered among the crop species most sensitive to salt stress. A handful of lines are known to be tolerant, and a small number of these have been used extensively as donors in breeding programs. However, these donors use many of the same genes and physiological mechanisms to confer tolerance. Little information is available on the diversity of mechanisms used by these species to cope with salt stress, and there is a strong need to identify varieties displaying additional physiological and/or genetic mechanisms to confer higher tolerance. Results Here we present data on 103 accessions from O. sativa and 12 accessions from O. glaberrima, many of which are identified as salt tolerant for the first time, showing moderate to high tolerance of high salinity. The correlation of salinity-induced senescence (as judged by the Standard Evaluation System for Rice, or SES, score) with whole-plant and leaf blade Na+ concentrations was high across nearly all accessions, and was almost identical in both O. sativa and O. glaberrima. The association of leaf Na+ concentrations with cultivar-groups was very weak, but association with the OsHKT1;5 allele was generally strong. Seven major and three minor alleles of OsHKT1;5 were identified, and their comparisons with the leaf Na+ concentration showed that the Aromatic allele conferred the highest exclusion and the Japonica allele the least. A number of exceptions to this association with the Oryza HKT1;5 allele were identified; these probably indicate the existence of additional highly effective exclusion mechanisms. In addition, two landraces were identified, one from Thailand and the other from Senegal, that show high tissue tolerance. Conclusions Significant variation in salinity tolerance exists within both cultivated Oryza species, and this is the first report of significant tolerance in O. glaberrima. The majority of accessions display a

  8. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Science.gov (United States)

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under

  9. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Directory of Open Access Journals (Sweden)

    Bingying Han

    2016-07-01

    Full Text Available Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD. Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis. All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW, and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS, 10 trehalose-6-phosphate phosphatases (TPP, and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4 that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1 in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose

  10. Transcriptional analysis of drought-induced genes in the roots of a tolerant genotype of the common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Recchia, Gustavo Henrique; Caldas, Danielle Gregorio Gomes; Beraldo, Ana Luiza Ahern; da Silva, Márcio José; Tsai, Siu Mui

    2013-03-28

    In Brazil, common bean (Phaseolus vulgaris L.) productivity is severely affected by drought stress due to low technology cultivation systems. Our purpose was to identify differentially expressed genes in roots of a genotype tolerant to water deficit (BAT 477) when submitted to an interruption of irrigation during its development. A SSH library was constructed taking as "driver" the genotype Carioca 80SH (susceptible to drought). After clustering and data mining, 1572 valid reads were obtained, resulting in 1120 ESTs (expressed sequence tags). We found sequences for transcription factors, carbohydrates metabolism, proline-rich proteins, aquaporins, chaperones and ubiquitins, all of them organized according to their biological processes. Our suppressive subtractive hybridization (SSH) library was validated through RT-qPCR experiment by assessing the expression patterns of 10 selected genes in both genotypes under stressed and control conditions. Finally, the expression patterns of 31 ESTs, putatively related to drought responses, were analyzed in a time-course experiment. Our results confirmed that such genes are more expressed in the tolerant genotype during stress; however, they are not exclusive, since different levels of these transcripts were also detected in the susceptible genotype. In addition, we observed a fluctuation in gene regulation over time for both the genotypes, which seem to adopt and adapt different strategies in order to develop tolerance against this stress.

  11. Transcriptional Analysis of Drought-Induced Genes in the Roots of a Tolerant Genotype of the Common Bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Siu Mui Tsai

    2013-03-01

    Full Text Available In Brazil, common bean (Phaseolus vulgaris L. productivity is severely affected by drought stress due to low technology cultivation systems. Our purpose was to identify differentially expressed genes in roots of a genotype tolerant to water deficit (BAT 477 when submitted to an interruption of irrigation during its development. A SSH library was constructed taking as “driver” the genotype Carioca 80SH (susceptible to drought. After clustering and data mining, 1572 valid reads were obtained, resulting in 1120 ESTs (expressed sequence tags. We found sequences for transcription factors, carbohydrates metabolism, proline-rich proteins, aquaporins, chaperones and ubiquitins, all of them organized according to their biological processes. Our suppressive subtractive hybridization (SSH library was validated through RT-qPCR experiment by assessing the expression patterns of 10 selected genes in both genotypes under stressed and control conditions. Finally, the expression patterns of 31 ESTs, putatively related to drought responses, were analyzed in a time-course experiment. Our results confirmed that such genes are more expressed in the tolerant genotype during stress; however, they are not exclusive, since different levels of these transcripts were also detected in the susceptible genotype. In addition, we observed a fluctuation in gene regulation over time for both the genotypes, which seem to adopt and adapt different strategies in order to develop tolerance against this stress.

  12. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    Science.gov (United States)

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes.

    Science.gov (United States)

    Kim, Myoung Duck; Kim, Yun-Hee; Kwon, Suk-Yoon; Yun, Dae-Jin; Kwak, Sang-Soo; Lee, Haeng-Soon

    2010-10-01

    Oxidative stress is a major threat for plants exposed to various environmental stresses. Previous studies found that transgenic potato plants expressing both copper zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) (referred to as SSA plants), or nucleoside diphosphate kinase 2 (NDPK2) (SN plants), showed enhanced tolerance to methyl viologen (MV)-induced oxidative stress and high temperature. This study aimed to develop transgenic plants that were more tolerant of oxidative stress by introducing the NDPK2 gene into SSA potato plants under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter to create SSAN plants. SSAN leaf discs and whole plants showed enhanced tolerance to MV, as compared to SSA, SN or non-transgenic (NT) plants. SSAN plants sprayed with 400 µM MV exhibited about 53 and 83% less visible damage than did SSA and SN plants, respectively. The expression levels of the CuZnSOD, APX and NDPK2 genes in SSAN plants following MV treatment correlated well with MV tolerance. SOD, APX, NDPK and catalase antioxidant enzyme activities were also increased in MV-treated SSAN plants. In addition, SSAN plants were more tolerant to high temperature stress at 42°C, exhibiting a 6.2% reduction in photosynthetic activity as compared to plants grown at 25°C. In contrast, the photosynthetic activities of SN and SSA plants decreased by 50 and 18%, respectively. These results indicate that the simultaneous overexpression of CuZnSOD, APX and NDPK2 is more effective than single or double transgene expression for developing plants with enhanced tolerance to various environmental stresses. Copyright © Physiologia Plantarum 2010.

  14. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  15. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance.

    Science.gov (United States)

    Sun, Zhan-Min; Zhou, Mei-Liang; Xiao, Xing-Guo; Tang, Yi-Xiong; Wu, Yan-Min

    2014-09-01

    Lotus corniculatus is used in agriculture as a main forage plant. Members of the Apetala2/ethylene response factor (AP2/ERF) family play important roles in regulating gene expression in response to many forms of stress, including drought and salt. Here, starting from database of the L. corniculatus var. japonicus genome, we identified 127 AP2/ERF genes by insilico cloning method. The phylogeny, gene structures, and putative conserved motifs in L. corniculatus var. japonicus ERF proteins were analyzed. Based on the number of AP2/ERF domains and the function of the genes, 127 AP2/ERF genes from L. corniculatus var. japonicus were classified into five subfamilies named the AP2, dehydration-responsive element binding factor (DREB), ERF, RAV, and a soloist. Outside the AP2/ERF domain, many L. corniculatus var. japonicus-specific conserved motifs were detected. Expression profile analysis of AP2/ERF genes by quantitative real-time PCR revealed that 19 LcERF genes, including LcERF054 (KJ004728), were significantly induced by salt stress. The results showed that the LcERF054 gene encodes a nuclear transcription activator. Overexpression of LcERF054 in Arabidopsis enhanced the tolerances to salt stress, showed higher germination ratio of seeds, and had elevated levels of relative moisture contents, soluble sugars, proline, and lower levels of malondialdehyde under stress conditions compared to wild-type plants. The expression of hyperosmotic salinity response genes COR15A, LEA4-5, P5CS1, and RD29A was found to be elevated in the LcERF054-overexpressing Arabidopsis plants compared to wild type. These results revealed that the LcERF genes play important roles in L. corniculatus cv Leo under salt stress and that LcERFs are attractive engineering targets in applied efforts to improve abiotic stress tolerances in L. corniculatus cv Leo or other crops.

  16. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'.

    Directory of Open Access Journals (Sweden)

    Xiaohua Su

    Full Text Available Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento' harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although

  17. Initial root length in wheat is highly correlated with acid soil tolerance in the field

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Pereira

    Full Text Available ABSTRACT: In acid soils, toxic aluminum ions inhibit plant root growth. In order to discriminate aluminum (Al tolerance, trustful screening techniques are required. In this study, 20 wheat cultivars, showing different levels of Al tolerance, were evaluated in a short-term soil experiment to access their relative root length (RRL. Moreover, the alleles of two important genes (TaALMT1 and TaMATE1B for Al tolerance in wheat were discriminated. Both of these genes encode membrane transporters responsible for the efflux of organic acids by the root apices that are thought to confer tolerance by chelating Al. Genotypes showing TaALMT1 alleles V and VI and an insertion at the TaMATE1B promoter were among the ones showing greater RRL. Mechanisms of Al tolerance, which are not associated with organic acid efflux, can be potentially present in two cultivars showing greater RRL among the ones carrying inferior TaALMT1 and TaMATE1B alleles. The RRL data were highly correlated with wheat performance in acid soil at three developmental stages, tillering (r = −0.93, p < 0.001, silking (r = −0.91, p < 0.001 and maturation (r = −0.90, p < 0.001, as well as with the classification index of aluminum toxicity in the field (r = −0.92, p < 0.001. Since the RRL was obtained after only six days of growth and it is highly correlated with plant performance in acid soil under field conditions, the short-term experiment detailed here is an efficient and rapid method for reliable screening of wheat Al tolerance.

  18. Tolerance to Caspofungin in Candida albicans Is Associated with at Least Three Distinctive Mechanisms That Govern Expression of FKS Genes and Cell Wall Remodeling.

    Science.gov (United States)

    Yang, Feng; Zhang, Lulu; Wakabayashi, Hironao; Myers, Jason; Jiang, Yuanying; Cao, Yongbing; Jimenez-Ortigosa, Cristina; Perlin, David S; Rustchenko, Elena

    2017-05-01

    Expanding echinocandin use to prevent or treat invasive fungal infections has led to an increase in the number of breakthrough infections due to resistant Candida species. Although it is uncommon, echinocandin resistance is well documented for Candida albicans , which is among the most prevalent bloodstream organisms. A better understanding is needed to assess the cellular factors that promote tolerance and predispose infecting cells to clinical breakthrough. We previously showed that some mutants that were adapted to growth in the presence of toxic sorbose due to loss of one chromosome 5 (Ch5) also became more tolerant to caspofungin. We found here, following direct selection of mutants on caspofungin, that tolerance can be conferred by at least three mechanisms: (i) monosomy of Ch5, (ii) combined monosomy of the left arm and trisomy of the right arm of Ch5, and (iii) an aneuploidy-independent mechanism. Tolerant mutants possessed cell walls with elevated chitin and showed downregulation of genes involved in cell wall biosynthesis, namely, FKS , located outside Ch5, and CHT2 , located on Ch5, irrespective of Ch5 ploidy. Also irrespective of Ch5 ploidy, the CNB1 and MID1 genes on Ch5, which are involved in the calcineurin signaling pathway, were expressed at the diploid level. Thus, multiple mechanisms can affect the relative expression of the aforementioned genes, controlling them in similar ways. Although breakthrough mutations in two specific regions of FKS1 have previously been associated with caspofungin resistance, we found mechanisms of caspofungin tolerance that are independent of FKS1 and thus represent an earlier event in resistance development. Copyright © 2017 American Society for Microbiology.

  19. Enhancing heat tolerance of the little dogwood Cornus canadensis L. f. with introduction of a superoxide reductase gene from the hyperthermophilic archaeon Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Xinmin eGeng

    2016-01-01

    Full Text Available Production of reactive oxygen species (ROS can be accelerated under various biotic and abiotic stresses causing lipid peroxidation, protein degradation, enzyme inactivation, and DNA damage. Superoxide reductase (SOR is a novel antioxidant enzyme from Pyrococcus furiosus and is employed by this anaerobic hyperthermophilic archaeon for efficient detoxification of ROS. In this study, SOR was introduced into a flowering plant Cornus canadensis to enhance its heat tolerance and reduce heat induced damage. A fusion construct of the SOR gene and Green Fluorescent Protein gene (GFP was introduced into C. canadensis using Agrobacterium-mediated transformation. Heat tolerance of the GFP-SOR expressing transgenic plants was investigated by observing morphological symptoms of heat injury and by examining changes in photosynthesis, malondialdehyde (MDA, and proline levels in the plants. Our results indicate that the expression of the P. furiosus SOR gene in the transgenic plants alleviated lipid peroxidation of cell membranes and photoinhibition of PS II, and decreased the accumulation of proline at 40°C. After a series of exposures to increasing temperatures, the SOR transgenic plants remained healthy and green whereas most of the non-transgenic plants dried up and were unable to recover. While it had previously been reported that expression of SOR in Arabidopsis enhanced heat tolerance, this is the first report of the successful demonstration of improved heat tolerance in a non-model plant resulting from the introduction of P. furiosus SOR. The study demonstrates the potential of SOR for crop improvement and that inherent limitations of plant heat tolerance can be ameliorated with P. furiosus SOR.

  20. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches.

    Directory of Open Access Journals (Sweden)

    Mahendar Thudi

    Full Text Available To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1-7 seasons and 1-3 locations in India (Patancheru, Kanpur, Bangalore and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia. Diversity Array Technology (DArT markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD estimated using the squared-allele frequency correlations (r2; when r2<0.20 was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs, both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs] and phenotyping data mentioned above employing mixed linear model (MLM analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70 was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance.

  1. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants.

    Science.gov (United States)

    Wang, Qing-Jie; Sun, Hong; Dong, Qing-Long; Sun, Tian-Yu; Jin, Zhong-Xin; Hao, Yu-Jin; Yao, Yu-Xin

    2016-10-01

    In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH-overexpressing apple plants possessed improved cold and salt tolerance compared to wild-type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation-reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2 O2 content, but a low O2·- production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt- and cold-tolerant trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Ji, Wei; Zhu, Yanming; Li, Yong; Yang, Liang; Zhao, Xiaowen; Cai, Hua; Bai, Xi

    2010-08-01

    Glycine soja is a species of soybean that survives in adverse environments including high salt and drought conditions. We constructed a cDNA library from G. soja seedlings treated with NaCl and isolated a glutathione S-transferase gene (GsGST: GQ265911) from the library. The cDNA encoding GsGST contains an open reading frame of 660 bp and the predicted protein belongs to the tau class of GST family proteins. Tobacco plants over-expressing the GsGST gene showed sixfold higher GST activity than wild-type plants. Transgenic tobacco plants exhibited enhanced dehydration tolerance. T(2) transgenic tobacco plants showed higher tolerance at the seedling stage than wild-type plants to salt and mannitol as demonstrated by longer root length and less growth retardation.

  3. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  4. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Xi; Li, Yong; Ji, Wei; Bai, Xi; Cai, Hua; Zhu, Dan; Sun, Xiao-Li; Chen, Lian-Jiang; Zhu, Yan-Ming

    2011-07-15

    Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Protein Phosphatase 2A Catalytic Subunit α Plays a MyD88-Dependent, Central Role in the Gene-Specific Regulation of Endotoxin Tolerance

    Directory of Open Access Journals (Sweden)

    Ling Xie

    2013-03-01

    Full Text Available MyD88, the intracellular adaptor of most TLRs, mediates either proinflammatory or immunosuppressive signaling that contributes to chronic inflammation-associated diseases. Although gene-specific chromatin modifications regulate inflammation, the role of MyD88 signaling in establishing such epigenetic landscapes under different inflammatory states remains elusive. Using quantitative proteomics to enumerate the inflammation-phenotypic constituents of the MyD88 interactome, we found that in endotoxin-tolerant macrophages, protein phosphatase 2A catalytic subunit α (PP2Ac enhances its association with MyD88 and is constitutively activated. Knockdown of PP2Ac prevents suppression of proinflammatory genes and resistance to apoptosis. Through site-specific dephosphorylation, constitutively active PP2Ac disrupts the signal-promoting TLR4-MyD88 complex and broadly suppresses the activities of multiple proinflammatory/proapoptotic pathways as well, shifting proinflammatory MyD88 signaling to a prosurvival mode. Constitutively active PP2Ac translocated with MyD88 into the nuclei of tolerant macrophages establishes the immunosuppressive pattern of chromatin modifications and represses chromatin remodeling to selectively silence proinflammatory genes, coordinating the MyD88-dependent inflammation control at both signaling and epigenetic levels under endotoxin-tolerant conditions.

  6. Tolerating Zero Tolerance?

    Science.gov (United States)

    Moore, Brian N.

    2010-01-01

    The concept of zero tolerance dates back to the mid-1990s when New Jersey was creating laws to address nuisance crimes in communities. The main goal of these neighborhood crime policies was to have zero tolerance for petty crime such as graffiti or littering so as to keep more serious crimes from occurring. Next came the war on drugs. In federal…

  7. Fine Grain Aluminum Superplasticity

    Science.gov (United States)

    1980-02-01

    Continua on ravaraa sida H nacaaaary and identify by block numbar) Superplastic aluminum, Superplasticity, Superplastic forming. High strength aluminum...size. The presence of precipitate particles also acts to impede grain boundary migration during recrystallization, further aiding in maintaining a

  8. Novel Alleles of Phosphorus-Starvation Tolerance 1 Gene (PSTOL1 from Oryza rufipogon Confers High Phosphorus Uptake Efficiency

    Directory of Open Access Journals (Sweden)

    Kumari Neelam

    2017-04-01

    Full Text Available Limited phosphorus availability in the soil is one of the major constraints to the growth and productivity of rice across Asian, African and South American countries, where 50% of the rice is grown under rain-fed systems on poor and problematic soils. With an aim to determine novel alleles for enhanced phosphorus uptake efficiency in wild species germplasm of rice Oryza rufipogon, we investigated phosphorus uptake1 (Pup1 locus with 11 previously reported SSR markers and sequence characterized the phosphorus-starvation tolerance 1 (PSTOL1 gene. In the present study, we screened 182 accessions of O. rufipogon along with Vandana as a positive control with SSR markers. From the analysis, it was inferred that all of the O. rufipogon accessions undertaken in this study had an insertion of 90 kb region, including Pup1-K46, a diagnostic marker for PSTOL1, however, it was absent among O. sativa cv. PR114, PR121, and PR122. The complete PSTOL1 gene was also sequenced in 67 representative accessions of O. rufipogon and Vandana as a positive control. From comparative sequence analysis, 53 mutations (52 SNPs and 1 nonsense mutation were found in the PSTOL1 coding region, of which 28 were missense mutations and 10 corresponded to changes in the amino acid polarity. These 53 mutations correspond to 17 haplotypes, of these 6 were shared and 11 were scored only once. A major shared haplotype was observed among 44 accessions of O. rufipogon along with Vandana and Kasalath. Out of 17 haplotypes, accessions representing 8 haplotypes were grown under the phosphorus-deficient conditions in hydroponics for 60 days. Significant differences were observed in the root length and weight among all the genotypes when grown under phosphorus deficiency conditions as compared to the phosphorus sufficient conditions. The O. rufipogon accession IRGC 106506 from Laos performed significantly better, with 2.5 times higher root weight and phosphorus content as compared to the

  9. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  10. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses.

    Science.gov (United States)

    Saema, Syed; Rahman, Laiq Ur; Singh, Ruchi; Niranjan, Abhishek; Ahmad, Iffat Zareen; Misra, Pratibha

    2016-01-01

    Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and

  11. The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota.

    Science.gov (United States)

    Dantoft, Widad; Davis, Monica M; Lindvall, Jessica M; Tang, Xiongzhuo; Uvell, Hanna; Junell, Anna; Beskow, Anne; Engström, Ylva

    2013-09-06

    Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes. Gene expression profiling revealed that Drosophila Nub negatively regulates many genes that are involved in immune and stress responses, while it is a positive regulator of genes involved in differentiation and metabolism. This study demonstrates that a large number of genes that are activated by NF-κB/Relish in response to infection are normally repressed by the evolutionarily conserved Oct/POU transcription factor Nub. This prevents uncontrolled gene activation and supports the existence of a normal gut flora. We suggest that Nub protein plays an ancient role, shared with mammalian Oct

  12. Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses.

    Science.gov (United States)

    Yu, Y; Cui, Y C; Ren, C; Rocha, P S C F; Peng, M; Xu, G Y; Wang, M L; Xia, X J

    2016-02-05

    Plasma membrane proteolipid 3 (PMP3) is a class of small hydrophobic proteins found in many organisms including higher plants. Some plant PMP3 genes have been shown to respond to abiotic stresses and to participate in the processes of plant stress tolerance. In this study, we isolated the cassava (Manihot esculenta Crantz) MePMP3-2 gene and functionally characterized its role in tolerance to abiotic stress by expressing it in rice (Oryza sativa L.). MePMP3-2 encodes a 77-amino acid protein belonging to a subgroup of plant PMP3s that have long hydrophylic C-terminal tails of unknown function. In silico analysis and co-localization studies indicated that MePMP3-2 is a plasma membrane protein with two transmembrane domains, similar to other PMP3s. In cassava leaves, MePMP3-2 expression was up-regulated by salt and drought stresses. Heterologous constitutive expression of MePMP3-2 in rice did not alter plant growth and development but increased tolerance to salt and drought stresses. In addition, under stress conditions MePMP3-2 transgenic plants accumulated less malondialdehyde, had increased levels of proline, and exhibited greater up-regulation of the stress-related genes OsProT and OsP5CS, but led to only minor changes in OsDREB2A and OsLEA3 expression. These findings indicate that MePMP3-2 may play an important role in salt and drought stress tolerance in transgenic rice.

  13. Aluminum reference electrode

    Science.gov (United States)

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  14. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli

    International Nuclear Information System (INIS)

    Chaurasia, Neha; Mishra, Yogesh; Rai, Lal Chand

    2008-01-01

    Phytochelatin synthase (PCS) is involved in the synthesis of phytochelatins (PCs), plays role in heavy metal detoxification. The present study describes for first time the functional expression and characterization of pcs gene of Anabaena sp. PCC 7120 in Escherichia coli in terms of offering protection against heat, salt, carbofuron (pesticide), cadmium, copper, and UV-B stress. The involvement of pcs gene in tolerance to above abiotic stresses was investigated by cloning of pcs gene in expression vector pGEX-5X-2 and its transformation in E. coli BL21 (DE3). The E. coli cells transformed with pGEX-5X-pcs showed better growth than control cells (pGEX-5X-2) under temperature (47 deg. C), NaCl (6% w/v), carbofuron (0.025 mg ml -1 ), CdCl 2 (4 mM), CuCl 2 (1 mM), and UV-B (10 min) exposure. The enhanced expression of pcs gene revealed by RT-PCR analysis under above stresses at different time intervals further advocates its role in tolerance against above abiotic stresses

  15. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    Science.gov (United States)

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Plants respond to different forms of stresses by inducing transcription of a common and distinct set of genes by concerted actions of a cascade of transcription regulators. We previously reported that a gene, CaZF encoding a C2H2-zinc finger family protein from chickpea (Cicer arietinum imparted high salinity tolerance when expressed in tobacco plants. We report here that in addition to promoting tolerance against dehydration, salinity and high temperature, the CaZF overexpressing plants exhibited similar phenotype of growth and development like the plants overexpressing CAP2, encoding an AP2-family transcription factor from chickpea. To investigate any relationship between these two genes, we performed gene expression analysis in the overexpressing plants, promoter-reporter analysis and chromatin immunoprecipitation. A number of transcripts that exhibited enhanced accumulation upon expression of CAP2 or CaZF in tobacco plants were found common. Transient expression of CAP2 in chickpea leaves resulted in increased accumulation of CaZF transcript. Gel mobility shift and transient promoter-reporter assays suggested that CAP2 activates CaZF promoter by interacting with C-repeat elements (CRTs in CaZF promoter. Chromatin immunoprecipitation (ChIP assay demonstrated an in vivo interaction of CAP2 protein with CaZF promoter.

  17. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chunhui Xu

    Full Text Available Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat aquaporin gene TaTIP2;2 maps to the long arm of chromosome 7b and that its product localizes to the endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its drought and salinity tolerance, suggesting that TaTIP2;2 may be a negative regulator of abiotic stress. The proline content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2 and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to stress via an ABA-independent pathway(s.

  18. Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses.

    Directory of Open Access Journals (Sweden)

    Tanmoy Sarkar

    Full Text Available Research on genetic transformation in various crop plants using the DREB1A transcription factor has shown better abiotic stress tolerance in transgenic crops. The AtDREB1A transgenic peanut (Arachis hypogaea L. cv. GG 20, which was previously developed, was characterized in terms of its physio-biochemical, molecular and growth parameters. The tolerance of this transgenic peanut to drought and salinity stresses was evaluated at the seedling (18 days old and maturity stages. Transgenic peanut lines showed improved tolerance to both stresses over wild-type, as observed by delayed and less severe wilting of leaves and by improved growth parameters that were correlated with physio-biochemical parameters such as proline content, total chlorophyll content, osmotic potential, electrolytic leakage and relative water content. The expression pattern of the AtDREB1A gene evaluated using qPCR at different time points demonstrated that transgene expression was induced within two hours of stress imposition. The better performance of transgenic AtDREB1A peanut at the seedling stage and the improved growth parameters were due to the expression of the transgene, which is a transcription factor, and the possible up-regulation of various stress-inducible, downstream genes in the signal transduction pathway under abiotic stress.

  19. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  20. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    Directory of Open Access Journals (Sweden)

    Zhou eLi

    2015-10-01

    Full Text Available Endogenous polyamine (PA may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put, spermidine (Spd, and spermine (Spm. Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2 were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling.

  1. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.

    Science.gov (United States)

    Dong, Xiangrong; Wang, Yanping; Yang, Fengyuan; Zhao, Shanshan; Tian, Bing; Li, Tao

    2017-01-01

    Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress. Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g -1  dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain. The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.

  2. Constitutive Expression of a miR319 Gene Alters Plant Development and Enhances Salt and Drought Tolerance in Transgenic Creeping Bentgrass1[W][OA

    Science.gov (United States)

    Zhou, Man; Li, Dayong; Li, Zhigang; Hu, Qian; Yang, Chunhua; Zhu, Lihuang; Luo, Hong

    2013-01-01

    MicroRNA319 (miR319) is one of the first characterized and conserved microRNA families in plants and has been demonstrated to target TCP (for TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTORS [PCF]) genes encoding plant-specific transcription factors. MiR319 expression is regulated by environmental stimuli, suggesting its involvement in plant stress response, although experimental evidence is lacking and the underlying mechanism remains elusive. This study investigates the role that miR319 plays in the plant response to abiotic stress using transgenic creeping bentgrass (Agrostis stolonifera) overexpressing a rice (Oryza sativa) miR319 gene, Osa-miR319a. We found that transgenic plants overexpressing Osa-miR319a displayed morphological changes and exhibited enhanced drought and salt tolerance associated with increased leaf wax content and water retention but reduced sodium uptake. Gene expression analysis indicated that at least four putative miR319 target genes, AsPCF5, AsPCF6, AsPCF8, and AsTCP14, and a homolog of the rice NAC domain gene AsNAC60 were down-regulated in transgenic plants. Our results demonstrate that miR319 controls plant responses to drought and salinity stress. The enhanced abiotic stress tolerance in transgenic plants is related to significant down-regulation of miR319 target genes, implying their potential for use in the development of novel molecular strategies to genetically engineer crop species for enhanced resistance to environmental stress. PMID:23292790

  3. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  4. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  5. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  6. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.

    Science.gov (United States)

    Yang, Guiyan; Yu, Lili; Zhang, Kaimin; Zhao, Yulin; Guo, Yucong; Gao, Caiqiu

    2017-04-01

    Dehydration-responsive element-binding (DREB) transcription factors are important abiotic stress tolerance related genes, and some reports on the roles of DREB have primarily addressed herbal plants. To explore the abiotic stress tolerance role of DREB (ThDREB) from Tamarix hispida, a ThDREB gene with a complete ORF of 783 bp that encodes a 28.74 kDa protein with 260 amino acids, was isolated and functionally annotated. ThDREB expression was highly induced by NaCl, PEG, NaHCO 3 and CdCl 2 treatments, and the highest expression level (369.2-fold of control) was found for the roots that were under NaCl stress for 6 h. The tobacco plants that were transformed by ThDREB were conferred with higher germination rates, fresh weights and root lengths than the wild type (WT) tobacco plants under NaCl and mannitol treatments. The total chlorophyll content (tcc), superoxide dismutase (SOD) and peroxidase (POD) activities were also higher in the transgenic lines in comparison with the WT, and the malondialdehyde (MDA) and H 2 O 2 content, electrolyte leakage (EL) rate and ROS as tracked by staining were generated to a lesser degree in ThDREB transgenic plants than in the WT under NaCl and mannitol stress. Furthermore, the transient overexpression analysis of ThDREB in T. hispida also improved plant salt and drought tolerance in comparison with the empty vector-transformed lines. Our results indicated that ThDREB expression could effectively improve tolerance to salt and drought stress by enhancing the antioxidase activity that keeps the ROS at a low accumulation level and makes them easy to scavenge. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus.

    Directory of Open Access Journals (Sweden)

    Pingfang Li

    Full Text Available Brassinosteroids (BRs, a group of naturally occurring plant steroidal compounds, are essential for plant growth, development and stress tolerance. Recent studies showed that BRs could induce systemic tolerance to biotic and abiotic stresses; however, the molecular mechanisms by which BRs signals lead to responses in the whole plant are largely unknown. In this study, 24-epibrassinosteroid (EBR-induced systemic tolerance in Cucumis sativus L. cv. Jinyan No. 4 was analyzed through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation. Expression of defense/stress related genes were induced in both treated local leaves and untreated systemic leaves by local EBR application. With the suppressive subtractive hybridization (SSH library using cDNA from the phloem sap of EBR-treated plants as the tester and distilled water (DW-treated plants as the driver, 14 transcripts out of 260 clones were identified. Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR validated the specific up-regulation of these transcripts. Of the differentially expressed transcripts with known functions, transcripts for the selected four cDNAs, which encode an auxin-responsive protein (IAA14, a putative ankyrin-repeat protein, an F-box protein (PP2, and a major latex, pathogenesis-related (MLP-like protein, were induced in local leaves, systemic leaves and roots after foliar application of EBR onto mature leaves. Our results demonstrated that EBR-induced systemic tolerance is accompanied with increased transcript of genes in the defense response in other organs. The potential role of phloem mRNAs as signaling components in mediating BR-regulated systemic resistance is discussed.

  8. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gao, Caiqiu; Wang, Yucheng; Jiang, Bo; Liu, Guifeng; Yu, Lili; Wei, Zhigang; Yang, Chuanping

    2011-02-01

    Plant vacuolar H(+)-ATPase (V-ATPase) plays an important role in response to different adverse environmental conditions. In the present study, we cloned and characterized a V-ATPase c subunit gene (ThVHAc1) from Tamarix hispida. The deduced ThVHAc1 amino acid sequence lacks a signal peptide and ThVHAc1 is a highly hydrophobic protein with four transmembrane regions. A transient expression assay showed that the ThVHAc1-GFP fusion protein is expressed on onion epidermal endomembrane cells. Real-time RT-PCR demonstrated that ThVHAc1 gene expression was induced by NaCl, NaHCO(3), PEG and CdCl(2) stress in T. hispida roots, stems and leaves. Exogenous application of abscisic acid (ABA) also stimulated ThVHAc1 transcript levels in the absence of stress, suggesting that ThVHAc1 is involved in ABA-dependent stress signaling pathway. Furthermore, the transgenic yeast expressing ThVHAc1 increased salt, drought, ultraviolet (UV), oxidative, heavy metal, cold and high temperature tolerance. Our results suggested that the ThVHAc1 gene from T. hispida serves a stress tolerance role in the species.

  9. Halotolerant Exiguobacterium profundum PHM11 Tolerate Salinity by Accumulating L-Proline and Fine-Tuning Gene Expression Profiles of Related Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Vikas K. Patel

    2018-03-01

    Full Text Available Salinity stress is one of the serious factors, limiting production of major agricultural crops; especially, in sodic soils. A number of approaches are being applied to mitigate the salt-induced adverse effects in agricultural crops through implying different halotolerant microbes. In this aspect, a halotolerant, Exiguobacterium profundum PHM11 was evaluated under eight different salinity regimes; 100, 250, 500, 1000, 1500, 2000, 2500, and 3000 mM to know its inherent salt tolerance limits and salt-induced consequences affecting its natural metabolism. Based on the stoichiometric growth kinetics; 100 and 1500 mM concentrations were selected as optimal and minimal performance limits for PHM11. To know, how salt stress affects the expression profiles of regulatory genes of its key metabolic pathways, and total production of important metabolites; biomass, carotenoids, beta-carotene production, IAA and proline contents, and expression profiles of key genes affecting the protein folding, structural adaptations, transportation across the cell membrane, stress tolerance, carotenoids, IAA and mannitol production in PHM11 were studied under 100 and 1500 mM salinity. E. profundum PHM11 showed maximum and minimum growth, biomass and metabolite production at 100 and 1500 mM salinity respectively. Salt-induced fine-tuning of expression profiles of key genes of stress pathways was determined in halotolerant bacterium PHM11.

  10. Melatonin Attenuates Potato Late Blight by Disrupting Cell Growth, Stress Tolerance, Fungicide Susceptibility and Homeostasis of Gene Expression in Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Shumin Zhang

    2017-11-01

    Full Text Available Phytophthora infestans (P. infestans is the causal agent of potato late blight, which caused the devastating Irish Potato Famine during 1845-1852. Until now, potato late blight is still the most serious threat to potato growth and has caused significant economic losses worldwide. Melatonin can induce plant innate immunity against pathogen infection, but the direct effects of melatonin on plant pathogens are poorly understood. In this study, we investigated the direct effects of melatonin on P. infestans. Exogenous melatonin significantly attenuated the potato late blight by inhibiting mycelial growth, changing cell ultrastructure, and reducing stress tolerance of P. infestans. Notably, synergistic anti-fungal effects of melatonin with fungicides on P. infestans suggest that melatonin could reduce the dose levels and enhance the efficacy of fungicide against potato late blight. A transcriptome analysis was carried out to mine downstream genes whose expression levels were affected by melatonin. The analysis of the transcriptome suggests that 66 differentially expressed genes involved in amino acid metabolic processes were significantly affected by melatonin. Moreover, the differentially expressed genes associated with stress tolerance, fungicide resistance, and virulence were also affected. These findings contribute to a new understanding of the direct functions of the melatonin on P. infestans and provide a potential ecofriendly biocontrol approach using a melatonin-based paradigm and application to prevent potato late blight.

  11. Pyramiding of two rice bacterial blight resistance genes, Xa3 and Xa4, and a closely linked cold-tolerance QTL on chromosome 11.

    Science.gov (United States)

    Hur, Yeon-Jae; Cho, Jun-Hyeon; Park, Hyun-Su; Noh, Tae-Hwan; Park, Dong-Soo; Lee, Ji Yun; Sohn, Young-Bo; Shin, Dongjin; Song, You Chun; Kwon, Young-Up; Lee, Jong-Hee

    2016-10-01

    We fine mapped the Xa4 locus and developed a pyramided rice line containing Xa3 and Xa4 R - alleles and a cold-tolerance QTL. This line will be valuable in rice breeding. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a destructive disease of cultivated rice. Pyramiding BB resistance genes is an essential approach for increasing the resistance level of rice varieties. We selected an advanced backcross recombinant inbred line 132 (ABL132) from the BC3F7 population derived from a cross between cultivars Junam and IR72 by K3a inoculation and constructed the mapping population (BC4F6) to locate the Xa4 locus. The Xa4 locus was found to be delimited within a 60-kb interval between InDel markers InDel1 and InDel2 and tightly linked with the Xa3 gene on chromosome 11. After cold (4 °C) treatment, ABL132 with introgressions of IR72 in chromosome 11 showed lower survival rate, chlorophyll content, and relative water content compared to Junam. Genetic analysis showed that the cold stress-related quantitative trait locus (QTL) qCT11 was located in a 1.3-Mb interval close to the Xa4 locus. One line, ABL132-36, containing the Xa3 resistance allele from Junam, the Xa4 resistance allele from IR72, and the cold-tolerance QTL from Junam (qCT11), was developed from a BC4F6 population of 250 plants. This is the first report on the pyramiding of Xa3 and Xa4 genes with a cold-tolerance QTL. This region could provide a potential tool for improving resistance against BB and low-temperature stress in rice-breeding programs.

  12. Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Zang, Xinshan; Geng, Xiaoli; Liu, Kelu; Wang, Fei; Liu, Zhenshan; Zhang, Liyuan; Zhao, Yue; Tian, Xuejun; Hu, Zhaorong; Yao, Yingyin; Ni, Zhongfu; Xin, Mingming; Sun, Qixin; Peng, Huiru

    2017-05-01

    Abiotic stresses, such as heat and drought, are major environmental factors restricting crop productivity and quality worldwide. A plastid outer envelope protein gene, TaOEP16-2, was identified from our previous transcriptome analysis [1,2]. In this study, the isolation and functional characterization of the TaOEP16-2 gene was reported. Three homoeologous sequences of TaOEP16-2 were isolated from hexaploid wheat, which were localized on the chromosomes 5A, 5B and 5D, respectively. These three homoeologues exhibited different expression patterns under heat stress conditions, TaOEP16-2-5B was the dominant one, and TaOEP16-2-5B was selected for further analysis. Compared with wild type (WT) plants, transgenic Arabidopsis plants overexpressing the TaOEP16-2-5B gene exhibited enhanced tolerance to heat stress, which was supported by improved survival rate, strengthened cell membrane stability and increased sucrose content. It was also found that TaOEP16-2 was induced by drought stress and involved in drought stress tolerance. TaOEP16-2-5B has the same function in ABA-controlled seed germination as AtOEP16-2. Our results suggest that TaOEP16-2-5B plays an important role in heat and drought stress tolerance, and could be utilized in transgenic breeding of wheat and other crop plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  14. Cell wall-related genes studies on peach cultivars with differential susceptibility to woolliness: looking for candidates as indicators of chilling tolerance.

    Science.gov (United States)

    Genero, Melisa; Gismondi, Mauro; Monti, Laura L; Gabilondo, Julieta; Budde, Claudio O; Andreo, Carlos S; Lara, María V; Drincovich, María F; Bustamante, Claudia A

    2016-06-01

    The results obtained indicate that a β-xylosidase gene may act as good indicator of chilling tolerance and provide new insights into the complex issue of peach fruit woolliness. The storage of peaches at low temperatures for prolonged periods can induce a form of chilling injury (CI) called woolliness, characterized by a lack of juiciness and a mealy texture. As this disorder has been associated with abnormal cell wall dismantling, the levels of 12 transcripts encoding proteins involved in cell wall metabolism were analysed in cultivars with contrasting susceptibility to this disorder selected from five melting flesh peach cultivars. The resistant ('Springlady') and susceptible ('Flordaking') cultivars displayed differences in the level of expression of some of the selected genes during fruit softening and in woolly versus non-woolly fruits. From these genes, the level of expression of PpXyl, which encodes for a putative β-xylosidase, was the one that presented the highest correlation (negative) with the susceptibility to woolliness. PpXyl expression was also analysed in a cultivar ('Rojo 2') with intermediate susceptibility to woolliness, reinforcing the conclusion about the correlation of PpXyl expression to the presence of woolliness symptom. Moreover, the level of expression of PpXyl correlated to protein level detected by Western blot. Analyses of the promoter region of the PpXyl gene (1637 bp) isolated from the three cultivars showed no differences suggesting that cis-elements from other regions of the genome and/or trans elements could be responsible of the differential PpXyl expression patterns. Overall, the results obtained indicate that PpXyl may act as a good indicator of woolliness tolerance and that the regulation of expression of this gene in different cultivars does not depend on sequences upstream the coding sequence.

  15. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms

    Directory of Open Access Journals (Sweden)

    Li Yongle

    2011-10-01

    Full Text Available Abstract Background Frost is an important abiotic stress that limits cereal production in the temperate zone. As the most frost tolerant small grain cereal, rye (Secale cereale L. is an ideal cereal model for investigating the genetic basis of frost tolerance (FT, a complex trait with polygenic inheritance. Using 201 genotypes from five Eastern and Middle European winter rye populations, this study reports a multi-platform candidate gene-based association analysis in rye using 161 single nucleotide polymorphisms (SNPs and nine insertion-deletion (Indel polymorphisms previously identified from twelve candidate genes with a putative role in the frost responsive network. Results Phenotypic data analyses of FT in three different phenotyping platforms, controlled, semi-controlled and field, revealed significant genetic variations in the plant material under study. Statistically significant (P ScCbf15 and one in ScCbf12, all leading to amino acid exchanges, were significantly associated with FT over all three phenotyping platforms. Distribution of SNP effect sizes expressed as percentage of the genetic variance explained by individual SNPs was highly skewed towards zero with a few SNPs obtaining large effects. Two-way epistasis was found between 14 pairs of candidate genes. Relatively low to medium empirical correlations of SNP-FT associations were observed across the three platforms underlining the need for multi-level experimentation for dissecting complex associations between genotypes and FT in rye. Conclusions Candidate gene based-association studies are a powerful tool for investigating the genetic basis of FT in rye. Results of this study support the findings of bi-parental linkage mapping and expression studies that the Cbf gene family plays an essential role in FT.

  16. THE OVEREXPRESSION OF GENE ENCODING RICE POTASSIUM CHANNEL - OsТРКa INCREASES THE SALT AND DROUGHT TOLERANCE OF PLANTS

    Directory of Open Access Journals (Sweden)

    S.V. Isayenkov

    2015-04-01

    Full Text Available The main aim of this study was to investigate the role of potassium TPK channel (OsTPKa from rice in regulation of salinity and drought stresses, potassium deficiency. In order to elevate the expression level of gene encoding two-pore potassium channel OsTPKa, the stable agrobacterium mediated transformation of plants was performed. The elevation of OsTPKa expression level in transformed plants leads to improvement of salt and drought tolerance of transformed plants was found during experiments. In conditions of potassium deficiency or salt stress the plants with elevated OsTPKa expression level exhibit better growth rates, decreasing of sodium accumulation in plant tissues.

  17. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  18. Studying the possibility of isolating and characterizing genes responsible for salinity tolerance in some gamma irradiation-induced potato mutants

    International Nuclear Information System (INIS)

    Al-Daoude, A.; Al-Safadi, B.; Al-Nabulsi, I.; Mir Ali, N.

    2008-07-01

    Random Amplified Polymorphic DNA(RAPD) and Inter-Simple Sequence Repeat (ISSR) were deployed to study the genetic relatedness of nineteen different potato lines previously obtained by gamma irradiation and believed to be salt tolerant. The lines which belong to three different cultivars, Spunta, Draga and Diamant were confirmed to be salt tolerant in comparison with their controls. Twenty seven random primers and twenty five ISSR oligonucleotides were utilized to determine the genetic relatedness and to amplify DNA fragments involved in salt tolerance. ISSR clustering and Percent disagreement values (PDV) resembled that of the RAPDs for all studied lines. Consequently, RAPD and ISSR were reliable and could be used to determine the genetic relatedness of potato lines belonging to the same cultivar. Moreover, twenty unique DNA fragments were amplified using RAPD or ISSR in the tolerant mutant lines but not in their respective controls. The fragments were gel excised, reamplified and cloned in a cloning vector using QIAGEN A-addition and PCR cloning Kits. However, Blast data base search with the fragments sequences did not reveal any significant homology indicating the weakness of both the RAPD and ISSR techniques in identifying specific targets.(Authors)

  19. Expression of genes involved in lipid metabolism in men with impaired glucose tolerance : impact of insulin stimulation and weight loss

    NARCIS (Netherlands)

    Konings, E.; Corpeleijn, E.; Bouwman, F.G.; Mariman, E.C.; Blaak, E.E.

    2010-01-01

    Background: The impaired glucose tolerance (IGT) state is characterized by insulin resistance. Disturbances in fatty acid (FA) metabolism may underlie this reduced insulin sensitivity. The aim of this study was to investigate whether the prediabetic state is accompanied by changes in the expression

  20. Elimination of aluminum adjuvants.

    Science.gov (United States)

    Hem, Stanley L

    2002-05-31

    In vitro dissolution experiments although perhaps not at typical body concentrations and temperatures demonstrated that the alpha-hydroxycarboxylic acids present in interstitial fluid (citric acid, lactic acid, and malic acid) are capable of dissolving aluminum-containing adjuvants. Amorphous aluminum phosphate adjuvant dissolved more rapidly than crystalline aluminum hydroxide adjuvant. Intramuscular administration in New Zealand White rabbits of aluminum phosphate and aluminum hydroxide adjuvants, which were labelled with 26Al, revealed that 26Al was present in the first blood sample (1 h) for both adjuvants. The area under the blood level curve for 28 days indicated that three times more aluminum was absorbed from aluminum phosphate adjuvant than aluminum hydroxide adjuvant. In vivo studies using 26Al-labelled adjuvants are relatively safe because accelerator mass spectrometry (AMS) can quantify quantities of 26Al as small as 10(-17) g. A similar study in humans would require a whole-body exposure of 0.7 microSv per year compared to the natural background exposure of 3000 microSv per year. The in vitro dissolution and in vivo absorption studies indicate that aluminum-containing adjuvants which are administered intramuscularly are dissolved by alpha-hydroxycarboxylic acids in interstitial fluid, absorbed into the blood, distributed to tissues, and eliminated in the urine.

  1. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance.

    Science.gov (United States)

    Dubrovina, Alexandra S; Kiselev, Konstantin V; Khristenko, Valeriya S; Aleynova, Olga A

    2015-08-01

    Abiotic stresses, such as drought, salinity, cold and heat, are major environmental factors that limit crop productivity. Vitis amurensis Rupr. is a wild grapevine species displaying a high level of abiotic and biotic stress resistance. Protein kinases, including Ca(2+)-dependent protein kinases (CDPKs), are known to mediate plant acclimation to various environmental changes. However, the functions of most grape CDPKs have not been clarified. A recent CDPK gene expression analysis revealed that 10 CDPK genes of V. amurensis were up-regulated under different abiotic stress treatments. The expression of the VaCPK20 gene was significantly up-regulated under low and high temperature stress in V. amurensis. In the current study, the effects of overexpressing the VaCPK20 gene in callus cell lines of V. amurensis and transgenic plants of A. thaliana on their responses to abiotic stresses were investigated. Transgenic Arabidopsis overexpressing the VaCPK20 gene showed higher tolerance to freezing and drought stresses, and transgenic grape cell cultures overexpressing the VaCPK20 gene showed higher resistance to cold stress in comparison with the controls transformed by the "empty" vector. Heat and salt stress resistance of the transgenic V. amurensis calli and A. thaliana was comparable to that of the wild type and vector controls. Overexpression of the VaCPK20 gene increased the expression of stress-responsive genes, such as COR47, NHX1, KIN1, or ABF3, in the transgenic Arabidopsis plants under non-stress conditions, after freezing, and under drought stress. The results imply that VaCPK20 may act as a regulatory factor involved in cold and drought stress response pathways. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco.

    Science.gov (United States)

    Sun, Xiudong; Lian, Haifeng; Liu, Xingchen; Zhou, Shumei; Liu, Shiqi

    2017-05-01

    To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.

  3. FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene.

    Science.gov (United States)

    Gong, Xiaoqing; Zhang, Jingyan; Hu, Jianbing; Wang, Wei; Wu, Hao; Zhang, Qinghua; Liu, Ji-Hong

    2015-11-01

    WRKY comprises a large family of transcription factors in plants, but most WRKY members are still poorly understood. In this study, we report functional characterization of a Group III WRKY gene (FcWRKY70) from Fortunella crassifolia. FcWRKY70 was greatly induced by drought and abscisic acid, but slightly or negligibly by salt and cold. Overexpression of FcWRKY70 in tobacco (Nicotiana nudicaulis) and lemon (Citrus lemon) conferred enhanced tolerance to dehydration and drought stresses. Transgenic tobacco and lemon exhibited higher expression levels of ADC (arginine decarboxylase), and accumulated larger amount of putrescine in comparison with wild type (WT). Treatment with D-arginine, an inhibitor of ADC, caused transgenic tobacco plants more sensitive to dehydration. Knock-down of FcWRKY70 in kumquat down-regulated ADC abundance and decreased putrescine level, accompanied by compromised dehydration tolerance. The promoter region of FcADC contained two W-box elements, which were shown to be interacted with FcWRKY70. Taken together, our data demonstrated that FcWRKY70 functions in drought tolerance by, at least partly, promoting production of putrescine via regulating ADC expression. © 2015 John Wiley & Sons Ltd.

  4. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew.

    Directory of Open Access Journals (Sweden)

    Chloé Marchive

    Full Text Available Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.

  5. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    Science.gov (United States)

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will

  6. QTLs and Potential Candidate Genes for Heat Stress Tolerance Identified from the Mapping Populations Specifically Segregating for Fv/Fm in Wheat

    Directory of Open Access Journals (Sweden)

    Dew Kumari Sharma

    2017-09-01

    Full Text Available Despite the fact that Fv/Fm (maximum quantum efficiency of photosystem II is the most widely used parameter for a rapid non-destructive measure of stress detection in plants, there are barely any studies on the genetic understanding of this trait under heat stress. Our aim was to identify quantitative trait locus (QTL and the potential candidate genes linked to Fv/Fm for improved photosynthesis under heat stress in wheat (Triticum aestivum L.. Three bi-parental F2 mapping populations were generated by crossing three heat tolerant male parents (origin: Afghanistan and Pakistan selected for high Fv/Fm with a common heat susceptible female parent (origin: Germany selected for lowest Fv/Fm out of a pool of 1274 wheat cultivars of diverse geographic origin. Parents together with 140 F2 individuals in each population were phenotyped by Fv/Fm under heat stress (40°C for 3 days around anthesis. The Fv/Fm decreased by 6.3% in the susceptible parent, 1–2.5% in the tolerant parents and intermediately 4–6% in the mapping populations indicating a clear segregation for the trait. The three populations were genotyped with 34,955 DArTseq and 27 simple sequence repeat markers, out of which ca. 1800 polymorphic markers mapped to 27 linkage groups covering all the 21 chromosomes with a total genome length of about 5000 cM. Inclusive composite interval mapping resulted in the identification of one significant and heat-stress driven QTL in each population on day 3 of the heat treatment, two of which were located on chromosome 3B and one on chromosome 1D. These QTLs explained about 13–35% of the phenotypic variation for Fv/Fm with an additive effect of 0.002–0.003 with the positive allele for Fv/Fm originating from the heat tolerant parents. Approximate physical localization of these three QTLs revealed the presence of 12 potential candidate genes having a direct role in photosynthesis and/or heat tolerance. Besides prov