WorldWideScience

Sample records for aluminum oxide films

  1. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    OpenAIRE

    Sun, Jie; Sun, Yingchun

    2007-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system pH value played an important role in this experiment. The growth rate is 12 nm/h at room temperature. Post-growth annealing not only densifies and purifies the films, but results in film crystallization a...

  2. Electrodeposition of Vanadium Oxide/Manganese Oxide Hybrid Thin Films on Nanostructured Aluminum Substrates

    OpenAIRE

    Rehnlund, David; Valvo, Mario; Edström, Kristina; Nyholm, Leif

    2014-01-01

    Electrodeposition of functional coatings on aluminum electrodes in aqueous solutions often is impeded by the corrosion of aluminum. In the present work it is demonstrated that electrodeposition of vanadium, oxide films on nanostructured aluminum substrates can be achieved in acidic electrolytes employing a novel strategy in which a thin interspacing layer of manganese oxide is first electrodeposited on aluminum microrod substrates. Such deposited films, which were studied using SEM, XPS, XRD,...

  3. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    Institute of Scientific and Technical Information of China (English)

    SUN,Jie(孙捷); SUN,Ying-Chun(孙迎春)

    2004-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al2(SO4)3]=0.0837 mol·L-1, [NaHCO3]=0.214 mol·L-1, 15 ℃. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well, Excellent quality of A12O3 films in this work is supported by electron dispersion spectroscopy,Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.

  4. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  5. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    Science.gov (United States)

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures. PMID:27070754

  6. Comparative study of the growth of sputtered aluminum oxide films on organic and inorganic substrates

    OpenAIRE

    Sellner, Stefan; Gerlach, Alexander; Kowarik, Stefan; Schreiber, Frank; Dosch, Helmut; Meyer, Stephan; Pflaum, Jens; Ulbricht, Gerhard

    2007-01-01

    We present a comparative study of the growth of the technologically highly relevant gate dielectric and encapsulation material aluminum oxide in inorganic and also organic heterostructures. Atomic force microscopy studies indicate strong similarities in the surface morphology of aluminum oxide films grown on these chemically different substrates. In addition, from X-ray reflectivity measurements we extract the roughness exponent \\beta of aluminum oxide growth on both substrates. By renormalis...

  7. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  8. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongya; Dong, Guangneng, E-mail: donggn@mail.xjtu.edu.cn; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-30

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm{sup 2} for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  9. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Science.gov (United States)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  10. A method to study the history of a double oxide film defect in liquid aluminum alloys

    Science.gov (United States)

    Raiszadeh, R.; Griffiths, W. D.

    2006-12-01

    Entrained double oxide films have been held responsible for reductions in mechanical properties in aluminum casting alloys. However, their behavior in the liquid metal, once formed, has not been studied directly. It has been proposed that the atmosphere entrapped in the double oxide film defect will continue to react with the liquid metal surrounding it, perhaps leading to its elimination as a significant defect. A silicon-nitride rod with a hole in one end was plunged into liquid aluminum to hold a known volume of air in contact with the liquid metal at a constant temperature. The change in the air volume with time was recorded by real-time X-ray radiography to determine the reaction rates of the trapped atmosphere with the liquid aluminum, creating a model for the behavior of an entrained double oxide film defect. The results from this experiment showed that first oxygen, and then nitrogen, was consumed by the aluminum alloy, to form aluminum oxide and aluminum nitride, respectively. The effect of adding different elements to the liquid aluminum and the effect of different hydrogen contents were also studied.

  11. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    Science.gov (United States)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  12. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  13. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    International Nuclear Information System (INIS)

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance gm change, threshold voltage VT change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature

  14. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  15. Electromechanical Breakdown of Barrier-Type Anodized Aluminum Oxide Thin Films Under High Electric Field Conditions

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Yao, Xi

    2016-02-01

    Barrier-type anodized aluminum oxide (AAO) thin films were formed on a polished aluminum substrate via electrochemical anodization in 0.1 mol/L aqueous solution of ammonium pentaborate. Electromechanical breakdown occurred under high electric field conditions as a result of the accumulation of mechanical stress in the film-substrate system by subjecting it to rapid thermal treatment. Before the breakdown event, the electricity of the films was transported in a highly nonlinear way. Immediately after the breakdown event, dramatic cracking of the films occurred, and the cracks expanded quickly to form a mesh-like dendrite network. The breakdown strength was significantly reduced because of the electromechanical coupling effect, and was only 34% of the self-healing breakdown strength of the AAO film.

  16. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric

    KAUST Repository

    Nayak, Pradipta K.

    2013-07-18

    We report high performance solution-deposited indium oxide thin film transistors with field-effect mobility of 127 cm2/Vs and an Ion/Ioff ratio of 106. This excellent performance is achieved by controlling the hydroxyl group content in chemically derived aluminum oxide (AlOx) thin-film dielectrics. The AlOx films annealed in the temperature range of 250–350 °C showed higher amount of Al-OH groups compared to the films annealed at 500 °C, and correspondingly higher mobility. It is proposed that the presence of Al-OH groups at the AlOx surface facilitates unintentional Al-doping and efficient oxidation of the indium oxide channel layer, leading to improved device performance.

  17. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  18. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  19. In-Line Sputtered Gallium and Aluminum Codoped Zinc Oxide Films for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available Gallium and aluminum codoped zinc oxide (GAZO films were deposited at different temperatures by in-line sputtering. Aluminum is thermally unstable compared to other elements in GAZO films. The grains of GAZO films increase with deposition temperature. Coalescence between grains was observed for GAZO films deposited at 250°C. The deposition temperature exhibits positive influence on crystallinity, and electrical and optical properties of GAZO films. The carrier concentration and mobility of GAZO films increase, while the electrical resistivity of GAZO films decreases with deposition temperature. The average optical transmittance of GAZO films rises with deposition temperature. In-line sputtering demonstrates a potential method with simplicity, mass production, and large-area deposition to produce GAZO films with good electrical and optical quality. The electrical resistivity of 4.3 × 10−4 Ω cm and the average optical transmittance in the visible range from 400 to 800 nm of 92% can be obtained for GAZO films deposited at 250°C. The hybrid organic solar cells (OSC were fabricated on GAZO-coated glass substrates. Blended poly(3-hexylthiophene (P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM were the photoactive materials in OSC. The power conversion efficiency of OSC is 0.65% for the OSC with the 250°C deposited GAZO electrode.

  20. Modelling the growth process of porous aluminum oxide film during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  1. Synthesis and properties of iridescent Zn-containing anodic aluminum oxide films

    International Nuclear Information System (INIS)

    A simple method of fabricating Zn-containing anodic aluminum oxide films for multifunctional anticounterfeit technology is reported. The resulting membranes were characterized with UV–vis illumination studies, natural light illumination color experiments, and electron microscopy analysis. Deposition of Zn in the nanopore region can enhance the color saturation of the thin alumina film with different colors dramatically. Both the anodization time and etching time have great influence on the structural color. The mechanisms for the emergence of this phenomenon are discussed and theoretical analysis further demonstrates the experimental results. - Highlights: • Iridescent PAA@Zn nanocomposite films were successfully fabricated. • A simple organics-assisted method is applied to making a series of fancy and multicolor patterns. • The color varies with the angle of incidence of the light used to view the film as is expected with Bragg–Snell formula. • Such colored films could be used in multifunctional anti-counterfeiting applications

  2. Studies of aluminum oxide thin films deposited by laser ablation technique

    Science.gov (United States)

    Płóciennik, P.; Guichaoua, D.; Korcala, A.; Zawadzka, A.

    2016-06-01

    This paper presents the structural and optical investigations of the aluminum oxide nanocrystalline thin films. Investigated films were fabricated by laser ablation technique in high vacuum onto quartz substrates. The films were deposited at two different temperatures of the substrates equal to room temperature and 900 K. X-ray Diffraction spectra proved nanocrystalline character and the corundum phase of the film regardless on the substrate temperature during the deposition process. Values of the refractive indices, extinction and absorption coefficients were calculated by using Transmission and Reflection Spectroscopy in the UV-VIS-NIR range of the wavelength. Coupling Prism Method was used for films thickness estimations. Experimental measurements and theoretical calculations of the Third Harmonic Generation were also reported. Obtained results show that the lattice strain may affect obtained values of the third order nonlinear optical susceptibility.

  3. Dissolution of Oxide Films on Aluminum in Near Neutral Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, Hugh S.; Xu, Feng; Jeffcoate, Carrol S.

    1999-10-17

    Simple linear potentiodynamic cycling measurements have been made on abraded pure Al in borate, chromate, phosphate, sulfate and nitrate solutions. In borate and chromate solutions the currents continued to decrease with each subsequent cycle. In phosphate dissolution of the oxide takes place producing repetitive repeat curves. The current variations in borate and chromate were simulated using a high field conduction oxide growth model. Including oxide dissolution in the model simulated the phosphate behavior. Results in sulfate and nitrate solutions were more complex. The behavior in the sulfate solution was attributed to effects of sulfate the oxide/solution interface.

  4. Rayleigh instability in polymer thin films coated in the nanopores of anodic aluminum oxide templates.

    Science.gov (United States)

    Tsai, Chia-Chan; Chen, Jiun-Tai

    2014-01-14

    We study the Rayleigh instability of polystyrene (PS) thin films coated in the nanopores of anodic aluminum oxide (AAO) templates. After thermal annealing, the surface of the PS thin films undulates and the nanostructures transform from nanotubes to Rayleigh-instability-induced nanostructures (short nanorods with encapsulated air bubbles). With longer annealing times, the nanostructures further transform to nanorods with longer lengths. PS samples with two different molecular weights (24 and 100 kg/mol) are used, and their instability transformation processes are compared. The morphology diagrams of the nanostructures at different stages are also constructed to elucidate the mechanism of the morphology transformation. PMID:24380368

  5. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-12-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing.

  6. Chemical Vapor Deposition of Aluminum Oxide Thin Films

    Science.gov (United States)

    Vohs, Jason K.; Bentz, Amy; Eleamos, Krystal; Poole, John; Fahlman, Bradley D.

    2010-01-01

    Chemical vapor deposition (CVD) is a process routinely used to produce thin films of materials via decomposition of volatile precursor molecules. Unfortunately, the equipment required for a conventional CVD experiment is not practical or affordable for many undergraduate chemistry laboratories, especially at smaller institutions. In an effort to…

  7. Doping optimization and surface modification of aluminum doped zinc oxide films as transparent conductive coating

    International Nuclear Information System (INIS)

    Aluminum doped zinc oxide (ZnO:Al) films were grown using spray pyrolysis technique. Effect of doping on structural, electrical, optical and morphological properties was studied. Aluminum doping improved the prominence of [002] growth while maintaining the grain size ∼ 48 nm. Using an intermediate Al/Zn atomic ratio in precursor (1.5:100), we could achieve a low resistivity ρ ∼ 7 × 10−4 Ωcm. These films possessed an average visible transmittance ∼ 88%, an optical gap ∼ 3.7 eV and plasma wavelength at 1.87 μm. A simultaneous use of methanol and iso-propanol in the precursor lead to a moderate surface roughness ∼ 12 nm. The films were surface modified using wet chemical etching in diluted hydrochloric acid, for varied time intervals (5 s–15 s) and etchant concentrations (0.125%–1%). The etching experiments could be used to know the building of the film as also to modify the surface for desired optical and morphological properties. - Highlights: ► High conductivity ZnO:Al films prepared by spray pyrolysis. ► Physical properties very competitive as transparent conductor. ► Co-use of methanol and iso-propanol made smoother but compact films. ► Wet chemical etching helped to modify the surface and understand the growth.

  8. Investigation of sub-nm ALD aluminum oxide films by plasma assisted etch-through

    International Nuclear Information System (INIS)

    A new technique, called 'plasma defect etching' (PDE), is proposed for studying the continuity of ultra-thin layers. The PDE technique utilizes the extremely high selectivity in the deep reactive ion etching (DRIE) process, thus achieving visualization of the defects in the layer, because etching of substrate happens only through voids and microholes of the layer. The etch profile generally reproduces the non-continuous structure of the layer. This PDE technique was applied for the investigation of thin, sub-nm aluminum oxide films grown on silicon wafers by atomic layer deposition (ALD) technique. Silicon substrate was etched by SF6 at cryogenic temperatures in an inductively coupled plasma (ICP) reactor, exploiting the extremely high ratio of silicon/aluminum oxide etch rates in fluorine plasmas. The surface morphology was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PDE method shows that in the case of water as an oxidation precursor, separate islands of aluminum oxide form during the five first ALD cycles. On the other hand, the use of ozone precursor helps to oxidize silicon surface and facilitates growth of a uniform layer

  9. The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luka, G., E-mail: gluka@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Wachnicki, L.; Witkowski, B.S.; Krajewski, T.A.; Jakiela, R.; Guziewicz, E. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland)

    2011-02-25

    We investigated the aluminum distribution in aluminum-doped zinc oxide films grown by atomic layer deposition. Surface morphology, structure, composition and electrical properties of obtained films were studied. For the aluminum content less than 2 at.%, a periodicity of Al distribution along the layer depth was observed. This periodicity diminished significantly after annealing the samples in nitrogen atmosphere at 300 deg. C. For the Al content higher than 2 at.%, its distribution in ZnO:Al films was uniform within the depth measurement accuracy of {approx}5-10 nm.

  10. Substrate surface polariton splitting due to thin zinc oxide and aluminum nitride films presence

    International Nuclear Information System (INIS)

    Surface polariton (SP) is the non-radiative interface electromagnetic mode, propagating along the interface between two media, if one of them is absorbing (metal, semiconductor or dielectric with the strong absorption bands) and exponentially decaying out of the interface. The introduction of a transition layer at this interface results in the shift and broadening of SP. This effect can be used to obtain film parameters (thickness and optical constants) in the region of SP existence. Zinc oxide (ZnO) films (100–300 nm thick) have been prepared on the LiF and CaF2 substrates and aluminum nitride films (40 and 400 nm thick) have been prepared on sapphire substrates. The SP spectra have been measured by attenuated total reflection (ATR) technique. IFS66v (BRUKER) infrared Fourier-transform spectrometer was used for ATR and near normal incidence external reflection spectral measurements. Angular dependencies of the absorption bands positions in the ATR spectra give the dispersion of SP. The measured SP dispersion is compared with one calculated using the film parameters obtained by dispersion analysis of the external reflectivity spectra. The splitting of the dispersion curves of substrate SP was found. It is due to the resonance interaction of substrate SP with the film optical phonons. This splitting is proportional to the square root of the film thickness. For ZnO films on CaF2 “long range” SPs were observed. These effects allow estimate film complex dielectric function in the region under consideration.

  11. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar oC in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10-4Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm2

  12. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances

    Science.gov (United States)

    Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong

    2015-02-01

    Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.

  13. Tribological Influence of Kinematic Oil Viscosity Impregnated in Nano pores of Anodic Aluminum Oxide Film

    International Nuclear Information System (INIS)

    The friction behavior of a 60-μm-thick anodic aluminum oxide (AEU) film having cylindrical nano pores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 CT. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of thromboembolic reaction and transfer of counterpart material

  14. Application of a palladium hexacyanoferrate film-modified aluminum electrode to electrocatalytic oxidation of hydrazine.

    Science.gov (United States)

    Razmi, Habib; Azadbakht, Azadeh; Sadr, Moayad Hossaini

    2005-11-01

    A palladium hexacyanoferrate (PdHCF) film as an electrocatalytic material was obtained at an aluminum (Al) electrode by a simple electroless dipping method. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry and rotating disk electrode voltammetry techniques. A calibration graph obtained for the hydrazine consisted of two segments (localized at concentration ranges 0.39-10 and 20-75 mM). The rate constant k and transfer coefficient alpha for the catalytic reaction and the diffusion coefficient of hydrazine in the solution D, were found to be 3.11 x 10(3) M(-1) s(-1), 0.52 and 8.03 x 10(-6) cm2 s(-1) respectively. The modified electrode was used to amperometric determination of hydrazine in photographic developer. The interference of ascorbic acid and thiosulfate were investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level of stability during electrochemical experiments, making it particularly suitable for analytical purposes. PMID:16317900

  15. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M. Morales-Masis

    2014-09-01

    Full Text Available Improving the conductivity of earth-abundant transparent conductive oxides (TCOs remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  16. The Electrical and Mechanical Properties of Porous Anodic 6061-T6 Aluminum Alloy Oxide Film

    OpenAIRE

    Tsung-Chieh Cheng; Chu-Chiang Chou

    2015-01-01

    The properties of the growth of the 6061-T6 aluminum alloy oxide were studied using sulfuric acid anodization. The parameters for the manufacturing process include electrolyte categories, electrolyte concentration, and operating voltages. The results showed that the aluminum oxides obtained by anodization process are mainly amorphous structure and the anodic current density is an important factor affecting the rate of response for oxygen and aluminum ions in barrier. In this experiment, polis...

  17. Analysis of multilayered, nitrogen-doped aluminum oxide and hafnium oxide dielectric films for wide-temperature capacitor applications

    International Nuclear Information System (INIS)

    Capacitors with stable dielectric properties across a wide temperature range are a vital component in many power conditioning applications. High breakdown strength and low loss are also important for many applications. In this study, the dielectric properties of multilayer nitrogen-doped aluminum oxide and hafnium oxide films were characterized, comparing their properties to single layer films. The films were found to be stable from − 50 to 200 °C and from 20 Hz to 1 MHz. An order of magnitude decrease in leakage current was observed for the bilayer films. Breakdown strength for the multilayer films increased up to 75%. This concurs with the hypothesis that the addition of dielectric interfaces provides area to trap and dissipate runaway charge moving through the dielectric, thus lowering leakage current and increasing the breakdown strength. - Highlights: • Multilayer dielectric had stable dielectric properties for a wide temperature range. • Leakage current decreased an order of magnitude with layered dielectrics. • Breakdown strength increase of up to 75% was observed with layered dielectrics

  18. Effect of Holding Time Before Solidification on Double-Oxide Film Defects and Mechanical Properties of Aluminum Alloys

    Science.gov (United States)

    El-Sayed, Mahmoud Ahmed; Salem, Hanadi A. G.; Kandeil, Abdelrazek Youssef; Griffiths, W. D.

    2011-12-01

    Double-oxide films (bifilms) have been held responsible for the variability in mechanical properties of aluminum castings. It has been suggested that the air entrapped inside a bifilm can react with the surrounding melt, leading to its consumption, which might improve the mechanical properties of the castings. In this work the effect of holding the melt before solidification on the distribution of mechanical properties, and by implication on entrained double oxide films, was investigated for several different aluminum alloys. The Weibull moduli of plate castings were determined under tensile conditions, and their fracture surfaces were examined for evidence of oxide films. The results suggested the occurrence of two competing mechanisms during the holding treatment: (1) the consumption of air inside the bifilms by reaction with the surrounding molten metal that may lead to improvements in mechanical properties and (2) the accompanying diffusion of hydrogen into the bifilms, which would be expected to have a deleterious effect on properties.

  19. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  20. Atomic layer deposited lithium aluminum oxide: (In)dependency of film properties from pulsing sequence

    Energy Technology Data Exchange (ETDEWEB)

    Miikkulainen, Ville, E-mail: ville.miikkulainen@helsinki.fi; Nilsen, Ola; Fjellvåg, Helmer [Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1126 Blindern, NO-0318 Oslo (Norway); Li, Han; King, Sean W. [Intel Corporation, 5200 NE Elam Young Parkway, Hillsboro, Oregon 97124 (United States); Laitinen, Mikko; Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä (Finland)

    2015-01-01

    Atomic layer deposition (ALD) holds markedly high potential of becoming the enabling method for achieving the three-dimensional all-solid-state thin-film lithium ion battery (LiB). One of the most crucial components in such a battery is the electrolyte that needs to hold both low electronic conductivity and at least fair lithium ion conductivity being at the same time pinhole free. To obtain these desired properties in an electrolyte film, one necessarily has to have a good control over the elemental composition of the deposited material. The present study reports on the properties of ALD lithium aluminum oxide (Li{sub x}Al{sub y}O{sub z}) thin films. In addition to LiB electrolyte applications, Li{sub x}Al{sub y}O{sub z} is also a candidate low dielectric constant (low-k) etch stop and diffusion barrier material in nanoelectronics applications. The Li{sub x}Al{sub y}O{sub z} films were deposited employing trimethylaluminum-O{sub 3} and lithium tert-butoxide-H{sub 2}O for Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, respectively. The composition was aimed to be controlled by varying the pulsing ratio of those two binary oxide ALD cycles. The films were characterized by several methods for composition, crystallinity and phase, electrical properties, hardness, porosity, and chemical environment. Regardless of the applied pulsing ratio of Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, all the studied ALD Li{sub x}Al{sub y}O{sub z} films of 200 and 400 nm in thickness were polycrystalline in the orthorhombic β-LiAlO{sub 2} phase and also very similar to each other with respect to composition and other studied properties. The results are discussed in the context of both fundamental ALD chemistry and applicability of the films as thin-film LiB electrolytes and low-k etch stop and diffusion barriers.

  1. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: kiku@eng.hokudai.ac.jp; Sakairi, Masatoshi [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, Hideaki [Asahikawa National College of Technology, Syunkohdai, 2-2, 1-6, Asahikawa 071-8142 (Japan)

    2009-11-30

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-{mu}m wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  2. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    International Nuclear Information System (INIS)

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-μm wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  3. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    International Nuclear Information System (INIS)

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al2O3 with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap Eg is derived from Tauc's extrapolation, and Eg increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper

  4. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jian [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Chengwei [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: cwwang@nwnu.edu.cn; Li Yan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-09-01

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al{sub 2}O{sub 3} with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap E{sub g} is derived from Tauc's extrapolation, and E{sub g} increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper.

  5. Microstructural Effects on the Reactivity of Nano-Aluminum/Iodine (V) Oxide Films

    Science.gov (United States)

    Little, Brian; Langhals, Jarred; Emery, Sam; Martinez, Lucas; Welle, Eric; Lindsay, Michael

    2015-06-01

    Recent efforts investigating the self-ignition mechanism of nanoaluminum blended with iodine (V) oxide in the form of powders with and without additives suggests that ignition begins below the decomposition point of either reactant and takes place at the alumina shell surrounding the aluminum nanoparticle. As observed in previous studies of powder composites, microstructural features such as particle morphology are expected to strongly influence properties that govern the combustion behavior of this energetic material (EM). In this study, highly reactive composites containing amorphous and/or crystalline iodine oxide and nano-sized Al was blended with an additive and deposited as films. Physiochemical techniques such as thermal gravimetric analysis, scanning calorimetry, X-ray diffraction, electron microscopy, high-speed imaging, time of arrival data via photodiodes and planar doppler velocimetry were employed to characterize these EMs with emphasis on correlating the reaction rate (burn rate) with inherent microstructural features (porosity, thickness, TMD, etc). This work was a continuation of efforts to probe the self-ignition mechanism of Al-iodine (V) oxide composites.

  6. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    Science.gov (United States)

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors. PMID:21197062

  7. Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties

    International Nuclear Information System (INIS)

    Aluminum doped zinc oxide (AZO) polycrystalline thin films were prepared by sol-gel dip-coating process on optical glass substrates. Zinc acetate solutions of 0.5 M in isopropanol stabilized by diethanolamine and doped with a concentrated solution of aluminum nitrate in ethanol were used. The content of aluminum in the sol was varied from 1 to 3 at.%. Crystalline ZnO thin films were obtained following an annealing process at temperatures between 300 deg. C and 500 deg. C for 1 h. The coatings have been characterized by X-ray diffraction, UV-Visible spectrophotometry, scanning electron microscopy, and electrical resistance measurement. The ZnO:Al thin films are transparent (∼ 90%) in near ultraviolet and visible regions. With the annealing temperature increasing from 300 deg. C to 500 deg. C, the film was oriented more preferentially along the (0 0 2) direction, the grain size of the film increased, the transmittance also became higher and the electrical resistivity decreased. The X-ray diffraction analysis revealed single-phase ZnO hexagonal wurtzite structure. The best conductors were obtained for the AZO films containing 1 at.% of Al, annealed at 500 deg. C, 780 nm film thickness

  8. Sol-gel deposition and plasma treatment of intrinsic, aluminum-doped, and gallium-doped zinc oxide thin films as transparent conductive electrodes

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2015-09-01

    Zinc oxide and aluminum/gallium-doped zinc oxide thin films were deposited via sol-gel spin-coating technique. Employing plasma treatment as alternative to post thermal annealing, we found that the morphologies of these thin films have changed and the sheet resistances have been significantly enhanced. These plasma-treated thin films also show very good optical properties, with transmittance above 90% averaged over the visible wavelength range. Our best aluminum/gallium-doped zinc oxide thin films exhibit sheet resistances (Rs) of ~ 200 Ω/sq and ~ 150 Ω/sq, respectively.

  9. Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films

    Science.gov (United States)

    Andreeva, R.; Stoyanova, E.; Tsanev, A.; Stoychev, D.

    2016-03-01

    It is known that there is special interest in the contemporary investigations on conversion treatment of aluminum aimed at promoting its corrosion stability, which is focused on electrolytes on the basis of salts of metals belonging to the group of rare-earth elements. Their application is especially attractive, as it enables a successful substitution of the presently applied highly efficient, but at the same time toxic Cr6+-containing electrolytes. The present paper presents a study on the influence of the preliminary alkaline activation and acidic de-oxidation of the aluminum surface on the processes of immersion formation of protective cerium oxides films on Al 1050. The results obtained show that their deposition from simple electrolytes (containing only salts of Ce3+ ions) on the Al surface, treated only in alkaline solution, occurs at a higher rate, which leads to preparing thicker oxide films having a better protective ability. In the cases when the formation of oxide films is realized in a complex electrolyte (containing salts of Ce3+ and Cu2+ ions), better results are obtained with respect to the morphology and protective action of cerium oxides film on samples that have been consecutively activated in alkaline solution and deoxidized in acidic solution. Electrochemical investigations were carried out in a model corrosion medium (0.1 M NaCl); it was shown that the cerium protective films, deposited by immersion, have a cathodic character with regard to the aluminum support and inhibit the occurrence of the depolarizing corrosion process -- the reaction of oxygen reduction.

  10. Effect of Aluminum concentration on structural and optical properties of DC reactive magnetron sputtered Zinc Aluminum Oxide thin films for transparent electrode applications

    International Nuclear Information System (INIS)

    Zinc Aluminum Oxide(ZAO) thin films were deposited on glass substrates by DC reactive magnetron sputtering in an Ar+O2 gas mixture using commercial available Zn metal (99.99% purity) and Al (99.99% purity) targets of 2 inch diameter and 4 mm thickness. The films were characterized and the effect of aluminum (Al) concentration (2 at %-6 at %) on the structural and optical properties was studied. The average crystallite size obtained from Scherer formula is in the range of 32-44nm. Microstructural analysis using Scanning Electron Microscope (SEM) supplemented with EDS is carried out to find the grain size as well as to find the composition elemental data of prepared thin films. Optical study is performed to calculate the extinction coefficient (k), absorption coefficient (a), optical band gap (Eg) using transmission spectra obtained using UV-VIS-NIR spectrophotometer. There was widening of optical band gap with increasing aluminum concentration. ZAO film with low resistivity 3.2 × 10−4 cm and high transmittance of 80% is obtained for 3at% doped Al which is crucial for optoelectronic applications.

  11. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  12. Effects of acetic acid on microstructure and electrochemical properties of nano cerium oxide films coated on AA7020-T6 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    H. Hasannejad; T. Shahrabi; M. Aliofkhazraei

    2009-01-01

    Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), crack-flee films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.

  13. Commensurate vortex pinning in Nb films patterned onto anodized aluminum oxide

    International Nuclear Information System (INIS)

    Anodic aluminum oxide templates containing extended arrays of holes with ∼30-nm diameter and approximately 128-nm spacing were sputter-coated with Nb. We find pronounced matching effects in the transport and magnetization measurements beyond 4 kOe. In addition, we observe Little-Parks oscillations of the superconducting critical temperature. We compare the flux pinning in the patterned samples to unpatterned reference samples and find a significant enhancement of the critical current

  14. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  15. Analysis on porous aluminum anodic oxide film formed in Re-OA-H3PO4 solution

    International Nuclear Information System (INIS)

    An anodic porous film on aluminum was prepared in a mixed electrolyte of phosphoric acid and organic acid and cerium salt. The growth, morphology and chemical composition of the film were investigated. The results indicate that the growth of porous layers in this solution undergo three stages during anodizing, as in other conventional solution, while the whole growth rate is nonlinear. This electrolyte is sensitive to anodizing temperature, which affects current density in great degree. SEM indicates the surface morphology of film is strongly dependent on temperature and current density and its cross-section has two distinct oxide layers. Al, O and P are found in the film with different distribution in the two layers with EPMA. However, Ce has been detected on the outer surface with EDAX. XPS analysis on the electron binding energy of the component elements show the chemical composition of oxide film surface are Al2O3, Ce(OH) and some phosphates. The formation mechanics of Ce compound is also deduced

  16. Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization

    International Nuclear Information System (INIS)

    Many conventional anodic aluminum oxide (AAO) templates were performed using two-step direct current anodization (DCA) at low temperature (0–5 °C) to avoid dissolution effects. This process is relatively complex. Pulse anodization (PA) by switching between high and low voltages has been used to improve wear resistance and corrosion resistance in barrier type anodic oxidation of aluminum or hard anodization for current nanotechnology. However, there are only few investigations of AAO by hybrid pulse anodization (HPA) with normal-positive and small-negative voltages, especially for the one-step anodization, to shorten the running time. In this article, the effects of temperature and voltage modes (DCA vs. HPA) on one-step anodization have been investigated. The porous AAO films were fabricated using one-step anodization in 0.5 M oxalic acid in different voltage modes including the HPA and DCA and the environment temperature were varied at 5–15 °C. The morphology, pore size and oxide thickness of AAO films were characterized by high resolution field emission scanning electron microscope. The pore size distribution and circularity of AAO films can be quantitatively analyzed by image processing of SEM. The pore distribution uniformity and circularity of AAO by HPA is much better than DCA due to its effective cooling at relatively high temperatures. On the other hand, increasing environment temperature can increase the growth rate and enlarge the pore size of AAO films. The results of one-step anodization by hybrid pulse could promote the AAO quality and provide a simple and convenient fabrication compared to DCA.

  17. Investigations on opto-electronical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films annealed at different temperatures

    International Nuclear Information System (INIS)

    Highlights: ► ZAO films were prepared by DC reactive magnetron sputtering method by two individual high purity metallic targets of Zn and Al. ► Sputtering deposition conditions were optimized to exhibit a good surface roughness for light scattering and low resistivities. ► A low resistivity of 2.18 × 10−4 Ω cm and mobility of 46 cm2 V−1 s−1 obtained for ZAO film annealed at 400 °C. - Abstract: In the present study transparent conducting zinc aluminum oxide (ZAO) thin films were prepared by DC reactive magnetron sputtering technique. The films were deposited on glass substrates at 200 °C and annealed from 200 °C to 500 °C. XRD patterns of ZAO films shows (0 0 2) diffraction peak of hexagonal wurtzite, meaning that the films have c-axis orientation perpendicular to the substrate. Crystallite size was calculated from X-ray diffraction (XRD) spectra using the Scherrer formula. The surface morphology of the films was observed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The electrical conductivity increases with increase of annealing temperature. The activation energies of conduction were obtained from an Arrhenius equation. The best characteristics of ZAO films have been obtained for the films annealed at 400 °C with an average transmittance of 88% and a minimum resistivity of 2.2 × 10−4 Ω cm. The optical band gap, optical constants, and electron concentrations of ZAO films are obtained from UV–vis–IR spectrophotometer data.

  18. Investigations on opto-electronical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films annealed at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502, A.P. (India); Department of Physics, S.K. University, Anantapur 515003, A.P. (India); Rao, T. Subba [Department of Physics, S.K. University, Anantapur 515003, A.P. (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer ZAO films were prepared by DC reactive magnetron sputtering method by two individual high purity metallic targets of Zn and Al. Black-Right-Pointing-Pointer Sputtering deposition conditions were optimized to exhibit a good surface roughness for light scattering and low resistivities. Black-Right-Pointing-Pointer A low resistivity of 2.18 Multiplication-Sign 10{sup -4} {Omega} cm and mobility of 46 cm{sup 2} V{sup -1} s{sup -1} obtained for ZAO film annealed at 400 Degree-Sign C. - Abstract: In the present study transparent conducting zinc aluminum oxide (ZAO) thin films were prepared by DC reactive magnetron sputtering technique. The films were deposited on glass substrates at 200 Degree-Sign C and annealed from 200 Degree-Sign C to 500 Degree-Sign C. XRD patterns of ZAO films shows (0 0 2) diffraction peak of hexagonal wurtzite, meaning that the films have c-axis orientation perpendicular to the substrate. Crystallite size was calculated from X-ray diffraction (XRD) spectra using the Scherrer formula. The surface morphology of the films was observed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The electrical conductivity increases with increase of annealing temperature. The activation energies of conduction were obtained from an Arrhenius equation. The best characteristics of ZAO films have been obtained for the films annealed at 400 Degree-Sign C with an average transmittance of 88% and a minimum resistivity of 2.2 Multiplication-Sign 10{sup -4} {Omega} cm. The optical band gap, optical constants, and electron concentrations of ZAO films are obtained from UV-vis-IR spectrophotometer data.

  19. Water electrolysis-induced optical degradation of aluminum-doped zinc oxide films

    International Nuclear Information System (INIS)

    A type of optical degradation of aluminium-doped zinc oxide (AZO) films due to water electrolysis-induced reduction reaction was reported. An experiment was designed in which AZO films were immersed in a 0.01 M NaOH aqueous solution as cathode to electrolyze water. Significant decreases in the optical transmission of the treated samples were observed. Studies by X-ray diffraction and scanning electron microscope showed that the degradation of AZO films was due to compositional and structural changes with the treatment of water electrolysis, which resulted from the reduction reaction of atomic hydrogen generated in the electrolysis of water. This optical degradation reflects the stability degradation of AZO films under water electrolysis environment

  20. Electrode patterning and annealing processes of aluminum-doped zinc oxide thin films using a UV laser system

    Science.gov (United States)

    Hsiao, Wen-Tse; Tseng, Shih-Feng; Huang, Kuo-Cheng; Chiang, Donyau

    2013-01-01

    This study presents the hybrid processing (patterning and annealing) of aluminum-doped zinc oxide (AZO) films in a one-step process using a diode-pumped-solid-state (DPSS) ultraviolet (UV) laser system. The focused laser beam had a diameter of 30 μm and the positive defocused laser beam had a diameter of 1 mm. Both beams were adjusted using a UV laser-processing system. AZO films were deposited on Corning Eagle 2000® optical glass sheets with a thickness of 0.7 mm using a sputtering method. The deposited films were approximately 200 nm. The optoelectronic properties of machined (patterning and annealing) AZO films depend on the laser pulse frequency and galvanometer scanning speed. The surface morphology, roughness, optical transmittance, and resistivity of the films after the laser patterning and annealing processes were measured using a three-dimensional confocal laser scanning microscope, a field emission scanning electron microscope (FE-SEM), a spectrophotometer, and a four-point probe instrument, respectively. Experimental results indicate that the ablation depth increased as the pulse repetition frequency increased. The ablation depth also decreased as the galvanometric scanning speed increased. The transmittance spectra of the film changes slightly after laser annealing, and the average transmittance in the visible region is approximately 83%. All resistivity values of laser-patterned and annealed AZO films decreased significantly. The structural properties grain size was calculated firm the X-ray diffraction (XRD) spectra using the Scherrer equation that increased from 7.4 nm to 12 nm as the annealing scanning speed decreased from 800 mm/s to 400 mm/s. The root mean square (RMS) values of annealed AZO films treated with a laser scanning speed of 500 mm/s with a pulse repetition frequency of 40 kHz, 55 kHz, and 70 kHz were 1.1 nm, 1.2 nm, and 1.8 nm, respectively.

  1. Aluminum oxide thin films deposited on silicon substrates from Al(NO{sub 3}){sub 3} and an organic solvent by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Frutis, M.; Alejos, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694 Col. Irrigacion, Del. Miguel Hidalgo C.P. 11500, Mexico DF (Mexico); Guzman-Mendoza, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694 Col. Irrigacion, Del. Miguel Hidalgo C.P. 11500, Mexico DF (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Del. Coyoacan C.P. 04510, Mexico DF (Mexico); Garcia-Hipolito, M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Del. Coyoacan C.P. 04510, Mexico DF (Mexico); Falcony, C. [Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Mexico DF (Mexico)

    2003-09-01

    Aluminum oxide thin films were deposited on silicon substrates at temperatures in the range from 500 to 650 C, from Al(NO{sub 3}){sub 3} dissolved in N,N-Dimethylformamide and using the spray pyrolysis technique. The films of aluminum oxide resulted stoichiometric, amorphous and optically transparent in the visible spectrum, with a refractive index close to 1.66 when a 0.2 molar solution of Al(NO{sub 3}){sub 3} was used. The films as deposited had a surface roughness as low as 3.8 nm and were almost free of Al-OH bonds, depending on the experimental deposition conditions. The best films were incorporated in a Metal-Oxide-Semiconductor structure and were able to stand electric fields up to 2 MV/cm without destructive breakdown and a dielectric constant of 7.95. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Effects of target angle on the properties of aluminum doped zinc oxide films prepared by DC magnetron sputtering for thin film solar cell applications.

    Science.gov (United States)

    Park, Hyeongsik; Iftiquar, S M; Thuy, Trinh Than; Jang, Juyeon; Ahn, Shihyun; Kim, Sunbo; Lee, Jaehyeong; Jung, Junhee; Shin, Chonghoon; Kim, Minbum; Yi, Junsin

    2014-10-01

    An aluminum doped zinc oxide (AZO) films for front contacts of thin film solar cells, in this work, were prepared by DC magnetron sputtering with different target angles. Effects of target angles on the structural and electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. The surface became more irregular with increasing the target angle due to larger grains. The self-surface textured morphology, which is a favorable property as front layer of solar cell, exhibited at target angle of 72.5 degrees. We obtained the films with various opto-electronic properties by controlling target angle from 32.5 degrees to 72.5 degrees. The spectral haze increased substantially with the target angle, whereas the electrical resistivity was increased. The conversion efficiency of amorphous silicon solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density and fill factor, compared to cell with relatively flat AZO films. PMID:25942853

  3. EFFECT OF ANION, PH, AND TEMPERATURE ON THE DISSOLUTION BEHAVIOR OF ALUMINUM OXIDE FILMS

    International Nuclear Information System (INIS)

    The growth and dissolution behavior of oxide film on abraded pure Al has been investigated using cyclic polarization and has been found to be highly dependent on solution chemistry and temperature. The nature of the anions, borate, chromate, phosphate, and sulfate, at pH 3 to 11, and temperatures 0 to 60 C were examined. In near neutral solutions the dissolution behavior was greatly affected by each anion. In borate and chromate solutions at near neutral pH and room temperature, the currents continued to decrease with each subsequent cycle due to oxide thickening. In contrast, a significant rate of oxide dissolution occurred to produce reproducible repetitive curves during subsequent cycles in a phosphate and sulfate. Sulfate also produced a distinctly different mode during high field oxide growth. In increasing acidic (pH and lt; 4) or basic (pH and gt;9) solutions the oxide dissolution rate increased rapidly. The oxide dissolution rate was always enhanced with increasing temperature. At high pH (and gt;9) or elevated temperature (60 C), a current maximum was observed in chromate, due to a diffusion controlled monochromate ion enhanced dissolution reaction at the oxide/solution interface

  4. EFFECT OF ANION, PH, AND TEMPERATURE ON THE DISSOLUTION BEHAVIOR OF ALUMINUM OXIDE FILMS.

    Energy Technology Data Exchange (ETDEWEB)

    LEE,H.; ISAACS,H.S.

    2001-09-02

    The growth and dissolution behavior of oxide film on abraded pure Al has been investigated using cyclic polarization and has been found to be highly dependent on solution chemistry and temperature. The nature of the anions, borate, chromate, phosphate, and sulfate, at pH 3 to 11, and temperatures 0 to 60 C were examined. In near neutral solutions the dissolution behavior was greatly affected by each anion. In borate and chromate solutions at near neutral pH and room temperature, the currents continued to decrease with each subsequent cycle due to oxide thickening. In contrast, a significant rate of oxide dissolution occurred to produce reproducible repetitive curves during subsequent cycles in a phosphate and sulfate. Sulfate also produced a distinctly different mode during high field oxide growth. In increasing acidic (pH < 4) or basic (pH >9) solutions the oxide dissolution rate increased rapidly. The oxide dissolution rate was always enhanced with increasing temperature. At high pH (>9) or elevated temperature (60 C), a current maximum was observed in chromate, due to a diffusion controlled monochromate ion enhanced dissolution reaction at the oxide/solution interface.

  5. STRUCTURAL PROPERTIES ALUMINUM OXIDE FILMS AS A FUNCTION OF DEPOSITION ANGLE

    International Nuclear Information System (INIS)

    Full text: Aluminium Oxide films were deposited on glass substrates (18? 18 ? 1 mm,cut from microscope slide) by using resistive evaporation method, from tungsten boats, at room temperature, of two different depositions 20 and 50 degree deposition angles. The evaporated material was pieces of Aluminium Oxide. An ETS 160 (Vacuum Evaporation System) coating plant with a base pressure of 3 ? 10?5 mbar, was used. Prior to deposition, all glass substrates were ultrasonically cleaned in heated acetone first and then in ethanol. The substrate holder was a disk of 36.5 cm in diameter with adjustable height up to 50 cm and also adjustable holders for placing any kind of substrates. Thickness of layers was determined by quartz crystal microbalance technique. The other deposition conditions such as deposition rate, vacuum pressure, and substrate temperature were the same in all tests.The surface physical morphology and roughness were obtained by means of AFM(Dual Scope TM DS 95-200/50) analysis. Scanning electron microscopy methodused for determining nanostructure of layers. The transmittance of films was measured using UV-VIS spectrophotometer (Hitachi U ? 3310) instrument. The spectra of layers were in range of 300?1100 nm wavelength (UV-VIS). The transmission (?T) of electrons through thin films of C, Al2O3, Al, Ni, Ag, and Au, together with their distribution in angle and energy, can measured in a spherical retarding-potential analyzer.Aluminium Oxide thin films of 65 nm thickness at two different deposition angles of 20 and 50 degrees were deposited on glass substrates at room temperature, by using resistive evaporation method under UHV conditions. The structural details were determined by AFM and SEM methods. The optical spectra were measured by spectrophotometer in the spectral range of 300 ?1100 nm wave length (UV-VIS).The relation between nanostructures and optical properties to deposition angle were discussed.

  6. Nanoporous anodic aluminum oxide as a promising material for the electrostatically-controlled thin film interference filter

    International Nuclear Information System (INIS)

    This study presents the approach to implement the electrostatically-controlled thin film optical filter by using a nanoporous anodic aluminum oxide (np-AAO) layer as the key suspended micro structure. The bi-stable optical filter operates in the visible spectral range. In this work, the presented bi-stable optical filter has averaged reflectivity of 60%, and the central wavelengths are 580 and 690 nm respectively for on and off states. The presented np-AAO layer offers the following merits for the thin film optical filter: (1) material properties of np-AAO film, such as refractive index, elastic modulus and dielectric constant, can be easily changed by a low temperature pore-widening process, (2) in-use stiction of the suspended np-AAO structure can be reduced by the small contact area of nanoporous textures, (3) driving (pull-in) voltage can be reduced due to a large dielectric constant (εAAO is 7.05) and small stiffness of np-AAO film and (4) dielectric charging can be reduced by the np-AAO material; thus the offset voltage is small. The study reports the design, fabrication and experimental results of the bi-stable optical filter to demonstrate the advantages of the presented device. The np-AAO material also has the potential for applications of other electrostatic drive micro devices. (paper)

  7. Adsorption of titanium, chromium, and copper atoms on thin aluminum and magnesium oxide film surfaces

    Science.gov (United States)

    Tvauri, I. V.; Turiev, A. M.; Tsidaeva, N. I.; Gazzaeva, M. E.; Vladimirov, G. G.; Magkoev, T. T.

    2012-04-01

    Methods of Auger electron spectroscopy (AES), spectroscopy of characteristic electron energy losses (SCEEL), slow electron diffraction (SED), and contact potential difference (CPD) in ultrahigh vacuum are used to investigate the adsorption-emission properties and stability of two-component film systems formed by putting of Ti, Cr, and Cu atoms on MgO-Mo(011) and Al2O3-Mo(011) surfaces. All atoms have the properties of electronegative adsorbates. Continuous adatom monolayers are formed on the Al2O3-Mo(011) system surface, and three-dimensional islands are formed on the MgO-Mo(011) surface. The properties of monoatomic films on the oxide layer surface are close to those observed for bulk materials. No radical changes of the system properties are detected with increasing dielectric layer thickness. The thermal stability of the newly formed structures decreases in the order Ti, Cr, Cu, Al2O3(MgO), and Mo(011).

  8. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  9. Microstructure trends in metal (aluminum, copper, indium, lead, tin)-metal oxide thin films prepared by reactive ion beam sputter deposition

    International Nuclear Information System (INIS)

    Transmission electron microscopy has bee used to study the microstructural trends of thin film composites prepared by sputtering of a metal (aluminum, copper, indium, lead or tin) target with argon ions in the presence of a reactive gas (oxygen). Results of these studies reveal that there is a general progression in the metal component microstructure which correlates with an increasing metal oxide component in the films and can be classified as belonging to an agglomerated-columnar-granular-amorphous sequence. These structural trends and the concomitant effect on film properties, such as resistivity, adhesion and mechanical stability, are a direct consequence of the metal-metal oxide interaction and the inhibiting effect which the native metal oxides have on metal atom diffusion during film formation. (Auth.)

  10. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    OpenAIRE

    Takashi Harumoto; Yohei Tamura; Takashi Ishiguro

    2015-01-01

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabri...

  11. Thermal Effect on the Structural, Electrical, and Optical Properties of In-Line Sputtered Aluminum Doped Zinc Oxide Films Explored with Thermal Desorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available This work investigates the thermal effect on the structural, electrical, and optical properties of aluminum doped zinc oxide (AZO films. The AZO films deposited at different temperatures were measured using a thermal desorption system to obtain their corresponding thermal desorption spectroscopy (TDS. In addition to obtaining information of thermal desorption, the measurement of TDS also has the effect of vacuum annealing on the AZO films. The results of measuring TDS imply part of the doped aluminum atoms do not stay at substituted zinc sites in AZO films. The (002 preferential direction of the AZO films in X-ray diffraction spectra shifts to a lower angle after measurement of TDS. The grain size grows and surface becomes denser for all AZO films after measurement of TDS. The carrier concentration, mobility, and average optical transmittance increase while the electrical resistivity decreases for AZO films after measurement of TDS. These results indicate that the AZO films deposited at 200°C are appropriate selections if the AZO films are applied in device fabrication of heat-produced process.

  12. The effect of Bi{sup 3+} and Li{sup +} co-doping on the luminescence characteristics of Eu{sup 3+}-doped aluminum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rosales, I., E-mail: ipadilla@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN, Nanociencias y Nanotecnología, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico); Martinez-Martinez, R. [Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, CP 69000 Huajuapan de León, Oax, México (Mexico); Cabañas, G. [Centro de Investigación y de Estudios Avanzados del IPN, Nanociencias y Nanotecnología, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico); Falcony, C. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360 México D.F. (Mexico)

    2015-09-15

    The incorporation of Bi{sup 3+} and Li{sup +} as co-dopants in Eu{sup 3+}-doped aluminum oxide films deposited by the ultrasonic spray pyrolysis technique and its effect on the luminescence characteristics of this material are described. Both Bi{sup 3+} and Li{sup +} do not introduce new luminescence features but affect the luminescence intensity of the Eu{sup 3+} related emission spectra as well as the excitation spectra. The introduction of Bi{sup 3+} generates localized states in the aluminum oxide host that result in a quenching of the luminescence intensity, while Li{sup +} and Bi{sup 3+} co-doping increase the luminescence intensity of these films. - Highlights: • Li and Bi co-doping increase the luminescence. • Bi creates localized states in the Al{sub 2}O{sub 3} host. • Li was incorporated as a co-activator.

  13. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  14. NEW SYNTHETIC METHOD AND CHARACTERIZATION OF CERAMIC FILMS PREPARED BY ANODIC OXIDATION OF ALUMINUM UNDER SPARKING DISCHARGE

    OpenAIRE

    Yamada, M.; Mita, I.

    1986-01-01

    A new synthetic method of ceramic films by anodic oxidation of aluminium was developed. Most of the crystals in the films are composed of eta or alpha-alumina. These ceramic films can incorporate a lot of metals by electrolytic methods.

  15. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    International Nuclear Information System (INIS)

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly

  16. Pull-test adhesion measurements of diamondlike carbon films on silicon carbide, silicon nitride, aluminum oxide, and zirconium oxide

    International Nuclear Information System (INIS)

    Hydrogenated amorphous carbon or diamondlike carbon (DLC) films were formed by 400 eV methane (CH4) ion bombardment of various smooth and rough ceramics, as well as ceramics coated with a layer of Si or Ti. Adhesion was measured by a bonded-pin method. Excellent adhesion was measured for smooth SiC and Si3N4, but adhesion of DLC to smooth Al2O3 and ZrO2 was negligible. The use of a Si bonding interlayer produced good adhesion to all the substrates, but a Ti layer was ineffective due to poor bonding between the DLC film and Ti. Bulk thermodynamic calculations are not directly applicable to bonding at the interface because the interface is two dimensional and the compositions of interfacial phases are generally not known. If the standard enthalpy ΔH degree for the reaction between CH4 and the substrate material is calculated under the assumption that a carbide phase is produced, a relationship is seen between the reaction enthalpy and the relative adhesion. Large positive enthalpies are associated with poor adhesion; negative or small positive enthalpies are associated with good adhesion. This relation between enthalpy and adhesion was also observed for DLC deposited on Si. The lack of adhesion to the Ti was attributed to inadvertent formation of a surface oxide layer that rendered the enthalpy for the reaction with CH4 positive

  17. Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer

    International Nuclear Information System (INIS)

    We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.

  18. Burning characteristics of individual aluminum/aluminum oxide particles

    OpenAIRE

    Ruttenberg, Eric C.

    1996-01-01

    Approved for public release; distribution is unlimited An experimental investigation was conducted in which the burning characteristics of individual aluminum/aluminum oxide particles were measured using a windowed combustion bomb at atmospheric pressure and under gravity-fall conditions. A scanning electron microscope (SEM) was used to measure the size distribution of the initial aluminum particles and the aluminum oxide residue. Analysis of the residue indicated that the mass of aluminum...

  19. Electrical and optical properties of radio frequency magnetron-sputtered lightly aluminum-doped zinc oxide thin films deposited in hydrogen–argon gas

    International Nuclear Information System (INIS)

    We studied the electrical and optical properties of lightly aluminum-doped zinc oxide (L-AZO) films, which were deposited on soda-lime glass substrates by radio frequency (RF) magnetron sputtering using a 0.2 wt.% aluminum-doped zinc oxide target and a 0.3 wt.% hydrogen-mixed argon (Ar/0.3% H2) gas. The L-AZO films were characterized in terms of structural, optical, and electrical properties by X-ray diffraction, ultraviolet–visible spectrophotometry, photoluminescence and Hall measurements at room temperature. The Al contents of the L-AZO film were analyzed with secondary ion mass spectroscopy. As the Ar/0.3%H2 gas flow was increased up to 200 sccm, the transmittance and conductivity of the film simultaneously improved as a function of the increasing flow rate without additional thermal or gas treatment. The 40 nm-thick L-AZO film, which was deposited by an Ar/0.3% H2 gas flow of 200 sccm at a substrate temperature of 100 °C, had a carrier concentration of 1.0 × 1020/cm3, resistivity of 5.5 × 10−3 Ω-cm, and an average transmittance of 93% in the wavelength range from 300 nm to 2000 nm. - Highlights: • Electrical and optical properties of lightly Al-doped ZnO (L-AZO) thin films. • Films studied under various deposition conditions. • Carrier concentration (CC) and transmittance for thickness > 100 nm is studied. • For thin L-AZO films, CC and transmittance depend on O vacancies and interstitial H atoms

  20. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    Science.gov (United States)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K.

    2013-10-01

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (Ts). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10-3 Ω cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at Ts of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein-Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ˜110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  1. Analysis of chemical dissolution of the barrier layer of porous oxide on aluminum thin films using a re-anodizing technique

    International Nuclear Information System (INIS)

    Chemical dissolution of the barrier layer of porous oxide formed on thin aluminum films (99.9% purity) in the 4% oxalic acid after immersion in 2 mol dm-3 sulphuric acid at 50 deg. C has been studied. The barrier layer thickness before and after dissolution was calculated using a re-anodizing technique. It has been shown that above 57 V the change in the growth mechanism of porous alumina films takes place. As a result, the change in the amount of regions in the barrier oxide with different dissolution rates is observed. The barrier oxide contains two layers at 50 V: the outer layer with the highest dissolution rate and the inner layer with a low dissolution rate. Above 60 V the barrier oxide contains three layers: the outer layer with a high dissolution rate, the middle layer with the highest dissolution rate and the inner layer with a low dissolution rate. We suggest that the formation of the outer layer of barrier oxide with a high dissolution rate is linked with the injection of protons or H3O+ ions from the electrolyte into the oxide film at the anodizing voltages above 57 V

  2. Mechanical failure of anodic films on aluminum and tantalum

    International Nuclear Information System (INIS)

    Anodized specimens of aluminum and tantalum were deformed in laboratory air; strain to failure and the failure characteristics of the oxide film were evaluated optically. Barrier-type anodic aluminum oxide films of thickness greater than approximately 400A failed at approximately 0.925% strain normal to the tensile axis and apparently suppresssed substrate slip emergence. Thinner anodic films on aluminum failed along substrate slip traces at approximately 1.12% strain. These films did not suppress slip emergence, but were apparently stronger. The presence of a porous oxide superimposed on thin barrier-type films caused them to fail in the thick film mode; this was the only effect of a porous layer. Anodic films on mechanically polished tantalum failed at approximately 0.28% strain, independent of thickness, but showed a failure mode dependence on thickness analogous to that of aluminum. Films on chemically polished tantalum substrates always failed in simple tension, but showed a thickness dependence, failing at approximately 0.14% strain for thicknesses greater than approximately 680A, and approximately 0.20% strain for thicknesses less than that value. Failure of these films was accompanied by separation of the films from the substrate. 18 figures

  3. Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films

    Directory of Open Access Journals (Sweden)

    Alberto eCastro-Muñiz

    2016-02-01

    Full Text Available The present work reports the preparation of binderless carbon-coated porous films and the study of their performance as monolithic bioanodes. The films were prepared by coating anodic aluminum oxide (AAO films with a thin layer of nitrogen-doped carbon by chemical vapor deposition. The films have cylindrical straight pores with controllable diameter and length. These monolithic films were used directly as bioelectrodes by loading the films with D-fructose dehydrogenase (FDH, an oxidoreductase enzyme that catalyzes the oxidation of D-fructose to 5-keto-D-fructose. The immobilization of the enzymes was carried out by physical adsorption in liquid phase and with an electrostatic attraction method. The latter method takes advantage of the fact that FDH is negatively charged during the catalytic oxidation of fructose. Thus the immobilization was performed under the application of a positive voltage to the CAAO film in a FDH-fructose solution in McIlvaine buffer (pH 5 at 25 ºC. As a result, the FDH modified electrodes with the latter method show much better electrochemical response than that with the conventional physical adsorption method. Due to the singular porous structure of the monolithic films, which consists of an array of straight and parallel nanochannels, it is possible to rule out the effect of the diffusion of the D-fructose into the pores. Thus the improvement in the performance upon using the electrostatic attraction method can be ascribed not only to a higher uptake, but also to a more appropriate molecule orientation of the enzyme units on the surface of the electrodes.

  4. Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films

    Science.gov (United States)

    Castro-Muñiz, Alberto; Hoshikawa, Yasuto; Komiyama, Hiroshi; Nakayama, Wataru; Itoh, Tetsuji; Kyotani, Takashi

    2016-02-01

    The present work reports the preparation of binderless carbon-coated porous films and the study of their performance as monolithic bioanodes. The films were prepared by coating anodic aluminum oxide (AAO) films with a thin layer of nitrogen-doped carbon by chemical vapor deposition. The films have cylindrical straight pores with controllable diameter and length. These monolithic films were used directly as bioelectrodes by loading the films with D-fructose dehydrogenase (FDH), an oxidoreductase enzyme that catalyzes the oxidation of D-fructose to 5-keto-D-fructose. The immobilization of the enzymes was carried out by physical adsorption in liquid phase and with an electrostatic attraction method. The latter method takes advantage of the fact that FDH is negatively charged during the catalytic oxidation of fructose. Thus the immobilization was performed under the application of a positive voltage to the CAAO film in a FDH-fructose solution in McIlvaine buffer (pH 5) at 25 ºC. As a result, the FDH modified electrodes with the latter method show much better electrochemical response than that with the conventional physical adsorption method. Due to the singular porous structure of the monolithic films, which consists of an array of straight and parallel nanochannels, it is possible to rule out the effect of the diffusion of the D-fructose into the pores. Thus the improvement in the performance upon using the electrostatic attraction method can be ascribed not only to a higher uptake, but also to a more appropriate molecule orientation of the enzyme units on the surface of the electrodes.

  5. Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates

    Science.gov (United States)

    Wang, Li-Min; Wang, Chih-Yi; Jheng, Ciao-Ren; Wu, Syu-Jhan; Sai, Chen-Kai; Lee, Ya-Ju; Chiang, Ching-Yu; Shew, Bor-Yuan

    2016-08-01

    The crystalline structure, morphology, composition, electrical transport, and optical properties of aluminum-doped zinc oxide (AZO) films are studied for applications in transparent electronics and optoelectronic devices. AZO thin films of c-axis-oriented growth and with different thickness were deposited on PET flexible plastic substrates at room temperature by rf magnetron sputtering. A larger grain size with a decreased strain ɛ value is observed in a thicker film, while changes in composition for films with different thicknesses are insignificant. Moreover, the resistivity of film decreases with increasing thickness, and the low-temperature electrical transport properties can be described by the scenario of quantum corrections to conductivity. With the room-temperature growth conditions, the resistivity of 4.5 × 10-4 Ω cm, carrier concentration of 6.4 × 1020 cm-3, and transmittance of 80 % for the 1100-nm-thick film are obtained. In addition, the optical bandgap energy decreases with increasing film thickness, which can be attributed to the bandgap renormalization and crystallite size effects.

  6. Effect of the Milling Time of the Precursors on the Physical Properties of Sprayed Aluminum-Doped Zinc Oxide (ZnO:Al Thin Films

    Directory of Open Access Journals (Sweden)

    María De La Luz Olvera

    2012-08-01

    Full Text Available Aluminum doped zinc oxide (ZnO:Al thin films were deposited on soda-lime glass substrates by the chemical spray technique. The atomization of the solution was carried out by ultrasonic excitation. Six different starting solutions from both unmilled and milled Zn and Al precursors, dissolved in a mix of methanol and acetic acid, were prepared. The milling process was carried out using a planetary ball mill at a speed of 300 rpm, and different milling times, namely, 15, 25, 35, 45, and 60 min. Molar concentration, [Al]/[Zn] atomic ratio, deposition temperature and time, were kept at constant values; 0.2 M, 3 at.%, 475 °C, and 10 min, respectively. Results show that, under the same deposition conditions, electrical resistivities of ZnO:Al thin films deposited from milled precursors are lower than those obtained for films deposited from unmilled precursors. X-ray diffraction analysis revealed that all films display a polycrystalline structure, fitting well with the hexagonal wurtzite structure. Changes in surface morphology were observed by scanning electron microscopy (SEM as well, since films deposited from unmilled precursors show triangular shaped grains, in contrast to films deposited from 15 and 35 min milled precursors that display thin slices with hexagonal shapes. The use of milled precursors to prepare starting solutions for depositing ZnO:Al thin films by ultrasonic pyrolysis influences their physical properties.

  7. Aluminum-doped zinc oxide sol–gel thin films: Influence of the sol's water content on the resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Nehmann, Julia B., E-mail: nehmann@isfh.de [Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal (Germany); Ehrmann, Nicole; Reineke-Koch, Rolf [Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal (Germany); Bahnemann, Detlef W. [Institute for Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 3A, 30167 Hannover (Germany)

    2014-04-01

    Thin films of indium tin oxide (ITO) have gained substantial interest due to their optical and electrical properties. Since ITO is an expensive material and indium is a rare element, considerable attempts have been made to replace it by, e.g., aluminum-doped zinc oxide (ZnO:Al). The production of ZnO:Al is less cost-intensive, especially if the sol–gel technique is applied, while its properties are comparable to those of ITO. In this study, we demonstrate that the electrical properties of ZnO:Al thin films can be improved considerably by the addition of small amounts of ultrapure water to the dip coating solution during the preparation. The lowest resistivity obtained with a film prepared from a sol containing 0.2 M water is 2.8·10{sup −3Ω}cm. Optical modeling thus indicates an improvement of the free carrier mobility of films prepared from sols in the presence of additional water. The films prepared have an average thickness of 340 nm and a solar transmittance above 85% after annealing in a forming gas atmosphere. Clearly, the addition of water to the sol has a positive impact on the resistivity of the final ZnO:Al thin film. We suggest the observed increase of the free carrier mobility to be due to an improved electron transfer at the grain boundaries between the spherical nanoparticles. - Highlights: • We prepared ZnO:Al thin films with additional water in the sol by dip coating. • We found a positive impact of the water in the sol on the resistivity of the film. • The free carrier concentration and mobility increased with additional 0.2 M water. • The refractive indices demonstrate a denser structure related to the water content.

  8. Aluminum-doped zinc oxide sol–gel thin films: Influence of the sol's water content on the resistivity

    International Nuclear Information System (INIS)

    Thin films of indium tin oxide (ITO) have gained substantial interest due to their optical and electrical properties. Since ITO is an expensive material and indium is a rare element, considerable attempts have been made to replace it by, e.g., aluminum-doped zinc oxide (ZnO:Al). The production of ZnO:Al is less cost-intensive, especially if the sol–gel technique is applied, while its properties are comparable to those of ITO. In this study, we demonstrate that the electrical properties of ZnO:Al thin films can be improved considerably by the addition of small amounts of ultrapure water to the dip coating solution during the preparation. The lowest resistivity obtained with a film prepared from a sol containing 0.2 M water is 2.8·10−3Ωcm. Optical modeling thus indicates an improvement of the free carrier mobility of films prepared from sols in the presence of additional water. The films prepared have an average thickness of 340 nm and a solar transmittance above 85% after annealing in a forming gas atmosphere. Clearly, the addition of water to the sol has a positive impact on the resistivity of the final ZnO:Al thin film. We suggest the observed increase of the free carrier mobility to be due to an improved electron transfer at the grain boundaries between the spherical nanoparticles. - Highlights: • We prepared ZnO:Al thin films with additional water in the sol by dip coating. • We found a positive impact of the water in the sol on the resistivity of the film. • The free carrier concentration and mobility increased with additional 0.2 M water. • The refractive indices demonstrate a denser structure related to the water content

  9. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  10. NaCl盐膜对铝青铜高温氧化行为的影响%Effect of NaCl Film on Oxidation Behavior of Aluminum Bronze at High Temperature

    Institute of Scientific and Technical Information of China (English)

    李占鑫

    2009-01-01

    采用金相检验、X射线衍射、扫描电镜/能谱及热重分析法研究了涂有NaCl盐膜的铝青铜在700~900℃的氧化行为.结果表明,在NaCl盐膜的作用下,铝青铜中的铝较铜先腐蚀,所形成的氧化膜结构疏松,易开裂和剥落,从而加速铝的氧化过程.此外,还讨论了NaCl加速铝青铜氧化的机制.%The oxidation behavior of aluminum bronze coated with a NaCl film was studied by means of metallosco-py,XRD,SEM/EDS and thermogravimetry. The results show that because of the effect of NaCl film the aluminum will be eroded earlier than the copper in aluminum bronze and the oxide film produced will be loose and easy to crack and spall, with the oxidation of aluminum bronze accelerated. In addition, the mechanism for NaCl film to ac-celerate the oxidation of aluminum bronze was discussed, too.

  11. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2010-02-15

    Aluminum-doped zinc oxide films were deposited at 100 C on polyethylene terephthalate by radio-frequency magnetron sputtering. The sputtering parameters such as RF power and Argon working pressure were varied from 25 to 125 W and from 1.1 to 0.2 Pa, respectively. The structural properties of as-deposited films were analysed by X-ray diffraction, showing that all the deposited films were polycrystalline, with hexagonal structure and a strong preferred c-axis orientation (0 0 2). Full width at half maximum and grain sizes were around 0.27 and ranged from 24 to 32 nm, respectively. The strain state of the samples was also estimated from X-ray diffraction measurements, obtaining compressive stresses from 0.29 to 0.05 GPa. Resistivity as low as 1.1 x 10{sup -3} {omega} cm was achieved for the film deposited at 75 W and 0.2 Pa, sample that showed a low strain state of -0.06 GPa. High optical transmittance ({proportional_to}80%) was exhibited when films were deposited at RF powers below 100 W. Band gap energies ranged from 3.36 to 3.39 eV and a refractive index of 1.80{+-}0.05, constant in the visible region, was also obtained. (author)

  12. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    Science.gov (United States)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-09-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al3+ films. The electrochromic performance of the films were evaluated by means of UV-vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni3+/Ni2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film.

  13. H₂O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces.

    Science.gov (United States)

    Liu, Qianqian; Tong, Xiao; Zhou, Guangwen

    2015-12-01

    The interaction of water vapor with amorphous aluminum oxide films on Al(111) is studied using X-ray photoelectron spectroscopy to elucidate the passivation mechanism of the oxidized Al(111) surfaces. Exposure of the aluminum oxide film to water vapor results in self-limiting Al2O3/Al(OH)3 bilayer film growth via counter-diffusion of both ions, Al outward and OH inward, where a thinner starting aluminum oxide film is more reactive toward H2O dissociation-induced oxide growth because of the thickness-dependent ionic transport in the aluminum oxide film. The aluminum oxide film exhibits reactivity toward H2O dissociation in both low-vapor pressure [p(H2O) = 1 × 10(-6) Torr] and intermediate-vapor pressure [p(H2O) = 5 Torr] regimes. Compared to the oxide film growth by exposure to a p(H2O) of 1 × 10(-6) Torr, the exposure to a p(H2O) of 5 Torr results in the formation of a more open structure of the inner Al(OH)3 layer and a more compact outer Al2O3 layer, demonstrating the vapor-pressure-dependent atomic structure in the passivating layer. PMID:26550986

  14. Oxidation kinetics of aluminum diboride

    Science.gov (United States)

    Whittaker, Michael L.; Sohn, H. Y.; Cutler, Raymond A.

    2013-11-01

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3-B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments.

  15. Preparation of mesoporous alumina films by anodization: Effect of pretreatments on the aluminum surface and MTBE catalytic oxidation

    International Nuclear Information System (INIS)

    Mesoporous materials are both scientifically and technologically important because of the presence of voids of controllable dimensions at atomic, molecular, and nanometric scales. Over the last decade, there has been both an increasing interest and research effort in the synthesis and characterization of these types of materials. The purposes of this work are to study the physical and chemical changes in the properties of mesoporous alumina films produced by anodization in sulphuric acid by different pretreatments on the aluminium surface such as mechanical polishing [MP] and electropolishing [EP]; and to compare their properties such as morphology, structure and catalytic activity with those present in commercial alumina. The morphologic and physical characterizations of the alumina film samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical evaluations were performed by the oxidation of methyl-tert-butyl-ether (MTBE) at 400 deg. C under O2/He oxidizing conditions (Praxair, 2.0% O2/He balance). According to the results, the samples that presented higher activities than those in Al2O3/Al [MP] and commercial alumina in the MTBE oxidation (69%), were those prepared by Al2O3/Al [EP]. The average mesoporous diameter was 17 nm, and the morphological shape was equiaxial; thus, that pore distribution was the smallest of all with a homogeneous distribution.

  16. Oxidation dynamics of aluminum nanorods

    International Nuclear Information System (INIS)

    Aluminum nanorods (Al-NRs) are promising fuels for pyrotechnics due to the high contact areas with oxidizers, but their oxidation mechanisms are largely unknown. Here, reactive molecular dynamics simulations are performed to study thermally initiated burning of oxide-coated Al-NRs with different diameters (D = 26, 36, and 46 nm) in oxygen environment. We found that thinner Al-NRs burn faster due to the larger surface-to-volume ratio. The reaction initiates with the dissolution of the alumina shell into the molten Al core to generate heat. This is followed by the incorporation of environmental oxygen atoms into the resulting Al-rich shell, thereby accelerating the heat release. These results reveal an unexpectedly active role of the alumina shell as a “nanoreactor” for oxidation

  17. Influence of composition and processing parameters on the properties of solution-processed aluminum phosphate oxide (AlPO) thin films

    Science.gov (United States)

    Norelli, Kevin M.; Plassmeyer, Paul N.; Woods, Keenan N.; Glassy, Benjamin A.; Knutson, Christopher C.; Beekman, Matt; Page, Catherine J.

    2016-05-01

    The effects of precursor solution concentration, composition, and spin-processing parameters on the thickness and electrical properties of ultra-smooth aluminum oxide phosphate (Al2O3-3x(PO4)2x or "AlPO") thin films prepared using aqueous solutions are reported. Compositions were verified by electron probe micro-analysis and range from Al2O1.5(PO4) to AlPO4 (x = P:Al from 0.5 to 1.0). Film thicknesses were determined using X-ray reflectivity measurements and were found to depend systematically on solution concentration, P:Al ratio, and spin-speed. Metal-insulator-semiconductor devices were fabricated to determine electrical properties as a function of composition. As the P:Al ratio increased from 0.5 to 1.0, the dielectric constant decreased from 6.0 to 4.6, leakage currents increased from 0.45 to 65 nA cm-2 at 1 MV cm-1 and dielectric breakdown (defined as leakage currents >10 μA cm-2) decreased from 9.74 to 2.84 MV cm-1. These results establish composition, concentration, and spin-speed for the production of AlPO films with targeted thicknesses and electrical properties.

  18. Oxidation kinetics of aluminum diboride

    International Nuclear Information System (INIS)

    The oxidation characteristics of aluminum diboride (AlB2) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB2 in the onset of oxidation and final conversion fraction, with AlB2 beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB2 and Al+2B in both air and oxygen. AlB2 exhibited O2-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O2 than in air. Differences in the composition and morphology between oxidized Al+2B and AlB2 suggested that Al2O3–B2O3 interactions slowed Al+2B oxidation by converting Al2O3 on aluminum particles into a Al4B2O9 shell, while the same Al4B2O9 developed a needle-like morphology in AlB2 that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB2, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB2 in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy

  19. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  20. Optical Anisotropy and Porosity of Anodic Aluminum Oxide Characterized by Spectroscopic Ellipsometry

    NARCIS (Netherlands)

    Kooij, E. Stefan; Wormeester, Herbert; Galca, Aurelian C.; Poelsema, Bene

    2003-01-01

    Anodic oxidation of aluminum results in a mesoporous oxide film. The thin-film geometry of our samples enables straightforward optical modeling of ellipsometry spectra of fully anodized films, using only three physically relevant parameters. The system of randomly distributed, but aligned cylindrica

  1. Platinum-Enhanced Electron Transfer and Surface Passivation through Ultrathin Film Aluminum Oxide (Al₂O₃) on Si(111)-CH₃ Photoelectrodes.

    Science.gov (United States)

    Kim, Hark Jin; Kearney, Kara L; Le, Luc H; Pekarek, Ryan T; Rose, Michael J

    2015-04-29

    We report the preparation, stability, and utility of Si(111)-CH3 photoelectrodes protected with thin films of aluminum oxide (Al2O3) prepared by atomic layer deposition (ALD). The photoelectrodes have been characterized by X-ray photoelectron spectroscopy (XPS), photoelectrochemistry (Fc in MeCN, Fc-OH in H2O), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) simulation. XPS analysis of the growing Al2O3 layer affords both the thickness, and information regarding two-dimensional versus three-dimensional mode of growth. Impedance measurements on Si(111)|CH3|Al2O3 devices reveal that the nascent films (5-30 Å) exhibit significant capacitance, which is attenuated upon surpassing the bulk threshold (∼30 Å). The Al2O3 layer provides enhanced photoelectrochemical (PEC) stability evidenced by an increase in the anodic window of operation in MeCN (up to +0.5 V vs Ag) and enhanced stability in aqueous electrolyte (up to +0.2 V vs Ag). XPS analysis before and after PEC confirms the Al2O3 layer is persistent and prevents surface corrosion (SiOx). Sweep-rate dependent CVs in MeCN at varying thicknesses exhibit a trend of increasingly broad features, characteristic of slow electron transport kinetics. Simulations were modeled as slow electron transfer through a partially resistive and electroactive Al2O3 layer. Lastly, we find that the Al2O3 ultrathin film serves as a support for the ALD deposition of Pt nanoparticles (d ≈ 8 nm) that enhance electron transfer through the Al2O3 layer. Surface recombination velocity (SRV) measurements on the assembled Si(111)|CH3|Al2O3-15 device affords an S value of 4170 cm s(-1) (τ = 4.2 μs) comparable to the bare Si(111)-CH3 surface (3950 cm s(-1); τ = 4.4 μs). Overall, the results indicate that high electronic quality and low surface defect densities can be retained throughout a multistep assembly of an integrated and passivated semiconductor|thin-film|metal device. PMID:25880534

  2. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  3. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  4. Substrate biasing effect on the physical properties of reactive RF-magnetron-sputtered aluminum oxide dielectric films on ITO glasses.

    Science.gov (United States)

    Liang, Ling Yan; Cao, Hong Tao; Liu, Quan; Jiang, Ke Min; Liu, Zhi Min; Zhuge, Fei; Deng, Fu Ling

    2014-02-26

    High dielectric constant (high-k) Al2O3 thin films were prepared on ITO glasses by reactive RF-magnetron sputtering at room temperature. The effect of substrate bias on the subband structural, morphological, electrode/Al2O3 interfacial and electrical properties of the Al2O3 films is systematically investigated. An optical method based on spectroscopic ellipsometry measurement and modeling is adopted to probe the subband electronic structure, which facilitates us to vividly understand the band-tail and deep-level (4.8-5.0 eV above the valence band maximum) trap states. Well-selected substrate biases can suppress both the trap states due to promoted migration of sputtered particles, which optimizes the leakage current density, breakdown strength, and quadratic voltage coefficient of capacitance. Moreover, high porosity in the unbiased Al2O3 film is considered to induce the absorption of atmospheric moisture and the consequent occurrence of electrolysis reactions at electrode/Al2O3 interface, as a result ruining the electrical properties. PMID:24490685

  5. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    International Nuclear Information System (INIS)

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlOx/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlOx interlayer

  6. Atomic layer deposited aluminum oxide barrier coatings for packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: terhi.hirvikorpi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Mustonen, Tuomas, E-mail: tuomas.mustonen@vtt.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Iiskola, Eero, E-mail: eero.iiskola@kcl.f [Oy Keskuslaboratorio - Centrallaboratorium Ab (KCL), P.O. Box 70, FI-02151 Espoo (Finland); Karppinen, Maarit, E-mail: maarit.karppinen@tkk.f [Laboratory of Inorganic Chemistry, Department of Chemistry, Helsinki University of Technology, P.O. Box 6100, FI-02015 TKK (Finland)

    2010-03-01

    Thin aluminum oxide coatings have been deposited at a low temperature of 80 {sup o}C on various uncoated papers, polymer-coated papers and boards and plain polymer films using the atomic layer deposition (ALD) technique. The work demonstrates that such ALD-grown Al{sub 2}O{sub 3} coatings efficiently enhance the gas-diffusion barrier performance of the studied porous and non-porous materials towards oxygen, water vapor and aromas.

  7. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the < 110...

  8. Formation of Al-Si Composite Oxide Film by Hydrolysis Precipitation and Anodizing

    Institute of Scientific and Technical Information of China (English)

    Zhe-Sheng Feng; Ying-Jie Xia; Jia Ding; Jin-Ju Chen

    2007-01-01

    This paper presents a new technique in the high dielectric constant composite oxide film preparation.On the basis of nanocompsite high dielectric constant aluminum oxide film growth technology, a new idea of adulterating Si oxide species into the aluminum composite film was proposed. As a result, the specific capacitance and withstanding voltage of the composite oxide film formed at the anodizing voltage of 20V are enhanced, and the leakage current of the aluminum composite oxide film is reduced through incorporation of Si oxide species.

  9. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  10. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  11. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes

    International Nuclear Information System (INIS)

    A set of oxide coatings was formed on the surface of an Al alloy (wt%: Fe, 0.24; Si, 1.16; Cu, 0.05-0.2; Zn, 0.1; Al, residual) by means of various oxidation processes. The hydrogen permeability through the aluminum alloy and its coating materials was determined by a vapor phase permeation technique at temperatures ranging from 400 to 500 C using high-purity H2 (99.9999%) gas with an upstream hydrogen pressure of 104-105 Pa. The experimental results show that the hydrogen permeability through aluminum oxide coating is 100-2000 times lower than that through the aluminum alloy substrate. This means that the aluminum oxide is a significant hydrogen permeation barrier. A high hydrogen permeation resistance was observed in an oxide layer prefilmed in 200 C water, while an anodized aluminum oxide film had a less obstructive effect, possibly caused by the porous structure of the anodic oxide. The hydrogen permeability through films of aluminum oxide was not a simple function of the aluminum-oxide phase configuration. (orig.)

  12. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    Science.gov (United States)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  13. PTFE-ALUMINUM films serve as neutral density filters

    Science.gov (United States)

    Burks, H. D.

    1966-01-01

    Polytetrafluoroethylene /PTFE/ films coated with aluminum films act as neutral density filters in the wavelength range 0.3 to 2.1 microns. These filters are effective in the calibration of photometric systems.

  14. Specific features of aluminum nanoparticle water and wet air oxidation

    International Nuclear Information System (INIS)

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation

  15. Nanoscale aluminum concaves for light-trapping in organic thin-films

    Science.gov (United States)

    Goszczak, Arkadiusz Jarosław; Adam, Jost; Cielecki, Paweł Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-07-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be used as an efficient method for enhancing the power conversion efficiency of organic solar cells.

  16. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr;

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...... technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be...

  17. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...... technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be...... used as an efficient method for enhancing the power conversion efficiency of organic solar cells....

  18. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  19. Magnetic coupling in granular aluminum superconducting films

    International Nuclear Information System (INIS)

    The maximum coupling force F/sub cm/ in a Giaever superconducting transformer is measured in granular aluminum films at significantly higher fields and lower temperatures than in previous work. A new method to determine F/sub cm/ by measuring the critical current in one film only is presented. The results are in excellent quantitative agreement with the one-reciprocal-lattice-vector approximation to the theoretical analysis in its region of validity, i.e., at high fields. For low fields, F/sub cm/ is consistent with the temperature dependence of the low-field approximation over the entire reduced-temperature (t = T/T/sub c/) range (0.36< t<0.96

  20. A Semi-empirical Mathematical Model to Estimate the Duration of the Atmosphere within a Double Oxide Film Defect in Pure Aluminum Alloy

    Science.gov (United States)

    Raiszadeh, R.; Griffiths, W. D.

    2008-04-01

    It has been shown that the oxygen and nitrogen within the atmosphere of a double oxide film defect can be consumed by the surrounding Al melt. Experimentally determined reaction rates were used to construct a semi-empirical model to predict the change in volume with time of a bubble of air trapped in an Al melt, with the model including the diffusion of H from the metal into the bubble. Comparison with experimental results showed that the model predicted the change in volume well. The model was then used to estimate the duration of the internal atmosphere within double oxide film defects, which suggested that these would be consumed in a time of up to 3 minutes, depending upon assumptions made about the initial defect size.

  1. CoPt patterned media in anodized aluminum oxide templates

    International Nuclear Information System (INIS)

    Patterned recording media consisting of a vertically aligned array of L10 phase CoPt nanowires embedded in a thin anodized aluminum oxide (AAO) template on silicon has been prepared. A sputter deposited thin film of aluminum on silicon was anodized and a CoPt magnetic alloy was electrodeposited into the pores of the AAO. The vertically aligned arrays of CoPt nanowires were about ∼100 nm tall with ∼20 nm average diameter. Since the CoPt nanowire array is laterally constrained by the surrounding AAO, the nanowire diameter is maintained without coarsening during the L10 phase conversion heat treatment at 700 deg. C. After annealing and conversion to the L10 phase, the ∼20 nm CoPt nanowires exhibit a large coercivity of ∼8 kOe measured in the in-plane and perpendicular directions

  2. Effect of substrate on the nucleation and growth of aluminum films deposited from methylpyrrolidine alane

    International Nuclear Information System (INIS)

    Methylpyrrolidine alane complex was used to deposit aluminum films on various types of substrates in a low pressure chemical vapor deposition reactor. The films grow easily on metallic and transition metal oxide surfaces, but not on any other tested semiconductor and dielectric substrates below 200 deg. C, showing strong substrate dependency. The free energies of precursor adsorption, surface dissociation reaction and product desorption, as well as the film wettability to substrate are among the key factors which affect the energy barrier for nucleation or deposition selectivity. In general, a metal substrate can enhance nucleation because it catalyzes the surface reactions and bonds strongly with aluminum. The oxidation-reduction reaction may occur between the precursor and substrate on a metal oxide surface. The reduced metal sites can be the seed nuclei and are possibly responsible for Al growth on the surfaces of transition metal oxides

  3. Fabrication of horizontally grown silicon nanowires using a thin aluminum film as a catalyst

    International Nuclear Information System (INIS)

    We present a new method for the fabrication of horizontal silicon nanowires for application in nanoelectronic devices. A web of horizontally connected silicon nanowires is grown on a silicon substrate using a thin aluminum film as a catalyst. A thin layer of oxide is thermally grown on a silicon substrate. The oxide layer is then selectively etched using photolithography. A thin layer of aluminum is thermally evaporated on the substrate with the patterned oxide layer. When the sample is annealed above the eutectic temperature, we show that the silicon gets deposited along the grain boundaries of aluminum in the form of thin nanowires. We show that this phenomenon is due to the high solubility of silicon in aluminum at high temperatures. The surface morphology was analyzed using Scanning Electron Microscopy (SEM). The compositional analysis was done using Energy Dispersive X-ray spectroscopy (EDX).

  4. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  5. Influence of Ag thickness of aluminum-doped ZnO/Ag/aluminum-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hung-Wei, E-mail: hwwu@mail.ksu.edu.tw [Department of Computer and Communication, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan City 710, Taiwan (China); Yang, Ru-Yuan [Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China); Hsiung, Chin-Min; Chu, Chien-Hsun [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung City 912, Taiwan (China)

    2012-10-01

    Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm, which can be decreased to 3.8 Multiplication-Sign 10{sup -5} {Omega}-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 Multiplication-Sign 10{sup -3} {Omega}{sup -1}. It was shown that the multilayer thin films have potential for applications in optoelectronics. - Highlights: Black-Right-Pointing-Pointer High-quality Al-doped ZnO (AZO)/Ag/AZO Transparent Conducting Oxide films. Black-Right-Pointing-Pointer AZO films (30 nm) made by RF sputtering; E-beam evaporation for Ag film (5-15 nm). Black-Right-Pointing-Pointer Influence of Ag thickness on optical and electrical properties were analyzed. Black-Right-Pointing-Pointer High quality multilayer film with optimal intermediate Ag layer thickness of 10 nm. Black-Right-Pointing-Pointer 3.71 Multiplication-Sign 10{sup -4} {Omega}-cm resistivity, 91.89% transmittance at 470 nm obtained and reproducible.

  6. 阳极氧化法制备多孔氧化铝膜的形成过程研究%Investigation on the growth sequence of porous anodic aluminum oxide films by two-step anodization

    Institute of Scientific and Technical Information of China (English)

    刘海凤; 路丙强; 梁冬林; 魏水强; 苟凯佩; 王凡; 文衍宣

    2012-01-01

    采用阳极氧化技术,研究了电压对多孔氧化铝膜生长过程的影响.使用扫描电镜( SEM)对在草酸-水-乙醇体系中形成的多孔氧化铝膜形貌进行观测.结果表明,在第二步氧化过程中,在40V氧化电压下,多孔氧化铝膜的有序度和孔径随反应时间延长而降低;在80 V下,经过长时间反应,AAO膜表面腐蚀严重,难以获得平整的多孔结构.预氧化过程所形成的薄氧化层有效保护了多孔氧化铝表面,同时对多孔结构具有短距离诱导作用.改变氧化电压、电解质浓度和反应时间,有序孔排列的结构参数也有所改变.高电场下,孔道的相互作用促进了其生长分化,形成了两种不同的孔道结构.%The detailed growth processes of porous anodic aluminum oxide films influenced by the applied voltage were studied via anodization method. The appearance of the porous anodic aluminum oxide films formed in oxalic acid-water-ethanol solution was studied by SEM. At the second anodization step, the ordering degree and pore size of oxide films decreased at 40 V, while the rough surface of AAO by severe corrosion was obtained at 80 V. Whereas, the surface oxide layer generated by pre-anodization provided effective protection at the early stage of high-voltage anodization, and guided the formation of ordered pores array in short range. The structural parameters of ordered pores array were dependent on the applied voltage, electrolyte concentration and reaction time. At high applied voltage, the cause of interaction forces between neighboring pores enhances the differentiation of pore growth, and hence two different pores growth behaviors in the internal and surface of AAO membrane are observed.

  7. Nanoscale aluminum dimples for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr;

    absorption improvement in the active layer of the devices. A prospective, cheap and large-scale compatible method for structuring the electrodes in OSCs arises by the use of anodic aluminum oxide (AAO) membranes. In the present work, aluminum films of high purity and low roughness are formed via e......-beam evaporation of a few nanometers of aluminum followed by a micrometer layer of aluminum formed via sputter deposition. The samples are then anodized to form nano-scale pores of controlled sizes. The anodization of the prepared samples occurs in an electrochemical cell in H2SO4, H2C2O4 and H3PO4 solutions....... Electrolyte solution variation and anodization parameters (sample temperature, voltage) control, allows for AAO pore diameter and interpore distance tuning. The fabricated AAO is selectively etched in H2CrO4/H3PO4 mixtures, in order to reveal the underlying aluminum nanoscale dimples, which are present at the...

  8. Monolithic Approach to Oxide Dispersion Strengthened Aluminum Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  9. Formation of anodic aluminum oxide with serrated nanochannels.

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Jiang, Chuanhai; Lu, Jia G

    2010-08-11

    We report a simple and robust method to self-assemble porous anodic aluminum oxide membranes with serrated nanochannels by anodizing in phosphoric acid solution. Due to high field conduction and anionic incorporation, an increase of anodizing voltage leads to an increase of the impurity levels and also the field strength across barrier layer. On the basis of both experiment and simulation results, the initiation and formation of serrated channels are attributed to the evolution of oxygen gas bubbles followed by plastic deformation in the oxide film. Alternating anodization in oxalic and phosphoric acids is applied to construct multilayered membranes with smooth and serrated channels, demonstrating a unique way to design and construct a three-dimensional hierarchical system with controllable morphology and composition. PMID:20617804

  10. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  11. Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses

    NARCIS (Netherlands)

    Dingemans, G.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precurs

  12. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  13. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  14. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  15. Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

    CERN Document Server

    Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2008-01-01

    PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the template ; the PLGA solution was then cast on it ; the vacuum air-extraction process was applied to transfer the nano porous pattern from the AAO membrane to the PLGA membrane and form nanostures on it. The cell culture experiments of the bovine endothelial cells demonstrated that the nanostructured PLGA membrane can double the cell growing rate. Compared to the conventional chemical-etching process, the physical fabrication method proposed in this research not only is simpler but also does not alter the characteristics of the PLGA. The nanostructure of the PLGA membrane can be well controlled by the AAO temperate.

  16. Effects of a magnetic field on growth of porous alumina films on aluminum

    International Nuclear Information System (INIS)

    The effects induced by a magnetic field on the oxide film growth on aluminum in sulfuric, oxalic, phosphoric and sulfamic acid, and on current transients during re-anodizing of porous alumina films in the barrier-type electrolyte, were studied. Aluminum films of 100 nm thickness were prepared by thermal evaporation on Si wafer substrates. We could show that the duration of the anodizing process increased by 33% during anodizing in sulfuric acid when a magnetic field was applied (0.7 T), compared to the process without a magnetic field. Interestingly, such a magnetic field effect was not found during anodizing in oxalic and sulfamic acid. The pore intervals were decreased by ca. 17% in oxalic acid. These findings were attributed to variations in electronic properties of the anodic oxide films formed in various electrolytes and interpreted on the basis of the influence of trapped electrons on the mobility of ions migrating during the film growth. The spin dependent tunneling of electrons into the surface layer of the oxide under the magnetic field could be responsible for the shifts of the current transients to lower potentials during re-anodizing of heat-treated oxalic and phosphoric acid alumina films.

  17. Effects of a magnetic field on growth of porous alumina films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Ispas, Adriana; Bund, Andreas [Technische Universitaet Dresden, Physikalische Chemie und Elektrochemie, 01062 Dresden (Germany); Vrublevsky, Igor, E-mail: vrublevsky@bsuir.edu.b [Belarusian State University of Informatics and Radioelectronics Minsk, Department of Micro and Nanoelectronics, 220013 Minsk (Belarus)

    2010-05-01

    The effects induced by a magnetic field on the oxide film growth on aluminum in sulfuric, oxalic, phosphoric and sulfamic acid, and on current transients during re-anodizing of porous alumina films in the barrier-type electrolyte, were studied. Aluminum films of 100 nm thickness were prepared by thermal evaporation on Si wafer substrates. We could show that the duration of the anodizing process increased by 33% during anodizing in sulfuric acid when a magnetic field was applied (0.7 T), compared to the process without a magnetic field. Interestingly, such a magnetic field effect was not found during anodizing in oxalic and sulfamic acid. The pore intervals were decreased by ca. 17% in oxalic acid. These findings were attributed to variations in electronic properties of the anodic oxide films formed in various electrolytes and interpreted on the basis of the influence of trapped electrons on the mobility of ions migrating during the film growth. The spin dependent tunneling of electrons into the surface layer of the oxide under the magnetic field could be responsible for the shifts of the current transients to lower potentials during re-anodizing of heat-treated oxalic and phosphoric acid alumina films.

  18. Fabrication of anodic aluminum oxide with incorporated chromate ions

    Science.gov (United States)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  19. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  20. Damp heat stable doped zinc oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hüpkes, J., E-mail: j.huepkes@fz-juelich.de [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Owen, J.I. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Wimmer, M.; Ruske, F. [Institute of Silicon Photovoltaics, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin (Germany); Greiner, D.; Klenk, R. [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Zastrow, U. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Hotovy, J. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2014-03-31

    Zinc oxide is widely used as transparent contact in thin film solar cells. We investigate the damp heat stability of aluminum doped ZnO (ZnO:Al) films sputter deposited at different conditions. Increase in resistivity upon damp heat exposure was observed for as-deposited ZnO:Al films and the water penetration was directly linked to this degradation. Deuterium was used as isotopic marker to identify the amount of water taken up by the films. Finally, we applied a special annealing step to prepare highly stable ZnO:Al films with charge carrier mobility of 70 cm{sup 2}/Vs after 1000 h of damp heat treatment. A grain boundary reconstruction model is proposed to explain the high stability of ZnO:Al films after annealing. - Highlights: • Study of damp heat degradation on electrical properties of ZnO:Al • Demonstration of fast water penetration and replacement mechanism • Damp heat stable ZnO:Al films with high mobility after damp heat treatment.

  1. Magnetic properties of iron films on anodized aluminum underlayer

    International Nuclear Information System (INIS)

    A one-step anodization process was used to prepare the anodic alumina (AA) film on glass. Using the AA as an inserted underlayer, iron films with thickness of tN in the range of 10 ∼ 35 nm were deposited by argon ion sputtering. The iron film deposited on AA underlayer exhibited different magnetic behaviors from the iron film deposited on glass or on aluminum underlayer. The perpendicular coercivity of film deposited on AA underlayer reached a maximal value of about 1 kOe at tN = 30 nm. We believe that the improvement of magnetic properties came from the modulation of the morphology of Fe film by the porous structure of AA underlayer.

  2. Research on Interpore Distance of Anodic Aluminum Oxide Template

    OpenAIRE

    Liu, Xue-jie; Li, Liang-fang

    2013-01-01

    The relationship between the interpore of anodic aluminum oxide (AAO) template and the influencing factors of electrolyte, temperature and oxidation voltage etc. was researched and summarized in this paper. It was pointed out that the interpore was influenced mostly by electrolyte type and oxidation voltage, and least by the electrolyte concentration and oxidation temperature. The interpore of AAO template increases with the oxidation voltage increases. By adjusting the electrolyte and oxidat...

  3. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  4. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  5. The thickness of native oxides on aluminum alloys and single crystals

    International Nuclear Information System (INIS)

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness

  6. The thickness of native oxides on aluminum alloys and single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Evertsson, J., E-mail: jonas.evertsson@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Bertram, F. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Rullik, L.; Merte, L.R.; Shipilin, M. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Soldemo, M.; Ahmadi, S. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Vinogradov, N.; Carlà, F. [ESRF, B.P. 220, 38043 Grenoble (France); Weissenrieder, J.; Göthelid, M. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Pan, J. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Mikkelsen, A. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden); Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden)

    2015-09-15

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness.

  7. Hangzhou Jinjiang Group Shanxi Fusheng Aluminum Phase I 800,000 t/a Aluminum Oxide Project Started Operation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On October 19,the Shanxi Province Pinglu County Phase I 800,000t/a Aluminum Oxide Project of Shanxi Fusheng Aluminum Co.,Ltd,a subordinate of Hangzhou Jinjiang Group,started operation.This is the fourth Aluminum oxide project constructed and operated by Jinjiang Group.

  8. Self-supported aluminum thin films produced by vacuum deposition process

    Science.gov (United States)

    Neff, J. E.; Timme, R. W.

    1966-01-01

    Self-supported aluminum thin film is produced by vacuum depositing the film on a polyvinyl formal resin film and then removing the resin by radiant heating in the vacuum. The aluminum film can be used as soon as the resin is eliminated.

  9. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  10. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  11. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H2O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF2. • Carbonaceous contamination from the precursor was minimal

  12. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle W. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND (United States); Department of Mechanical Engineering, North Dakota State University, Fargo, ND (United States); Guruvenket, Srinivasan; Sailer, Robert A. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND (United States); Ahrenkiel, S. Phillip [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD (United States); Schulz, Douglas L., E-mail: SBRconsulting@hotmail.com [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND (United States); Department of Mechanical Engineering, North Dakota State University, Fargo, ND (United States)

    2013-12-02

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H{sub 2}O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF{sub 2}. • Carbonaceous contamination from the precursor was minimal.

  13. Preparation of micro/nano-structure superhydrophobic film on aluminum plates using galvanic corrosion method.

    Science.gov (United States)

    Wu, Ruomei; Chao, Guang Hua; Jiang, Haiyun; Pan, Anqiang; Chen, Hong; Yuan, Zhiqing; Liu, Qilong

    2013-10-01

    A simple and novel approach has been developed to obtain a microporous film with compound nanoparticles on the surface of aluminum alloy substrate using the galvanic corrosion method. The wettability of the surface changes from hydrophilicity to superhydrophobicity after chemical modification with stearic acid (SA). The water contact angle (WCA) and sliding angle (WSA) of superhydrophobic aluminum alloy surface (SAAS) are 154 degrees and 9 degrees, respectively. The roughness of the aluminum substrate increases after the oxidation reaction. The porous aluminum matrix surface is covered with irregularly shaped holes with a mean radius of about 15 microm, similar to the surface papillae of natural Lotus leaf, with villus-like nanoparticles array on pore surfaces. The superhydrophobic property is attributed to this special surface morphology and low surface energy SA. X-ray powder diffraction (XRD) pattern and Energy Dispersive X-Ray Spectroscopy (EDS) spectrum indicate that Al2O3, Al(OH)3 and AIO(OH) has been formed on the surface of aluminum substrate after the oxidation reaction. The Raman spectra indicate that C-H bond from SA and the Al-O are formed on the SAAS. The as-formed SAAS has good stability. PMID:24245140

  14. A Conducting Polymer Film Stronger Than Aluminum

    Science.gov (United States)

    Shi, Gaoquan; Jin, Shi; Xue, Gi; Li, Cun

    1995-02-01

    Polythiophene (Pth) was electrochemically deposited onto stainless steel substrate from freshly distilled boron fluoride-ethyl ether containing 10 millimoles of thiophene per liter. The free-standing Pth film obtained at an applied potential of 1.3 volts (versus Ag/AgCl) had a conductivity of 48.7 siemens per centimeter. Its tensile strength (1200 to 1300 kilograms per square centimeter) was greater than that of aluminium (1000 to 1100 kilograms per square centimeter). This Pth film behaves like a metal sheet and can be easily cut into various structures with a knife or a pair of scissors.

  15. Optimization of anodized aluminum oxide pore morphology for GaAs nanowire growth

    Directory of Open Access Journals (Sweden)

    Regine A. Loberternos

    2010-06-01

    Full Text Available Anodic Aluminum oxide films were produced by anodization of sputtered Aluminum thin films on Silicon substrates. The effects of anodization voltage and aqueous oxalic acid solution on the pore diameter and interpore distance were studied. Parameters were sequentially varied to optimize the pore uniformity. Pore morphology was most uniform at 40V anodization voltage and 0.3M solution concentration. Average pore diameter and interpore distance for these parameters are 26.14nm ± 13% and 74.62 ± 8%, respectively. Pore diameter uniformity was further improved by etching with phosphoric acid solution. The AAO films were also successfully used to pattern gold nanoparticle catalysts for the synthesis of semiconductor nanowires.

  16. Poly-Si films with low aluminum dopant containing by aluminum-induced crystallization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Typically, highly p-doped (2×10 18 cm -3 ) poly-Si films fabricated by the aluminum induced layer exchange (ALILE) process are not suitable for solar cell absorber layers. In this paper, the fabrication of high-quality, continuous polycrystalline silicon (poly-Si) films with lower doping concentrations (2×10 16 cm -3 ) using aluminum-induced crystallization (AIC) is reported. Secondary-ion-mass spectroscopy (SIMS) results showed that annealing at different temperature profiles leads to a variety of Al concentrations. Hall Effect measurements revealed that Al dopant concentration depends on the annealing temperature and temperature profile. Raman spectral analysis indicated that samples prepared via AIC contain some regions with small grains.

  17. Transparent Conductive Oxides in Thin Film Photovoltaics

    International Nuclear Information System (INIS)

    This paper show results from the development of transparent conductive oxides (TCO's) on large areas for the use as front electrode in thin film silicon solar modules. It is focused on two types of zinc oxide, which are cheap to produce and scalable to a substrate size up to 6 m2. Low pressure CVD with temperatures below 200°C can be used for the deposition of boron doped ZnO with a native surface texture for good light scattering, while sputtered aluminum doped ZnO needs a post deposition treatment in an acid bath for a rough surface. The paper presents optical and electrical characterization of large area samples, and also results about long term stability of the ZnO samples with respect to the so called TCO corrosion

  18. Mueller Matrix of Specular Reflection Using an Aluminum Grating Surface with Oxide Nanofilm.

    Science.gov (United States)

    Qiu, Jun; Ran, Dongfang; Liu, Linhua; Hsu, Pei-Feng

    2016-06-01

    The accurate nondestructive and real-time determination of the critical dimensions of oxide nanofilms on periodic nanostructures has potential applications in nanofabrication techniques. Mueller ellipsometry is fast, accurate, nondestructive, and can be used in the ambient air. This study used the elements of a Mueller matrix of specular reflection, which is based on a Mueller ellipsometry method, to evaluate the thickness of an oxide nanofilm on an aluminum grating surface. By using non-traditional rigorous coupled-wave analysis (RCWA), we decomposed the Mueller matrix to obtain the relationship between the evaluated polarization properties of reflected light and the dimensions of oxide nanofilms on aluminum grating surfaces. We also quantitatively analyzed the Mueller matrix elements' variation due to the thicknesses of top, sidewall, and bottom oxides. We consider these oxide films are naturally formed and of nonuniform thickness on grating structures. The results show that the elements of Mueller matrix shift with the increasing of the uniform thickness of oxide at a fixed wavelength. Moreover, as oxide nanofilms on grating structures are nonuniform, the impact of the thickness of side wall oxide on the Mueller matrix elements is more obvious than that of top and bottom oxides at the relative larger incidence wavelength range. The finding of this work may facilitate the nondestructive and real-time measurement of the thickness of oxide nanofilms on metal gratings where the metal is easily oxidized. PMID:27129364

  19. Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ruomei [School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 (China); School of Packing Materials and Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412008 (China); Liang Shuquan, E-mail: sqliang@mail.csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 (China); Pan Anqiang [School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 (China); Yuan Zhiqing [School of Packing Materials and Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412008 (China); Tang Yan; Tan Xiaoping; Guan Dikai; Yu Ya [School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083 (China)

    2012-06-01

    Aluminum alloy surface can be etched easily in acid environment, but the microstructure of alloy surface hardly meets the customers' demand. In this work, a facile acidic-assistant surface oxidation technique has been employed to form reproducible super-hydrophobic surfaces on aluminum alloy plates. The samples immersed in three different acid solutions at ambient temperatures are studied and the results demonstrated that the aqueous mixture solution of oxalic acid and hydrochloric is easier to produce better faces and better stability. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectrometer, X-ray photoelectron spectroscopy (XPS) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on aluminum substrates. The surfaces, configured of a labyrinth structure with convexity and concavity, are in different roughness and gloss because of the different recipe acid solutions used. Better roughness of the surface can be obtained by adjusting the concentration of Cl{sup -} and oxalate ions in acid solutions. The present research work provides a new strategy for the controllable preparation super-hydrophobic films of general materials on aluminum alloy for practical industrial applications.

  20. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); Routkevitch, Dmitri; Varaksa, Natalia [InRedox, Longmont, Colorado 80544 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S

  1. Effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste

    International Nuclear Information System (INIS)

    The effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste was investigated by thermal analysis, transmission electron microscopy (TEM) observation, and tensile shear testing. A complete weight loss of diethylene glycol (DEG) in a paste occurred during the redox reaction, whereas a polyethylene glycol 400 (PEG) paste retained the PEG solvent until about 300°C due to its longer carbon chains. Residual PEG in the paste reduced the natural oxide film on copper and nickel substrates during bonding, facilitating a direct sinter of silver nanoparticles to these substrates. On the other hand, silver nanoparticles were sintered to the natural oxide film on an aluminum substrate by the DEG paste. The suitability of the reducing solvent for oxide film reduction of the metal substrate during bonding was explained by an Ellingham diagram. (author)

  2. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid

    Science.gov (United States)

    Chernyakova, K. V.; Vrublevsky, I. A.; Ivanovskaya, M. I.; Kotsikau, D. A.

    2012-03-01

    Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.

  3. The improvement of corrosion resistance of Ce conversion films on aluminum alloy by phosphate post-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haibing [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: zuoy@mail.buct.edu.cn

    2008-06-15

    A phosphate post-treatment process for Ce conversion film on aluminum was studied. SEM (scanning electronic microscope), XPS (X-ray photoelectron spectroscopy) and electrochemical measurements were used to characterize the properties of the films. After the post-treatment the micro-cracks on the film surface obviously diminished, and corrosion resistance of the conversion film in NaCl solution increased. The conversion film, without post-treatment, was mainly composed of hydrated cerium oxides, and the dehydration of the film may cause cracking of the films. After phosphate treatment, stable cerium phosphate CePO{sub 4} was formed on the surface, and the content of crystal water decreased greatly, leading to improvement of the film performance with less micro-cracks.

  4. The improvement of corrosion resistance of Ce conversion films on aluminum alloy by phosphate post-treatment

    International Nuclear Information System (INIS)

    A phosphate post-treatment process for Ce conversion film on aluminum was studied. SEM (scanning electronic microscope), XPS (X-ray photoelectron spectroscopy) and electrochemical measurements were used to characterize the properties of the films. After the post-treatment the micro-cracks on the film surface obviously diminished, and corrosion resistance of the conversion film in NaCl solution increased. The conversion film, without post-treatment, was mainly composed of hydrated cerium oxides, and the dehydration of the film may cause cracking of the films. After phosphate treatment, stable cerium phosphate CePO4 was formed on the surface, and the content of crystal water decreased greatly, leading to improvement of the film performance with less micro-cracks

  5. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  6. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  7. Morphology and water-barrier properties of silane films on aluminum and silicon

    International Nuclear Information System (INIS)

    The goal of this study is to understand the effect of the substrate on the morphology and water-barrier properties of bis-silane films. Silane films are deposited on both Si and Al. Neutron reflectivity is used to assess the effect of hydrothermal conditioning on the films. Aluminum on silicon (no silane) was characterized first to facilitate understanding of the more complicated silane on Al-coated Si. A 200-(angstrom) Al layer with 55-(angstrom) oxide covers the surface of the silicon wafer. The reflectivity data show that water penetrates into the oxide layer. Silane films deposited on either Al or Si substrates have similar bulk and top-surface morphology. Studies of silanes on Si wafers, therefore, can be generalized to include Al. The substrate-silane interface, however, does depend on both the substrate and the silane. Because pH of the bis-sulfur silane solution is outside of the stability range for Al2O3, dissolution of the thin oxide film occurs during solution deposition. A water-depletion area is formed at the interface region due to this reaction.

  8. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  9. The influence of tungsten on the pitting of aluminum films

    International Nuclear Information System (INIS)

    Many of the alloying additions responsible for the corrosion resistance of stainless steels can also be used to enhance the passivity of aluminum, provided that these elements remain in solid solution in the alloy. Passivity enhancing elements such as Cr, Mo, Ta, Zr, and W typically exhibit very low solubility limits in aluminum, below 1 atomic percent, and at these concentrations exert little influence on corrosion behavior. However, these solubility limits can be increased with a concomitant enhancement in corrosion performance if the alloys are produced using a rapid solidification process. One such process is co-sputter deposition of two metals, such as Al and W, simultaneously to form a binary alloy of W in solid solution with Al. Co-sputter deposition is routinely used to produce compound semiconductor films. The authors report on shifts in pitting potentials and on the effect of a transition element (W) on pitting resistance of Al

  10. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV

  11. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  12. Influence of additive element on surface oxide film of A356 alloy

    Institute of Scientific and Technical Information of China (English)

    OUYANG Zhi-ying; LIANG Hong-yu; MAO Xie-min; HONG Mei

    2006-01-01

    The influences of RE-modification and Sr-modification on the hydrogen content and surface oxide film of A356 aluminum alloy melt were investigated. The hydrogen content of the melt was measured by reduce pressure test. The phases in the surface oxide film were analyzed by X-ray diffractometry (XRD), and the morphology of the surface oxide film was observed by scanning electronic microscopy (SEM). The results show that RE-modification reduces the hydrogen content of A356 aluminum alloy greatly.Contrarily, Sr-modification increases the hydrogen content remarkably. After being treated with RE, a large number of LaAl11O18 consisting of Al2O3 and La2O3, are generated in the surface oxide film of A356 alloy. The surface oxide film of Sr-modification is almost composed of Al2SrO4. According to the results of SEM, the surface oxide film of Sr-modification is very easy to crack,destroy the continuity and compactness of surface oxide film, accelerate the vapor diffusing into the melt, consequently, increase the hydrogen content of A356 alloy melt significantly. But RE-modification makes the surface oxide film compact, and restrains the aluminum exposed to water, so reduces the hydrogen content of A356 alloy melt.

  13. Sorption of 90Sr by an aluminum oxide

    International Nuclear Information System (INIS)

    The sorption mechanism of an alkaline-earth bivalent cation on activated aluminum oxide is compared to the sorption mechanism of a monovalent ion. The selective retention of the alkaline-earth cation is made use of to remove trace amounts of Sr90 from radioactive waste waters. A kinetic study is reported, leading to the calculation of an industrial column. (author)

  14. OXYANION SORPTION TO HIGH SURFACE AREA IRON AND ALUMINUM OXIDES

    Science.gov (United States)

    Sorption of selected oxyanions (Mo, As, and P) to high surface area iron and aluminum oxides was investigated using in situ Raman and ATR-FTIR spectroscopy, batch sorption methods, electrophoretic mobility measurements, and surface complexation modeling. In situ ATR-FTIR and Raman spectra were coup...

  15. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  16. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  17. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  18. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  19. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    International Nuclear Information System (INIS)

    Aluminum fluoride (AlF3) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF3 at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths

  20. Electrochemical synthesis and corrosion behavior of thin polyaniline film on mild steel, copper and aluminum

    Directory of Open Access Journals (Sweden)

    Elkais Ali Ramadan

    2011-01-01

    Full Text Available The electrochemical synthesis of polyaniline (PANI on mild steel, aluminum and copper from the sodium benzoate solutions has been investigated. It has been shown that thin, highly adherent, polyaniline films on the investigated metals could be obtained by anodic oxidation with current densities in the range of 0.5 and 1.5 mA cm-2. The corrosion behavior of mild steel, aluminum and copper with polyaniline coating in 0.5 mol dm3 NaCl (pH 3 solutions, has been investigated by polarization technique. The corrosion current densities, porosity and protection efficiency was determined. It has been shown that polyaniline coating provided corrosion protection of all mentioned metals.

  1. Drilling of aluminum and copper films with femtosecond double-pulse laser

    Science.gov (United States)

    Wang, Qinxin; Luo, Sizuo; Chen, Zhou; Qi, Hongxia; Deng, Jiannan; Hu, Zhan

    2016-06-01

    Aluminum and copper films are drilled with femtosecond double-pulse laser. The double-pulse delay is scanned from -75 ps to 90 ps. The drilling process is monitored by recording the light transmitted through the sample, and the morphology of the drilled holes is analyzed by optical microscopy. It is found that, the breakthrough time, the hole evolution during drilling, the redeposited material, the diameters of the redeposited area and the hole, change as functions of double-pulse delay, and are different for the two metals. Along the double-pulse delay axis, three different time constants are observed, a slow one of a few tens of picoseconds, a fast one of a few picoseconds, and an oscillation pattern. Results are discussed based on the mechanisms of plasma shielding, electron-phonon coupling, strong coupling of laser with liquid phase, oxidation of aluminum, laser induced temperature and pressure oscillations, and the atomization of plume particles.

  2. Aluminum oxide sputtering: a new approach to understanding the sputtering process for binary targets

    International Nuclear Information System (INIS)

    The relative abundances of the products Al, Al2O, and AlO sputtered in 15- and 40-kV Ar+ and 15-kV H+ bombardments of aluminum oxide targets (anodized film, polycrystalline disk, sapphire) are functions of the target material and of the nature, flux, and fluence of the ion beam. This finding suggests that, in collisional sputtering, the material's sensitive parameters are the surface binding energies of the sputtered species. These energies are functions of the surface composition present at the moment of a particular sputtering event and should be identified with the partial molar enthalpy of vaporization of a particular species. The aluminum oxide species--Al, Al2O, AlO, Al2O2, AlO2, Al(O2)2, and AlO3--are characterized by matrix isolation spectroscopy aided by O18 isotopic substitution experiments. 12 figures, 4 tables

  3. A Prediction Study on Oxidation of Aluminum Alloy Cladding of U3Si2-Al Fuel Plate

    International Nuclear Information System (INIS)

    U3Si2-Al dispersion fuel with aluminum alloy cladding will be used for the Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding undergoes corrosion at slow rates under operational status. This causes thinning of the cladding walls and impairs heat transfer to the coolant. Predictions of the aluminum oxide thickness of the fuel cladding and the maximum temperature difference across the oxide film are needed for reliability evaluation based on the design criteria and limits which prohibit spallation of oxide film. In this work, several oxide thickness prediction models were compared with the measured data of in-pile test results from RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model were performed for JRTR fuel. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, fresh fuel is discharged after 900 effective full power days (EFPD), which is too long a span to predict oxidation properly without an elaborate model. The latest model developed by Kim et al. is in good agreement with the recent in-pile test data as well as with the out-of-pile test data available in the literature, and is one of the best predictors for the oxidation of aluminum alloy cladding in various operating condition. Accordingly, this model was chosen for estimating the oxide film thickness. Through the preliminarily evaluation, water pH level is to be controlled lower than 6.2 for the conservativeness in the case of including the effect of anticipated operational occurrences and the spent fuel residence time in the storage rack after discharging. (author)

  4. Effect of processing on structural features of anodic aluminum oxides

    Science.gov (United States)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  5. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  6. Passivation effects of atomic-layer-deposited aluminum oxide

    Directory of Open Access Journals (Sweden)

    Kotipalli R.

    2013-09-01

    Full Text Available Atomic-layer-deposited (ALD aluminum oxide (Al2O3 has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012−1013 cm-2 in combination with a low density of interface states (Dit. This paper investigates the passivation quality of thin (15 nm Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD and Thermal atomic layer deposition (T-ALD. Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2 (20 nm, SiO2 (20 nm deposited by plasma-enhanced chemical vapour deposition (PECVD and hydrogenated amorphous silicon nitride (a-SiNx:H (20 nm also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV. The influence of extracted C-V-G parameters (Qf,Dit on the injection dependent lifetime measurements τ(Δn, and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  7. Method of patterning super-conductive oxide films by use of diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Dam, B.; Van der Kolk, G.J.; Heijman, M.G.J.

    1990-11-20

    This patent describes a method of manufacturing a film of a copper oxide based superconducting material in a desired pattern. The superconducting material comprises an alkaline earth metal, copper, another metal component and oxygen in which method a superconductor precursor material comprising copper oxide, alkaline earth metal fluoride and another metal or metal oxide is provided on a substrate in the form of a film, applying a diffusion barrier formed of a material selected from the group consisting of gold, silicon and aluminum and oxides of silicon and of aluminum against water and oxygen in a pattern complementary to the desired pattern on the film and subsequently heating the film with the patterned diffusion barrier to an elevated temperature in the presence of water and oxygen such that the film not covered by the diffusion barrier becomes superconducting.

  8. Spotting 2D atomic layers on aluminum nitride thin films

    Science.gov (United States)

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Raghavan, Srinivasan

    2015-10-01

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  9. Corrosion control of aluminum surfaces by polypyrrole films: influence of electrolyte

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2007-06-01

    Full Text Available Polypyrrole (PPy films were galvanostatically deposited on 99.9 wt. (% aluminum electrodes from aqueous solutions containing each carboxylic acid: tartaric, oxalic or citric. Scanning Electron Microscopy (SEM was used to analyze the morphology of the aluminum surfaces coated with the polymeric films. It was observed that the films deposited from tartaric acid medium presented higher homogeneity than those deposited from oxalic and citric acid. Furthermore, the corrosion protection of aluminum surfaces by PPy films was also investigated by potentiodynamic polarization experiments.

  10. X-ray photoelectron spectroscopy study of the stability of Fomblin Z25 on the native oxide of aluminum

    Science.gov (United States)

    Herrera-Fierro, Pilar; Pepper, Stephen V.; Jones, William R.

    1992-01-01

    Thin films of Fomblin Z25, a perfluoropolyalkylether lubricant, were vapor deposited onto clean, oxidized aluminum, and onto sapphire surfaces, and their behavior at different temperatures was studied using X-ray photoelectron spectroscopy and temperature desorption spectroscopy (TDS). The interfacial fluid molecules decompose on the native oxide at room temperature, and continue to decompose at elevated temperatures, as previous studies had shown to occur on the clean metal. TDS indicated that different degradation mechanisms were operative for clean and oxidized aluminum. On sapphire substrates, no reaction was observed at room temperature. The native oxide of aluminum is neither passive nor protective towards Fomblin Z25. At higher temperatures (150 C), degradation of the polymer on sapphire produced a debris layer at the interface with a chemical composition similar to the one formed on aluminum oxide. Rubbing a Fomblin film on a single crystal sapphire also induced the decomposition of the lubricant in contact with the interface and the formation of a debris layer.

  11. Thermocurrent dosimetry with high purity aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, G.D.; Cameron, J.R.; Moran, P.R.

    1976-01-01

    The application of thermocurrent (TC) to ionizing radiation dosimetry was studied. It was shown that TC in alumina (Al/sub 2/O/sub 3/) has properties that are suited to personnel dosimetry and environmental monitoring. TC dosimeters were made from thin disks of alumina. Aluminum electrodes were evaporated on each side: on one face a high voltage electrode and on the opposite face a measuring electrode encircled by a guard ring. Exposure to ionizing radiation resulted in stored electrons and holes in metastable trapping sites. The signal was read-out by heating the dosimeter with a voltage source and picnometer connected in series between the opposite electrodes. The thermally remobilized charge caused a transient TC. The thermogram, TC versus time or temperature, is similar to a TL glow curve. Either the peak current or the integrated current is a measure of absorbed dose. Six grades of alumina were studied from a total of four commercial suppliers. All six materials displayed radiation induced TC signals. Sapphire of uv-grade quality from the Adolf Meller Co. (AM) had the best dosimetry properties of those investigated. Sources of interference were studied. Thermal fading, residual signal and radiation damage do not limit TC dosimetry. Ultraviolet light can induce a TC response but it is readily excluded with uv-opaque cladding. Improper surface preparation prior to electrode evaporation was shown to cause interference. A spurious TC signal resulted from polarization of surface contaminants. Spurious TC was reduced by improved cleaning prior to electrode application. Polished surfaces resulted in blocking electrodes and caused a sensitivity shift due to radiation induced thermally activated polarization. This was not observed with rough cut surfaces.

  12. Improved efficiency of aluminum doping in ZnO thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hui Kyung; Heo, Jaeyeong, E-mail: jheo@jnu.ac.kr

    2014-08-01

    The improved efficiency of aluminum doping in ZnO (AZO) thin films grown by atomic layer deposition was demonstrated by controlling the number of surface reaction sites for trimethylalumium (TMA). Prolonged purge time (120 s) for deionized water used as an oxidant decreased the number of hydroxyl groups on the surface via dehydration reaction, resulting in the reduced chemisorption of TMA. The enhanced doping efficiency by sparse distribution of Al dopants was demonstrated by the increased carrier concentration from ~4 × 10²⁰ to ~6 × 10²⁰ cm⁻³ for the same Al doping cycle ratio. A comparison was made among the AZO films formed by using the control and modified recipes, focusing on their electrical, structural, and optical properties.

  13. Thermally stimulated luminescence studies in combustion synthesized polycrystalline aluminum oxide

    Indian Academy of Sciences (India)

    K R Nagabhushana; B N Lakshminarasappa; D Revannasiddaiah; Fouran Singh

    2008-08-01

    Synthesis of materials by combustion technique results in homogeneous and fine crystalline product. Further, the technique became more popular since it not only saved time and energy but also was easy to process. Aluminum oxide phosphor was synthesized by using urea as fuel in combustion reaction. Photoluminescence (PL) and thermally stimulated luminescence (TSL) characteristics of -irradiated aluminum oxide samples were studied. A broad PL emission with a peak at ∼ 465 nm and a pair of strong and sharp emissions with peaks at 679 and 695 nm were observed in -rayed samples. The PL intensity was observed to increase with increase in -ray dose. Two prominent and well resolved TSL glows with peaks at 210°C and 365°C were observed in all -irradiated Al2O3 samples. The TSL intensity was also found to increase with increase in -ray dose. The TSL glow curves indicated second order kinetics.

  14. Formation of Nanoporous Anodic Alumina by Anodization of Aluminum Films on Glass Substrates.

    Science.gov (United States)

    Lebyedyeva, Tetyana; Kryvyi, Serhii; Lytvyn, Petro; Skoryk, Mykola; Shpylovyy, Pavlo

    2016-12-01

    Our research was aimed at the study of aluminum films and porous anodic alumina (PAA) films in thin-film РАА/Al structures for optical sensors, based on metal-clad waveguides (MCWG). The results of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies of the structure of Al films, deposited by DC magnetron sputtering, and of PAA films, formed on them, are presented in this work.The study showed that the structure of the Al films is defined by the deposition rate of aluminum and the thickness of the film. We saw that under anodization in 0.3 M aqueous oxalic acid solution at a voltage of 40 V, the PAA film with a disordered array of pores was formed on aluminum films 200-600 nm thick, which were deposited on glass substrates with an ultra-thin adhesive Nb layer. The research revealed the formation of two differently sized types of pores. The first type of pores is formed on the grain boundaries of aluminum film, and the pores are directed perpendicularly to the surface of aluminum. The second type of pores is formed directly on the grains of aluminum. They are directed perpendicularly to the grain plains. There is a clear tendency to self-ordering in this type of pores. PMID:27083584

  15. Catalytic Behaviour of Mesoporous Cobalt-Aluminum Oxides for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ankur Bordoloi

    2014-01-01

    Full Text Available Ordered mesoporous materials are promising catalyst supports due to their uniform pore size distribution, high specific surface area and pore volume, tunable pore sizes, and long-range ordering of the pore packing. The evaporation-induced self-assembly (EISA process was applied to synthesize mesoporous mixed oxides, which consist of cobalt ions highly dispersed in an alumina matrix. The characterization of the mesoporous mixed cobalt-aluminum oxides with cobalt loadings in the range from 5 to 15 wt% and calcination temperatures of 673, 973, and 1073 K indicates that Co2+ is homogeneously distributed in the mesoporous alumina matrix. As a function of the Co loading, different phases are present comprising poorly crystalline alumina and mixed cobalt aluminum oxides of the spinel type. The mixed cobalt-aluminum oxides were applied as catalysts in CO oxidation and turned out to be highly active.

  16. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    International Nuclear Information System (INIS)

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH4F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO2 anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO2 structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO2 nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO2 were investigated. • Al doping into nanoporous TiO2 retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation

  17. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  18. Effect of aluminum metal surface on oxidation of iodide under gamma irradiation conditions

    International Nuclear Information System (INIS)

    The effects of aluminum surface on I- oxidation under gamma irradiation were investigated. Without irradiation, only O2 oxidized I- at pH < 2, and aluminum expedited the oxidation reaction. With irradiation, the radiolysis products from water and air oxidized I- into I3-. At pH < 2, O2 generated by water radiolysis additionally oxidized I-. However, at pH > 6, the H2O2 radiolysis product reduced I3- into I-. A smaller amount of I3- was observed in pH 1.9 and 3.3 solutions in contact with aluminum under irradiation because oxidants preferentially oxidize aluminum rather than I-. Moreover, for pH < 6.0, even less I3- was formed by aluminum exposed to air because air radiolysis products also preferentially oxidized aluminum. (author)

  19. Thin films of aluminum nitride and aluminum gallium nitride for cold cathode applications

    Science.gov (United States)

    Sowers, A. T.; Christman, J. A.; Bremser, M. D.; Ward, B. L.; Davis, R. F.; Nemanich, R. J.

    1997-10-01

    Cold cathode structures have been fabricated using AlN and graded AlGaN structures (deposited on n-type 6H-SiC) as the thin film emitting layer. The cathodes consist of an aluminum grid layer separated from the nitride layer by a SiO2 layer and etched to form arrays of either 1, 3, or 5 μm holes through which the emitting nitride surface is exposed. After fabrication, a hydrogen plasma exposure was employed to activate the cathodes. Cathode devices with 5 μm holes displayed emission for up to 30 min before failing. Maximum emission currents ranged from 10-100 nA and required grid voltages ranging from 20-110 V. The grid currents were typically 1 to 104 times the collector currents.

  20. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    International Nuclear Information System (INIS)

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C2H2 and H2 at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/μm and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  1. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    Science.gov (United States)

    Wing, Waylin J.; Sadeghi, Seyed M.; Gutha, Rithvik R.; Campbell, Quinn; Mao, Chuanbin

    2015-09-01

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.

  2. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    International Nuclear Information System (INIS)

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios

  3. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission

    Energy Technology Data Exchange (ETDEWEB)

    Wing, Waylin J.; Sadeghi, Seyed M., E-mail: seyed.sadeghi@uah.edu; Gutha, Rithvik R.; Campbell, Quinn [Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Mao, Chuanbin [Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2015-09-28

    We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.

  4. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films

    International Nuclear Information System (INIS)

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (108 cm−2), in the case of hydrogen-treated ND seeding particles, to very high values of 1011 cm−2 for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young’s moduli of more than 1000 GPa. (paper)

  5. X-ray absorption study of cerium in the passive film on aluminum

    International Nuclear Information System (INIS)

    The corrosion-resistance of aluminum-based alloys and metal-matrix composites can be increased by treatment with cerium compounds. Immersion in a 1000 ppm solution of Ce Cl3 for periods of several days has been shown to increase the pitting potential and reduce the corrosion rate. Such treatment is being considered as an alternative to the use of chromate conversion coatings. The protective action of cerium is considered to be due to the formation of a film containing cerium oxide/hydroxide with cerium in the oxidation states 3 and 4. This occurs by precipitation of cerium compounds onto cathodic sites due to the increase of pH associated with oxygen reduction. Cerium compounds are considerably less soluble than aluminum compounds at high pH. It is proposed that the cerium oxide/hydroxide creates a barrier to the reduction of oxygen stifling cathodic reaction with a corresponding reduction in corrosion rate and open circuit potential. Glancing angle x-ray techniques are well-suited to studying the composition and structure of surface layers on materials. X-rays incident at very small angles (of the order of milliradians) below the critical angle do not penetrate beyond the surface layers of the material. With the extremely high brightness beams of x-rays provided by synchrotron sources the authors detect and characterize the chemical state of elements present in low concentrations in the surface of materials

  6. A nine-atom rhodium–aluminum oxide cluster oxidizes five carbon monoxide molecules

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium–aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  7. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules.

    Science.gov (United States)

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  8. Prediction of new thermodynamically stable aluminum oxides

    CERN Document Server

    Liu, Yue; Wang, Shengnan; Zhu, Qiang; Dong, Xiao; Kresse, Georg

    2015-01-01

    Recently, it has been shown that under pressure, unexpected and counterintuitive chemical compounds become stable. Laser shock experiments (A. Rode, unpublished) on alumina (Al2O3) have shown non-equilibrium decomposition of alumina with the formation of free Al and a mysterious transparent phase. Inspired by these observations, with have explored the possibility of the formation of new chemical compounds in the system Al-O. Using the variable-composition structure prediction algorithm USPEX, in addition to the well-known Al2O3, we have found two extraordinary compounds Al4O7 and AlO2 to be thermodynamically stable in the pressure range 330-443 GPa and above 332 GPa, respectively. Both of these compounds at the same time contain oxide O2- and peroxide O22- ions, and both are insulating. Peroxo-groups are responsible for gap states, which significantly reduce the electronic band gap of both Al4O7 and AlO2.

  9. Aluminum recycling from reactor walls: A source of contamination in a-Si:H thin films

    International Nuclear Information System (INIS)

    In this article, the authors investigate the contamination of hydrogenated amorphous silicon thin films with aluminum recycled from the walls and electrodes of the deposition reactor. Thin films of hydrogenated amorphous silicon were prepared under various conditions by a standard radio frequency plasma enhanced chemical vapor deposition process in two reactors, the chambers of which were constructed of either aluminum or stainless steel. The authors have studied the electronic properties of these thin films and have found that when using an aluminum reactor chamber, the layers are contaminated with aluminum recycled from the chamber walls and electrode. This phenomenon is observed almost independently of the deposition conditions. The authors show that this contamination results in slightly p-doped films and could be detrimental to the deposition of device grade films. The authors also propose a simple way to control and eventually suppress this contamination.

  10. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  11. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.; Boltasseva, Alexandra; Klar, T. A.; Pedarnig, J. D.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...... from dense and small-grained ceramic targets show optical transmission larger than 70 % in the visible and reveal an onset of metallic reflectivity in the near infrared at 1100 nm and a crossover to a negative real part of the permittivity at approximately 1500 nm. In comparison to noble metals, doped...

  12. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  13. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO2-Al dispersion fuel. The aluminum-fuel interaction models were developed based on U3O8-Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U3O8 are valid for UO2, the LEU UO2-Al with a 42% fuel volume loading (4 g U/cm3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 1027 fissions m-3 (∼63% 235U burnup). (author)

  14. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  15. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  16. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  17. Deposition and characterization of amorphous aluminum nitride thin films for a gate insulator

    International Nuclear Information System (INIS)

    Thin films of aluminum nitride (AlN) fabricated by reactive deposition were characterized in order to examine the electrical insulation properties suitable for a gate insulator. For a series of AlN films deposited with a variation of the amount of Al flux at a fixed N flux, compositional and chemical analyses were performed using X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA). Combined with the result of current-voltage (I-V) measurement, it is found that the insulation properties are correlated with the compositional ratio between Al and N estimated by the ERDA measurement; a good electrical insulation with a minimal leak current of the order of 10-9 A/cm2 at a high electric field 1 MV/cm is achieved in the film of nearly stoichiometric compositional ratio of Al/N, in which the dominance of the Al-N bonding state is confirmed in the XPS measurement. On the other hand, the incorporation of oxygen, probably caused by the surface oxidization due to the exposure to the air, has little effect on the electrical properties. - Highlights: • AlN thin films deposited by reactive deposition were characterized for gate insulator. • A good electrical insulation was achieved at nearly stoichiometric composition. • The effects of oxygen incorporation and Al-N bonding state were also investigated. • A minimum leak current density as low as 10-9A/cm2 at 1MV/cm was achieved

  18. Screen Cage Ion Plating (SCIP) and scratch testing of polycrystalline aluminum oxide

    Science.gov (United States)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1992-01-01

    A screen cage ion plating (SCIP) technique was developed to apply silver films on electrically nonconducting aluminum oxide. It is shown that SCIP has remarkable throwing power; surfaces to be coated need not be in direct line of sight with the evaporation source. Scratch tests, employing a diamond stylus with a 200 micro m radius tip, were performed on uncoated and on silver coated alumina. Subsequent surface analysis show that a significant amount of silver remains on the scratched surfaces, even in areas where high stylus load produced severe crack patterns in the ceramic. Friction coefficients were lowered during the scratch tests on the coated alumina indicating that this modification of the ion planting process should be useful for applying lubricating films of soft metals to electrical insulating materials. The very good throwing power of SCIP also strongly suggests general applicability of this process in other areas of technology, e.g., electronics, in addition to tribology.

  19. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    International Nuclear Information System (INIS)

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point

  20. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin FilmsCharacterization Tools of Oxide Ultrathin FilmsOrdered Oxide Nanostructures on Metal SurfacesUnusual Properties of Oxides and Other Insulators in the Ultrathin Li

  1. Stoichiometry and characterization of aluminum oxynitride thin films grown by ion-beam-assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Oxides are inherently stable in air at elevated temperatures and may serve as wear resistant matrices for solid lubricants. Aluminum oxide is a particularly good candidate for a matrix because it has good diffusion barrier properties and modest hardness. Most thin film deposition techniques that are used to grow alumina require high temperatures to impart crystallinity. Crystalline films are about twice as hard as amorphous ones. Unfortunately, the mechanical properties of most engineering steels are degraded at temperatures above 250-350 deg. C. This work is focused on using energetic reactive ion bombardment during simultaneous pulsed laser deposition to enhance film crystallization at low temperatures. Alumina films were grown at several background gas pressures and temperatures, with and without Ar ion bombardment. The films were nearly stoichiometric except for depositions in vacuum. Using nitrogen ion bombardment, nitrogen was incorporated into the films and formed the Al-O-N matrix. Nitrogen concentration could be controlled through selection of gas pressure and ion energy. Crystalline Al-O-N films were grown at 330 deg. C with a negative bias voltage to the substrate, and showed improved hardness in comparison to amorphous films

  2. Standard specification for nuclear-grade aluminum oxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification applies to pellets of aluminum oxide that may be ultimately used in a reactor core, for example, as filler or spacers within fuel, burnable poison, or control rods. In order to distinguish between the subject pellets and “burnable poison” pellets, it is established that the subject pellets are not intended to be used as neutron-absorbing material. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  3. Aluminum film microdeposition at 775 nm by femtosecond laser-induced forward transfer

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Chingyue Wang; Xiaochang Ni; Yinzhong Wu; Wei Jia; Lu Chai

    2007-01-01

    Micro-deposition of an aluminum film of 500-nm thickness on a quartz substrate was demonstrated by laserinduced forward transfer (LIFT) using a femtosecond laser pulse. With the help of atomic force microscopy (AFM) and scanning electron microscopy (SEM), the dependence of the morphology of deposited aluminum film on the irradiated laser pulse energy was investigated. As the laser fluence was slightly above the threshold fluence, the higher pressure of plasma for the thicker film made the free surface of solid phase burst out, which resulted in that not only the solid material was sputtered but also the deposited film in the liquid state was made irregularly.

  4. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li, Guolong, E-mail: lglysu@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zou, Jie [China Aviation Industry Chengdu Engine (Group) Co. Ltd., Chengdu 610503 (China); Cai, Jingrui; He, Donglei; Ma, Haojie; Liu, Fangfei [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-15

    In this paper, we investigate the microstructure and corrosion behavior of the micro-arc oxidation (MAO) coating on 6061 aluminum alloy that pre-treated by high-temperature oxidation (HTO). Microstructure, chemical and corrosion behaviors of the fabricated MAO ceramic coatings were studied by using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical corrosion tests. The results reveal that the pre-fabricated HTO film remarkably affects the formation of the MAO coating, leads to an enriched content of Mg, and decreases the compactness of the coating. The corrosion resistance of the 6061 aluminum alloy has been significantly improved by treatments of HTO, normal MAO (NMAO) and HTO pre-treated MAO (HTO-MAO), and the NMAO coating exhibits the best corrosion performance. The content of Mg in HTO pre-fabricated film is remarkedly higher than that in the substrate, which greatly influences the formation of the MAO coating.

  5. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation

    International Nuclear Information System (INIS)

    In this paper, we investigate the microstructure and corrosion behavior of the micro-arc oxidation (MAO) coating on 6061 aluminum alloy that pre-treated by high-temperature oxidation (HTO). Microstructure, chemical and corrosion behaviors of the fabricated MAO ceramic coatings were studied by using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical corrosion tests. The results reveal that the pre-fabricated HTO film remarkably affects the formation of the MAO coating, leads to an enriched content of Mg, and decreases the compactness of the coating. The corrosion resistance of the 6061 aluminum alloy has been significantly improved by treatments of HTO, normal MAO (NMAO) and HTO pre-treated MAO (HTO-MAO), and the NMAO coating exhibits the best corrosion performance. The content of Mg in HTO pre-fabricated film is remarkedly higher than that in the substrate, which greatly influences the formation of the MAO coating.

  6. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Li Qizheng; Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-04-15

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO{sub 3}){sub 2} solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  7. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    International Nuclear Information System (INIS)

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO3)2 solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  8. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.;

    1992-01-01

    were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...

  9. An Analysis of Mechanical Properties of Anodized Aluminum Film at High Stress

    Science.gov (United States)

    Zhao, Xixi; Wei, Guoying; Yu, Yundan; Guo, Yuemei; Zhang, Ao

    2015-10-01

    In this paper, a new environmental-friendly electrolyte containing sulfuric acid and tartaric acid has been used as the substitute of chromic acid for anodization. The work discussed the influence of anodizing voltages on the fatigue life of anodized Al 2024-T3 by performing fatigue tests with 0.1 stress ratio (R) at 320 MPa. Meanwhile the fatigue cycles to failure, yield strength, tensile strength and fracture surface of anodic films at different conditions were investigated. The results showed that the fatigue life of anodized and sealed specimens reduced a lot compared to aluminum alloy, which can be attributed to the crack sites initiated at the oxide layer. The fracture surface analyses also revealed that the number of crack initiation sites enlarged with the increase of anodizing voltage.

  10. Microstructural evolution of tungsten oxide thin films

    International Nuclear Information System (INIS)

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 deg. were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a 'instability wheel' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  11. Research on oxidation resistance of Al2O3 thin film prepared by electrodeposition-pyrolysis

    Directory of Open Access Journals (Sweden)

    Jing MA

    2015-08-01

    Full Text Available Al2O3 thin films are deposited on the surface of 304 stainless steel by electrodeposition-pyrolysis, and the effects of electrolyte concentration and electro-deposition voltage on the oxidation behavior of Al2O3 thin film at 900 ℃ are investigated. Macroscopic surface morphologies, XRD analysis and oxidation kinetics curves show that the electrodeposition-Al2O3 thin films reduce the partial pressure of oxygen at the initial oxidation stage on the substrate surface, promoting the selective oxidation, thus the oxidation resistance of 304 stainless steel is significantly improved. The high temperature oxidation resistance of Al2O3 film prepared under voltage of 25 V and aluminum nitrate alcohol solution of 0.10 mol/L is the best.

  12. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Aluminum oxide pellets are used in a reactor core as filler or spacers within fuel, burnable poison, or control rods. In order to be suitable for this purpose, the material must meet certain criteria for impurity content. The test methods in the standard are designed to show whether or not a given material meets these specifications. The following analytical procedures are described in detail: boron by titrimetry; separation of boron by mass spectrometry; isotopic composition by mass spectrometry; separation of halides by pyrohydrolysis; fluoride by ion-selective electrode; chloride, bromide, and iodide by amperometric microtitrimetry; trace elements by emission spectroscopy. (JMT)

  13. Nanosized Cobalt Oxides over Aluminum Monoliths for VOC Oxidation.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Klempa, Jan; Balabánová, Jana

    Poznań: Poznan Science and Technology Park, 2016, P61. ISBN N. [Designing New Heterogeneous Catalysts: Faraday Discussion. London (GB), 04.04.2016-06.04.2016] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : cobalt oxides * Al monoliths * catalyst layer Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Analysis of magnetron sputtered boron oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Buc, Dalibor [Slovak University of Technology in Bratislava (Slovakia); Bello, Igor [City University of Hong Kong, Kowloon, Hong Kong (China); Caplovicova, Maria [Comenius University in Bratislava (Slovakia); Mikula, Milan; Kovac, Jaroslav; Hotovy, Ivan [Slovak University of Technology in Bratislava (Slovakia); Chong, Yat Min [City University of Hong Kong, Kowloon, Hong Kong (China); Siu, Guei Gu [City University of Hong Kong, Kowloon, Hong Kong (China)], E-mail: apggsiu@cityu.edu.hk

    2007-10-15

    Boron oxide films were grown on silicon substrates by radio-frequency (rf) unbalanced magnetron sputtering of a boron target in argon-oxygen gas mixtures with different compositions. Microscopic analyses show that overall boron oxide films are amorphous. The film prepared at oxygen/argon flow rate ratio > 0.05 developed large crystallites of boric acid in localize areas of amorphous boron oxide matrices. These crystallites were unstable and at electron microscopic analysis they continuously transformed to a cubic HBO{sub 2} phase and then completely vanished leaving an underlying amorphous boron oxide film behind. The analyses indicate the coexistence of B{sub 6}O, HBO{sub 2} crystallites and amorphous boron oxide matrices. Fourier transform infrared (FTIR) spectra revealed spectral bands of BOH, BO, BOB and BH groups. Nanohardness and elastic modulus of a film prepared at low oxygen concentration approach 30 and 300 GPa, respectively. These parameters however vary with deposition conditions.

  15. Interfacial charging phenomena of aluminum (hydr)oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hiemstra, T.; Yong, H.; Van Riemsdijk, W.H.

    1999-08-31

    The interfacial charging of Al(OH){sub 3} (gibbsite and bayerite) and Al{sub 2}O{sub 3} has been studied. For Al(OH){sub 3} it can be shown that the very strong variation in charging behavior for different preparations is related to the relative presence of differently reacting crystal planes. The edge faces of the hexagonal gibbsite crystals are proton reactive over the whole pH range, in contrast to the 001 plane, which is mainly uncharged below pH = 10. On this 001 face only doubly coordinated surface groups are found, in contrast to the edges which also have singly coordinated surface groups. The results are fully in agreement with the predictions of the Multi site complexation (MUSIC) model. The proton adsorption, electrolyte ion adsorption, and shift of the IEP of gibbsite and aluminum oxide have been modeled simultaneously. For gibbsite, the ion pair formation of Na is larger than that of Cl, as is evidenced by modeling the experimentally observed upward shift on the IEP and charge reversal at high electrolyte concentrations. All these experimental results can be satisfactorily modeled with the MUSIC model, including the experimental surface potential of aluminum oxide (ISFET).

  16. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte. PMID:25125114

  17. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    International Nuclear Information System (INIS)

    Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide

  18. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail: mpvinardellmh@ub.edu; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)

    2015-02-15

    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  19. Study of morphology of oxide film formed on magnesium alloys in casting conditions (AZ91)

    International Nuclear Information System (INIS)

    Morphology of surface oxide film formed during pouring of molten magnesium alloy has been investigated. Due to surface turbulence during casting, the oxide film necessarily makes folded cause in a dry surface to dry surface mode creating a double oxide film with the volume of air that can be encapsulated between folds of the film and this led to make gas bubbles or shrinkage cavities form. These kinds of oxides called new oxide films that form in a very short time during pouring. It seems to be one of the main reasons for dross-like defects. However, study of characterization and features of oxide film affected on prediction of final mechanical properties. The inner, un wetted surfaces of the doubled film representing an unbounded interface in the liquid and therefore, effectively constitute a crack. Samples for the study were prepared based on a technique in which an oxide metal sandwich was made by the bubble impingement technique, after impingement the contact areas of two adjacent and entrapped bubbles oxide-metal-oxide layer were selected for the study. Features such as thickness, size, morphology and chemical composition of the oxide film were studied using a scanning electron microscope. Energy dispersive X-ray microanalysis was performed for detection of the composition of the oxide layers. Results showed that the morphology of the oxide film in molten of magnesium alloys is folded and quite rough included globally phases of magnesium oxide. Recently, researches showed that the morphology of the oxide film in aluminum alloys is different due to composition of base alloy. Magnesium alloys in liquid state due to high oxidation rate is sensitive to formation of oxide film. Thickness of the oxide film folds in magnesium alloys is 2-4 μm that in comparison to aluminum alloys are ten times higher. However, potential of casting defects is higher in Mg alloys. The contacting interface between impinged bubbles represents an elegant and powerful means for studying

  20. Friction reducing behavior of stearic acid film on a textured aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Wan, Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Li, Yang; Yang, Shuyan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Yao, Wenqing [Analysis Center of Tsinghua University, Beijing 100084 (China)

    2013-09-01

    A simple two-step process was developed to render the aluminum hydrophobicity with lower friction. The textured aluminum substrate was firstly fabricated by immersed in a sodium hydroxide solution at 100 °C for 1 h. Stearic acid film was then deposited to acquire high hydrophobicity. Scanning electron microscopy, IR spectroscopy and water contact angle measurements were used to analyze the morphological features, chemical structure and hydrophobicity of prepared samples, respectively. Moreover, the friction reducing behavior of the organic–inorganic composite film on aluminum sliding against steel was evaluated in a ball-on-plate configuration. It was found that the stearic acid film on the textured aluminum led to decreased friction with significantly extended life.

  1. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications

    OpenAIRE

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri

    2013-01-01

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processi...

  2. Fabrication of Poly-Si Thin Film on Glass Substrate by Aluminum-induced Crystallization

    Institute of Scientific and Technical Information of China (English)

    XU Man; XIA Donglin; YANG Sheng; ZHAO Xiujian

    2006-01-01

    Amorphous silicon (a-Si) thin films were deposited on glass substrate by PECVD,and polycrystalline silicon (poly-Si) thin films were prepared by aluminum-induced crystallization (AIC). The effects of annealing temperature on the microstructure and morphology were investigated. The AIC poly-Si thin films were characterized by XRD, Raman and SEM. It is found that a-Si thin film has a amorphous structure after annealing at 400 ℃ for 20 min, a-Si films begin to crystallize after annealing at 450 ℃ for 20 min, and the crystallinity of a-Si thin films is enhanced obviously with the increment of annealing temperature.

  3. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    International Nuclear Information System (INIS)

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed

  4. Quaternary polymethacrylate-magnesium aluminum silicate films: Water uptake kinetics and film permeability.

    Science.gov (United States)

    Rongthong, Thitiphorn; Sungthongjeen, Srisagul; Siepmann, Florence; Siepmann, Juergen; Pongjanyakul, Thaned

    2015-07-25

    The aim of this study was to investigate the impact of the addition of different amounts of magnesium aluminum silicate (MAS) to polymeric films based on quaternary polymethacrylates (QPMs, here Eudragit RS and RL). MAS contains negatively charged SiO(-) groups, while QPM contains positively charged quaternary ammonium groups. The basic idea is to be able to provide desired water and drug permeability by simply varying the amount of added MAS. Thin, free films of varying composition were prepared by casting and exposed to 0.1M HCl and pH 6.8 phosphate buffer. The water uptake kinetics and water vapor permeability of the systems were determined gravimetrically. The transport of propranolol HCl, acetaminophen, methyl-, ethyl- and propylparaben across thin films was studied using side-by-side diffusion cells. A numerical solution of Fick's second law of diffusion was applied to determine the apparent compound diffusion coefficients, partition coefficients between the bulk fluids and the films as well as the apparent film permeability for these compounds. The addition of MAS resulted in denser inner film structures, at least partially due to ionic interactions between the positively charged quaternary ammonium groups and the negatively charged SiO(-) groups. This resulted in lower water uptake, reduced water vapor permeability and decreasing apparent compound diffusivities. In contrast, the affinity of the investigated drugs and parabens to the films substantially increased upon MAS addition. The obtained new knowledge can be helpful for the development of novel coating materials (based on QPM-MAS blends) for controlled-release dosage forms. PMID:26004005

  5. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    Science.gov (United States)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  6. Strong coupling of sapphire surface polariton with aluminum nitride film phonon

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, V.A., E-mail: yakovlev@isan.troitsk.r [Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, Moscow reg., 142190 (Russian Federation); Novikova, N.N.; Vinogradov, E.A. [Institute for Spectroscopy of Russian Academy of Sciences, Troitsk, Moscow reg., 142190 (Russian Federation); Ng, S.S.; Hassan, Z.; Hassan, H. Abu [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2009-06-22

    Surface polariton spectra of a thin (25 nm) aluminum nitride film on sapphire substrate have been measured using attenuated total reflection technique. Due to the strong coupling of sapphire substrate surface polariton with the film transverse optical phonon the splitting of the dispersion curve of sapphire surface polariton was found.

  7. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    Science.gov (United States)

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits. PMID:26927754

  8. Deposition and characterization of vacuum deposited aluminum films on Kapton laminates

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, D.M.

    1978-07-01

    A process has been developed for the vacuum deposition by electron beam evaporation of high quality aluminum films 10 ..mu..m thick on domed three-layer laminated substrates consisting of Kapton/Pyralux/Kapton/Pyralux/Aluminum (Du Pont Corporation). Thermogravimetric analysis and mass spectrometry of the substrate materials and in-process residual gas analysis were used to determine the outgassing characteristics of the substrate laminate and to aid in the development of suitable thermal processing. The laminated substrates required bakeouts both at atmosphere and in high vacuum prior to deposition to permit evaporation at a pressure of 0.1 mPa (1 x 10/sup -6/ torr). Film properties that were obtained were a thickness uniformity across a 200 mm diameter part in the 1 percent range, a resistivity near that of bulk pure aluminum, a smooth and shiny film surface, and adequate film adhesion.

  9. Electrochromism of amorphous ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se-Hee; Liu, Ping; Tracy, C. Edwin; Deb, Satyen K. [National Renewable Energy Laboratory, Center for Basic Sciences, 1617 Cole Boulevard, Golden, CO 80401 (United States); Cheong, Hyeonsik M. [Sogang University, Shinsoo-Dong, Seoul 121-742 (Korea, Republic of)

    2003-12-01

    We report on the electrochromic behavior of amorphous ruthenium oxide thin films and their electrochemical characteristics for use as counterelectrodes for electrochromic devices. Hydrous ruthenium oxide thin films were prepared by cyclic voltammetry on ITO coated glass substrates from an aqueous ruthenium chloride solution. The cyclic voltammograms of this material show the capacitive behavior including two redox reaction peaks in each cathodic and anodic scan. The ruthenium oxide thin film electrode exhibits a 50% modulation of optical transmittance at 670 nm wavelength with capacitor charge/discharge.

  10. Effect of grain size on the melting point of confined thin aluminum films

    International Nuclear Information System (INIS)

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.

  11. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    Science.gov (United States)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  13. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  14. Fabrication of YBCO nanowires with anodic aluminum oxide (AAO) template

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, Sedigheh, E-mail: dadras@alzahra.ac.ir; Aawani, Elaheh

    2015-10-15

    We have fabricated YBCO nanowires by using anodic aluminum oxide (AAO) template and sol–gel method, to investigate the fundamental properties of the one-dimensional nanostructure YBCO high-temperature superconductor and enhance its applications. The field-emission scanning electron microscopy and X-ray diffraction pattern results have shown forming of Y-123 nanowires in the template. As an outcome, the YBCO nanowires, prepared by dipping AAO template into YBCO sol method, have average diameter of about 38 nm and length of 1 μm; this is an optimum nanowire sample with larger diameter and length. The resistance–temperature measurement indicates that the onset critical temperature of these samples occurs at 91 K, and the resistance of the optimum sample at onset transition is 10 times lower than the other sample.

  15. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    Science.gov (United States)

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications.

  16. Phosphorous and aluminum gettering in Silicon-Film{trademark} Product II material

    Energy Technology Data Exchange (ETDEWEB)

    Cotter, J.E.; Barnett, A.M.; Hall, R.B. [AstroPower, Inc., Newark, DE (United States)] [and others

    1995-08-01

    Gettering processes are being developed for the Silicon-Film{trademark} Product II solar cell structure. These processes have been developed specifically for films of silicon grown on dissimilar substrates with barrier layers. Gettering with both phosphorous- and aluminum-based processing sequences has resulted in enhancement of minority carrier diffusion length. Long diffusion lengths have allowed the characterization of light trapping in thin films of silicon grown on barrier-coated substrates.

  17. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  18. Fabrication and Corrosion Resistance of Super hydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    International Nuclear Information System (INIS)

    Super hydrophobic hydroxide zinc carbonate (HZC) films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF2)6(CH2))3Si(OCH3)3) molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM), water contact angle measurement (CA), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS), respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pine cone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the super hydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements’ results revealed that the super hydrophobic surface considerably improved the corrosion resistance of aluminum.

  19. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications.

    Science.gov (United States)

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C; Litvinov, Dmitri

    2013-06-15

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201

  20. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  1. In-flight oxidation of aluminum in the twin-wire electric arc process

    Science.gov (United States)

    Guillen, Donna Post; Williams, Brian G.

    2006-03-01

    This paper examines the in-flight oxidation of aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. Aerodynamic shear at the droplet surface increases the amount of in-flight oxidation by promoting entrainment of the surface oxides within the molten droplet and continually exposing fresh fluid available for oxidation. Mathematical predictions herein confirm experimental measurements that reveal an elevated, nearly constant surface temperature (˜2273 K) of the droplets during flight. The calculated oxide volume fraction of a “typical” droplet with internal circulation compares favorably to the experimentally determined oxide content (3.3 12.7%) for a typical TWEA-sprayed aluminum coating sprayed onto a room temperature substrate. It is concluded that internal circulation within the molten aluminum droplet is a significant source of oxidation. This effect produces an oxide content nearly two orders of magnitude larger than that of a droplet without continual oxidation.

  2. Aluminum-doped Zn O polycrystalline films prepared by co-sputtering of a Zn O-Al target

    Energy Technology Data Exchange (ETDEWEB)

    Becerril, M.; Silva L, H.; Guillen C, A.; Zelaya A, O. [Instituto Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14-740, 07000 Mexico D. F. (Mexico)

    2014-07-01

    Aluminum-doped Zinc oxide polycrystalline thin films (Azo) were grown on 7059 Corning glass substrates at room temperature by co-sputtering from a Zn O-Al target. The target was designed as follows, high purity elemental Aluminum was evaporated onto a Zn O target covering small areas. The structural, optical and electrical properties were analyzed as a function of Al content. The Al doped Zn O polycrystalline films showed an n-type conductivity. It was found that the electrical resistivity drops and the carrier concentration increases as a consequence of Al incorporation within the Zn O lattice. In both cases, the changes are of several orders of magnitude. From the results, we conclude that, using these Zn O-Al targets, n-type Al doped Zn O polycrystalline films with high transmittance and low resistivity can be obtained. The crystalline structure of the films was determined by X-ray diffraction. Atomic Force Microscopy images were obtained with an Auto probe C P (Veeco Metrology Group) Microscope. (Author)

  3. Aluminum-doped Zn O polycrystalline films prepared by co-sputtering of a Zn O-Al target

    International Nuclear Information System (INIS)

    Aluminum-doped Zinc oxide polycrystalline thin films (Azo) were grown on 7059 Corning glass substrates at room temperature by co-sputtering from a Zn O-Al target. The target was designed as follows, high purity elemental Aluminum was evaporated onto a Zn O target covering small areas. The structural, optical and electrical properties were analyzed as a function of Al content. The Al doped Zn O polycrystalline films showed an n-type conductivity. It was found that the electrical resistivity drops and the carrier concentration increases as a consequence of Al incorporation within the Zn O lattice. In both cases, the changes are of several orders of magnitude. From the results, we conclude that, using these Zn O-Al targets, n-type Al doped Zn O polycrystalline films with high transmittance and low resistivity can be obtained. The crystalline structure of the films was determined by X-ray diffraction. Atomic Force Microscopy images were obtained with an Auto probe C P (Veeco Metrology Group) Microscope. (Author)

  4. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    OpenAIRE

    Yu-Hsien Lin; Jay-Chi Chou

    2015-01-01

    We investigated amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) using different high-k gate dielectric materials such as silicon nitride (Si3N4) and aluminum oxide (Al2O3) at low temperature process (

  5. Nanoporous anodized aluminum oxide-coated polycarbonate surface: Tailoring of transmittance and reflection properties

    International Nuclear Information System (INIS)

    Nanostructured coatings increase the transmittance and decrease the reflection of polycarbonate (PC). In this work, nanoporous anodized aluminum oxide (AAO) coating was formed electrochemically on a PC surface. The reflection properties of the AAO-coated PC were modified by varying the thickness of the AAO layer, the anodization parameters, and the pore size of AAO. Transmittance and reflection were measured by ellipsometry. The optical transmittance of the AAO film on PC was 86-94% in the wavelength range 420-780 nm, which was about four percentage units higher than the transmittance of uncoated PC. The minimum reflection of 0.2% was observed for PC with an AAO coating of 177 nm. The reflection was about five percentage units less than the corresponding value for uncoated polycarbonate. Nanoporous surfaces and profiles of AAO were characterized by Scanning Electron Microscope

  6. Nanoporous anodized aluminum oxide-coated polycarbonate surface: Tailoring of transmittance and reflection properties

    Energy Technology Data Exchange (ETDEWEB)

    Saarikoski, Inka; Suvanto, Mika [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)], E-mail: Tapani.Pakkanen@joensuu.fi

    2008-10-01

    Nanostructured coatings increase the transmittance and decrease the reflection of polycarbonate (PC). In this work, nanoporous anodized aluminum oxide (AAO) coating was formed electrochemically on a PC surface. The reflection properties of the AAO-coated PC were modified by varying the thickness of the AAO layer, the anodization parameters, and the pore size of AAO. Transmittance and reflection were measured by ellipsometry. The optical transmittance of the AAO film on PC was 86-94% in the wavelength range 420-780 nm, which was about four percentage units higher than the transmittance of uncoated PC. The minimum reflection of 0.2% was observed for PC with an AAO coating of 177 nm. The reflection was about five percentage units less than the corresponding value for uncoated polycarbonate. Nanoporous surfaces and profiles of AAO were characterized by Scanning Electron Microscope.

  7. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luka, G., E-mail: gluka@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Witkowski, B.S.; Wachnicki, L.; Jakiela, R. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Virt, I.S. [University of Rzeszow, Rzeszow (Poland); Drohobych Ivan Franko State Pedagogical University, Drohobych (Ukraine); Andrzejczuk, M.; Lewandowska, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland)

    2014-08-01

    Highlights: • Transparent and conductive ZnO:Al films were grown by atomic layer deposition. • The films were grown on flexible substrates at low growth temperatures (110–140 °C). • So-obtained films have low resistivities, of the order of 10{sup −3} Ω cm. • Bending tests indicated a critical bending radius of ≈1.2 cm. • Possible sources of the film resistivity changes upon bending are proposed. - Abstract: Aluminum-doped zinc oxide (AZO) films were grown on polyethylene terephthalate (PET) substrates by atomic layer deposition (ALD) at low deposition temperatures (110–140 °C). The films have low resistivities, ∼10{sup −3} Ω cm, and high transparency (∼90%) in the visible range. Bending tests indicated a critical bending radius of ≈1.2 cm, below which the resistivity changes became irreversible. The films deposited on PET with additional buffer layer are more stable upon bending and temperature changes.

  8. Electrodeposition of Oriented Cerium Oxide Films

    OpenAIRE

    Golden, Teresa D.; Adele Qi Wang

    2013-01-01

    Cerium oxide films of preferred orientation are electrodeposited under anodic conditions. A complexing ligand, acetate, was used to stabilize the cerium (III) ion in solution for deposition of the thin films. Fourier transform infrared spectroscopy showed that the ligand and metal tended to bind as a weakly bidentate complex. The crystallite size of the films was in the nanometer range as shown by Raman spectroscopy and was calculated from X-ray diffraction data. Crystallite sizes from 6 to 2...

  9. Epitaxial growth of zinc oxide thin films on silicon

    International Nuclear Information System (INIS)

    Epitaxial zinc oxide thin films were grown on Si(111) using aluminum nitride and magnesium oxide/titanium nitride buffer layers. The resultant films were examined using transmission electron microscopy, X-ray diffraction, electrical conductivity, and photoluminescence spectroscopy. The following epitaxial relationships were observed in the ZnO/AlN/Si(111) heterostructure: ZnO[0001] parallel AlN[0001] parallel Si[111] along the growth direction, and ZnO[21-bar 1-bar 0] parallel AlN[21-bar 1-bar 0] parallel Si[011-bar] along the in-plane direction. Domain-matching epitaxial growth of TiN on Si(111) substrate allows successful epitaxial growth of MgO and ZnO layers in a ZnO/MgO/TiN/Si(111) heterostructure. The epitaxial relationships observed for this heterostructure were ZnO[0001] parallel MgO/TiN/Si[111] along the growth direction and ZnO[21-bar 1-bar 0] parallel MgO/TiN/Si[011-bar] along in-plane direction. The resultant ZnO films demonstrate excellent electrical and optical properties. ZnO thin films exhibit extremely bright ultraviolet luminescence with relatively weak green-band emission

  10. Aluminum doping of CdTe polycrystalline films starting from the heterostructure CdTe/Al

    OpenAIRE

    Becerril, M.; O. Vigil-Galán; G. Contreras-Puente; O. Zelaya-Angel

    2011-01-01

    Aluminum doped CdTe polycrystalline films were obtained from the heterostructure CdTe/Al/Corning glass. The aluminum was deposited by thermal vacuum evaporation and the CdTe by sputtering of a CdTe target. The aluminum was introduced into the lattice of the CdTe from a thermal annealed to the CdTe/Al/Corning glas heterostructure. The electrical, structural, nd optical properties were analyzed as a function of the Al concentrations. It found that when Al is incorporated, the electrical resisti...

  11. RBS and NRA of cobalt oxide thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    This work presents a study of cobalt oxide thin films produced by the sol-gel process on aluminum and glass substrates. These films have been analyzed using two ion beam analysis (IBA) techniques: a) a standard RBS 4He 2 MeV and b) nuclear reaction analysis (NRA) using a 1 MeV deuterium beam. The 12C(d,p0)13C nuclear reaction provides information that carbon is incorporated into the film structure, which could be associated to the sinterization film process. Other film measurements such as optical properties, XRD, and SEM were performed in order to complement the IBA analysis. The results show that cobalt oxide film coatings prepared by this technique have good optical properties as solar absorbers and potential uses in solar energy applications

  12. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  13. [Sensitometry of Mammographic Screen-film System Using Bootstrap Aluminum Step-Wedge.].

    Science.gov (United States)

    Abe, Shinji; Imada, Ryou; Terauchi, Takashi; Fujisaki, Tatsuya; Monma, Masahiko; Nishimura, Katsuyuki; Saitoh, Hidetoshi; Mochizuki, Yasuo

    2005-01-01

    Recently, a few types of step-wedges for bootstrap sensitometry with a mammographic screen-film system have been proposed. In this study, the bootstrap sensitometry with the mammographic screen-film system was studied for two types of aluminum step-wedges. Characteristic X-ray energy curves were determined using mammographic and general radiographic aluminum step-wedges devised to prevent scattered X-rays generated from one step penetrating into the region of another one, and dependence of the characteristic curves on the wedges was also discussed. No difference was found in the characteristic curves due to the difference in the step-wedges for mammography and general radiography although there was a slight difference in shape at the shoulder portion for the two types of step-wedges. Therefore, it was concluded that aluminum step-wedges for mammography and general radiography could be employed in bootstrap sensitometry with the mammographic screen-film system. PMID:16479054

  14. Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces.

    Science.gov (United States)

    Rubasinghege, Gayan; Grassian, Vicki H

    2009-07-01

    Nitrogen oxides, including nitrogen dioxide and nitric acid, react with mineral dust particles in the atmosphere to yield adsorbed nitrate. Although nitrate ion is a well-known chromophore in natural waters, little is known about the surface photochemistry of nitrate adsorbed on mineral particles. In this study, nitrate adsorbed on aluminum oxide, a model system for mineral dust aerosol, is irradiated with broadband light (lambda > 300 nm) as a function of relative humidity (RH) in the presence of molecular oxygen. Upon irradiation, the nitrate ion readily undergoes photolysis to yield nitrogen-containing gas-phase products including NO(2), NO, and N(2)O, with NO being the major product. The relative ratio and product yields of these gas-phase products change with RH, with N(2)O production being highest at the higher relative humidities. Furthermore, an efficient dark reaction readily converts the major NO product into NO(2) during post-irradiation. Photochemical processes on mineral dust aerosol surfaces have the potential to impact the chemical balance of the atmosphere, yet little is known about these processes. In this study, the impact that adsorbed nitrate photochemistry may have on the renoxification of the atmosphere is discussed. PMID:19534452

  15. Zinc oxide thin film acoustic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  16. Aluminum ions accelerated the oxidative stress of copper-mediated melanin formation

    Science.gov (United States)

    Di, Junwei; Bi, Shuping

    2003-11-01

    A comparison between the effects of aluminum and cupric ions on the dopachrome (DC) conversion and the cooperation effect of the both ions in the DOPA oxidation to melanin pathway has been studied by UV-Vis spectrophotometric method. Both aluminum and cupric ions catalyze the DC conversion reaction, which is an important step in the melanin synthesis pathway. However, cupric ions catalyze the conversion of DC to yield 5,6-dihydroxyindole-2-carboxylic acid (DHICA) but the product of DC conversion catalyzed by aluminum is 5,6-dihydroxyindole (DHI). DOPA oxidation catalyzed by aluminum and cupric ions is studied in the presence of hydrogen peroxide. The results from our experiments provide evidence that aluminum can markedly increase the oxidative stress of copper-mediated the melanin formation and influence the properties of the melanin by means of changing the ratio of DHICA/DHI in the acidic environment (pH 5.5).

  17. Oxide films in high temperature aqueous environments

    International Nuclear Information System (INIS)

    The evaluation of modified water chemistries as well as of the effects of increased power output in nuclear power plants is associated with a need to understand their effect on occupational dose rates and on environmentally assisted cracking as well as other types of corrosion of structural materials. Occupational dose rates are due to activity build-up on the primary circuit components, which in turn depends on the dissolution, transport, deposition and incorporation of the activated corrosion products in the oxide films formed on material surfaces. Accordingly, activity build-up is influenced by the electrochemical and electric properties of the oxide films and by the water chemistry of the coolant. Concerning different types of corrosion, it can with good reason be assumed that both the oxidation reaction related to corrosion (e.g. crack growth) as well as the coupled cathodic reaction involve steps in which charged species are transported through the oxide films formed on material surfaces either within the crack or on surfaces exposed to the bulk coolant. It can also be stated that a sufficient characterisation and a satisfactory model for the electrochemical behaviour and electric properties of the oxide films formed in nuclear power plants are not available. More experimental support is needed concerning especially the preferential paths and driving forces for ion transport as well as the nature of mobile species or defects. The lack of sufficient understanding has complicated the assessment of the applicability and possible side-effects of e.g. noble metal water chemistry and the injection of zinc as a means to prevent the uptake of activated corrosion products into corrosion films. The long-term aim of the work performed within the present research program is to minimise the risk of activity build-up, environmentally assisted cracking (EAC) and other types of corrosion, as well as to be prepared for the evaluation and introduction of modified water

  18. Microstructural evolution of tungsten oxide thin films

    Science.gov (United States)

    Hembram, K. P. S. S.; Thomas, Rajesh; Rao, G. Mohan

    2009-10-01

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 °C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a "instability wheel" model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  19. Microstructural evolution of tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, K.P.S.S., E-mail: hembram@isu.iisc.ernet.in [Department of Instrumentation, Indian Institute of Science, Bangalore - 560 012 (India); Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore - 560064 (India); Thomas, Rajesh; Rao, G. Mohan [Department of Instrumentation, Indian Institute of Science, Bangalore - 560 012 (India)

    2009-10-30

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 deg. were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a 'instability wheel' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  20. Effect of anneal pre-treatment of polycrystalline aluminum sheets on synthesis of highly-ordered anodic aluminum oxide membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Anodic aluminum oxide (AAO) membranes with large ordered pore domains were successfully prepared by adopting the anneal pre-treatment of polycrystalline alu- minum sheets. A statistical method with Gaussian distribution was introduced to quantitatively study the size of the domain with ordered pores. The largest average area of ordered pore domains was 2.6 μm2±0.11 μm2. The corresponding AAO membrane was synthesized by aluminum sheets annealed at 893 K for 24 h.

  1. Measurement Of Quasiparticle Transport In Aluminum Films Using Tungsten Transition-Edge Sensors

    CERN Document Server

    Yen, J J; Young, B A; Cabrera, B; Brink, P L; Cherry, M; Kreikebaum, J M; Moffatt, R; Redl, P; Tomada, A; Tortorici, E C

    2014-01-01

    We report new experimental studies to understand the physics of phonon sensors which utilize quasiparticle diffusion in thin aluminum films into tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach.

  2. Microstructures and properties of aluminum film and its effect on corrosion resistance of AZ31B substrate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aluminum films with thickness of 8.78-20.82 μm were deposited on the AZ31B magnesium alloys by DC magnetron sputtering.The influences of aluminum film on the micro-mechanical properties and corrosion behavior Of the magnesium alloys were investigated.The morphology of aluminam film was examined by seanning electron microscopy and the microstructure of aluminum film was analyzed by X-ray diffractometry.Nanoindentation and nanoscratch tests were conducted to investigate their micromechanical properties.Moreover,potentiodynamical polarization test performed in 3.5%NaCl solution was carried out to study their anticorrosion performances.The results show that the surface hardness of AZ31B magnesium alloy with aluminum film is 1.38-2.01GPa.higher than that of the magnesium alloy substrate.The critical load Of Al film/AZ31B substrate is in the range of 0.68-2.77 N.The corrosion current density of AZ31B with aluminum film is 2-3 orders of magnitude less than that of bare AZ31B.And the corrosion potential with aluminum film positively siftfls.Thus aluminum film can increase the corrosion resistance of Mg alloys obviously.

  3. Growth and characterization of tris(8-hydroxyquinoline)-aluminum molecular films

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Da-Jeng; Wang, Sheng-Shin; Tang, Shiow-Jing; Lin, Ku-Yen; Yang, Jiun-Jie; Shen, Ji-Lin; Chiu, Kuan-Cheng, E-mail: kcchiu@cycu.edu.tw

    2011-11-30

    Various tris(8-hydroxyquinoline)-aluminum (Alq3) molecular solid films were grown on top of indium-tin-oxide (ITO) glass substrates using physical vapor deposition. The effect of changing the growth conditions on the properties of the films was studied. From scanning electron microscopy, an Alq3 planar layer over an ITO-substrate was observed at the initial period, and an Alq3 tubular structure (which becomes dominant at substrate temperature T{sub sub} Greater-Than-Over-Equal-To 90 Degree-Sign C) was found to nucleate from this layer. From X-ray diffraction, the Alq3 planar layer possesses an amorphous character while the Alq3 tubular layer has a triclinic {alpha}-phase structure. Based on an Arrhenius plot of the growth rate versus 1/T{sub sub}, the growth behaviors in various T{sub sub}-regions were discussed to be dominated by adhesion (for T{sub sub} < 90 Degree-Sign C), steric effect (90 Degree-Sign C < T{sub sub} < 150 Degree-Sign C), and re-evaporation (T{sub sub} > 150 Degree-Sign C). Then, from optical transmission and photoluminescence spectra performed on the high crystalline Alq3 films, two signals associated with the optical-bandgap E{sub g} absorption and the gap-state absorption were determined and discussed in terms of the optical properties of the constituent Alq3 molecules. Finally, from a fit of E{sub g}(T) by an effective electron-phonon interaction model, the physical significance of these fitting parameters for the Alq3 molecular solid was investigated.

  4. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Science.gov (United States)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (amorphous carbon films with different elements doping are also discussed in detail.

  5. Growing aluminum nitride films by Plasma-Enhanced Atomic Layer Deposition at low temperatures

    Science.gov (United States)

    Tarala, V. A.; Altakhov, A. S.; Martens, V. Ya; Lisitsyn, S. V.

    2015-11-01

    Aluminum nitride films have been grown by Plasma-Enhanced Atomic Layer Deposition method. It was found that at temperatures of 250 °C and 280 °C increase of the plasma exposure step duration over 6 s, as well as increase of reactor purge step duration over 1 s does not affect the growth rate, however, it affects the microstructure of the films. It was found that crystalline aluminum nitride films deposit with plasma exposure duration over 10 s and the reactor purging over 10 s. When the temperature drops the increase of reactor purge step duration and plasma exposure step duration over 20 s is required for crystalline AlN film growth.

  6. Sapphire surface polariton splitting due to resonance with aluminum nitride film phonon

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, V A; Novikova, N N; Vinogradov, E A [Institute for Spectroscopy. Russian Academy of Sciences, 142190, Troitsk, Moscow reg. (Russian Federation); Ng, S S; Hassan, Z; Hassan, H A, E-mail: yakovlev@isan.troitsk.r [School of Physics. Universiti Sains Malaysia, 11800, Penang (Malaysia)

    2010-02-01

    Two thin aluminum nitride films have been prepared on sapphire substrates by molecular beam epitaxy technique. Then alkaline and acidic washing were used to remove the back-metal-coating of the sapphire substrate for one of the samples. (It caused also partial film dissolution). The surface polariton (SP) spectra have been measured by attenuated total reflection (ATR) technique. The measured SP dispersion is compared with one calculated using the literature film parameters. Due to the resonance interaction of sapphire substrate SP with the film transverse optical (TO) phonon the splitting of the dispersion curve of sapphire SP was found. The resonance takes place only for the frequency of the film TO phonon polarized along the surface of the anisotropic AlN film (perpendicular to the optical axis). The analysis of ATR and external reflectivity spectra shows the presence of some transition layer between the substrate and the film.

  7. Preparation and Properties of Al-Ni Composite Anodic Films on Aluminum Surface

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xuhui; YE Hao; ZHANG Xiaofeng; ZUO Yu

    2012-01-01

    Ni element was introduced to aluminum surface by a simple chemical immersion method,and Al-Ni composite anodic films were obtained by following anodizing.The morphology,structure and composition of the Al-Ni anodic films were examined by scanning electron microscopy (SEM),energy disperse spectroscopy (EDS) and atomic force microscopy(AFM).The electrochemical behaviors of the films were studied by means of polarization measurement and electrochemical impedance spectroscopy (EIS).The experimental results show that the A1-Ni composite anodic film is more compact with smaller pore diameters than that of the Al anodic film.The introduction of nickel increases the impedances of both the barrier layer and the porous layer of the anodic films.In NaCl solutions,the Al-Ni composite anodic films show higher impedance values and better corrosion resistance.

  8. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-14

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10{sup −5}–7.2 × 10{sup −3}, which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10{sup 21} m{sup −3}–2.6 × 10{sup 22} m{sup −3}. - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured.

  9. Hybrid aluminum and indium conducting filaments for nonpolar resistive switching of Al/AlOx/indium tin oxide flexible device

    Science.gov (United States)

    Yuan, Fang; Wang, Jer-Chyi; Zhang, Zhigang; Ye, Yu-Ren; Pan, Liyang; Xu, Jun; Lai, Chao-Sung

    2014-02-01

    The nonpolar resistive switching characteristics of an Al/AlOx/indium tin oxide (ITO) device on a plastic flexible substrate are investigated. By analyzing the electron diffraction spectroscopy results and thermal coefficient of resistivity, it is discovered that the formation of aluminum and indium conducting filaments in AlOx film strongly depends on the polarity of the applied voltage. The metal ions arising from the Al and ITO electrodes respectively govern the resistive switching in corresponding operation polarity. After 104 times of mechanical bending, the device can perform satisfactorily in terms of resistance distribution, read sequence of high and low resistive states, and thermal retention properties.

  10. Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization

    Directory of Open Access Journals (Sweden)

    Juan Xu

    2009-11-01

    Full Text Available 6-(N-Allyl-1,1,2,2-tetrahydroperfluorododecylamino-1,3,5-triazine-2,4-dithiol monosodium (ATP was used to prepare polymeric thin films on pure aluminum plates to achieve a superhydrophobic surface. The electrochemical polymerization process of ATP on aluminum plates in NaNO2 aqueous solution and the formation of poly(6-(N-allyl-1,1,2,2-tetrahydroperfluorododecylamino-1,3,5-triazine-2,4-dithiol (PATP thin film were studied by means of optical ellipsometry and film weight. The chemical structure of the polymeric film is investigated using FT-IR spectra and X-ray photoelectron spectroscopy (XPS. Contact angle goniometry was applied to measure the contact angles with distilled water drops at ambient temperature. The experimental results indicate that the polymeric film formed on pure aluminum plates exhibits superhydrophobic properties with a distilled water contact angle of 153°. The electrochemical polymerization process is time-saving, inexpensive, environmentally friendly and fairly convenient to carry out. It is expected that this technique will advance the production of superhydrophobic materials with new applications on a large scale. Moreover, this kind of polymeric thin film can be used as a dielectric material due to its insulating features.

  11. Microtribological Mechanisms of Tungsten and Aluminum Nitride Films

    Science.gov (United States)

    Zhao, Hongjian; Mu, Chunyan; Ye, Fuxing

    2016-04-01

    Microtribology experiments were carried out on the W1- x Al x N films, deposited by radio frequency magnetron reactive sputtering on 304 stainless steel substrates and Si(100). Film wear mechanisms were investigated from the evolution of the friction coefficient and scanning electron microscopy observations. The results show that the WAlN films consist of a mixture of face-centered cubic W(Al)N and hexagonal wurtzite structure AlN phases and the preferred orientation changes from (111) to (200). The film damage after sliding test is mainly attributed to the composition and microstructure of the films. The amount of debris generated by friction is linked to the crack resistance. The better tribological properties for W1- x Al x N films ( x < 0.4) are mainly determined by the higher toughness.

  12. Stress distributions in growing polycrystalline oxide films

    International Nuclear Information System (INIS)

    We analyze the generation of stresses in polycrystalline oxide films formed via the oxidation of a substrate using a new continuum model. The model includes a description of the polycrystalline microstructure in two dimensions. The diffusion of all independent components, the rate of the oxidation reaction and the effect of stresses on these are accounted for in a thermodynamically self-consistent manner. Grain boundaries serve both as high diffusivity paths and as sites for oxide formation. Different diffusion controlled oxidation regimes (rapid oxygen/cation diffusion, comparable oxygen/cation diffusivities) and different grain boundary/bulk diffusivity ratios are examined within this framework. Numerical solutions reveal large lateral stress gradients, with stresses concentrated around the grain boundaries. While the average in-plane stress is compressive and the stress at the film/substrate interface near the grain boundary highly so, large tensile stresses are observed near the grain boundary at the film surface. These predictions are consistent with experimental observations on polycrystalline oxide growth. We also present analytical approximations for the stress distribution in the film that capture the essential features of the numerical results

  13. Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine

    DEFF Research Database (Denmark)

    Pongjanyakul, Thaned; Khunawattanakul, Wanwisa; Strachan, Clare J;

    2013-01-01

    The objective of this study was to prepare and characterize chitosan-magnesium aluminum silicate (CS-MAS) nanocomposite films as a buccal delivery system for nicotine (NCT). The effects of the CS-MAS ratio on the physicochemical properties, release and permeation, as well as on the mucoadhesive...

  14. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites

    Science.gov (United States)

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701

  15. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.;

    2014-01-01

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it...... is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous...... monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and...

  16. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  17. Influences of different oxidants on the characteristics of HfAlOx films deposited by atomic layer deposition

    Institute of Scientific and Technical Information of China (English)

    Fan Ji-Bin; Liu Hong-Xia; Ma Fei; Zhuo Qing-Qing; Hao Yue

    2013-01-01

    A comparative study of two kinds of oxidants (H2O and O3) with the combinations of two metal precursors [trimethylaluminum (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH)] for atomic layer deposition (ALD) hafnium aluminum oxide (HfAlOx) films is carried out.The effects of different oxidants on the physical properties and electrical characteristics of HfAlOx films are studied.The preliminary testing results indicate that the impurity level of HfAlOx films grown with both H2O and O3 used as oxidants can be well controlled,which has significant effects on the dielectric constant,valence band,electrical properties,and stability of HfAlOx film.Additional thermal annealing effects on the properties of HfAlOx films grown with different oxidants are also investigated.

  18. Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films

    International Nuclear Information System (INIS)

    The authors have investigated the influence of scandium concentration on the power generation figure of merit (FOM) of scandium aluminum nitride (ScxAl1−xN) films prepared by cosputtering. The power generation FOM strongly depends on the scandium concentration. The FOM of Sc0.41Al0.59N film was 67 GPa, indicating that the FOM is five times larger than that of AlN. The FOM of Sc0.41Al0.59N film is higher than those of lead zirconate titanate and Pb(Mg1/3Nb2/3)O3-PbTiO3 films, which is the highest reported for any piezoelectric thin films. The high FOM of Sc0.41Al0.59N film is due to the high d31 and the low relative permittivity.

  19. Graphene oxide film as solid lubricant.

    Science.gov (United States)

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  20. Investigation of contamination of thin-film aluminum filters by MMH-NTO plumes exposed to UV radiation

    Science.gov (United States)

    Gupta, Vaibhav; Wieman, Seth; Didkovsky, Leonid; Haiges, Ralf; Yao, Yuhan; Wu, Wei; Gruntman, Mike; Erwin, Dan

    2015-09-01

    Thin-film aluminum filters degrade in space with significant reduction of their Extreme Ultraviolet (EUV) transmission. This degradation was observed on the EUV Spectrophotometer (ESP) onboard the Solar Dynamics Observatory's EUV Variability Experiment and the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory. One of the possible causes for deterioration of such filters over time is contamination of their surfaces from plumes coming from periodic firing of their satellite's Monomethylhydrazine (MMH) - Nitrogen Tetroxide (NTO) thrusters. When adsorbed by the filters, the contaminant molecules are exposed to solar irradiance and could lead to two possible compositions. First, they could get polymerized leading to a permanent hydrocarbon layer buildup on the filter's surface. Second, they could accelerate and increase the depth of oxidation into filter's bulk aluminum material. To study the phenomena we experimentally replicate contamination of such filters in a simulated environment by MMH-NTO plumes. We apply, Scanning Electron Microscopy and X-Ray photoelectron spectroscopy to characterize the physical and the chemical changes on these contaminated sample filter surfaces. In addition, we present our first analysis of the effects of additional protective layer coatings based on self-assembled carbon monolayers for aluminum filters. This coverage is expected to significantly decrease their susceptibility to contamination and reduce the overall degradation of filter-based EUV instruments over their mission life.

  1. High quality transparent conducting oxide thin films

    Science.gov (United States)

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  2. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds

    International Nuclear Information System (INIS)

    Nanoscale interfacial evolution in Cu-Al wire bonds during isothermal annealing from 175 deg. C to 250 deg. C was investigated by high resolution transmission electron microscopy (HRTEM). The native aluminum oxide film (∼5 nm thick) of the Al pad migrates towards the Cu ball during annealing. The formation of intermetallic compounds (IMC) is controlled by Cu diffusion, where the kinetics obey a parabolic growth law until complete consumption of the Al pad. The activation energies to initiate crystallization of CuAl2 and Cu9Al4 are 60.66 kJ mol-1 and 75.61 kJ mol-1, respectively. During IMC development, Cu9Al4 emerges as a second layer and grows together with the initial CuAl2. When Al is completely consumed, CuAl2 transforms to Cu9Al4, which is the terminal product. Unlike the excessive void growth in Au-Al bonds, only a few voids nucleate in Cu-Al bonds after long-term annealing at high temperatures (e.g., 250 oC for 25 h), and their diameters are usually in the range of tens of nanometers. This is due to the lower oxidation rate and volumetric shrinkage of Cu-Al IMC compared with Au-Al IMC.

  3. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H., E-mail: HXu14@bama.ua.edu [Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Liu, C.; Silberschmidt, V.V. [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Pramana, S.S. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); White, T.J. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Centre for Advanced Microscopy, Australian National University, Canberra, ACT 2601 (Australia); Chen, Z. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Acoff, V.L. [Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2011-08-15

    Nanoscale interfacial evolution in Cu-Al wire bonds during isothermal annealing from 175 deg. C to 250 deg. C was investigated by high resolution transmission electron microscopy (HRTEM). The native aluminum oxide film ({approx}5 nm thick) of the Al pad migrates towards the Cu ball during annealing. The formation of intermetallic compounds (IMC) is controlled by Cu diffusion, where the kinetics obey a parabolic growth law until complete consumption of the Al pad. The activation energies to initiate crystallization of CuAl{sub 2} and Cu{sub 9}Al{sub 4} are 60.66 kJ mol{sup -1} and 75.61 kJ mol{sup -1}, respectively. During IMC development, Cu{sub 9}Al{sub 4} emerges as a second layer and grows together with the initial CuAl{sub 2}. When Al is completely consumed, CuAl{sub 2} transforms to Cu{sub 9}Al{sub 4}, which is the terminal product. Unlike the excessive void growth in Au-Al bonds, only a few voids nucleate in Cu-Al bonds after long-term annealing at high temperatures (e.g., 250 {sup o}C for 25 h), and their diameters are usually in the range of tens of nanometers. This is due to the lower oxidation rate and volumetric shrinkage of Cu-Al IMC compared with Au-Al IMC.

  4. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  5. Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy

    International Nuclear Information System (INIS)

    Thick ceramic films over 140 μm were prepared on Al-7% Si alloy by ac microarc oxidation in a silicate electrolyte. The film growth kinetics was determined by an eddy current technique and film growth features in different stages were discussed. The microstructure and composition profiles for different thick films were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Their phase components were determined by X-ray diffraction. The electrochemical corrosion behaviors of bare and coated alloys were evaluated using potentiodynamic polarization curves, and their corrosion morphologies were observed. In the initial stage of oxidation, the growth rate is slow with 0.48 μm/min due to the effect of Si element though the current density is rather high up to 33 A/dm2. After the current density has decreased to a stable value of 11 A/dm2, the film mainly grows towards the interior of alloy. The film with a three-layer structure consists of mullite, γ-Al2O3, α-Al2O3 and amorphous phases. By microarc discharge treatment, the corrosion current of the Al-Si alloy in NaCl solution was significantly reduced. However, a thicker film has to be fabricated in order to obtain high corrosion-resistant film of the Al-Si alloy. Microarc oxidation is an effective method to form an anti-corrosion protective film on Si-containing aluminum alloys

  6. A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Wang, H. H.; Indacochea, J. E.; Wang, M. L. (Materials Science Division); (Northeastern Univ.); (Univ. of Illinois at Chicago)

    2011-12-15

    Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their difference in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength side due to

  7. Patterning of Indium Tin Oxide Films

    Science.gov (United States)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  8. Formation and Morphology of Anodic Oxide Films of Ti

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The morphology and structure of the oxide films of Ti in H3PO4 were investigated by galvanostatic anodization, SEM and XRD. The oxide film grew from some pores in the grooves to layered microdomains as increasing anodizing voltage. The crystallinity of the oxide films decreased with the increase of the concentration of the electrolyte. The model has been proposed for the growth of the oxide films by two steps, i.e. by uniform thickening and by local deposition.

  9. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  10. Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy.

    Science.gov (United States)

    van den Brand, J; Blajiev, O; Beentjes, P C J; Terryn, H; de Wit, J H W

    2004-07-20

    The bonding of two types of ester group-containing molecules with a set of different oxide layers on aluminum has been investigated using infrared reflection absorption spectroscopy. The different oxide layers were made by giving typical surface treatments to the aluminum substrate. The purpose of the investigation was to find out what type of ester-oxide bond is formed and whether this is influenced by changes in the composition and chemistry of the oxide. The extent by which these bonded ester molecules resisted disbondment in water or substitution by molecules capable of chemisorption was also investigated. The ester groups were found to show hydrogen bonding with hydroxyls on the oxide surfaces through their carbonyl oxygens. For all oxides, the ester groups showed the same nu(C = O) carbonyl stretching vibration after adsorption, indicating very similar bonding occurs. However, the oxides showed differences in the amount of molecules bonded to the oxide surface, and a clear relation was observed with the hydroxyl concentration present on the oxide surface, which was determined from XPS measurements. The two compounds showed differences in the free to bonded nu(C = O) infrared peak shift, indicating differences in bonding strength with the oxide surface between the two types of molecules. The bonding of the ester groups with the oxide surfaces was found to be not stable in the presence of water and also not in the presence of a compound capable of chemisorption with the aluminum oxide surface. PMID:15248718

  11. Improvement of plasmonic enhancement of quantum dot emission via an intermediate silicon-aluminum oxide interface

    International Nuclear Information System (INIS)

    We studied the emission of quantum dots in the presence of plasmon-metal oxide substrates, which consist of arrays of metallic nanorods embedded in amorphous silicon coated with a nanometer-thin layer of aluminum oxide on the top. We showed that the combined effects of plasmons and the silicon-aluminum oxide interface can lead to significant enhancement of the quantum efficiency of quantum dots. Our results show that such an interface can significantly enhance plasmonic effects of the nanorods via quantum dot-induced exciton-plasmon coupling, leading to partial polarization of the quantum dots' emission

  12. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  13. Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers

    OpenAIRE

    Adamcakova-Dodd Andrea; Stebounova Larissa V; O’Shaughnessy Patrick T; Kim Jong; Grassian Vicki H; Thorne Peter S

    2012-01-01

    Abstract Background Aluminum oxide-based nanowhiskers (AO nanowhiskers) have been used in manufacturing processes as catalyst supports, flame retardants, adsorbents, or in ceramic, metal and plastic composite materials. They are classified as high aspect ratio nanomaterials. Our aim was to assess in vivo toxicity of inhaled AO nanowhisker aerosols. Methods Primary dimensions of AO nanowhiskers specified by manufacturer were 2–4 nm x 2800 nm. The aluminum content found in this nanomaterial was...

  14. Electrical analysis of niobium oxide thin films

    International Nuclear Information System (INIS)

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O2 was kept constant at 1 Pa, while the O2 partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb2O5 stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O2). • Raman showed that increasing P(O2), Nb2O5 amorphous increases. • Conductivity tends to decrease with the increase of P(O2). • Dielectric analysis indicates the inexistence of preferential grow direction

  15. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    Science.gov (United States)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  16. Innovative technique for tailoring intrinsic stress in reactively sputtered piezoelectric aluminum nitride films

    International Nuclear Information System (INIS)

    Novel technical and technological solutions enabling effective stress control in highly textured polycrystalline aluminum nitride (AlN) thin films deposited with ac (40 kHz) reactive sputtering processes are discussed. Residual stress in the AlN films deposited by a dual cathode S-Gun magnetron is well controlled by varying Ar gas pressure, however, since deposition rate and film thickness uniformity depend on gas pressure too, an independent stress control technique has been developed. The technique is based on regulation of the flux of the charged particles from ac plasma discharge to the substrate. In the ac powered S-Gun, a special stress adjustment unit (SAU) is employed for reducing compressive stress in the film by means of redistribution of discharge current between electrodes of the S-Gun leading to controllable suppression of bombardment of the growing film. This technique is complementary to AlN deposition with rf substrate bias which increases ion bombardment and shifts stress in the compressive direction, if required. Using SAU and rf bias functions ensures tailoring intrinsic stress in piezoelectric AlN films for a particular application from high compressive -700 MPa to high tensile +300 MPa and allows the gas pressure to be adjusted independently to fine control the film uniformity. The AlN films deposited on Si substrates and Mo electrodes have strong (002) texture with full width at half maximum ranging from 2 degree sign for 200 nm to 1 degree sign for 2000 nm thick films.

  17. Structure stability and corrosion inhibition of super-hydrophobic film on aluminum in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Yin Yansheng [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai 200135 (China)], E-mail: yys2003ouc@163.com; Liu Tao; Chen Shougang; Liu Tong; Cheng Sha [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2008-12-30

    A novel and stable super-hydrophobic film was prepared by myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH, mya) chemically adsorbed onto the anodized aluminum surface. The static contact angle for seawater on the surface was measured to be 154 deg. As evidenced by molecular dynamics (MD) simulations and electrochemical impedance spectroscopy (EIS), the effect of ethanol solvent on the film stability was proved. The surface structure and composition were then characterized by means of scanning electron microscopy (SEM) with energy dispersive X-ray spectrum (EDS) and atomic force microscope (AFM). The electrochemical measurements showed that the super-hydrophobic surface significantly decreased the corrosion currents densities (i{sub corr}), corrosion rates and double layer capacitance (C{sub dl}), as simultaneously increased the values of polarization resistance (R{sub ct}) of aluminum in sterile seawater.

  18. Thin film growth of epitaxial gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide by electrodeposition

    International Nuclear Information System (INIS)

    Thin films of gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide were electrodeposited from non-aqueous baths. The films were on the order of 15 nm thick, and were grown epitaxially on textured nickel-tungsten substrates. The effect of deposition rate, annealing temperature and secondary metals on crystallinity and crystal orientation was investigated by X-ray diffraction and transmission electron microscopy. Slower rates, higher temperatures and low concentrations of yttrium improve the crystallinity of gadolinium oxide films, whereas the introduction of cerium induced polycrystallinity.

  19. Thin film growth of epitaxial gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jonathan R., E-mail: jonathan.mann@nrel.gov; Bhattacharya, Raghu N.

    2010-10-29

    Thin films of gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide were electrodeposited from non-aqueous baths. The films were on the order of 15 nm thick, and were grown epitaxially on textured nickel-tungsten substrates. The effect of deposition rate, annealing temperature and secondary metals on crystallinity and crystal orientation was investigated by X-ray diffraction and transmission electron microscopy. Slower rates, higher temperatures and low concentrations of yttrium improve the crystallinity of gadolinium oxide films, whereas the introduction of cerium induced polycrystallinity.

  20. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  1. Flexible gastrointestinal motility pressure sensors based on aluminum thin-film strain-gauge arrays

    OpenAIRE

    Silva, Luís Rebelo; Sousa, Paulo J.; L.M. Gonçalves; Minas, Graça

    2015-01-01

    This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively cha...

  2. Electromigration induced resistance changes in passivated aluminum thin film conductors

    OpenAIRE

    Möckl, U. E.; Lloyd, J. R.; Arzt, Eduard

    1993-01-01

    The relative change in resistance due to electromigration was studied in thin (0.7 µm) film conductors of Al-0.5% Cu alloy passivated with a 1 µm thick glass passivation using a sensitive AC bridge technique. In contrast to previous experiments performed on unpassivated structures where a roughly linear resistance increase was observed, a saturation value for the resistance increase was observe which was seen to be a function of temperature and the applied current density. The results were fo...

  3. Interfacial Assembly of Graphene Oxide Films

    Science.gov (United States)

    Valtierrez, Cain; Ismail, Issam; Macosko, Christopher; Stottrup, Benjamin

    Controlled assembly of monolayer graphene-oxide (GO) films at the air/water interface is of interest for the development of transparent conductive thin films of chemically-derived graphene. We present experimental results from investigations of the assembly of polydisperse GO sheets at the air-water interface. GO nanosheets with lateral dimensions of greater than 10 microns were created using a modified Tour synthesis (Dimiev and Tour, 2014). GO films were generated with conventional Langmuir trough techniques to control lateral packing density. Film morphology was characterized in situ with Brewster angle microscopy. Films were transferred unto a substrate via the Langmuir-Blodgett deposition technique and imaged with fluorescence quenching microscopy. Through pH modulation of the aqueous subphase, it was found that GO's intrinsic surface activity to the interface increased with increasing subphase acidity. Finally, we found a dominant elastic contribution during uniaxial film deformation as measured by anisotropic pressure measurements. A. M. Dimiev, and J. M. Tour, ``Mechanism of GO Formation,'' ACS Nano, 8, (2014)

  4. Production of nickel oxide thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Discrepancies between short-circuit diffusion data derived from nickel oxide bicrystals and specimens produced by the oxidation of nickel has led to a requirement for thin film nickel oxide specimens of controlled microstructure and impurity level that can be produced independently of the oxidation process. RF magnetron sputtering of nickel oxide has been used to produce thin films intended for this application. The as-deposited films contain excess oxygen compared to stoichiometric nickel oxide and exhibit strong preferred orientation. Annealing in argon leads to oxygen deficient films. The reduction in porosity which accompanies the annealing leads to the formation of through-thickness cracks in the films. Subsequent oxygen tracer studies demonstrate that the cracks give rise to excessive oxygen transport through the films compared to that expected for thermally oxidised scales. The microstructural anomalies produced by the annealing process mean that the required microstructures were not achieved and these films are not useful analogues of thermal nickel oxide scales. (author)

  5. Rayleigh scattering and luminescence blue shift in tris(8-hydroxyquinoline)aluminum films

    International Nuclear Information System (INIS)

    The Rayleigh scattering (RS) by independent small particles is a well-known effect which also accounts for the blue color of the sky. Lately, the blue shift of the greenish emission band of thin films of Alq3, tris(8-hydroxyquinoline)aluminum, after thermal treatments of various nature has been attributed to RS. Here, we show that RS effects cannot account for the observed spectral features, which are attributed to the onset of various molecular aggregations in the otherwise amorphous films, a morphological model already utilized to explain the optical properties of Alq3

  6. Edge Effects on Growth of Ordered Stress Relief Patterns in Free Sustained Aluminum Films

    International Nuclear Information System (INIS)

    An unusual form of ordered stress relief patterns is observed in a nearly free sustained aluminum film system deposited on liquid substrates by the thermal evaporation method. The edge effects on the growth of the ordered patterns are systematically studied. It is found that the patterns initiate from the film edges, preexisting ordered patterns, or other imperfections of the film. When the patterns extend in the film regions, they decay gradually and finally disappear. If they develop along the boundaries, however, the sizes are almost unchanged over several millimeters. The stress relief patterns look like rectangular waves in appearance, which are proven to evolve from sinusoidal to triangular waves gradually. The morphological evolution can be well explained by the general theory of buckling of plates. (condensed matter: structure, mechanical and thermal properties)

  7. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    International Nuclear Information System (INIS)

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency

  8. Thin Films of Gallium Arsenide and Gallium Aluminum Arsenide by Metalorganic Chemical Vapor Deposition.

    Science.gov (United States)

    Look, Edward Gene Lun

    Low pressure metalorganic chemical vapor deposition (LPMOCVD) of thin films of gallium arsenide (GaAs) and gallium aluminum arsenide (GaAlAs) was performed in a horizontal cold wall chemical vapor deposition (CVD) reactor. The organometallic (group III) sources were triethylgallium (TEGa) and triethylaluminum (TEAl), used in conjunction with arsine (AsH_3) as the group V source. It was found that growth parameters such as growth temperature, pressure, source flow rates and temperatures have a profound effect on the film quality and composition. Depending on the particular combination of conditions, both the surface and overall morphologies may be affected. The films were nondestructively analyzed by Raman and photoreflectance spectroscopies, x-ray diffraction and rocking curve studies, scanning electron microscopy, energy dispersive spectroscopy, Hall measurements and film thicknesses were determined with a step profilometer.

  9. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao [School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  10. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun [Department of Material Science and Engineering, POSTECH Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O{sub 2} as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl{sub 3} plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  11. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition.

    Science.gov (United States)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O(2) as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl(3) plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio. PMID:21817499

  12. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively. PMID:24734654

  13. Prediction model for oxide thickness on aluminum alloy cladding during irradiation

    International Nuclear Information System (INIS)

    An empirical model predicting the oxide film thickness on aluminum alloy cladding during irradiation has been developed as a function of irradiation time, temperature, heat flux, pH, and coolant flow rate. The existing models in the literature are neither consistent among themselves nor fit the measured data very well. They also lack versatility for various reactor situations such as a pH other than 5, high coolant flow rates, and fuel life longer than ∼1200 hrs. Particularly, they were not intended for use in irradiation situations. The newly developed model is applicable to these in-reactor situations as well as ex-reactor tests, and has a more accurate prediction capability. The new model demonstrated with consistent predictions to the measured data of UMUS and SIMONE fuel tests performed in the HFR, Petten, tests results from the ORR, and IRIS tests from the OSIRIS and to the data from the out-of-pile tests available in the literature as well. (author)

  14. Synthesis of aluminum nitride thin films and their potential applications in solid state thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    In this work, aluminum nitride thin films were deposited on Si (1 1 1) substrate by magnetron sputtering. The obtained film was studied for thermoluminescence after irradiating it to various doses of γ-rays. Thermoluminescence measurement showed photon emission at an irradiation dose of 100 Gy or higher. Deconvolution of the experimental glow curve indicated that recombination centers in AlN were present below 2 eV trap depth. Irradiated AlN films showed less than 2% fading of TL signals on storage for 1 month in dark conditions and for the same period, light induced fading was also less than 4%. A linear variation of integrated thermoluminescence counts with absorbed dose has been observed up to an irradiation dose of 10 kGy. The deposited film was also characterized by grazing incidence X-ray diffraction, atomic force microscopy and secondary ion mass spectroscopy. Grazing incidence X-ray diffraction measurement of the obtained film has shown formation of polycrystalline wurtzite AlN having preferred orientation along (1 0 0) plane. Secondary ion mass spectroscopy analysis revealed the presence of oxygen in the film. - Highlights: • TL emission in sputter deposited AlN thin films when irradiated to gamma rays. • Linear dose–response up to 10 kGy irradiation dose. • Negligible fading of TL signals on storage. • Nominal light induced TL fading. • AlN thin films found potentially suitable for high dose dosimetry applications

  15. Synthesis of aluminum nitride thin films and their potential applications in solid state thermoluminescence dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, R.K., E-mail: rupeshkr@barc.gov.in [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Soni, A. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, P. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, D.R.; Kulkarni, M.S. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-11-15

    In this work, aluminum nitride thin films were deposited on Si (1 1 1) substrate by magnetron sputtering. The obtained film was studied for thermoluminescence after irradiating it to various doses of γ-rays. Thermoluminescence measurement showed photon emission at an irradiation dose of 100 Gy or higher. Deconvolution of the experimental glow curve indicated that recombination centers in AlN were present below 2 eV trap depth. Irradiated AlN films showed less than 2% fading of TL signals on storage for 1 month in dark conditions and for the same period, light induced fading was also less than 4%. A linear variation of integrated thermoluminescence counts with absorbed dose has been observed up to an irradiation dose of 10 kGy. The deposited film was also characterized by grazing incidence X-ray diffraction, atomic force microscopy and secondary ion mass spectroscopy. Grazing incidence X-ray diffraction measurement of the obtained film has shown formation of polycrystalline wurtzite AlN having preferred orientation along (1 0 0) plane. Secondary ion mass spectroscopy analysis revealed the presence of oxygen in the film. - Highlights: • TL emission in sputter deposited AlN thin films when irradiated to gamma rays. • Linear dose–response up to 10 kGy irradiation dose. • Negligible fading of TL signals on storage. • Nominal light induced TL fading. • AlN thin films found potentially suitable for high dose dosimetry applications.

  16. Thermomechanical properties of aluminum alkoxide (alucone) films created using molecular layer deposition

    International Nuclear Information System (INIS)

    Nanometer-scale-thick, polymer-like coatings deposited using the molecular layer deposition (MLD) technique constitute a new class of materials. The modulus and hardness of aluminum alkoxide ('alucone') films grown using either homobifunctional or heterobifunctional reactants were measured using nanoindentation. Because the coatings are brittle and possess a significant tensile film stress immediately after deposition, the influence of film stress on the indentation measurements was quantified using a numerical analysis protocol. The film stress and coefficient of thermal expansion for alucone were determined using the wafer curvature method. Film stress was found to stabilize within the first thermal cycle, demonstrating a repeatable hysteresis thereafter. Curvature/time measurements on coated microcantilever beams indicated that the most significant evolution in film stress for alucone occurred during the initial 2 weeks of storage in the ambient environment. The temporal behavior is attributed to the change in thickness and/or modulus of alucone, and is consistent with the film stress becoming more compressive over time. An encapsulating alumina film, coated using the atomic layer deposition technique, was found to suppress the evolution of stress within alucone. The studies here suggest that the alucones have a greater elastic modulus than traditional polymers, are at present quite brittle and are prone to environmental influence. The MLD technique, however, possesses a rich wealth of options that enable the modulus, adhesion and chemical stability of the coatings to be tailored.

  17. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    International Nuclear Information System (INIS)

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al2O3 and Fe2O3. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe2O3, 20–40 nm) and aluminum oxide (Al2O3, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm2 with a concentration of 5 and 7 wt% of Fe2O3 presented the MgFe2O4 spinel-type phase. With the addition of Al2O3 nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm2, there were the formations of MgAl2O4 spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed

  18. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Aluminum nitride (AlN) thin films deposited on high-vacuum systems without substrate heating generally exhibit a poor degree of c-axis orientation. This is due to the nonequilibrium conditions existing between the energy of the sputtered particles and the energy at the substrate surface. The application of substrate bias or substrate temperature is known to improve the adatom mobility by delivering energy to the substrate; both are hence well-established crystal growth promoting factors. It is well known that low sputtering pressures can be used as a parameter improving the growth of highly c-axis oriented aluminum nitride films at room temperature even without applying bias voltage to the substrate. Generally, the use of high pressures implies thermalization of particles within the gas phase and is considered to increase the energy gap between these and the substrate surface. However, in later experiments we have learned that the use of high processing pressures does not necessarily implies a detriment of crystallographic orientation in the films. By measuring (for the first time to the author's knowledge) the full width at half maximum value of the rocking curve of the 0002-AlN peak at several positions along the 100 mm diameter (100)-silicon wafers on which aluminum nitride thin films were deposited by reactive sputtering, a new effect was observed. Under certain processing conditions, the growth of the AlN thin films is influenced by the target magnetron. More precisely, their degree of c-axis orientation varies at wafer areas locally coincident under the target magnetron. This effect should be considered, especially where large area substrates are employed such as in silicon wafer foundry manufacturing processes.

  19. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  20. Porous Spherical Cellulose Composites Coated by Aluminum (Ⅲ) Oxide and Silicone: Preparation,Characterization and Adsorption Behavior

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Porous spherical cellulose composite (PSCA) coated by aluminum (Ⅲ) oxide was prepared andmodified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it hasspherical shape and abundant porous structure on its surface. The mapping images of aluminum and silicon ofthe composite (PSCAS) present aluminum( Ⅲ ) oxide and silicone are uniformly dispersed on the surface. Theadsorption behavior of PSCAS toward metal ions was determined.

  1. Study of oxide films on the surface of cadmium telluride

    International Nuclear Information System (INIS)

    Study of oxide films on surfaces of CdTe monocrystals is continued by methods of ellipsometry and by absorption in IR-spectral range. Index values of refruction of oxide films, produced by cadmium telluride oxidation in hydrogen peroxide solutions, in oxigen flow at 673 K and by anode oxidation, as a rule, differ essentially in dependence on method of production, that gives evidence of differences in these films composition. Oxide films, produced in oxygen flow, as opposed to films, produced by two other methods, have intensive absorption, characteristic for tellurite group. Film thickness, produced by oxidation in hydrogen peroxide and in oxygen flow, varies within rather wide limits with observance of externally similar conditions of production. By contrast to it, thickness of anode films is regulated reliably by anode potential

  2. Effect of nanostructured AlN coatings on the oxidation-resistant properties of optical diamond films

    International Nuclear Information System (INIS)

    Diamond film is an ultra-durable optical material with high thermal conductivity and good transmission in near-infrared and far-IR (8-14 μm) wavebands. CVD diamond is subjected to oxidation at temperature higher than 780 deg. C bared in air for 3 min, while it can be protected from oxidation for extended exposure in air at temperature up to 900 deg. C by a coating of aluminum nitride. Highly oriented AlN coatings were prepared for infrared windows on diamond films by reactive sputtering method and the average surface roughness (R a) of the coatings was about 10 nm. The deposited films were characterized by X-ray diffraction (XRD) and atom force microscope (AFM). XRD confirmed the preferential orientation nature and AFM showed nanostructures. Optical properties of diamond films coated AlN thin film was investigated using infrared spectrum (IR) compared with that for as-grown diamond films

  3. Epitaxial copper oxide thin films deposited on cubic oxide substrates

    International Nuclear Information System (INIS)

    We study the growth conditions of Cu2O thin films deposited on MgO (0 0 1) and SrTiO3 (0 0 1) substrates by pulsed laser ablation, in order to explore the compatibility between semiconducting p-type Cu2O and other perovskite oxides in view of the fabrication of oxide electronics heterostructures. We find that in both cases perfect epitaxy, high crystalline quality and good out-of-plane orientation are achieved. In this context, epitaxy plays a major role in driving the phase formation. On the other hand, in films deposited at temperatures higher than 700 deg. C transport is inhibited by poor grain connectivity, which is an inevitable consequence of the necessity for the crystal to release the lattice strain. Instead, better connectivity and bulk-like values of resistivity, as well as good crystallinity and orientation, are obtained for films deposited at 650 deg. C. This should be kept in mind for the fabrication of stacked layer oxide heterostructures, where deep grooves between adjacent grains would be a serious drawback both for vertical and planar transport

  4. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    International Nuclear Information System (INIS)

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films

  5. The effect of different aluminum alloy surface compositions on barrier anodic film formation

    International Nuclear Information System (INIS)

    The authors have grown barrier anodic coatings on samples of aluminum alloy with different elemental surface compositions. In one series of experiments, they characterized the surface composition present on 6061 aluminum alloy samples after different chemical treatments including a detergent-water and methyl-ethyl ketone solvent clean, a 50% nitric acid-water etch, and a concentrated nitric acid-ammonium bifluoride etch. They anodized samples which were prepared similarly to those analyzed to evaluate the practical effects of the three different surface compositions. The anodization voltage rise time to 950V at constant current was used as a figure of merit. The solvent cleaned and the 50% nitric acid etched samples required, respectively, 113% and 41% more time to reach 950V than the concentrated nitric acidammonium bifloride etched samples. In a second series of experiments, they alternately anodized groups of either 6061 or 1100 (commercially pure) aluminum alloy, observed rise times to 950V, and measured chloride ion concentrations in the electrolyte. Longer rise times and higher chloride ion concentrations were observed for the 1100 samples. It was observed that the chloride ion concentration fell from initially high levels when 6061 samples were anodized. The results of both series of experiments augment the results of other investigators, who report that the surface species initially present on aluminum have a significant effect on anodic film formation

  6. Rate and pressure dependence of contaminants in vacuum-deposited aluminum films

    International Nuclear Information System (INIS)

    Experiments have been conducted to measure the quantity of trapped impurities in electron-beam-deposited aluminum films. The depositions were conducted at the 1.3 x 10-4--1.3 x 10-2 Pa pressure range with rates varying from a few tenths to 7.0 nm/s. An RGA was used to record the residual gas spectrum before and during all runs. The films were analyzed by sputter profiling and Auger electron spectroscopy. The chief contaminants found were carbon and oxygen. The carbon contaminant tracked the gauge pressure over two orders of magnitude ranging from a few atomic percent to the 500--1000 ppm range. The partial pressures of H2O, O2, and other gases were varied during deposition to determine their individual roles in contaminating the films. As a result, a relationship between the residual gas spectrum, and chemical analysis was found

  7. Cathodic electrolysis method of depositing cerium conversion films on industrial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two two-step techniques, called TS2/TS7 and TS3/TS7, respectively, have been developed to form cerium conversion films on the surface of industrial pure aluminum. The tested material was cathodically electrolyzed in the alkaline solution containing cerium salt, and uniform films containing cerium were obtained after the two-step treatment. It is found that the films obtained by TS2/TS7 and TS3/TS7 techniques are about 4.0 and 3.0 m in thickness, respectively. The material has better corrosion resistance in the chloride solution after the two-step electrolysis treatment compared with the one-step treated and naked specimens.

  8. Development of aluminum-doped ZnO films for a-Si∶H/μc-Si∶H solar cell applications

    Institute of Scientific and Technical Information of China (English)

    Lei Zhifang; Chen Guangyu; Gu Shibin; Dai Lingling; Yang Rong; Meng Yuan; Guo Ted

    2013-01-01

    This study deals with the optimization of direct current (DC) sputtered aluminum-doped zinc oxide (AZO) thin films and their incorporation into a-Si∶H/μc-Si∶H tandem junction thin film solar cells aiming for high conversion efficiency.Electrical and optical properties of AZO films,i.e.mobility,carrier density,resistivity,and transmittance,were comprehensively characterized and analyzed by varying sputtering deposition conditions,including chamber pressure,substrate temperature,and sputtering power.The correlations between sputtering processes and AZO thin film properties were first investigated.Then,the AZO films were textured by diluted hydrochloric acid wet etching.Through optimization of deposition and texturing processes,AZO films yield excellent electrical and optical properties with a high transmittance above 81% over the 380-1100 nm wavelength range,low sheet resistance of 11 Ω/□ and high haze ratio of 41.3%.In preliminary experiments,the AZO films were applied to a-Si∶H/μc-Si∶H tandem thin film solar cells as front contact electrodes,resulting in an initial conversion efficiency of 12.5% with good current matching between subcells.

  9. Enhancement of oxidation resistance of NBD 200 silicon nitride ceramics by aluminum implantation

    Science.gov (United States)

    Mukundhan, Priya

    Silicon nitride (Si3N4) ceramics are leading candidates for high temperature structural applications. They have already demonstrated functional capabilities well beyond the limits of conventional metals and alloys in advanced diesel and turbine engines. However, the practical exploitation of these benefits is limited by their oxidation and associated degradation processes in chemically aggressive environments. Additives and impurities in Si3N4 segregate to the surface of Si3N 4 and accelerate its high temperature oxidation process. This study aims to investigate the oxidation behavior of Norton NBD 200 silicon nitride (hot isostatically pressed with ˜1 wt.% MgO) and its modification by aluminum surface alloying. NBD 200 samples tribochemically polished to a mirror finish (10 nm) were implanted with 5, 10, 20 and 30 at.% aluminum at multienergies and multi-doses to achieve a uniform implant depth distribution to 200 nm. Unimplanted and aluminum-implanted samples were oxidized at 800°--1100°C in 1 atm O2 for 0.5--10 hours. Oxidation kinetics was determined using profilometry in conjunction with etch patterning. The morphological, structural and chemical characteristics of the oxide were characterized by various analytical techniques such as scanning electron microscope and energy dispersive x-ray analysis, secondary ion mass spectrometry and x-ray photoelectron spectroscopy. Oxidation of NBD 200 follows parabolic kinetics in the temperature range investigated and the process is diffusion-controlled. The oxide layers are enriched with sodium and magnesium from the bulk of the Si3N 4. The much higher oxidation rate for NBD 200 silicon nitride than for other silicon nitride ceramics with a similar amount of MgO is attributed to the presence of sodium. The rate-controlling mechanism is the outward diffusion of Mg2+ from the grain boundaries to the oxide scale. Aluminum implantation alleviates the detrimental effects of Na+ and Mg2+; not only is the rate of oxidation

  10. Co-sputtered oxide thin film encapsulated organic electronic devices with prolonged lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Wong, F.L.; Fung, M.K.; Ng, C.Y.; Ng, A.; Bello, I.; Lee, S.T.; Lee, C.S., E-mail: apcslee@cityu.edu.hk

    2011-11-30

    Effective top-side thin film encapsulation for organic light-emitting devices (OLEDs) was achieved by deposition of a multi-layer water diffusion barrier stack to protect the device against moisture permeation. The barrier stack was formed by alternative depositions of co-oxide and fluorocarbon (CF{sub x}) films. The co-oxide layer was fabricated by magnetron co-sputtering of silicon dioxide (SiO{sub 2}) and aluminum oxide (Al{sub 2}O{sub 3}). While the CF{sub x} layer was formed by plasma enhanced chemical vapor deposition. The water vapor transmission rate of the optimized diffusion barrier stack can be down to 10{sup -6} g/m{sup 2}/day. The OLEDs encapsulated with the multilayer stack have been shown to have operation lifetime of over 18,000 h which is nearly the same as devices with conventional glass-cover encapsulation.

  11. Propagation of nonequilibrium phonons in aluminum-oxide ceramics fabricated by cold isostatic pressing

    International Nuclear Information System (INIS)

    Propagation of slightly nonequilibrium phonons in aluminum-oxide ceramics fabricated by cold isostatic pressing has been studied. Assuming that phonon propagation in ceramic grains is ballistic, we have analyzed characteristics of the phonon scattering and drawn some conclusions about the nature of grain boundaries

  12. Fabrication, structural characterization and sensing properties of polydiacetylene nanofibers templated from anodized aluminum oxide

    Science.gov (United States)

    Polydiacetylene (PDA), a unique conjugated polymer, has shown its potential in the application of chem/bio-sensors and optoelectronics. In this work, we first infiltrated PDA monomer (10, 12-pentacosadiynoic acid, PCDA) melted into the anodized aluminum oxide template, and then illuminated the infil...

  13. Standard specification for nuclear-grade aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This specification applies to pellets composed of mixtures of aluminum oxide and boron carbide that may be ultimately used in a reactor core, for example, in neutron absorber rods. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  14. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; White, D.P.; Snead, L.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  15. Thin film reaction kinetics of niobium/aluminum multilayers

    International Nuclear Information System (INIS)

    Phase formation kinetics in Nb/Al multilayered thin films having overall compositions of 25, 33, 50, and 75 at. % Al have been investigated using scanning calorimetry, x-ray diffraction, and cross-sectional transmission electron microscopy. The first phase to form upon annealing the Nb/Al layered structure of all samples is the NbAl3 intermetallic. Calorimetry clearly identifies the NbAl3 formation to be a two-stage process. The first stage is the formation of a planar layer by nucleation and growth to coalescence while the second stage is the thickening of the planar layer. The large amount of heat released (and hence large volume fraction of NbAl3 formed) during the first reaction stage is consistent with heterogeneous nucleation at well-isolated sites in the Nb/Al interface. This is surprising in light of the large thermodynamic driving force expected for nucleation and suggests that the local nonequilibrium nature of the Nb/Al interface greatly reduces the driving force for nucleation. The next phase observed in samples of 25 and 33 at. % Al is the A15 superconducting phase, Nb3Al. The Nb3Al growth completes a first reaction stage similar to the NbAl3, but the subsequent thickening reaction stage is not observed without simultaneous Nb2Al growth. The high interface velocities derived from the calorimetry for formation of both NbAl3 and the A15 Nb3Al indicate that atomic transport must be by grain boundary diffusion

  16. Oxidation of silicon implanted with high-dose aluminum

    International Nuclear Information System (INIS)

    Si (100) wafers were implanted with Al at 500 C to high doses at multi-energies and were oxidized in 1 atm flowing oxygen at 1,000--1,200 C. The morphology, structure, and oxidation behavior of the implanted and oxidized Si were studied using optical microscopy, atomic force microscopy, and cross-sectional transmission electron microscopy in conjunction with selected area electron diffraction and energy dispersive x-ray analysis. Large Al precipitates were formed and embedded near the surface region of the implanted Si. The oxidation rate of the Al-implanted Si wafers was lower than that of virgin Si. The unique morphology of the implanted Si results from rapid Al diffusion and segregation promoted by hot implantation. The reduction of the oxidation rate of Si by Al implantation is attributed to the preferential oxidation of Al and formation of a continuous diffusion barrier of Al2O3

  17. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    Science.gov (United States)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  18. Corrosion behavior of aluminum doped diamond-like carbon thin films in NaCl aqueous solution.

    Science.gov (United States)

    Khun, N W; Liu, E

    2010-07-01

    Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films. PMID:21128496

  19. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  20. Copper oxide thin films for ethanol sensing

    Science.gov (United States)

    Lamri Zeggar, M.; Bourfaa, F.; Adjimi, A.; Aida, M. S.; Attaf, N.

    2016-03-01

    The present is a study of a new active layer for ethanol (C2H5OH) vapour sensing devices based on copper oxide (CuO). CuO films were prepared by spray ultrasonic pyrolysis at a substrate temperature of 350 °C. Films microstructure was examined by X-ray diffraction and atomic force microscopy. Vapour-sensing testing was conducted using static vapour-sensing system, at different operating temperatures in the range of 100°C to 175°C for the vapour concentration of 300 ppm. The results show a high response of 45% at relatively low operating temperatures of 150°C towards ethanol vapour.

  1. Thickness dependence of Young's modulus and residual stress of sputtered aluminum nitride thin films

    Science.gov (United States)

    Schneider, M.; Bittner, A.; Schmid, U.

    2014-11-01

    Aluminum nitride thin films are commonly used as active layer in micro-/nanomachined devices due to their piezoelectric properties. In order to predict the performance of advanced device architectures, careful modelling and simulation using techniques such as finite element analysis are of the utmost importance. An accurate knowledge of the corresponding thin film material properties is therefore required. This work focuses on the mechanical properties residual stress and Young's modulus over a wide thickness range from 100 to 1200 nm. The load-deflection technique is used to measure the bending curve of a circumferentially clamped, circular aluminum nitride diaphragm under a uniformly distributed pressure load. The bending curves are analyzed using an advanced analytical approach rather than commonly used models for load-deflection methods, thus resulting in a higher accuracy. It is found that the Young's modulus is nearly independent of film thickness, whereas the tensile residual stress exhibits a maximum at a thickness of about 600 nm. A thorough discussion of possible error sources is presented and approaches to minimize their impact are discussed.

  2. Luminescence of oxide films during the electrolytic oxidation of tantalum

    International Nuclear Information System (INIS)

    Highlights: • Electrolytic oxidation of tantalum in phosphoric acid and oxalic acid. • Galvanoluminescence (GL) is related to the existence of flaws in oxide coating. • GL is more intense for higher current density and higher electrolyte temperature. • GL shows wide bands mostly in the visible and near infrared spectral region. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. - Abstract: Luminescence during a constant current electrolytic oxidation of tantalum in phosphoric acid and oxalic acid is investigated. Weak anodic luminescence (galvanoluminescence) of barrier oxide films during the electrolytic oxidation is correlated to the existence of surface imperfections. Galvanoluminescence is more intense for rougher tantalum samples, higher current density, and higher electrolyte temperature. Spectral characterization of galvanoluminescence showed that there are wide luminescence bands mostly in the visible and near infrared spectral region. Small sized sparks generated by dielectric breakdown cause rapidly increasing luminescence intensity. The luminescence spectrum under spark discharging has several intensive peaks caused by electronic transitions in oxygen and hydrogen atoms

  3. Electrochromism: from oxide thin films to devices

    Science.gov (United States)

    Rougier, A.; Danine, A.; Faure, C.; Buffière, S.

    2014-03-01

    In respect of their adaptability and performance, electrochromic devices, ECDs, which are able to change their optical properties under an applied voltage, have received significant attention. Target applications are multifold both in the visible region (automotive sunroofs, smart windows, ophthalmic lenses, and domestic appliances (oven, fridge…)) and in the infrared region (Satellites Thermal Control, IR furtivity). In our group, focusing on oxide thin films grown preferentially at room temperature, optimization of ECDs performances have been achieved by tuning the microstructure, the stoichiometry and the cationic composition of the various layers. Herein, our approach for optimized ECDs is illustrated through the example of WO3 electrochromic layer in the visible and in the IR domain as well as ZnO based transparent conducting oxide layer. Targeting the field of printed electronics, simplification of the device architecture for low power ECDs is also reported.

  4. Intensity and temperature-dependent photoluminescence of tris (8-hydroxyquinoline) aluminum films

    Energy Technology Data Exchange (ETDEWEB)

    Ajward, A. M.; Wang, X.; Wagner, H. P. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)

    2013-12-04

    We investigate the recombination of excitons in tris (8-hydroxyquinoline) aluminum films by intensity and temperature dependent time-resolved photoluminescence (PL). At low temperature (15 K) and elevated excitation intensity the radiative emission is quenched by singlet-singlet annihilation processes. With rising temperature the PL quenching is strongly reduced resulting in a PL efficiency maximum at ∼170 K. The reduced exciton annihilation is attributed to thermally activated occupation of non-quenchable trapped exciton states. Above 170 K the PL efficiency decreases due to thermal de-trapping of radiative states and subsequent migration to non-radiative centers.

  5. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays.

    Science.gov (United States)

    Dong, Zhizhong; Al-Sharab, Jafar F; Kear, Bernard H; Tse, Stephen D

    2013-09-11

    A nanostructured thermite composite comprising an array of tungsten-oxide (WO2.9) nanowires (diameters of 20-50 nm and lengths of >10 μm) coated with single-crystal aluminum (thickness of ~16 nm) has been fabricated. The method involves combined flame synthesis of tungsten-oxide nanowires and ionic-liquid electrodeposition of aluminum. The geometry not only presents an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer but also eliminates or minimizes the presence of an interfacial Al2O3 passivation layer. Upon ignition, the energetic nanocomposite exhibits strong exothermicity, thereby being useful for fundamental study of aluminothermic reactions as well as enhancing combustion characteristics. PMID:23899165

  6. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu2O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm2/C

  7. Electrochromism of the electroless deposited cuprous oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Neskovska, R. [Faculty of Technical Sciences, University ' St. Clement Ohridski' , Bitola (Macedonia, The Former Yugoslav Republic of); Ristova, M. [Faculty of Natural Sciences and Mathematics, Institute of Physics, P.O. Box 162, Skopje (Macedonia, The Former Yugoslav Republic of)]. E-mail: mristova@iunona.pmf.ukim.edu.mk; Velevska, J. [Faculty of Natural Sciences and Mathematics, Institute of Physics, P.O. Box 162, Skopje (Macedonia, The Former Yugoslav Republic of); Ristov, M. [Macedonian Academy of Sciences and Arts, Skopje, Bul. Krste Misirkov bb, Skopje (Macedonia, The Former Yugoslav Republic of)

    2007-04-09

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu{sub 2}O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm{sup 2}/C.

  8. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  9. Aluminum cladding oxidation of prefilmed in-pile fueled experiments

    Science.gov (United States)

    Marcum, W. R.; Wachs, D. M.; Robinson, A. B.; Lillo, M. A.

    2016-04-01

    A series of fueled irradiation experiments were recently completed within the Advanced Test Reactor Full size plate In center flux trap Position (AFIP) and Gas Test Loop (GTL) campaigns. The conduct of the AFIP experiments supports ongoing efforts within the global threat reduction initiative (GTRI) to qualify a new ultra-high loading density low enriched uranium-molybdenum fuel. This study details the characterization of oxide growth on the fueled AFIP experiments and cross-correlates the empirically measured oxide thickness values to existing oxide growth correlations and convective heat transfer correlations that have traditionally been utilized for such an application. This study adds new and valuable empirical data to the scientific community with respect to oxide growth measurements of highly irradiated experiments, of which there is presently very limited data. Additionally, the predicted oxide thickness values are reconstructed to produce an oxide thickness distribution across the length of each fueled experiment (a new application and presentation of information that has not previously been obtainable in open literature); the predicted distributions are compared against experimental data and in general agree well with the exception of select outliers.

  10. Studies on influence of light on fluorescence of Tris-(8-hydroxyquinoline)aluminum thin films

    Science.gov (United States)

    Thangaraju, K.; Amaladass, P.; Bharathi, K. Shanmuga; Mohanakrishnan, A. K.; Narayanan, V.; Kumar, J.

    2009-03-01

    Tris-(8-hydroxyquinoline)aluminum (Alq 3) thin films, the most widely used electron transport/emissive material in the organic electroluminescent (EL) devices, have been deposited on glass substrates by thermal evaporation process. Alq 3 thin films were exposed to light for various time periods under normal ambient. The fluorescence of as-prepared and light exposed Alq 3 thin films and formation of luminescent quencher have been studied using fluorescence, Mass, MALDI-ToF-MS, 1H & 13C NMR, and FT-IR spectroscopy. It is observed that among the three 8-hydroxyquinoline (HQ) units in Alq 3 molecule, one HQ unit is affected during the light exposure in the normal ambient. It is found that the affected resultant Alq 3 molecule containing the carbonyl group acts as fluorescent quencher and the energy of excitons in the Alq 3 molecule in the light exposed Alq 3 thin films can be non-radiatively transferred to the neighboring fluorescent quencher, quenching the fluorescence of light exposed Alq 3 thin films in the normal ambient.

  11. Studies on influence of light on fluorescence of Tris-(8-hydroxyquinoline)aluminum thin films

    International Nuclear Information System (INIS)

    Tris-(8-hydroxyquinoline)aluminum (Alq3) thin films, the most widely used electron transport/emissive material in the organic electroluminescent (EL) devices, have been deposited on glass substrates by thermal evaporation process. Alq3 thin films were exposed to light for various time periods under normal ambient. The fluorescence of as-prepared and light exposed Alq3 thin films and formation of luminescent quencher have been studied using fluorescence, Mass, MALDI-ToF-MS, 1H and 13C NMR, and FT-IR spectroscopy. It is observed that among the three 8-hydroxyquinoline (HQ) units in Alq3 molecule, one HQ unit is affected during the light exposure in the normal ambient. It is found that the affected resultant Alq3 molecule containing the carbonyl group acts as fluorescent quencher and the energy of excitons in the Alq3 molecule in the light exposed Alq3 thin films can be non-radiatively transferred to the neighboring fluorescent quencher, quenching the fluorescence of light exposed Alq3 thin films in the normal ambient

  12. Correlation between texture and mechanical stress durability of thin aluminum films

    International Nuclear Information System (INIS)

    In this article, differently textured aluminum (Al) metallizations of surface acoustic wave (SAW) devices have been exposed to cyclic mechanical stress in order to investigate a potential correlation between their texture and their mechanical stress durability. Samples of SAW devices with differently textured Al thin film electrodes have been manufactured, and texture measurements have been carried out on all samples with electron backscatter diffraction. Subsequently, the SAW devices have been operated at heavy electrical load until a defined mechanical fatigue of its Al electrodes occurred. SAW devices with highly textured Al electrodes showed almost 20 times higher power durability than SAW devices with untextured Al electrodes. We show that this increase in electrical power durability has to be fully attributed to the strongly enhanced mechanical stress durability of highly textured Al films. Furthermore, a positive correlation between the Al films' texture and its electrical conductivity has been found. - Highlights: • We show highly textured growth of thin Al films on a clean, monocrystalline LiTaO3 • Highly textured Al growth gets disturbed by prior photolithographic process steps • Power durability of a SAW device increases with texture of its metallization • Texture and mechanical stress durability of a thin Al film are tightly correlated

  13. Colour and colour contrast of films based on vanadium oxide

    International Nuclear Information System (INIS)

    Results of studying thin vanadium oxide films having thermochromic effect are presented. For quantitative estimation of colour variation in vanadium-oxide layers at phase transformations, CTELAB equicontrast system is used. The films were applied by vacuum deposition of metallic vanadium and them were subject to controlled oxidation in oxygen. It is shown that it is possible to create dynamic standards of colour on the basis of vanadium oxides

  14. Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn; Shi Xiuling [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Hua Ming [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Li Yongliang [Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China)

    2007-05-15

    Thick ceramic films over 140 {mu}m were prepared on Al-7% Si alloy by ac microarc oxidation in a silicate electrolyte. The film growth kinetics was determined by an eddy current technique and film growth features in different stages were discussed. The microstructure and composition profiles for different thick films were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Their phase components were determined by X-ray diffraction. The electrochemical corrosion behaviors of bare and coated alloys were evaluated using potentiodynamic polarization curves, and their corrosion morphologies were observed. In the initial stage of oxidation, the growth rate is slow with 0.48 {mu}m/min due to the effect of Si element though the current density is rather high up to 33 A/dm{sup 2}. After the current density has decreased to a stable value of 11 A/dm{sup 2}, the film mainly grows towards the interior of alloy. The film with a three-layer structure consists of mullite, {gamma}-Al{sub 2}O{sub 3}, {alpha}-Al{sub 2}O{sub 3} and amorphous phases. By microarc discharge treatment, the corrosion current of the Al-Si alloy in NaCl solution was significantly reduced. However, a thicker film has to be fabricated in order to obtain high corrosion-resistant film of the Al-Si alloy. Microarc oxidation is an effective method to form an anti-corrosion protective film on Si-containing aluminum alloys.

  15. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    Science.gov (United States)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  16. Structural properties of a-Si films and their effect on aluminum induced crystallization

    International Nuclear Information System (INIS)

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AIC is diminished, leading larger poly-Si grain size

  17. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    International Nuclear Information System (INIS)

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200 °C. Growth rate of 1.3 Å per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films

  18. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    Science.gov (United States)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  19. Tribological properties of solid lubricating film/microarc oxidation coating on Al alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Zhuang-zi; ZHANG Zhao-zhu; LIU Wei-min; TIAN Jun

    2005-01-01

    A process for preparation of solid lubricating films on micro-arc oxidation(MAO) coating was introduced to provide self-lubricating and wear-resistant multilayer coatings for aluminum alloys. The friction and wear behavior of various burnished and bonded solid lubricating films on the as-deposited and polished micro-arc oxidation coatings sliding against steel and ceramic counterparts was evaluated with a Timken tester and a reciprocating friction and wear tester, respectively. The burnished and bonded solid lubricating films on the polished micro-arc oxidation coatings are superior to the as-deposited ones in terms of the wear resistant behavior, because they lead to strengthened interfacial adhesion between the soft lubricating top-film and the hard polished MAO sub-coating, which helps increase the wear resistance of the solid lubricating film on multilayer coating. Thus the multilayer coatings are potential candidates as self-lubricating and wear-resistant coatings for Al alloy parts in engineering applications.

  20. Laser-assisted deposition and element analysis of nano-composite oxide thin films

    International Nuclear Information System (INIS)

    Functional oxide thin films are epitaxially grown by pulsed-laser deposition (PLD) method. High-Tc superconducting (HTS) films of enhanced critical current density Jc are deposited by laser ablation of YBa2Cu3O7 (Y-123) ceramics containing Y2Ba4CuMOx (M-2411, M=Ag,Nb,Ru,Zr) nano-particles. The Jc enhancement of nano-composite films depends on the secondary phase content of the ceramic targets. Piezoelectric oxides such as novel GaPO4 and ZnO doped with Lithium and Aluminum are grown as thin films and double-layers. The monitoring of deposition processes and the element analysis of layers and ceramics are performed by laser-induced break down spectroscopy (LIBS). The LIBS signals recorded in situ are stable for more than 10000 laser pulses employed for target ablation. The relative element concentration in thin films and ceramics is the same demonstrating stoichiometric ablation and transfer of the multi-component oxide materials

  1. Analysis of Intermetallic Phases Formed on Surface Vapor Oxidized H13 Hot Work Steels in Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    WANGRong; WUXiao-chun; MINYong-an

    2004-01-01

    In this paper, the author dipped surface vapor oxidized H13 steel specimens into 700℃ molten aluminum liquid for a certain period of time. Analyze the intermetallic phases formed on the H 13 samples surface with optical microscope and X-ray diffraction method. The observation of immersion test sample's cross-section shows that Fe304 film will protect die substrate from molten aluminum erosion. The identification of the intermetallic phases reveals that they consist of 2 parts, which is named as the composite layer and the compact layer. Further investigations are made in order to know the phase constituents of the 2 layers, they are Al8Fe2Si (outer composite layer), (AlCuMg) and Al5Fe2 (compact layer), respectively. The experimental results show that on the same specimen, a convex surface with bigger radius of curvature is more likely to be molten and the melting loss speed is also faster than a flat and smooth surface. The thickness of compact layer on a smooth surface is much bigger than that of the convex surface. Therefore, the author supposes the compact layer is favorable in stabilizing the die surface material from further melting loss, as their formation on the die surface, the melting loss speed will decrease.

  2. Analysis of Intermetallic Phases Formed on Surface Vapor Oxidized H13 Hot Work Steels in Molten Aluminum

    Institute of Scientific and Technical Information of China (English)

    WANG Rong; WU Xiao-chun; MIN Yong-an

    2004-01-01

    In this paper, the author dipped surface vapor oxidized H13 steel specimens into 700℃ molten aluminum liquid for a certain period of time. Analyze the intermetallic phases formed on the H13 samples surface with optical microscope and X-ray diffraction method. The observation of immersion test sample's cross-section shows that Fe3O4 film will protect die substrate from molten aluminum erosion. The identification of the intermetallic phases reveals that they consist of 2parts, which is named as the composite layer and the compact layer. Further investigations are made in order to know the phase constituents of the 2 layers, they are Al8Fe2Si (outer composite layer), (AlCuMg) and Al5Fe2 (compact layer),respectively. The experimental results show that on the same specimen, a convex surface with bigger radius of curvature is more likely to be molten and the melting loss speed is also faster than a flat and smooth surface. The thickness of compact layer on a smooth surface is much bigger than that of the convex surface. Therefore, the author supposes the compact layer is favorable in stabilizing the die surface material from further melting loss, as their formation on the die surface, the melting loss speed will decrease.

  3. Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lee, Soo Hyun; Yu, Jae Su

    2015-09-23

    Highly transparent and flexible triboelectric nanogenerators (TENGs) were fabricated using the subwavelength-architectured (SWA) polydimethylsiloxane (PDMS) with a nanoporous anodic aluminum oxide (AAO) template as a replica mold. The SWA PDMS could be utilized as a multifunctional film for a triboelectric layer, an antireflection coating, and a self-cleaning surface. The nanopore arrays of AAO were formed by a simple, fast, and cost-effective electrochemical oxidation process of aluminum, which is relatively impressive for fabrication of the TENG device. For electrical contacts, the SWA PDMS was laminated on the indium tin oxide (ITO)-coated polyethylene terephthalate (PET) as a bottom electrode, and the bare ITO-coated PET (i.e., ITO/PET) was used for the top electrode. Compared to the ITO/PET, the SWA PDMS on the ITO/PET improved the transmittance from 80.5 to 83% in the visible wavelength region and also had high transmittances of >85% at wavelengths of 430-455 nm. The SWA PDMS also exhibited the hydrophobic surface with a water contact angle (θCA) of ∼115°, which can be useful for self-cleaning applications. The average transmittance (Tavg) of the entire TENG device was observed to be ∼70% over a broad wavelength range. At an external pushing frequency of 0.5 Hz, for the TENG device with the ITO top electrode, open-circuit voltage (VOC) and short-circuit current (ISC) values of ∼3.8 V and ∼0.8 μA were obtained instantaneously, respectively, which were higher than those (i.e., VOC ≈ 2.2 V, and ISC ≈ 0.4 μA) of the TENG device with a gold top electrode. The effect of external pushing force and frequency on the output device performance of the TENGs was investigated, including the device robustness. A theoretical optical analysis of SWA PDMS was also performed. PMID:26301328

  4. Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis

    International Nuclear Information System (INIS)

    Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K. The measurements under hydrogen as well as under synthetic air show transport properties depending on temperature and doping level. Under hydrogen atmosphere, a decreasing conductivity with increasing dopant content is observed, which can be explained by enhanced scattering processes due to an increasing disorder in the nanocrystalline material. The temperature coefficient for the doped samples switches from positive temperature coefficient behavior to negative temperature coefficient behavior with increasing dopant concentration. In the presence of synthetic air, the conductivity firstly increases with increasing dopant content by six orders of magnitude. The origin of the increasing conductivity is the generation of free charge carriers upon dopant incorporation. It reaches its maximum at a concentration of 7.7% of aluminum, and drops for higher doping levels. In all cases, the conductivity under hydrogen is higher than under synthetic air and can be changed reversibly by changing the atmosphere.

  5. Large pore volume mesoporous aluminum oxide synthesized via nano-assembly

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new nano-assembly approach has been proposed for the preparation of macropore volume mesoporous aluminum oxide supports. Secondary nano-assembly and a frame structure mechanism for large pore volume mesoporous supports have been proposed. In a primary nano-assembly supersoluble micelle,aluminum hydroxide nanoparticles were precipitated in situ in surfactants with a volume balance (VB) less than 1,followed by secondary nano-assembly in linear and cylindrical shapes. The secondary nano-assembly of cylindrical aluminum hydroxides was calcined to form nano cylindrical aluminum oxides. For the formation of macropore volume mesoporous supports,we utilized a frame structure mechanism of mesoporous support,in which the exterior surface of the carrier may not be continuous. This macropore volume support has been used for the hydrotreatment of a residual oil catalyst,which possesses the following physical characteristics:pore volume 1.8―2.7 mL·g-1,specific surface area 180―429 m2·g-1,average pore diameter 17―57 nm,average pore diameter more than 10 nm (81%―94%),porosity 87%―93%,and crush strength 7.7―25 N·mm-1.

  6. Modeling of oxidation of aluminum nanoparticles by using Cabrera Mott Model

    Science.gov (United States)

    Ramazanova, Zamart; Zyskin, Maxim; Martirosyan, Karen

    2012-10-01

    Our research focuses on modeling new Nanoenergetic Gas-Generator (NGG) formulations that rapidly release a large amount of gaseous products and generates shock and pressure waves. Nanoenergetic thermite reagents include mixtures of Al and metal oxides such as bismuth trioxide and iodine pentoxide. The research problem is considered a spherically symmetric case and used the Cabrera Mott oxidation model to describe the kinetics of oxide growth on spherical Al nanoparticles for evaluating reaction time which a process of the reaction with oxidizer happens on the outer part of oxide layer of aluminum ions are getting in contact with an oxidizing agent and react. We assumed that a ball of Al of radius 20 to 50 nm is covered by a thin oxide layer 2-4 nm and is surrounded by abundant amount of oxygen stored by oxidizers. The ball is rapidly heated up to ignition temperature to initiate self-sustaining oxidation reaction. As a result highly exothermic reaction is generated. In the oxide layer of excess concentrations of electrons and ions are dependent on the electric field potential with the corresponding of the Gibbs factors and that it conducts to the solution of a nonlinear Poisson equation for the electric field potential in a moving boundary domain. Motion of the boundary is determined by the gradient of a solution on the boundary. We investigated oxidation model numerically, using the COMSOL software utilizing finite element analysis. The computing results demonstrate that oxidation rate increases with the decreasing particle radius.

  7. Growth and Characterization of Epitaxial Oxide Thin Films

    OpenAIRE

    Garg, Ashish

    2001-01-01

    Epitaxial oxide thin films are used in many technologically important device applications. This work deals with the deposition and characterization of epitaxial WO3 and SrBi2Ta2O9 (SBT) thin films on single crystal oxide substrates. WO3 thin films were chosen as a subject of study because of recent findings of superconductivity at surfaces and twin boundaries in the bulk form of this oxide. Highly epitaxial thin films would be desirable in order to be able to create a device withi...

  8. Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity

    Indian Academy of Sciences (India)

    Shipra Tripathi; G K Mehrotra; P K Dutta

    2011-02-01

    The chitosan–silver oxide encapsulated nanocomposite film was prepared by solution casting method. The prepared film was characterized by FTIR, scanning electron microscopy (SEM), thermal studies, and UV-Vis spectroscopy. The elemental composition of the film was studied by energy dispersive X-ray analysis (EDAX). The antibacterial activity of the composite film against pathogenic bacteria viz. Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa was measured by agar diffusion method. Our observations suggest that chitosan as biomaterial based nanocomposite film containing silver oxide has an excellent antibacterial ability for food packaging applications.

  9. Optical and vibrational spectra analysis of CVD - mixed oxide films: Optimization of the films electrochromic performance

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, T; Gesheva, K A [Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Abrashev, M [Faculty of Physics, St. Kl. Ohridski University of Sofia, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Sharlandjiev, P; Nazarova, D, E-mail: kagesh@phys.bas.b [Central Laboratory of Optical Storage and Processing of Information, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 101, 1113 Sofia (Bulgaria)

    2010-04-01

    Mixed oxide films based on Mo and W were successfully prepared by atmospheric pressure CVD at the low substrate temperature of 200{sup o}C. High amount of oxygen was used to ensure a high degree of oxidation resulting in more stoichiometric oxide films. The structural transformations under different thermal treatments were studied by Raman spectroscopy and FTIR spectroscopy analysis. The films were characterized electrochemically by cyclic voltammetry using different electrolytes, scan rates, etc. The mixed oxide films exhibited a strong electrochromic (EC) effect.

  10. Optical and vibrational spectra analysis of CVD - mixed oxide films: Optimization of the films electrochromic performance

    International Nuclear Information System (INIS)

    Mixed oxide films based on Mo and W were successfully prepared by atmospheric pressure CVD at the low substrate temperature of 200oC. High amount of oxygen was used to ensure a high degree of oxidation resulting in more stoichiometric oxide films. The structural transformations under different thermal treatments were studied by Raman spectroscopy and FTIR spectroscopy analysis. The films were characterized electrochemically by cyclic voltammetry using different electrolytes, scan rates, etc. The mixed oxide films exhibited a strong electrochromic (EC) effect.

  11. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  12. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    International Nuclear Information System (INIS)

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation

  13. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  14. Interactions between nitric oxide and plant hormones in aluminum tolerance

    OpenAIRE

    He, Huyi; He, Longfei; Gu, Minghua

    2012-01-01

    Nitric oxide (NO) is involved, together with plant hormones, in the adaptation to Al stress in plants. However, the mechanism by which NO and plant hormones interplay to improve Al tolerance are still unclear. We have recently shown that patterns of plant hormones alteration differ between rye and wheat under Al stress. NO may enhance Al tolerance by regulating hormonal equilibrium in plants, as a regulator of plant hormones signaling. In this paper, some unsolved issues are discussed based o...

  15. Optical Properties of Au Nanoparticles Coated on Surface of Glass or Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    FENG Jinyang; WU Can; MA Xiao; ZHANG Hongquan; ZHAO Xiujian

    2012-01-01

    Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process.FE-SEM,UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass,while deposition occurs on the surface of regular hollows for anodic aluminum oxide template.A sharp absorption peak appears at the wavelength of 536 nm for sample B,while there is a red shift,with a broader peak for sample A.A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A,but no noticeable fluorescence emission has been found for Sample B.The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

  16. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    Science.gov (United States)

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS). PMID:19441424

  17. Stabilization of aluminum doped zinc oxide nanoparticle suspensions and their application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, N., E-mail: nadine.wolf@zae-bayern.de [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Stubhan, T. [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen (Germany); Manara, J.; Dyakonov, V. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Brabec, C.J. [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Renewable Energies, Haberstraße 2a, 91058 Erlangen (Germany)

    2014-08-01

    Aluminum doped zinc oxide (AZO) nanoparticles were redispersed in isopropyl alcohol and stabilized with different stabilizers and mixtures of stabilizers that allow for electronically functional particles. The size of the redispersed nanoparticles was small enough to use these suspensions to build interfacial layers in inverted polymer-fullerene solar cells. The performance of these devices was found to depend on the stabilizer used in the nanoparticle suspension. The best performance was obtained with an AZO interfacial layer built with a 3,6,9-trioxadecanoic acid and polyvinylpyrrolidone stabilized nanoparticle suspension. - Highlights: • Preparation of stable aluminum doped zinc oxide nanoparticle suspensions • Different stabilizers were used to stabilize these nanoparticle suspensions. • The material was used as interfacial layers in inverted polymer solar cells. • The performance of these devices depends on the stabilizer used in the suspension.

  18. Case study on the ultrafast laser ablation of thin aluminum films: dependence on laser parameters and film thickness

    Science.gov (United States)

    Olbrich, M.; Punzel, E.; Roesch, R.; Oettking, R.; Muhsin, B.; Hoppe, H.; Horn, A.

    2016-03-01

    Laser ablation using ultra-short pulsed laser radiation allows the removing of thin films with very high spatial resolution, and working with high repetition rate as well with high through-put. The ultrafast ablation of thin films of aluminum on float glass is investigated using focused femtosecond laser radiation ( λ = 1028 nm, t H = 200 fs, sech2, p f = 1 MHz) as function of the number of pulses N p per point (1-10) and the film thickness d (30-300 nm). It is observed that two thresholds are derived simultaneously for thin films with a thickness thicker than 100 nm by irradiating the metal with single pulsed laser radiation exhibiting a Gaussian intensity distribution: one threshold for gentle ablation H thr,gentle and the other for strong ablation H thr,strong. Multi-pulse irradiation varying the number of pulses per point identifies the incubation effect described by Jee et al. (J Opt Soc Am B 5(3):648, 1968). This model was applied on the thresholds for gentle and strong ablation. Also, varying the layer thickness reducing the thresholds for thin films due heat accumulation. To quantify the experimental data, numerical simulations solving the coupled heat transfer equation of the two-temperature model were performed. A new approach including the temperature dependence of the reflectivity is presented based on the model proposed by Brückner et al. (J Appl Phys 66:1326, 1989). The results of the simulation fit qualitative well to the experimental data of gentle ablation. Theoretical investigation for double pulses with a variable pulse separation time of 1-300 ps were performed in comparison with a single pulse.

  19. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite.

    Science.gov (United States)

    Wu, Zhibin; Yuan, Xingzhong; Zhong, Hua; Wang, Hou; Zeng, Guangming; Chen, Xiaohong; Wang, Hui; Zhang, Lei; Shao, Jianguang

    2016-01-01

    In this study, the composite of aluminum metal-organic framework MIL-68(Al) and reduced graphene oxide (MA/RG) was synthesized via a one-step solvothermal method, and their performances for p-nitrophenol (PNP) adsorption from aqueous solution were systematically investigated. The introduction of reduced graphene oxide (RG) into MIL-68(Al) (MA) significantly changes the morphologies of the MA and increases the surface area. The MA/RG-15% prepared at RG-to-MA mass ratio of 15% shows a PNP uptake rate 64% and 123% higher than MIL-68(Al) and reduced graphene oxide (RG), respectively. The hydrogen bond and π - π dispersion were considered to be the major driving force for the spontaneous and endothermic adsorption process for PNP removal. The adsorption kinetics, which was controlled by film-diffusion and intra-particle diffusion, was greatly influenced by solution pH, ionic strength, temperature and initial PNP concentration. The adsorption kinetics and isotherms can be well delineated using pseudo-second-order and Langmuir equations, respectively. The presence of phenol or isomeric nitrophenols in the solution had minimal influence on PNP adsorption by reusable MA/RG composite. PMID:27181188

  20. Effect of conditions of thermal treatment on the porous structure of an aluminum oxide-containing nanofibrous aerogel

    Science.gov (United States)

    Markova, E. B.; Krasil'nikova, O. K.; Grankina, T. Yu.; Serov, Yu. M.

    2016-08-01

    The effect the conditions of thermal treatment have on a specific surface and the number of primary adsorption centers is studied. The relationship between changing adsorption characteristics and changes in the structure of nanofibrous aluminum oxide is considered.

  1. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  2. Radial Combustion Propagation in Iron(III) Oxide/Aluminum Thermite Mixtures

    OpenAIRE

    Durães, Luísa; Campos, José; Portugal, António

    2006-01-01

    The self-sustained thermite reaction between iron oxide (Fe2O3) and aluminum is a classical source of energy. In this work the radial combustion propagation on thin circular samples of stoichiometric and over aluminized Fe2O3/Al thermite mixtures is studied. The radial geometry allows an easy detection of sample heterogeneities and the observation of the combustion behavior in their vicinity. The influence of factors like reactant mixtures stoichiometry, samples green density and system geome...

  3. Computer simulation of the photoluminescence of nanostructured aluminum oxide excited with pulsed synchrotron radiation

    OpenAIRE

    Kortov, V. S.; Spiridonova, T. V.; Zvonarev, S. V.

    2013-01-01

    An algorithm and a program are developed to calculate the photoluminescence (PL) parameters for bulk single-crystal and nanoscale dielectrics excited with pulsed synchrotron radiation. The luminescence spectra of F and F+centers and the PL decay kinetics in single-crystal and nanoscale aluminum-oxide samples containing oxygen anion vacancies are calculated for various nanoparticle sizes. It is shown that a noticeable broadening of the bands and a decrease in the afterglow time is observed for...

  4. Characterization of Lipid Bilayer Formation in Aligned Nanoporous Aluminum Oxide Nanotube Arrays

    OpenAIRE

    Karp, Ethan S.; Newstadt, Justin P.; Chu, Shidong; Lorigan, Gary A.

    2007-01-01

    Aligning lipid bilayers in nanoporous anodized aluminum oxide (AAO) is a new method to help study membrane proteins by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR) spectroscopic methods. The ability to maintain hydration, sample stability, and compartmentalization over long periods of time, and to easily change solvent composition are major advantages of this new method. To date, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) has been the onl...

  5. Characterisation of thin tantalum oxide films

    International Nuclear Information System (INIS)

    Metal-insulator-metal (MIM, consisting of tantalum- anodic tantalum oxide-platinum) contacts were investigated by means of IV characteristics and impedance spectroscopy. With impedance spectroscopy it is possible to determine the capacitance, the metals resistivities and the tunnel resistance. The latter one is a function of the bias voltage, while the capacitance and metals resistivities remain constant. The tunnel resistivity was found to have a maximum at a bias Umax slightly different from 0 V. This shift was investigated as a function of the film thickness (d=4 nm to 12 nm) and the temperature in the range from T=58 K to 350 K. The measurements were compared to simulations. These simulations show, that for an explanation of this shift, asymmetrical barriers and tunneling through the valence band has to be considered

  6. Preparation and characterization of vanadium oxide thin films

    International Nuclear Information System (INIS)

    The thermotropic VO2 films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO2 and lime glass substrates. Thin films of V2O5 can be reduced to metastable VO2 thin films at the temperature of 450 grad C under the pressure of 10-2 Pa. These films are then converted to thermotropic VO2 at 700 grad C in argon under normal pressure. (authors)

  7. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  8. Elaboration of aluminum oxide-based graphite containing castables

    Science.gov (United States)

    Zhou, Ningsheng

    The aim of this work was set to develop effective and practicable new methods to incorporate natural flake graphite (FG) into the Al2O 3 based castables for iron and steel making applications. Three approaches, viz. micro-pelletized graphite (PG), crushed briquette of Al2O3-graphite (BAG) and TiO2 coated graphite (CFG), have been developed to insert flake graphite into Al2O 3 rich Al2O3-SiC based and Al2O 3-MgO based castables. These approaches were put into effect as countermeasures against the problems caused by FG in order: (1) to agglomerate the FG powders so as to decrease the specific surface area; (2) to diminish the density difference by using crushed carbon bonded compact of oxide-FG mixture; (3) to modify the surface of the flake graphite by forming hydrophilic coating; (4) to control the dispersion state of the graphite in the castable to maintain enough bonding strength; and (5) to use appropriate antioxidants to inhibit the oxidation of FG. The whole work was divided into two stages. In stage one, Al2O 3-SiC-C castables were dealt with to compare 4 modes of inserting graphite, i.e., by PG, BAG, CFG and FG. Overall properties were measured, all in correlation with graphite amount and incorporating mode. In stage two, efforts were made to reduce water demand in the Al2O3-MgO castables system. For this purpose, the matrix portion of the castable mixes was extracted and a coaxial double cylinder viscometer was adopted to investigate rheological characteristics of the matrix slurries vs. 4 kinds of deflocculants, through which the best deflocculant and its appropriate amount were found. Efforts were then made to add up to 30% MgO into the castables, using a limited amount of powders (<0.3 mm), the rest being increased in size gradually up to the top size of 4.76 mm. Into the optimized Al2O3-MgO castables graphite was incorporated by PG and BAG, and 4 kinds of antioxidants, Si, SiC, B4C and ZrB2, were added respectively or in combination. Overall properties

  9. DUPLEX Al2O3/DLC COATING ON 15SiCp/2024 ALUMINUM MATRIX COMPOSITE USING COMBINED MICROARC OXIDATION AND FILTERED CATHODIC VACUUM ARC DEPOSITION

    OpenAIRE

    WENBIN XUE; HUA TIAN; JIANCHENG DU; MING HUA; XU ZHANG; YONGLIANG LI

    2012-01-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning elec...

  10. Zinc release from atomic layer deposited zinc oxide thin films and its antibacterial effect on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kääriäinen, M.-L., E-mail: marja-leena.kaariainen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Weiss, C.K.; Ritz, S.; Pütz, S. [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany); Cameron, D.C. [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Mailänder, V. [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany); III. Medical Clinic, University Medicine of the Johannes-Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz (Germany); Landfester, K. [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2013-12-15

    Zinc oxide films have been grown by atomic layer deposition (ALD) at different reaction temperatures and in various thicknesses. Zinc-ion release has been examined from the ZnO films in water and in phosphate buffered saline solution (PBS). Additionally, the antibacterial effect has been studied on Escherichia coli. The thickness of the ZnO film or its crystal orientation did not affect the rate of dissolution. ALD grown aluminum oxide films were deposited on top of the ZnO films and they acted as an effective barrier against zinc dissolution. The bacteriostatic effect was not dependent on the film thickness but both 45 nm and 280 nm thick ZnO films significantly reduced bacterial attachment and growth in dark conditions by 99.7% and 99.5%, respectively. The results indicated that photoirradiation is not required for to enhance antibacterial properties of inorganic films and that the elution of zinc ions is probably responsible for the antibacterial properties of the ZnO films. The duration of the antibacterial effect of ZnO can be controlled by accurate control of the film thickness, which is a feature of ALD, and the onset of the antibacterial effect can be delayed by a time which can be adjusted by controlling the thickness of the Al{sub 2}O{sub 3} blocking layer. This gives the possibility of obtaining dual antibacterial release profiles through a nanolaminate structure of these two materials.

  11. Peculiarities of luminescence of nanostructured aluminum oxide with chromium impurity

    International Nuclear Information System (INIS)

    Comparative study of Cr3+ ions photo-, X-ray- and cathodoluminescence in R-lines region in monocrystal and nanostructural aluminium oxide samples with different phase composition is conducted. Peculiarities of chromium impurity inclusion into Al2O3 nanocrystal lattices at high-temperature thermal treatment of Al2O3 and Cr2O3 nanopowders mixture are revealed. It is shown that aluminium oxides nanostructuring can result in formation of complicated aggregate complexes which include anion vacancies and impurity cations. It is marked that the most likely cause of quenching of R-lines luminescence and their broadening at Al2O3 crystal symmetry decrease in α → θ → δ → γ series is anion sublattice disordering while action of crystal field is responsible for levels displacement. It is established that thermal treatment at 1200 deg C doesn't result in complete transformation of nanostructural Al2O3 into α-form as it takes place in macro state

  12. Effect of aluminum oxide on the compressive strength of pellets

    Institute of Scientific and Technical Information of China (English)

    Jian-liang Zhang; Zhen-yang Wang; Xiang-dong Xing; Zheng-jian Liu

    2014-01-01

    Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intru-sion, scanning electron microscopy, and image processing were used to investigate the effect of Al2O3 on the compressive strength of the pellets. The results showed that, as the Al2O3 content increased, the compressive strength of the pellets increased slightly and then decreased gradually. When a small amount of Al2O3 was added to the pellets, the Al2O3 combined with fayalite (2FeO·SiO2) and the aluminosilicate (2FeO·2Al2O3·5SiO2) was generated, which releases some iron oxide and reduces the inhibition of fayalite to the solid phase of consolidation. When Al2O3 increased sequentially, high melting point of Al2O3 particles hinder the oxidation of Fe3O4 and the recrystallization of Fe2O3, making the internal porosity of the pellets increase, which leads to the decrease in compressive strength of the pellets.

  13. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties

    International Nuclear Information System (INIS)

    An anodic aluminum oxide/Ti/Si substrate was successfully synthesized by the anodization of an aluminum film on a Ti/Si substrate and then used as a template to grow 10 nm diameter CoPd alloy nanowires. X-ray diffraction and energy-dispersed X-ray patterns indicated that Co0.97Pd0.03 nanowire arrays with a preferential orientation of (0 0 2) were formed during electrodeposition. High coercivity (about 1700 Oe) and squareness (about 0.85) were obtained in the samples when the magnetic field was applied parallel to the axis of the nanowires; these values are much larger than those of pure Co nanowire arrays with the same diameters

  14. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts

    Science.gov (United States)

    Willhite, Calvin C.; Karyakina, Nataliya A.; Yokel, Robert A.; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M.; Arnold, Ian M. F.; Momoli, Franco; Krewski, Daniel

    2016-01-01

    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al” assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+2 and Al(H2O)6+3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2•− and OH•. Thus, it is the Al+3-induced formation of oxygen radicals that accounts for the oxidative damage that

  15. Amorphous tin-cadmium oxide films and the production thereof

    Science.gov (United States)

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  16. Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles

    International Nuclear Information System (INIS)

    Intent of this study was to explore the potential application of polymerin, the polymeric, dissolved organic matter fraction from olive oil wastewaters, in technologies aimed at remediating hydrophobic organic compounds (HOCs) point-source pollution. Phenanthrene binding with polymerin was investigated. Moreover, the effect of addition of micro and nanoscale aluminum oxides (Al2O3) was studied, as well as sorption of polymerin on the oxides. Phenanthrene binding capacity by polymerin was notably higher than the sorption capacities for both types of Al2O3 particles. Polymerin sorption on nanoparticles was nearly 100 times higher than microparticles. In a three-phase system, using microparticles, higher phenanthrene sorption was found by adding into water polymerin, oxides and phenanthrene simultaneously. In contrast, using nanoparticles, a considerable enhancement of phenanthrene sorption was shown by adding phenanthrene to a pre-formed and dried polymerin-oxide complex. These findings support the application of polymerin, especially associated with Al2O3 nanoparticles, in remediation of water contaminated with HOCs. This work highlights the significant role of nanoparticles. - Size of aluminum oxides significantly affects sorption of polymerin and phenanthrene

  17. Rapid Deposition of Titanium Oxide and Zinc Oxide Films by Solution Precursor Plasma Spray

    Science.gov (United States)

    Ando, Yasutaka

    In order to develop a high rate atmospheric film deposition process for functional films, as a basic study, deposition of titanium oxide film and zinc oxide film by solution precursor plasma spray (SPPS) was conducted in open air. Consequently, in the case of titanium oxide film deposition, anantase film and amorphous film as well as rutile film could be deposited by varying the deposition distance. In the case of anatase dominant film, photo-catalytic properties of the films could be confirmed by wettability test. In addition, the dye sensitized sollar cell (DSC) using the TiO2 film deposited by this SPPS technique as photo voltaic device generates 49mV in OCV. On the other hand, in the case of zinc oxide film deposition, it was proved that well crystallized ZnO films with photo catalytic properties could be deposited. From these results, this process was found to have high potential for high rate functional film deposition process conducted in the air.

  18. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 μm thickness formed within the

  19. Repairing of anodic oxide films on Al-Zn alloy coated steel after removal with photon rupture in solutions

    International Nuclear Information System (INIS)

    Analysis of abrupt destroyed of passive oxide films on Al - Zn alloy layer coated on steel and its repair is important to understand the localized corrosion of steels. In the present investigation, anodic oxide films formed on Al - Zn coated steel specimens were removed by photon rupture method (one pulse of focused pulsed Nb - YAG laser beam irradiation) aat a constant potential in sodium borate solutions, pH = 9.2, with / without chloride ions to monitor the current transient. Irradiation with a pulsed laser in solutions causes abrupt removal of the anodic oxide film on the specimen at the laser-irradiated area. Without chloride ions, oxide films were reformed in the sodium borate solution at - 0.5 to 1 V after removal of the anodic oxide film, However, in chloride ions containing solutions, pitting corrosion of Zn - 55 mass % Al coated layers occurs at high potentials, while film reformation occurs at low potentials. It was also found that chloride ions enhance dissolution of aluminum and zinc at the very initial period after laser irradiation

  20. Effect of annealing on the magnetic properties of Ni nanowires prepared by using an anodized aluminum oxide template

    International Nuclear Information System (INIS)

    We report the growth mechanism and the magnetic properties of Ni nanowires on an anodized aluminum oxide (AAO) template. The porous AAO was fabricated using a two-step anodization process. The Ni nanowires were grown by using DC pulsed and AC electrodeposition methods, and the Ni nanowires were more uniformly grown by using the AC electrodeposition method than by using the DC pulsed electrodeposition method. We also studied the magnetic properties of the Ni nanowires and the post-annealed Ni nanowires (at 600 .deg. C in air). The annealed Ni nanowires showed smaller ferromagnetic saturation than the unannealed Ni nanowires. This result indicates that NiO existed in the Ni nanowires after the post-annealing process. In addition, the magnetic properties of the Ni nanowires at 5 K showed that the easy magnetization axis in the annealed Ni nanowires had rotated from the parallel to the nanowire surface to the perpendicular to that surface. Since the shape anisotropy of continuous Ni thin films favors the direction of the easy magnetization axis being parallel to direction of their surfaces, these results show that at low temperatures, the magnetic properties of Ni nanowires behave as those of continuous Ni thin films.

  1. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    Science.gov (United States)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  2. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu2O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  3. The influence of titanium and iron oxides on the coloring and friability of the blue fired aluminum oxide as an abrasive material

    OpenAIRE

    E. R. Passos; J. A. Rodrigues

    2016-01-01

    Abstract The quality of abrasive grains is crucial to increase the lifespan of roughing, polishing and cutting tools. The purpose of the work herein was to evaluate the variables of the blue fired aluminum oxide heat treatment process. This heat treatment process improves the physical properties of the brown fused aluminum oxide and results in a blue coloring, which uniquely identifies it within the abrasives industry. The work herein includes information beginning with the electro-fusion pro...

  4. Synthesis and structure analysis of aluminum doped zinc oxide powders

    Institute of Scientific and Technical Information of China (English)

    NIE DengPan; XUE Tao; ZHANG Yu; LI XiangJun

    2008-01-01

    Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1-xAlxO (0≤x≤0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1-xAlxO (0≤x≤0.028) compounds calcined at 1000 and 1200℃ have been deter-mined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indi-cated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1-xAlxO, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.21%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1-xAlxO while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1-xAlxO solid solution.

  5. Synthesis and structure analysis of aluminum doped zinc oxide powders

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hexagonal Al-doped zinc oxide (ZnO) powders with a nominal composition of Zn1-xAlxO (0≤x≤0.028) were synthesized by the co-precipitation method. The contents of the Al element in the samples were measured by the inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The structures of the Zn1-xAlxO (0≤x≤0.028) compounds calcined at 1000 and 1200℃ have been deter- mined using the Rietveld full-profile analysis method. Rietveld refinements of the diffraction data indi- cated that the addition of Al initially has a considerably positive effect on the decreasing of the lattice parameters a and c of Zn1-xAlxO, but the effect becomes very slight and even negative with the further increase of the Al content. The solid solubility limit of Al in ZnO (mole fraction y) is 2.2l%, resulting in Zn0.978Al0.22O. It seems that when the Al content is excessive, Al prefers to form a ZnAl2O4 compound with ZnO, but not to incorporate into the ZnO lattice to occupy the Zn2+ cites. Two phases, [ZnO] (or Al-doped ZnO) and [ZnAl2O4], are obviously segregated in Zn1-xAlxO while the value of x is larger than 0.024. The UV-Vis absorption spectra show that the Al-doped ZnO exhibits a red-shift in the absorption edge without reduced transmission compared with pure ZnO, which also confirms that Al ions enter the ZnO lattice and form a Zn1-xAlxO solid solution.

  6. Rapid air film continuous casting of aluminum alloy using static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fu QU; Huixue JIANG; Gaosong WANG; Qingfeng ZHU; Xiangjie WANG; Jianzhong CUI

    2009-01-01

    The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.

  7. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    International Nuclear Information System (INIS)

    U3Si2-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  8. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO3 electrolyte on porous anodic aluminum oxide substrate

    International Nuclear Information System (INIS)

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm2 at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C

  9. Electrochromic study on amorphous tungsten oxide films by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan (China); Hung, Ming-Tsung [Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Huang, B.Q. [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China)

    2015-07-31

    Tungsten oxide films under different oxygen flow rates are deposited by DC sputtering. The voltage change at target and analyses for the deposited films by X-ray diffraction, scanning electronic microscope, X-ray photoelectron spectroscopy and ultraviolet–visible-near infrared spectroscopy consistently indicate that low oxygen flow rate (5 sccm) only creates metal-rich tungsten oxide films, while higher oxygen flow rate (10–20 sccm) assures the deposition of amorphous WO{sub 3} films. To explore the electrochromic function of deposited WO{sub 3} films, we use electrochemical tests to perform the insertion of lithium ions and electrons into films. The WO{sub 3} films switch between color and bleach states effectively by both potentiostat and cyclic voltammetry. Quantitative evaluation on electrochemical tests indicates that WO{sub 3} film with composition close to its stoichiometry is an optimal choice for electrochromic function. - Highlights: • Amorphous WO{sub 3} films are deposited by DC sputtering under different O{sub 2} flow rates. • Higher oxygen flow rate (> 10 sccm) assures the deposition of amorphous WO{sub 3} films. • Both potentiostat and cyclic voltammetry make WO{sub 3} films switch its color. • An optimal electrochromic WO{sub 3} is to make films close to its stoichiometry.

  10. Electrochromic study on amorphous tungsten oxide films by sputtering

    International Nuclear Information System (INIS)

    Tungsten oxide films under different oxygen flow rates are deposited by DC sputtering. The voltage change at target and analyses for the deposited films by X-ray diffraction, scanning electronic microscope, X-ray photoelectron spectroscopy and ultraviolet–visible-near infrared spectroscopy consistently indicate that low oxygen flow rate (5 sccm) only creates metal-rich tungsten oxide films, while higher oxygen flow rate (10–20 sccm) assures the deposition of amorphous WO3 films. To explore the electrochromic function of deposited WO3 films, we use electrochemical tests to perform the insertion of lithium ions and electrons into films. The WO3 films switch between color and bleach states effectively by both potentiostat and cyclic voltammetry. Quantitative evaluation on electrochemical tests indicates that WO3 film with composition close to its stoichiometry is an optimal choice for electrochromic function. - Highlights: • Amorphous WO3 films are deposited by DC sputtering under different O2 flow rates. • Higher oxygen flow rate (> 10 sccm) assures the deposition of amorphous WO3 films. • Both potentiostat and cyclic voltammetry make WO3 films switch its color. • An optimal electrochromic WO3 is to make films close to its stoichiometry

  11. Characterization and stability of thin oxide films on plutonium surfaces

    Science.gov (United States)

    Flores, H. G. García; Roussel, P.; Moore, D. P.; Pugmire, D. L.

    2011-02-01

    X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were employed to study oxide films on plutonium metal surfaces. Measurements of the relative concentrations of oxygen and plutonium, as well as the resulting oxidation states of the plutonium (Pu) species in the near-surface region are presented. The oxide product of the auto-reduction (AR) of plutonium dioxide films is evaluated and found to be an oxide species which is reduced further than what is expected. The results of this study show a much greater than anticipated extent of auto-reduction and challenge the commonly held notion of the stoichiometric stability of Pu 2O 3 thin-films. The data indicates that a sub-stoichiometric plutonium oxide (Pu 2O 3 - y ) exists at the metal-oxide interface. The level of sub-stoichiometry is shown to depend, in part, on the carbidic contamination of the metal surface.

  12. Method of making highly porous, stable aluminum oxides doped with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi-Mardkhe, Maryam; Woodfield, Brian F.; Bartholomew, Calvin H.; Huang, Baiyu

    2016-03-22

    The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.

  13. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-11-01

    Full Text Available Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.

  14. Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CUI Shihai; HAN Jianmin; LI Weijing; KANG Suk-Bong; LEE Jung-Moo

    2006-01-01

    Thick and hard ceramic coatings were fabricated on A356 aluminum alloy by using plasma electrolytic oxidation(PEO) technique.The microstructure and phase composition of the PEO coatings were examined by using SEM and XRD method.It is found that the PEO coatings are mainly composed of crystalline α-Al2O3 and mullite.The dry sliding wear test of PEO coatings were carried out on a ring-on-ring wear machine.Results shows that there is hardly no wear loss of polished PEO coatings while the wear rate of uncoated aluminum alloy is 4.3×10-5 mm3·(N·m)-1 at a speed of 0.52 m·s-1 and a load of 40 N.

  15. Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hoon [School of Information and Mechatronics, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong Buk-gu, Gwangju 500-712 (Korea, Republic of); Sohn, Ik-Bu [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeong, Sungho, E-mail: shjeong@gist.ac.kr [School of Information and Mechatronics, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2009-09-30

    Femtosecond laser ablation of aluminum oxide (Al{sub 2}O{sub 3}) and aluminum nitride (AlN) ceramics was performed under normal atmospheric conditions ({lambda} = 785 nm, {tau}{sub p} = 185 fs, repetition rate = 1 kHz), and threshold laser fluencies for single- and multi-pulse ablation were determined. The ablation characteristics of the two ceramics showed similar trends except for surface morphologies, which revealed virtually no melting in Al{sub 2}O{sub 3} but clear evidence of melting for AlN. Based on subsequent X-ray photoelectron spectroscopy (XPS) analyses, the chemistry of these ceramics appeared to remain the same before and after femtosecond laser ablation.

  16. Electrochromic properties of nano-composite nickel oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.-H. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China)], E-mail: d927117@oz.nthu.edu.tw; Chen, F.-R. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Kai, J.-J. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2008-03-30

    In this study, we develop a nano-composite nickel oxide (NNO) film on the indium tin oxide (ITO)-coated glass substrate for electrochromic applications. The NNO film is composed of the core-shell structure of NiO/conducting ITO nano-particles. High porosity in the NNO film offers large active surface area for redox reaction. Electrochromic electrodes fabricated with the NNO films produce high transmittance variation (66.2% at a wavelength of 550 nm), fast switching speed (coloring: 3.5 s; bleaching: 4 s) and good durability, which are much better than those of ones made with the traditional nickel oxide films. The structure, morphology, and electrochromic properties are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and UV-vis spectroscopy.

  17. Electrochromic properties of nano-composite nickel oxide film

    International Nuclear Information System (INIS)

    In this study, we develop a nano-composite nickel oxide (NNO) film on the indium tin oxide (ITO)-coated glass substrate for electrochromic applications. The NNO film is composed of the core-shell structure of NiO/conducting ITO nano-particles. High porosity in the NNO film offers large active surface area for redox reaction. Electrochromic electrodes fabricated with the NNO films produce high transmittance variation (66.2% at a wavelength of 550 nm), fast switching speed (coloring: 3.5 s; bleaching: 4 s) and good durability, which are much better than those of ones made with the traditional nickel oxide films. The structure, morphology, and electrochromic properties are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and UV-vis spectroscopy

  18. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  19. Low reflectance sputtered vanadium oxide thin films on silicon

    Science.gov (United States)

    Esther, A. Carmel Mary; Dey, Arjun; Rangappa, Dinesh; Sharma, Anand Kumar

    2016-07-01

    Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100-700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200-2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.

  20. Preparation of Nickel-Aluminum-Containing Layered Double Hydroxide Films by Secondary (Seeded) Growth Method and Their Electrochemical Properties.

    Science.gov (United States)

    Zhang, Fazhi; Guo, Li; Xu, Sailong; Zhang, Rong

    2015-06-23

    Thin films of nickel-aluminum-containing layered double hydroxide (NiAl-LDH) have been prepared on nickel foil and nickel foam substrates by secondary (seeded) growth of NiAl-LDH seed layer. The preparation procedure consists of deposition of LDH seeds from a colloidal suspension on the substrate by dip coating, followed by hydrothermal treatment of the nanocrystals to form the LDH film. The secondary grown film is found to provide a higher crystallinity and more uniform composition of metal cations in the film layer than the in situ grown film on seed-free substrate under identical hydrothermal conditions. A systematic investigation of the film evolution process reveals that the crystallite growth rate is relatively fast for the secondary grown film because of the presence of LDH nanocrystal seeds. Electrochemical performance of the resulting NiAl-LDH films as positive electrode material was further assessed as an example of their practical applications. The secondary grown film electrode delivers improved recharge-discharge capacity and cycling stability compared with that of the in situ grown film, which can be explained by the existence of a unique microstructure of the former. Our findings show an example for the effective fabrication of LDH film with controllable microstructure and enhanced application performance through a secondary (seeded) growth procedure. PMID:26033419

  1. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  2. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Ibrahim H.A. [University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48105-1055 (United States); Meyerhoff, Mark E. [University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48105-1055 (United States)]. E-mail: mmeyerho@umich.edu

    2005-11-30

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 {+-} 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  3. Stress in photochromic and electrochromic effects on tungsten oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, J. [Depto. de Fisica, Universidade Estadual de Londrina, Londrina PR 86051-990 (Brazil)

    2003-09-15

    Optical absorbance at 632.8nm and the stress generated in tungsten oxide film due to photochromic and electrochromic effects were measured. WO{sub 3} thin films were deposited by reactive sputtering and the absorbance was obtained by measuring the optical transmittance of a laser beam through the film. The stress was calculated by measuring the substrate curvature and using the Stoney equation for multilayered films, since two layers are deposited onto a substrate for the electrochromism studies. The optical absorbance and the stress in the tungsten oxide film, as a function of UV irradiation time in photochromism and of inserted charge in electrochromism, are showed and discussed. In both effects the stresses generated were rendered as due to cation insertions into the film: H{sup +} protons in photochromism and Li{sup +} ions in electrochromism. The accuracy of the Stoney equation used for the stress calculation was also discussed.

  4. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  5. Altering properties of cerium oxide thin films by Rh doping

    International Nuclear Information System (INIS)

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeOx thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeOx thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce4+ and Ce3+ and rhodium occurs in two oxidation states, Rh3+ and Rhn+. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeOx thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeOx thin films leads to preparing materials with different properties

  6. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  7. Synthesis and electrical characterization of Graphene Oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Muhammad, E-mail: m.yasin@seecs.edu.pk [National University of Sciences and Technology, Islamabad (Pakistan); Polymer Electronics Research Laboratory, Gebze Technical University, Gebze (Turkey); Tauqeer, T.; Zaidi, Syed M.H. [National University of Sciences and Technology, Islamabad (Pakistan); San, Sait E. [Polymer Electronics Research Laboratory, Gebze Technical University, Gebze (Turkey); Department of Physics, Gebze Technical University, 41400 Kocaeli (Turkey); TUBITAK Marmara Research Center, Photonic Technologies Group, TUBITAK Gebze (Turkey); Mahmood, Asad [National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar (Pakistan); Köse, Muhammet E. [TUBITAK Marmara Research Center, Photonic Technologies Group, TUBITAK Gebze (Turkey); Canimkurbey, Betul [Polymer Electronics Research Laboratory, Gebze Technical University, Gebze (Turkey); Department of Physics, Gebze Technical University, 41400 Kocaeli (Turkey); Department of Physics, Amasya University, 05100 Amasya (Turkey); Okutan, Mustafa [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2015-09-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ{sub ac} of the films was observed to be varied with angular frequency, ω as ω{sup S}, with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively.

  8. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σac of the films was observed to be varied with angular frequency, ω as ωS, with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  9. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    Science.gov (United States)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg‑1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per‑1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  10. NANO-TRIBOLOGICAL STUDY ON A SUPER-HYDROPHOBIC FILM FORMED ON ROUGH ALUMINUM SUBSTRATES

    Institute of Scientific and Technical Information of China (English)

    Ren Sili; Yang Shengrong; Zhao Yapu

    2004-01-01

    A novel super-hydrophobic stearic acid (STA) film with a water contact angle of 166°was prepared by chemical adsorption on aluminum wafer coated with polyethyleneimine (PEI) film.The micro-tribological behavior of the super-hydrophobic STA monolayer was compared with that of the polished and PEI-coated Al surfaces. The effect of relative humidity on the adhesion and friction was investigated as well. It was found that the STA monolayer showed decreased friction, while the adhesive force was greatly decreased by increasing the surface roughness of the Al wafer to reduce the contact area between the atomic force microscope (AFM) tip and the sample surface to be tested. Thus the friction and adhesion of the Al wafer was effectively decreased by generating the STA monolayer,which indicated that it could be feasible and rational to prepare a surface with good adhesion resistance and lubricity by properly controlling the surface morphology and the chemical composition. Both the adhesion and friction decreased as the relative humidity was lowered from 65% to 10%, though the decrease extent became insignificant for the STA monolayer.

  11. An experimental investigation of angular resolved energy distributions of atoms sputtered from evaporated aluminum films

    International Nuclear Information System (INIS)

    A study of angular resolved velocity (energy) distributions of atoms sputtered from in situ prepared metal films is described in this contribution. The velocity resolution of the set-up is based on the pulsed laser-induced fluorescence technique, i.e., scanning the narrow bandwidth dye laser radiation over the Doppler broadened absorption profile of the sputtered particles. The arrangement of the vacuum vessel and fluorescence detection optics provides the means for an independent selection of the observed emission direction and the angle of incidence. A pulsed ion gun is applied to bombard the target with noble gas ions in the energy range between 200 and 500 eV. The target assembly allows the preparation of thin metal films by evaporation on optically polished glass substrates without break of the vacuum. We report on measurements obtained with this arrangement, i.e., the determination of energy distributions of sputtered aluminum atoms. The bombardment at both the normal and the oblique incidence of the ion beam are contained in the investigation. Pronounced anisotropic effects are observed in both cases. In the case of oblique bombardment the shape of the distributions reflects cascade effects as well as single collision properties. The energy distribution is approximated with the aid of an energy spectrum involving a superposition of exponential functions. The experimental results are compared with simulations obtained by the Monte Carlo code TRIM.SP

  12. Liquid-mix synthesis of oxide powders and thin films using a starch-based polymer

    International Nuclear Information System (INIS)

    A commercially available water-soluble starch derivative was used as the sole organic precursor in the Liquid-Mix synthesis of mixed-cation oxide powders and thin films. The acidified polymer (by nitric acid) was able to complex metal ions through the carboxylate ligands. Loosely agglomerated fine powders as well as dense thin films of complex oxides have been prepared using the same type of polymer. Oxide powders of Cr-doped lanthanum aluminate and yttrium aluminum garnet both crystallized in a single step, without forming any intermediate or second phases, when the amorphous resin intermediates were calcined at 650 C and 750 C for 2 hours, respectively. It was demonstrated that nitric acid could effectively reduce the viscosity of the polymer-nitrate solution to make it suitable for spin coating process. Dense thin films of Y(8 mol%)-doped ZrO2 were formed on Si and Al2O3 substrates by spin coating the polymeric solution and heating at temperatures below 1,000 C

  13. Unidirectional oxide hetero-interface thin-film diode

    Science.gov (United States)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-10-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ˜105 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 102 Hz < f < 106 Hz, providing a high feasibility for practical applications.

  14. Unidirectional oxide hetero-interface thin-film diode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Youn Sang, E-mail: younskim@snu.ac.kr [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institute of Convergence Technology, Gyeonggi-do 443-270 (Korea, Republic of)

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  15. Unidirectional oxide hetero-interface thin-film diode

    International Nuclear Information System (INIS)

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼105 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 102 Hz < f < 106 Hz, providing a high feasibility for practical applications

  16. Tunable structural color of anodic tantalum oxide films

    Institute of Scientific and Technical Information of China (English)

    Sheng Cui-Cui; Cai Yun-Yu; Dai En-Mei; Liang Chang-Hao

    2012-01-01

    Tantalum (Ta) oxide films with tunable structural color were fabricated easily using anodic oxidation.The structure,components,and surface valence states of the oxide filns were investigated by using gazing incidence X-ray diffractometry,X-ray photoelectron microscopy,and surface analytical techniques.Their thickness and optical properties were studied by using spectroscopic ellipsometry and total reflectance spectrum.Color was accurately defined using L*a*b* scale.The thickness of compact Ta2O5 films was linearly dependent on anodizing voltage.The film color was tunable by adjusting the anodic voltage.The difference in color appearance resulted from the interference behavior between the interfaces of air-oxide and oxide-metal.

  17. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion

    International Nuclear Information System (INIS)

    Use of atomic layer deposition (ALD) in microelectromechanical systems (MEMS) has increased as ALD enables conformal growth on 3-dimensional structures at relatively low temperatures. For MEMS device design and fabrication, the understanding of stress and mechanical properties such as elastic modulus, hardness and adhesion of thin film is crucial. In this work a comprehensive characterization of the stress, elastic modulus, hardness and adhesion of ALD aluminum oxide (Al2O3) films grown at 110–300 °C from trimethylaluminum and water is presented. Film stress was analyzed by wafer curvature measurements, elastic modulus by nanoindentation and surface-acoustic wave measurements, hardness by nanoindentation and adhesion by microscratch test and scanning nanowear. The films were also analyzed by ellipsometry, optical reflectometry, X-ray reflectivity and time-of-flight elastic recoil detection for refractive index, thickness, density and impurities. The ALD Al2O3 films were under tensile stress in the scale of hundreds of MPa. The magnitude of the stress decreased strongly with increasing ALD temperature. The stress was stable during storage in air. Elastic modulus and hardness of ALD Al2O3 saturated to a fairly constant value for growth at 150 to 300 °C, while ALD at 110 °C gave softer films with lower modulus. ALD Al2O3 films adhered strongly on cleaned silicon with SiOx termination. - Highlights: • The residual stress of Al2O3 was tensile and stable during the storage in air. • Elastic modulus of Al2O3 saturated to at 170 GPa for films grown at 150 to 300 °C. • At 110 °C Al2O3 films were softer with high residual hydrogen and lower density. • The Al2O3 adhered strongly on the SiOx-terminated silicon

  18. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    International Nuclear Information System (INIS)

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10−1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative −2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  19. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    Science.gov (United States)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  20. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.W.; Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10⁻¹ Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  1. Kinetics and thermodynamics of aluminum oxide nanopowder as adsorbent for Fe (III from aqueous solution

    Directory of Open Access Journals (Sweden)

    Mohamed A. Mahmoud

    2015-06-01

    Full Text Available Batch adsorption of Fe (III from aqueous solution by aluminum oxide nanopowder was studied in batch system. The removal efficiency (99.9% was obtained at pH 4 and 50 min contact time. The results indicate that the process follows Langmuir isotherm and pseudo-second-order kinetics model. As well as the thermodynamic data indicated that the exothermic nature process. The values of enthalpy (ΔH°, mean free energy (E and activation energy (Ea indicate that the adsorption process is physical sorption.

  2. Investigation of the radiation defect in aluminum oxide by the spectrum of diffuse reflection

    International Nuclear Information System (INIS)

    Full text : The results of investigation of radiation defects in the γ irradiated disperse aluminum oxide by the spectrum of diffuse reflection were given in this work. It was shown that, γ irradiation Al2O3 guides absorption in and around tied assistance generation of electron (F+) and hole (V) centers. Multicomponent structure was observed in V centers under hv=2,5-3,2 with maximum under γ=375,390 and 410 nm, appropriated hole centers of V, V= and VOH types. The study of kinetic regularity of capital of the V centers depending on absorbed dose. General concentration of the hole centers was calculated

  3. Defects and characteristics of the structure and properties of aluminum oxides

    Science.gov (United States)

    Kopylov, V. B.; Aleksandrov, K. A.; Sergeev, E. V.

    2008-07-01

    Based on IR spectroscopy data, it was established that nonstoichiometry defects in the structure of aluminum oxides were components of the Wannier-Mott exciton states and included the Al-O, Al-Al, O2, O{2/+}, O{2/-}, O{2/2-}, O3, and O2 n isolated oscillators in the ground and electronically excited states. It was shown that their presence manifested itself by thermoemission of molecular oxygen singlet forms, excess heat capacity, and anomalous diamagnetism at elevated temperatures.

  4. A Single-Tube Nucleic Acid Extraction, Amplification, and Detection Method Using Aluminum Oxide

    OpenAIRE

    Dames, Shale; Bromley, L. Kathryn; Herrmann, Mark; Elgort, Marc; Erali, Maria; Smith, Roger; Voelkerding, Karl V.

    2006-01-01

    A disposable 0.2-ml polymerase chain reaction (PCR) tube modified with an aluminum oxide membrane (AOM) has been developed for the extraction, amplification, and detection of nucleic acids. To assess the dynamic range of AOM tubes for real-time PCR, quantified herpes simplex virus (HSV) DNA was used to compare AOM tubes to standard PCR tubes. AOM PCR tubes used for amplification and detection of quantified HSV-1 displayed a crossing threshold (CT) shift 0.1 cycles greater than PCR tube contro...

  5. Preparation and Characterization of Fe Nanowire Arrays Embedded in Porous Anodic Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    迟广俊; 姚素薇

    2004-01-01

    Fe nanowire arrays are prepared by electrodeposition in porous anodic aluminum oxide template from a composite electrolyte solution. These nanowires have an uniform diameter of approximate 25 nm and a length in excess of 2.5μm.The micrographs and crystal structures of Fe nanowlres are studied by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction(XRD). It is found that each nanowire is essentially a single crystal and has a different orientation in each array. Hysteresis loops of Fe nanowire array show that its easy magnetization direction is perpendicular to the sample plane.

  6. Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone

    OpenAIRE

    Jie Fu; Dong Sheng; Xiuyang Lu

    2015-01-01

    Four types of nickel catalysts supported on aluminum oxide (Ni/Al2O3) with different nickel loadings were synthesized using the co-precipitation method and were used for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL). The synthesized Ni/Al2O3 catalysts exhibited excellent catalytic activity in dioxane, and the activity of the catalysts was excellent even after being used four times in dioxane. The catalytic activity in dioxane as a solvent was found to be superior t...

  7. Factors Leading to the Formation of a Resistive Thin Film at the Bottom of Aluminum Electrolysis Cells

    Science.gov (United States)

    Coulombe, Marc-André; Soucy, Gervais; Rivoaland, Loig; Davies, Lynne

    2016-04-01

    Studies on sludge formation in aluminum electrolysis cells are rare and typically do not distinguish the deposits at the center of the cell from those composing the ledge toe because low voltage lost is expected at the center of the cell. However, high amount of sludge in the center leads to the formation of a thin film in an intermediate zone between the ledge toe and this center thick sludge accumulation. Looking at sludge deposits through composition mapping and microstructure analysis coming from four aluminum cells of two different aluminum reduction technologies, major factors leading to a thin resistive film were identified. This includes the formation of a suspension on the top of the thick deposit at the center of the cell, its displacement through magnetohydrodynamic induced movement by the metal pad, and the growth and thickening of a carbide sublayer making the thin film even more resistive. Correlation between thickening of the thin film and cathode voltage drop increase was observed. The postmortem analysis performed on six laboratory experiments was found useful to support different observations made on the industrial cells at lower cost.

  8. Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method

    International Nuclear Information System (INIS)

    Highlights: ► Undoped and Al doped ZnO (AZO) thin films were successfully prepared using sol–gel technique. ► Structural analysis has revealed that Al doping has a significant influence on preferential orientation. ► It has been observed that wrinkles forms on the surface of films when annealed with a fast heat ramp up rate. ► Optical analysis has revealed that that the band gap energy of ZnO thin film increases with increasing Al doping concentration. ► The lowest resistivity is observed for 1% Al ZnO thin film, which is 2.2 × 10−2 (Ω cm). - Abstract: ZnO and some of its ternary wide-bandgap alloys offer interesting opportunities for designing materials with tunable band gaps, strong piezoresistivity and controlled electrical conductance with high optical transparency. Synthesizing these materials on arbitrary substrates using low-cost and unconventional techniques can help in integrating semiconductors with different physical, electrical, and optical characteristics on a single substrate for heterogeneous integration of multifunctional devices. Here we report the successful synthesis of aluminum (Al) doped ZnO (AZO) thin films on soda-lime glass, silicon and fluorine doped tin oxide (FTO) pre-coated glass substrates by using sol–gel deposition method at ambient condition. X-ray diffraction (XRD) analysis revealed that varying degree of Al doping significantly impacts the crystal orientation, semiconductor bandgap and optical transparency of the film. Crystal structure of the film is also found to be strongly correlated to the characteristics of the substrate material. The impact of heating rate during post annealing process is studied and optimized in order to improve the surface morphology of the deposited films. Optical characterizations have revealed that bandgap energy of AZO films can be tuned between 3.30 eV and 4.1 eV as the Al concentration is varied from 1% to 20%. Similarly, electrical characteristics of these films indicate that 1

  9. Effect of environment on iodine oxidation state and reactivity with aluminum.

    Science.gov (United States)

    Smith, Dylan K; McCollum, Jena; Pantoya, Michelle L

    2016-04-20

    Iodine oxide is a highly reactive solid oxidizer and with its abundant generation of iodine gas during reaction, this oxidizer also shows great potential as a biocidal agent. A problem with using I2O5 in an energetic mixture is its highly variable reactive behavior. This study isolates the variable reactivity associated with I2O5 as a function of its chemical reaction in various environments. Specifically, aluminum fuel and iodine oxide powder are combined using a carrier fluid to aid intermixing. The carrier fluid is shown to significantly affect the oxidation state of iodine oxide, thereby affecting the reactivity of the mixture. Four carrier fluids were investigated ranging in polarity and water miscibility in increasing order from hexane water as well as untreated, dry-mixed reactants. Oxidation state and reactivity were examined with experimental techniques including X-ray photoelectric spectroscopy (XPS) and differential scanning calorimetry (DSC). Results are compared with thermal equilibrium simulations. Flame speeds increased with polarity of the fluid used to intermix the powder and ranged from 180 to 1202 m s(-1). The I2O5 processed in the polar fluids formed hydrated states of iodine oxide: HIO3 and HI3O8; and, the nonpolar and dry-mixed samples formed: I2O4 and I4O9. During combustion, the hydrated iodine oxides rapidly dehydrated from HIO3 to HI3O8 and from HI3O8 to I2O5. Both steps release 25% of their mass as vapor during combustion. Increased gas generation enhances convective energy transport and accounts for the increase in reactivity seen in the mixtures processed in polar fluids. These results explain the chemical mechanisms underlying the variable reactivity of I2O5 that are a function of the oxide's highly reactive nature with its surrounding environment. These results will significantly impact the selection of carrier fluid in the synthesis approach for iodine containing reactive mixtures. PMID:27052472

  10. Study on phosphating treatment of aluminum alloy: role of yttrium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shenglin

    2009-01-01

    Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2-4H2O (hopeite) and AIPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by po-larization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.

  11. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  12. Fabrication of independent nickel microstructures with anodizing of aluminum,laser irradiation, and electrodeposition

    Institute of Scientific and Technical Information of China (English)

    T. Kikuchi; M. Sakairi; H. Takahashi

    2003-01-01

    Independent microstructures made of Ni metal were fabricated by five sequential processes: porous anodic oxide film for-mation, pore sealing, laser irradiation, Ni electroplating, and removal of the aluminum substrate and anodic oxide films. Aluminumplates and rods were anodized in an oxalic acid solution to form porous type anodic oxide films, and then immersed in boiling dis-tilled water for pore sealing. The anodized and pore-sealed specimens were irradiated with a pulsed neodymium-doped yttrium alu-minum garnet (Nd-YAG) laser beam in a Ni plating solution to remove anodic oxide film locally by rotating and moving up / downwith an XYZθ-stage. Nickel was deposited at the area where film had been removed by cathodic polarization in the solution beforeremoving the aluminum substrate and anodic oxide films in NaOH solutions. Cylindrical or plain network structures were fabricated successfully.

  13. Indium tin oxide-silicon thin film solar cell

    International Nuclear Information System (INIS)

    Heterojunction solar cells consisting of amorphous indium tin oxide (ITO) thin films on silicon films have been fabricated and studied. The results show that the devices give a photovoltaic effect and rectifying characteristics. One of the main characteristics of amorphous ITO thin films is better transparency (>85%) over the complete useful window of the solar spectrum. The polarity observed is found to be consistent with V/sub oc/ = 0.34 volt, I/sub sc/ = 22mA/cm/sup 2/ and fill factor = 0.48. An attempt has been made to understand the conduction mechanism of indium tin oxide - silicon heterojunction

  14. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  15. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    International Nuclear Information System (INIS)

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  16. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    A P Rambu; N Iftimie

    2014-05-01

    Metallic zinc thin films were deposited onto glass substrates using vacuum thermal evaporation method. By thermal oxidation of as-deposited Zn films, in ambient conditions, at different temperatures (570, 670 and 770 K, respectively, for 1 h) zinc oxide thin films were obtained. The structural characteristics of the obtained films were investigated by X-ray diffraction technique and atomic force microscopy. Characteristic XRD patterns of oxidized films show small and narrow peaks superimposed on the large broad background of the amorphous component of the substrate. Optical transmittance spectra were recorded and it was observed that the transmittances of the studied films increased with increasing oxidation temperature. The values of the optical bandgap, g, evaluated from Tauc plots, were found to be ranged between 3.22 and 3.27 eV. Electrical conductivity measurements were performed and it was observed that, after performing a heat treatment, the electrical conductivity of analysed samples decreased with one or two orders of magnitude. The gas sensitivity was investigated for some reducing gases such as acetone, methane and liquefied petroleum gas and it was observed that the films studied were selective to acetone.

  17. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p...

  18. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...

  19. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    P Samarasekara; N U S Yapa; N T R N Kumara; M V K Perera

    2007-04-01

    For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8.5 mbar for 18 h. Argon and oxygen gases were used as sputtering and reactive gases, respectively. ZnO phase could be crystallized using a pure metal target of zinc. The structure of the films determined by means of X-ray diffraction method indicates that the zinc oxide single phase can be fabricated in this substrate temperature range. The sensitivity of the film synthesized at substrate temperature of 130°C is 2.17 in the presence of CO2 gas at a measuring temperature of 100°C.

  20. Lithium cobalt oxide thin film and its electrochromism

    Science.gov (United States)

    Wei, Guang; Haas, Terry E.; Goldner, Ronald B.

    1989-06-01

    Thin films of lithium cobalt oxide have been prepared by RF-sputtering from powdered LiCoO2. These films permit reversible electrolytic removal of lithium ions upon application of an anodic voltage in a propylene carbonate-lithium perchlorate electrolyte, the films changing in color from a pale amber transparent state to a dark brown. A polycrystalline columnar film structure was revealed with SEM and TEM. X ray examination of the films suggests that the layered rhombohedral LiCoO2 structure is the major crystalline phase present. Oxidation-reduction titration and atomic absorption were used for the determination of the film stoichiometry. The results show that the as deposited-films on glass slides are lithium deficient (relative to the starting material) and show a high average cobalt oxidation state near +3.5. The measurements of dc conductivity suggest a band to band conduction at high temperature (300 to 430 K) and hopping conduction in localized states at low temperature (4 to 270 K). The thermoelectric power data show that the films behave as p-type semiconductors. Transmission and reflectance measurements from 400 nm to 2500 nm show significant near-IR reflectivity.

  1. Electrostatic spray deposited zinc oxide films for gas sensor applications

    International Nuclear Information System (INIS)

    In this work, thin films of zinc oxide (ZnO) for gas-sensor applications were deposited on platinum coated alumina substrate, using electrostatic spray deposition (ESD) technique. As precursor solution zinc acetate in ethanol was used. Scanning electron microscopy (SEM) evaluation showed a porous and homogeneous film morphology and the energy dispersive X-ray analysis (EDX) confirmed the composition of the films with no presence of other impurities. The microstructure studied with X-ray diffraction (XRD) and Raman spectroscopy indicated that the ZnO oxide films are crystallized in a hexagonal wurtzite phase. The films showed good sensitivity to 1 ppm nitrogen dioxide (NO2) at 300 oC while a much lower sensitivity to 12 ppm hydrogen sulphide (H2S)

  2. Structure and chemical properties of molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Molybdenum oxide (MoO3) exhibits interesting structural, chemical, electrical, and optical properties, which are dependent on the growth conditions and the fabrication technique. In the present work, MoO3 films were produced by pulsed-laser deposition and dc magnetron sputtering under varying conditions of growth temperature (Ts) and oxygen pressure (pO2). The effect of growth conditions on the structure and chemical properties of MoO3 films was examined using x-ray diffraction, reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, and infrared spectroscopic measurements. The analyses indicate that the microstructure of Mo oxide films is sensitive to Ts and pO2. The growth conditions were optimized to produce stoichiometric and highly textured polycrystalline MoO3 films. A comparison of the microstructure of MoO3 films grown using pulsed-laser deposition and sputtering methods is also presented

  3. Optical properties of amorphous tungsten oxide films: Effect of stoichiometry

    International Nuclear Information System (INIS)

    The optical properties of sputter deposited amorphous tungsten oxide films have been measured in-situ during slow electrochemical cycling in a lithium containing electrolyte. Amorphous films exhibit coloration under Li insertion and bleaching under Li extraction. Substoichiometric films show almost reversible optical changes already in the first electrochemical cycle and are completely reversible thereafter. Tungsten oxide films sputtered in a large excess of oxygen were found to be slightly overstoichiometric, as determined by Rutherford Backscattering Spectrometry. They exhibit irreversible charge transfer and coloration in the first cycle. Thereafter they cannot be completely bleached and exhibit transmittance contrast between coloured and partially bleached states. The irreversible colouration of the stoichiometric films is associated with a feature at 2.6 to 2.9 eV vs. Li in electrochemical measurements. Possible chemical reactions giving rise to this behaviour are discussed

  4. Structural and electrochromic properties of sol-gel made tantalum oxide and tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Zayim, E.Oe.; Tepehan, F.Z. [Istanbul Technical Univ. Dept. of Physics, Istanbul (Turkey)

    2004-07-01

    Tantalum oxide and tungsten oxide thin films were prepared by spin coating techniques. The effect of tantalum concentration on the optical, structural and electrochromic properties of the films were studied. The optical, structural and electrochromic properties of pure, WO{sub 3}, Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} doped WO{sub 3} thin films are described and compared to each other. Film characterization was made by cyclic voltammetry (CV) and scanning electron microscopy (SEM). The coatings were studied electrochemically in 1 M LiClO{sub 4} in propylene carbonate electrolytes. Electrochemical and optical characterizations show that the tantalum concentration affects the properties of sol-gel derived films significantly. Mechanical tests show that tantalum oxide films resist to abrasion well. (orig.)

  5. Structural and electrochromic properties of sol-gel made tantalum oxide and tungsten oxide films

    International Nuclear Information System (INIS)

    Tantalum oxide and tungsten oxide thin films were prepared by spin coating techniques. The effect of tantalum concentration on the optical, structural and electrochromic properties of the films were studied. The optical, structural and electrochromic properties of pure, WO3, Ta2O5 and Ta2O5 doped WO3 thin films are described and compared to each other. Film characterization was made by cyclic voltammetry (CV) and scanning electron microscopy (SEM). The coatings were studied electrochemically in 1 M LiClO4 in propylene carbonate electrolytes. Electrochemical and optical characterizations show that the tantalum concentration affects the properties of sol-gel derived films significantly. Mechanical tests show that tantalum oxide films resist to abrasion well. (orig.)

  6. Effect of thermal annealing on the structural and optical properties of tris-(8-hydroxyquinoline)aluminum(III) (Alq3 ) films.

    Science.gov (United States)

    Cuba, M; Muralidharan, G

    2015-05-01

    Tris-(8-hydroxyquionoline)aluminum (Alq3 ) was synthesized and coated on to a glass substrate using the dip coating method. The structural and optical properties of the Alq3 film after thermal annealing from 50°C to 300°C in 50° steps was studied. The films have been prepared with 2 to 16 layers (42-324 nm). The thickness and thermal annealing of Alq3 films were optimized for maximum luminescence yield. The Fourier transform infrared spectrum confirms the formation of quinoline with absorption in the region 700 - 500/cm. Partial sublimation and decomposition of quinoline ion was observed with the Alq3 films annealed at 300°C. The X-ray diffraction pattern of the Alq3 film annealed at 50°C to 150°C reveals the amorphous nature of the films. The Alq3 film annealed above 150°C were crystalline nature. Film annealed at 150°C exhibits a photoluminescence intensity maximum at 512 nm when excited at 390 nm. The Alq3 thin film deposited with 10 layers (220 nm) at 150°C exhibited maximum luminescence yield. PMID:25044340

  7. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  8. NEXAFS Study of Air Oxidation for Mg Nanoparticle Thin Film

    Science.gov (United States)

    Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S.

    2013-03-01

    The air oxidation reaction of Mg nanoparticle thin film has been investigated by Mg K-edge NEXAFS technique. It is revealed that MgO is formed on the Mg nanoparticle surfaces at the early stage of the air oxidation for Mg nanoparticle thin film. The simulation of NEXAFS spectrum using standard spectra indicates the existence of complex magnesium carbonates (x(MgCO3).yMg(OH2).z(H2O)) in addition to MgO at the early stage of the air oxidation.

  9. Effects of rare earth oxide additives on the thermal behaviors of aluminum nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; WANG Ling; LI Chuncheng; JIANG Xiaolong; QIU Tai

    2009-01-01

    The effects of Y_2O_3 and Er_2O_3 on the sintering behaviors, thermal properties and microstructure of AIN ceramics were investigated. The ex-perimental results show that the sintering temperature can be decreased; the relative density and thermal behavior can be improved by adding rare earth oxide in AIN ceramics. For AIN ceramics with 3 wt.% Er_2O_3 additive, the relative density is 98.8%, and the thermal conductivity reaches 106 W·m~(-1)·K~(-1). The microstructure research found that no obvious aluminum erbium oxide was found in AIN ceramics doped with 3 wt.% Er_2O_3, which favored the improvement of the thermal conductivity of AIN ceramics.

  10. Radon test measurements with Ce-doped yttrium aluminum oxide perovskite scintillator

    Directory of Open Access Journals (Sweden)

    F. de Notaristefani

    2002-04-01

    Full Text Available Scintillation properties of a Ce-doped yttrium aluminium oxide perovskite monocrystal optically coupled to a Hamamatsu H5784 photomultiplier are analyzed with a standard bialkali photocathode for radon and radon daughters gamma-ray spectrometry. Tests in water up to 100°C and in acidic solutions of HCl (37%, H2SO4 (48% and HNO3 (65% were performed to simulate environments of geophysical interest, such as geothermal and volcanic areas. Comparative measurements with standard radon sources provided by the National Institute for Metrology of Ionizing Radiations (ENEA confirm the non-hygroscopic properties of the scintillator and small dependence of the light yield on temperature and HNO3.The Ce-doped yttrium aluminum oxide perovskite monocrystal shows high response stability for radon gamma-ray spectrometry in environments with large temperature gradients and high acid concentrations.

  11. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  12. Efficient electrochromic nickel oxide thin films by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sonavane, A.C. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004, Maharashtra (India); Inamdar, A.I. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004, Maharashtra (India); Department of Semiconductor Science, Dongguk University, Seoul - 100-715 (Korea, Republic of); Shinde, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004, Maharashtra (India); Deshmukh, H.P. [Department of Physics, Y. M. College, Bharati Vidyapeeth, Erandwane, Pune (India); Patil, R.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004, Maharashtra (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.i [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004, Maharashtra (India)

    2010-01-21

    Nickel oxide (NiO) thin films were prepared by electrodeposition technique onto the fluorine doped tin oxide (FTO) coated glass substrates in one step deposition at 20, 30, 40 and 50 min deposition times respectively. The effect of film thickness (thereby microstructural changes) on their structural, morphological, optical and electrochromic properties was investigated. The mass change with potential and cyclic voltammogram was recorded in the range from +0.3 to -0.8 V versus Ag/AgCl. One step deposition of polycrystalline cubic phase NiO was confirmed from X-ray diffraction study. Optical absorption study revealed direct band gap energy of 3.2 eV. The optical transmittance of the film decreased with increase in film thickness. A uniform granular and porous morphology of the films deposited for 20 min was observed. The film becomes more compact and devoid of pores when deposition time was increased to 30 min. Thereafter severe cracks are observed. All the films exhibit anodic electrochromism in OH{sup -} containing electrolyte (0.1 M KOH). The maximum coloration efficiency of 107 cm{sup 2}/C and electrochemical stability of up to 10{sup 4} colour/bleach cycles were observed for the films deposited for 20 min (film thickness of 104 nm).

  13. Sn-doped Zinc Oxide thin films for LPG sensors

    Directory of Open Access Journals (Sweden)

    R. K. Nath

    2012-03-01

    Full Text Available Sn doped zinc oxide (ZnO:Sn thin films have been prepared by chemical spray pyrolysis technique using Zn(CH3COO2 as a precursor solution and SnCl4 as a doping solution respectively. The dopant concentration (Sn/Zn at% is varied from 0 to 1.5 at%. The structural, morphological, optical and electrical properties of the films are explored and then tested for LPG sensing. The resistivity of the Sn-doped films decreases with the Sn doping up to 0.5at%, while at a higher doping concentration the disorder produced in the lattice causes an increase in resistivity of the films. Exposure of LPG decreases the resistance of undoped and doped films. The response of the film is measured for both ZnO and ZnO:Sn films at different operating temperature (275-400℃ and concentration (vol % of LPG in air. It is observed that Sn-doped ZnO films are more sensitive to LPG than undoped ZnO film. In this work, maximum response (~88 % is observed for 0.5at % ZnO:Sn film for 1 vol% of LPG in air at 300℃. Further all the films have shown faster response and recovery times at higher operating temperatures

  14. Method for Fabricating Textured High-Haze ZnO:Al Transparent Conduction Oxide Films on Chemically Etched Glass Substrates.

    Science.gov (United States)

    Park, Hyeongsik; Nam, Sang-Hun; Shin, Myunghun; Ju, Minkyu; Lee, Youn-Jung; Yu, Jung-Hoon; Jung, Junhee; Kim, Sunbo; Ahn, Shihyun; Boo, Jin-Hyo; Yi, Junsin

    2016-05-01

    We developed a technique for forming textured aluminum-doped zinc oxide (ZnO:Al) transparent conductive oxide (TCO) films on glass substrates, which were etched using a mixture of hydrofluoric (HF) and hydrochloric (HCl) acids. The etching depth and surface roughness increased with an increase in the HF content and the etching time. The HF-based residues produced insoluble hexafluorosilicate anion- and oxide impurity-based semipermeable films, which reduced the etching rate. Using a small amount of HCl dissolved the Ca compounds, helping to fragment the semipermeable film. This formed random, complex structures on the glass substrates. The angled deposition of three layers of ZnO:Al led to the synthesis of multiscaled ZnO:Al textures on the glass substrates. The proposed approach resulted in textured ZnO:Al TCO films that exhibited high transmittance (-80%) and high haze (> 40%) values over wavelengths of 400-1000 nm, as well as low sheet resistances (< 18 Ω/sq)..Si tandem solar cells based on the ZnO:Al textured TCO films exhibited photocurrents and cell efficiencies that were 40% higher than those of cells with conventional TCO films. PMID:27483840

  15. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  16. Barrier layer non-uniformity effects in anodized aluminum oxide nanopores on ITO substrates

    International Nuclear Information System (INIS)

    Nanoporous anodic aluminum oxide (AAO) has been used widely as a template for device fabrication. In many nanostructured electro-optical device designs, AAO grown on an ITO substrate is the desired configuration. However, a residual thin aluminum oxide barrier layer between ITO and the AAO pores remains and process non-uniformities during the template fabrication can cause serious problems in the quality of nanowires deposited later in these pores. It was observed that in many templates, even the pores closest to each other could have their barrier layer thicknesses differ by as much as 10-20 nm. In this paper, causes and remedies for this non-uniformity are investigated, including the effects of a thin Ti interlayer inserted between the ITO and AAO. Templates with different Ti layer thickness and annealing conditions were compared. Mechanisms for the formation of voids beneath the barrier layer were analyzed and studied experimentally. Reactive ion etch (RIE) was found to be the preferred method to mitigate process non-uniformities. Using the above methods, barrier-free AAO templates on ITO substrates were obtained; their thicknesses ranged from 200 to 1000 nm. The characteristics of CdS nanowires electrodeposited into the initial templates with non-uniform barrier layer thicknesses and into the processed, barrier-free templates were compared.

  17. Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface

    International Nuclear Information System (INIS)

    Wetting theory about superhydrophobic surfaces reveals that hydrophobicity of surfaces has great relationship with surface roughness and surface free energy. Adopt electrochemical plus fluorine silane modified method to prepare superhydrophobic surface on anodic aluminum oxide surface, which not only enhances surface roughness, but also reduces surface free energy, even the static contact angle can reach 159.2° and anti-condensation is authenticated. Based on the experimental findings, analyze the reason of anti-condensation on superhydrophobic surfaces: one is that the density of droplets formed on superhydrophobic surfaces is low and the number of droplets is little; the other is bigger static contact angle and smaller rolling angle on superhydrophobic surfaces make droplets easy to detach on smaller tilt angle. This research can solve some condensation problems of equipment using in HVAC systems, such as heat exchangers in air conditioning system, cold radiation boards, air supply outlets, and so on. Highlights: • Prepare superhydrophobic surface on anodic aluminum oxide surface. • Analyze the reason of anti-condensation on superhydrophobic surfaces. • The density of droplets formed on superhydrophobic surfaces is low. • Droplets on superhydrophobic surfaces are easy to detach. • This research can solve some problems of equipment using in HVAC systems

  18. Characterization of lipid bilayer formation in aligned nanoporous aluminum oxide nanotube arrays.

    Science.gov (United States)

    Karp, Ethan S; Newstadt, Justin P; Chu, Shidong; Lorigan, Gary A

    2007-07-01

    Aligning lipid bilayers in nanoporous anodized aluminum oxide (AAO) is a new method to help study membrane proteins by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR) spectroscopic methods. The ability to maintain hydration, sample stability, and compartmentalization over long periods of time, and to easily change solvent composition are major advantages of this new method. To date, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) has been the only phospholipid used for membrane protein studies with AAO substrates. The different properties of lipids with varying chain lengths require modified sample preparation procedures to achieve well formed bilayers within the lining of the AAO substrates. For the first time, the current study presents a simple methodology to incorporate large quantities of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), DMPC, and 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) phospholipids inside AAO substrate nanopores of varying sizes. (2)H and (31)P solid-state NMR were used to confirm the alignment of each lipid and compare the efficiency of alignment. This study is the first step in standardizing the use of AAO substrates as a tool in NMR and EPR and will be useful for future structural studies of membrane proteins. Additionally, the solid-state NMR data suggest possible applications of nanoporous aluminum oxide in future vesicle fusion studies. PMID:17482492

  19. Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents

    Indian Academy of Sciences (India)

    Yu-Hsien Chou; J L H Chau; W L Wang; C S Chen; S H Wang; C C Yang

    2011-06-01

    Aluminum-doped zinc oxide (AZO) ceramics with 0−2.5 wt.% alumina (Al2O3) content were prepared using a solid-state reaction technique. It was found that AZO grains became finer in size and more irregular in shape than undoped ZnO as the Al2O3 content increased. Addition of Al2O3 dopant caused the formation of phase transformation stacking faults in ZnO grains. The second phase, ZnAl2O4 spinel, was observed at the grain boundaries and triple junctions, and inside the grains. In this study, a 3-inch circular Al2O3 (2 wt.%)-doped ZnO ceramic target sintered at 1500°C for 6 h has a relative density of 99.8% with a resistivity of 1.8 × 10-3 -cm. The AZO film exhibits optical transparency of 90.3% in the visible region and shows an electrical resistivity of 2.5 × 10-3 -cm.

  20. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    OpenAIRE

    Liu, Y.; Visser, P; Zhou, X.; Lyon, S B; Hashimoto, T; Curioni, M.; Gholinia, A.; Thompson, G. E.; Smyth, G.; Gibbon, S.R.; Graham, D; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 μm thickness formed within the area where an artificial defect was introduced by scribing through the coating to the base alloy. This film showed a multilayered structure consisting of a relatively compact layer near the alloy s...